On the centre of two-parameter quantum groups

Georgia Benkart

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (benkart@math.wisc.edu)

Seok-Jin Kang

Department of Mathematical Sciences, Seoul National University, San 56-1 Shinrim-dong, Kwanak-ku, Seoul 151-747, Korea (sjkang@math.snu.ac.kr)

Kyu-Hwan Lee

Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA (khlee@math.uconn.edu)

(MS received 8 April 2004; accepted 28 July 2005)

We describe Poincaré-Birkhoff-Witt bases for the two-parameter quantum groups $U = U_{r,s}(\mathfrak{sl}_n)$ following Kharchenko and show that the positive part of U has the structure of an iterated skew polynomial ring. We define an ad-invariant bilinear form on U, which plays an important role in the construction of central elements. We introduce an analogue of the Harish-Chandra homomorphism and use it to determine the centre of U.

1. Introduction

In this paper we determine the centre of the two-parameter quantum groups $U = U_{r,s}(\mathfrak{sl}_n)$, which are the same algebras as those introduced by Takeuchi in [35, 36], but with the opposite co-product. As shown in [4,5], these quantum groups are Drinfel'd doubles and have an R-matrix. They are related to the down-up algebras in [2,3] and to the multi-parameter quantum groups of Chin and Musson [8] and Dobrev and Parashar [10]. In the analogous quantum function algebra setting, allowing two parameters unifies the Drinfel'd-Jimbo quantum groups $(r = q, s = q^{-1})$ in [11] with the Dipper-Donkin quantum groups $(r = 1, s = q^{-1})$ in [9].

For the one-parameter quantum groups $U_q(\mathfrak{g})$ corresponding to finite-dimensional simple Lie algebras \mathfrak{g} , there is a sizeable literature [7,15,21–28,30–32,37–39] dealing with Poincaré–Birkhoff–Witt (PBW) bases. For the multi-parameter quantum groups associated with \mathfrak{g} of classical type, Kharchenko [21] constructed PBW bases by first determining Gröbner–Shirshov bases for them. We show in this paper that Kharchenko's results, when applied to the algebra $U=U_{r,s}(\mathfrak{sl}_n)$, yield useful commutation relations, which enable us to prove that the positive part U^+ of U has the structure of an iterated skew polynomial ring. As a consequence of that result, U^+ modulo any prime ideal is a domain. The commutation relations also play an essential role in [6], where finite-dimensional restricted two-parameter quantum

groups $\mathfrak{u}_{r,s}(\mathfrak{gl}_n)$ and $\mathfrak{u}_{r,s}(\mathfrak{sl}_n)$ are constructed when r and s are roots of unity. These restricted quantum groups are Drinfel'd doubles and are ribbon Hopf algebras under suitable restrictions on r and s.

Much work has been done on the centre of quantum groups for finite-dimensional simple Lie algebras [1, 12, 19, 28, 29, 34, 37], and also for (generalized) Kac–Moody (super)algebras [13, 16, 20]. The approach taken in many of these papers (and adopted here as well) is to define a bilinear form on the quantum group which is invariant under the adjoint action. This quantum version of the Killing form is often referred to in the one-parameter setting as the Rosso form (see [34]). The next step involves constructing an analogue ξ of the Harish-Chandra map. It is straightforward to show that the map ξ is an injective algebra homomorphism. The main difficulty lies in determining the image of ξ and in finding enough central elements to prove that the map ξ is surjective. In the two-parameter case, a new phenomenon arises: the n odd and n even cases behave differently. Additional central elements arise when n is even, which complicates the description in that case.

Our paper is organized as follows. In § 2, we briefly recall the definition and basic properties of the two-parameter quantum group $U = U_{r,s}(\mathfrak{sl}_n)$. In § 3, we describe the commutation relations which determine a Gröbner–Shirshov basis and allow a PBW basis to be constructed, and we prove that the positive part of U has an iterated skew polynomial ring structure. The next section is devoted to the construction of a bilinear form and the proof of its invariance under the adjoint action. In the final section, we define a Harish-Chandra homomorphism ξ and determine the centre of U by specifying the image of ξ and constructing central elements explicitly.

2. Two-parameter quantum groups

Let \mathbb{K} be an algebraically closed field of characteristic 0. Assume that Φ is a finite root system of type A_{n-1} with Π a base of simple roots. We regard Φ as a subset of a Euclidean space \mathbb{R}^n with an inner product $\langle \cdot, \cdot \rangle$. We let $\epsilon_1, \ldots, \epsilon_n$ denote an orthonormal basis of \mathbb{R}^n , and suppose that $\Pi = \{\alpha_j = \epsilon_j - \epsilon_{j+1} \mid j = 1, \ldots, n-1\}$ and that $\Phi = \{\epsilon_i - \epsilon_j \mid 1 \leq i \neq j \leq n\}$.

Fix non-zero elements r, s in the field \mathbb{K} . Here we assume $r \neq s$. Let $\tilde{U} = U_{r,s}(\mathfrak{gl}_n)$ be the unital associative algebra over \mathbb{K} generated by elements e_j , f_j $(1 \leq j < n)$, and $a_i^{\pm 1}$, $b_i^{\pm 1}$ $(1 \leq i \leq n)$, which satisfy the following relations:

(R1) the
$$a_i^{\pm 1},\,b_j^{\pm 1}$$
 all commute with one another and $a_ia_i^{-1}=b_jb_j^{-1}=1;$

(R2)
$$a_i e_j = r^{\langle \epsilon_i, \alpha_j \rangle} e_j a_i$$
 and $a_i f_j = r^{-\langle \epsilon_i, \alpha_j \rangle} f_j a_i$;

(R3)
$$b_i e_j = s^{\langle \epsilon_i, \alpha_j \rangle} e_j b_i$$
 and $b_i f_j = s^{-\langle \epsilon_i, \alpha_j \rangle} f_j b_i$;

(R4)
$$[e_i, f_j] = \frac{\delta_{i,j}}{r-s} (a_i b_{i+1} - a_{i+1} b_i);$$

(R5)
$$[e_i, e_j] = [f_i, f_j] = 0$$
 if $|i - j| > 1$;

(R6)
$$e_i^2 e_{i+1} - (r+s)e_i e_{i+1} e_i + rse_{i+1} e_i^2 = 0,$$

 $e_i e_{i+1}^2 - (r+s)e_{i+1} e_i e_{i+1} + rse_{i+1}^2 e_i = 0;$

(R7)
$$f_i^2 f_{i+1} - (r^{-1} + s^{-1}) f_i f_{i+1} f_i + r^{-1} s^{-1} f_{i+1} f_i^2 = 0,$$

 $f_i f_{i+1}^2 - (r^{-1} + s^{-1}) f_{i+1} f_i f_{i+1} + r^{-1} s^{-1} f_{i+1}^2 f_i = 0.$

Let $U = U_{r,s}(\mathfrak{sl}_{\mathfrak{n}})$ be the subalgebra of $\tilde{U} = U_{r,s}(\mathfrak{gl}_{\mathfrak{n}})$ generated by the elements $e_j, f_j, \omega_j^{\pm 1}$ and $(\omega_j')^{\pm 1}$ $(1 \leq j < n)$, where

$$\omega_j = a_j b_{j+1}$$
 and $\omega'_j = a_{j+1} b_j$.

These elements satisfy (R5)–(R7) along with the following relations:

(R1') the $\omega_i^{\pm 1}$, $(\omega_i')^{\pm 1}$ all commute with one another and $\omega_i \omega_i^{-1} = \omega_i' (\omega_i')^{-1} = 1$;

(R2')
$$\omega_i e_j = r^{\langle \epsilon_i, \alpha_j \rangle} s^{\langle \epsilon_{i+1}, \alpha_j \rangle} e_j \omega_i$$
 and $\omega_i f_j = r^{-\langle \epsilon_i, \alpha_j \rangle} s^{-\langle \epsilon_{i+1}, \alpha_j \rangle} f_j \omega_i$;

$$(\mathrm{R3'}) \ \omega_i' e_j = r^{\langle \epsilon_{i+1}, \alpha_j \rangle} s^{\langle \epsilon_i, \alpha_j \rangle} e_j \omega_i' \ \mathrm{and} \ \omega_i' f_j = r^{-\langle \epsilon_{i+1}, \alpha_j \rangle} s^{-\langle \epsilon_i, \alpha_j \rangle} f_j \omega_i';$$

$$(R4') [e_i, f_j] = \frac{\delta_{i,j}}{r - s} (\omega_i - \omega_i').$$

Let U^+ and U^- be the subalgebras generated by the elements e_i and f_i , respectively, and let \tilde{U}^0 and U^0 be the subalgebras generated by the elements $a_i^{\pm 1}$, $b_i^{\pm 1}$, $1 \leqslant i \leqslant n$ and $\omega_i^{\pm 1}$, $(\omega_i')^{\pm 1}$, $1 \leqslant i < n$, respectively. It now follows from the defining relations that \tilde{U} has a triangular decomposition: $\tilde{U} = U^- \tilde{U}^0 U^+$. Similarly, we have $U = U^- U^0 U^+$.

The algebras \tilde{U} and U are Hopf algebras, where the a_i^{\pm} , b_i^{\pm} are group-like elements, and the remaining co-products are determined by

$$\Delta(e_i) = e_i \otimes 1 + \omega_i \otimes e_i, \qquad \Delta(f_i) = 1 \otimes f_i + f_i \otimes \omega_i'.$$

This forces the co-unit and antipode maps to be

$$\varepsilon(a_i) = \varepsilon(b_i) = 1, \quad S(a_i) = a_i^{-1}, \qquad S(b_i) = b_i^{-1},
\varepsilon(e_i) = \varepsilon(f_i) = 0, \quad S(e_i) = -\omega_i^{-1} e_i, \quad S(f_i) = -f_i(\omega_i')^{-1}.$$

Let $Q = \mathbb{Z}\Phi$ denote the root lattice and set $Q^+ = \bigoplus_{i=1}^{n-1} \mathbb{Z}_{\geqslant 0} \alpha_i$. Then, for any $\zeta = \sum_{i=1}^{n-1} \zeta_i \alpha_i \in Q$, we adopt the shorthand

$$\omega_{\zeta} = \omega_1^{\zeta_1} \cdots \omega_{n-1}^{\zeta_{n-1}}, \qquad \omega_{\zeta}' = (\omega_1')^{\zeta_1} \cdots (\omega_{n-1}')^{\zeta_{n-1}}. \tag{2.1}$$

LEMMA 2.1 (Benkart and Witherspoon [4, lemma 1.3]). Suppose that

$$\zeta = \sum_{i=1}^{n-1} \zeta_i \alpha_i \in Q.$$

Then

$$\begin{split} &\omega_{\zeta}e_{i}=r^{-\langle\epsilon_{i+1},\zeta\rangle}s^{-\langle\epsilon_{i},\zeta\rangle}e_{i}\omega_{\zeta}, \quad \omega_{\zeta}f_{i}=r^{\langle\epsilon_{i+1},\zeta\rangle}s^{\langle\epsilon_{i},\zeta\rangle}f_{i}\omega_{\zeta}, \\ &\omega_{\zeta}'e_{i}=r^{-\langle\epsilon_{i},\zeta\rangle}s^{-\langle\epsilon_{i+1},\zeta\rangle}e_{i}\omega_{\zeta}', \quad \omega_{\zeta}'f_{i}=r^{\langle\epsilon_{i},\zeta\rangle}s^{\langle\epsilon_{i+1},\zeta\rangle}f_{i}\omega_{\zeta}'. \end{split}$$

There is a grading on U with the degrees of the generators given by

$$\deg e_i = \alpha_i, \qquad \deg f_i = -\alpha_i, \qquad \deg \omega_i = \deg \omega_i' = 0.$$

Then, since the defining relations are homogeneous under this grading, the algebra U has a Q-grading:

$$U = \bigoplus_{\zeta \in Q} U_{\zeta}.$$

We also have

$$U^+ = \bigoplus_{\zeta \in Q^+} U_\zeta^+ \quad \text{and} \quad U^- = \bigoplus_{\zeta \in Q^+} U_{-\zeta}^-,$$

where $U_{\zeta}^{+} = U^{+} \cap U_{\zeta}$ and $U_{-\zeta}^{-} = U^{-} \cap U_{-\zeta}$. Let $\Lambda = \bigoplus_{i=1}^{n} \mathbb{Z}\epsilon_{i}$ be the weight lattice of \mathfrak{gl}_{n} . Corresponding to any $\lambda \in \Lambda$ is an algebra homomorphism $\varrho^{\lambda} : \tilde{U}^{0} \to \mathbb{K}$ given by

$$\varrho^{\lambda}(a_i) = r^{\langle \epsilon_i, \lambda \rangle} \quad \text{and} \quad \varrho^{\lambda}(b_i) = s^{\langle \epsilon_i, \lambda \rangle}.$$
(2.2)

For any $\lambda = \sum_{i=1}^{n} \lambda_i \epsilon_i \in \Lambda$, we write

$$a_{\lambda} = a_1^{\lambda_1} \cdots a_n^{\lambda_n}$$
 and $b_{\lambda} = b_1^{\lambda_1} \cdots b_n^{\lambda_n}$. (2.3)

Let $\Lambda_{\mathfrak{sl}} = \bigoplus_{i=1}^{n-1} \mathbb{Z}\varpi_i$ be the weight lattice of \mathfrak{sl}_n , where ϖ_i is the fundamental

$$\varpi_i = \epsilon_1 + \dots + \epsilon_i - \frac{i}{n} \sum_{i=1}^n \epsilon_j,$$

and let

$$\Lambda_{\mathfrak{sl}}^{+} = \left\{ \lambda \in \Lambda_{\mathfrak{sl}} \mid \langle \alpha_{i}, \lambda \rangle \geqslant 0 \text{ for } 1 \leqslant i < n \right\} = \left\{ \sum_{i=1}^{n-1} l_{i} \varpi_{i} \mid l_{i} \in \mathbb{Z}_{\geqslant 0} \right\}$$

denote the set of dominant weights for \mathfrak{sl}_n . We fix the *n*th roots $r^{1/n}$ and $s^{1/n}$ of r and s, respectively, and define, for any $\lambda \in \Lambda_{\mathfrak{sl}}$, an algebra homomorphism $\varrho^{\lambda}: U^0 \to \mathbb{K}$ by

$$\varrho^{\lambda}(\omega_j) = r^{\langle \epsilon_j, \lambda \rangle} s^{\langle \epsilon_{j+1}, \lambda \rangle} \quad \text{and} \quad \varrho^{\lambda}(\omega_j') = r^{\langle \epsilon_{j+1}, \lambda \rangle} s^{\langle \epsilon_j, \lambda \rangle}.$$
(2.4)

In particular, if λ belongs to Λ , then the definition of $\varrho^{\lambda}(\omega_i)$ and $\varrho^{\lambda}(\omega_i')$ coming from (2.2) coincides with (2.4).

Associated with any algebra homomorphism $\psi: U^0 \to \mathbb{K}$ is the Verma module $M(\psi)$ with highest weight ψ and its unique irreducible quotient $L(\psi)$. When the highest weight is given by the homomorphism ϱ^{λ} for $\lambda \in \Lambda_{\mathfrak{sl}}$, we simply write $M(\lambda)$ and $L(\lambda)$ instead of $M(\varrho^{\lambda})$ and $L(\varrho^{\lambda})$.

LEMMA 2.2 (Benkart and Witherspoon [5]). We assume that rs^{-1} is not a root of unity, and let v_{λ} be a highest weight vector of $M(\lambda)$ for $\lambda \in \Lambda_{\mathfrak{sl}}^+$. The irreducible module $L(\lambda)$ is then given by

$$L(\lambda) = M(\lambda) / \left(\sum_{i=1}^{n-1} U f_i^{\langle \lambda, \alpha_i \rangle + 1} v_{\lambda} \right).$$

Let W be the Weyl group of the root system Φ , and let $\sigma_i \in W$ denote the reflection corresponding to α_i for each $1 \leq i < n$. Thus,

$$\sigma_i(\lambda) = \lambda - \langle \lambda, \alpha_i \rangle \alpha_i \quad \text{for } \lambda \in \Lambda,$$
 (2.5)

and σ_i also acts on $\Lambda_{\mathfrak{sl}}$, according to the same formula.

Let M be a finite-dimensional U-module on which U^0 acts semi-simply. Then

$$M = \bigoplus_{\chi} M_{\chi},$$

where each $\chi: U^0 \to \mathbb{K}$ is an algebra homomorphism, and

$$M_{\chi} = \{ m \in M \mid \omega_i m = \chi(\omega_i) m \text{ and } \omega_i' m = \chi(\omega_i') m \text{ for all } i \}.$$

For brevity we write M_{λ} for the weight space $M_{\rho^{\lambda}}$ for $\lambda \in \Lambda_{\mathfrak{sl}}$.

PROPOSITION 2.3. Assume that rs^{-1} is not a root of unity and that $\lambda \in \Lambda_{\mathfrak{sl}}^+$. Then

$$\dim L(\lambda)_{\mu} = \dim L(\lambda)_{\sigma(\mu)}$$

for all $\mu \in \Lambda_{\mathfrak{sl}}$ and $\sigma \in W$.

Proof. This is an immediate consequence of [5, proposition 2.8 and the proof of lemma 2.12].

3. PBW-type bases

From now on we assume that $r + s \neq 0$ (or equivalently, $r^{-1} + s^{-1} \neq 0$), and the ordering (k, l) < (i, j) always means relative to the lexicographic ordering.

We define inductively

$$\mathcal{E}_{i,j} = e_i$$
 and $\mathcal{E}_{i,j} = e_i \mathcal{E}_{i-1,j} - r^{-1} \mathcal{E}_{i-1,j} e_i$, $i > j$. (3.1)

The defining relations for U^+ in (R6) can be reformulated as saying

$$\mathcal{E}_{i+1,i}e_i = s^{-1}e_i\mathcal{E}_{i+1,i},\tag{3.2}$$

$$e_{i+1}\mathcal{E}_{i+1,i} = s^{-1}\mathcal{E}_{i+1,i}e_{i+1}.$$
 (3.3)

Even though the relations in the following theorem can be deduced from [21, theorem A_n], we include a self-contained proof in the appendix for the convenience of the reader.

THEOREM 3.1 (Kharchenko [21]). Assume that (i,j) > (k,l) in the lexicographic order. Then the following relations hold in the algebra U^+ :

(1)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - r^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} - \mathcal{E}_{i,l} = 0 \text{ if } j = k+1;$$

(2)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - \mathcal{E}_{k,l}\mathcal{E}_{i,j} = 0 \text{ if } i > k \geqslant l > j \text{ or } j > k+1;$$

(3)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - s^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} = 0$$
 if $i = k \geqslant j > l$ or $i > k \geqslant j = l$;

(4)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - r^{-1}s^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} + (r^{-1} - s^{-1})\mathcal{E}_{k,j}\mathcal{E}_{i,l} = 0 \text{ if } i > k \geqslant j > l.$$

Let $E = \{e_1, e_2, \dots, e_{n-1}\}$ be the set of generators of the algebra U^+ . We introduce a linear ordering \prec on E by saying $e_i \prec e_j$ if and only if i < j. We extend this ordering to the set of monomials in E so that it becomes the degree-lexicographic ordering; that is, for $u = u_1 u_2 \cdots u_p$ and $v = v_1 v_2 \cdots v_q$ with $u_i, v_j \in E$, we have $u \prec v$ if and only if p < q or p = q and $u_i \prec v_i$ for the first i such that $u_i \neq v_i$. Let \mathcal{A}_E be the free associative algebra generated by E and $\mathcal{S} \subset \mathcal{A}_E$ be the set consisting of the following elements:

$$\begin{split} \mathcal{E}_{i,j}\mathcal{E}_{k,l} - \mathcal{E}_{k,l}\mathcal{E}_{i,j} & \text{if } i > k \geqslant l > j \text{ or } j > k+1, \\ \mathcal{E}_{i,j}\mathcal{E}_{k,l} - s^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} & \text{if } i = k \geqslant j > l \text{ or } i > k \geqslant j = l, \\ \mathcal{E}_{i,j}\mathcal{E}_{k,l} - r^{-1}s^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} + (r^{-1} - s^{-1})\mathcal{E}_{k,j}\mathcal{E}_{i,l} & \text{if } i > k \geqslant j > l. \end{split}$$

The elements of S just correspond to relations (2)–(4) of theorem 3.1. Note that we may take S to be the set of defining relations for the algebra U^+ , since S contains all the (original) defining relations (R5) and (R6) of U^+ , and the other relations in S are all consequences of (R5) and (R6).

The following theorem is a special case of in [21, theorem A_n] and its consequences. Also, one can prove it using an argument similar to that in [7] or [39,40].

THEOREM 3.2 (Kharchenko [21]). Assume that $r, s \in \mathbb{K}^{\times}$ and $r + s \neq 0$. Then

- (i) the set S is a Gröbner-Shirshov basis for the algebra U^+ with respect to the degree-lexicographic ordering,
- (ii) $\mathcal{B}_0 = \{\mathcal{E}_{i_1,j_1}\mathcal{E}_{i_2,j_2}\cdots\mathcal{E}_{i_p,j_p} \mid (i_1,j_1) \leqslant (i_2,j_2) \leqslant \cdots \leqslant (i_p,j_p)\}$ (lexicographical ordering) is a linear basis of the algebra U^+ ,
- (iii) $\mathcal{B}_1 = \{e_{i_1,j_1}e_{i_2,j_2}\cdots e_{i_p,j_p} \mid (i_1,j_1) \leqslant (i_2,j_2) \leqslant \cdots \leqslant (i_p,j_p)\}\$ (lexicographical ordering) is a linear basis of the algebra U^+ , where $e_{i,j} = e_i e_{i-1} \cdots e_j$ for $i \geqslant j$.

Remark 3.3. If we define $\mathcal{F}_{i,j}$ inductively by

$$\mathcal{F}_{j,j} = f_j$$
 and $\mathcal{F}_{i,j} = f_i \mathcal{F}_{i-1,j} - s \mathcal{F}_{i-1,j} f_i$, $i > j$,

and denote by $f_{i,j}$ the monomial $f_{i,j} = f_i f_{i-1} \cdots f_j$, $i \ge j$, then we have linear bases for the algebra U^- as in theorem 3.2. Note that \tilde{U}^0 and U^0 , which are group algebras, have obvious linear bases. Combining these bases using the triangular decomposition $\tilde{U} = U^- \tilde{U}^0 U^+$ and $U = U^- U^0 U^+$, we obtain PBW bases for the entire algebras \tilde{U} and U, respectively.

Now we turn our attention to showing that the algebra U^+ is an iterated skew polynomial ring over \mathbb{K} and that any prime ideal P of U^+ is completely prime (that is, U^+/P is a domain) when r and s are 'generic' (see proposition 3.6 for the precise statement). Our approach is similar to that in [33], which treats the one-parameter quantum group case. Recall that if φ is an automorphism of an algebra R, then $\vartheta \in \operatorname{End}(R)$ is a φ -derivation if $\vartheta(ab) = \vartheta(a)b + \varphi(a)\vartheta(b)$ for all $a,b \in R$. The skew polynomial ring $R[x;\varphi,\vartheta]$ consists of polynomials $\sum_i a_i x^i$ over R, where $xa = \varphi(a)x + \vartheta(a)$ for all $a \in R$.

For each (i, j), $1 \leq i \leq n$, we define an algebra automorphism $\varphi_{i,j}$ of U by

$$\varphi_{i,j}(u) = \omega_{\alpha_i + \dots + \alpha_j} u \omega_{\alpha_i + \dots + \alpha_j}^{-1}$$
 for all $u \in U$.

Using lemma 2.1, one can check that if (k, l) < (i, j), then

$$\varphi_{i,j}(\mathcal{E}_{k,l}) = \begin{cases} r^{-1}\mathcal{E}_{k,l} & \text{if } j = k+1, \\ \mathcal{E}_{k,l} & \text{if } i > k \geqslant l > j \text{ or } j > k+1, \\ s^{-1}\mathcal{E}_{k,l} & \text{if } i = k \geqslant j > l \text{ or } i > k \geqslant j = l, \\ r^{-1}s^{-1}\mathcal{E}_{k,l} & \text{if } i > k \geqslant j > l. \end{cases}$$

Hence, the automorphism $\varphi_{i,j}$ preserves the subalgebra $U_{i,j}^+$ of U^+ generated by the vectors $\mathcal{E}_{k,l}$ for (k,l) < (i,j). We denote the induced automorphism of $U_{i,j}^+$ by the same symbol $\varphi_{i,j}$.

Now we define a $\varphi_{i,j}$ -derivation $\vartheta_{i,j}$ on $U_{i,j}^+$ by

$$\vartheta_{i,j}(\mathcal{E}_{k,l}) = \mathcal{E}_{i,j}\mathcal{E}_{k,l} - \varphi_{i,j}(\mathcal{E}_{k,l})\mathcal{E}_{i,j} = \begin{cases} \mathcal{E}_{i,l}, & j = k+1, \\ (r^{-1} - s^{-1})\mathcal{E}_{k,j}\mathcal{E}_{i,l}, & i > k \geqslant j > l, \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that $\vartheta_{i,j}$ is indeed a $\varphi_{i,j}$ -derivation (cf. [33, lemma 3, p. 62]). With $\varphi_{i,j}$ and $\vartheta_{i,j}$ at hand, the next proposition follows immediately.

Proposition 3.4. The algebra U^+ is an iterated skew polynomial ring whose structure is given by

$$U^{+} = \mathbb{K}[\mathcal{E}_{1,1}][\mathcal{E}_{2,1}; \varphi_{2,1}, \vartheta_{2,1}] \cdots [\mathcal{E}_{n-1,n-1}; \varphi_{n-1,n-1}, \vartheta_{n-1,n-1}]. \tag{3.4}$$

Proof. Note that all the relations in theorem 3.1 can be condensed into a single expression:

$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} = \varphi_{i,j}(\mathcal{E}_{k,l})\mathcal{E}_{i,j} + \vartheta_{i,j}(\mathcal{E}_{k,l}), \quad (i,j) > (k,l). \tag{3.5}$$

The proposition then easily follows from theorem 3.2.

The other result of this section requires an additional lemma.

LEMMA 3.5. The automorphism $\varphi_{i,j}$ and the $\varphi_{i,j}$ -derivation $\vartheta_{i,j}$ of $U_{i,j}^+$ satisfy

$$\varphi_{i,j}\vartheta_{i,j} = rs^{-1}\vartheta_{i,j}\varphi_{i,j}.$$

Proof. For (k, l) < (i, j), the definitions imply that

$$(\varphi_{i,j}\vartheta_{i,j})(\mathcal{E}_{k,l}) = \begin{cases} s^{-1}\mathcal{E}_{i,l} & \text{if } j = k+1, \\ (r^{-1} - s^{-1})s^{-2}\mathcal{E}_{k,j}\mathcal{E}_{i,l} & \text{if } i > k \geqslant j > l, \\ 0 & \text{otherwise.} \end{cases}$$

On the other hand, for (k, l) < (i, j),

$$(\vartheta_{i,j}\varphi_{i,j})(\mathcal{E}_{k,l}) = \begin{cases} r^{-1}\mathcal{E}_{i,l} & \text{if } j = k+1, \\ (r^{-1} - s^{-1})r^{-1}s^{-1}\mathcal{E}_{k,j}\mathcal{E}_{i,l} & \text{if } i > k \geqslant j > l, \\ 0 & \text{otherwise.} \end{cases}$$

Comparing these two calculations, we arrive at the result.

We now obtain the following proposition.

PROPOSITION 3.6. Assume that the subgroup of \mathbb{K}^{\times} generated by r and s is torsion-free. Then all prime ideals of U^+ are completely prime.

Proof. The proof follows directly from proposition 3.4, lemma 3.5 and [14, theorem 2.3].

4. An invariant bilinear form on U

Assume that B is the subalgebra of U generated by e_j , $\omega_j^{\pm 1}$, $1 \leq j < n$, and B' is the subalgebra of U generated by f_j , $(\omega_j')^{\pm 1}$, $1 \leq j < n$. We recall some results in [4].

PROPOSITION 4.1 (Benkart and Witherspoon [4, lemma 2.2]). There is a Hopf pairing (\cdot, \cdot) on $B' \times B$ such that, for $x_1, x_2 \in B$, $y_1, y_2 \in B'$, the following properties hold:

(i)
$$(1, x_1) = \varepsilon(x_1), (y_1, 1) = \varepsilon(y_1);$$

(ii)
$$(y_1, x_1x_2) = (\Delta^{\text{op}}(y_1), x_1 \otimes x_2), (y_1y_2, x_1) = (y_1 \otimes y_2, \Delta(x_1));$$

(iii)
$$(S^{-1}(y_1), x_1) = (y_1, S(x_1));$$

(iv)
$$(f_i, e_j) = \frac{\delta_{i,j}}{s-r};$$

$$(\mathbf{v}) \qquad (\omega_i', \omega_j) = ({\omega_i'}^{-1}, {\omega_j}^{-1}) = r^{\langle \epsilon_j, \alpha_i \rangle} s^{\langle \epsilon_{j+1}, \alpha_i \rangle} = r^{-\langle \epsilon_{i+1}, \alpha_j \rangle} s^{-\langle \epsilon_i, \alpha_j \rangle} s^{\langle \epsilon_i$$

It is easy to prove for $\lambda \in Q$ that

$$\varrho^{\lambda}(\omega'_{\mu}) = (\omega'_{\mu}, \omega_{-\lambda}) \quad \text{and} \quad \varrho^{\lambda}(\omega_{\mu}) = (\omega'_{\lambda}, \omega_{\mu}).$$
(4.1)

From the definition of the co-product, it is apparent that

$$\Delta(x) \in \bigoplus_{0 \le \nu \le \mu} U_{\mu-\nu}^+ \omega_{\nu} \otimes U_{\nu}^+ \quad \text{for any } x \in U_{\mu}^+,$$

where ' \leqslant ' is the usual partial order on $Q: \nu \leqslant \mu$ if $\mu - \nu \in Q^+$. Thus, for each i, $1 \leqslant i < n$, there are elements $p_i(x)$ and $p_i'(x)$ in $U_{\mu-\alpha_i}^+$ such that the component of $\Delta(x)$ in $U_{\mu-\alpha_i}^+\omega_i\otimes U_{\alpha_i}^+$ is equal to $p_i(x)\omega_i\otimes e_i$, and the component of $\Delta(x)$ in $U_{\alpha_i}^+\omega_{\mu-\alpha_i}\otimes U_{\mu-\alpha_i}^+$ is equal to $e_i\omega_{\mu-\alpha_i}\otimes p_i'(x)$. Therefore, for $x\in U_\mu^+$, we can write

$$\Delta(x) = x \otimes 1 + \sum_{i=1}^{n-1} p_i(x)\omega_i \otimes e_i + \varsigma_1$$
$$= \omega_\mu \otimes x + \sum_{i=1}^{n-1} e_i\omega_{\mu-\alpha_i} \otimes p_i'(x) + \varsigma_2,$$

where ς_1 and ς_2 are the sums of terms involving products of more than one e_j in the second factor and in the first factor, respectively.

LEMMA 4.2 (Benkart and Witherspoon [4, lemma 4.6]). For all $x \in U_{\zeta}^+$ and all $y \in U^-$, the following hold:

(i)
$$(f_i y, x) = (f_i, e_i)(y, p'_i(x)) = (s - r)^{-1}(y, p'_i(x));$$

(ii)
$$(yf_i, x) = (f_i, e_i)(y, p_i(x)) = (s - r)^{-1}(y, p_i(x));$$

(iii)
$$f_i x - x f_i = (s - r)^{-1} (p_i(x)\omega_i - \omega_i' p_i'(x)).$$

Corollary 4.3. If $\zeta, \zeta' \in Q^+$ with $\zeta \neq \zeta'$, then (y, x) = 0 for all $x \in U_{\zeta}^+$ and $y \in U_{-\zeta'}^-$.

LEMMA 4.4. Assume that rs^{-1} is not a root of unity and $\zeta \in Q^+$ is non-zero.

(a) If
$$y \in U^-_{-\zeta}$$
 and $[e_i, y] = 0$ for all i , then $y = 0$.

(b) If
$$x \in U_{\zeta}^+$$
 and $[f_i, x] = 0$ for all i , then $x = 0$.

Proof. Assume that $y \in U_{-\zeta}^-$ and that $[e_i, y] = 0$ holds for all i. From the definition of $M(\lambda)$ and lemma 2.2, we can find a sufficiently large $\lambda \in \Lambda_{\mathfrak{sl}}^+$ such that the map

$$U^-_{-\zeta} \hookrightarrow L(\lambda), \qquad u \mapsto uv_{\lambda},$$

is injective, where v_{λ} is a highest weight vector of $L(\lambda)$. Then

$$Uyv_{\lambda} = U^{-}U^{0}U^{+}yv_{\lambda} = U^{-}yU^{0}U^{+}v_{\lambda} = U^{-}yv_{\lambda} \subsetneq L(\lambda)$$

so that Uyv_{λ} is a proper submodule of $L(\lambda)$, which must be 0 by the irreducibility of $L(\lambda)$. Thus, $yv_{\lambda} = 0$ and y = 0 by the injectivity of the map above. We can now apply the anti-automorphism τ of U defined by

$$\tau(e_i) = f_i, \quad \tau(f_i) = e_i, \quad \tau(\omega_i) = \omega_i \quad \text{and} \quad \tau(\omega_i') = \omega_i',$$

to obtain the second assertion.

LEMMA 4.5. Assume that rs^{-1} is not a root of unity. For $\zeta \in Q^+$, the spaces U_{ζ}^+ and $U_{-\zeta}^-$ are non-degenerately paired.

Proof. We use induction on ζ with respect to the partial order \leq on Q. The claim holds for $\zeta=0$, since $U_0^-=\mathbb{K}1=U_0^+$ and (1,1)=1. Assume now that $\zeta>0$, and suppose that the claim holds for all ν with $0 \leq \nu < \zeta$. Let $x \in U_\zeta^+$ with (y,x)=0 for all $y \in U_{-\zeta}^-$. In particular, we have, for all $y \in U_{-(\zeta-\alpha_i)}^-$, that

$$(f_i y, x) = 0$$
 and $(y f_i, x) = 0$ for all $1 \le i < n$.

It follows from lemma 4.2(i) and (ii) that $(y, p_i'(x)) = 0$ and $(y, p_i(x)) = 0$. By the induction hypothesis, we have $p_i'(x) = p_i(x) = 0$, and it follows from lemma 4.2(iii) that $f_i x = x f_i$ for all i. Lemma 4.4 now applies, to give x = 0, as desired.

In what follows, ρ will denote the half-sum of the positive roots. Thus,

$$\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha = \sum_{i=1}^{n-1} \varpi_i = \frac{1}{2} ((n-1)\epsilon_1 + (n-3)\epsilon_2 + \dots + ((n-1)-2(n-1))\epsilon_n).$$
 (4.2)

It is evident from the triangular decomposition that there is a vector-space isomorphism

$$\bigoplus_{\mu,\nu\in Q^+} (U_{-\nu}^- \omega_{\nu}^{\prime}^{-1}) \otimes U^0 \otimes U_{\mu}^+ \xrightarrow{\sim} U.$$

This guarantees that the bilinear form which we introduce next is well defined.

DEFINITION 4.6. Set

$$\langle (y\omega_{\nu}^{\prime}^{-1})\omega_{\eta}^{\prime}\omega_{\phi}x \mid (y_{1}\omega_{\nu_{1}}^{\prime}^{-1})\omega_{\eta_{1}}^{\prime}\omega_{\phi_{1}}x_{1}\rangle = (y,x_{1})(y_{1},x)(\omega_{\eta}^{\prime},\omega_{\phi_{1}})(\omega_{\eta_{1}}^{\prime},\omega_{\phi})(rs^{-1})^{\langle \rho,\nu\rangle}$$

for all $x \in U_{\mu}^+, x_1 \in U_{\mu_1}^+, y \in U_{-\nu}^-, y_1 \in U_{-\nu_1}^-, \mu, \mu_1, \nu, \nu_1 \in Q^+$, and all $\eta, \eta_1, \phi, \phi_1 \in Q$. Extend this linearly to a bilinear form $\langle \cdot, \cdot \rangle : U \times U \to \mathbb{K}$ on all of U.

Note that

$$\langle (y\omega_{\nu}^{\prime}^{-1})\omega_{\eta}^{\prime}\omega_{\phi}x \mid (y_{1}\omega_{\nu_{1}}^{\prime}^{-1})\omega_{\eta_{1}}^{\prime}\omega_{\phi_{1}}x_{1}\rangle$$

$$= \langle y\omega_{\nu}^{\prime}^{-1} \mid x_{1}\rangle \cdot \langle \omega_{\eta}^{\prime}\omega_{\phi} \mid \omega_{\eta_{1}}^{\prime}\omega_{\phi_{1}}\rangle \cdot \langle x \mid y_{1}\omega_{\nu_{1}}^{\prime}^{-1}\rangle. \tag{4.3}$$

So the form respects the decomposition

$$\bigoplus_{\mu,\nu\in Q^+} (U_{-\nu}^- \omega_{\nu}^{\prime -1}) \otimes U^0 \otimes U_{\mu}^+ \xrightarrow{\sim} U.$$

The following lemma is an immediate consequence of the above definition and corollary 4.3.

LEMMA 4.7. Assume that $\mu, \mu_1, \nu, \nu_1 \in Q^+$. Then

$$\langle U_{-\nu}^- U^0 U_{\mu}^+ \mid U_{-\nu_1}^- U^0 U_{\mu_1}^+ \rangle = 0$$

unless $\mu = \nu_1$ and $\nu = \mu_1$.

Since U is a Hopf algebra, it acts on itself via the adjoint representation,

$$ad(u)v = \sum_{(u)} u_{(1)}vS(u_{(2)}),$$

where $u, v \in U$ and $\Delta(u) = \sum_{(u)} u_{(1)} \otimes u_{(2)}$.

Proposition 4.8. The bilinear form $\langle \cdot | \cdot \rangle$ is ad-invariant, i.e.

$$\langle \operatorname{ad}(u)v \mid v_1 \rangle = \langle v \mid \operatorname{ad}(S(u))v_1 \rangle$$

for all $u, v, v_1 \in U$.

Proof. It suffices to assume u is one of the generators ω_i , ω_i' , e_i , f_i . Also, without loss of generality, we may suppose that

$$v = (y{\omega_{\nu}'}^{-1})\omega_{\eta}'\omega_{\phi}x$$
 and $v_1 = (y_1{\omega_{\nu_1}'}^{-1})\omega_{\eta_1}'\omega_{\phi_1}x_1$,

where $x \in U_{\mu}^+$, $y \in U_{-\nu}^-$, $x_1 \in U_{\mu_1}^+$, $y_1 \in U_{-\nu_1}^-$ and $\mu, \nu, \mu_1, \nu_1 \in Q^+$.

CASE 1 $(u = \omega_i)$. From the definition, $\operatorname{ad}(\omega_i)v = \omega_i v \omega_i^{-1} = r^{\langle \epsilon_i, \mu - \nu \rangle} s^{\langle \epsilon_{i+1}, \mu - \nu \rangle} v$ so that

$$\langle \operatorname{ad}(\omega_i)v \mid v_1 \rangle = r^{\langle \epsilon_i, \mu - \nu \rangle} s^{\langle \epsilon_{i+1}, \mu - \nu \rangle} \langle v \mid v_1 \rangle.$$

On the other hand, we have

$$\operatorname{ad}(S(\omega_i))v_1 = \omega_i^{-1}v_1\omega_i = r^{\langle \epsilon_i, \nu_1 - \mu_1 \rangle} s^{\langle \epsilon_{i+1}, \nu_1 - \mu_1 \rangle} v_1,$$

which implies that

$$\langle v \mid \operatorname{ad}(S(\omega_i))v_1 \rangle = r^{\langle \epsilon_i, \nu_1 - \mu_1 \rangle} s^{\langle \epsilon_{i+1}, \nu_1 - \mu_1 \rangle} \langle v \mid v_1 \rangle.$$

If $\langle v \mid v_1 \rangle \neq 0$, then we must have $\nu = \mu_1$ and $\nu_1 = \mu$ by lemma 4.7. Thus, $\mu - \nu = \nu_1 - \mu_1$ and $\langle \operatorname{ad}(\omega_i)v \mid v_1 \rangle = \langle v \mid \operatorname{ad}(S(\omega_i))v_1 \rangle$.

CASE 2 $(u = \omega_i')$. We have only to replace ω_i by ω_i' and interchange ϵ_i and ϵ_{i+1} in the argument of case 1.

Case 3 $(u = e_i)$. This case is similar to case 4, below, so we omit the calculation.

Case 4 $(u = f_i)$. Using lemmas 2.1 and 4.2(iii), we get

$$\operatorname{ad}(f_{i})v = vS(f_{i}) + f_{i}vS(\omega_{i}') = -vf_{i}(\omega_{i}')^{-1} + f_{i}v(\omega_{i}')^{-1}$$

$$= -y(\omega_{\nu}')^{-1}\omega_{\eta}'\omega_{\phi}xf_{i}(\omega_{i}')^{-1} + f_{i}y(\omega_{\nu}')^{-1}\omega_{\eta}'\omega_{\phi}x(\omega_{i}')^{-1}$$

$$= -y(\omega_{\nu}')^{-1}\omega_{\eta}'\omega_{\phi}f_{i}x(\omega_{i}')^{-1} + (s-r)^{-1}y(\omega_{\nu}')^{-1}\omega_{\eta}'\omega_{\phi}p_{i}(x)\omega_{i}(\omega_{i}')^{-1}$$

$$- (s-r)^{-1}y(\omega_{\nu}')^{-1}\omega_{\eta}'\omega_{\phi}\omega_{i}'p_{i}'(x)(\omega_{i}')^{-1} + f_{i}y(\omega_{\nu}')^{-1}\omega_{\eta}'\omega_{\phi}x(\omega_{i}')^{-1}$$

$$= -r^{\langle \epsilon_{i},\eta-\nu\rangle}r^{\langle \epsilon_{i+1},\phi+\mu\rangle}s^{\langle \epsilon_{i},\phi+\mu\rangle}s^{\langle \epsilon_{i+1},\eta-\nu\rangle}yf_{i}(\omega_{\nu+\alpha_{i}}')^{-1}\omega_{\eta}'\omega_{\phi}x$$

$$+ r^{\langle \epsilon_{i+1},\mu\rangle}s^{\langle \epsilon_{i},\mu\rangle}f_{i}y(\omega_{\nu+\alpha_{i}}')^{-1}\omega_{\eta}'\omega_{\phi}x$$

$$+ (s-r)^{-1}r^{-\langle \alpha_{i},\mu-\alpha_{i}\rangle}s^{\langle \alpha_{i},\mu-\alpha_{i}\rangle}y(\omega_{\nu}')^{-1}\omega_{\eta-\alpha_{i}}'\omega_{\phi+\alpha_{i}}p_{i}(x)$$

$$- (s-r)^{-1}r^{\langle \epsilon_{i+1},\mu-\alpha_{i}\rangle}s^{\langle \epsilon_{i},\mu-\alpha_{i}\rangle}y(\omega_{\nu}')^{-1}\omega_{\eta}'\omega_{\phi}p_{i}'(x).$$

Now

$$\operatorname{ad}(S(f_i))v_1 = \operatorname{ad}(-f_i(\omega_i')^{-1})v_1 = -r^{-\langle \epsilon_{i+1}, \mu_1 - \nu_1 \rangle} s^{-\langle \epsilon_i, \mu_1 - \nu_1 \rangle} \operatorname{ad}(f_i)v_1.$$

We apply the previous calculation of $ad(f_i)v$ with v replaced by v_1 to see that

$$ad(S(f_{i}))v_{1} = r^{\langle \epsilon_{i},\eta_{1}-\nu_{1}\rangle}r^{\langle \epsilon_{i+1},\phi_{1}+\nu_{1}\rangle}s^{\langle \epsilon_{i},\phi_{1}+\nu_{1}\rangle}s^{\langle \epsilon_{i+1},\eta_{1}-\nu_{1}\rangle}y_{1}f_{i}(\omega'_{\nu_{1}+\alpha_{i}})^{-1}\omega'_{\eta_{1}}\omega_{\phi_{1}}x_{1}$$

$$-r^{\langle \epsilon_{i+1},\nu_{1}\rangle}s^{\langle \epsilon_{i},\nu_{1}\rangle}f_{i}y_{1}(\omega'_{\nu_{1}+\alpha_{i}})^{-1}\omega'_{\eta_{1}}\omega_{\phi_{1}}x_{1}$$

$$-(s-r)^{-1}r^{-\langle \epsilon_{i},\mu_{1}-\alpha_{i}\rangle}r^{\langle \epsilon_{i+1},\nu_{1}-\alpha_{i}\rangle}s^{\langle \epsilon_{i},\nu_{1}-\alpha_{i}\rangle}s^{-\langle \epsilon_{i+1},\mu_{1}-\alpha_{i}\rangle}$$

$$\times y_{1}(\omega'_{\nu_{1}})^{-1}\omega'_{\eta_{1}-\alpha_{i}}\omega_{\phi_{1}+\alpha_{i}}p_{i}(x_{1})$$

$$+(s-r)^{-1}r^{\langle \epsilon_{i+1},\nu_{1}-\alpha_{i}\rangle}s^{\langle \epsilon_{i},\nu_{1}-\alpha_{i}\rangle}y_{1}(\omega'_{\nu_{1}})^{-1}\omega'_{\eta_{1}}\omega_{\phi_{1}}p'_{i}(x_{1}).$$

It follows from lemma 4.7 that $\langle \operatorname{ad}(f_i)v \mid v_1 \rangle$ and $\langle v \mid \operatorname{ad}(S(f_i))v_1 \rangle$ can be non-zero when either (a) $\nu + \alpha_i = \mu_1$ and $\nu_1 = \mu$, or (b) $\nu = \mu_1$ and $\nu_1 = \mu - \alpha_i$.

(a) By lemma 4.2(i), (ii), we have

$$\begin{split} \langle \operatorname{ad}(f_i)v \mid v_1 \rangle &= -r^{\langle \epsilon_i, \eta - \nu \rangle} r^{\langle \epsilon_{i+1}, \phi + \mu \rangle} s^{\langle \epsilon_i, \phi + \mu \rangle} s^{\langle \epsilon_{i+1}, \eta - \nu \rangle} \\ & \times (yf_i, x_1)(y_1, x)(\omega_{\eta}', \omega_{\phi_1})(\omega_{\eta_1}', \omega_{\phi})(rs^{-1})^{\langle \rho, \nu + \alpha_i \rangle} \\ &+ r^{\langle \epsilon_{i+1}, \mu \rangle} s^{\langle \epsilon_i, \mu \rangle} (f_i y, x_1)(y_1, x)(\omega_{\eta}', \omega_{\phi_1})(\omega_{\eta_1}', \omega_{\phi})(rs^{-1})^{\langle \rho, \nu + \alpha_i \rangle} \\ &= A \times (y_1, x)(\omega_{\eta}', \omega_{\phi_1})(\omega_{\eta_1}', \omega_{\phi})(rs^{-1})^{\langle \rho, \nu \rangle}, \end{split}$$

where

$$A = -(s-r)^{-1} r^{\langle \epsilon_i, \eta - \nu \rangle} r^{\langle \epsilon_{i+1}, \phi + \mu \rangle} s^{\langle \epsilon_i, \phi + \mu \rangle} s^{\langle \epsilon_{i+1}, \eta - \nu \rangle} r s^{-1} (y, p_i(x_1))$$

$$+ (s-r)^{-1} r^{\langle \epsilon_{i+1}, \mu \rangle} s^{\langle \epsilon_{i}, \mu \rangle} r s^{-1} (y, p'_i(x_1)).$$

Similarly,

$$\langle v \mid \operatorname{ad}(S(f_i))v_1 \rangle = B \times (y_1, x)(\omega'_n, \omega_{\phi_1})(\omega'_{g_1}, \omega_{\phi})(rs^{-1})^{\langle \rho, \nu \rangle},$$

where

$$B = -(s-r)^{-1}r^{-\langle \epsilon_i, \mu_1 - \alpha_i \rangle} r^{\langle \epsilon_{i+1}, \nu_1 - \alpha_i \rangle} s^{\langle \epsilon_i, \nu_1 - \alpha_i \rangle} s^{-\langle \epsilon_{i+1}, \mu_1 - \alpha_i \rangle}$$

$$\times (\omega'_{\eta}, \omega_i) ((\omega'_i)^{-1}, \omega_{\phi}) (y, p_i(x_1))$$

$$+ (s-r)^{-1} r^{\langle \epsilon_{i+1}, \nu_1 - \alpha_i \rangle} s^{\langle \epsilon_i, \nu_1 - \alpha_i \rangle} (y, p'_i(x_1)).$$

Comparing both sides, we conclude that $\langle \operatorname{ad}(f_i)v \mid v_1 \rangle = \langle v \mid \operatorname{ad}(S(f_i))v_1 \rangle$.

(b) An argument analogous to that for (a) can be used in this case. \Box

REMARK 4.9. It was shown in [4] that U is isomorphic to the Drinfel'd double $D(B, (B')^{\text{coop}})$, where B is the Hopf subalgebra of U generated by the elements $\omega_j^{\pm 1}$, e_j , $1 \leq j < n$, and $(B')^{\text{coop}}$ is the subalgebra of U generated by the elements $(\omega_j')^{\pm 1}$, f_j , $1 \leq j < n$, but with the opposite co-product. This realization of U allows us to define the Rosso form R on U according to [18, p. 77]:

$$R\langle a \otimes b \mid a' \otimes b' \rangle = (b', S(a))(S^{-1}(b), a')$$
 for $a, a' \in B$ and $b, b' \in (B')^{\text{coop}}$.

The Rosso form is also an ad-invariant form on U, but it does not admit the decomposition in (4.3). Rather, it has the following factorization (we suppress the tensor symbols in the notation):

$$R\langle x\omega_{\phi}\omega_{\eta}'(\omega_{\nu}'^{-1}y) \mid x_{1}\omega_{\phi_{1}}\omega_{\eta_{1}}'(\omega_{\nu_{1}}'^{-1}y_{1})\rangle$$

$$= R\langle x \mid \omega_{\nu_{1}}'^{-1}y_{1}\rangle \cdot R\langle \omega_{\phi}\omega_{\eta}' \mid \omega_{\phi_{1}}\omega_{\eta_{1}}'\rangle \cdot R\langle \omega_{\nu}'^{-1}y \mid x_{1}\rangle. \quad (4.4)$$

That is to say, the form R respects the decomposition

$$\bigoplus_{\mu,\nu \in Q^+} U_{\mu}^+ \otimes U^0 \otimes ({\omega_{\nu}'}^{-1} U_{-\nu}^-) \xrightarrow{\sim} U.$$

For $(\eta, \phi) \in Q \times Q$, we define a group homomorphism $\chi_{\eta, \phi} : Q \times Q \to \mathbb{K}^{\times}$ by

$$\chi_{\eta,\phi}(\eta_1,\phi_1) = (\omega_{\eta}',\omega_{\phi_1})(\omega_{\eta_1}',\omega_{\phi}), \quad (\eta_1,\phi_1) \in Q \times Q. \tag{4.5}$$

LEMMA 4.10. Assume that $r^k s^l = 1$ if and only if k = l = 0. If $\chi_{\eta,\phi} = \chi_{\eta',\phi'}$, then $(\eta,\phi) = (\eta',\phi')$.

Proof. If $\chi_{\eta,\phi} = \chi_{\eta',\phi'}$, then

$$\chi_{\eta,\phi}(0,\alpha_j) = r^{\langle \epsilon_j,\eta\rangle} s^{\langle \epsilon_{j+1},\eta\rangle} = \chi_{\eta',\phi'}(0,\alpha_j) = r^{\langle \epsilon_j,\eta'\rangle} s^{\langle \epsilon_{j+1},\eta'\rangle}.$$

Since $r^{\langle \epsilon_j, \eta \rangle - \langle \epsilon_j, \eta' \rangle} s^{\langle \epsilon_{j+1}, \eta \rangle - \langle \epsilon_{j+1}, \eta' \rangle} = 1$, it must be that $\langle \epsilon_j, \eta \rangle = \langle \epsilon_j, \eta' \rangle$ for all $1 \leq j \leq n$. From this it is easy to see that $\eta = \eta'$. Similar considerations with $\chi_{\eta,\phi}(\alpha_i, 0) = \chi_{\eta',\phi'}(\alpha_i, 0)$ show that $\phi = \phi'$.

PROPOSITION 4.11. Assume that $r^k s^l = 1$ if and only if k = l = 0. Then the bilinear form $\langle \cdot | \cdot \rangle$ is non-degenerate on U.

Proof. It is sufficient to argue that if $u \in U_{-\nu}^- U^0 U_\mu^+$ and $\langle u \mid v \rangle = 0$ for all $v \in U_{-\mu}^- U^0 U_\nu^+$, then u = 0. Choose, for each $\mu \in Q^+$, a basis $u_1^\mu, u_2^\mu, \dots, u_{d_\mu}^\mu$, $d_\mu = \dim U_\mu^+$, of U_μ^+ . Owing to lemma 4.5, we can take a dual basis $v_1^\mu, v_2^\mu, \dots, v_{d_\mu}^\mu$ of $U_{-\mu}^-$, i.e. $(v_i^\mu, u_j^\mu) = \delta_{i,j}$. Then the set

$$\{(v_i^{\nu}\omega_{\nu}^{\prime}^{-1})\omega_{\eta}^{\prime}\omega_{\phi}u_j^{\mu}\mid 1\leqslant i\leqslant d_{\nu},\ 1\leqslant j\leqslant d_{\mu}\ \mathrm{and}\ \eta,\phi\in Q\}$$

is a basis of $U_{-\nu}^- U^0 U_{\mu}^+$. From the definition of the bilinear form, we obtain

$$\langle (v_i^{\nu}\omega_{\nu}^{\prime})^{-1} \rangle \omega_{\eta}^{\prime}\omega_{\phi}u_j^{\mu} \mid (v_k^{\mu}\omega_{\mu}^{\prime})^{-1} \rangle \omega_{\eta_1}\omega_{\phi_1}u_l^{\nu} \rangle$$

$$= (v_i^{\nu}, u_l^{\nu})(v_k^{\mu}, u_j^{\mu})(\omega_{\eta}^{\prime}, \omega_{\phi_1})(\omega_{\eta_1}^{\prime}, \omega_{\phi})(rs^{-1})^{\langle \rho, \nu \rangle}$$

$$= \delta_{i,l}\delta_{j,k}(\omega_{\eta}^{\prime}, \omega_{\phi_1})(\omega_{\eta}^{\prime}, \omega_{\phi})(rs^{-1})^{\langle \rho, \nu \rangle}.$$

Now write $u = \sum_{i,j,\eta,\phi} \theta_{i,j,\eta,\phi}(v_i^{\nu}{\omega'_{\nu}}^{-1})\omega'_{\eta}\omega_{\phi}u_j^{\mu}$, and take $v = (v_k^{\mu}{\omega'_{\mu}}^{-1})\omega'_{\eta_1}\omega_{\phi_1}u_l^{\nu}$ with $1 \leqslant k \leqslant d_{\mu}$ and $1 \leqslant l \leqslant d_{\nu}$ and $\eta_1, \phi_1 \in Q$. From the assumption $\langle u \mid v \rangle = 0$ we have

$$\sum_{\eta,\phi} \theta_{l,k,\eta,\phi}(\omega'_{\eta},\omega_{\phi_1})(\omega'_{\eta_1},\omega_{\phi})(rs^{-1})^{\langle \rho,\nu\rangle} = 0$$
(4.6)

for all $1 \leqslant k \leqslant d_{\mu}$ and $1 \leqslant l \leqslant d_{\nu}$ and for all $\eta_1, \phi_1 \in Q$. Equation (4.6) can be written as

$$\sum_{\eta,\phi} \theta_{l,k,\eta,\phi} (rs^{-1})^{\langle \rho,\nu \rangle} \chi_{\eta,\phi} = 0$$

for each k and l (where $1 \leq k \leq d_{\mu}$ and $1 \leq l \leq d_{\nu}$). It follows from lemma 4.10 and the linear independence of distinct characters (Dedekind's theorem; see, for example, [17, p. 280]) that $\theta_{l,k,\eta,\phi} = 0$ for all $\eta,\phi \in Q$ and for all l and k. Hence, we have u=0 as desired.

5. The centre of $U = U_{r,s}(\mathfrak{sl}_n)$

Throughout this section we make the following assumption:

$$r^k s^l = 1 \quad \text{if and only if } k = l = 0. \tag{5.1}$$

Under this hypothesis, we see that, for $\zeta \in Q$,

$$U_{\zeta} = \{ z \in U \mid \omega_i z \omega_i^{-1} = r^{\langle \epsilon_i, \zeta \rangle} s^{\langle \epsilon_{i+1}, \zeta \rangle} z \text{ and } \omega_i' z (\omega_i')^{-1} = r^{\langle \epsilon_{i+1}, \zeta \rangle} s^{\langle \epsilon_i, \zeta \rangle} z \}.$$
 (5.2)

We denote the centre of U by \mathfrak{Z} . Since any central element of U must commute with ω_i and ω'_i for all i, it follows from (5.2) that $\mathfrak{Z} \subset U_0$. We define an algebra automorphism $\gamma^{-\rho}: U^0 \to U^0$ by

$$\gamma^{-\rho}(a_i) = r^{-\langle \rho, \epsilon_i \rangle} a_i \quad \text{and} \quad \gamma^{-\rho}(b_i) = s^{-\langle \rho, \epsilon_i \rangle} b_i.$$
 (5.3)

Thus.

$$\gamma^{-\rho}(\omega_i'\omega_i^{-1}) = (rs^{-1})^{\langle \rho, \alpha_i \rangle} \omega_i'\omega_i^{-1}. \tag{5.4}$$

DEFINITION 5.1. The Harish-Chandra homomorphism $\xi: \mathfrak{Z} \to U^0$ is the restriction to \mathfrak{Z} of the map

$$\gamma^{-\rho} \circ \pi : U_0 \xrightarrow{\pi} U^0 \xrightarrow{\gamma^{-\rho}} U^0$$

where $\pi: U_0 \to U^0$ is the canonical projection.

Proposition 5.2. ξ is an injective algebra homomorphism

Proof. Note that $U_0=U^0\oplus K$, where $K=\bigoplus_{\nu>0}U^-_{-\nu}U^0U^+_{\nu}$ is the two-sided ideal in U_0 which is the kernel of π , and hence of ξ . Thus, ξ is an algebra homomorphism. Assume that $z\in\mathfrak{Z}$ and $\xi(z)=0$. Writing $z=\sum_{\nu\in Q^+}z_{\nu}$ with $z_{\nu}\in U^-_{-\nu}U^0U^+_{\nu}$, we have $z_0=0$. Fix any $\nu\in Q^+\setminus\{0\}$ minimal with the property that $z_{\nu}\neq 0$. Also choose bases $\{y_k\}$ and $\{x_l\}$ for $U^-_{-\nu}$ and U^+_{ν} , respectively. We may write $z_{\nu}=\sum_{k,l}y_kt_{k,l}x_l$ for some $t_{k,l}\in U^0$. Then

$$0 = e_i z - z e_i$$

$$= \sum_{\gamma \neq \nu} (e_i z_{\gamma} - z_{\gamma} e_i) + \sum_{k,l} (e_i y_k - y_k e_i) t_{k,l} x_l + \sum_{k,l} y_k (e_i t_{k,l} x_l - t_{k,l} x_l e_i).$$

Note that $e_i y_k - y_k e_i \in U^-_{-(\nu-\alpha_i)} U^0$. Recalling the minimality of ν , we see that only the second term belongs to $U^-_{-(\nu-\alpha_i)} U^0 U^+_{\nu}$. Therefore, we have

$$\sum_{k,l} (e_i y_k - y_k e_i) t_{k,l} x_l = 0.$$

By the triangular decomposition of U and the fact that $\{x_l\}$ is a basis of U_{ν}^+ , we get $\sum_k e_i y_k t_{k,l} = \sum_k y_k e_i t_{k,l}$ for each l and for all $1 \leq i < n$.

Now we fix l and consider the irreducible module $L(\lambda)$ for $\lambda \in \Lambda_{\mathfrak{sl}}^+$. Let v_{λ} be the highest weight vector of $L(\lambda)$, and set $m = \sum_k y_k t_{k,l} v_{\lambda}$. Then, for each i,

$$e_i m = \sum_k e_i y_k t_{k,l} v_\lambda = \sum_k y_k e_i t_{k,l} v_\lambda = 0.$$

Hence, m generates a proper submodule of $L(\lambda)$. The irreducibility of $L(\lambda)$ forces m=0. Choosing an appropriate $\lambda \in \Lambda_{\mathfrak{sl}}^+$ with lemma 2.2 in mind, we have

$$\sum_{k} y_k t_{k,l} = 0.$$

Since $\{y_k\}$ is a basis for $U_{-\nu}^-$, it must be that $t_{k,l}=0$ for each k. But l can be arbitrary, so we get $z_{\nu}=0$, which is a contradiction.

Proposition 5.3. If n is even, set

$$\mathfrak{z} = \omega_1' \omega_3' \cdots \omega_{n-1}' \omega_1 \omega_3 \cdots \omega_{n-1} = a_1 \cdots a_n b_1 \cdots b_n. \tag{5.5}$$

Then \mathfrak{z} is central and $\xi(\mathfrak{z}) = \mathfrak{z}$.

Proof. We have

$$e_i \mathfrak{z} = r^{-\langle \epsilon_1 + \epsilon_2 + \dots + \epsilon_n, \alpha_i \rangle} s^{-\langle \epsilon_1 + \epsilon_2 + \dots + \epsilon_n, \alpha_i \rangle} \mathfrak{z} e_i = \mathfrak{z} e_i$$
 for all $1 \leqslant i < n$.

Similarly, $f_i \mathfrak{z} = \mathfrak{z} f_i$ for all $1 \leqslant i < n$, so that \mathfrak{z} is central. Finally, observe that

$$\xi(\mathfrak{z}) = r^{-\langle \rho, \epsilon_1 + \epsilon_2 + \dots + \epsilon_n \rangle} s^{-\langle \rho, \epsilon_1 + \epsilon_2 + \dots + \epsilon_n \rangle} \mathfrak{z} = \mathfrak{z}.$$

By introducing appropriate factors into the definition of the homomorphism ϱ^{λ} in (2.2), we are able to obtain a duality between U^0 and its characters. Thus, for any $\lambda, \mu \in \Lambda_{\mathfrak{sl}}$, we let $\varrho^{\lambda,\mu}: U^0 \to \mathbb{K}$ be the algebra homomorphism defined by

$$\varrho^{\lambda,\mu}(\omega_{j}) = r^{\langle \epsilon_{j},\lambda \rangle} s^{\langle \epsilon_{j+1},\lambda \rangle} (rs^{-1})^{\langle \alpha_{j},\mu \rangle},
\varrho^{\lambda,\mu}(\omega_{j}') = r^{\langle \epsilon_{j+1},\lambda \rangle} s^{\langle \epsilon_{j},\lambda \rangle} (rs^{-1})^{\langle \alpha_{j},\mu \rangle}.$$
(5.6)

In particular, $\varrho^{\lambda,0}$ is just the homomorphism ϱ^{λ} on U^0 .

LEMMA 5.4. Assume that $u = \omega'_{\eta}\omega_{\phi}$ with $\eta, \phi \in Q$. If $\varrho^{\lambda,\mu}(u) = 1$ for all $\lambda, \mu \in \Lambda_{\mathfrak{sl}}$, then u = 1.

Proof. We write $\eta = \sum_i \eta_i \alpha_i$ and $\phi = \sum_i \phi_i \alpha_i$. Then $\varrho^{\varpi_i,0}(u) = \varrho^{\varpi_i,0}(\omega'_{\eta}\omega_{\phi}) = r^{A_i}s^{B_i} = 1$ for each $1 \leq i < n$, where

$$A_{i} = \langle \epsilon_{2}, \varpi_{i} \rangle \eta_{1} + \dots + \langle \epsilon_{n}, \varpi_{i} \rangle \eta_{n-1} + \langle \epsilon_{1}, \varpi_{i} \rangle \phi_{1} + \dots + \langle \epsilon_{n-1}, \varpi_{i} \rangle \phi_{n-1},$$

$$B_{i} = \langle \epsilon_{1}, \varpi_{i} \rangle \eta_{1} + \dots + \langle \epsilon_{n-1}, \varpi_{i} \rangle \eta_{n-1} + \langle \epsilon_{2}, \varpi_{i} \rangle \phi_{1} + \dots + \langle \epsilon_{n}, \varpi_{i} \rangle \phi_{n-1}.$$

It follows from assumption (5.1) that $A_i = B_i = 0$. It is now straightforward to see from the definitions that, for $1 \le i < n$,

$$A_i = \sum_{j=1}^{i-1} \eta_j - \frac{i}{n} \sum_{j=1}^{n-1} \eta_j + \sum_{j=1}^{i} \phi_j - \frac{i}{n} \sum_{j=1}^{n-1} \phi_j = 0,$$

$$B_i = \sum_{j=1}^i \eta_j - \frac{i}{n} \sum_{j=1}^{n-1} \eta_j + \sum_{j=1}^{i-1} \phi_j - \frac{i}{n} \sum_{j=1}^{n-1} \phi_j = 0.$$

After elementary manipulations we have $\eta_i = \phi_i$ for all $1 \le i < n$ and $\eta_2 = \eta_4 = \cdots = 0$ and

$$\eta_1 = \eta_3 = \dots = \frac{2}{n} \sum_{j=1}^{n-1} \eta_j = \frac{2}{n} l \eta_1,$$

where $l=\frac{1}{2}n$ if n is even and $l=\frac{1}{2}(n-1)$ if n is odd. Therefore, u=1 when n is odd, and $u=\mathfrak{z}^{\eta_1},\,\eta_1\in\mathbb{Z}$, when n is even. Now, when n is even,

$$1 = \varrho^{0,\varpi_1}(u) = (\varrho^{0,\varpi_1}(\mathfrak{z}))^{\eta_1} = (rs^{-1})^{2\eta_1}.$$

Thus, $\eta_1 = 0$, and u = 1 as desired.

COROLLARY 5.5. Assume that $u \in U^0$. If $\rho^{\lambda,\mu}(u) = 0$ for all $(\lambda,\mu) \in \Lambda_{\mathfrak{sl}} \times \Lambda_{\mathfrak{sl}}$, then u=0.

Proof. Corresponding to each $(\eta, \phi) \in Q \times Q$ is the character on the group $\Lambda_{\mathfrak{sl}} \times \Lambda_{\mathfrak{sl}}$ defined by

$$(\lambda, \mu) \mapsto \varrho^{\lambda, \mu}(\omega'_n \omega_{\phi}).$$

It follows from lemma 5.4 that different (η, ϕ) give rise to different characters. Suppose now that $u = \sum \theta_{\eta,\phi} \omega'_{\eta} \omega_{\phi}$, where $\theta_{\eta,\phi} \in \mathbb{K}$. By assumption,

$$\sum \theta_{\eta,\phi} \varrho^{\lambda,\mu} (\omega_{\eta}' \omega_{\phi}) = 0$$

for all $(\lambda, \mu) \in \Lambda_{\mathfrak{sl}} \times \Lambda_{\mathfrak{sl}}$. By the linear independence of different characters, $\theta_{\eta,\phi} = 0$ for all $(\eta, \phi) \in Q \times Q$, and so u = 0.

Set

$$U_{\flat}^{0} = \bigoplus_{\eta \in Q} \mathbb{K}\omega_{\eta}'\omega_{-\eta}, \tag{5.7}$$

$$U_{\natural}^{0} = \begin{cases} U_{\flat}^{0} & \text{if } n \text{ is odd,} \\ \bigoplus \mathbb{K}\omega_{n}'\omega_{\phi}, & \text{if } n \text{ is even,} \end{cases}$$
 (5.8)

where, in the even case, the sum is over the pairs $(\eta,\phi) \in Q \times Q$ which satisfy the following condition: if $\eta = \sum_{i=1}^{n-1} \eta_i \alpha_i$ and $\phi = \sum_{i=1}^{n-1} \phi_i \alpha_i$, then

$$\eta_1 + \phi_1 = \eta_3 + \phi_3 = \dots = \eta_{n-1} + \phi_{n-1},
\eta_2 + \phi_2 = \eta_4 + \phi_4 = \dots = \eta_{n-2} + \phi_{n-2} = 0.$$
(5.9)

Clearly, $U^0_{\flat} \subsetneq U^0_{\natural}$ when n is even, as $\mathfrak{z} \in U^0_{\natural} \setminus U^0_{\flat}$. There is an action of the Weyl group W on U^0 defined by

$$\sigma(a_{\lambda}b_{\mu}) = a_{\sigma(\lambda)}b_{\sigma(\mu)} \tag{5.10}$$

for all $\lambda, \mu \in \Lambda$ and $\sigma \in W$. We want to know the effect of this action on a product $\omega'_{\eta}\omega_{\phi}$, where $\eta = \sum_{i=1}^{n-1} \eta_{i}\alpha_{i}$ and $\phi = \sum_{i=1}^{n-1} \phi_{i}\alpha_{i}$. For this, write $\omega'_{\eta}\omega_{\phi} = a_{\mu}b_{\nu}$, where $\mu = \sum_{i=1}^{n} \mu_{i}\epsilon_{i}$, $\nu = \sum_{i=1}^{n} \nu_{i}\epsilon_{i}$, and

$$\mu_i = \eta_{i-1} + \phi_i, \qquad \nu_i = \eta_i + \phi_{i-1}$$
 (5.11)

for all $1 \le i \le n$ (where $\eta_0 = \eta_n = \phi_0 = \phi_n = 0$). Then, for the simple reflection σ_k , we have

$$\sigma_{k}(\omega'_{\eta}\omega_{\phi}) = \sigma_{k}(a_{\mu}b_{\nu})
= a_{\mu}b_{\nu}a_{\alpha_{k}}^{-\langle\mu,\alpha_{k}\rangle}b_{\alpha_{k}}^{-\langle\nu,\alpha_{k}\rangle}
= \omega'_{\eta}\omega_{\phi}(a_{k}a_{k+1}^{-1})^{-\langle\mu,\alpha_{k}\rangle}(b_{k}b_{k+1}^{-1})^{-\langle\nu,\alpha_{k}\rangle}
= \omega'_{\eta}\omega_{\phi}(a_{k}b_{k+1})^{-\langle\mu,\alpha_{k}\rangle}(a_{k+1}b_{k})^{\langle\mu,\alpha_{k}\rangle}(b_{k}^{-1}b_{k+1})^{\langle\mu+\nu,\alpha_{k}\rangle}
= \omega'_{\eta}\omega_{\phi}(\omega'_{k}\omega_{k}^{-1})^{\mu_{k}-\mu_{k+1}}(b_{k}^{-1}b_{k+1})^{\mu_{k}+\nu_{k}-\mu_{k+1}-\nu_{k+1}}
= \omega'_{\eta}\omega_{\phi}(\omega'_{k}\omega_{k}^{-1})^{\eta_{k-1}-\eta_{k}+\phi_{k}-\phi_{k+1}}(b_{k}^{-1}b_{k+1})^{\eta_{k-1}+\phi_{k-1}-\eta_{k+1}-\phi_{k+1}}. (5.12)$$

From this it is apparent that the subalgebras U^0_{\flat} and U^0_{\sharp} of U^0 are closed under the W-action. Moreover, the W-action on U^0_{\flat} amounts to

$$\sigma(\omega'_{\eta}\omega_{-\eta}) = \omega'_{\sigma(\eta)}\omega_{-\sigma(\eta)}$$
 for all $\sigma \in W$ and $\eta \in Q$.

Proposition 5.6. We have

$$\varrho^{\sigma(\lambda),\mu}(u) = \varrho^{\lambda,\mu}(\sigma^{-1}(u)) \tag{5.13}$$

for all $u \in U^0_{\natural}$, $\sigma \in W$ and $\lambda, \mu \in \Lambda_{\mathfrak{sl}}$.

Proof. First, we show that $\varrho^{\sigma(\lambda),0}(u) = \varrho^{\lambda,0}(\sigma^{-1}(u))$. Since

$$\varrho^{\sigma_i(\varpi_j),0}(a_k) = r^{\langle \epsilon_k, \sigma_i(\varpi_j) \rangle} = r^{\langle \sigma_i(\epsilon_k), \varpi_j \rangle} = \varrho^{\varpi_j,0}(\sigma_i(a_k))$$

and

$$\varrho^{\sigma_i(\varpi_j),0}(b_k) = s^{\langle \epsilon_k, \sigma_i(\varpi_j) \rangle} = s^{\langle \sigma_i(\epsilon_k), \varpi_j \rangle} = \varrho^{\varpi_j,0}(\sigma_i(b_k))$$

for $1 \le i, j < n$ and $1 \le k \le n$, we see that (5.13) holds in this case. Next we argue that $\varrho^{0,\mu}(u) = \varrho^{0,\mu}(\sigma^{-1}(u))$. It is sufficient to suppose that $u = \omega'_{\eta}\omega_{\phi}$ and $\sigma = \sigma_k$ for some k. Then (5.12) shows that

$$\sigma_k(\omega_n'\omega_\phi) = \omega_n'\omega_\phi(\omega_k'\omega_k^{-1})^{\eta_{k-1}-\eta_k+\phi_k-\phi_{k+1}}.$$

Now, using the definition of $\varrho^{0,\mu}$, we have $\varrho^{0,\mu}(\sigma_k(\omega'_{\eta}\omega_{\phi})) = \varrho^{0,\mu}(\omega'_{\eta}\omega_{\phi})$. Finally, since $\varrho^{\lambda,\mu}(u) = \varrho^{\lambda,0}(u)\varrho^{0,\mu}(u)$, the assertion follows.

We define

$$(U^0_{\natural})^W = \{ u \in U^0_{\natural} \mid \sigma(u) = u, \ \forall \sigma \in W \} \quad \text{and} \quad (U^0_{\flat})^W = U^0_{\flat} \cap (U^0_{\natural})^W. \tag{5.14}$$

LEMMA 5.7. Assume that $u \in U^0$ and $\varrho^{\lambda,\mu}(u) = \varrho^{\sigma(\lambda),\mu}(u)$ for all $\lambda, \mu \in \Lambda_{\mathfrak{sl}}$ and $\sigma \in W$. Then $u \in (U^0_{\natural})^W$.

Proof. Suppose that $u = \sum_{(\eta,\phi)} \theta_{\eta,\phi} \omega'_{\eta} \omega_{\phi} \in U^0$ satisfies $\varrho^{\lambda,\mu}(u) = \varrho^{\sigma(\lambda),\mu}(u)$ for all $\lambda, \mu \in \Lambda_{\mathfrak{sl}}$ and $\sigma \in W$. Then

$$\sum_{(\eta,\phi)} \theta_{\eta,\phi} \varrho^{\lambda,\mu} (\omega'_{\eta} \omega_{\phi}) = \sum_{(\zeta,\psi)} \theta_{\zeta,\psi} \varrho^{\sigma_i(\lambda),\mu} (\omega'_{\zeta} \omega_{\psi})$$

for all $\lambda, \mu \in \Lambda_{\mathfrak{sl}}$. If $\kappa_{\eta,\phi}$ and $\kappa^i_{\zeta,\psi}$ are the characters on $\Lambda_{\mathfrak{sl}} \times \Lambda_{\mathfrak{sl}}$ defined by

$$\kappa_{\eta,\phi}(\lambda,\mu) = \varrho^{\lambda,\mu}(\omega_{\eta}'\omega_{\phi}) \quad \text{and} \quad \kappa_{\zeta,\psi}^{i}(\lambda,\mu) = \varrho^{\sigma_{i}(\lambda),\mu}(\omega_{\zeta}'\omega_{\psi}),$$

then

$$\sum_{(\eta,\phi)} \theta_{\eta,\phi} \kappa_{\eta,\phi} = \sum_{(\zeta,\psi)} \theta_{\zeta,\psi} \kappa_{\zeta,\psi}^{i}.$$
(5.15)

Each side of (5.15) is a linear combination of different characters by lemma 5.4. Now, if $\theta_{\eta,\phi} \neq 0$, then $\kappa_{\eta,\phi} = \kappa^i_{\zeta,\psi}$ for some (ζ,ψ) . Moreover, for each $1 \leq j < n$,

$$\begin{split} \kappa_{\eta,\phi}(0,\varpi_j) &= \varrho^{0,\varpi_j}(\omega_\eta'\omega_\phi) = (rs^{-1})^{\langle \eta+\phi,\varpi_j\rangle} \\ &= \kappa_{\zeta,\psi}^i(0,\varpi_j) = \varrho^{0,\varpi_j}(\omega_\zeta'\omega_\psi) = (rs^{-1})^{\langle \zeta+\psi,\varpi_j\rangle}. \end{split}$$

Thus, $\langle \eta + \phi, \varpi_j \rangle = \langle \zeta + \psi, \varpi_j \rangle$ for all j, and so

$$\eta + \phi = \zeta + \psi. \tag{5.16}$$

If $\eta = \sum_j \eta_j \alpha_j$, $\phi = \sum_j \phi_j \alpha_j$, $\zeta = \sum_j \zeta_j \alpha_j$ and $\psi = \sum_j \psi_j \alpha_j$, then the equation $\kappa_{\eta,\phi}(\varpi_i,0) = \kappa_{\zeta,\psi}^i(\varpi_i,0)$ along with (5.16) yields

$$\eta_{i-1} + \phi_{i-1} + \phi_i = \zeta_i + \psi_{i-1} + \psi_{i+1}$$
 and $\eta_{i-1} + \eta_i + \phi_{i-1} = \zeta_{i-1} + \zeta_{i+1} + \psi_i$

(with the convention that $\eta_0 = \eta_n = \phi_0 = \phi_n = \zeta_0 = \zeta_n = \psi_0 = \psi_n = 0$). Thus,

$$\eta_{i-1} + \phi_{i-1} = \eta_{i+1} + \phi_{i+1}, \quad 1 \leqslant i < n.$$
(5.17)

This implies that if $\theta_{\eta,\phi} \neq 0$, then $\omega'_{\eta}\omega_{\phi} \in U^{0}_{\natural}$. As a result, $u \in U^{0}_{\natural}$. By proposition 5.6, $\varrho^{\lambda,\mu}(u) = \varrho^{\sigma(\lambda),\mu}(u) = \varrho^{\lambda,\mu}(\sigma^{-1}(u))$ for all $\lambda,\mu \in \Lambda_{\mathfrak{sl}}$ and $\sigma \in W$. But then $u = \sigma^{-1}(u)$ by corollary 5.5, so $u \in (U^{0}_{\natural})^{W}$, as claimed.

Proposition 5.8. The image of the centre $\mathfrak Z$ of U under the Harish-Chandra homomorphism satisfies

$$\xi(\mathfrak{Z})\subseteq (U^0_{\mathrm{h}})^W.$$

Proof. Assume that $z \in \mathfrak{Z}$. Choose $\mu, \lambda \in \Lambda_{\mathfrak{sl}}$ and assume that $\langle \lambda, \alpha_i \rangle \geqslant 0$ for some (fixed) value i. Let $v_{\lambda,\mu} \in M(\varrho^{\lambda,\mu})$ be the highest weight vector. Then

$$zv_{\lambda,\mu} = \pi(z)v_{\lambda,\mu} = \varrho^{\lambda,\mu}(\pi(z))v_{\lambda,\mu} = \varrho^{\lambda+\rho,\mu}(\xi(z))v_{\lambda,\mu}$$

for all $z \in \mathfrak{Z}$. Thus, z acts as the scalar $\rho^{\lambda+\rho,\mu}(\xi(z))$ on $M(\rho^{\lambda,\mu})$. Using [5, lemma 2.3], it is easy to see that

$$e_i f_i^{\langle \lambda, \alpha_i \rangle + 1} v_{\lambda, \mu} = \left([\langle \lambda, \alpha_i \rangle + 1] f_i^{\langle \lambda, \alpha_i \rangle} \frac{r^{-\langle \lambda, \alpha_i \rangle} \omega_i - s^{-\langle \lambda, \alpha_i \rangle} \omega_i'}{r - s} \right) v_{\lambda, \mu} = 0,$$

where, for $k \ge 1$,

$$[k] = \frac{r^k - s^k}{r - s}. (5.18)$$

Thus, $e_j f_i^{\langle \lambda, \alpha_i \rangle + 1} v_{\lambda, \mu} = 0$ for all $1 \leq j < n$. Note that

$$\begin{split} zf_i^{\langle\lambda,\alpha_i\rangle+1}v_{\lambda,\mu} &= \pi(z)f_i^{\langle\lambda,\alpha_i\rangle+1}v_{\lambda,\mu} \\ &= \varrho^{\sigma_i(\lambda+\rho)-\rho,\mu}(\pi(z))f_i^{\langle\lambda,\alpha_i\rangle+1}v_{\lambda,\mu} \\ &= \varrho^{\sigma_i(\lambda+\rho),\mu}(\xi(z))f_i^{\langle\lambda,\alpha_i\rangle+1}v_{\lambda,\mu}. \end{split}$$

On the other hand, since z acts as the scalar $\varrho^{\lambda+\rho,\mu}(\xi(z))$ on $M(\varrho^{\lambda,\mu})$,

$$zf_i^{\langle\lambda,\alpha_i\rangle+1}v_{\lambda,\mu}=\varrho^{\lambda+\rho,\mu}(\xi(z))f_i^{\langle\lambda,\alpha_i\rangle+1}v_{\lambda,\mu}.$$

Therefore,

$$\varrho^{\lambda+\rho,\mu}(\xi(z)) = \varrho^{\sigma_i(\lambda+\rho),\mu}(\xi(z)). \tag{5.19}$$

Now we claim that (5.19) holds for an arbitrary choice of $\lambda \in \Lambda_{\mathfrak{sl}}$. Indeed, if $\langle \lambda, \alpha_i \rangle = -1$, then $\lambda + \rho = \sigma_i(\lambda + \rho)$, and so (5.19) holds trivially. For λ such that $\langle \lambda, \alpha_i \rangle < -1$, we let $\lambda' = \sigma_i(\lambda + \rho) - \rho$. Then $\langle \lambda', \alpha_i \rangle \geqslant 0$ and we may apply (5.19)

to λ' . Substituting $\lambda' = \sigma_i(\lambda + \rho) - \rho$ into the result, we see that (5.19) holds for this case also.

Since i can be arbitrary, and W is generated by the reflections σ_i , we deduce that

$$\varrho^{\lambda,\mu}(\xi(z)) = \varrho^{\sigma(\lambda),\mu}(\xi(z)) \tag{5.20}$$

for all $\lambda, \mu \in \Lambda_{\mathfrak{sl}}$ and for all $\sigma \in W$. The assertion of the proposition then follows immediately from lemma 5.7.

LEMMA 5.9. $z \in \mathfrak{Z}$ if and only if $\operatorname{ad}(x)z = (i \circ \varepsilon)(x)z$ for all $x \in U$, where $\varepsilon : U \to \mathbb{K}$ is the co-unit and $i : \mathbb{K} \to U$ is the unit of U.

Proof. Let $z \in \mathfrak{Z}$. Then, for all $x \in U$,

$$ad(x)z = \sum_{(x)} x_{(1)}zS(x_{(2)}) = z\sum_{(x)} x_{(1)}S(x_{(2)}) = (i \circ \varepsilon)(x)z.$$

Conversely, assume that $\operatorname{ad}(x)z=(\imath\circ\varepsilon)(x)z$ for all $x\in U.$ Then

$$\omega_i z \omega_i^{-1} = \operatorname{ad}(\omega_i) z = (i \circ \varepsilon)(\omega_i) z = z.$$

Similarly, $\omega_i' z(\omega_i')^{-1} = z$. Furthermore,

$$0 = (i \circ \varepsilon)(e_i)z = \operatorname{ad}(e_i)z = e_i z + \omega_i z(-\omega_i^{-1})e_i = e_i z - ze_i$$

and

$$0 = (i \circ \varepsilon)(f_i)z = \operatorname{ad}(f_i)z = z(-f_i(\omega_i')^{-1}) + f_i z(\omega_i')^{-1} = (-zf_i + f_i z)(\omega_i')^{-1}.$$

Hence,
$$z \in \mathfrak{Z}$$
.

LEMMA 5.10. Assume that $\Psi: U_{-\mu}^- \times U_{\nu}^+ \to \mathbb{K}$ is a bilinear map, and let $(\eta, \phi) \in Q \times Q$. There then exists $u \in U_{-\nu}^- U^0 U_{\mu}^+$ such that

$$\langle u \mid (y\omega_{\mu}^{\prime}^{-1})\omega_{\eta_1}^{\prime}\omega_{\phi_1}x\rangle = (\omega_{\eta_1}^{\prime},\omega_{\phi})(\omega_{\eta}^{\prime},\omega_{\phi_1})\Psi(y,x)$$
 (5.21)

for all $x \in U_{\nu}^+$, $y \in U_{-\nu}^-$ and $(\eta_1, \phi_1) \in Q \times Q$.

Proof. As in the proof of proposition 4.11, for each $\mu \in Q^+$ we choose an arbitrary basis $u_1^\mu, u_2^\mu, \dots, u_{d_\mu}^\mu$ ($d_\mu = \dim U_\mu^+$) of U_μ^+ and a dual basis $v_1^\mu, v_2^\mu, \dots, v_{d_\mu}^\mu$ of $U_{-\mu}^-$ such that $(v_i^\mu, u_j^\mu) = \delta_{i,j}$. If we set

$$u = \sum_{i,j} \Psi(v_j^\mu, u_i^\nu) v_i^\nu (\omega_\nu')^{-1} \omega_\eta' \omega_\phi u_j^\mu (rs^{-1})^{-\langle \rho, \nu \rangle},$$

then it is straightforward to verify that u satisfies equation (5.21).

We define a *U*-module structure on the dual space U^* by $(x \cdot f)(v) = f(\operatorname{ad}(S(x))v)$ for $f \in U^*$ and $x \in U$. Also we define a map $\beta : U \to U^*$ by setting

$$\beta(u)(v) = \langle u \mid v \rangle \quad \text{for } u, v \in U. \tag{5.22}$$

Then β is an injective *U*-module homomorphism by propositions 4.8 and 4.11, where the *U*-module structure on *U* is given by the adjoint action.

DEFINITION 5.11. Assume that M is a finite-dimensional U-module. For each $m \in M$ and $f \in M^*$, we define $c_{f,m} \in U^*$ by $c_{f,m}(v) = f(v \cdot m), v \in U$.

Proposition 5.12. Assume that M is a finite-dimensional U-module such that

$$M = \bigoplus_{\lambda \in \operatorname{wt}(M)} M_{\lambda} \quad and \quad \operatorname{wt}(M) \subset Q.$$

For each $f \in M^*$ and $m \in M$, there exists a unique $u \in U$ such that

$$c_{f,m}(v) = \langle u \mid v \rangle$$
 for all $v \in U$.

Proof. The uniqueness follows immediately from proposition 4.11. Since $c_{f,m}$ depends linearly on m, we may assume that $m \in M_{\lambda}$ for some $\lambda \in Q$. For

$$v = (y\omega_{\mu}^{\prime})^{-1}\omega_{\eta_{1}}\omega_{\phi_{1}}x, \quad x \in U_{\nu}^{+}, \quad y \in U_{-\mu}^{-}, \quad (\eta_{1}, \phi_{1}) \in Q \times Q,$$

we have

$$c_{f,m}(v) = c_{f,m}((y\omega'_{\mu}^{-1})\omega'_{\eta_{1}}\omega_{\phi_{1}}x)$$

$$= f((y\omega'_{\mu}^{-1})\omega'_{\eta_{1}}\omega_{\phi_{1}}xm)$$

$$= \varrho^{\nu+\lambda}(\omega'_{\eta_{1}}\omega_{\phi_{1}})f((y\omega'_{\mu}^{-1})xm).$$

Note that $(y,x) \mapsto f((y\omega'_{\mu}^{-1})xm)$ is bilinear, and (4.1) gives us

$$(\omega'_{\eta_1}, \omega_{-\nu-\lambda}) = \varrho^{\nu+\lambda}(\omega'_{\eta_1})$$
 and $(\omega'_{\nu+\lambda}, \omega_{\phi_1}) = \varrho^{\nu+\lambda}(\omega_{\phi_1}).$

Thus,

$$c_{f,m}(v) = (\omega'_{\eta_1}, \omega_{-\nu-\lambda})(\omega'_{\nu+\lambda}, \omega_{\phi_1})f(y(\omega'_{\mu})^{-1}xm),$$

and lemma 5.10 enables us to find $u_{\nu\mu} \in U_{-\nu}^- U^0 U_{\mu}^+$ such that $c_{f,m}(v) = \langle u_{\nu\mu} \mid v \rangle$ for all $v \in U_{-\mu}^- U^0 U_{\nu}^+$.

Now, for an arbitrary $v \in U$, we write $v = \sum_{(\mu,\nu)} v_{\mu\nu}$ with $v_{\mu\nu} \in U^-_{-\mu} U^0 U^+_{\nu}$. Since M is finite-dimensional, there is a finite set \mathcal{F} of pairs $(\mu,\nu) \in Q \times Q$ such that

$$c_{f,m}(v) = c_{f,m} \left(\sum_{(\mu,\nu) \in \mathcal{F}} v_{\mu\nu} \right) \text{ for all } v \in U.$$

Setting $u = \sum_{(\mu,\nu)\in\mathcal{F}} u_{\nu\mu}$ and using lemma 4.7, we have

$$c_{f,m}(v) = c_{f,m} \left(\sum_{(\mu,\nu)\in\mathcal{F}} v_{\mu\nu} \right) = \sum_{(\mu,\nu)\in\mathcal{F}} c_{f,m}(v_{\mu\nu})$$
$$= \sum_{(\mu,\nu)\in\mathcal{F}} \langle u_{\nu\mu} \mid v_{\mu\nu} \rangle = \sum_{(\mu,\nu)\in\mathcal{F}} \langle u_{\nu\mu} \mid v \rangle = \langle u \mid v \rangle.$$

This completes the proof.

The category \mathcal{O} of representations of U is naturally defined. We refer the reader to $[4, \S 4]$ for the precise definition. All highest weight modules with weights in $\Lambda_{\mathfrak{sl}}$, such as the Verma modules $M(\lambda)$ and the irreducible modules $L(\lambda)$ for $\lambda \in \Lambda_{\mathfrak{sl}}$, belong to category \mathcal{O} .

Assume that M is any U-module in category \mathcal{O} , and define a linear map $\Theta:M\to M$ by

$$\Theta(m) = (rs^{-1})^{-\langle \rho, \lambda \rangle} m \tag{5.23}$$

for all $m \in M_{\lambda}$, $\lambda \in \Lambda_{\mathfrak{sl}}$. We claim that

$$\Theta u = S^2(u)\Theta \quad \text{for all } u \in U.$$
 (5.24)

Indeed, we have only to check this holds when u is one of the generators e_i , f_i , ω_i or ω_i' , and for them the verification of (5.24) is straightforward.

For $\lambda \in \Lambda_{\mathfrak{sl}}^+$, we define $f_{\lambda} \in U^*$ as given by the following trace map:

$$f_{\lambda}(u) = \operatorname{tr}_{L(\lambda)}(u\Theta), \quad u \in U.$$

LEMMA 5.13. Assume that $\lambda \in \Lambda_{\mathfrak{sl}}^+ \cap Q$. Then $f_{\lambda} \in \operatorname{Im}(\beta)$, where β is defined in equation (5.22).

Proof. Let $k = \dim L(\lambda)$, and fix a basis $\{m_i\}$ for $L(\lambda)$ and its dual basis $\{f_i\}$ for $L(\lambda)^*$. We now have

$$f_{\lambda}(v) = \operatorname{tr}_{L(\lambda)}(v\Theta) = \sum_{i=1}^{k} c_{f_{i},\Theta m_{i}}(v).$$

By proposition 5.12, we can find $u_i \in U$ such that $c_{f_i,\Theta m_i}(v) = \langle u_i \mid v \rangle$ for each $i, 1 \leq i \leq k$. Set $u = \sum_{i=1}^k u_i$ such that

$$\beta(u)(v) = \sum_{i=1}^{k} \langle u_i \mid v \rangle = \sum_{i=1}^{k} c_{f_i,\Theta m_i}(v) = f_{\lambda}(v).$$

Thus, $f_{\lambda} \in \text{Im}(\beta)$.

PROPOSITION 5.14. The element $z_{\lambda} := \beta^{-1}(f_{\lambda})$ is contained in the centre \mathfrak{Z} for each $\lambda \in \Lambda_{\mathfrak{sl}}^+ \cap Q$.

Proof. Using (5.24), we have, for all $x \in U$,

$$(S^{-1}(x)f_{\lambda})(u) = f_{\lambda}(\operatorname{ad}(x)u)$$

$$= \operatorname{tr}_{L(\lambda)} \left(\sum_{(x)} x_{(1)} u S(x_{(2)}) \Theta \right)$$

$$= \operatorname{tr}_{L(\lambda)} \left(u \sum_{(x)} S(x_{(2)}) \Theta x_{(1)} \right)$$

$$= \operatorname{tr}_{L(\lambda)} \left(u \sum_{(x)} S(x_{(2)}) S^{2}(x_{(1)}) \Theta \right)$$

$$= \operatorname{tr}_{L(\lambda)} \left(u S \left(\sum_{(x)} S(x_{(1)}) x_{(2)} \right) \Theta \right)$$

$$= (i \circ \varepsilon)(x) \operatorname{tr}_{L(\lambda)}(u \Theta) = (i \circ \varepsilon)(x) f_{\lambda}(u).$$

Substituting x for $S^{-1}(x)$ in the above, we deduce from $\varepsilon \circ S = \varepsilon$ the relation

$$xf_{\lambda} = (i \circ \epsilon)(x)f_{\lambda}.$$

We can write

$$xf_{\lambda} = x\beta(\beta^{-1}(f_{\lambda})) = \beta(\operatorname{ad}(S(x))\beta^{-1}(f_{\lambda}))$$

and

$$(i \circ \varepsilon)(x) f_{\lambda} = (i \circ \varepsilon)(x) \beta(\beta^{-1}(f_{\lambda})) = \beta((i \circ \varepsilon)(x) \beta^{-1}(f_{\lambda})).$$

Since β is injective, $\operatorname{ad}(S(x))\beta^{-1}(f_{\lambda}) = (i \circ \varepsilon)(x)\beta^{-1}(f_{\lambda})$. Since $\varepsilon \circ S^{-1} = \varepsilon$, substituting x for S(x), we obtain

$$\operatorname{ad}(x)\beta^{-1}(f_{\lambda}) = (i \circ \varepsilon)(x)\beta^{-1}(f_{\lambda})$$
 for all $x \in U$.

Therefore, we may conclude from lemma 5.9 that $\beta^{-1}(f_{\lambda}) \in \mathfrak{Z}$.

This brings us to our main result on the centre of U.

THEOREM 5.15. Assume that r and s satisfy condition (5.1).

- (i) If n is odd, then the map $\xi: \mathfrak{Z} \to (U^0_{\mathfrak{h}})^W = (U^0_{\mathfrak{h}})^W$ is an isomorphism.
- (ii) If n is even, the centre \mathfrak{Z} is isomorphic under ξ to a subalgebra of $(U^0_{\sharp})^W$ containing $\mathbb{K}[\mathfrak{z},\mathfrak{z}^{-1}]\otimes(U^0_{\flat})^W$, i.e. $\mathbb{K}[\mathfrak{z},\mathfrak{z}^{-1}]\otimes(U^0_{\flat})^W\subseteq \xi(\mathfrak{Z})\subseteq(U^0_{\sharp})^W$, where the element $\mathfrak{z}\in\mathfrak{Z}$ is defined in (5.5).

Proof. We set $z_{\lambda} = \beta^{-1}(f_{\lambda})$ for $\lambda \in \Lambda_{\mathfrak{sl}}^+ \cap Q$ and write

$$z_{\lambda} = \sum_{\nu \geqslant 0} z_{\lambda,\nu} \quad \text{and} \quad z_{\lambda,0} = \sum_{(\eta,\phi) \in Q \times Q} \theta_{\eta,\phi} \omega_{\eta}' \omega_{\phi},$$

where $z_{\lambda,\nu} \in U_{-\nu}^- U^0 U_{\nu}^+$ and $\theta_{\eta,\phi} \in \mathbb{K}$. Then, for $(\eta_1, \phi_1) \in Q \times Q$,

$$\langle z_{\lambda} \mid \omega'_{\eta_1} \omega_{\phi_1} \rangle = \langle z_{\lambda,0} \mid \omega'_{\eta_1} \omega_{\phi_1} \rangle = \sum_{(\eta,\phi)} \theta_{\eta,\phi}(\omega'_{\eta_1}, \omega_{\phi})(\omega'_{\eta}, \omega_{\phi_1}).$$

On the other hand,

$$\langle z_{\lambda} \mid \omega'_{\eta_{1}} \omega_{\phi_{1}} \rangle = \beta(z_{\lambda})(\omega'_{\eta_{1}} \omega_{\phi_{1}}) = f_{\lambda}(\omega'_{\eta_{1}} \omega_{\phi_{1}}) = \operatorname{tr}_{L(\lambda)}(\omega'_{\eta_{1}} \omega_{\phi_{1}} \Theta)$$

$$= \sum_{\mu \leqslant \lambda} \dim(L(\lambda)_{\mu})(rs^{-1})^{-\langle \rho, \mu \rangle} \varrho^{\mu}(\omega'_{\eta_{1}} \omega_{\phi_{1}})$$

$$= \sum_{\mu \leqslant \lambda} \dim(L(\lambda)_{\mu})(rs^{-1})^{-\langle \rho, \mu \rangle}(\omega'_{\eta_{1}}, \omega_{-\mu})(\omega'_{\mu}, \omega_{\phi_{1}}).$$

Now we may write

$$\sum_{(\eta,\phi)} \theta_{\eta,\phi} \chi_{\eta,\phi} = \sum_{\mu \leqslant \nu} \dim(L(\lambda)_{\mu}) (rs^{-1})^{-\langle \rho,\mu \rangle} \chi_{\mu,-\mu},$$

where the characters $\chi_{\eta,\phi}$ are defined in (4.5). By assumption (5.1), lemma 4.10 and the linear independence of distinct characters, we obtain

$$\theta_{\eta,\phi} = \begin{cases} \dim(L(\lambda)_{\eta})(rs^{-1})^{-\langle \rho,\eta\rangle} & \text{if } \eta+\phi=0, \\ 0 & \text{otherwise.} \end{cases}$$

Hence,

$$z_{\lambda,0} = \sum_{\mu \leq \lambda} \dim(L(\lambda)_{\mu}) (rs^{-1})^{-\langle \rho, \mu \rangle} \omega'_{\mu} \omega_{-\mu},$$

and, by (5.4),

$$\xi(z_{\lambda}) = \varrho^{-\rho}(z_{\lambda,0}) = \sum_{\mu \leqslant \lambda} \dim(L(\lambda)_{\mu}) \omega'_{\mu} \omega_{-\mu}.$$
 (5.25)

Note that $\mathfrak{z} = \xi(\mathfrak{z}) \in (U^0_{\mathfrak{z}})^W$ when n is even. By propositions 5.2 and 5.8, it is sufficient to show that $(U^0_{\mathfrak{z}})^W \subseteq \xi(\mathfrak{Z})$. For $\lambda \in \Lambda^+_{\mathfrak{sl}} \cap Q$, we define

$$\operatorname{av}(\lambda) = \frac{1}{|W|} \sum_{\sigma \in W} \sigma(\omega_{\lambda}' \omega_{-\lambda}) = \frac{1}{|W|} \sum_{\sigma \in W} \omega_{\sigma(\lambda)}' \omega_{-\sigma(\lambda)}. \tag{5.26}$$

Remembering that, for each $\eta \in Q$, there exists $\sigma \in W$ such that $\sigma(\eta) \in \Lambda_{\mathfrak{sl}}^+ \cap Q$, we see that the set $\{\operatorname{av}(\lambda) \mid \lambda \in \Lambda_{\mathfrak{sl}}^+ \cap Q\}$ forms a basis of $(U_{\flat}^0)^W$. Thus, we have only to show that $\operatorname{av}(\lambda) \in \operatorname{Im}(\xi)$ for all $\lambda \in \Lambda_{\mathfrak{sl}}^+ \cap Q$. We use induction on λ . If $\lambda = 0$, $\operatorname{av}(0) = 1 = \xi(1)$. Assume that $\lambda > 0$. Since $\dim L(\lambda)_{\mu} = \dim L(\lambda)_{\sigma(\mu)}$ for all $\sigma \in W$ (proposition 2.3) and $\dim L(\lambda)_{\lambda} = 1$, we can rewrite (5.25) to obtain

$$\xi(z_{\lambda}) = |W| \operatorname{av}(\lambda) + |W| \sum \dim(L(\lambda)_{\mu}) \operatorname{av}(\mu),$$

where the sum is over μ such that $\mu < \lambda$ and $\mu \in \Lambda_{\mathfrak{sl}}^+ \cap Q$. By the induction hypothesis, we get $\mathrm{av}(\lambda) \in \mathrm{Im}(\xi)$. This completes the proof.

EXAMPLE 5.16. The centre \mathfrak{Z} of $U = U_{r,s}(\mathfrak{sl}_2)$ has a basis of monomials $\mathfrak{z}^i \mathcal{C}^j$, $i \in \mathbb{Z}$, $j \in \mathbb{Z}_{\geqslant 0}$, where $\mathfrak{z} = \omega' \omega$ (we omit the subscript since there is only one of them), and \mathcal{C} is the Casimir element,

$$C = ef + \frac{s\omega + r\omega'}{(r-s)^2} = fe + \frac{r\omega + s\omega'}{(r-s)^2}.$$

Now

$$\xi(\mathfrak{z}) = \mathfrak{z}$$
 and $\xi(\mathcal{C}) = \frac{(rs)^{1/2}}{(r-s)^2} (\omega + \omega').$

Thus, the monomials $\mathfrak{z}^i\mathfrak{c}^j$, $i\in\mathbb{Z},\ j\in\mathbb{Z}_{\geqslant 0}$, where $\mathfrak{c}=\omega+\omega'$, give a basis for $\xi(\mathfrak{Z})$. The subalgebra $(U^0_\flat)^W$ consists of polynomials in $\mathfrak{a}:=\omega'\omega^{-1}+(\omega')^{-1}\omega=2\,\mathrm{av}(\alpha)$. Observe that $\mathfrak{a}+2=\mathfrak{z}^{-1}\mathfrak{c}^2\in\xi(\mathfrak{Z})$, but we cannot express \mathfrak{c} as an element of $\mathbb{K}[\mathfrak{z},\mathfrak{z}^{-1}]\otimes(U^0_\flat)^W$. Since $\sigma((\omega')^\ell\omega^m)=(\omega')^m\omega^\ell$, we see that $(U^0)^W$ has as a basis the sums $(\omega')^\ell\omega^m+(\omega')^m\omega^\ell$ for all $\ell,m\in\mathbb{Z}$, and hence $\mathbb{K}[\mathfrak{z},\mathfrak{z}^{-1}]\otimes(U^0_\flat)^W\subsetneq\xi(\mathfrak{Z})=(U^0_\flat)^W=(U^0)^W$, as no conditions are imposed by (5.9).

Acknowledgments

The authors thank the referee for many helpful suggestions. G.B. was supported by NSF Grant no. DMS-0245082, NSA Grant no. MDA904-03-1-0068, and gratefully acknowledges the hospitality of Seoul National University. S.-J.K. was supported in part by KOSEF Grant no. R01-2003-000-10012-0 and KRF Grant no. 2003-070-C00001. K.-H.L. was also supported in part by KOSEF Grant no. R01-2003-000-10012-0.

Appendix A.

Lemma A.1. The relations

(i)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - \mathcal{E}_{k,l}\mathcal{E}_{i,j} = 0$$
, for $i \ge j > k+1 \ge l+1$,

(ii)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - r^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} - \mathcal{E}_{i,l} = 0$$
, for $i \ge j = k+1 \ge l+1$,

(iii)
$$\mathcal{E}_{i,j}e_j - s^{-1}e_j\mathcal{E}_{i,j} = 0$$
, for $i > j$,

hold in U^+ .

Proof. The equations in (i) are obvious.

For (ii), we fix j and l with j > l and use induction on i. If i = j, this is just the definition of $\mathcal{E}_{i,l}$ from (3.1). Assume that i > j. We then have

$$\begin{split} \mathcal{E}_{i,j}\mathcal{E}_{j-1,l} &= e_{i}\mathcal{E}_{i-1,j}\mathcal{E}_{j-1,l} - r^{-1}\mathcal{E}_{i-1,j}e_{i}\mathcal{E}_{j-1,l} \\ &= r^{-1}e_{i}\mathcal{E}_{j-1,l}\mathcal{E}_{i-1,j} + e_{i}\mathcal{E}_{i-1,l} - r^{-2}\mathcal{E}_{j-1,l}\mathcal{E}_{i-1,j}e_{i} - r^{-1}\mathcal{E}_{i-1,l}e_{i} \\ &= r^{-1}\mathcal{E}_{j-1,l}\mathcal{E}_{i,j} + \mathcal{E}_{i,l} \end{split}$$

by part (i) and the induction hypothesis.

To establish (iii), we fix j and use induction on i. When i = j + 1, the relation is simply (3.2) with j instead of i. Assume that i > j + 1. We then have

$$\mathcal{E}_{i,j}e_{j} = e_{i}\mathcal{E}_{i-1,j}e_{j} - r^{-1}\mathcal{E}_{i-1,j}e_{j}e_{i}$$

$$= s^{-1}e_{j}e_{i}\mathcal{E}_{i-1,j} - r^{-1}s^{-1}e_{j}\mathcal{E}_{i-1,j}e_{i}$$

$$= s^{-1}e_{j}\mathcal{E}_{i,j}$$

by (i) and induction.

Lemma A.2. In U^+ ,

(i)
$$\mathcal{E}_{i,i}\mathcal{E}_{i,l} - r^{-1}s^{-1}\mathcal{E}_{i,l}\mathcal{E}_{i,j} + (r^{-1} - s^{-1})e_i\mathcal{E}_{i,l} = 0$$
, for $i > j > l$,

(ii)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - \mathcal{E}_{k,l}\mathcal{E}_{i,j} = 0$$
, for $i > k \geqslant l > j$.

Proof. The following expression can be easily verified by induction on l:

$$\mathcal{E}_{i,j}\mathcal{E}_{j,l} - r^{-1}s^{-1}\mathcal{E}_{j,l}\mathcal{E}_{i,j} + r^{-1}\mathcal{E}_{i,l}e_j - s^{-1}e_j\mathcal{E}_{i,l} = 0, \quad i > j > l.$$
 (A1)

We claim that

$$\mathcal{E}_{j+1,j-1}e_j - e_j \mathcal{E}_{j+1,j-1} = 0. \tag{A 2}$$

Indeed, we have $e_j \mathcal{E}_{j,j-1} = s^{-1} \mathcal{E}_{j,j-1} e_j$ as in (3.3), and using this we get

$$\begin{split} \mathcal{E}_{j+1,j}\mathcal{E}_{j,j-1} - r^{-1}s^{-1}\mathcal{E}_{j,j-1}\mathcal{E}_{j+1,j} \\ &= e_{j+1}e_{j}\mathcal{E}_{j,j-1} - r^{-1}e_{j}e_{j+1}\mathcal{E}_{j,j-1} - r^{-1}s^{-1}\mathcal{E}_{j,j-1}e_{j+1}e_{j} + r^{-2}s^{-1}\mathcal{E}_{j,j-1}e_{j}e_{j+1} \\ &= s^{-1}e_{j+1}\mathcal{E}_{j,j-1}e_{j} - r^{-1}e_{j}e_{j+1}\mathcal{E}_{j,j-1} - r^{-1}s^{-1}\mathcal{E}_{j,j-1}e_{j+1}e_{j} + r^{-2}e_{j}\mathcal{E}_{j,j-1}e_{j+1} \\ &= s^{-1}\mathcal{E}_{j+1,j-1}e_{j} - r^{-1}e_{j}\mathcal{E}_{j+1,j-1}. \end{split}$$

On the other hand, we also have, from (A1),

$$\mathcal{E}_{j+1,j}\mathcal{E}_{j,j-1} - r^{-1}s^{-1}\mathcal{E}_{j,j-1}\mathcal{E}_{j+1,j} = s^{-1}e_j\mathcal{E}_{j+1,j-1} - r^{-1}\mathcal{E}_{j+1,j-1}e_j,$$

such that

$$(r^{-1} + s^{-1})\mathcal{E}_{j+1,j-1}e_j - (r^{-1} + s^{-1})e_j\mathcal{E}_{j+1,j-1} = 0.$$

Since we have assumed that $r^{-1} + s^{-1} \neq 0$, this implies (A 2).

Now to demonstrate that

$$\mathcal{E}_{i,j}e_k - e_k\mathcal{E}_{i,j} = 0, \quad i > k > j, \tag{A3}$$

we fix k, and assume first that j = k - 1. The argument proceeds by induction on i. If i = k + 1, then the expression in (A 3) becomes (A 2) (with k instead of j there). When i > k + 1,

$$\mathcal{E}_{i,k-1}e_k = e_i \mathcal{E}_{i-1,k-1}e_k - r^{-1} \mathcal{E}_{i-1,k-1}e_k e_i$$

= $e_k e_i \mathcal{E}_{i-1,k-1} - r^{-1} e_k \mathcal{E}_{i-1,k-1}e_i = e_k \mathcal{E}_{i,k-1}.$

For the case j < k - 1, we have by induction on j,

$$\mathcal{E}_{i,j}e_k = \mathcal{E}_{i,j+1}e_je_k - r^{-1}e_j\mathcal{E}_{i,j+1}e_k$$
$$= e_k\mathcal{E}_{i,j+1}e_j - r^{-1}e_ke_j\mathcal{E}_{i,j+1}$$
$$= e_k\mathcal{E}_{i,j},$$

so that (A3) is verified.

As a consequence, the relations in part (i) follow from (A 1) and (A 3), while those in (ii) can be derived easily from (A 3) by fixing i, j and k and using induction on l.

Lemma A.3. The relations

(i)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,j} - s^{-1}\mathcal{E}_{k,j}\mathcal{E}_{i,j} = 0$$
, for $i > k > j$,

(ii)
$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} - r^{-1}s^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} + (r^{-1} - s^{-1})\mathcal{E}_{k,j}\mathcal{E}_{i,l} = 0 \text{ for } i > k > j > l$$
,

hold in U^+ .

Proof. Part (i) follows from lemmas A.1(iii) and A.2(ii). For (ii), we apply induction on l. When l = j - 1, part (i), and lemmas A.1(ii) and A.2(ii) imply that

$$\begin{split} &\mathcal{E}_{i,j}\mathcal{E}_{k,j-1} \\ &= \mathcal{E}_{i,j}\mathcal{E}_{k,j}e_{j-1} - r^{-1}\mathcal{E}_{i,j}e_{j-1}\mathcal{E}_{k,j} \\ &= s^{-1}\mathcal{E}_{k,j}\mathcal{E}_{i,j}e_{j-1} - r^{-1}\mathcal{E}_{i,j}e_{j-1}\mathcal{E}_{k,j} \\ &= r^{-1}s^{-1}\mathcal{E}_{k,j}e_{j-1}\mathcal{E}_{i,j} + s^{-1}\mathcal{E}_{k,j}\mathcal{E}_{i,j-1} - r^{-2}e_{j-1}\mathcal{E}_{i,j}\mathcal{E}_{k,j} - r^{-1}\mathcal{E}_{i,j-1}\mathcal{E}_{k,j} \\ &= r^{-1}s^{-1}\mathcal{E}_{k,j}e_{j-1}\mathcal{E}_{i,j} + s^{-1}\mathcal{E}_{k,j}\mathcal{E}_{i,j-1} - r^{-2}s^{-1}e_{j-1}\mathcal{E}_{k,j}\mathcal{E}_{i,j} - r^{-1}\mathcal{E}_{k,j}\mathcal{E}_{i,j-1} \\ &= r^{-1}s^{-1}\mathcal{E}_{k,j-1}\mathcal{E}_{i,j} + (s^{-1} - r^{-1})\mathcal{E}_{k,j}\mathcal{E}_{i,j-1}. \end{split}$$

Now assume that l < j-1. Then $\mathcal{E}_{i,j}e_l = e_l\mathcal{E}_{i,j}$ and $\mathcal{E}_{k,j}e_l = e_l\mathcal{E}_{k,j}$ by lemma A.1(i) and so, by lemma A.1(ii), we obtain

$$\mathcal{E}_{i,j}\mathcal{E}_{k,l} = \mathcal{E}_{i,j}\mathcal{E}_{k,l+1}e_l - r^{-1}\mathcal{E}_{i,j}e_l\mathcal{E}_{k,l+1}$$

$$= r^{-1}s^{-1}\mathcal{E}_{k,l+1}e_l\mathcal{E}_{i,j} + (s^{-1} - r^{-1})\mathcal{E}_{k,j}\mathcal{E}_{i,l+1}e_l$$

$$- r^{-2}s^{-1}e_l\mathcal{E}_{k,l+1}\mathcal{E}_{i,j} - r^{-1}(s^{-1} - r^{-1})e_l\mathcal{E}_{k,j}\mathcal{E}_{i,l+1}$$

$$= r^{-1}s^{-1}\mathcal{E}_{k,l}\mathcal{E}_{i,j} + (s^{-1} - r^{-1})\mathcal{E}_{k,j}\mathcal{E}_{i,l}$$

by the induction assumption.

LEMMA A.4. In U^+ ,

$$\mathcal{E}_{i,j}\mathcal{E}_{i,l} - s^{-1}\mathcal{E}_{i,l}\mathcal{E}_{i,j} = 0, \quad i \geqslant j > l. \tag{A4}$$

Proof. First consider the case i = j. If l = i - 1, the above relation is merely the defining relation in (3.3). Assume that l < i - 1. By induction on l, we have

$$\begin{aligned} e_{i}\mathcal{E}_{i,l} &= e_{i}\mathcal{E}_{i,l+1}e_{l} - r^{-1}e_{i}e_{l}\mathcal{E}_{i,l+1} \\ &= s^{-1}\mathcal{E}_{i,l+1}e_{l}e_{i} - r^{-1}s^{-1}e_{l}\mathcal{E}_{i,l+1}e_{i} \\ &= s^{-1}\mathcal{E}_{i,l}e_{i}. \end{aligned}$$

When i > j, by induction on j and lemma A.2(ii), we get

$$\begin{split} \mathcal{E}_{i,j}\mathcal{E}_{i,l} &= \mathcal{E}_{i,j+1}e_{j}\mathcal{E}_{i,l} - r^{-1}e_{j}\mathcal{E}_{i,j+1}\mathcal{E}_{i,l} \\ &= \mathcal{E}_{i,j+1}\mathcal{E}_{i,l}e_{j} - r^{-1}s^{-1}e_{j}\mathcal{E}_{i,l}\mathcal{E}_{i,j+1}, \\ &= s^{-1}\mathcal{E}_{i,l}\mathcal{E}_{i,j+1}e_{j} - r^{-1}s^{-1}\mathcal{E}_{i,l}e_{j}\mathcal{E}_{i,j+1} \\ &= s^{-1}\mathcal{E}_{i,l}\mathcal{E}_{i,j}. \end{split}$$

The proof of theorem 3.1 is now complete because we have

- $(1) \iff \text{lemma A.1(ii)};$
- $(2) \iff \text{lemma A.1(i)} \text{ and lemma A.2(ii)};$
- $(3) \iff \text{lemma A.1(iii)}, \text{lemma A.3(i)}, \text{ and lemma A.4};$
- $(4) \iff \text{lemma A.2(i)} \text{ and lemma A.3(ii)}.$

References

- P. Baumann. On the center of quantized enveloping algebras. J. Alg. 203 (1998), 244–260.
- G. Benkart and T. Roby. Down-up algebras. J. Alg. 209 (1998), 305–344. (Addendum 213 (1999), 378.)
- G. Benkart and S. Witherspoon. A Hopf structure for down-up algebras. Math. Z. 238 (2001), 523–553.
- 4 G. Benkart and S. Witherspoon. Two-parameter quantum groups and Drinfel'd doubles. Alg. Representat. Theory 7 (2004), 261–286.
- 5 G. Benkart and S. Witherspoon. Representations of two-parameter quantum groups and Schur–Weyl duality. In *Hopf algebras* (ed. J. Bergen, S. Catoiu and W. Chin). Lecture Notes in Pure and Applied Mathematics, vol. 237, pp. 62–95. (New York: Marcel Dekker, 2004)
- 6 G. Benkart and S. Witherspoon. Restricted two-parameter quantum groups. In Finite dimensional algebras and related topics, Fields Institute Communications, vol. 40, pp. 293–318 (Providence, RI: American Mathematical Society, 2004).
- L. A. Bokut and P. Malcolmson. Gröbner–Shirshov bases for quantum enveloping algebras. Israel J. Math. 96 (1996), 97–113.
- 8 W. Chin and I. M. Musson. Multiparameter quantum enveloping algebras. J. Pure Appl. Alg. 107 (1996), 171–191.
- 9 R. Dipper and S. Donkin. Quantum GL_n . Proc. Lond. Math. Soc. 63 (1991), 165–211.
- 10 V. K. Dobrev and P. Parashar. Duality for multiparametric quantum GL(n). J. Phys. A **26** (1993), 6991–7002.
- V. G. Drinfel'd. Quantum groups. In Proc. Int. Cong. of Mathematicians, Berkeley, 1986
 (ed. A. M. Gleason), pp. 798–820 (Providence, RI: American Mathematical Society, 1987).
- V. G. Drinfel'd. Almost cocommutative Hopf algebras. Leningrad Math. J. 1 (1990), 321–342.
- P. I. Etingof. Central elements for quantum affine algebras and affine Macdonald's operators. Math. Res. Lett. 2 (1995), 611–628.
- 14 K. R. Goodearl and E. S. Letzter. Prime factor algebras of the coordinate ring of quantum matrices. Proc. Am. Math. Soc. 121 (1994), 1017–1025.
- J. A. Green. Hall algebras, hereditary algebras and quantum groups. *Invent. Math.* 120 (1995), 361–377.
- J. Hong. Center and universal R-matrix for quantized Borcherds superalgebras. J. Math. Phys. 40 (1999), 3123–3145.
- 17 N. Jacobson. Basic algebra, vol. 1 (New York: Freeman, 1989).
- 18 A. Joseph. Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete, series 3, vol. 29 (Springer, 1995).
- A. Joseph, and G. Letzter. Separation of variables for quantized enveloping algebras. Am. J. Math. 116 (1994), 127–177.
- 20 S.-J. Kang and T. Tanisaki. Universal R-matrices and the center of the quantum generalized Kac-Moody algebras. Hiroshima Math. J. 27 (1997), 347–360.
- V. K. Kharchenko. A combinatorial approach to the quantification of Lie algebras. Pac. J. Math. 203 (2002), 191–233.
- S. M. Khoroshkin and V. N. Tolstoy. Universal R-matrix for quantized (super)algebras. Lett. Math. Phys. 10 (1985), 63–69.
- S. M. Khoroshkin and V. N. Tolstoy. The Cartan-Weyl basis and the universal R-matrix for quantum Kac-Moody algebras and superalgebras. In Quantum Symmetries, Proc. Int. Symp. on Mathematical Physics, Goslar, 1991, pp. 336–351 (River Edge, NJ: World Scientific, 1993).
- S. M. Khoroshkin and V. N. Tolstoy. Twisting of quantum (super)algebras. In Generalized Symmetries in Physics, Proc. Int. Symp. on Mathematical Physics, Clausthal, 1993, pp. 42–54 (River Edge, NJ: World Scientific, 1994).
- 25 S. Levendorskii and Y. Soibelman. Algebras of functions of compact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys. 139 (1991), 141–170.
- 26 G. Lusztig. Finite dimensional Hopf algebras arising from quantum groups. J. Am. Math. Soc. 3 (1990), 257–296.

- 27 G. Lusztig. Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3 (1990), 447–498.
- N. Yu. Reshetikhin. Quasitriangular Hopf algebras and invariants of links. Leningrad Math. J. 1 (1990), 491–513.
- 29 N. Yu. Reshetikhin, L. A. Takhtadzhyan and L. D. Faddeev. Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1 (1990), 193–225.
- 30 C. M. Ringel. Hall algebras. Banach Center Publicat. 26 (1990), 433-447.
- 31 C. M. Ringel. Hall algebras and quantum groups. Invent. Math. ${\bf 101}$ (1990), 583-591.
- 32 C. M. Ringel. Hall algebras revisited. Israel Math. Conf. Proc. 7 (1993), 171–176.
- 33 C. M. Ringel. PBW-bases of quantum groups. J. Reine Angew. Math. 470 (1996), 51–88.
- 34 M. Rosso. Analogues de la forme de Killing et du théorème d'Harish-Chandra pour les groupes quantiques. Annls Scient. Éc. Norm. Sup. 23 (1990), 445–467.
- 35 M. Takeuchi. A two-parameter quantization of GL(n). Proc. Jpn Acad. A **66** (1990), 112–114.
- 36 M. Takeuchi. The q-bracket product and quantum enveloping algebras of classical types. J. Math. Soc. Jpn 42 (1990), 605–629.
- 37 T. Tanisaki. Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras. Int. J. Mod. Phys. A 7 (suppl. 01B) (1992), 941–961.
- 38 N. Xi. Root vectors in quantum groups. Comment. Math. Helv. 69 (1994), 612–639.
- 39 H. Yamane. A Poincaré–Birkhoff–Witt theorem for the quantum group of type A_N . Proc. $Jpn\ Acad.$ A **64** (1988), 385–386.
- 40 H. Yamane. A Poincaré–Birkhoff–Witt theorem for quantized universal enveloping algebras of type A_N . Publ. RIMS Kyoto 25 (1989), 503–520.

(Issued 9 June 2006)