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Abstract

A (positive definite integral) quadratic form is called almost n-regular if it

globally represents all but finitely many quadratic forms of rank n that are

locally represented up to isometry.

In this thesis, we discuss the finiteness of primitive almost 2-regular

quinary quadratic forms up to isometry. We prove that there are finitely

many almost 2-regular quinary quadratic forms that represent all integers.

We also prove that there are finitely many primitive almost 2-regular quinary

quadratic forms having an odd core prime. We discuss the finiteness of prim-

itive almost 2-regular quinary quadratic forms which have 2 as the only core

prime.

Key words: quadratic forms, almost n-regular forms, representation, Wat-

son transformation
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Chapter 1

Introduction

For a positive definite (non-classic) integral quadratic form f , we say that f

is n-regular if it globally represents all (positive definite integral) quadratic

forms of rank n that are locally represented. Similarly, f is called almost n-

regular if it represents all but finitely many quadratic forms up to isometry.

Any (almost) 1-regular form is simply called (almost) regular.

The term ‘regular’ was first coined by Dickson in [7], who determined

all regular forms of the form x2 + ay2 + bz2, where a, b are positive integers.

Watson showed in [18] that there exist only finitely many inequivalent ternary

regular forms by using arithmetic arguments. He defined the set E(f) of

positive integers which are locally represented, but not globally, by a ternary

quadratic form f . He showed that the size of E(f) grows as the discriminant

of f increases, and hence only finitely many ternary forms up to isometry

can be regular.

The problem of finding all primitive regular ternary forms was reignited

by Jagy, Kaplansky and Schiemann who provided a list of 913 (inequivalent)

regular ternary quadratic forms including 22 candidates. Their proof relies

on the complete list of those regular ternary forms with square-free discrim-

inant [18] and the method of descent which is originated by Watson in [20].

This method of descent involves transformations changing a regular ternary

form to another one with smaller discriminant and simpler local structure,
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CHAPTER 1. INTRODUCTION

which are called the Watson transformations. Recently, Oh [13] proved the

regularity of 8 candidates. For the regularity of the remaining 14 candidates,

Oliver [15] proved the regularity of them under the assumption that Gener-

alized Riemann Hypothesis is true. However, it is still beyond our reach to

prove the regularities of the remaining 14 candidates without any assump-

tions.

The study of higher-dimensional analogue of regular quadratic forms is

pioneered by Earnest in [8]. He showed that there exist only finitely many in-

equivalent primitive 2-regular quaternary quadratic forms. His proof mainly

uses the estimation of character sums to obtain an upper bound of the dis-

criminant of primitive 2-regular quaternary forms. Chan and Oh [5] made

a significant improvement in this direction by proving that for any integer

n ≥ 2, there exist only finitely many inequivalent primitive positive definite

n-regular quadratic forms of rank n + 3. Note that, for any integer n ≥ 6,

there are infinitely many inequivalent primitive 2-regular forms of rank n.

For higher rank cases, it is proved by Oh [12] that for any integer n ≥ 27,

every n-regular (even) form is (even, respectively) n-universal. Also, the

minimal rank of n-regular forms has an exponential lower bound for n as it

increases.

Turning our interest to almost n-regular forms, we refer to Watson [18]

again. As stated above, if the size of the set of exceptional integers is

fixed, then there are only finitely many inequivalent almost regular primitive

ternary quadratic forms. But the analytic method he used in the proof is not

computationally effective in bounding the discriminants of those quadratic

forms f for which E(f) is bounded by a prescribed constant. Chan and Oh

[6] improved this by proving that for any positive integer k, there exists an ef-

fective upper bound for the discriminant of almost regular ternary quadratic

forms with at most k exceptional integers. They also provided a character-

ization of almost regular ternary quadratic forms. Recently, Bochnak and

Oh [2] proved that if f is an almost regular quaternary form, then f is p-

anisotropic for at most one prime p. Moreover, for a prime p, there exists an
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CHAPTER 1. INTRODUCTION

almost regular p-anisotropic form f if and only if p ≤ 37.

For higher rank cases, Chan and Oh [5] proved that if n ≥ 2, there exist

only finitely many inequivalent primitive almost n-regular forms of n + 2

variables. This follows directly from their result on the finiteness of n-regular

forms of n+ 3 variables, for an almost (n+ 1)-regular form is also n-regular.

Then, as Chan and Oh extended Earnest’s finiteness results on regular forms

of corank 2 to the case of corank 3, one may ask whether there exist only

finitely many inequivalent primitive almost n-regular forms of rank n+ 3. In

this thesis, we study the finiteness of inequivalent primitive almost 2-regular

quinary quadratic forms. This result is done by joint work with B.-K. Oh.

The discussion in this thesis will be conducted in geometric language of

quadratic spaces and lattices rather than quadratic forms. The term “lattice”

will always refer to an integral Z-lattice on a positive definite quadratic space

over Q. Since we want to include non-classic integral quadratic forms in our

discussion, we always assume that any Z-lattice L is an even primitive lattice,

that is, the norm of L is 2Z, unless stated otherwise.

In Chapter 2, we state several definitions and results on quadratic spaces

and lattices. The successive minima, which play a central role in our ap-

proach, are also defined and some well-known lemmas on them will be stated.

The Watson transformation is introduced to define the “terminal” lattice ob-

tained from an even almost n-regular lattice. In the final section, some ana-

lytic results which will be used later are stated.

In Chapter 3, we prove that terminal lattices of even almost 2-regular

quinary lattices are finite up to isometry. A lattice N is called a core lattice

of L if the failure of the representation of N by L implies the failure of the

representation of infinitely many sublattices of N by L. As the definition

indicates, core lattices are crucial to handle almost n-regular lattices. We

provide precise forms of some local core lattices of terminal lattices. Note

that a terminal lattice L with sufficiently large discriminant always has an

even universal quaternary sublattice M . Note that by “The 290-Theorem”

of [1], there exist only finitely many even universal quaternary lattices. Our
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CHAPTER 1. INTRODUCTION

proof of the finiteness of terminal lattices consists of constructing binary core

lattices which are represented by L but not by M . Here, the universality of M

is essential, for it guarantees an upper bound of the 4-th successive minimum

of L. Also, in the construction of core lattices, results on the estimation

of character sums and the distribution of prime numbers in an arithmetic

progression are used to give an upper bound of the 5-th successive minimum.

In Chapter 4, we consider the general case. Since any almost 2-regular

quinary lattice L is 1-regular, the third successive minimum of L is bounded

by an absolute constant. One may easily show that the set of prime divisors

of dL is ‘bounded’ from the fact that the number of terminal lattices is finite

up to isometry. Hence, to show the finiteness of almost 2-regular quinary

lattices up to isometry, it suffices to show that ordp(dL) is bounded for any

prime p dividing dL. First, we show that even universal almost 2-regular

quinary lattices are finite up to isometry. Next, we show that for any odd

prime p, ordp(dL) is bounded. Here, the Hilbert Reciprocity Law is used to

find an exceptional integer which is represented by L but not by its ternary

section. Finally, we consider the case when p = 2. Since the third minimum

of L is bounded, after taking finite number of Watson transformations to L,

we may assume that 
H→ Lq for any odd prime q,

L2 '

 2 1

1 2

 ⊥ 〈4ε〉 ⊥ K2

for some binary Z2-lattice K2 such that sK2 ⊆ 8Z2. Under these assump-

tions, we provide all possible candidates of ternary sections of L. If we show

that there does not exist an almost 2-regular quinary lattice under the as-

sumption that ord2(s(K2)) is sufficiently large, then there are only finitely

many primitive almost 2-regular quinary lattices up to isometry.
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Chapter 2

Preliminaries

In this chapter, we introduce some definitions and well-known results which

will be used in this thesis. In the first section, we review some basic facts

and well-known results on quadratic spaces and lattices. Also, the notion of

successive minima and their basic properties are are introduced. In section 2,

we define the Watson transformation and use it to define a terminal lattice.

In the final section, we gather some analytic results which are frequently used

in the following chapter.

2.1 Quadratic spaces and lattices

A quadratic space V over a field F is a finite dimensional vector space over

F equipped with a symmetric bilinear form

B : V × V → F.

Here, B is called symmetric bilinear if it satisfies

B(x, y) = B(y, x), B(ax+ by, z) = aB(x, z) + bB(y, z)

5



CHAPTER 2. PRELIMINARIES

for all x, y, z ∈ V and for all a, b ∈ F . We use the notation (V,B) to denote a

quadratic space V equipped with a symmetric bilinear form B. The quadratic

map Q associated with B is defined by

Q(x) = B(x, x)

for any x ∈ V .

Let V be a quadratic space with a symmetric bilinear map B of rank n.

Suppose that

B = {x1, x2, . . . , xn}

is a basis of V . Then the n× n matrix

(B(xi, xj))1≤i,j≤n

is called the matrix of the quadratic space V with respect to B. In this case,

we use the following notation

V ' (B(xi, xj)).

If the matrix (B(xi, xj)) is diagonal, then we write

V ' 〈B(x1, x1), . . . , B(xn, xn)〉.

The discriminant of V is defined by

dV = det(B(xi, xj)) ∈
(
F ∗/(F ∗)2) ∪ {0} .

Here, F ∗ is the group of non-zero elements in F . Note that the discriminant

of V is independent of the choice of B. If dV 6= 0, we say that V is a regular

quadratic space.

Let (V,B) and (W,C) be quadratic spaces over a field F . We say that V

6



CHAPTER 2. PRELIMINARIES

is represented by W if there exists a linear map σ : V → W such that

B(x, y) = C(σx, σy)

for all elements x, y ∈ V . The map σ is called a representation of V in W .

Further, if σ is a linear isomorphism, then we say that V and W are isometric

and denote by V ' W . In this case, we call σ an isometry.

To describe an equivalent condition for a quadratic space (V,B) over Q
to be isometric to another space (W,C), we introduce the Hilbert symbol

and the Hasse symbol.

Definition. Let F be a field one of the p-adic number field Qp or the real

field R (= Q∞).

(1) For two elements α, β ∈ F , the Hilbert symbol(
α, β

p

)
is defined to be 1 if αx2 + βy2 = 1 has a solution x, y ∈ F ; otherwise

the symbol is defined to be −1.

(2) Let V be a regular n-ary quadratic space over F . If V has a splitting

V ' 〈α1, α2, . . . , αn〉,

the Hasse symbol of V is defined by

Sp(V ) =
∏

1≤i≤n

(
αi, di
p

)
,

where di = α1 · · ·αi.

The following theorem is often called the Hasse-Minkowski theorem, which

gives the exact conditions for two quadratic spaces to be isometric.

7



CHAPTER 2. PRELIMINARIES

Theorem 2.1. (1) Two regular quadratic spaces V and W over Qp are

isometric if and only if

dim(V ) = dim(U), dV = dW, Sp(V ) = Sp(W ).

(2) Two regular quadratic spaces V and W over Q are isometric if and

only if Vp and Wp are isometric over Qp for all finite and infinite prime

numbers p. Here, Vp = V ⊗Qp.

Proof. See Theorem 63:20 and Theorem 66:4 in [16].

The following theorem says that an important equality holds among Hasse

symbols over Qp.

Theorem 2.2 (Hilbert Reciprocity Law). Let V be a quadratic space over

Q and let P be the set of all finite prime numbers in Z. Then the following

equality holds: ∏
p∈P∪{∞}

Sp(V ) = 1.

Proof. See Theorem 71:18 in [16].

Let R be a ring one of the rational integer ring Z or the p-adic integer ring

Zp. Suppose that F is the quotient field of R. An R-lattice L on a quadratic

space (V,B) over F is a finitely generated free R-module such that FL = V .

Note that L inherits the bilinear map B of V satisfying

B : L× L → R

and the quadratic map Q : L → R. We call a lattice L binary, ternary,

quaternary, quinary and n-ary, according as the rank of L is 2, 3, 4, 5 and n,

respectively. Let L be an R-lattice of rank n and let

B = {x1, x2, . . . , xn}

8



CHAPTER 2. PRELIMINARIES

be an integral basis of L. As above, the n× n matrix

(B(xi, xj))1≤i,j≤n

is called the matrix of L with respect to B. We denote L ' (B(xi, xj)). If

the matrix (B(xi, xj)) is diagonal, then we write

L ' 〈B(x1, x1), . . . , B(xn, xn)〉.

The discriminant of L is defined by

dL = det(B(xi, xj)) ∈ R.

An R-lattice L is called isotropic it there is a non-zero vector x ∈ L with

Q(x) = 0; otherwise L is called anisotropic. A submodule N of L is called

a sublattice if N itself is a lattice. For sublattices M , N of L, if B(x, y) = 0

for all x ∈M , y ∈ N , we write

M ⊥ N.

Also, we define the orthogonal complement M⊥ of M in L as

M⊥ = {x ∈ L | B(x, y) = 0 for all y ∈M}.

Note that M ⊥M⊥ is a sublattice of L of finite index, and hence

dM · dM⊥ = dL · α2,

where α = [L : M ⊥M⊥]. Furthermore, dM⊥ divides dM ·dL by Proposition

5.3.3 in [10].

We say that an R-lattice M is represented by another R-lattice L if there

exists a representation σ : FM → FL such that σM ⊆ L. An R-lattice L is

called n-universal if L represents all R-lattices of rank n. When the field F

9



CHAPTER 2. PRELIMINARIES

is a global field, the genus of L, denoted by gen(L), is defined by the set of

all lattices M in the quadratic space FL such that

Lp ' Mp for all finite and infinite primes p of F .

Here, Lp is the lattice L⊗Rp.

The following theorem says that we can choose a global basis of L which

is sufficiently close to a fixed local basis of Lp for a prime number p.

Theorem 2.3. Let p be a prime number and let cp1, c
p
2, . . . , c

p
n be a basis of

Znp with

det(cp1, c
p
2, . . . , c

p
n) = 1.

Then, for any ε > 0, there is a basis c1, c2, . . . , cn of Zn with

det(c1, c2, . . . , cn) = 1

such that

‖cj − cpj‖p < ε (1 ≤ j ≤ n).

Here we have used the notation

‖b‖p = max |bj|p

for b = (b1, . . . , bn) ∈ Qn
p .

Proof. See Theorem 2.1 of Chapter 9 in [3].

We define the scale of L, denoted by sL, by the R-module generated by

the set

B(L,L) = {B(x, y) | x, y ∈ L}.

The norm nL of L is defined as the R-module generated by the set Q(L).

Note that

2sL ⊆ nL ⊆ sL.

10



CHAPTER 2. PRELIMINARIES

We call L unimodular if sL = R and dL ∈ R×. We assume that all Z-lattices

are positive definite and even primitive, that is, the matrices of lattices are

positive definite and the norms of lattices are 2Z.

The main purpose of this thesis is to study almost n-regular lattices which

are defined as below.

Definition. A positive definite Z-lattice L is called n-regular if L represents

all Z-lattices of rank n that are represented by the genus of L. Similarly, we

say that L is almost n-regular if it represents all but finite lattices that are

represented by the genus of L.

Lemma 2.4. Let L be an almost n-regular Z-lattice. Then L is (n − 1)-

regular.

Proof. Suppose that a Z-lattice K of rank n− 1 is represented by the genus

of L. Then there exists a Z-lattice M in the genus of L such that K ⊆ M

(see 102.5 in [16]). Choose a vector v in the orthogonal complement of K in

M . Then the lattice

K ⊥ Z(av)

is represented by gen(L) for any integer a. Hence, with finite exceptions,

K ⊥ Z(av) is represented by L. In particular, K is represented by L.

We introduce the successive minima of a lattice, which will be used to

show the discriminant of a Z-lattice L is bounded. The following definition

is adapted from ([3], Chapter 12).

Definition. Let L be a Z-lattice of rank n. For 1 ≤ j ≤ n, the j-th successive

minimum of L is the positive integer µj such that

1. dim(span{x ∈ L | Q(x) ≤ µj}) ≥ j, and

2. dim(span{x ∈ L | Q(x) < µj}) < j.

Note that the existence of linearly independent vectors x1, . . . , xn ∈ L

with Q(xj) = µj can be proved by the following lemma.

11
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Lemma 2.5. Let L be a Z-lattice of rank n. For some j ∈ {2, . . . , n},
suppose that there exist linearly independent vectors x1, . . . , xj−1 ∈ L such

that Q(xi) = µi for i = 1, . . . , j − 1. If y ∈ L satisfies the inequality Q(y) <

µj, then

y ∈ span{x1, . . . , xj−1} ∩ L.

Proof. See Lemma 2.2 in [8].

For an integer 1 ≤ k ≤ n and vectors x1, . . . , xn ∈ L with Q(xi) = µi, a

k-ary section of L is defined as the Z-lattice

span{x1, . . . , xk} ∩ L.

Using Lemma 2.5, one can show that a k-ary section of L gives an upper

bound of the (k + 1)-th successive minimum of L as follows.

Lemma 2.6. Let L be a Z-lattice and M be a k-ary section of L with k <

rank(L). If a binary Z-lattice N is represented by L but not by M , then

µk+1(L) ≤ µ2(N).

Proof. See Lemma 2.4 in [8].

Lemma 2.7. Let L be a Z-lattice of discriminant D of rank n with the

successive minima µ1, . . . , µn. Then there exists a constant C = C(n) such

that

D ≤ µ1 · · ·µn ≤ CD.

Proof. See Proposition 2.3 in [8].

The above lemma implies that if one wants to find un upper bound of

the discriminant of a n-ary lattice, then it suffices to find that of the n-

th successive minimum, and the converse is also true. This will be used

frequently in the following chapters.

12
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2.2 Watson transformation

In this section, we introduce the Watson transformation which makes a lattice

into a ‘simpler’ lattice. Taking the Watson transformations to an almost n-

regular lattice L, we get an even universal almost n-regular lattice λ(L),

which is called a terminal lattice of L.

Definition. Let L be a Z-lattice and let m be a positive integer. Then the

lattice

Λm(L) = {x ∈ L | Q(x+ z) ≡ Q(z) (mod m) for all z ∈ L}

is called the Watson transformation of L modulo m. Let λm(L) be the even

primitive Z-lattice obtained from Λm(L) by scaling by a suitable rational

number.

The Watson transformation inherits many properties of the original lat-

tice. We gather here some of them. Detailed proofs can be found in [5].

Here, L is an even Z-lattice and p is a prime number. We suppose that

Lp = Mp ⊥ Np,

where Mp is a leading Jordan component and s(Np) ⊆ ps(Mp).

Lemma 2.8. Suppose that Mp is unimodular and n(Np) ⊆ 2pZp. Then

Λ2p(L)p = pMp ⊥ Np.

Furthermore, if L is almost n-regular and Mp is anisotropic, then λ2p(L) is

also almost n-regular.

Lemma 2.9. If L is almost n-regular and s(L) = 2Z, then λ4(L) is also

almost n-regular.

Lemma 2.10. Suppose that s(L) = 2Z and n(N2) ⊆ 8Z2.

13
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1. If rank(M2) ≥ 3, then λ4(L)2 is split by a unimodular Z2 lattice. Actu-

ally, this is true when s(N2) ⊆ 4Z2.

2. If rank(M2) = 2, then

λ4(L)2 '

{
M ε

2 ⊥ N
1
2
2 if dM

4
≡ 1 (mod 4),

P ⊥ N
1
4
2 if dM

4
≡ 3 (mod 4),

where ε ∈ Z×2 and P is an even binary unimodular Z2-lattice.

3. If rank(M2) = 1, then λ4(L)2 'M2 ⊥ N
1
4
2 .

Lemma 2.11. If rank(M2) = 1 and N2 = J2 ⊥ K2 where J2 is a 4-modular

Z2-lattice and s(K2) ⊆ 8Z2, then

λ4(L)2 '

{
M2

2 ⊥ N
1
2
2 if n(J2) = s(J2),

M2 ⊥ N
1
4
2 if n(J2) = 2s(J2).

Applying above lemmas to an almost n-regular Z-lattice for a fixed prime

number, one can obtain the following proposition.

Proposition 2.12. Let L be an even almost n-regular Z-lattice of rank

greater than 4 and let p be a prime number. Then there exists an even almost

n-regular Z-lattice L′ satisfying

L′q '

{
H ⊥ Np if q = p,

L
εq
q if q 6= p,

where H =

(
0 1

1 0

)
, Np is a Zp-lattice and εq ∈ Z×q .

Corollary 2.13. Let L be an even almost n-regular Z-lattice of rank m ≥ 5,

and suppose that n ≥ 2. Then there exists an even almost n-regular Z-lattice

λ(L) of rank m which is even universal and dλ(L) divides dL.

14



CHAPTER 2. PRELIMINARIES

Proof. Applying the above proposition for all prime numbers dividing 2dL,

we obtain the desired lattice. The even universality follows from Lemma

2.4.

We call the lattice λ(L) in the corollary a terminal lattice of L. Note that

H is represented by the genus of a terminal lattice.

Next we show that the set of prime divisors of the discriminant of L is

‘bounded’ from that of a terminal lattice of L. For a lattice M , let P (M) be

the set of all prime numbers dividing dM .

Proposition 2.14. Let L be an even almost n-regular Z-lattice and λ(L) be

a terminal lattice of L. Then

P (L) ⊆ P (λ(L)) ∪ {2, 3, 5, 7, 11, 13}.

Proof. Let p be an odd prime divisor of dL. Applying Proposition 2.12 for

all primes q 6= p, we can assume that Lq represents all elements in Zq. If p

does not divides dλ(L), one of the followings holds:

• Lp ' 〈a〉 ⊥ Np where a ∈ Z×p and s(Np) ⊆ p2Zp;

• Lp ' 〈1,−∆p〉 ⊥ Np where s(Np) ⊆ p2Zp.

Here, ∆p is a non-square unit in Zp.
First suppose that Lp ' 〈a〉 ⊥ Np and let

P = {2t | 1 ≤ t ≤ p− 1, 2t ∈ Q(Lp)}.

Then |P | = (p − 1)/2 since p is odd, and min(P ) ≤ p + 1. Let H be the

sublattice of L generated by all vectors v ∈ L such that Q(v) ∈ P . If

rank(H) = k ≥ 3, then

p2(k−1) ≤ dH ≤ (p+ 1)(2p− 2)k−1

15
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by Lemma 2.7. But this cannot be possible for any odd prime number p. If

rank(H) = 2, then

dH ≤ (p+ 1)(2p− 2).

Since H is an even binary lattice, dH ≡ 0 or 3 (mod 4). As p2|dH, this

implies that 3p2 ≤ dH. But 3p2 ≤ 2(p2−1) is not possible. Hence rank(H) =

1 and |P | ≤ √p. This is possible only when p ≤ 5.

Next suppose Lp ' 〈1,−∆p〉 ⊥ Np. In this case, Z×p ⊆ Q(Lp) and by

Lemma 2.4, L represents all integers in the set U = {2, 4, . . . , 2(p− 1)}. Let

G be the sublattice generated by all vectors v ∈ L such that Q(v) ∈ U . As

p is odd, G represents both 2 and 4 and rank(G) ≥ 2. If rank(G) = k ≥ 4,

then

p2(k−2) ≤ dG ≤ 8(2p− 2)k−2.

This is possible only when k = 4 and p = 3. If rank(G) = 3,

p2 ≤ 8(2p− 2)

and this holds only when p ≤ 13. Finally, if G is binary, then G is isometric

to one of the followings:

[2, 0, 2], [2, 1, 2], [2, 0, 4] or [2, 1, 4].

Note that these lattices do not represent 6, 4, 10 and 6 respectively. Hence

p ≤ 5.

2.3 Analytic tools

In this section, we introduce some analytic results which guarantee the upper

bounds of discriminants of almost n-regular lattices. The first proposition

is related with the estimation of character sums, which was introduced by

Earnest in [8].

Let χ1, χ2, . . . , χr be Dirichlet characters modulo k1, k2, . . . , kr, respec-

16
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tively. Let Γ be the least common multiple of k1, k2, . . . , kr, and let η1, η2, . . . , ηr

(e1, e2, . . . , er) be elements of {1,−1} ({1, 2}, respectively). Then
∏r

i=1(ηiχi)
ei

is a Dirichlet character modulo Γ. The characters χ1, χ2, . . . , χr are said to

be independent if
∏r

i=1(ηiχi)
ei is non-principal whenever ei 6= 2 for some i.

For a positive integer H, we put

S(H) = {n < H | (n,∆) = 1 and χi(n) = ηi for all i},

where ∆ is a positive integer relatively prime to Γ. Define

h = min{ H | S(H) 6= ∅ }.

The following Proposition gives an upper bound of h. Here, A � Bt+ε

means that for any ε > 0, there exists a constant c which depends only on ε

satisfying |A| < cBt+ε.

Proposition 2.15. Suppose that the characters χ1, χ2 . . . , χr are indepen-

dent and r ≤ ω(Γ) + 1, where ω(Γ) denotes the number of distinct prime

divisors of Γ. Then, for any positive real number ε > 0,

h� Γ
3
8
+ε∆ε.

Proof. See [8].

The next result is concerning about the distribution of prime numbers in

some arithmetic progression, which was proved by Kozlov [11].

Proposition 2.16. Let d ≥ 3 and λ ≥ 2 be integers such that

σ :=
∑
p<d,

(p,d)=1

1

p
< 1

and

λ (1− σ) > 2 +
1

d− 1

(
1 +

1

64d2

)
.

17
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Then, for a real number x such that

x ≥ max { 64d4λ2 + 2d, (dk)2 },

every interval of the form (x, λx] contains at least k primes p ≡ a (mod d).

Proof. See [11].

18



Chapter 3

Terminal lattices

In this chapter, we show that terminal lattices of even almost 2-regular

quinary lattices are finite up to isometry. In the first section, we define a

core lattice which plays a central role in the proof of the finiteness of ter-

minal lattices. In Section 2, we construct a core lattice of a terminal lattice

L which is represented by gen(L) but not by a quaternary section of L to

obtain an upper bound of dL.

3.1 Core lattices

Let L be a primitive almost 2-regular quinary lattice. As QL is universal,

there exists a quaternary space V such that

QL ' 〈dL〉 ⊥ V

with dV = 1.

Lemma 3.1. There is at least one prime number p such that Vp is anisotropic.

Proof. Note that if Vp is anisotropic, then

Vp ' 〈1,−∆p, p,−p∆p〉.

19
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Here, ∆p is a non-square unit in Zp if p is odd; otherwise ∆2 is a unit

contained in the square class 5Z2
2. Thus Vp is isotropic if and only if

Sp(V ) =

{
1 if p is odd,

−1 if p = 2.

Hence the Hilbert Reciprocity Law implies that Vp is anisotropic for at least

one prime p.

We call the prime number in Lemma 3.1 a core prime of L.

Definition. Let R be one of the ring of rational integers Z or the ring of

p-adic integers Zp for a prime number p. For an R-lattice L, we call an R-

lattice ` a R-core lattice of L if the failure of L to represent ` implies the

failure of L to represent infinitely many sublattices of `.

The next lemma shows that a terminal lattice always has a local core

lattice.

Lemma 3.2. Suppose that L is a terminal lattice and p is a core prime of L.

Also suppose that dLp = pordp(dL)εp, where εp ∈ Z×p . Then Lp has a Zp-core

lattice of the following form:{
〈pπ(ordp(dL))εp , pκηp〉 if p is odd,

〈2φ(ord2(dL))ε2 , 2κη2〉 if p = 2.

Here, ηp is any unit in Zp and π, φ are functions defined as follow:

π(n) =

{
0 if n is even,

1 otherwise

and

φ(n) =

{
2 if n is even,

1 otherwise.

The exponent κ depends on ordp(dL) and is defined in the proof.
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Proof. First we suppose that p is odd. If ordp(dL) is even, as p is a core

prime of L, one can deduce that

Lp ' 〈1,−1, p2k1εp∆p, p
2k2+1δp,−p2k3+1δp∆p〉

for some unit δp in Zp and non-negative integers k1, k2 and k3. Put κ =

max{2k1, 2k2 + 1, 2k3 + 1}. Then

〈εp , pκη〉

is a Zp-core lattice of Lp. Here, κ satisfies κ ≤ ordp(dL) − 1. Similarly, if

ordp(dL) is odd, one can show that

〈pεp , pκ〉

is a Zp-core lattice of Lp. In this case, κ ≤ ordp(dL).

Suppose that p = 2. Since L2 is even universal, we can consider an

orthogonal complement K of 〈2φ(ord2(dL))ε2〉 in L2. Then K is a sublattice of

I4 = 〈1, 1, 1, 1〉 since K is anisotropic. Note that [I4 : K] = 2n for a non-

negative integer n ≤ 1
2
(ord2(dL) + 2). Suppose that I4 = ⊕Z2xi and K =

⊕Z2aixi for some ai ∈ Z2. For j = maxi{ord2(ai)}, put a = 2j. Then a

divides 2n and aI4 ⊆ K. Therefore

2ord2(dT )+2Z2 ⊆ Q(K).

Note that any element in 2ord2(dT )+5Z2 cannot be primitively represented by

K since any sublattice of I4 with index 2d cannot primitively represent any

element divided by 22d+3. Hence the binary lattice

〈2φ(ord2(dL))ε2 , 2κη2〉,

where κ = ord2(dL)+5 and η2 is any unit in Z2, is a Z2-core lattice of L2.
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From a local core lattice, one can construct a global core lattice by the

following lemma, which is easily verified by Theorem 2.3.

Lemma 3.3. Let L be a quinary Z-lattice and let N be a binary Z-lattice.

Suppose that Np is a Zp-core lattice of Lp for a prime number p. Then N is

a Z-core lattice of L.

3.2 Finiteness of terminal lattices

In this section, we prove that there are only finitely many primitive terminal

lattices up to isometry. Throughout this section, we assume that T is a

terminal lattice obtained from an almost 2-regular quinary Z-lattice. If the

5-th successive minimum µ5(T ) of T is bounded, then by Lemma 2.7, dT is

also bounded. Hence we assume that µ5(T ) is sufficiently large.

As T is even universal, µ4(T ) is bounded and there exists an even universal

quaternary sublattice M of T . Note that such M are finite by “The 290-

Theorem ([1])”. Let S be the set of all primes p such that there is an even

universal quaternary Z-lattice whose discriminant is divisible by p. Clearly,

S is a finite set containing 2, 3 and 7. First we handle the case when dM is

square.

Proposition 3.4. Let T be a terminal lattice and M be an even universal

quaternary sublattice of T . If dM is square, then the discriminant of T is

bounded.

Proof. Since dM is square, the Hilbert Reciprocity Law implies that Mq is

anisotropic for some prime number q ∈ S. Suppose that S = {2, q1, q2, . . . , qr},
where qi are odd prime numbers. For a positive integer s, let Ns be a binary

lattice given by

Ns '

[
64q21 · · · q2r 1

1 2s

]
.

If p ∈ S, then (Ns)p ' H is represented by Tp; if p /∈ S, Mp ' I4 which is

2-universal over Zp. Hence Ns is represented by gen(T ). Since T is almost
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2-regular, T represents Ns for some s. But, for the prime number q ∈ S such

that Mq is anisotropic, (Ns)q ' H is not represented by Mq. Therefore Ns is

not represented by M , and

µ5(L) ≤ 64q21 · · · q2r .

Hence Lemma 2.7 leads to the conclusion.

Theorem 3.5. There are only finitely many primitive terminal almost 2-

regular quinary Z-lattices up to isometry.

Proof. Let T be a terminal almost 2-regular quinary Z-lattice and let M be

an even universal quaternary sublattice of T such that dM is non-square.

For each M , choose distinct odd prime numbers q1, q2 and q3 such that

Mqi ' 〈1, 1, 1,∆qi〉

for all i. Since M is even universal, T represents at least one of

〈2, 2〉, 〈2, 6〉, 〈2, 4〉 or 〈2, 14〉.

We define β(T ) ∈ {2, 4, 6, 14} so that 〈2, β(T )〉 is represented by T .

Let ` be a core prime of T and suppose that dT = `ord`(dT )u with (u, `) = 1.

We can choose two primes among {q1, q2, q3} different from `, which we denote

q1 and q2 after renumbering. Note that they are independent of T and `. Let

q be one of q1, q2 and suppose that

Tq ' 〈1, 1, 1,∆q, q
ωεq〉

for some εq ∈ Z×q and a non-negative integer ω. We separate the proof into

two steps.

STEP 1 : First inequality

First assume that the core prime ` is odd. Note that we can choose an
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integer A satisfying
0 ≤ A < q

(
16
∏

p∈S−{2,`} p
)

qω+π(ω+1)`κA ≡ 2 mod
(

16
∏

p∈S−{2,`} p
)
,

`κA ≡ 1 (mod q).

Recall that π is a function defined as

π(n) =

{
0 if n is even,

1 otherwise
.

Let P be the product of prime numbers less than q
(

16
∏

p∈S−{2,`} p
)

that

are not contained in S ∪ {`, q}. Let B be a positive integer such that

qω+π(ω+1)`π(ord`(dT ))B ≡ β(T ) mod
(

32 · 3 · 7 ·
∏

p∈S−{`} p
)
,(

`π(ord`(dT ))B

q

)
= −

(
−1

q

)
,

qω+π(ω+1) ·B ≡ u (mod `),

B ≡ 1 (mod P ).

By Proposition 2.15, we can choose B so that there is a constant C such that

0 < B < C · ` 1
2 .

Let N be a binary Z-lattice defined by

N = 〈qω+π(ω+1)`κA, qω+π(ω+1)`π(ord`(dT ))B〉, (3.1)

where κ is defined as in Lemma 3.2. For any prime p ∈ S − {`},

Np ' 〈2, β(T )〉 → Mp → Tp.

Since

Nq ' 〈qω+π(ω+1), qω+π(ω+1)(−∆q)〉,
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we have N9M and Nq→Tq (See [17]). Furthermore, N` is a Z`-core lattice

of T`. Finally, for any prime p 6∈ S ∪ {`, q}, Np represents a unit in Zp.
Hence Np→Mp→Tp. Therefore, by Lemma 3.3, N is a Z-core lattice which

is represented by the genus of T . This implies that N should be represented

by T . Since N is not represented by M ,

µ5(T ) ≤ µ2(N)

by Lemma 2.6. Consequently, there is a constant C1 such that

qordq(dT )`ord`(dT ) ≤ dT ≤ C1 · qω+π(ω+1)`max{κ,π(ord`(dT ))+ 1
2
}. (3.2)

From this, we have

dT

qordq(dT )`ord`(dT )
≤ C1 · q · `max{κ−ord`(dT ),π(ord`(dT ))−ord`(dT )+ 1

2
} (3.3)

Multiplying the inequalities (3.3) obtained from q1 and q2 respectively, we

get

dT

`2ord`(dT )
≤ dT 2

q1ordq1 (dT )q2ordq2 (dT )`2ord`(dT )

≤ C2 · `2max{κ−ord`(dT ),π(ord`(dT ))−ord`(dT )+ 1
2
}

for some constant C2 independent of T and `. Therefore,

dT ≤ C2 · `3ord`(dT ) (3.4)

Next, suppose that ` = 2. Recall that κ = ord2(dT ) + 5 in this case.

Let P be the product of prime numbers less than q(
∏

p∈S−{2} p) that are not
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contained in S ∪ {q}. Choose integers A and B satisfying
0 ≤ A < q(

∏
p∈S−{2} p),

qω+π(ω+1)2κA ≡ 2 (mod
∏

p∈S−{2} p),

2κA ≡ 1 (mod q)

and 

qω+π(ω+1)2φ(ord2(dT ))B ≡ β(T ) (mod 3 · 7 ·
∏

p∈S−{2} p),

qω+π(ω+1)B ≡ u (mod 8),

B ≡ 1 (mod P ),(
2φ(ord2(dT ))B

q

)
= −

(
−1

q

)
.

Recall that φ is defined as

φ(n) =

{
2 if n is even,

1 otherwise
,

and note that B is bounded in this case.

Let N be a binary Z-lattice defined by

N = 〈qω+π(ω+1)2κA, qω+π(ω+1)2φ(ord2(dT ))B〉. (3.5)

Then, as above, N is represented by T but not by M , and we get the following

inequality

dT ≤ C · 2ord2(dT ) (3.6)

for some constant C independent of T and `.

STEP 2 : Second inequality

To find an upper bound of the discriminant of T , it suffices to show

that `ord`(dT ) is bounded by the inequalities (3.4) and (3.6). Since all the
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other cases can be done in a similar manner, we only consider the case when

β(T ) = 6.

Suppose that ` is odd. From the inequality (3.2), we see that `ord`(dT )−κ

is bounded. If `ord`(dT ) is bounded, clearly dT is bounded. Hence we assume

that `κ is sufficiently large. Choose a prime p such that

[`
8
23
κ] ≤ p < 7[`

8
23
κ]

and p ≡ q (mod 3) if κ is even,

p ≡ ` · q (mod 3) if κ is odd,

which is possible by Proposition 2.16. First suppose that ord`(dT ) is even.

Define a positive integer A such that

(
A

r

)
=

(
`κ

r

)
for any r ∈ S − {2},

A ≡ `κ (mod 8),(
A

q

)
= −

(
−3`κ

q

)
,(

A

p

)
=

(
−3`κ

p

)
,(

A

`

)
=

(
2pqu

`

)
.

Note that by Proposition 2.15, for any ε > 0, we may choose A satisfying

A� (p`)
3
8
+ε.

Since

(
A

p

)
=

(
−3`κ

p

)
, there is an integer k (1 ≤ k ≤ p− 1) such that

3A`κ + k2 is divisible by p. Let pv− k2 = 3A`κ and define a binary Z-lattice

N by

N ' qω+π(ω+1)A

(
2p 2k

2k 2v

)
.

Note that dN = 12A3`κq2(ω+π(ω+1)). Then
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(i) since dNr = 3 for any r ∈ S − {2, 3}, we have Nr ' 〈2, 6〉→Mr→Tr;

(ii) since every binary odd unimodular Z2-lattice with discriminant 3 is

isometric to 〈1, 3〉, we have N2 ' 〈2, 6〉→M2→T2;

(iii) since dN3 = 3, N3 ' 〈2pqA, 6pqA〉; if κ is even, A ∼ pq ∼ 1; otherwise,

A ∼ ` and pq` ∼ 1. Hence N3 ' 〈2, 6〉→M3→T3;

(iv) since Nq ' 〈qω+π(ω+1), (−∆q)q
ω+π(ω+1)〉, Nq9Mq and Nq→Tq;

(v) both Np and Mp are unimodular Zp-lattices;

(vi) since N` ' 〈2pqA, 6pq`κ〉 ' 〈u, `κη〉 (η ∈ Z×` ), N` is a binary Z`-core

lattice of T`;

(vii) for any prime r 6∈ S∪{`, q, p}, Nr ' 〈2pqA, 6pqA2`κ〉 is not isometric to

〈r2s+1εr,−r2t+1εr∆r〉 for any unit εr ∈ Zr and integers r, s, and hence

Nr→Mr.

Here, we use the notation a ∼ b to denote that a and b are units in the same

square class. Therefore N is represented by T but not by M , and we have

qordq(dT )`ord`(dT ) ≤ dT ≤ C1 · qω+π(ω+1) max{pA, vA}, (3.7)

for some constant C1 independent of T and `. Now choose ε so small that

ε < 1
16

. Since p� `
8
23
κ, A� (p`)

3
8
+ε � `

7
46
κ+ 7

16 . Hence pA� `
1
2
κ+ 7

16 and

vA� max

{
A2`κ

p
,
Ak2

p

}
� max

{
`

22
23
κ+ 7

8 , `
1
2
κ+ 7

16

}
� `

22
23
κ+ 7

8 . (3.8)

Combining (3.7) and (3.8), we get

`ord`(dT ) < C2 · `
22
23

ord`(dT )+
7
8 .

Therefore `ord`(dT ) is bounded by an absolute constant.
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Next suppose that ord`(dT ) is odd. Define a positive integer A such that

(
A

r

)
=

(
`κ−1

r

)
for any r ∈ S − {2},

A ≡ `κ−1 (mod 8),(
A

q

)
= −

(
−3`κ−1

q

)
,(

A

p

)
=

(
−3`κ−1

p

)
,(

A

`

)
=

(
2pqu

`

)
.

As before, we choose A satisfying A� (p`)
3
8
+ε.

Since

(
A

p

)
=

(
−3`κ−1

p

)
, there is an integer k (1 ≤ k ≤ p − 1) such

that 3A`κ−1 + k2 is divisible by p. Let pv− k2 = 3A`κ−1 and define a binary

Z-lattice N by

N ' qω+π(ω+1)A`

(
2p 2k

2k 2v

)
.

Note that dN = 12A3`κ+1q2(ω+π(ω+1)). Then N` ' 〈`u, `κη〉 and N is repre-

sented by T but not by M . Also pA`� `
1
2
κ+ 23

16 and vA`� `
22
23
κ+ 7

8 . Therefore

`ord`(dT ) is bounded.

Now suppose that ` = 2 and ord2(dT ) is sufficiently large. Then we can

choose a prime p such that

[2
8
23
κ] ≤ p < 7[2

8
23
κ]

and p ≡ q (mod 3) if ord2(dT ) is odd,

p ≡ 2q (mod 3) if ord2(dT ) is even.
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Choose a positive integer A satisfying

(
A

r

)
= 1 for any r ∈ S − {2},

A ≡ pqu (mod 8),(
A

q

)
= −

(
−3

q

)
,(

A

p

)
=

(
−3

p

)
.

Note that A� p
3
8
+ε.

First suppose that ord2(dT ) is even. Since κ is odd, there exists an integer

k (0 ≤ k ≤ p− 1) such that

pv = 3 · A · 2κ−1 + k2.

Define a binary Z-lattice N by

N ' qω+π(ω+1)2A

(
2p 2k

2k 2v

)
.

Then dN = 3 · 2κ+3 · A3 · q2(ω+π(ω+1)). Note that

(i) for r ∈ S − {2, 3}, dNr = 3 and Nr ' 〈2, 6〉→Mr→Tr;

(ii) for r = 2, N2 ' 〈4pqA, 3 · 2κ+1pqA2〉 ' 〈4u, 2κ+1η〉, which is a Z2-core

lattice of T2;

(iii) for r = 3, dN3 = 3 and N3 ' 〈pqA, 3pgA〉 ' 〈2, 6〉→Mr→Tr;

(iv) for r = q, Nq ' 〈q2(ω+π(ω+1)), (−∆q)q
2(ω+π(ω+1))〉, which is represented

by Tq but not by Mq;

(v) for r = p, Np and Mp are unimodular and Np→Mp→Tp;

(vi) for r /∈ S ∪ {p, q}, Nr ' 〈pqA, 3pqA2〉 6' 〈r2s+1εr,−r2t+1εr∆r〉 and

hence Nr→Mr→Tr.
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Therefore there exists a constant C such that

dT ≤ C · qω+π(ω+1) max{pA, vA}.

Choose ε so small that ε < 1
16

. Then p � 2
8
23
κ and A � 2

7
46
κ. Hence

pA� 2
1
2
κ and

vA� max

{
A22κ−1

p
,
Ak2

p

}
� max{2

22
23
κ−1, 2

1
2
κ} < 2

22
23
κ.

Therefore we have

qordq(dT )2ord2(dT ) ≤ dT ≤ C1 · qω+π(ω+1)2
22
23
κ

for some constant C1 and hence dT is bounded.

Next suppose that ord2(dT ) is odd. Let k be an integer such that 0 ≤
k ≤ p− 1 and pv = 3 · A · 2κ + k2. Define a binary Z-lattice N by

N ' qω+π(ω+1)A

(
2p 2k

2k 2v

)
.

Then dN = 3 · 2κ+2 · A3 · q2(ω+π(ω+1)), and as above, N is represented by T

but not by M . Also

qordq(dT )2ord2(dT ) ≤ dT ≤ C1 · qω+π(ω+1)2
22
23
κ.

This completes the proof.
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Chapter 4

Almost 2-regular quinary

lattices

In this chapter, we discuss the finiteness of general even almost 2-regular

quinary Z-lattices L. In Section 1, we introduce some reduction results to

show that even universal almost 2-regular quinary Z-lattices are finite up

to isometry. In Section 2, we first show that ordp(dL) is bounded if p is

an odd prime. Next, we prove ord2(dL) is bounded if L has an odd core

prime. Finally, we explain the remaining problem to complete the proof of

the finiteness of even almost 2-regular quinary Z-lattices.

4.1 Even universal almost 2-regular quinary

Z-lattices

Let L be an even almost 2-regular quinary Z-lattice. As L is 1-regular, the

third successive minimum µ3 of L is bounded (for example, [4] Corollary

3.2). Since we have shown that terminal lattices are finite up to isometry,

Proposition 2.14 implies that the set S of prime divisors of even almost 2-

regular quinary lattices is finite. Hence it suffices to fix a prime number p

and show that ordp(dL) is bounded. Furthermore, after taking λ2q for all
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prime numbers q 6= p dividing 2dL, we can assume that the even unimodular

isotropic binary lattice H is represented by Lq for all prime numbers q 6= p

since ordp(dL) = ordp(dλ2q(L)).

Lemma 4.1. Let L be an even almost 2-regular quinary lattice. Suppose that

µ4(L) is bounded by an absolute constant. Then ordp(dL) is bounded.

Proof. As µ4(L) is bounded, taking λ2p bounded times we can assume that

H is represented by Lp, or

Lp ' A ⊥ Ap ⊥ 〈pαεp〉

for a unit εp ∈ Zp and a positive integer α. Here, A is the even unimodular

anisotropic binary Zp-lattice. If H is represented by Lp, L itself is a terminal

lattice and dL is bounded by Theorem 3.5. Hence suppose that the latter

holds and α is sufficiently large. Since L is even universal, there exists an

even universal quaternary sublattice M of L. In this case,

Mp ' A ⊥ Ap,

and p is a core prime of L.

First suppose that p is an odd prime. Choose a prime number r such that

r ∈ −(Z×q )2 for all prime numbers q dividing 2dL.

Also choose a prime number t > 2p2r such that
t ≡ 2εp (mod p),

t ≡ 1 (mod 8),

t ∈ (Z×q )2 for q ∈ {2, r}.

Note that r and t are independent of L and α. Then
(−r
t

)
= 1 and there
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exist positive integers k (< t) and v such that

tv = k2 + pα+π(α)r.

Let N be a Z-lattice defined by

N ' 2pπ(α)

(
t k

k v

)
.

Then

(i) Np ' 〈pπ(α)εp,−p2π(α)+αεp〉, which is an isotropic core lattice of Lp;

(ii) Nq → H→ Lq for all prime numbers q|2dL, q 6= p;

(iii) Nq → Lq for all prime numbers q - 2dL since Lq is 2-universal.

Therefore N is represented by L but not by M . Then

pα ≤ µ5(L) ≤ 2pπ(α) max{t, v}.

If v ≤ t, α is bounded by an absolute constant. Hence we assume that

pα ≤ 2pπ(α)v.

Then
pαt

2pπ(α)
≤ tv ≤ t2 + pα+π(α)r.

Therefore we have

pα ≤ 2pπ(α)t2

t− 2p2π(α)r
,

and α is bounded.

Next suppose that p = 2. Choose a prime number r such that

r ∈ −(Z×q )2 for all prime numbers q dividing 2dL.
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Also choose a prime number s not dividing 2dL such that

s ≡ ε2 (mod 8).

Finally choose a prime number t > 210rs such thatt ≡ 1 (mod 8),

t ∈ (Z×r )2.

Note that r, s and t are independent of L and α. As above, there exist

positive integers k (< t) and v such that

tv = k2 + 2α+φ(α)+6r.

Define a Z-lattice N by

N ' 2φ(α)s

(
t k

k v

)
.

Then N is represented by L but not by M , and, as above, we have

2α ≤ 2φ(α)st2

t− 22φ(α)+6rs
.

This completes the proof.

The above lemma implies the finiteness of even universal almost 2-regular

quinary Z-lattices.

Corollary 4.2. There are only finitely many even almost 2-regular quinary

Z-lattices which represent all even integers up to isometry.
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4.2 Finiteness of even almost 2-regular quinary

Z-lattices

Let L be an even almost 2-regular quinary Z-lattice. By Corollary 4.2, we

may assume that L is not even universal. In this section, we prove that

ordp(dL) is bounded for any odd prime number p, and discuss what happens

if p = 2.

Proposition 4.3. Let L be an even almost 2-regular quinary Z-lattice and

let p be an odd prime divisor of dL. Then ordp(dL) is bounded.

Proof. Since µ3(L) is bounded, we take λp bounded times to L and assume

that

H→ Lp or 〈1,−∆p, pεp〉 → Lp,

where εp is a unit in Zp. If the former case holds, dL is bounded by Corollary

4.2. Hence we assume thatH→ Lq for all prime numbers q 6= p,

Lp ' 〈1,−∆p, pε1, p
αε2, p

βε3〉.

Here, εi are units in Zp and α ≤ β are positive integers. Furthermore, by

Lemma 4.1, we assume that α is sufficiently large.

Let G be a ternary section of L. As µ3(L) is bounded, such G are finite up

to isometry. We claim that there exists an even integer aG not represented by

G such that aG /∈ pε1∆pZ2
p. Suppose that G represents all even integers but

integers contained in the square class pε1∆pZ2
p. Then Gq is even universal

over Zq for all prime numbers q 6= p. Since Gq is even universal over Zq if

and only if H splits Gq, we have

Gq ' H ⊥ 〈aq〉
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for some element aq ∈ Zq. Also, the hypothesis implies that

Gp ' 〈1,−∆p, pε1〉.

Then Sq(QG) = 1 for q 6= p and Sp(QG) = −1, which contradicts the

Hilbert Reciprocity Law. Therefore there exists such an integer aG. Since

the possible choices of a ternary section G and the unit ε1 are finite, we can

assume that aG is independent of L. But, as L is 1-regular, aG is represented

by L. Therefore

µ4(L) ≤ aG,

and Lemma 4.1 shows that ordp(dL) is bounded.

Finally it remains for us to show that ord2(dL) is finite. Since µ3(L)

is bounded, taking λ4(L) bounded times, L2 falls into one of the following

cases:

H→ L2, A ⊥ A2 → L2 or

(
2 1

1 2

)
⊥ 〈4ε2〉 → L2,

where ε2 is a unit in Z2. Since the former two cases are already considered,

we assume that L satisfies
H→ Lq for all prime numbers q 6= 2,

L2 '

 2 1

1 2

 ⊥ 〈4ε2〉 ⊥ K2

for some binary Z2-lattice K2 with sK2 ⊆ 8Z2. Note that

Q

((
2 1

1 2

)
⊥ 〈4ε2〉

)
= 2Z2 − 4∆2ε2Z2

2.

Suppose that G is a ternary section of L. Note that the choice of such

G is finite. If G does not represent an even integer contained in any square
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classes of 2Z2 different from 4∆2ε2Z2
2, then µ4(L) is bounded as in the proof

of Proposition 4.3. Therefore we assume that G represents all even integers

except integers contained in the square class 4∆2ε2Z2
2. Then G satisfies the

local conditions 
H→ Gq for all prime numbers q 6= 2,

G2 '

 2 1

1 2

 ⊥ 〈4ε2〉. (4.1)

Furthermore, if G is not regular, µ4(L) is bounded above by an exceptional

integer of G which is independent of L. Using the escalation method, one

can find all even regular ternary lattices satisfying the above conditions as

follows.

Lemma 4.4. Suppose that G is an even regular ternary Z-lattice satisfying

the above local conditions (4.1). Then G is isometric to one of the following

lattices.

(1) ε2 = 1 (
2 1

1 2

)
⊥ 〈4〉 or

(
2 1

1 6

)
⊥ 〈4〉;

(2) ε2 = 3  2 0 1

0 2 1

1 1 2

 or

 2 0 1

0 4 2

1 2 6

 ;

(3) ε2 = 5  2 1 0

1 2 1

0 1 10

 ,

 2 1 1

1 6 1

1 1 6

 or

 2 1 1

1 6 3

1 3 10

 ;
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(4) ε2 = 7  2 0 1

0 2 1

1 1 6

 .

Proposition 4.5. Let L be an even almost 2-regular quinary lattice. If L

has an odd core prime `, then ord2(dL) is bounded.

Proof. We assume that L has a ternary section G isometric to one of the

lattices given in Lemma 4.4. Then G contains one of the three diagonal

lattices:

〈2, 2〉, 〈2, 4〉 or 〈2, 10〉.

Define α(G) ∈ {2, 4, 10} so that 〈2, α(G)〉 → G.

Suppose that dL = `ord`(dL)u with (u, `) = 1. Here, ord`(dL) is bounded

by Proposition 4.3. Recall that

〈`π(ord`(dL))u , `κη`〉

is a Z`-core lattice of L` for any unit η` in Z`. Next, choose a large prime

number p not dividing dG · dL. Then Lp is 2-universal and

Gp ' 〈1, 1, δp〉

for some unit δp ∈ Z×p . Hence the Zp-lattice

〈p,−δp∆p〉

is represented by Lp but not by Gp.

Choose positive integers A and B satisfying
A ≡ u (mod `),

A ≡ `π(ord`(dL)) (mod p),

A ≡ 2`π(ord`(dL))p (mod 16 ·
∏

q∈S−{`} q),
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and 
B ≡ 1 (mod `),

B ≡ −`κδp∆p (mod p),

B ≡ 2`κα(G) (mod 32 · 5 ·
∏

q∈S−{`} q).

Clearly, A and B are bounded.

Let N be a Z-lattice defined by

N ' 〈`π(ord`(dL))pA , `κB〉. (4.2)

Then N is represented by L but not by G. Therefore

µ4(L) ≤ max{ `π(ord`(dL))pA, `κB }.

Since the right side is bounded by an absolute constant, ord2(dL) is bounded

by Lemma 4.1.

Summing up our results obtained so far, we have the following theorem.

Theorem 4.6. (i) The set of prime divisors of the discriminants of even

almost 2-regular quinary Z-lattices is finite.

(ii) There exist only finitely many even primitive almost 2-regular quinary

Z-lattices which have an odd core prime.

(iii) There exist only finitely many even primitive almost 2-regular quinary

Z-lattices L if ord2(dL) is fixed.

Remark 4.7. To prove the finiteness of even almost 2-regular quinary Z-

lattices, the only one case is remained: an even almost 2-regular quinary
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Z-lattice L has a unique core prime 2, and satisfies that

H→ Lq for all prime numbers q 6= 2,

L2 '

 2 1

1 2

 ⊥ 〈4ε2〉 ⊥ K2, where sK2 ⊆ 8Z2,

L has a ternary section G isometric to one in Lemma 4.4.

Note that if the scale of K2 is fixed, such lattices are finite up to isometry.

We expect that even almost 2-regular quinary lattices satisfying the above

conditions become rarer as sK2 grows larger.
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국문초록

양의 정부호를 가진 정수계수 이차형식이 주어져 있을 때, 그 이차형식이

국소적으로 표현하는 변수가 n개인 이차형식 중 유한개를 제외하고 대역적으

로 모두 표현하는 경우, 이를 거의 모든 n-정규 이차형식이라고 한다.

이 논문에서 우리는 거의 모든 2-정규 5변수 이차형식의 유한성에 대하여

연구한다. 먼저 모든 정수를 표현하는 거의 모든 2-정규 5변수 이차형식이

유한함을 증명한다. 그리고 홀수 핵심 소수를 가지는 거의 모든 2-정규 5변수

이차형식이 유한함을 증명한다. 마지막으로, 2를 유일한 핵심 소수로 가지는

거의 모든 2-정규 5변수 이차형식의 유한성에 대하여 논의한다.

주요어휘: 이차형식, 거의 모든 n-정규 형식, 표현, 왓슨 변환

학번: 2009-22893
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