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Abstract

A (positive definite integral) quadratic form is called almost n-regular if it
globally represents all but finitely many quadratic forms of rank n that are
locally represented up to isometry.

In this thesis, we discuss the finiteness of primitive almost 2-regular
quinary quadratic forms up to isometry. We prove that there are finitely
many almost 2-regular quinary quadratic forms that represent all integers.
We also prove that there are finitely many primitive almost 2-regular quinary
quadratic forms having an odd core prime. We discuss the finiteness of prim-
itive almost 2-regular quinary quadratic forms which have 2 as the only core

prime.

Key words: quadratic forms, almost n-regular forms, representation, Wat-
son transformation
Student Number: 2009-22893
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Chapter 1
Introduction

For a positive definite (non-classic) integral quadratic form f, we say that f
is n-regular if it globally represents all (positive definite integral) quadratic
forms of rank n that are locally represented. Similarly, f is called almost n-
reqular if it represents all but finitely many quadratic forms up to isometry.
Any (almost) 1-regular form is simply called (almost) regular.

The term ‘regular’ was first coined by Dickson in [7], who determined
all regular forms of the form x? + ay? + bz?, where a, b are positive integers.
Watson showed in [18] that there exist only finitely many inequivalent ternary
regular forms by using arithmetic arguments. He defined the set E(f) of
positive integers which are locally represented, but not globally, by a ternary
quadratic form f. He showed that the size of E(f) grows as the discriminant
of f increases, and hence only finitely many ternary forms up to isometry
can be regular.

The problem of finding all primitive regular ternary forms was reignited
by Jagy, Kaplansky and Schiemann who provided a list of 913 (inequivalent)
regular ternary quadratic forms including 22 candidates. Their proof relies
on the complete list of those regular ternary forms with square-free discrim-
inant [18] and the method of descent which is originated by Watson in [20].
This method of descent involves transformations changing a regular ternary

form to another one with smaller discriminant and simpler local structure,
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which are called the Watson transformations. Recently, Oh [13] proved the
regularity of 8 candidates. For the regularity of the remaining 14 candidates,
Oliver [15] proved the regularity of them under the assumption that Gener-
alized Riemann Hypothesis is true. However, it is still beyond our reach to
prove the regularities of the remaining 14 candidates without any assump-
tions.

The study of higher-dimensional analogue of regular quadratic forms is
pioneered by Earnest in [8]. He showed that there exist only finitely many in-
equivalent primitive 2-regular quaternary quadratic forms. His proof mainly
uses the estimation of character sums to obtain an upper bound of the dis-
criminant of primitive 2-regular quaternary forms. Chan and Oh [5] made
a significant improvement in this direction by proving that for any integer
n > 2, there exist only finitely many inequivalent primitive positive definite
n-regular quadratic forms of rank n + 3. Note that, for any integer n > 6,
there are infinitely many inequivalent primitive 2-regular forms of rank n.
For higher rank cases, it is proved by Oh [12] that for any integer n > 27,
every n-regular (even) form is (even, respectively) m-universal. Also, the
minimal rank of n-regular forms has an exponential lower bound for n as it
increases.

Turning our interest to almost n-regular forms, we refer to Watson [18§]
again. As stated above, if the size of the set of exceptional integers is
fixed, then there are only finitely many inequivalent almost regular primitive
ternary quadratic forms. But the analytic method he used in the proof is not
computationally effective in bounding the discriminants of those quadratic
forms f for which E(f) is bounded by a prescribed constant. Chan and Oh
[6] improved this by proving that for any positive integer k, there exists an ef-
fective upper bound for the discriminant of almost regular ternary quadratic
forms with at most k exceptional integers. They also provided a character-
ization of almost regular ternary quadratic forms. Recently, Bochnak and
Oh [2] proved that if f is an almost regular quaternary form, then f is p-

anisotropic for at most one prime p. Moreover, for a prime p, there exists an
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almost regular p-anisotropic form f if and only if p < 37.

For higher rank cases, Chan and Oh [5] proved that if n > 2, there exist
only finitely many inequivalent primitive almost n-regular forms of n + 2
variables. This follows directly from their result on the finiteness of n-regular
forms of n + 3 variables, for an almost (n 4 1)-regular form is also n-regular.
Then, as Chan and Oh extended Earnest’s finiteness results on regular forms
of corank 2 to the case of corank 3, one may ask whether there exist only
finitely many inequivalent primitive almost n-regular forms of rank n+3. In
this thesis, we study the finiteness of inequivalent primitive almost 2-regular
quinary quadratic forms. This result is done by joint work with B.-K. Oh.

The discussion in this thesis will be conducted in geometric language of
quadratic spaces and lattices rather than quadratic forms. The term “lattice”
will always refer to an integral Z-lattice on a positive definite quadratic space
over Q. Since we want to include non-classic integral quadratic forms in our
discussion, we always assume that any Z-lattice L is an even primitive lattice,
that is, the norm of L is 2Z, unless stated otherwise.

In Chapter 2, we state several definitions and results on quadratic spaces
and lattices. The successive minima, which play a central role in our ap-
proach, are also defined and some well-known lemmas on them will be stated.
The Watson transformation is introduced to define the “terminal” lattice ob-
tained from an even almost n-regular lattice. In the final section, some ana-
lytic results which will be used later are stated.

In Chapter 3, we prove that terminal lattices of even almost 2-regular
quinary lattices are finite up to isometry. A lattice IV is called a core lattice
of L if the failure of the representation of N by L implies the failure of the
representation of infinitely many sublattices of N by L. As the definition
indicates, core lattices are crucial to handle almost n-regular lattices. We
provide precise forms of some local core lattices of terminal lattices. Note
that a terminal lattice L with sufficiently large discriminant always has an
even universal quaternary sublattice M. Note that by “The 290-Theorem”

of [1], there exist only finitely many even universal quaternary lattices. Our
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proof of the finiteness of terminal lattices consists of constructing binary core
lattices which are represented by L but not by M. Here, the universality of M
is essential, for it guarantees an upper bound of the 4-th successive minimum
of L. Also, in the construction of core lattices, results on the estimation
of character sums and the distribution of prime numbers in an arithmetic
progression are used to give an upper bound of the 5-th successive minimum.

In Chapter 4, we consider the general case. Since any almost 2-regular
quinary lattice L is 1-regular, the third successive minimum of L is bounded
by an absolute constant. One may easily show that the set of prime divisors
of dL is ‘bounded’ from the fact that the number of terminal lattices is finite
up to isometry. Hence, to show the finiteness of almost 2-regular quinary
lattices up to isometry, it suffices to show that ord,(dL) is bounded for any
prime p dividing dL. First, we show that even universal almost 2-regular
quinary lattices are finite up to isometry. Next, we show that for any odd
prime p, ord,(dL) is bounded. Here, the Hilbert Reciprocity Law is used to
find an exceptional integer which is represented by L but not by its ternary
section. Finally, we consider the case when p = 2. Since the third minimum
of L is bounded, after taking finite number of Watson transformations to L,

we may assume that

H — L, for any odd prime g,

2 1
Lo ~ 1 (4e) L Ky
12

for some binary Zs-lattice Ky such that s Ky C 8Z,. Under these assump-
tions, we provide all possible candidates of ternary sections of L. If we show
that there does not exist an almost 2-regular quinary lattice under the as-
sumption that ordy(s(K5)) is sufficiently large, then there are only finitely

many primitive almost 2-regular quinary lattices up to isometry.



Chapter 2
Preliminaries

In this chapter, we introduce some definitions and well-known results which
will be used in this thesis. In the first section, we review some basic facts
and well-known results on quadratic spaces and lattices. Also, the notion of
successive minima and their basic properties are are introduced. In section 2,
we define the Watson transformation and use it to define a terminal lattice.
In the final section, we gather some analytic results which are frequently used

in the following chapter.

2.1 Quadratic spaces and lattices

A quadratic space V over a field F' is a finite dimensional vector space over

F equipped with a symmetric bilinear form
B:VxV — F.
Here, B is called symmetric bilinear if it satisfies

B(z,y) = B(y,z), B(ar+by,z)=aB(z,z)+bB(y,z2)
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for all x,y,z € V and for all a,b € F'. We use the notation (V, B) to denote a
quadratic space V equipped with a symmetric bilinear form B. The quadratic

map () associated with B is defined by

Q(z) = B(x, z)

for any x € V.
Let V be a quadratic space with a symmetric bilinear map B of rank n.
Suppose that
B ={x1,29,...,2,}

is a basis of V. Then the n x n matrix
(B(wi,25))1<ij<n

is called the matrixz of the quadratic space V with respect to 8. In this case,

we use the following notation
V >~ (B(x;, xj)).
If the matrix (B(z;,x;)) is diagonal, then we write
V ~ (B(xy,x1), ..., B(zy, x,)).
The discriminant of V' is defined by
dV = det(B(z;,z;)) € (F*/(F*)*) U {0} .

Here, F** is the group of non-zero elements in F'. Note that the discriminant
of V' is independent of the choice of %B. If dV # 0, we say that V is a regular
quadratic space.

Let (V, B) and (W, C') be quadratic spaces over a field F'. We say that V'
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is represented by W if there exists a linear map o : V' — W such that
B(z,y) = Clox,0y)

for all elements x,y € V. The map o is called a representation of V in W.
Further, if ¢ is a linear isomorphism, then we say that V and W are isometric
and denote by V ~ W. In this case, we call ¢ an isometry.

To describe an equivalent condition for a quadratic space (V, B) over Q
to be isometric to another space (W, ('), we introduce the Hilbert symbol

and the Hasse symbol.

Definition. Let F' be a field one of the p-adic number field Q, or the real
field R (= Qo).

(1) For two elements «, 5 € F, the Hilbert symbol
()
p
is defined to be 1 if aa? + By? = 1 has a solution z,y € F; otherwise
the symbol is defined to be —1.

(2) Let V be a regular n-ary quadratic space over F. If V has a splitting
V o~ (o,00,...,0,),

the Hasse symbol of V' is defined by

where d; = o - - - ;.

The following theorem is often called the Hasse-Minkowski theorem, which

gives the exact conditions for two quadratic spaces to be isometric.
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Theorem 2.1. (1) Two regular quadratic spaces V. and W over Q, are

isometric if and only if

dim(V) = dim(U), dV =dW, S,(V) = S,(W).

(2) Two regular quadratic spaces V. and W over Q are isometric if and
only if V,, and W, are isometric over Q, for all finite and infinite prime
numbers p. Here, V, =V ® Q,.

Proof. See Theorem 63:20 and Theorem 66:4 in [16]. O

The following theorem says that an important equality holds among Hasse

symbols over Q,.

Theorem 2.2 (Hilbert Reciprocity Law). Let V' be a quadratic space over
Q and let P be the set of all finite prime numbers in Z. Then the following
equality holds:

I sv) =1

pePU{oco}
Proof. See Theorem 71:18 in [16]. O
Let R be a ring one of the rational integer ring Z or the p-adic integer ring
Z,. Suppose that F' is the quotient field of R. An R-lattice L on a quadratic

space (V, B) over F is a finitely generated free R-module such that FF'L = V.
Note that L inherits the bilinear map B of V satisfying

B:LxL—R

and the quadratic map Q : L — R. We call a lattice L binary, ternary,
quaternary, quinary and n-ary, according as the rank of L is 2,3,4,5 and n,

respectively. Let L be an R-lattice of rank n and let

B ={x1,29,...,2,}
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be an integral basis of L. As above, the n x n matrix

(B(xi, 75) h1<ij<n

is called the matriz of L with respect to B. We denote L ~ (B(x;,x;)). If

the matrix (B(x;,z;)) is diagonal, then we write
L~ (B(x1,21),...,B(x,,z,)).
The discriminant of L is defined by

dL = det(B(z;,x;)) € R.

An R-lattice L is called isotropic it there is a non-zero vector x € L with

Q(x) = 0; otherwise L is called anisotropic. A submodule N of L is called
a sublattice if N itself is a lattice. For sublattices M, N of L, if B(z,y) =0

forall x € M, y € N, we write
M L N.
Also, we define the orthogonal complement M+ of M in L as
M*+={zecL|B(z,y) =0 for all y € M}.
Note that M L M* is a sublattice of L of finite index, and hence

dM - dM* = dL - o?,

where o = [L : M L M*]. Furthermore, dM+* divides dM -dL by Proposition

5.3.3 in [10].

We say that an R-lattice M is represented by another R-lattice L if there
exists a representation o : FM — FL such that oM C L. An R-lattice L is
called n-universal if L represents all R-lattices of rank n. When the field F’
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is a global field, the genus of L, denoted by gen(L), is defined by the set of
all lattices M in the quadratic space F'L such that

L, ~ M, for all finite and infinite primes p of F'.

Here, L, is the lattice L ® R,,.
The following theorem says that we can choose a global basis of L which

is sufficiently close to a fixed local basis of L, for a prime number p.

Theorem 2.3. Let p be a prime number and let c,ch, ... cP be a basis of
Ly, with

det(ci,ch, ..., cP) = 1.
Then, for any € > 0, there is a basis cq,Co, ..., c, of Z"™ with

det(cy,coy...,c,) =1

such that
lej —cfll, <e (1<j<n).

Here we have used the notation
[bll, = max [b;],

forb = (by,...,b,) € Q.
Proof. See Theorem 2.1 of Chapter 9 in [3]. O

We define the scale of L, denoted by sL, by the R-module generated by
the set
B(L,L) ={B(z,y) | z,y € L}.

The norm nL of L is defined as the R-module generated by the set Q(L).
Note that
2sL CnlL CslL.

10
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We call L unimodularif s = R and dL € R*. We assume that all Z-lattices
are positive definite and even primitive, that is, the matrices of lattices are
positive definite and the norms of lattices are 27Z.

The main purpose of this thesis is to study almost n-regular lattices which

are defined as below.

Definition. A positive definite Z-lattice L is called n-reqular if L represents
all Z-lattices of rank n that are represented by the genus of L. Similarly, we
say that L is almost n-regular if it represents all but finite lattices that are

represented by the genus of L.

Lemma 2.4. Let L be an almost n-reqular Z-lattice. Then L is (n — 1)-

reqular.

Proof. Suppose that a Z-lattice K of rank n — 1 is represented by the genus
of L. Then there exists a Z-lattice M in the genus of L such that K C M
(see 102.5 in [16]). Choose a vector v in the orthogonal complement of K in
M. Then the lattice

K 1 Z(av)

is represented by gen(L) for any integer a. Hence, with finite exceptions,

K 1 Z(av) is represented by L. In particular, K is represented by L. H

We introduce the successive minima of a lattice, which will be used to
show the discriminant of a Z-lattice L is bounded. The following definition
is adapted from ([3], Chapter 12).

Definition. Let L be a Z-lattice of rank n. For 1 < j < n, the j-th successive

minimum of L is the positive integer p; such that
1. dim(span{zr € L | Q(x) < u;}) > j, and
2. dim(span{z € L | Q(x) < p;}) < j.

Note that the existence of linearly independent vectors zq,...,x, € L

with Q(z;) = p; can be proved by the following lemma.

11
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Lemma 2.5. Let L be a Z-lattice of rank n. For some j € {2,...,n},
suppose that there exist linearly independent vectors xi,...,x;—1 € L such
that Q(z;) = p; fori=1,...,5 — 1. If y € L satisfies the inequality Q(y) <
i, then

y € span{xy,...,x;_1} N L.

Proof. See Lemma 2.2 in [8]. O

For an integer 1 < k < n and vectors x1,...,x, € L with Q(x;) = u;, a
k-ary section of L is defined as the Z-lattice

span{zy,..., x5} N L.

Using Lemma 2.5, one can show that a k-ary section of L gives an upper

bound of the (k + 1)-th successive minimum of L as follows.

Lemma 2.6. Let L be a Z-lattice and M be a k-ary section of L with k <
rank(L). If a binary Z-lattice N is represented by L but not by M, then

fra (L) < pa(N).
Proof. See Lemma 2.4 in [8]. O

Lemma 2.7. Let L be a Z-lattice of discriminant D of rank n with the
successive minima fiy, . .., fi,. Then there exists a constant C' = C(n) such
that

Proof. See Proposition 2.3 in [8]. O

The above lemma implies that if one wants to find un upper bound of
the discriminant of a n-ary lattice, then it suffices to find that of the n-
th successive minimum, and the converse is also true. This will be used

frequently in the following chapters.

12
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2.2 Watson transformation

In this section, we introduce the Watson transformation which makes a lattice
into a ‘simpler’ lattice. Taking the Watson transformations to an almost n-
regular lattice L, we get an even universal almost n-regular lattice A(L),

which is called a terminal lattice of L.

Definition. Let L be a Z-lattice and let m be a positive integer. Then the

lattice
Ap(L)={zx € L | Q(x+z) =Q(2) (mod m) for all z € L}

is called the Watson transformation of L modulo m. Let A, (L) be the even
primitive Z-lattice obtained from A,,(L) by scaling by a suitable rational

number.

The Watson transformation inherits many properties of the original lat-
tice. We gather here some of them. Detailed proofs can be found in [5].

Here, L is an even Z-lattice and p is a prime number. We suppose that
Ly, =M, L N,,
where M, is a leading Jordan component and s(N,) C ps(M,,).
Lemma 2.8. Suppose that M, is unimodular and n(N,) C 2pZ,. Then
Agp(L)p = pM,, L N,

Furthermore, if L is almost n-reqular and M, is anisotropic, then Aqp(L) is

also almost n-reqular.

Lemma 2.9. If L is almost n-reqular and s(L) = 2Z, then M\(L) is also

almost n-reqular.

Lemma 2.10. Suppose that §(L) = 27 and n(Ny) C 8Zs.

13
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1. If rank(Ms) > 3, then A\y(L)y is split by a unimodular Zy lattice. Actu-
ally, this is true when $(Ny) C 47Z,.
2. If rank(Ms) = 2, then

1
Ms L N7 if 4t
/\4(L)2’:’ 2 l2 f 4
PLNy ift

1 (mod 4),
3 (mod 4),

where € € Z5 and P is an even binary unimodular Zy-lattice.
3. If rank(My) = 1, then A\y(L)g ~ My 1 Nj'.

Lemma 2.11. If rank(Ms) = 1 and Ny = Jy L Ky where Jy is a 4-modular
Zs-lattice and s(Ks) C 8Zs, then

M21NZ ifu(l)=s
)\4([/)2 = ° 21 f ( 2)
M2 1 N24 Zf Il(Jg) = 25(J2>

Applying above lemmas to an almost n-regular Z-lattice for a fixed prime
number, one can obtain the following proposition.

Proposition 2.12. Let L be an even almost n-reqular Z-lattice of rank
greater than 4 and let p be a prime number. Then there exists an even almost
n-reqular Z-lattice L' satisfying

I~ HLN, ifq=p,
! Ly if ¢ # p,

01

where H =
1 0

), Ny 1s a Zy-lattice and €, € Z; .
Corollary 2.13. Let L be an even almost n-reqular Z-lattice of rank m > 5,

and suppose that n > 2. Then there exists an even almost n-reqular Z-lattice
A(L) of rank m which is even universal and d\(L) divides dL.

14
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Proof. Applying the above proposition for all prime numbers dividing 2dL,
we obtain the desired lattice. The even universality follows from Lemma
2.4. O

We call the lattice A(L) in the corollary a terminal lattice of L. Note that
H is represented by the genus of a terminal lattice.

Next we show that the set of prime divisors of the discriminant of L is
‘bounded’ from that of a terminal lattice of L. For a lattice M, let P(M) be
the set of all prime numbers dividing dM .

Proposition 2.14. Let L be an even almost n-reqular Z-lattice and \(L) be

a terminal lattice of L. Then
P(L) € P(A(L))uU{2,3,5,7,11,13}.

Proof. Let p be an odd prime divisor of dL. Applying Proposition 2.12 for
all primes g # p, we can assume that L, represents all elements in Z,. If p
does not divides dA(L), one of the followings holds:

o L,~ (a) L N, where a € Z) and s(N,) C p*Zy;
o [,~(1,—A,) L N, where s(N,) C p*Z,.

Here, A, is a non-square unit in Z,,.
First suppose that L, ~ (a) L N, and let

P={2t|1<t<p-1,2t€QLy)}

Then |P| = (p — 1)/2 since p is odd, and min(P) < p+ 1. Let H be the

sublattice of L generated by all vectors v € L such that Q(v) € P. If

rank(H) = k > 3, then

p* D <dH < (p+1)(2p — 2)F!

15
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by Lemma 2.7. But this cannot be possible for any odd prime number p. If
rank(H) = 2, then
dH < (p+1)(2p - 2).

Since H is an even binary lattice, dH = 0 or 3 (mod 4). As p?|dH, this
implies that 3p? < dH. But 3p? < 2(p?—1) is not possible. Hence rank(H) =
1 and |P| < /p. This is possible only when p < 5.

Next suppose L, ~ (1,—=4,) L N,. In this case, Z; C Q(L,) and by
Lemma 2.4, L represents all integers in the set U = {2,4,...,2(p—1)}. Let
G be the sublattice generated by all vectors v € L such that Q(v) € U. As
p is odd, G represents both 2 and 4 and rank(G) > 2. If rank(G) = k > 4,
then

p?*=2 < 4G < 8(2p — 2)" 2,

This is possible only when k& = 4 and p = 3. If rank(G) = 3,
p° < 8(2p—2)

and this holds only when p < 13. Finally, if GG is binary, then G is isometric

to one of the followings:
2,0,2], [2,1,2], [2,0,4] or [2,1,4].

Note that these lattices do not represent 6, 4, 10 and 6 respectively. Hence
p < d. [l

2.3 Analytic tools

In this section, we introduce some analytic results which guarantee the upper
bounds of discriminants of almost n-regular lattices. The first proposition
is related with the estimation of character sums, which was introduced by
Earnest in [8].

Let x1,Xx2,...,Xr be Dirichlet characters modulo ky, ko, ..., k., respec-

16
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tively. Let I' be the least common multiple of kq, ko, ..., k., and let 1, m9, ..., 0,
(e1,é€2,...,6e.) beelements of {1, —1} ({1,2}, respectively). Then []._, (n;x:)"
is a Dirichlet character modulo I'. The characters x1, xo, ..., X, are said to
be independent if [];_,(nix;)® is non-principal whenever e; # 2 for some ¢.

For a positive integer H, we put
S(H) = {n< H | (n,A)=1and x;(n) =n; for all i},
where A is a positive integer relatively prime to I'. Define
h=min{ H| S(H)#0 }.

The following Proposition gives an upper bound of h. Here, A <« B¢
means that for any e > 0, there exists a constant ¢ which depends only on e
satisfying |A| < ¢B'*e.

Proposition 2.15. Suppose that the characters x1,X2 ..., X, are indepen-
dent and v < w(l') + 1, where w(I') denotes the number of distinct prime

divisors of I'. Then, for any positive real number € > 0,
h < TETAC
Proof. See [8]. O

The next result is concerning about the distribution of prime numbers in

some arithmetic progression, which was proved by Kozlov [11].
Proposition 2.16. Let d > 3 and A\ > 2 be integers such that

1

p<d,
(p,d)=1

and

1 1
)\(1—0) > 2+m(1+64d2>.

17
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Then, for a real number x such that
x> max { 64d*\* + 2d, (dk)* },

every interval of the form (x, A\x] contains at least k primes p = a (mod d).

Proof. See [11]. O

18



Chapter 3

Terminal lattices

In this chapter, we show that terminal lattices of even almost 2-regular
quinary lattices are finite up to isometry. In the first section, we define a
core lattice which plays a central role in the proof of the finiteness of ter-
minal lattices. In Section 2, we construct a core lattice of a terminal lattice
L which is represented by gen(L) but not by a quaternary section of L to
obtain an upper bound of dL.

3.1 Core lattices

Let L be a primitive almost 2-regular quinary lattice. As QL is universal,

there exists a quaternary space V' such that
QL~({dL) LV

with dV = 1.
Lemma 3.1. There is at least one prime number p such that V), is anisotropic.

Proof. Note that if V), is anisotropic, then

V;D = <1? _Ap?pv _pAp>-

19
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Here, A, is a non-square unit in Z, if p is odd; otherwise A, is a unit

contained in the square class 5Z3. Thus V), is isotropic if and only if

1 if pis odd,
Sp(v):{—1 if p=2

Hence the Hilbert Reciprocity Law implies that V), is anisotropic for at least

one prime p. O
We call the prime number in Lemma 3.1 a core prime of L.

Definition. Let R be one of the ring of rational integers Z or the ring of
p-adic integers Z, for a prime number p. For an R-lattice L, we call an R-
lattice ¢ a R-core lattice of L if the failure of L to represent ¢ implies the

failure of L to represent infinitely many sublattices of /.

The next lemma shows that a terminal lattice always has a local core

lattice.

Lemma 3.2. Suppose that L is a terminal lattice and p is a core prime of L.
Also suppose that dL, = pord"P(dL)ep, where €, € Z, . Then L, has a Zy,-core
lattice of the following form:

(p”(”dp(dL))ep ., Py if pois odd,
<2¢>(ord2(dL))62 ’ 2/{,'72> pr —9

Here, 1, is any unit in Z, and w, ¢ are functions defined as follow:

{ 0 ifn is even,

1  otherwise

1 otherwise.

o(n) = { 2 if n is even,

The exponent k depends on ord,(dL) and is defined in the proof.
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Proof. First we suppose that p is odd. If ord,(dL) is even, as p is a core

prime of L, one can deduce that
L, =~ (1,—1,p*1e,A,, p*> 15, —p*sti5 AL)

for some unit 6, in Z, and non-negative integers ki, ks and k3. Put x =
max{2ky, 2k + 1, 2ks + 1}. Then

<€p , P')

is a Z,-core lattice of L,. Here, k satisfies k < ord,(dL) — 1. Similarly, if
ord,(dL) is odd, one can show that

(pep , D7)

is a Z,-core lattice of L,. In this case, k < ord,(dL).

Suppose that p = 2. Since L, is even universal, we can consider an
orthogonal complement K of (2¢(*d2(4L))¢,) in [,. Then K is a sublattice of
I, = (1,1,1,1) since K is anisotropic. Note that [, : K] = 2" for a non-
negative integer n < 3(ordy(dL)+2). Suppose that Iy = ®Zsz; and K =
®Zsa;x; for some a; € Zy. For j = max;{ords(a;)}, put @ = 27. Then a
divides 2™ and al; C K. Therefore

20rd2(dT)—l-2Z2 C Q(K)

Note that any element in 2°7%2@1)+57, cannot be primitively represented by
K since any sublattice of I, with index 2¢ cannot primitively represent any

element divided by 224+3. Hence the binary lattice

<2q§(ord2(dL))€2 ’ 2nn2>’

where k = ordy(dL)+5 and 75 is any unit in Zs, is a Zy-core lattice of Ly. [
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From a local core lattice, one can construct a global core lattice by the

following lemma, which is easily verified by Theorem 2.3.

Lemma 3.3. Let L be a quinary Z-lattice and let N be a binary Z-lattice.
Suppose that N, is a Z,-core lattice of L, for a prime number p. Then N is
a Z-core lattice of L.

3.2 Finiteness of terminal lattices

In this section, we prove that there are only finitely many primitive terminal
lattices up to isometry. Throughout this section, we assume that 7' is a
terminal lattice obtained from an almost 2-regular quinary Z-lattice. If the
5-th successive minimum p5(7") of 7' is bounded, then by Lemma 2.7, dT is
also bounded. Hence we assume that ps(7") is sufficiently large.

As T is even universal, p4(7) is bounded and there exists an even universal
quaternary sublattice M of T. Note that such M are finite by “The 290-
Theorem ([1])”. Let S be the set of all primes p such that there is an even
universal quaternary Z-lattice whose discriminant is divisible by p. Clearly,
S is a finite set containing 2,3 and 7. First we handle the case when dM is

square.

Proposition 3.4. Let T be a terminal lattice and M be an even universal
quaternary sublattice of T'. If dM is square, then the discriminant of T is
bounded.

Proof. Since dM is square, the Hilbert Reciprocity Law implies that M, is
anisotropic for some prime number ¢ € S. Suppose that S = {2,¢1,¢2,-..,¢-},
where ¢; are odd prime numbers. For a positive integer s, let N be a binary

lattice given by
oo [0z 1]
1 2s

If p € S, then (N;), ~ H is represented by 7 if p ¢ S, M, ~ I, which is

2-universal over Z,. Hence Nj is represented by gen(7"). Since T is almost
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2-regular, T represents N, for some s. But, for the prime number ¢ € S such
that M, is anisotropic, (Ny), =~ H is not represented by M,. Therefore N; is
not represented by M, and

ps(L) < 64¢%--- ¢

Hence Lemma 2.7 leads to the conclusion. O

Theorem 3.5. There are only finitely many primitive terminal almost 2-

reqular quinary Z-lattices up to isometry.

Proof. Let T be a terminal almost 2-regular quinary Z-lattice and let M be
an even universal quaternary sublattice of T" such that dM is non-square.

For each M, choose distinct odd prime numbers ¢, g2 and g3 such that
M, ~(1,1,1,A,)
for all 4. Since M is even universal, T represents at least one of
(2,2), (2,6), (2,4) or (2,14).

We define 5(T) € {2,4,6,14} so that (2, 5(T)) is represented by T.

Let £ be a core prime of T and suppose that dT’ = ¢4 1)y with (u, £) = 1.
We can choose two primes among {q;, ¢o, g3} different from ¢, which we denote
¢1 and ¢, after renumbering. Note that they are independent of T" and /. Let
g be one of g1, g2 and suppose that

T,~(1,1,1,A,, ¢"¢,)

for some ¢, € Z; and a non-negative integer w. We separate the proof into

two steps.

STEP 1 : First inequality

First assume that the core prime ¢ is odd. Note that we can choose an
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integer A satisfying

Of;A<<Q<16ILES%ZQp>
qw+7r(w+1)€NA =2 mod (16 HpeS—{Q,Z} p) )
"A=1 (mod q).

Recall that 7 is a function defined as

m(n) =

0 if n is even,
1 otherwise

Let P be the product of prime numbers less than ¢ (16 HpeS—{u} p) that
are not contained in S U {/,q}. Let B be a positive integer such that

w+7r(w+1 gw(orde dT))B ﬁ( ) mod (32 3.7 HPGS*{Z} p) ’

<€ﬂ ordg(dT) ) B <_1)
= . )

q“””r(‘”le B=u (mod (),
| B=1 (mod P).

By Proposition 2.15, we can choose B so that there is a constant C' such that
0<B<C-(2.
Let N be a binary Z-lattice defined by
N = <qu.)—|—7r(o.1—‘,-1)61'6147 qw+7r(w+1)€7r(ordg(dT))B>, (31)
where £ is defined as in Lemma 3.2. For any prime p € S — {/(},

N, ~ (2,5(T)) = M, = T,.

Since

Nq ~ <qw+7r(w+1)’ qw+7r(w+1)(_Aq)>’
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CHAPTER 3. TERMINAL LATTICES

we have N-»M and N,—T, (See [17]). Furthermore, N, is a Z,-core lattice
of Tp. Finally, for any prime p & S U {¢,q}, N, represents a unit in Z,.
Hence N,—M,—1T,. Therefore, by Lemma 3.3, N is a Z-core lattice which
is represented by the genus of T'. This implies that N should be represented
by T. Since N is not represented by M,

p5(T) < p2(N)
by Lemma 2.6. Consequently, there is a constant C; such that
qordq(dT)gordg(dT) <dT < Cl . qw+7r(w+1)€max{n,7r(ordg(dT))Jr%}. (32>

From this, we have

dTl
qordq (dT') pord,(dT’)

< Cl q- gmax{nfordg(dT),ﬂ(ordg(dT))fordg(dT)+%} (33)

Multiplying the inequalities (3.3) obtained from ¢; and ¢y respectively, we
get

dr < dT?
f2orde(dT)  — qlordq1 (dT) (]201‘dq2 (dT) (2ord,(dT)

< 02 . 52max{nfordg(dT),ﬂ'(ordg(dT))7ordg(dT)+%}
for some constant C5 independent of 7" and ¢. Therefore,
AT < Cy - 3ordeldT) (3.4)

Next, suppose that ¢ = 2. Recall that k = ords(dT") + 5 in this case.
Let P be the product of prime numbers less than q(Hpes_ (2} p) that are not

25
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contained in S U {q}. Choose integers A and B satisfying

0<A<q(Iles_(23P):
qw+w(w+1)2’fA =2 (mOd HpeS—{Q} p),
™A =1 (mod Q)

and

SN B = (T) (mod 37 Tlyes_ (3 -
¢t B =4 (mod 8),
B=1 (mod P),

[EE)

Recall that ¢ is defined as

Q

2 if n is even,
-]

1 otherwise

and note that B is bounded in this case.
Let N be a binary Z-lattice defined by

N — <qw+ﬂ'(w+l)2,‘<A’ qw+ﬂ(w+1)2¢(0rd2(dT))B>. (35)

Then, as above, N is represented by 1" but not by M, and we get the following
inequality
dT < C - 20r42(dT) (3.6)

for some constant C' independent of T" and /.

STEP 2 : Second inequality

To find an upper bound of the discriminant of 7', it suffices to show
that (°r4¢[@T) is hounded by the inequalities (3.4) and (3.6). Since all the
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other cases can be done in a similar manner, we only consider the case when
B(T) =6.

Suppose that ¢ is odd. From the inequality (3.2), we see that
is bounded. If ¢°*9¢(4T) ig bounded, clearly dT is bounded. Hence we assume

Eordz dT)—k

that ¢~ is sufficiently large. Choose a prime p such that
[055%) < p < 7[e="]

and
p=¢q (mod 3) if k is even,

p=/{-q (mod 3) if x is odd,

which is possible by Proposition 2.16. First suppose that ord,(dT") is even.
Define a positive integer A such that

([ A o

e f _ {2
<r> (r> or any r € S — {2},
A=/0" (mod 8),

) C0)

q q )’

AN —38"“)

p p /)

é 2pqu
L\ 7 )

Note that by Proposition 2.15, for any ¢ > 0, we may choose A satisfying
A < (pl)ste.
. A —3¢" , .
Since | — | = , there is an integer k£ (1 < k < p — 1) such that

p p
3AL® + k? is divisible by p. Let pv — k? = 3A¢* and define a binary Z-lattice

N by
N o~ gotme+D) 4 2p 2k '
2k 2v

Note that dN = 12A43¢%¢>@+m(@+1)  Then
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(i) since dN, = 3 for any r € S — {2,3}, we have N, ~ (2,6)—M,—T,;

(ii) since every binary odd unimodular Zy-lattice with discriminant 3 is
isometric to (1,3), we have Ny ~ (2,6)—My—T5;

(iii) since dN3 = 3, N3 ~ (2pqA, 6pqA); if K is even, A ~ pq ~ 1; otherwise,
A ~ ( and pgl ~ 1. Hence N3 ~ (2,6)—M;3—Ts5;

(iv) since N, ~ (¢“T™ @+ (= A )got @Dy N M, and N,—T;
(v) both N, and M, are unimodular Z,-lattices;

(vi) since Ny o~ (2pqA,6pgl®) ~ (u,l"n) (n € Z;), Ny is a binary Z,-core
lattice of Ty;

(vii) for any prime r & SU{(,q,p}, N, ~ (2pgA, 6pgA*(”) is not isometric to
r¥tle, —r?tle A,) for any unit €, € Z, and integers r, s, and hence
Yy g

N,—M,.

Here, we use the notation a ~ b to denote that a and b are units in the same

square class. Therefore N is represented by T" but not by M, and we have
qOI‘dq(dT)gord[(dT) <dT < Cl ‘qw-&—ﬂ(w-&-l) max{pA, UA}, (37)

for some constant C; independent of 7" and . Now choose € so small that
€< %. Since p < (7%, A < (pé)%Jr€ < (16516, Hence pA < 035+ 15 and

A2 AR? 1
vA < max { ¢ : —} < max {g%ﬂ%,@“ﬂ%} < 05E (3.8)
p

p

Combining (3.7) and (3.8), we get

gordg(dT) < 02 . g%ordg(dTH»%'

Therefore ¢27%¢(4T) i hounded by an absolute constant.
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Next suppose that ord,(dT’) is odd. Define a positive integer A such that

( k—1
(é) = (g ) for any r € S — {2},
r r

A=/¢1 (mod 8),

() _W“)
()

_ (2pqu
== )

As before, we choose A satisfying A < (pé)%Jr ¢

SIS e

\

. A =351 . .

Since | — | = , there is an integer £ (1 < k < p —1) such
p p

that 3A¢%~! 4+ k2 is divisible by p. Let pv — k? = 3A¢*! and define a binary

Z-lattice N by
N ~ qw+7r(w+1)A€ 2p 2k ]
2k 2v

Note that dN = 12A43¢"+1g2@+m@+)) " Then N, ~ (fu, (*n) and N is repre-
sented by T but not by M. Also pAl < (2°+16 and vAl < (355, Therefore
or4e(@T) is hounded.

Now suppose that ¢ = 2 and ordy(dT’) is sufficiently large. Then we can

choose a prime p such that
[257] < p < 725"

and
p=gq (mod 3) if ordy(dT) is odd,

p=2q (mod 3) if ordy(dT) is even.
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Choose a positive integer A satisfying

<_> =1 for any r € S — {2},
A= pqu (mod 8),

q

2 ()
L\ P p)
Note that A < ps*+e.

First suppose that ordy(dT) is even. Since k is odd, there exists an integer
k (0 <k <p—1) such that

pv=3-A-2""1 4 k2

Define a binary Z-lattice N by

N ~ qw+7r(w+1)2A 2p 2k '
2k 2w

Then dN = 3 - 2543 . A3 . 2w+r(@H+1)  Note that
(i) for r € S —{2,3}, dN, = 3 and N, ~ (2,6)—M,—T,;

(i) for r =2, Ny >~ (4pqA, 3 - 2°TpgA?) ~ (4u, 25" 1n), which is a Zy-core
lattice of Tp;

(iii) for r =3, dN3 = 3 and N3 ~ (pgA, 3pgA) ~ (2,6)—M,—T,;

(iv) for r = ¢, N, =~ (@@ tD) (—A )2 @+ @+D)) which is represented
by T, but not by Mg;

(v) for r = p, N, and M, are unimodular and N,—M,—T;

vi) for r ¢ S U {p,q}, N, ~ (pgA,3pgA> r¥tle, —r¥tle A,) and
(vi)
hence N,—M,—T,.
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Therefore there exists a constant C such that

dT < C' - ¢ @) max{pA,vA}.

Choose € so small that € < %. Then p < 223% and A < 216", Hence

PA K 2% and

A2t AR
vA < max{ ; —} < max{2371 225} < 25",
p p

Therefore we have

qordq(dT)Qordz(dT) <dT < (Y - qurﬂ(wH)Q%ﬂ

for some constant C; and hence d7T" is bounded.

Next suppose that ords(dT’) is odd. Let k be an integer such that 0 <

E<p—1andpv=3-A-2%+k? Define a binary Z-lattice N by

N:qw”(“’ﬂ)fl 2p 2k )
2k v

Then dN = 3 - 25+2. A3 . 2@+m(@+1) "and as above, N is represented by T

but not by M. Also

qordq(dT)2ord2(dT) < dT < Ol . qw+7r(w+1)2%n‘

This completes the proof.
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Chapter 4

Almost 2-regular quinary

lattices

In this chapter, we discuss the finiteness of general even almost 2-regular
quinary Z-lattices L. In Section 1, we introduce some reduction results to
show that even universal almost 2-regular quinary Z-lattices are finite up
to isometry. In Section 2, we first show that ord,(dL) is bounded if p is
an odd prime. Next, we prove ordy(dL) is bounded if L has an odd core
prime. Finally, we explain the remaining problem to complete the proof of

the finiteness of even almost 2-regular quinary Z-lattices.

4.1 Even universal almost 2-regular quinary
Z-lattices

Let L be an even almost 2-regular quinary Z-lattice. As L is 1-regular, the
third successive minimum g3 of L is bounded (for example, [4] Corollary
3.2). Since we have shown that terminal lattices are finite up to isometry,
Proposition 2.14 implies that the set S of prime divisors of even almost 2-
regular quinary lattices is finite. Hence it suffices to fix a prime number p
and show that ord,(dL) is bounded. Furthermore, after taking Ao, for all
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prime numbers g # p dividing 2dL, we can assume that the even unimodular

isotropic binary lattice H is represented by L, for all prime numbers g # p
since ord,(dL) = ord,(dAeq(L)).

Lemma 4.1. Let L be an even almost 2-reqular quinary lattice. Suppose that

pa(L) is bounded by an absolute constant. Then ord,(dL) is bounded.

Proof. As ps(L) is bounded, taking Ay, bounded times we can assume that

H is represented by L,, or
L,~A 1 AP 1 (p%¢)

for a unit €, € Z, and a positive integer o. Here, A is the even unimodular
anisotropic binary Z,-lattice. If H is represented by L,, L itself is a terminal
lattice and dL is bounded by Theorem 3.5. Hence suppose that the latter
holds and « is sufficiently large. Since L is even universal, there exists an

even universal quaternary sublattice M of L. In this case,
M, ~A 1 AP,

and p is a core prime of L.

First suppose that p is an odd prime. Choose a prime number r such that
re —(qu)2 for all prime numbers ¢ dividing 2dL.
Also choose a prime number t > 2p*r such that

t =2 (mod p),
t=1 (mod 8),

te(zy)* forqe{2r}

Note that r and t are independent of L and «. Then (_77") = 1 and there
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exist positive integers k (< t) and v such that
to = k2 + pot(@p,

Let N be a Z-lattice defined by
t k
N ~ 2p™(@) :

(1) N, =~ (p"@e¢,, —p*™(@Fee ) which is an isotropic core lattice of L,;

Then

(i) N, = H — L, for all prime numbers ¢|2dL, g # p;
(iii) N, — L, for all prime numbers ¢ { 2dL since L, is 2-universal.

Therefore N is represented by L but not by M. Then
p* < ps(L) < 2p™ max{t, v}.

If v <t, a is bounded by an absolute constant. Hence we assume that

pa < 2p7r(a),v.
Then o
Pl oy <424 potm@y
2p7r(04)
Therefore we have
N 2p7r(a)t2
po=a9T 2p2m()y’

and « is bounded.

Next suppose that p = 2. Choose a prime number r such that

r € —(Zy)? for all prime numbers ¢ dividing 2dL.
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Also choose a prime number s not dividing 2dL such that
s=¢€ (mod 8).
Finally choose a prime number ¢ > 2% s such that

t=1 (mod 8),
t € (Zx)2.

T

Note that r,s and t are independent of L and «. As above, there exist

positive integers k (< t) and v such that

ty = k? 4 20+e(@)+6,.

N ~ 2¢a)g Lok .
k v

Then N is represented by L but not by M, and, as above, we have

Define a Z-lattice N by

20() 5¢2
29 < —
— t — 220()+6pg

This completes the proof. O

The above lemma implies the finiteness of even universal almost 2-regular

quinary Z-lattices.

Corollary 4.2. There are only finitely many even almost 2-reqular quinary

Z-lattices which represent all even integers up to isometry.

35

&

| &1



CHAPTER 4. ALMOST 2-REGULAR QUINARY LATTICES

4.2 Finiteness of even almost 2-regular quinary

Z-lattices

Let L be an even almost 2-regular quinary Z-lattice. By Corollary 4.2, we
may assume that L is not even universal. In this section, we prove that
ord,(dL) is bounded for any odd prime number p, and discuss what happens
if p=2.

Proposition 4.3. Let L be an even almost 2-reqular quinary Z-lattice and
let p be an odd prime divisor of dL. Then ord,(dL) is bounded.

Proof. Since ps(L) is bounded, we take A, bounded times to L and assume
that
H— L, or (1,—A, pe,)— Ly,

where €, is a unit in Z,,. If the former case holds, dL is bounded by Corollary

4.2. Hence we assume that

H — L, for all prime numbers g # p,

LP = <17 _Ap7p€17pa€27p/863>'

Here, ¢; are units in Z, and o < 8 are positive integers. Furthermore, by
Lemma 4.1, we assume that « is sufficiently large.

Let G be a ternary section of L. As u3(L) is bounded, such G are finite up
to isometry. We claim that there exists an even integer ag not represented by
G such that ag ¢ pelAng. Suppose that G represents all even integers but
integers contained in the square class pelApi). Then G, is even universal
over Z, for all prime numbers ¢ # p. Since G, is even universal over Z, if
and only if H splits G, we have

G, ~H 1L (a,)

36



CHAPTER 4. ALMOST 2-REGULAR QUINARY LATTICES

for some element a, € Z,. Also, the hypothesis implies that
Gp ~ (1, —A,, per).

Then S,(QG) = 1 for ¢ # p and S,(QG) = —1, which contradicts the
Hilbert Reciprocity Law. Therefore there exists such an integer ag. Since
the possible choices of a ternary section GG and the unit ¢; are finite, we can
assume that aq is independent of L. But, as L is 1-regular, aq is represented

by L. Therefore
/~L4(L> S ag,

and Lemma 4.1 shows that ord,(dL) is bounded. O

Finally it remains for us to show that ords(dL) is finite. Since ps(L)
is bounded, taking A4(L) bounded times, Lo falls into one of the following

cases:

21

H—>L2, AJ_AQ—)LQ or (1 9

> 1 (4e9) — Lo,

where €5 is a unit in Z,. Since the former two cases are already considered,

we assume that L satisfies

H — L, for all prime numbers ¢ # 2,
2 1
1 2

12

1 <4€2> 1 KQ
for some binary Zs-lattice Ky with s Ko C 8Z,. Note that

Q (( ? ; ) 1 <462>> = ZZQ — 4AQCQZ§.

Suppose that G is a ternary section of L. Note that the choice of such

G is finite. If G does not represent an even integer contained in any square
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classes of 2Z, different from 4Aye,73, then py(L) is bounded as in the proof
of Proposition 4.3. Therefore we assume that G represents all even integers
except integers contained in the square class 4Ay€57Z3. Then G satisfies the

local conditions

H — G, for all prime numbers ¢ # 2,

2 1 (4.1)
G2 ~ 1 <462>.
1 2

Furthermore, if G is not regular, uy(L) is bounded above by an exceptional
integer of G which is independent of L. Using the escalation method, one
can find all even regular ternary lattices satisfying the above conditions as

follows.

Lemma 4.4. Suppose that G is an even regular ternary Z-lattice satisfying

the above local conditions (4.1). Then G is isometric to one of the following

lattices.
(1)62:1
2 1 2 1
14 :
(12) W or (16) "
(2)62—3
2 01 2 01
0 21 or 0 4 2 |;
1 1 2 1 2 6
(3)62—5
21 0 2 11 21 1
1 2 1 , 1 61 or 1 6 3 ;
0 1 10 1 16 1 3 10
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(4) €y — 7

_ O N
= N O
D ==

Proposition 4.5. Let L be an even almost 2-reqular quinary lattice. If L

has an odd core prime £, then ordy(dL) is bounded.

Proof. We assume that L has a ternary section G isometric to one of the
lattices given in Lemma 4.4. Then G contains one of the three diagonal
lattices:

(2,2), (2,4) or (2,10).

Define a(G) € {2,4,10} so that (2,a(G)) — G.
Suppose that dL = ¢°*9(@0)y, with (u,¢) = 1. Here, ord,(dL) is bounded
by Proposition 4.3. Recall that

<£7r(0rdg(dL))u ’ gnnd

is a Zg-core lattice of L, for any unit 7, in Z,. Next, choose a large prime

number p not dividing dG - dL. Then L, is 2-universal and
Gp >~ (1,1,0,)
for some unit 4, € Z;. Hence the Z,-lattice
(P, =0p2p)

is represented by L, but not by G,,.
Choose positive integers A and B satisfying

A=u (mod /),
A = rlrdeldl))  (mod p),
A = 2¢7rde(dl))y  (mod 16 - [es— 0
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and
B=1 (mod /),

B = —%),A, (mod p),
B=20"a(G) (mod 32-5-]]co (9

Clearly, A and B are bounded.
Let N be a Z-lattice defined by

N ~ (frerdedDDyp A R BY. (4.2)
Then N is represented by L but not by G. Therefore
pa(L) < max{ (A =B Y,

Since the right side is bounded by an absolute constant, ords(dL) is bounded
by Lemma 4.1. O

Summing up our results obtained so far, we have the following theorem.

Theorem 4.6. (i) The set of prime divisors of the discriminants of even

almost 2-reqular quinary Z-lattices is finite.

(ii) There exist only finitely many even primitive almost 2-reqular quinary

Z-lattices which have an odd core prime.

(iii) There exist only finitely many even primitive almost 2-reqular quinary

Z-lattices L if ordy(dL) is fized.

Remark 4.7. To prove the finiteness of even almost 2-regular quinary Z-

lattices, the only one case is remained: an even almost 2-regular quinary
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Z-lattice L has a unique core prime 2, and satisfies that

(
H — L, for all prime numbers g # 2,
2 1

Loy ~ 1 (4ey) L Ky, where sKy C 8Z,,
1 2

L has a ternary section G isometric to one in Lemma 4.4.

\

Note that if the scale of K5 is fixed, such lattices are finite up to isometry.
We expect that even almost 2-regular quinary lattices satisfying the above

conditions become rarer as s K, grows larger.
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