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We describe Poincaré–Birkhoff–Witt bases for the two-parameter quantum groups
U = Ur,s(sln) following Kharchenko and show that the positive part of U has the
structure of an iterated skew polynomial ring. We define an ad-invariant bilinear
form on U , which plays an important role in the construction of central elements. We
introduce an analogue of the Harish-Chandra homomorphism and use it to determine
the centre of U .

1. Introduction

In this paper we determine the centre of the two-parameter quantum groups U =
Ur,s(sln), which are the same algebras as those introduced by Takeuchi in [35,
36], but with the opposite co-product. As shown in [4, 5], these quantum groups
are Drinfel’d doubles and have an R-matrix. They are related to the down–up
algebras in [2,3] and to the multi-parameter quantum groups of Chin and Musson [8]
and Dobrev and Parashar [10]. In the analogous quantum function algebra setting,
allowing two parameters unifies the Drinfel’d–Jimbo quantum groups (r = q, s =
q−1) in [11] with the Dipper–Donkin quantum groups (r = 1, s = q−1) in [9].

For the one-parameter quantum groups Uq(g) corresponding to finite-dimensional
simple Lie algebras g, there is a sizeable literature [7, 15, 21–28, 30–32, 37–39] deal-
ing with Poincaré–Birkhoff–Witt (PBW) bases. For the multi-parameter quantum
groups associated with g of classical type, Kharchenko [21] constructed PBW bases
by first determining Gröbner–Shirshov bases for them. We show in this paper that
Kharchenko’s results, when applied to the algebra U = Ur,s(sln), yield useful com-
mutation relations, which enable us to prove that the positive part U+ of U has
the structure of an iterated skew polynomial ring. As a consequence of that result,
U+ modulo any prime ideal is a domain. The commutation relations also play
an essential role in [6], where finite-dimensional restricted two-parameter quantum
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groups ur,s(gln) and ur,s(sln) are constructed when r and s are roots of unity. These
restricted quantum groups are Drinfel’d doubles and are ribbon Hopf algebras under
suitable restrictions on r and s.

Much work has been done on the centre of quantum groups for finite-dimensional
simple Lie algebras [1, 12, 19, 28, 29, 34, 37], and also for (generalized) Kac–Moody
(super)algebras [13, 16, 20]. The approach taken in many of these papers (and
adopted here as well) is to define a bilinear form on the quantum group which
is invariant under the adjoint action. This quantum version of the Killing form is
often referred to in the one-parameter setting as the Rosso form (see [34]). The next
step involves constructing an analogue ξ of the Harish-Chandra map. It is straight-
forward to show that the map ξ is an injective algebra homomorphism. The main
difficulty lies in determining the image of ξ and in finding enough central elements
to prove that the map ξ is surjective. In the two-parameter case, a new phenomenon
arises: the n odd and n even cases behave differently. Additional central elements
arise when n is even, which complicates the description in that case.

Our paper is organized as follows. In § 2, we briefly recall the definition and basic
properties of the two-parameter quantum group U = Ur,s(sln). In § 3, we describe
the commutation relations which determine a Gröbner–Shirshov basis and allow
a PBW basis to be constructed, and we prove that the positive part of U has an
iterated skew polynomial ring structure. The next section is devoted to the con-
struction of a bilinear form and the proof of its invariance under the adjoint action.
In the final section, we define a Harish-Chandra homomorphism ξ and determine
the centre of U by specifying the image of ξ and constructing central elements
explicitly.

2. Two-parameter quantum groups

Let K be an algebraically closed field of characteristic 0. Assume that Φ is a finite
root system of type An−1 with Π a base of simple roots. We regard Φ as a subset
of a Euclidean space R

n with an inner product 〈·, ·〉. We let ε1, . . . , εn denote an
orthonormal basis of R

n, and suppose that Π = {αj = εj − εj+1 | j = 1, . . . , n− 1}
and that Φ = {εi − εj | 1 � i �= j � n}.

Fix non-zero elements r, s in the field K. Here we assume r �= s. Let Ũ = Ur,s(gln)
be the unital associative algebra over K generated by elements ej , fj (1 � j < n),
and a±1

i , b±1
i (1 � i � n), which satisfy the following relations:

(R1) the a±1
i , b±1

j all commute with one another and aia
−1
i = bjb

−1
j = 1;

(R2) aiej = r〈εi,αj〉ejai and aifj = r−〈εi,αj〉fjai;

(R3) biej = s〈εi,αj〉ejbi and bifj = s−〈εi,αj〉fjbi;

(R4) [ei, fj ] =
δi,j
r − s (aibi+1 − ai+1bi);

(R5) [ei, ej ] = [fi, fj ] = 0 if |i− j| > 1;

(R6) e2i ei+1 − (r + s)eiei+1ei + rsei+1e
2
i = 0,

eie
2
i+1 − (r + s)ei+1eiei+1 + rse2i+1ei = 0;
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(R7) f2
i fi+1 − (r−1 + s−1)fifi+1fi + r−1s−1fi+1f

2
i = 0,

fif
2
i+1 − (r−1 + s−1)fi+1fifi+1 + r−1s−1f2

i+1fi = 0.

Let U = Ur,s(sln) be the subalgebra of Ũ = Ur,s(gln) generated by the elements
ej , fj , ω±1

j and (ω′
j)

±1 (1 � j < n), where

ωj = ajbj+1 and ω′
j = aj+1bj .

These elements satisfy (R5)–(R7) along with the following relations:

(R1′) the ω±1
i , (ω′

j)
±1 all commute with one another and ωiω

−1
i = ω′

j(ω
′
j)

−1 = 1;

(R2′) ωiej = r〈εi,αj〉s〈εi+1,αj〉ejωi and ωifj = r−〈εi,αj〉s−〈εi+1,αj〉fjωi;

(R3′) ω′
iej = r〈εi+1,αj〉s〈εi,αj〉ejω

′
i and ω′

ifj = r−〈εi+1,αj〉s−〈εi,αj〉fjω
′
i;

(R4′) [ei, fj ] =
δi,j
r − s (ωi − ω′

i).

Let U+ and U− be the subalgebras generated by the elements ei and fi, respec-
tively, and let Ũ0 and U0 be the subalgebras generated by the elements a±1

i , b±1
i ,

1 � i � n and ω±1
i , (ω′

i)
±1, 1 � i < n, respectively. It now follows from the defining

relations that Ũ has a triangular decomposition: Ũ = U−Ũ0U+. Similarly, we have
U = U−U0U+.

The algebras Ũ and U are Hopf algebras, where the a±
i , b±i are group-like ele-

ments, and the remaining co-products are determined by

∆(ei) = ei ⊗ 1 + ωi ⊗ ei, ∆(fi) = 1 ⊗ fi + fi ⊗ ω′
i.

This forces the co-unit and antipode maps to be

ε(ai) = ε(bi) = 1, S(ai) = a−1
i , S(bi) = b−1

i ,

ε(ei) = ε(fi) = 0, S(ei) = −ω−1
i ei, S(fi) = −fi(ω′

i)
−1.

Let Q = ZΦ denote the root lattice and set Q+ =
⊕n−1

i=1 Z�0αi. Then, for any
ζ =

∑n−1
i=1 ζiαi ∈ Q, we adopt the shorthand

ωζ = ωζ1
1 · · ·ωζn−1

n−1 , ω′
ζ = (ω′

1)
ζ1 · · · (ω′

n−1)
ζn−1 . (2.1)

Lemma 2.1 (Benkart and Witherspoon [4, lemma 1.3]). Suppose that

ζ =
n−1∑

i=1

ζiαi ∈ Q.

Then

ωζei = r−〈εi+1,ζ〉s−〈εi,ζ〉eiωζ , ωζfi = r〈εi+1,ζ〉s〈εi,ζ〉fiωζ ,

ω′
ζei = r−〈εi,ζ〉s−〈εi+1,ζ〉eiω

′
ζ , ω′

ζfi = r〈εi,ζ〉s〈εi+1,ζ〉fiω
′
ζ .
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There is a grading on U with the degrees of the generators given by

deg ei = αi, deg fi = −αi, degωi = degω′
i = 0.

Then, since the defining relations are homogeneous under this grading, the algebra
U has a Q-grading:

U =
⊕

ζ∈Q

Uζ .

We also have
U+ =

⊕

ζ∈Q+

U+
ζ and U− =

⊕

ζ∈Q+

U−
−ζ ,

where U+
ζ = U+ ∩ Uζ and U−

−ζ = U− ∩ U−ζ .
Let Λ =

⊕n
i=1 Zεi be the weight lattice of gln. Corresponding to any λ ∈ Λ is an

algebra homomorphism �λ : Ũ0 → K given by

�λ(ai) = r〈εi,λ〉 and �λ(bi) = s〈εi,λ〉. (2.2)

For any λ =
∑n

i=1 λiεi ∈ Λ, we write

aλ = aλ1
1 · · · aλn

n and bλ = bλ1
1 · · · bλn

n . (2.3)

Let Λsl =
⊕n−1

i=1 Z
i be the weight lattice of sln, where 
i is the fundamental
weight


i = ε1 + · · · + εi − i

n

n∑

j=1

εj ,

and let

Λ+
sl

= {λ ∈ Λsl | 〈αi, λ〉 � 0 for 1 � i < n} =
{n−1∑

i=1

li
i

∣
∣
∣
∣ li ∈ Z�0

}

denote the set of dominant weights for sln. We fix the nth roots r1/n and s1/n

of r and s, respectively, and define, for any λ ∈ Λsl, an algebra homomorphism
�λ : U0 → K by

�λ(ωj) = r〈εj ,λ〉s〈εj+1,λ〉 and �λ(ω′
j) = r〈εj+1,λ〉s〈εj ,λ〉. (2.4)

In particular, if λ belongs to Λ, then the definition of �λ(ωj) and �λ(ω′
j) coming

from (2.2) coincides with (2.4).
Associated with any algebra homomorphism ψ : U0 → K is the Verma module

M(ψ) with highest weight ψ and its unique irreducible quotient L(ψ). When the
highest weight is given by the homomorphism �λ for λ ∈ Λsl, we simply write M(λ)
and L(λ) instead of M(�λ) and L(�λ).

Lemma 2.2 (Benkart and Witherspoon [5]). We assume that rs−1 is not a root of
unity, and let vλ be a highest weight vector of M(λ) for λ ∈ Λ+

sl
. The irreducible

module L(λ) is then given by

L(λ) = M(λ)
/(n−1∑

i=1

Uf
〈λ,αi〉+1
i vλ

)

.
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Let W be the Weyl group of the root system Φ, and let σi ∈ W denote the
reflection corresponding to αi for each 1 � i < n. Thus,

σi(λ) = λ− 〈λ, αi〉αi for λ ∈ Λ, (2.5)

and σi also acts on Λsl, according to the same formula.
Let M be a finite-dimensional U -module on which U0 acts semi-simply. Then

M =
⊕

χ

Mχ,

where each χ : U0 → K is an algebra homomorphism, and

Mχ = {m ∈ M | ωim = χ(ωi)m and ω′
im = χ(ω′

i)m for all i}.

For brevity we write Mλ for the weight space M�λ for λ ∈ Λsl.

Proposition 2.3. Assume that rs−1 is not a root of unity and that λ ∈ Λ+
sl
. Then

dimL(λ)µ = dimL(λ)σ(µ)

for all µ ∈ Λsl and σ ∈ W .

Proof. This is an immediate consequence of [5, proposition 2.8 and the proof of
lemma 2.12].

3. PBW-type bases

From now on we assume that r + s �= 0 (or equivalently, r−1 + s−1 �= 0), and the
ordering (k, l) < (i, j) always means relative to the lexicographic ordering.

We define inductively

Ej,j = ej and Ei,j = eiEi−1,j − r−1Ei−1,jei, i > j. (3.1)

The defining relations for U+ in (R6) can be reformulated as saying

Ei+1,iei = s−1eiEi+1,i, (3.2)

ei+1Ei+1,i = s−1Ei+1,iei+1. (3.3)

Even though the relations in the following theorem can be deduced from [21,
theorem An], we include a self-contained proof in the appendix for the convenience
of the reader.

Theorem 3.1 (Kharchenko [21]). Assume that (i, j) > (k, l) in the lexicographic
order. Then the following relations hold in the algebra U+:

(1) Ei,jEk,l − r−1Ek,lEi,j − Ei,l = 0 if j = k + 1;

(2) Ei,jEk,l − Ek,lEi,j = 0 if i > k � l > j or j > k + 1;

(3) Ei,jEk,l − s−1Ek,lEi,j = 0 if i = k � j > l or i > k � j = l;

(4) Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l = 0 if i > k � j > l.
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Let E = {e1, e2, . . . , en−1} be the set of generators of the algebra U+. We intro-
duce a linear ordering ≺ on E by saying ei ≺ ej if and only if i < j. We extend this
ordering to the set of monomials in E so that it becomes the degree-lexicographic
ordering ; that is, for u = u1u2 · · ·up and v = v1v2 · · · vq with ui, vj ∈ E, we have
u ≺ v if and only if p < q or p = q and ui ≺ vi for the first i such that ui �= vi.
Let AE be the free associative algebra generated by E and S ⊂ AE be the set
consisting of the following elements:

Ei,jEk,l − Ek,lEi,j if i > k � l > j or j > k + 1,

Ei,jEk,l − s−1Ek,lEi,j if i = k � j > l or i > k � j = l,

Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l if i > k � j > l.

The elements of S just correspond to relations (2)–(4) of theorem 3.1. Note that we
may take S to be the set of defining relations for the algebra U+, since S contains
all the (original) defining relations (R5) and (R6) of U+, and the other relations in
S are all consequences of (R5) and (R6).

The following theorem is a special case of in [21, theorem An] and its conse-
quences. Also, one can prove it using an argument similar to that in [7] or [39,40].

Theorem 3.2 (Kharchenko [21]). Assume that r, s ∈ K
× and r + s �= 0. Then

(i) the set S is a Gröbner–Shirshov basis for the algebra U+ with respect to the
degree-lexicographic ordering,

(ii) B0 = {Ei1,j1Ei2,j2 · · · Eip,jp
| (i1, j1) � (i2, j2) � · · · � (ip, jp)} (lexicographical

ordering) is a linear basis of the algebra U+,

(iii) B1 = {ei1,j1ei2,j2 · · · eip,jp
| (i1, j1) � (i2, j2) � · · · � (ip, jp)} (lexicographical

ordering) is a linear basis of the algebra U+, where ei,j = eiei−1 · · · ej for
i � j.

Remark 3.3. If we define Fi,j inductively by

Fj,j = fj and Fi,j = fiFi−1,j − sFi−1,jfi, i > j,

and denote by fi,j the monomial fi,j = fifi−1 · · · fj , i � j, then we have linear
bases for the algebra U− as in theorem 3.2. Note that Ũ0 and U0, which are group
algebras, have obvious linear bases. Combining these bases using the triangular
decomposition Ũ = U−Ũ0U+ and U = U−U0U+, we obtain PBW bases for the
entire algebras Ũ and U , respectively.

Now we turn our attention to showing that the algebra U+ is an iterated skew
polynomial ring over K and that any prime ideal P of U+ is completely prime
(that is, U+/P is a domain) when r and s are ‘generic’ (see proposition 3.6 for
the precise statement). Our approach is similar to that in [33], which treats the
one-parameter quantum group case. Recall that if ϕ is an automorphism of an
algebra R, then ϑ ∈ End(R) is a ϕ-derivation if ϑ(ab) = ϑ(a)b + ϕ(a)ϑ(b) for all
a, b ∈ R. The skew polynomial ring R[x;ϕ, ϑ] consists of polynomials

∑
i aix

i over
R, where xa = ϕ(a)x+ ϑ(a) for all a ∈ R.
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For each (i, j), 1 � j � i < n, we define an algebra automorphism ϕi,j of U by

ϕi,j(u) = ωαi+···+αjuω
−1
αi+···+αj

for all u ∈ U.

Using lemma 2.1, one can check that if (k, l) < (i, j), then

ϕi,j(Ek,l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r−1Ek,l if j = k + 1,
Ek,l if i > k � l > j or j > k + 1,
s−1Ek,l if i = k � j > l or i > k � j = l,

r−1s−1Ek,l if i > k � j > l.

Hence, the automorphism ϕi,j preserves the subalgebra U+
i,j of U+ generated by

the vectors Ek,l for (k, l) < (i, j). We denote the induced automorphism of U+
i,j by

the same symbol ϕi,j .
Now we define a ϕi,j-derivation ϑi,j on U+

i,j by

ϑi,j(Ek,l) = Ei,jEk,l − ϕi,j(Ek,l)Ei,j =

⎧
⎪⎨

⎪⎩

Ei,l, j = k + 1,
(r−1 − s−1)Ek,jEi,l, i > k � j > l,

0 otherwise.

It is easy to see that ϑi,j is indeed a ϕi,j-derivation (cf. [33, lemma 3, p. 62]). With
ϕi,j and ϑi,j at hand, the next proposition follows immediately.

Proposition 3.4. The algebra U+ is an iterated skew polynomial ring whose struc-
ture is given by

U+ = K[E1,1][E2,1;ϕ2,1, ϑ2,1] · · · [En−1,n−1;ϕn−1,n−1, ϑn−1,n−1]. (3.4)

Proof. Note that all the relations in theorem 3.1 can be condensed into a single
expression:

Ei,jEk,l = ϕi,j(Ek,l)Ei,j + ϑi,j(Ek,l), (i, j) > (k, l). (3.5)

The proposition then easily follows from theorem 3.2.

The other result of this section requires an additional lemma.

Lemma 3.5. The automorphism ϕi,j and the ϕi,j-derivation ϑi,j of U+
i,j satisfy

ϕi,jϑi,j = rs−1ϑi,jϕi,j .

Proof. For (k, l) < (i, j), the definitions imply that

(ϕi,jϑi,j)(Ek,l) =

⎧
⎪⎨

⎪⎩

s−1Ei,l if j = k + 1,
(r−1 − s−1)s−2Ek,jEi,l if i > k � j > l,

0 otherwise.

On the other hand, for (k, l) < (i, j),

(ϑi,jϕi,j)(Ek,l) =

⎧
⎪⎨

⎪⎩

r−1Ei,l if j = k + 1,
(r−1 − s−1)r−1s−1Ek,jEi,l if i > k � j > l,

0 otherwise.

Comparing these two calculations, we arrive at the result.
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We now obtain the following proposition.

Proposition 3.6. Assume that the subgroup of K
× generated by r and s is torsion-

free. Then all prime ideals of U+ are completely prime.

Proof. The proof follows directly from proposition 3.4, lemma 3.5 and [14, theo-
rem 2.3].

4. An invariant bilinear form on U

Assume that B is the subalgebra of U generated by ej , ω±1
j , 1 � j < n, and B′

is the subalgebra of U generated by fj , (ω′
j)

±1, 1 � j < n. We recall some results
in [4].

Proposition 4.1 (Benkart and Witherspoon [4, lemma 2.2]). There is a Hopf
pairing (·, ·) on B′×B such that, for x1, x2 ∈ B, y1, y2 ∈ B′, the following properties
hold:

(i) (1, x1) = ε(x1), (y1, 1) = ε(y1);

(ii) (y1, x1x2) = (∆op(y1), x1 ⊗ x2), (y1y2, x1) = (y1 ⊗ y2,∆(x1));

(iii) (S−1(y1), x1) = (y1, S(x1));

(iv) (fi, ej) =
δi,j
s− r ;

(v) (ω′
i, ωj) = (ω′−1

i , ωj
−1) = r〈εj ,αi〉s〈εj+1,αi〉 = r−〈εi+1,αj〉s−〈εi,αj〉,

(ω′
i
−1
, ωj) = (ω′

i, ωj
−1) = r−〈εj ,αi〉s−〈εj+1,αi〉 = r〈εi+1,αj〉s〈εi,αj〉.

It is easy to prove for λ ∈ Q that

�λ(ω′
µ) = (ω′

µ, ω−λ) and �λ(ωµ) = (ω′
λ, ωµ). (4.1)

From the definition of the co-product, it is apparent that

∆(x) ∈
⊕

0�ν�µ

U+
µ−νων ⊗ U+

ν for any x ∈ U+
µ ,

where ‘�’ is the usual partial order on Q : ν � µ if µ− ν ∈ Q+. Thus, for each i,
1 � i < n, there are elements pi(x) and p′

i(x) in U+
µ−αi

such that the component
of ∆(x) in U+

µ−αi
ωi ⊗ U+

αi
is equal to pi(x)ωi ⊗ ei, and the component of ∆(x) in

U+
αi
ωµ−αi ⊗ U+

µ−αi
is equal to eiωµ−αi ⊗ p′

i(x). Therefore, for x ∈ U+
µ , we can write

∆(x) = x⊗ 1 +
n−1∑

i=1

pi(x)ωi ⊗ ei + ς1

= ωµ ⊗ x+
n−1∑

i=1

eiωµ−αi ⊗ p′
i(x) + ς2,

where ς1 and ς2 are the sums of terms involving products of more than one ej in
the second factor and in the first factor, respectively.
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Lemma 4.2 (Benkart and Witherspoon [4, lemma 4.6]). For all x ∈ U+
ζ and all

y ∈ U−, the following hold:

(i) (fiy, x) = (fi, ei)(y, p′
i(x)) = (s− r)−1(y, p′

i(x));

(ii) (yfi, x) = (fi, ei)(y, pi(x)) = (s− r)−1(y, pi(x));

(iii) fix− xfi = (s− r)−1(pi(x)ωi − ω′
ip

′
i(x)).

Corollary 4.3. If ζ, ζ ′ ∈ Q+ with ζ �= ζ ′, then (y, x) = 0 for all x ∈ U+
ζ and

y ∈ U−
−ζ′ .

Lemma 4.4. Assume that rs−1 is not a root of unity and ζ ∈ Q+ is non-zero.

(a) If y ∈ U−
−ζ and [ei, y] = 0 for all i, then y = 0.

(b) If x ∈ U+
ζ and [fi, x] = 0 for all i, then x = 0.

Proof. Assume that y ∈ U−
−ζ and that [ei, y] = 0 holds for all i. From the definition

of M(λ) and lemma 2.2, we can find a sufficiently large λ ∈ Λ+
sl

such that the map

U−
−ζ ↪→ L(λ), u 
→ uvλ,

is injective, where vλ is a highest weight vector of L(λ). Then

Uyvλ = U−U0U+yvλ = U−yU0U+vλ = U−yvλ � L(λ)

so that Uyvλ is a proper submodule of L(λ), which must be 0 by the irreducibility
of L(λ). Thus, yvλ = 0 and y = 0 by the injectivity of the map above. We can now
apply the anti-automorphism τ of U defined by

τ(ei) = fi, τ(fi) = ei, τ(ωi) = ωi and τ(ω′
i) = ω′

i,

to obtain the second assertion.

Lemma 4.5. Assume that rs−1 is not a root of unity. For ζ ∈ Q+, the spaces U+
ζ

and U−
−ζ are non-degenerately paired.

Proof. We use induction on ζ with respect to the partial order � on Q. The claim
holds for ζ = 0, since U−

0 = K1 = U+
0 and (1, 1) = 1. Assume now that ζ > 0, and

suppose that the claim holds for all ν with 0 � ν < ζ. Let x ∈ U+
ζ with (y, x) = 0

for all y ∈ U−
−ζ . In particular, we have, for all y ∈ U−

−(ζ−αi)
, that

(fiy, x) = 0 and (yfi, x) = 0 for all 1 � i < n.

It follows from lemma 4.2(i) and (ii) that (y, p′
i(x)) = 0 and (y, pi(x)) = 0. By the

induction hypothesis, we have p′
i(x) = pi(x) = 0, and it follows from lemma 4.2(iii)

that fix = xfi for all i. Lemma 4.4 now applies, to give x = 0, as desired.

In what follows, ρ will denote the half-sum of the positive roots. Thus,

ρ = 1
2

∑

α>0

α =
n−1∑

i=1


i = 1
2 ((n−1)ε1 +(n−3)ε2 + · · ·+((n−1)−2(n−1))εn). (4.2)
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It is evident from the triangular decomposition that there is a vector-space iso-
morphism ⊕

µ,ν∈Q+

(U−
−νω

′
ν

−1) ⊗ U0 ⊗ U+
µ

∼−→ U.

This guarantees that the bilinear form which we introduce next is well defined.

Definition 4.6. Set

〈(yω′
ν

−1)ω′
ηωφx | (y1ω′

ν1

−1)ω′
η1
ωφ1x1〉 = (y, x1)(y1, x)(ω′

η, ωφ1)(ω
′
η1
, ωφ)(rs−1)〈ρ,ν〉

for all x ∈ U+
µ , x1 ∈ U+

µ1
, y ∈ U−

−ν , y1 ∈ U−
−ν1

, µ, µ1, ν, ν1 ∈ Q+, and all η, η1, φ, φ1 ∈
Q. Extend this linearly to a bilinear form 〈·, ·〉 : U × U → K on all of U .

Note that

〈(yω′
ν

−1)ω′
ηωφx | (y1ω′

ν1

−1)ω′
η1
ωφ1x1〉

= 〈yω′
ν

−1 | x1〉 · 〈ω′
ηωφ | ω′

η1
ωφ1〉 · 〈x | y1ω′

ν1

−1〉. (4.3)

So the form respects the decomposition
⊕

µ,ν∈Q+

(U−
−νω

′
ν

−1) ⊗ U0 ⊗ U+
µ

∼−→ U.

The following lemma is an immediate consequence of the above definition and
corollary 4.3.

Lemma 4.7. Assume that µ, µ1, ν, ν1 ∈ Q+. Then

〈U−
−νU

0U+
µ | U−

−ν1
U0U+

µ1
〉 = 0

unless µ = ν1 and ν = µ1.

Since U is a Hopf algebra, it acts on itself via the adjoint representation,

ad(u)v =
∑

(u)

u(1)vS(u(2)),

where u, v ∈ U and ∆(u) =
∑

(u) u(1) ⊗ u(2).

Proposition 4.8. The bilinear form 〈· | ·〉 is ad-invariant, i.e.

〈ad(u)v | v1〉 = 〈v | ad(S(u))v1〉

for all u, v, v1 ∈ U .

Proof. It suffices to assume u is one of the generators ωi, ω′
i, ei, fi. Also, without

loss of generality, we may suppose that

v = (yω′
ν

−1)ω′
ηωφx and v1 = (y1ω′

ν1

−1)ω′
η1
ωφ1x1,

where x ∈ U+
µ , y ∈ U−

−ν , x1 ∈ U+
µ1

, y1 ∈ U−
−ν1

and µ, ν, µ1, ν1 ∈ Q+.
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Case 1 (u = ωi). From the definition, ad(ωi)v = ωivω
−1
i = r〈εi,µ−ν〉s〈εi+1,µ−ν〉v

so that
〈ad(ωi)v | v1〉 = r〈εi,µ−ν〉s〈εi+1,µ−ν〉〈v | v1〉.

On the other hand, we have

ad(S(ωi))v1 = ω−1
i v1ωi = r〈εi,ν1−µ1〉s〈εi+1,ν1−µ1〉v1,

which implies that

〈v | ad(S(ωi))v1〉 = r〈εi,ν1−µ1〉s〈εi+1,ν1−µ1〉〈v | v1〉.

If 〈v | v1〉 �= 0, then we must have ν = µ1 and ν1 = µ by lemma 4.7. Thus,
µ− ν = ν1 − µ1 and 〈ad(ωi)v | v1〉 = 〈v | ad(S(ωi))v1〉.

Case 2 (u = ω′
i). We have only to replace ωi by ω′

i and interchange εi and εi+1 in
the argument of case 1.

Case 3 (u = ei). This case is similar to case 4, below, so we omit the calculation.

Case 4 (u = fi). Using lemmas 2.1 and 4.2(iii), we get

ad(fi)v = vS(fi) + fivS(ω′
i) = −vfi(ω′

i)
−1 + fiv(ω′

i)
−1

= −y(ω′
ν)−1ω′

ηωφxfi(ω′
i)

−1 + fiy(ω′
ν)−1ω′

ηωφx(ω′
i)

−1

= −y(ω′
ν)−1ω′

ηωφfix(ω′
i)

−1 + (s− r)−1y(ω′
ν)−1ω′

ηωφpi(x)ωi(ω′
i)

−1

− (s− r)−1y(ω′
ν)−1ω′

ηωφω
′
ip

′
i(x)(ω

′
i)

−1 + fiy(ω′
ν)−1ω′

ηωφx(ω′
i)

−1

= −r〈εi,η−ν〉r〈εi+1,φ+µ〉s〈εi,φ+µ〉s〈εi+1,η−ν〉yfi(ω′
ν+αi

)−1ω′
ηωφx

+ r〈εi+1,µ〉s〈εi,µ〉fiy(ω′
ν+αi

)−1ω′
ηωφx

+ (s− r)−1r−〈αi,µ−αi〉s〈αi,µ−αi〉y(ω′
ν)−1ω′

η−αi
ωφ+αipi(x)

− (s− r)−1r〈εi+1,µ−αi〉s〈εi,µ−αi〉y(ω′
ν)−1ω′

ηωφp
′
i(x).

Now

ad(S(fi))v1 = ad(−fi(ω′
i)

−1)v1 = −r−〈εi+1,µ1−ν1〉s−〈εi,µ1−ν1〉 ad(fi)v1.

We apply the previous calculation of ad(fi)v with v replaced by v1 to see that

ad(S(fi))v1 = r〈εi,η1−ν1〉r〈εi+1,φ1+ν1〉s〈εi,φ1+ν1〉s〈εi+1,η1−ν1〉y1fi(ω′
ν1+αi

)−1ω′
η1
ωφ1x1

− r〈εi+1,ν1〉s〈εi,ν1〉fiy1(ω′
ν1+αi

)−1ω′
η1
ωφ1x1

− (s− r)−1r−〈εi,µ1−αi〉r〈εi+1,ν1−αi〉s〈εi,ν1−αi〉s−〈εi+1,µ1−αi〉

× y1(ω′
ν1

)−1ω′
η1−αi

ωφ1+αipi(x1)

+ (s− r)−1r〈εi+1,ν1−αi〉s〈εi,ν1−αi〉y1(ω′
ν1

)−1ω′
η1
ωφ1p

′
i(x1).

It follows from lemma 4.7 that 〈ad(fi)v | v1〉 and 〈v | ad(S(fi))v1〉 can be non-zero
when either (a) ν + αi = µ1 and ν1 = µ, or (b) ν = µ1 and ν1 = µ− αi.
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(a) By lemma 4.2(i), (ii), we have

〈ad(fi)v | v1〉 = −r〈εi,η−ν〉r〈εi+1,φ+µ〉s〈εi,φ+µ〉s〈εi+1,η−ν〉

× (yfi, x1)(y1, x)(ω′
η, ωφ1)(ω

′
η1
, ωφ)(rs−1)〈ρ,ν+αi〉

+ r〈εi+1,µ〉s〈εi,µ〉(fiy, x1)(y1, x)(ω′
η, ωφ1)(ω

′
η1
, ωφ)(rs−1)〈ρ,ν+αi〉

= A× (y1, x)(ω′
η, ωφ1)(ω

′
η1
, ωφ)(rs−1)〈ρ,ν〉,

where

A = −(s− r)−1r〈εi,η−ν〉r〈εi+1,φ+µ〉s〈εi,φ+µ〉s〈εi+1,η−ν〉rs−1(y, pi(x1))

+ (s− r)−1r〈εi+1,µ〉s〈εi,µ〉rs−1(y, p′
i(x1)).

Similarly,

〈v | ad(S(fi))v1〉 = B × (y1, x)(ω′
η, ωφ1)(ω

′
η1
, ωφ)(rs−1)〈ρ,ν〉,

where

B = −(s− r)−1r−〈εi,µ1−αi〉r〈εi+1,ν1−αi〉s〈εi,ν1−αi〉s−〈εi+1,µ1−αi〉

× (ω′
η, ωi)((ω′

i)
−1, ωφ)(y, pi(x1))

+ (s− r)−1r〈εi+1,ν1−αi〉s〈εi,ν1−αi〉(y, p′
i(x1)).

Comparing both sides, we conclude that 〈ad(fi)v | v1〉 = 〈v | ad(S(fi))v1〉.

(b) An argument analogous to that for (a) can be used in this case.

Remark 4.9. It was shown in [4] that U is isomorphic to the Drinfel’d double
D(B, (B′)coop), where B is the Hopf subalgebra of U generated by the elements
ω±1

j , ej , 1 � j < n, and (B′)coop is the subalgebra of U generated by the elements
(ω′

j)
±1, fj , 1 � j < n, but with the opposite co-product. This realization of U

allows us to define the Rosso form R on U according to [18, p. 77]:

R〈a⊗ b | a′ ⊗ b′〉 = (b′, S(a))(S−1(b), a′) for a, a′ ∈ B and b, b′ ∈ (B′)coop.

The Rosso form is also an ad-invariant form on U , but it does not admit the
decomposition in (4.3). Rather, it has the following factorization (we suppress the
tensor symbols in the notation):

R〈xωφω
′
η(ω′

ν
−1
y) | x1ωφ1ω

′
η1

(ω′
ν1

−1
y1)〉

= R〈x | ω′
ν1

−1
y1〉 ·R〈ωφω

′
η | ωφ1ω

′
η1

〉 ·R〈ω′
ν

−1
y | x1〉. (4.4)

That is to say, the form R respects the decomposition
⊕

µ,ν∈Q+

U+
µ ⊗ U0 ⊗ (ω′

ν
−1
U−

−ν) ∼−→ U.

For (η, φ) ∈ Q×Q, we define a group homomorphism χη,φ : Q×Q → K
× by

χη,φ(η1, φ1) = (ω′
η, ωφ1)(ω

′
η1
, ωφ), (η1, φ1) ∈ Q×Q. (4.5)
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Lemma 4.10. Assume that rksl = 1 if and only if k = l = 0. If χη,φ = χη′,φ′ , then
(η, φ) = (η′, φ′).

Proof. If χη,φ = χη′,φ′ , then

χη,φ(0, αj) = r〈εj ,η〉s〈εj+1,η〉 = χη′,φ′(0, αj) = r〈εj ,η′〉s〈εj+1,η′〉.

Since r〈εj ,η〉−〈εj ,η′〉s〈εj+1,η〉−〈εj+1,η′〉 = 1, it must be that 〈εj , η〉 = 〈εj , η′〉 for all
1 � j � n. From this it is easy to see that η = η′. Similar considerations with
χη,φ(αi, 0) = χη′,φ′(αi, 0) show that φ = φ′.

Proposition 4.11. Assume that rksl = 1 if and only if k = l = 0. Then the
bilinear form 〈· | ·〉 is non-degenerate on U .

Proof. It is sufficient to argue that if u ∈ U−
−νU

0U+
µ and 〈u | v〉 = 0 for all v ∈

U−
−µU

0U+
ν , then u = 0. Choose, for each µ ∈ Q+, a basis uµ

1 , u
µ
2 , . . . , u

µ
dµ

, dµ =
dimU+

µ , of U+
µ . Owing to lemma 4.5, we can take a dual basis vµ

1 , v
µ
2 , . . . , v

µ
dµ

of
U−

−µ, i.e. (vµ
i , u

µ
j ) = δi,j . Then the set

{(vν
i ω

′
ν

−1)ω′
ηωφu

µ
j | 1 � i � dν , 1 � j � dµ and η, φ ∈ Q}

is a basis of U−
−νU

0U+
µ . From the definition of the bilinear form, we obtain

〈(vν
i ω

′
ν

−1)ω′
ηωφu

µ
j | (vµ

kω
′
µ

−1)ωη1ωφ1u
ν
l 〉

= (vν
i , u

ν
l )(vµ

k , u
µ
j )(ω′

η, ωφ1)(ω
′
η1
, ωφ)(rs−1)〈ρ,ν〉

= δi,lδj,k(ω′
η, ωφ1)(ω

′
η1
, ωφ)(rs−1)〈ρ,ν〉.

Now write u =
∑

i,j,η,φ θi,j,η,φ(vν
i ω

′
ν

−1)ω′
ηωφu

µ
j , and take v = (vµ

kω
′
µ

−1)ω′
η1
ωφ1u

ν
l

with 1 � k � dµ and 1 � l � dν and η1, φ1 ∈ Q. From the assumption 〈u | v〉 = 0
we have ∑

η,φ

θl,k,η,φ(ω′
η, ωφ1)(ω

′
η1
, ωφ)(rs−1)〈ρ,ν〉 = 0 (4.6)

for all 1 � k � dµ and 1 � l � dν and for all η1, φ1 ∈ Q. Equation (4.6) can be
written as ∑

η,φ

θl,k,η,φ(rs−1)〈ρ,ν〉χη,φ = 0

for each k and l (where 1 � k � dµ and 1 � l � dν). It follows from lemma 4.10
and the linear independence of distinct characters (Dedekind’s theorem; see, for
example, [17, p. 280]) that θl,k,η,φ = 0 for all η, φ ∈ Q and for all l and k. Hence,
we have u = 0 as desired.

5. The centre of U = Ur,s(sln)

Throughout this section we make the following assumption:

rksl = 1 if and only if k = l = 0. (5.1)

Under this hypothesis, we see that, for ζ ∈ Q,

Uζ = {z ∈ U | ωizω
−1
i = r〈εi,ζ〉s〈εi+1,ζ〉z and ω′

iz(ω
′
i)

−1 = r〈εi+1,ζ〉s〈εi,ζ〉z}. (5.2)
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We denote the centre of U by Z. Since any central element of U must commute
with ωi and ω′

i for all i, it follows from (5.2) that Z ⊂ U0. We define an algebra
automorphism γ−ρ : U0 → U0 by

γ−ρ(ai) = r−〈ρ,εi〉ai and γ−ρ(bi) = s−〈ρ,εi〉bi. (5.3)

Thus,
γ−ρ(ω′

iω
−1
i ) = (rs−1)〈ρ,αi〉ω′

iω
−1
i . (5.4)

Definition 5.1. The Harish-Chandra homomorphism ξ : Z → U0 is the restriction
to Z of the map

γ−ρ ◦π : U0
π−→ U0 γ−ρ

−−→ U0,

where π : U0 → U0 is the canonical projection.

Proposition 5.2. ξ is an injective algebra homomorphism.

Proof. Note that U0 = U0 ⊕K, where K =
⊕

ν>0 U
−
−νU

0U+
ν is the two-sided ideal

in U0 which is the kernel of π, and hence of ξ. Thus, ξ is an algebra homomorphism.
Assume that z ∈ Z and ξ(z) = 0. Writing z =

∑
ν∈Q+ zν with zν ∈ U−

−νU
0U+

ν ,
we have z0 = 0. Fix any ν ∈ Q+ \ {0} minimal with the property that zν �= 0.
Also choose bases {yk} and {xl} for U−

−ν and U+
ν , respectively. We may write

zν =
∑

k,l yktk,lxl for some tk,l ∈ U0. Then

0 = eiz − zei
=

∑

γ �=ν

(eizγ − zγei) +
∑

k,l

(eiyk − ykei)tk,lxl +
∑

k,l

yk(eitk,lxl − tk,lxlei).

Note that eiyk − ykei ∈ U−
−(ν−αi)

U0. Recalling the minimality of ν, we see that only
the second term belongs to U−

−(ν−αi)
U0U+

ν . Therefore, we have
∑

k,l

(eiyk − ykei)tk,lxl = 0.

By the triangular decomposition of U and the fact that {xl} is a basis of U+
ν , we

get
∑

k eiyktk,l =
∑

k ykeitk,l for each l and for all 1 � i < n.
Now we fix l and consider the irreducible module L(λ) for λ ∈ Λ+

sl
. Let vλ be the

highest weight vector of L(λ), and set m =
∑

k yktk,lvλ. Then, for each i,

eim =
∑

k

eiyktk,lvλ =
∑

k

ykeitk,lvλ = 0.

Hence, m generates a proper submodule of L(λ). The irreducibility of L(λ) forces
m = 0. Choosing an appropriate λ ∈ Λ+

sl
with lemma 2.2 in mind, we have

∑

k

yktk,l = 0.

Since {yk} is a basis for U−
−ν , it must be that tk,l = 0 for each k. But l can be

arbitrary, so we get zν = 0, which is a contradiction.
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Proposition 5.3. If n is even, set

z = ω′
1ω

′
3 · · ·ω′

n−1ω1ω3 · · ·ωn−1 = a1 · · · anb1 · · · bn. (5.5)

Then z is central and ξ(z) = z.

Proof. We have

eiz = r−〈ε1+ε2+···+εn,αi〉s−〈ε1+ε2+···+εn,αi〉zei = zei for all 1 � i < n.

Similarly, fiz = zfi for all 1 � i < n, so that z is central. Finally, observe that

ξ(z) = r−〈ρ,ε1+ε2+···+εn〉s−〈ρ,ε1+ε2+···+εn〉
z = z.

By introducing appropriate factors into the definition of the homomorphism �λ

in (2.2), we are able to obtain a duality between U0 and its characters. Thus, for
any λ, µ ∈ Λsl, we let �λ,µ : U0 → K be the algebra homomorphism defined by

�λ,µ(ωj) = r〈εj ,λ〉s〈εj+1,λ〉(rs−1)〈αj ,µ〉,

�λ,µ(ω′
j) = r〈εj+1,λ〉s〈εj ,λ〉(rs−1)〈αj ,µ〉.

}

(5.6)

In particular, �λ,0 is just the homomorphism �λ on U0.

Lemma 5.4. Assume that u = ω′
ηωφ with η, φ ∈ Q. If �λ,µ(u) = 1 for all λ, µ ∈ Λsl,

then u = 1.

Proof. We write η =
∑

i ηiαi and φ =
∑

i φiαi. Then ��i,0(u) = ��i,0(ω′
ηωφ) =

rAisBi = 1 for each 1 � i < n, where

Ai = 〈ε2, 
i〉η1 + · · · + 〈εn, 
i〉ηn−1 + 〈ε1, 
i〉φ1 + · · · + 〈εn−1, 
i〉φn−1,

Bi = 〈ε1, 
i〉η1 + · · · + 〈εn−1, 
i〉ηn−1 + 〈ε2, 
i〉φ1 + · · · + 〈εn, 
i〉φn−1.

It follows from assumption (5.1) that Ai = Bi = 0. It is now straightforward to see
from the definitions that, for 1 � i < n,

Ai =
i−1∑

j=1

ηj − i

n

n−1∑

j=1

ηj +
i∑

j=1

φj − i

n

n−1∑

j=1

φj = 0,

Bi =
i∑

j=1

ηj − i

n

n−1∑

j=1

ηj +
i−1∑

j=1

φj − i

n

n−1∑

j=1

φj = 0.

After elementary manipulations we have ηi = φi for all 1 � i < n and η2 = η4 =
· · · = 0 and

η1 = η3 = · · · =
2
n

n−1∑

j=1

ηj =
2
n
lη1,

where l = 1
2n if n is even and l = 1

2 (n− 1) if n is odd. Therefore, u = 1 when n is
odd, and u = zη1 , η1 ∈ Z, when n is even. Now, when n is even,

1 = �0,�1(u) = (�0,�1(z))η1 = (rs−1)2η1 .

Thus, η1 = 0, and u = 1 as desired.
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Corollary 5.5. Assume that u ∈ U0. If �λ,µ(u) = 0 for all (λ, µ) ∈ Λsl × Λsl,
then u = 0.

Proof. Corresponding to each (η, φ) ∈ Q×Q is the character on the group Λsl × Λsl

defined by
(λ, µ) 
→ �λ,µ(ω′

ηωφ).

It follows from lemma 5.4 that different (η, φ) give rise to different characters.
Suppose now that u =

∑
θη,φω

′
ηωφ, where θη,φ ∈ K. By assumption,

∑
θη,φ�

λ,µ(ω′
ηωφ) = 0

for all (λ, µ) ∈ Λsl × Λsl. By the linear independence of different characters, θη,φ = 0
for all (η, φ) ∈ Q×Q, and so u = 0.

Set

U0
� =

⊕

η∈Q

Kω′
ηω−η, (5.7)

U0
� =

{
U0

� if n is odd,
⊕

Kω′
ηωφ, if n is even,

(5.8)

where, in the even case, the sum is over the pairs (η, φ) ∈ Q×Q which satisfy the
following condition: if η =

∑n−1
i=1 ηiαi and φ =

∑n−1
i=1 φiαi, then

η1 + φ1 = η3 + φ3 = · · · = ηn−1 + φn−1,

η2 + φ2 = η4 + φ4 = · · · = ηn−2 + φn−2 = 0.

}

(5.9)

Clearly, U0
� � U0

� when n is even, as z ∈ U0
� \ U0

� .
There is an action of the Weyl group W on Ũ0 defined by

σ(aλbµ) = aσ(λ)bσ(µ) (5.10)

for all λ, µ ∈ Λ and σ ∈ W . We want to know the effect of this action on a prod-
uct ω′

ηωφ, where η =
∑n−1

i=1 ηiαi and φ =
∑n−1

i=1 φiαi. For this, write ω′
ηωφ = aµbν ,

where µ =
∑n

i=1 µiεi, ν =
∑n

i=1 νiεi, and

µi = ηi−1 + φi, νi = ηi + φi−1 (5.11)

for all 1 � i � n (where η0 = ηn = φ0 = φn = 0). Then, for the simple reflection σk,
we have

σk(ω′
ηωφ) = σk(aµbν)

= aµbνa
−〈µ,αk〉
αk

b−〈ν,αk〉
αk

= ω′
ηωφ(aka

−1
k+1)

−〈µ,αk〉(bkb−1
k+1)

−〈ν,αk〉

= ω′
ηωφ(akbk+1)−〈µ,αk〉(ak+1bk)〈µ,αk〉(b−1

k bk+1)〈µ+ν,αk〉

= ω′
ηωφ(ω′

kω
−1
k )µk−µk+1(b−1

k bk+1)µk+νk−µk+1−νk+1

= ω′
ηωφ(ω′

kω
−1
k )ηk−1−ηk+φk−φk+1(b−1

k bk+1)ηk−1+φk−1−ηk+1−φk+1 . (5.12)
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From this it is apparent that the subalgebras U0
� and U0

� of U0 are closed under
the W -action. Moreover, the W -action on U0

� amounts to

σ(ω′
ηω−η) = ω′

σ(η)ω−σ(η) for all σ ∈ W and η ∈ Q.

Proposition 5.6. We have

�σ(λ),µ(u) = �λ,µ(σ−1(u)) (5.13)

for all u ∈ U0
� , σ ∈ W and λ, µ ∈ Λsl.

Proof. First, we show that �σ(λ),0(u) = �λ,0(σ−1(u)). Since

�σi(�j),0(ak) = r〈εk,σi(�j)〉 = r〈σi(εk),�j〉 = ��j ,0(σi(ak))

and

�σi(�j),0(bk) = s〈εk,σi(�j)〉 = s〈σi(εk),�j〉 = ��j ,0(σi(bk))

for 1 � i, j < n and 1 � k � n, we see that (5.13) holds in this case. Next we argue
that �0,µ(u) = �0,µ(σ−1(u)). It is sufficient to suppose that u = ω′

ηωφ and σ = σk

for some k. Then (5.12) shows that

σk(ω′
ηωφ) = ω′

ηωφ(ω′
kω

−1
k )ηk−1−ηk+φk−φk+1 .

Now, using the definition of �0,µ, we have �0,µ(σk(ω′
ηωφ)) = �0,µ(ω′

ηωφ). Finally,
since �λ,µ(u) = �λ,0(u)�0,µ(u), the assertion follows.

We define

(U0
� )W = {u ∈ U0

� | σ(u) = u, ∀σ ∈ W} and (U0
� )W = U0

� ∩ (U0
� )W . (5.14)

Lemma 5.7. Assume that u ∈ U0 and �λ,µ(u) = �σ(λ),µ(u) for all λ, µ ∈ Λsl and
σ ∈ W . Then u ∈ (U0

� )W .

Proof. Suppose that u =
∑

(η,φ)θη,φω
′
ηωφ ∈ U0 satisfies �λ,µ(u) = �σ(λ),µ(u) for all

λ, µ ∈ Λsl and σ ∈ W . Then
∑

(η,φ)

θη,φ�
λ,µ(ω′

ηωφ) =
∑

(ζ,ψ)

θζ,ψ�
σi(λ),µ(ω′

ζωψ)

for all λ, µ ∈ Λsl. If κη,φ and κi
ζ,ψ are the characters on Λsl × Λsl defined by

κη,φ(λ, µ) = �λ,µ(ω′
ηωφ) and κi

ζ,ψ(λ, µ) = �σi(λ),µ(ω′
ζωψ),

then ∑

(η,φ)

θη,φκη,φ =
∑

(ζ,ψ)

θζ,ψκ
i
ζ,ψ. (5.15)

Each side of (5.15) is a linear combination of different characters by lemma 5.4.
Now, if θη,φ �= 0, then κη,φ = κi

ζ,ψ for some (ζ, ψ). Moreover, for each 1 � j < n,

κη,φ(0, 
j) = �0,�j (ω′
ηωφ) = (rs−1)〈η+φ,�j〉

= κi
ζ,ψ(0, 
j) = �0,�j (ω′

ζωψ) = (rs−1)〈ζ+ψ,�j〉.
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Thus, 〈η + φ,
j〉 = 〈ζ + ψ,
j〉 for all j, and so

η + φ = ζ + ψ. (5.16)

If η =
∑

j ηjαj , φ =
∑

j φjαj , ζ =
∑

j ζjαj and ψ =
∑

j ψjαj , then the equation
κη,φ(
i, 0) = κi

ζ,ψ(
i, 0) along with (5.16) yields

ηi−1 + φi−1 + φi = ζi + ψi−1 + ψi+1 and ηi−1 + ηi + φi−1 = ζi−1 + ζi+1 + ψi

(with the convention that η0 = ηn = φ0 = φn = ζ0 = ζn = ψ0 = ψn = 0). Thus,

ηi−1 + φi−1 = ηi+1 + φi+1, 1 � i < n. (5.17)

This implies that if θη,φ �= 0, then ω′
ηωφ ∈ U0

� . As a result, u ∈ U0
� .

By proposition 5.6, �λ,µ(u) = �σ(λ),µ(u) = �λ,µ(σ−1(u)) for all λ, µ ∈ Λsl and
σ ∈ W . But then u = σ−1(u) by corollary 5.5, so u ∈ (U0

� )W , as claimed.

Proposition 5.8. The image of the centre Z of U under the Harish-Chandra homo-
morphism satisfies

ξ(Z) ⊆ (U0
� )W .

Proof. Assume that z ∈ Z. Choose µ, λ ∈ Λsl and assume that 〈λ, αi〉 � 0 for some
(fixed) value i. Let vλ,µ ∈ M(�λ,µ) be the highest weight vector. Then

zvλ,µ = π(z)vλ,µ = �λ,µ(π(z))vλ,µ = �λ+ρ,µ(ξ(z))vλ,µ

for all z ∈ Z. Thus, z acts as the scalar �λ+ρ,µ(ξ(z)) on M(�λ,µ).
Using [5, lemma 2.3], it is easy to see that

eif
〈λ,αi〉+1
i vλ,µ =

(

[〈λ, αi〉 + 1]f 〈λ,αi〉
i

r−〈λ,αi〉ωi − s−〈λ,αi〉ω′
i

r − s

)

vλ,µ = 0,

where, for k � 1,

[k] =
rk − sk
r − s . (5.18)

Thus, ejf
〈λ,αi〉+1
i vλ,µ = 0 for all 1 � j < n. Note that

zf
〈λ,αi〉+1
i vλ,µ = π(z)f 〈λ,αi〉+1

i vλ,µ

= �σi(λ+ρ)−ρ,µ(π(z))f 〈λ,αi〉+1
i vλ,µ

= �σi(λ+ρ),µ(ξ(z))f 〈λ,αi〉+1
i vλ,µ.

On the other hand, since z acts as the scalar �λ+ρ,µ(ξ(z)) on M(�λ,µ),

zf
〈λ,αi〉+1
i vλ,µ = �λ+ρ,µ(ξ(z))f 〈λ,αi〉+1

i vλ,µ.

Therefore,
�λ+ρ,µ(ξ(z)) = �σi(λ+ρ),µ(ξ(z)). (5.19)

Now we claim that (5.19) holds for an arbitrary choice of λ ∈ Λsl. Indeed, if
〈λ, αi〉 = −1, then λ+ ρ = σi(λ+ ρ), and so (5.19) holds trivially. For λ such that
〈λ, αi〉 < −1, we let λ′ = σi(λ+ ρ) − ρ. Then 〈λ′, αi〉 � 0 and we may apply (5.19)
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to λ′. Substituting λ′ = σi(λ + ρ) − ρ into the result, we see that (5.19) holds for
this case also.

Since i can be arbitrary, andW is generated by the reflections σi, we deduce that

�λ,µ(ξ(z)) = �σ(λ),µ(ξ(z)) (5.20)

for all λ, µ ∈ Λsl and for all σ ∈ W . The assertion of the proposition then follows
immediately from lemma 5.7.

Lemma 5.9. z ∈ Z if and only if ad(x)z = (ı ◦ ε)(x)z for all x ∈ U , where ε : U → K

is the co-unit and ı : K → U is the unit of U .

Proof. Let z ∈ Z. Then, for all x ∈ U ,

ad(x)z =
∑

(x)

x(1)zS(x(2)) = z
∑

(x)

x(1)S(x(2)) = (ı ◦ ε)(x)z.

Conversely, assume that ad(x)z = (ı ◦ ε)(x)z for all x ∈ U . Then

ωizω
−1
i = ad(ωi)z = (ı ◦ ε)(ωi)z = z.

Similarly, ω′
iz(ω

′
i)

−1 = z. Furthermore,

0 = (ı ◦ ε)(ei)z = ad(ei)z = eiz + ωiz(−ω−1
i )ei = eiz − zei

and

0 = (ı ◦ ε)(fi)z = ad(fi)z = z(−fi(ω′
i)

−1) + fiz(ω′
i)

−1 = (−zfi + fiz)(ω′
i)

−1.

Hence, z ∈ Z.

Lemma 5.10. Assume that Ψ : U−
−µ × U+

ν → K is a bilinear map, and let (η, φ) ∈
Q×Q. There then exists u ∈ U−

−νU
0U+

µ such that

〈u | (yω′
µ

−1)ω′
η1
ωφ1x〉 = (ω′

η1
, ωφ)(ω′

η, ωφ1)Ψ(y, x) (5.21)

for all x ∈ U+
ν , y ∈ U−

−µ and (η1, φ1) ∈ Q×Q.

Proof. As in the proof of proposition 4.11, for each µ ∈ Q+ we choose an arbitrary
basis uµ

1 , u
µ
2 , . . . , u

µ
dµ

(dµ = dimU+
µ ) of U+

µ and a dual basis vµ
1 , v

µ
2 , . . . , v

µ
dµ

of U−
−µ

such that (vµ
i , u

µ
j ) = δi,j . If we set

u =
∑

i,j

Ψ(vµ
j , u

ν
i )vν

i (ω′
ν)−1ω′

ηωφu
µ
j (rs−1)−〈ρ,ν〉,

then it is straightforward to verify that u satisfies equation (5.21).

We define a U -module structure on the dual space U∗ by (x·f)(v) = f(ad(S(x))v)
for f ∈ U∗ and x ∈ U . Also we define a map β : U → U∗ by setting

β(u)(v) = 〈u | v〉 for u, v ∈ U. (5.22)

Then β is an injective U -module homomorphism by propositions 4.8 and 4.11, where
the U -module structure on U is given by the adjoint action.
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Definition 5.11. Assume that M is a finite-dimensional U -module. For each m ∈
M and f ∈ M∗, we define cf,m ∈ U∗ by cf,m(v) = f(v ·m), v ∈ U .

Proposition 5.12. Assume that M is a finite-dimensional U -module such that

M =
⊕

λ∈wt(M)

Mλ and wt(M) ⊂ Q.

For each f ∈ M∗ and m ∈ M , there exists a unique u ∈ U such that

cf,m(v) = 〈u | v〉 for all v ∈ U.

Proof. The uniqueness follows immediately from proposition 4.11. Since cf,m de-
pends linearly on m, we may assume that m ∈ Mλ for some λ ∈ Q. For

v = (yω′
µ

−1)ω′
η1
ωφ1x, x ∈ U+

ν , y ∈ U−
−µ, (η1, φ1) ∈ Q×Q,

we have

cf,m(v) = cf,m((yω′
µ

−1)ω′
η1
ωφ1x)

= f((yω′
µ

−1)ω′
η1
ωφ1xm)

= �ν+λ(ω′
η1
ωφ1)f((yω

′
µ

−1)xm).

Note that (y, x) 
→ f((yω′
µ

−1)xm) is bilinear, and (4.1) gives us

(ω′
η1
, ω−ν−λ) = �ν+λ(ω′

η1
) and (ω′

ν+λ, ωφ1) = �ν+λ(ωφ1).

Thus,
cf,m(v) = (ω′

η1
, ω−ν−λ)(ω′

ν+λ, ωφ1)f(y(ω
′
µ)−1xm),

and lemma 5.10 enables us to find uνµ ∈ U−
−νU

0U+
µ such that cf,m(v) = 〈uνµ | v〉

for all v ∈ U−
−µU

0U+
ν .

Now, for an arbitrary v ∈ U , we write v =
∑

(µ,ν) vµν with vµν ∈ U−
−µU

0U+
ν .

Since M is finite-dimensional, there is a finite set F of pairs (µ, ν) ∈ Q × Q such
that

cf,m(v) = cf,m

( ∑

(µ,ν)∈F
vµν

)

for all v ∈ U.

Setting u =
∑

(µ,ν)∈F uνµ and using lemma 4.7, we have

cf,m(v) = cf,m

( ∑

(µ,ν)∈F
vµν

)

=
∑

(µ,ν)∈F
cf,m(vµν)

=
∑

(µ,ν)∈F
〈uνµ | vµν〉 =

∑

(µ,ν)∈F
〈uνµ | v〉 = 〈u | v〉.

This completes the proof.

The category O of representations of U is naturally defined. We refer the reader
to [4, § 4] for the precise definition. All highest weight modules with weights in Λsl,
such as the Verma modules M(λ) and the irreducible modules L(λ) for λ ∈ Λsl,
belong to category O.
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Assume that M is any U -module in category O, and define a linear map Θ :
M → M by

Θ(m) = (rs−1)−〈ρ,λ〉m (5.23)

for all m ∈ Mλ, λ ∈ Λsl. We claim that

Θu = S2(u)Θ for all u ∈ U. (5.24)

Indeed, we have only to check this holds when u is one of the generators ei, fi, ωi

or ω′
i, and for them the verification of (5.24) is straightforward.

For λ ∈ Λ+
sl

, we define fλ ∈ U∗ as given by the following trace map:

fλ(u) = trL(λ)(uΘ), u ∈ U.

Lemma 5.13. Assume that λ ∈ Λ+
sl

∩ Q. Then fλ ∈ Im(β), where β is defined in
equation (5.22).

Proof. Let k = dimL(λ), and fix a basis {mi} for L(λ) and its dual basis {fi} for
L(λ)∗. We now have

fλ(v) = trL(λ)(vΘ) =
k∑

i=1

cfi,Θmi
(v).

By proposition 5.12, we can find ui ∈ U such that cfi,Θmi
(v) = 〈ui | v〉 for each i,

1 � i � k. Set u =
∑k

i=1 ui such that

β(u)(v) =
k∑

i=1

〈ui | v〉 =
k∑

i=1

cfi,Θmi
(v) = fλ(v).

Thus, fλ ∈ Im(β).

Proposition 5.14. The element zλ := β−1(fλ) is contained in the centre Z for
each λ ∈ Λ+

sl
∩Q.

Proof. Using (5.24), we have, for all x ∈ U ,

(S−1(x)fλ)(u) = fλ(ad(x)u)

= trL(λ)

(∑

(x)

x(1)uS(x(2))Θ
)

= trL(λ)

(

u
∑

(x)

S(x(2))Θx(1)

)

= trL(λ)

(

u
∑

(x)

S(x(2))S2(x(1))Θ
)

= trL(λ)

(

uS

(∑

(x)

S(x(1))x(2)

)

Θ

)

= (ı ◦ ε)(x) trL(λ)(uΘ) = (ı ◦ ε)(x)fλ(u).
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Substituting x for S−1(x) in the above, we deduce from ε ◦S = ε the relation

xfλ = (ı ◦ ε)(x)fλ.

We can write

xfλ = xβ(β−1(fλ)) = β(ad(S(x))β−1(fλ))

and

(ı ◦ ε)(x)fλ = (ı ◦ ε)(x)β(β−1(fλ)) = β((ı ◦ ε)(x)β−1(fλ)).

Since β is injective, ad(S(x))β−1(fλ) = (ı ◦ ε)(x)β−1(fλ). Since ε ◦S−1 = ε, substi-
tuting x for S(x), we obtain

ad(x)β−1(fλ) = (ı ◦ ε)(x)β−1(fλ) for all x ∈ U.

Therefore, we may conclude from lemma 5.9 that β−1(fλ) ∈ Z.

This brings us to our main result on the centre of U .

Theorem 5.15. Assume that r and s satisfy condition (5.1).

(i) If n is odd, then the map ξ : Z → (U0
� )W = (U0

� )W is an isomorphism.

(ii) If n is even, the centre Z is isomorphic under ξ to a subalgebra of (U0
� )W

containing K[z, z−1] ⊗ (U0
� )W , i.e. K[z, z−1] ⊗ (U0

� )W ⊆ ξ(Z) ⊆ (U0
� )W , where

the element z ∈ Z is defined in (5.5).

Proof. We set zλ = β−1(fλ) for λ ∈ Λ+
sl

∩Q and write

zλ =
∑

ν�0

zλ,ν and zλ,0 =
∑

(η,φ)∈Q×Q

θη,φω
′
ηωφ,

where zλ,ν ∈ U−
−νU

0U+
ν and θη,φ ∈ K. Then, for (η1, φ1) ∈ Q×Q,

〈zλ | ω′
η1
ωφ1〉 = 〈zλ,0 | ω′

η1
ωφ1〉 =

∑

(η,φ)

θη,φ(ω′
η1
, ωφ)(ω′

η, ωφ1).

On the other hand,

〈zλ | ω′
η1
ωφ1〉 = β(zλ)(ω′

η1
ωφ1) = fλ(ω′

η1
ωφ1) = trL(λ)(ω′

η1
ωφ1Θ)

=
∑

µ�λ

dim(L(λ)µ)(rs−1)−〈ρ,µ〉�µ(ω′
η1
ωφ1)

=
∑

µ�λ

dim(L(λ)µ)(rs−1)−〈ρ,µ〉(ω′
η1
, ω−µ)(ω′

µ, ωφ1).

Now we may write
∑

(η,φ)

θη,φχη,φ =
∑

µ�ν

dim(L(λ)µ)(rs−1)−〈ρ,µ〉χµ,−µ,
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where the characters χη,φ are defined in (4.5). By assumption (5.1), lemma 4.10
and the linear independence of distinct characters, we obtain

θη,φ =

{
dim(L(λ)η)(rs−1)−〈ρ,η〉 if η + φ = 0,
0 otherwise.

Hence,

zλ,0 =
∑

µ�λ

dim(L(λ)µ)(rs−1)−〈ρ,µ〉ω′
µω−µ,

and, by (5.4),

ξ(zλ) = �−ρ(zλ,0) =
∑

µ�λ

dim(L(λ)µ)ω′
µω−µ. (5.25)

Note that z = ξ(z) ∈ (U0
� )W when n is even. By propositions 5.2 and 5.8, it is

sufficient to show that (U0
� )W ⊆ ξ(Z). For λ ∈ Λ+

sl
∩Q, we define

av(λ) =
1

| W |
∑

σ∈W

σ(ω′
λω−λ) =

1
|W |

∑

σ∈W

ω′
σ(λ)ω−σ(λ). (5.26)

Remembering that, for each η ∈ Q, there exists σ ∈ W such that σ(η) ∈ Λ+
sl

∩Q,
we see that the set {av(λ) | λ ∈ Λ+

sl
∩ Q} forms a basis of (U0

� )W . Thus, we have
only to show that av(λ) ∈ Im(ξ) for all λ ∈ Λ+

sl
∩ Q. We use induction on λ. If

λ = 0, av(0) = 1 = ξ(1). Assume that λ > 0. Since dimL(λ)µ = dimL(λ)σ(µ) for
all σ ∈ W (proposition 2.3) and dimL(λ)λ = 1, we can rewrite (5.25) to obtain

ξ(zλ) = |W | av(λ) + |W |
∑

dim(L(λ)µ) av(µ),

where the sum is over µ such that µ < λ and µ ∈ Λ+
sl

∩Q. By the induction hypoth-
esis, we get av(λ) ∈ Im(ξ). This completes the proof.

Example 5.16. The centre Z of U = Ur,s(sl2) has a basis of monomials ziCj , i ∈ Z,
j ∈ Z�0, where z = ω′ω (we omit the subscript since there is only one of them),
and C is the Casimir element,

C = ef +
sω + rω′

(r − s)2 = fe+
rω + sω′

(r − s)2 .

Now

ξ(z) = z and ξ(C) =
(rs)1/2

(r − s)2 (ω + ω′).

Thus, the monomials zicj , i ∈ Z, j ∈ Z�0, where c = ω + ω′, give a basis for ξ(Z).
The subalgebra (U0

� )W consists of polynomials in a := ω′ω−1 + (ω′)−1ω = 2 av(α).
Observe that a + 2 = z−1c2 ∈ ξ(Z), but we cannot express c as an element of
K[z, z−1] ⊗ (U0

� )W . Since σ((ω′)�ωm) = (ω′)mω�, we see that (U0)W has as a basis
the sums (ω′)�ωm + (ω′)mω� for all !,m ∈ Z, and hence K[z, z−1]⊗(U0

� )W
� ξ(Z) =

(U0
� )W = (U0)W , as no conditions are imposed by (5.9).
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Appendix A.

Lemma A.1. The relations

(i) Ei,jEk,l − Ek,lEi,j = 0, for i � j > k + 1 � l + 1,

(ii) Ei,jEk,l − r−1Ek,lEi,j − Ei,l = 0, for i � j = k + 1 � l + 1,

(iii) Ei,jej − s−1ejEi,j = 0, for i > j,

hold in U+.

Proof. The equations in (i) are obvious.
For (ii), we fix j and l with j > l and use induction on i. If i = j, this is just the

definition of Ei,l from (3.1). Assume that i > j. We then have

Ei,jEj−1,l = eiEi−1,jEj−1,l − r−1Ei−1,jeiEj−1,l

= r−1eiEj−1,lEi−1,j + eiEi−1,l − r−2Ej−1,lEi−1,jei − r−1Ei−1,lei

= r−1Ej−1,lEi,j + Ei,l

by part (i) and the induction hypothesis.
To establish (iii), we fix j and use induction on i. When i = j + 1, the relation is

simply (3.2) with j instead of i. Assume that i > j + 1. We then have

Ei,jej = eiEi−1,jej − r−1Ei−1,jejei

= s−1ejeiEi−1,j − r−1s−1ejEi−1,jei

= s−1ejEi,j

by (i) and induction.

Lemma A.2. In U+,

(i) Ei,jEj,l − r−1s−1Ej,lEi,j + (r−1 − s−1)ejEi,l = 0, for i > j > l,

(ii) Ei,jEk,l − Ek,lEi,j = 0, for i > k � l > j.

Proof. The following expression can be easily verified by induction on l:

Ei,jEj,l − r−1s−1Ej,lEi,j + r−1Ei,lej − s−1ejEi,l = 0, i > j > l. (A 1)

We claim that
Ej+1,j−1ej − ejEj+1,j−1 = 0. (A 2)
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Indeed, we have ejEj,j−1 = s−1Ej,j−1ej as in (3.3), and using this we get

Ej+1,jEj,j−1 − r−1s−1Ej,j−1Ej+1,j

= ej+1ejEj,j−1 − r−1ejej+1Ej,j−1 − r−1s−1Ej,j−1ej+1ej + r−2s−1Ej,j−1ejej+1

= s−1ej+1Ej,j−1ej − r−1ejej+1Ej,j−1 − r−1s−1Ej,j−1ej+1ej + r−2ejEj,j−1ej+1

= s−1Ej+1,j−1ej − r−1ejEj+1,j−1.

On the other hand, we also have, from (A 1),

Ej+1,jEj,j−1 − r−1s−1Ej,j−1Ej+1,j = s−1ejEj+1,j−1 − r−1Ej+1,j−1ej ,

such that

(r−1 + s−1)Ej+1,j−1ej − (r−1 + s−1)ejEj+1,j−1 = 0.

Since we have assumed that r−1 + s−1 �= 0, this implies (A 2).
Now to demonstrate that

Ei,jek − ekEi,j = 0, i > k > j, (A 3)

we fix k, and assume first that j = k−1. The argument proceeds by induction on i.
If i = k+ 1, then the expression in (A 3) becomes (A 2) (with k instead of j there).
When i > k + 1,

Ei,k−1ek = eiEi−1,k−1ek − r−1Ei−1,k−1ekei

= ekeiEi−1,k−1 − r−1ekEi−1,k−1ei = ekEi,k−1.

For the case j < k − 1, we have by induction on j,

Ei,jek = Ei,j+1ejek − r−1ejEi,j+1ek

= ekEi,j+1ej − r−1ekejEi,j+1

= ekEi,j ,

so that (A 3) is verified.
As a consequence, the relations in part (i) follow from (A 1) and (A 3), while

those in (ii) can be derived easily from (A 3) by fixing i, j and k and using induction
on l.

Lemma A.3. The relations

(i) Ei,jEk,j − s−1Ek,jEi,j = 0, for i > k > j,

(ii) Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l = 0 for i > k > j > l,

hold in U+.
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Proof. Part (i) follows from lemmas A.1(iii) and A.2(ii). For (ii), we apply induction
on l. When l = j − 1, part (i), and lemmas A.1(ii) and A.2(ii) imply that

Ei,jEk,j−1

= Ei,jEk,jej−1 − r−1Ei,jej−1Ek,j

= s−1Ek,jEi,jej−1 − r−1Ei,jej−1Ek,j

= r−1s−1Ek,jej−1Ei,j + s−1Ek,jEi,j−1 − r−2ej−1Ei,jEk,j − r−1Ei,j−1Ek,j

= r−1s−1Ek,jej−1Ei,j + s−1Ek,jEi,j−1 − r−2s−1ej−1Ek,jEi,j − r−1Ek,jEi,j−1

= r−1s−1Ek,j−1Ei,j + (s−1 − r−1)Ek,jEi,j−1.

Now assume that l < j−1. Then Ei,jel = elEi,j and Ek,jel = elEk,j by lemma A.1(i)
and so, by lemma A.1(ii), we obtain

Ei,jEk,l = Ei,jEk,l+1el − r−1Ei,jelEk,l+1

= r−1s−1Ek,l+1elEi,j + (s−1 − r−1)Ek,jEi,l+1el

− r−2s−1elEk,l+1Ei,j − r−1(s−1 − r−1)elEk,jEi,l+1

= r−1s−1Ek,lEi,j + (s−1 − r−1)Ek,jEi,l

by the induction assumption.

Lemma A.4. In U+,

Ei,jEi,l − s−1Ei,lEi,j = 0, i � j > l. (A 4)

Proof. First consider the case i = j. If l = i − 1, the above relation is merely the
defining relation in (3.3). Assume that l < i− 1. By induction on l, we have

eiEi,l = eiEi,l+1el − r−1eielEi,l+1

= s−1Ei,l+1elei − r−1s−1elEi,l+1ei

= s−1Ei,lei.

When i > j, by induction on j and lemma A.2(ii), we get

Ei,jEi,l = Ei,j+1ejEi,l − r−1ejEi,j+1Ei,l

= Ei,j+1Ei,lej − r−1s−1ejEi,lEi,j+1,

= s−1Ei,lEi,j+1ej − r−1s−1Ei,lejEi,j+1

= s−1Ei,lEi,j .

The proof of theorem 3.1 is now complete because we have

(1) ⇐⇒ lemma A.1(ii);
(2) ⇐⇒ lemma A.1(i) and lemma A.2(ii);
(3) ⇐⇒ lemma A.1(iii), lemma A.3(i), and lemma A.4;
(4) ⇐⇒ lemma A.2(i) and lemma A.3(ii).
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