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Abstract 

Compressed Sensing Based Block 

Type Multi-User Detection for 

Sporadic IoT Communications

ZHANG GUIYONG 

Department of Electrical and Computer Engineering 

The Graduate School 

Seoul National University 

 Over the last decade, a significant opportunity for wireless networks 

has been recognized as the Internet-of-Things (IoT). IoT is a massive 

device-interconnected platform that enables seamless communications 

among objects. Recently, a variety of diverse IoT applications have 

been developed to improve the human life. However, among those 

applications there are still many major challenges, such as the 

massive access issue (MAI) and coverage. In this dissertation, we 

study the MAI in massive IoT applications. By exploiting the block 

sparsity nature of sporadic IoT communications, we propose a 
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compressive sensing (CS) based block type multi-user detection (CS-

BT-MUD) algorithm to address the challenge of MAI. In particular, our 

algorithm employs a decoupling operation to deal with complex-valued 

data, which enable to solve complex-valued problems via conventional 

CS algorithms. Based on two types of data traffic models, numerical 

evaluations demonstrate that our proposed CS-BT-MUD algorithm is 

very effective in addressing the MAI and thus offers benefits to block 

type multi-user detection in IoT communications. 

Keywords: Compressive sensing (CS), Internet-of-things (IoT), 

wireless networks, massive access issue (MAI). 

Student Number: 2015-22137  
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Chapter 1

INTRODUCTION

1.1 Internet-of-Things (IoT): Concept and Current Issue

Recently, more and more attention has been attracted to enhance interconnections

among a wide variety of objects. The concept of Internet of Things (IoT) is in the

spotlight [1]. The IoT is a generalized platform for all physical objects, machines, and

devices to exchange information. Accompany with the concept, emerging applications

of IoT include remote metering, wearable devices, health-care, smart cities, and many

more are coming to our sight. Due to the wide range of applications, over 50 billions

of objects are expected to be connected by the year 2020 [2]-[3].

Typically, IoT applications are classified as massive IoT and mission-critical IoT

(see Figure 1) [4]. Massive IoT refers to the circumstances where a huge amount of

small data packets transmit infrequently on a regular basis. Hence, the requirements

for massive IoT are characterized by a massive number of sensor nodes (e.g., 106 -

107 devices/km2), wide coverage, low energy consumption (e.g., battery life of more

than ten years), and cost-efficient devices (e.g., blow 10 dollars). Mission-critical IoT

is known as the circumstances where data packets transmit without error and achieve a

very low latency. For mission-critical IoT applications, due to the key requirement for

reliability (e.g., 10−9 packet error rate) and latency (e.g., one msec end-to-end latency),
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Figure 1.1: Massive IoT and misson-critical IoT

data rate and accuracy for information sending are much more important.

For practical massive IoT applications, a huge number of sensor nodes access base

station simultaneously. Thus, an important issue is massive access issue (MAI). How-

ever, current LTE system is inefficient to tackle this issue, since connection-established

approaches in LTE often lead to HARQ and signaling overhead. With increased re-

transmission times, the signaling overhead and delay will increase dramatically. In

order to support massive access, physical layer technologies should be re-evaluated

and redesigned. In fact, many recent efforts have been made to improve the early ver-

sion of the IoT system. In particular, a variety of physical layer techniques relying on

the unlicensed spectrum and the licensed spectrum respectively have been proposed. In

the unlicensed spectrum, new proprietary radio technologies (e.g., SigFox and LoRa)

have been developed [5]. The main purpose of these techniques is to meet the require-

ment of long range and the high reliability for low-end sensor segments. On the other

hand, licensed band technologies have been developed under the umbrella of 3GPP

standardized systems [6]-[9]. Evolutions in 3GPP, including MTC, enhanced MTC
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(eMTC) and narrow-band IoT (NB-IoT), aim to provide enhancements in coverage,

device cost and signaling overhead [10]-[11] .

1.2 Physical Layer Technologies for IoT

In this part, we will introduce the state of the art physical layer technologies de-

ployed both in unlicensed and licensed band. For unlicensed band, Sigfox and Lora

will be introduced with massive access issue (MAI). As for licensed band, we will

give a brief introduction for recent 3GPP standardization and current status in IoT.

1.2.1 Ultra Narrow Band (UNB)

SigFox, a technology based on UNB and RF-TDMA, enables the support of mas-

sive number of devices and long range communications. The UNB allows the receiver

to mitigate the effect of collision in conjugate with random access strategy. Using

extremely narrow bandwidth of 100 Hz, data are transmitted with binary phase-shift

keying (BPSK) with very low throughput for high reliability. Note that the power spec-

tral density (PSD) of UNB is much higher than other transmission schemes (e.g., ultra

wide band transmission and spread spectrum) . Thus, the SigFox can support very long

communication range (e.g., 10 kilometers in urban area) in environments with severe

signal attenuation [12].

Along with UNB, RF-TDMA is a random access scheme where carrier frequency

and time slots are randomly selected in a continuous interval. For each message, we

allow the transmissions up to three times with random frequency hopping (see Fig-

ure 1.2). Thus, complete collision probability dramatically decreases, although partial

overlapping issue still exists with low probability.

3



Figure 1.2: RFTDMA in time and frequency domain in SigFox

1.2.2 Chirp Spread Spectrum (CSS)

The CSS is a spread spectrum modulation technique that encodes information by

using linear frequency chirp pulses. Since the chirp pulse is a signal that varies in fre-

quency over time, the frequency of the chirp signal varies from low to high frequency

(up-chirp) or from high to low frequency (down-chirp) (see Figure 1.3).

LoRa uses a CSS technology with a wideband spectrum equal to or more than

125 kHz. To reduce interference, LoRa exploits spreading effects through continuously

varying the carrier frequency with multiple spreading factors, while direct-sequence

spread spectrum (DSSS) takes advantages of pseudo-random sequence [5]. We note

that two devices cannot use the same spreading factor at the same time, the interference

issue can be solved.
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Figure 1.3: Overview of chirp spread spectrum technology of LoRa

1.2.3 Machine-type Communications (MTC)

Machine-type Communications (MTC) is the first trial to support “light version” of

the LTE system which has been released with 3GPP Rel. 8. Accompany with concept,

the least capable device category called Cat. 1 is introduced. The device can provide a

peak data rate up to 10 Mbps for downlink and 5 Mbps for uplink with 20 MHz system

bandwidth. But for stringent IoT requirements, such as long battery life, low cost, and

extended coverage, another enhanced device category eMTC has been released (called

Cat. M) in Rel. 13 [13]-[14]. eMTC has been made with the aim of achieving even

lower complexity. Some key distinct features of Cat. M devices are as follows:

• System bandwidth is reduced from 20 MHz to 1.4 MHz for both uplink and

downlink, which helps achieve a low-cost target.
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• Maximum transmit power will be reduced to 20 dBm, which is less than the

transmission power of Cat. 0 device (i.e., 23 dBm).

• Enhanced PSM is introduced to improve the battery life of the device with a

much longer sleep duration.

However, reducing the maximum transmit power will lead to coverage shortage in the

uplink. Also, with 1.4 MHz bandwidth transmission, frequency diversity gain cannot

be used for both downlink and uplink transmissions (e.g., 1-2 dB degradation). To

overcome these degradations, coverage enhancement techniques, such as repetition,

power boosting, and retransmission, have been employed for various physical chan-

nels. While such coverage enhancement techniques require additional resources (e.g.

time subframe), which are not feasible for mission-critical IoT applications. Further-

more, for dense deployment of MTC devices, both the system bandwidth and the cost

are still needed to reduced substantially.

1.2.4 Narrow Band-IoT (NB-IoT)

NB-IoT has been initiated by 3GPP with new features to specify the physical layer

for cellular IoT. Based on a great extension on a non-backward-compatible variant of

LTE, NB-IoT has improved latency and provided support for massive devices. In or-

der to achieve backward compatibility, NB-IoT has been designed to use 180 kHz RF

bandwidth. For downlink transmission, OFDMA with either 15 kHz or 3.75 kHz sub-

carrier spacing will be supported for narrower bandwidth transmission. For the uplink,

two options are suggested: One is the frequency division multiple access (FDMA) with

Gaussian minimum shift keying (GMSK) modulation, while the other is single-carrier

frequency division multiple access (SC-FDMA) that includes single-tone transmission

as a special case of SC-FDMA for enhanced coverage [11]. NB-IoT is designed on pur-

pose to co-exist and interwork with LTE, which provides great deployment flexibility

in the following three scenarios (see Figure 1.4):
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(a) stand-alone mode (b) in-band mode

(c) guard-band mode

Figure 1.4: NB-IoT carrier deployment scenarios

i) Standalone mode: The spectrum currently used by GERAN1 systems is utilized

as a replacement of one or more GSM carriers.

ii) In-band mode: Resources can be deployed within a normal LTE carrier.

iii) Guard-band mode: Resources also can be deployed in a LTE carrier’s guard-band.

Note that, in the guard-band mode, the carrier will be placed in the guard-band between

two LTE carriers. Assume that the LTE system bandwidth is 10 MHz. Then the guard-

band between two LTE carriers should be given at least 1 MHz without affecting LTE

carriers.

1.3 Compressive Sensing (CS) Recovery

In this part, we will first introduce two classical compressive sensing based algo-

rithms: the orthogonal matching pursuit (OMP) algorithm and the simultaneous or-

1GERAN is an abbreviation for Global System for Mobile Communications (GSM) Enhanced Data

rates for GSM Evolution (EDGE) radio access network. The standards for GERAN are maintained by

the 3GPP [11].
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thogonal matching pursuit (SOMP) algorithm. Afterwards, we will show how these

algorithms can be employed to address the MAI in IoT communications in Chapter 2.

Before preceding, we give a brief introduction for common notations which are

used in this thesis. Matrices and vectors are denoted by using upper-case and lower-

case boldface letters respectively. Also, (·)T , (·)−1 and (·)+ are defined as transpose,

matrix inversion, Moore-Penrose matrix inversion. |T | denotes total number of ele-

ments in a set T .

1.3.1 Single Vector Model

In signal processing literature, recovery of high-dimensional sparse signal from

a small number of linear measurements is a fundamental problem. We consider the

system model

y = Φx+n, (1.1)

where y∈Rm is the measurement vector, Φ∈Rm×K is the measurement/sampling ma-

trix and n∈Rm is the measurement error. The support of vector vector x=(x1, ...,xm)∈

Rm is defined to be the set supp(x) = {l : xl 6= 0}. In particular, x is said to be K-sparse

if |supp(x)| ≤ K.

The OMP algorithm can be used to recover the support of K-sparse signal x un-

der the system model in (1.1). Recovery of x is also called single measurement vector

(SMV) recovery in CS literature. OMP is an iterative greedy algorithm that selects at

each step the column of Φ which is most correlated with the current residuals. Af-

ter that, this column is added into the set of selected columns. Then, the residuals

will be updated by projecting the observations y onto the linear space spanned by the

columns that have already been selected. The detailed steps of the OMP algorithm are

given in Algorithm 1. Assume the columns of Φ are normalized so that ||Φi||2 = 1 for

i = 1,2, · · · ,K. For any subset D ⊆ {1,2, ...,K}, denote by Φ(D) the submatrix of Φ

consisting of the columns Φi with i ∈ D. A key component of OMP is the stopping

rule which depends on the noise structure.
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Algorithm 1 Original Orthogonal Matching Pursuit (OMP) [15]
Input: measurement y ∈ Rm, measurement matrix Φ ∈ Rm×K , Sparsity level s

Output: Index set D

Initialization: r← y, Φ(d0)← /0, i = 1.

1: Find the variable Φti , that solves the maximization problem:

ti← argmax
t
|Φ′

tri−1|

2: Update index set di = di−1∪ ti

3: Projection onto span (Φ(di)):

Pi←Φ(di)(Φ(di)
′
Φ(di))

−1Φ(di)
′

4: Update ri = (I−Pi)y

5: If ri = 0, stop. Otherwise, i← i+1

6: return index set D.

1.3.2 Multiple Vector Model

Since the original OMP algorithm has been introduced as a solution for single mea-

surement vector (SMV) recovery problems. For multiple measurement vector (MMV)

problems, we introduce an algorithm called the Simultaneous OMP (SOMP) algo-

rithm. We define a similar system model as

Y = ΦX+N. (1.2)

where the measurement matrix Y∈Rm×K with Y = [y1, · · · ,yK], the matrix X∈RK×K

with X= [x1, · · · ,xK] and the measurement error matrix N∈RK×K . Since the measure-

ments are m×K matrix, this system is no longer a SMV problem and called MMV

problem. To distinguish with OMP system model, Φ is seen as a dictionary matrix

whose columns {φ j} j∈K are the atoms of the associated dictionary.

SOMP is a greedy algorithm that provides approximate solutions to the joint sup-

port recovery problem by successively picking atoms from Φ to simultaneously ap-

proximate the K measurement vectors y ∈ Rm.
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Algorithm 2 Simultaneous Orthogonal Matching Pursuit (SOMP) [16]
Input: Y ∈ Rm×K ,Φ ∈ Rm×K , Sparsity s≥ 1.

Output: S.

Initialization: R(0)← Y and S← /0.

1: t← 0

2: while t < s do

3: Determine the atom of Φ to be included in the support:

jt ← argmax j(||R(t)φ j||1)

4: Update the support: St+1← St ∪{ jt}

5: Projection of each measurement vector onto span (ΦSt+1):

Y(t+1)←ΦSt+1Φ
+
St+1

Y

6: Projection of each measurement vector onto span (ΦSt+1)
⊥:

R(t+1)← Y−Y(t+1)

7: t← t +1

8: end while

9: return Ss {Recovered support}

Now, we give a detailed explanation for the procedures of the SOMP algorithm. We

denote the t-th residual as R(t) and P(t) is the projector onto the orthogonal complement

of span (ΦSt ). Based on the maximum correlation computation (Step 3), we choose the

atom to update residual (Step 4). Where r(t)k refers to the k-th column of R(t)) since

||(Rt)T
φ j||1 =

K

∑
k=1
|〈φ j,r

(t)
k 〉|. (1.3)

Then the original signal Y is projected onto the orthogonal component of span (ΦSt+1)

(Steps 5 and 6) [16].
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1.4 Dissertation Outline

In this paper, we aim at investigating the nature of signal sparsity caused by spo-

radic IoT communications and apply modified compressive sensing based algorithm

to solve corresponding block type MUD problem at BS side. Our contributions are

proposing a CS based algorithm for addressing the MAI and investigating practical

data traffic models for massive IoT applications. Using numerical evaluation results,

we also provide potential solutions to massive access in IoT communications.

The rest of the dissertation is divided into four major parts. In Chapter 2, we will

introduce the concept and system model in for massive access in IoT communication,

and investigate single type and block type CS-MUD problem in Section 2.1 and 2.2

respectively. Along with problem statement, we also present the how these problems

could be solved by our proposed CS based algorithm. Then, we give our proposed

CS-BT-MUD algorithm in Section 2.3 and some analysis in Section 2.4.

In Chapter 3, numerical evaluations are presented with detailed analyses. We in-

troduce the simulation parameters in Section 3.1, The BER performance for two data

traffic models are given in Section 3.2 and 3.3. System load ratio discussion is given in

Section 3.4. Then, we defined a new concept as reconstruction error for further analysis

in Section 3.5.

Chapter 4 gives our final conclusion.
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Chapter 2

SYSTEM MODEL AND ALGORITHMS

1X 2X MX

Figure 2.1: System model for massive access

In massive IoT application scenarios, such as smart home and smart agriculture,

a huge number of sensor nodes are deployed in a fixed area. These sensor nodes will

monitor, store and transmit the records of temperature and humidity. For some practical

cases, the sensor node only needs to send the data when the temperature or humidity

changes a lot. This means that not all the sensor nodes will transmit data all the time.

In a certain period, only a few sensor nodes will be activated. Then, the status of sensor

node will keep a approximate stable trend day by day. For convenience, we assume the
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activity of the sensor nodes as a sporadic process. Throughout the thesis, the assump-

tion is based on massive access system model in Figure 2.1. A set of K sensor nodes

sporadically send data to a base station (BS). The features of sporadic transmission is

described by using a statistic data traffic model with the activity probability pa. We

also assume pa is same for all nodes at same time point t. Consequently, the probabil-

ity of the sensor to keep silent is 1− pa. In practical massive IoT application, the value

of pa is assumed to be extremely small with pa� 1.

Among massive IoT applications, the data traffic source can be described by dif-

ferent statistic traffic models. For sporadic IoT communication scenario, the Bernoulli

traffic model and Poisson-Zeta (PZ) traffic model will be considered. For detailed dis-

cussions on statistic data traffic model will be introduced in the next part.

Simply speaking, Bernoulli traffic model is a well-known model which follows

bernoulli distribution at time point t with activity probability pa for each sensor node.

While Poisson-Zeta traffic model PZ[λ ,gl] is a discrete time ON/OFF process, where

the number of activated sensors at each time point t is given by a poisson distribution

with mean λ . For time axis, the duration l of each activity just follows Zeta distribution

with probability gl .

Generally, we formulate the system model as (2.3). In order to simplified the for-

mulation, the sensor data will be expressed as vector form. Assume x1, x2, · · · ,xK1 are

defined as data generated by sensor node 1, 2 and K at time point t1. Then, the corre-

sponding channel state can be denoted as h1, h2 and hK . We also take the spreading

factor into consideration by using a chip sequence sk with length Ns, where k denotes

the corresponding user with k = 1,2, · · · ,K. This means that after spreading by using

this sequence we could map the modulated signal into Ns subcarriers. Then, the re-

ceived signal at the BS side can be simply expressed as

13





y1 = s11h1x1 + s21h2x2 + · · ·+ sK1hKxK ,

y2 = s12h1x1 + s22h2x2 + · · ·+ sK2hKxK ,
...

yNs = s1Nsh1x1 + s2Nsh2x2 + · · ·+ sKNshKxK .

(2.1)

where


y1
...

yNs

=


s11
...

sK1

· · ·
. . .

· · ·

s1Ns

...

sKNs


T

·


h1

0

0

0

0

h2

0

0

0

0
. . .

· · ·

0

0
...

hK

 ·


x1

x2
...

xK


.

(2.2)

Based on the above equations, the formulation can be arranged in a general form

y = SHx. (2.3)

where y ∈ CNs is the received signal, S ∈ CNs×K is the spreading code matrix, H ∈

CK×K is the channel matrix and X ∈ CK is the sensor data. Next, we will show how

this formulation could be extended to single type CS-MUD and block type CS-MUD

problem .

2.1 Single Type CS-Multi-User Detection (MUD) Problem

Recall the system model in Figure 2.1, where a set of K sensor nodes sporadi-

cally transmitting data to a BS. Based on statistic data traffic model, the transmitted

data from sensor nodes can be expressed by using a matrix X with dimension K×M.

Among them, the element in each row denotes transmitted data from the k-th sensor

node, where k = 1,2, · · · ,K. While for the element in each column denotes the trans-

mitted data at consecutive time symbol m, where m = 1,2, · · · ,M.

Mathematically, we represent the status of the sensor data by using two kinds of

elements that zero and one. One denotes the sensor node is activated, zero is defined
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for silent sensor node. Then, the transmitted sensor data matrix can be converted into

a 0-1 matrix. Since we assume the activity probability for each sensor is extremely

small, the sparsity is guaranteed. For sensor activity detection, we can use CS recovery

algorithms at BS side.

For subcarrier deployment, we consider the NB-IoT scenario. The subcarriers are

placed within the coherence bandwidth of the channel for each sensor. So that each sen-

sor experiences flat fading. Based on this assumption, it is reasonable to avoid channel

estimation.

Another advantage for allocating subcarriers within the coherence bandwidth is

that it will save spectrum resource. As we introduced in NB-IoT part, NB-IoT appli-

cation will be deployed in ultra narrow band with low data rate.

2.1.1 Procedures for Sensor Data Transmission

Figure 2.2: Data processing at sensor side

The transmitted signal for a sensor node is denoted as xk(t) at time slot t , where k

denotes the sensor node with k = 1,2, · · · ,K. And K is total number of sensor nodes.

For modulation step, we use DPSK to modulate the data from active sensor nodes.

Then, these modulated symbols from active sensor nodes can be spread by using a chip

sequence sk ∈ CNs with length Ns. This allows one to one mapping between spread

codes and the number of subcarriers. We can see the total procedures in Figure 2.2.

Then, it is more practical to allocate more than K sensor nodes to Ns subcarriers. Thus,

we define system load ratio as θ = K
Ns

. The definition of system load ratio reflects the

mapping degree between the number of input signal and the number of subcarriers.

Also, we find that the value of system load ratio should maintain in a reasonable range.
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2.1.2 Processing for Received Sensor Data

Above, we assume that all subcarriers are deployed within the coherence band-

width of the channel of each sensor node. After receiving the uplink signal, the BS

needs some operations such as CP removing and Discrete Fourier Transform (DFT).

Based on (2.1) and (2.2), we make an extension with the as follows:

y11 = s11h11x11 + s21h22x21 + ...+ sK1hKKxK1,

y21 = s12h11x11 + s22h22x21 + ...+ sK2hKKxK1,
...

yNs1 = s1Nsh1x11 + s2Nsh2x21 + ...+ sKNshKKxK1.

(2.4)

Then, the received signal Y ∈ CNs×M in frequency domain can be written as

Y = SHX+N. (2.5)

Specifically

Y =

S︷ ︸︸ ︷
s11
...

sK1

· · ·
. . .

· · ·

s1Ns

...

sKNs


T

·

H︷ ︸︸ ︷
h11

0

0

0

0

h22

0

0

0

0
. . .

· · ·

0

0
...

hKK

 ·

X︷ ︸︸ ︷
x11

x21
...

xK1

· · ·

· · ·
. . .

· · ·

x1M

x2M
...

xKM

+N.

(2.6)

To make the formulation clear, we have a detailed description in (2.6). Here the

matrix X ∈ RK×M is the sensor data matrix. From the dimension, we note that each

column carries data from K sensor nodes. Each row denotes the sensor data from k-th

node. Based on previous assumption that activity probability for sensor node pa �

1, only few sensor data will transmit data at time point t. Mathematically, we can

formulate activity status of the sensor nodes by using 0-1 matrix X. Thus, there are

only a few non-zero elements in each row and other elements are zeros. This supports

the sparsity of X.
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The matrix H ∈ CK×K is a diagonal matrix containing the corresponding channel

conditions,

H = diag{h}. (2.7)

where h = [h1, . . . .,hk, . . . .,hK ]
T represents fading conditions for each sensor node k.

Here the matrix S ∈ CNs×K is spreading factor which reflects the mapping relations

for subcarriers. N denotes the additive white Gaussian noise (AWGN) matrix. From

(2.5), we need recover K×M unknown symbols by using Ns×M measurements. Since

Ns ≤ K, this is a kind of underdetermined system. Then, the CS algorithm can applied

to solve the problem if the sparsity of X can be guaranteed.

2.2 Block Type CS-MUD Problem

In this part, we give detailed analysis for block type CS-MUD problem. Based on

previous single type CS-MUD case, this problem is an extension case. To distinguish

with single type CS-MUD case, the system model formulation for block type CS-MUD

problem could be expressed as

Ỹ = S̃H̃X̃+ Ñ. (2.8)

We will discuss the dimension of each matrix in next part. In practical massive IoT

application, we always take the bandwidth efficiency into consideration. In order to

improve the spectrum efficiency, we allow an overlapped manner for subcarrier spac-

ing. Thus, the discussion for block type CS-MUD will be given with non-overlapped

and overlapped cases.

2.2.1 Non-overlapped Case

We assume the modulated data are spaced within subcarriers in a non-overlapped

manner (see Figure 2.3). The transmitted data matrix is enlarged with X̃ ∈R(Nw·Kw)×M.

While Kw is the number of sensor nodes in block w and w is the total number of blocks.
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Figure 2.3: Block type CS-MUD with non-overlapped manner

The kth
w row also denotes the sensor data from the kth

w node. The channel matrix H̃ ∈

C(Nw·Kw)×(Nw·Kw) is extended with corresponding channel conditions for each sensor

node.

H̃ = diag{[hT
1 , . . . ,h

T
w, . . . ,h

T
Nw
]T}. (2.9)

Ñ is the extended AWGN matrix.

Then, we note matrix S̃ ∈ CNw·Ns×Nw·Kw reflects the spreading and overlapped pat-

terns in subcarriers. It is interesting to find a proper overlapped pattern value for this

system. From Figure 2.3, S̃ is approximate block diagonal matrix. Among them, we

can decouple this system as multiple single type CS-MUD system given above.

Obviously, block type CS-MUD problem can be seen as Multiple Measurement

Vector (MMV) problem in CS literature. We can apply CS algorithms to recover the

block type sensor data matrix X̃.

2.2.2 Overlapped Case

We have the same assumptions as in Section 2.1. In contrast to non-overlapped

case, we allow the appearance of overlapped pattern in spreading matrix S̃ and Nq is the

overlapped pattern value. That means a pair of adjacent sub-blocks in spreading matrix
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Figure 2.4: Block type CS-MUD with overlapped manner

can share Nq subcarriers for each block. To make it clear, we can see in Figure 2.4.

Then, the dimension of spreading matrix is S̃∈C[Nw·Ns−(Nw−1)Nq]×Nw·Kw which allowing

the overlapped pattern in each sub-block. We denote each sub-block as Sw, where 1 6

w 6 Nw. The dimension of received signal becomes Ỹ ∈ C[Nw·Ns−(Nw−1)Nq]×M. Finally,

we achieve frequency saving with Nq in each block.

Because the overlapped case is a special extension on non-overlapped case, they

will share the same property for matrix X̃ and H̃. Then, the problem can also be con-

verted into MMV problem in CS literature.

Generally speaking, both non-overlapped and overlapped cases are all block (pat-

tern) reconstruction problems. In [17], Group-OMP based algorithm has been investi-

gated for pattern reconstruction problem. While we will give a different view on the

block type activity detection problem by using modified CS based algorithm.

2.3 The CS-BT-MUD Algorithm

As we know, either the OMP or SOMP algorithm is often used in the real-number

field. In our massive IoT scenario, however, the original signals are expressed in

complex-valued form. Before performing the conventional OMP or SOMP algorithm,
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we need an appropriate pre-processing part to deal with the complex-valued data. The

key idea is to use a reshape operation, which leads to a modified SOMP algorithm. See

Algorithm 3.

Algorithm 3 CS-BT-MUD Algorithm
Input: measurement matrix Y ∈ Cm×K , Dictionary Φ ∈ Cm×n, Sparsity s≥ 1.

Output: X̃,S.

Initialization: R(0)← Y and S← /0.

1: Decouple Y and Φ:

Yd← Decouple(Y), Φd ← Decouple(Φ)

2: Reshape Yd and Φd :

Yr← Reshape(Yd), Φr← Reshape(Φd)

3: Q← diag(q1, ...,qK)

4: The columns of Yr are weighted beforehand:

Yr← YrQ

5: Apply the regular SOMP algorithm:

S← SOMP(Yr,Φ,s)

6: return S,Xest

7: Transform Xest:

X̃← Xest

8: return X̃

end

We give a detailed analysis for the procedures of our proposed algorithm. Gen-

erally, we divide the procedure into three parts, which are called decouple, reshape,

and transform, respectively. In the decouple part, the general purpose is to enable con-

ventional CS algorithms to process complex-valued signals. Specifically, the measure-

ments Y and dictionary Φ are decoupled into their real and imaginary parts as follows:

Yd =

 R{Y}

I {Y}

 and Φd =

 R{Φ}

I {Φ}

−I {Φ}

R{Φ}

 (2.10)
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where R{·} and I {·} are the real and imaginary operators, respectively. We note that

the structure of the Φd is slightly different from Y. The reason for this structure is to

match the dimension with Yd. Thus, by operation SOMP algorithm, we could achieve

the recovered signal Xest with real part Xr and imaginary part Xi.

Xest =

 Xr

Xi


.

(2.11)

In the reshape part, the main target is converted sensor data matrix from sporadic

IoT communication into a row shared common support structure. This operation will

make it possible for the SOMP algorithm to process complex data. Let xi denote the

i-th column of X with i = 1,2, · · · ,2n. For sporadic IoT communication, if the duration

t = n, the reshape operations is done as follows:

Xr =

 x1

xn+1

· · ·

· · ·

xn

x2n


,

(2.12)

which, together with decouple and reshape operation, allows us to recover the expected

signal matrix by using (2.10), (2.11), (2.12).

Finally, in the transform part, we will transform the results given by SOMP al-

gorithms. The first step is to reshape the results by using the same method in (2.12).

Then, the second step is to combine the results. Totally, we achieve a complex-valued

results. Moreover, we add a noise stabilization operation (Step 3,4). This stabilization

is performed by multiplexing weighted coefficients

Q = (q1, · · · ,qK).

2.4 Detection Criterion and Complexity Analysis

In CS literature, exact recovery criterion has been developed for OMP [18]. Along

with practical scenarios, we also derive detection criterion for our proposed CS-BT-

MUD algorithm. Before providing the details, we give some useful definitions as
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follows. If U = (u1,u2, ...,uk) ∈ Rm×k where ul ∈ Rm(1 ≤ l ≤ k), then supp(U) =

∪l∈[k]supp(ul). This definition extends the original version of support to matrices.

Then, ||U||0 = |supp(U)| = | ∪l∈[k] supp(ul)| and ||φ ||min = mini∈[m] |φi| which is not

a norm.

We note that the maximum correlation in Step 5 of our proposed algorithm can be

rewritten as

max
j∈[m]

(
K

∑
k=1
|〈r(t)k ,φ j〉|qk) = ||ΦT

S R(t)Q||∞, (2.13)

where R(t) is the residual at the t-th iteration, SH = Φ may be viewed as a dictionary

matrix whose columns (i.e., φ j, j ∈ [m]) are the atoms of the associated dictionary.

Let us assume that our proposed algorithm has made correct decisions before the

t-th iteration. Then, the contribution of the noise N and that of the useful signal X to

the residual can be expressed as:

R(t) = (I−P(t))Y

= (I−P(t))(ΦX+N)

= (I−P(t))ΦX+(I−P(t))N,

(2.14)

where we give the new definition Z(t) = (I−P(t))ΦX and N(t) = (I−P(t))N. P(t) is

the projector onto the span of ΦSt , we have

R(t) = Z(t)+N(t), (2.15)

Thus, we have

||ΦT
S R(t)Q||∞ = ||ΦT

S (Z
(t)+N(t))Q||∞ (2.16)

To guarantee accuracy of the SOMP algorithm, we have

||ΦT
S R(t)Q||∞ ≥ ||ΦT

S̄ R(t)Q||∞

= ||ΦT
S̄ (Z

(t)+N(t))Q||∞
. (2.17)

Then, the SOMP algorithm with noise is lower bounded by (2.17) where S̄ is the rela-

tive component of set S.
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Table 2.1: Complexity of the CS-BT-MUD Algorithm (k-th iteration)

Operation Complexity

Identification (2Ns−1)KM+K(M−1)

Augmentation K(K+1)
2

Estimation 4kNsM

Residual Update 2kNsM

Total 2NsKM+ K(K−1)
2 +6kNsM = O(NsMK)

For CS algorithms, the computational complexity depends highly on the number

of iterations. For the single type model with OMP algorithm, the computational com-

plexity is dominated by maximum correlation calculation (identification) and new

residual generation (residual update). For the k-th iteration, we need a matrix-vector

multiplication with the number of floating point operations (flops) (2m− 1)K. For

residual update, we need compute the least squares of input with 4km. Additional 2km

is required for residual update. Generally, the total number of flops for OMP is about

2κmK +3κ2m where κ is equal to the number of iterations.

Since our proposed CS-BT-MUD algorithm is based on the SOMP algorithm, the

analysis procedure for computational complexity is somewhat similar to that for the

OMP algorithm. We give the complexity analysis for the main steps of our algorithm

as follows:

• Identification-We need compute the sum of correlation values between each

atom and residual. The k-th computation cost for this step is (2Ns− 1)KM +

K(M−1).

• Augmentation-Augmentation is a kind of data sorting, we only need to find out

the maximum value for each iteration. The computational complexity is similar

to bubble sorting algorithm with K(K+1)
2 [19].
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The rest steps are similar to the OMP algorithm where the complexity of the estimate

and residual update steps are specified in [20]. Since the dimension of input has been

enlarged, the computation complexity for the rest part amounts to 6kNsM at the k-th

iteration. In summary, the total computational complexity for our proposed CS-BT-

MUD algorithm is given by

CCS-BT-MUD =
κ

∑
k=1

[2NsKM+
K(K−1)

2
+6NsM]k

= [NsKM+
K(K−1)

4
+3NsM](κ2−1)

= O(κ2NsMK)

(2.18)
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Chapter 3

SIMULATION RESULTS

In this part, we will provide simulation results for our proposed CS-BT-MUD al-

gorithm. In our simulation, two practical data traffic models (i.e., the Bernoulli and

Poisson-Zeta traffic models) are considered.

3.1 Parameter Design

We choose a practical NB-IoT scenario to begin our simulation parameter design.

In this NB-IoT scenario, we assume the carriers are deployed in LTE network with

guard-band mode. In order to evaluate the performance of our proposed algorithm,

several system parameters are given as follows. The total number of sensor nodes is

K = 80 in each block, and the time symbol number is M = 80. The activity probability

for each sensor node in matrix X is defined as pa = 0.1. This activity probability

also follows the Bernoulli distribution. We assume a block fading channel, where the

channel matrix H is generated by Rician channel function.

For spreading code design, we choose a PN-code with flexible length Nc. The

length of the spreading code will depend on different data traffic model which will be

discussed separately in data traffic model part. We define a new parameter called sys-

tem load ratio factor with its definition as θ = K
Nc

. The system load ratio factor reflects
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the overlapped degree and mapping between the sensor data matrix and corresponding

subcarriers.

Basically, we assume the scenario with delay spread of τd = 16.67 us in LTE sys-

tem by using a long cyclic-prefix. Then, the coherence bandwidth can be computed as

Bcoherence =
1
τd

= 60kHz. We also assume Nw consecutive subcarriers are deployed in

the coherence bandwidth, the signals will suffer from flat fading channel within one

block.

We have summarized the system parameters in Table 3.1. Then, we consider the

simulation results for the BER performance in two types of data traffic model. One is

called Bernoulli traffic model and the other one is Poisson-Zeta traffic model.

Table 3.1: Simulation Parameters

Number of Nodes K = 80

Spreading Code Length Nc = 40,50,60

Number of Subcarriers Ns = 40,50,60

Activity Probability pa = 0.1

System Load θ = 2,1.6,1.33

Symbol Frame Size M = 80

Modulation DPSK

Channel Model Block fading

Power Control Perfect

Delay Spread 16.7 us
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3.2 Bernoulli Traffic Model

For some general massive IoT applications, the activity of sensor is triggered by

certain events, such as temperature change, battery level change and emerging alarm.

These applications have the feature that its event duration is flexible with very small

activity probability. Consequently, the probability of activity event is unpredictable at

a dedicated time point. While for a long period, we can assume the probability of event

activity will follow a statistic distribution.

Generally, we use simple bernoulli distribution to represent the randomness of

these IoT applications. Thus, we make the reasonable assumption for the activity prob-

ability pa in massive IoT application, only a few sensor nodes are activated at time

point n with pa � 1 . Obviously, the probability of a sensor node to keep silence is

1− pa.

Mathematically, we formulate Bernoulli data traffic model by using a K×M sensor

data matrix. In this sensor data matrix, the elements in each column are defined as the

activity status of sensor nodes at time point n. For convenience, n is defined as an

integer with 1 ≤ n ≤ M denotes the time symbol length. Thus, at the time point n,

only a few sensor nodes will be activated among total K sensor nodes which follows

bernoulli distribution. Also, the distribution for each column is identical independent

distribution.

X =



X1︷ ︸︸ ︷
x11

x21
...

x(K−1)1

xK1

X2︷ ︸︸ ︷
x12

x22
...

x(K−1)2

xK2

· · ·

· · ·
. . .

· · ·

· · ·

XM−1︷ ︸︸ ︷
x1(M−1)

x2(M−1)
...

x(K−1)(M−1)

xK(M−1)

XM︷ ︸︸ ︷
x1M

x2M
...

x(K−1)M

xKM︸ ︷︷ ︸
Each colunmn elements follows bernoulli distribution with probabilityp


K×M

(3.1)

In (3.1), we defined the activity status as ‘1’ and ‘0’ respectively for each column
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Figure 3.1: Bernoulli traffic model, θ = 2,1.6,1.33

of signal matrix X. When the sensor node is activated, “1” will be generated at cor-

responding point. For the silent sensor node, ‘0’ will be given at the corresponding

place. Then, only a few non-zero elements in each column. This can be approximately

formulated as a sparse matrix.

As introduced in Section 1.3, CS algorithms are well-known for solving sparse

signal reconstruction problems. We begin the simulation for Bernoulli traffic model by

using the parameters in Table 1. The signal matrix X is generated by Bernoulli traffic

model with activity probability pa = 0.1 in each column. We perform each simulation

for 100 times.

In the simulation, we compare the bit error rate (BER) performance of our pro-

posed method with that of the conventional real-valued method. As can be seen from

Figure 3.1, the proposed method provides better performance in relative high SNR

28



field for all tested θ (i. e, θ = 2,1.6,1.33), while in low SNR field, there is no obvi-

ous improvement in BER performance. It can also be seen that the BER performance

improves in Bernoulli traffic model as the system load ratio value decreases.

3.3 Poisson-Zeta Traffic model

Before we introduce Poisson-Zeta traffic model, an important concept of ON/OFF

process will be discussed. An ON/OFF process is either in state ON or OFF which is

from network traffic field. We follow the concept of Poisson-Zeta process in [21] and

give a new definition for Poisson-Zeta traffic model as Figure 3.2.
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Figure 3.2: Poisson-Zeta traffic model

The activity of each sensor in each time point follows Poisson distribution with

mean value of λ . We define l as the duration for each activated time point at the same
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row. This duration will follow zeta distribution with probability gl . We give a simplified

expression as X∼ PZ[λ ,gl].

In some IoT applications, the activity data of the sensor nodes has the nature of

periodicity. Especially for sporadic IoT communications, if there are enough time du-

ration, a specific signal matrix will appear again after some durations. Based on pre-

vious assumption that ‘0’ stands for the silence and ‘1’ for the activity of sensor node,

the formulated sensor data matrix only has two kinds of elements. Interestingly, the

nature of periodicity in massive IoT applications can be approximately formulated by

Poisson-Zeta traffic model.

In Figure 3.2, Poisson-Zeta traffic model is given by a N×M sensor data matrix X.

We assume the number of elements “1” in each column just follows poisson distribu-

tion with parameter λ . Each column of sensor data matrix X will appear periodically

with duration l and gl = 1. Based on the previous assumption on practical activity

probability in Section 3.2, we have a very small value of λ (often less than 10 among

total 60) which guarantees the sparsity of signal matrix.

For the Poisson-Zeta traffic model case, we make an approximation for generation

of data traffic. We begin the simulation for Poisson-Zeta model with following param-

eters. The number of sensor nodes is K = 80, and the time symbol number is M = 80.

X is generated by poisson distribution with mean value λ = 4. For fixed period l = 10,

the same data will appear again. In Section 2.2, we have given analysis for block type

CS-MUD problem with non-overlapped and overlapped manner. Then, the simulation

for Posson-Zeta traffic model will be divide by the non-overlapped and overlapped

cases.

3.3.1 Non-overlapped Case

In the simulation result for non-overlapped case (Figure 3.3), our proposed CS-

BT-MUD algorithm provides better BER performance in θ = 2, θ = 1.6 and θ = 1.33

cases. We note that different system load ratio also provides different performance. We
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will give a performance comparison for different system load ratio later.
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Figure 3.3: Poisson-Zeta traffic model with non-overlapped manner, θ = 2,1.6,1.33

3.3.2 Overlapped Case

In Section 2.2.2, we have introduced an overlapped case for block type CS-MUD

problem. Due to overlapping in block type spreading matrix, we can achieve improved

spectrum efficiency. Based on previous setting parameters in Section 3.1, we investi-

gate the relationship between the overlapped value and the BER performance. Specif-

ically, we define a new parameter Nq to denote the overlapped pattern for mapping.

Then, we give the definition for the saving in spectrum as

Λsave =
(Nw−1)

NwNs
·Nq. (3.2)

where Nw is the number of blocks with its corresponding number of sensor nodes Kw.

Nq is the number of overlapped pattern, and Ns is the number of subcarriers.
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Figure 3.4: Poisson-Zeta traffic model with overlapped manner, Ns = 40

Then, the simulation setting is the same as that for the non-overlapped case. We let

Ns = 40,60 and Nw = 6 with Nq = 3,5,7, so that we achieve a saving in spectrum. For

Ns = 40, a saving in spectrum can be achieved as 6.25%,10.4% and 14.5%. Whereas

for Ns = 60, we achieve the frequency saving as 4.16%,6.94% and 9.7%.

From the simulation results in Figure 3.4 and 3.5, when increasing the total num-

ber of subcarriers Ns, the BER performance will be improved. This is caused by the

decreasing in system load ratio value. While increasing the overlapped pattern value,

the BER performance will be decreased. Thus, choose a proper value for overlapped

patter value is very important for different IoT applications.
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Figure 3.5: Poisson-Zeta traffic model with overlapped manner, Ns = 60

3.4 Discussions on System Load Ratio

As mentioned, the definition of system load ratio reflects the relationship between

the number of sensor nodes and mapped frequency sources. It is important to find a

suitable value for system load ratio in practical IoT communications. We begin the

simulation with Poisson-Zeta traffic model and change a much smaller activity proba-

bility pa = 0.02. Other parameters are just same with Section 3.1.

By changing the value of Ns, the sensor data will be mapped into Ns subcarriers.

Then, for different Ns values we could achieve corresponding system load ratio θ . In

this situation, the values of system load ratio are θ = 2, θ = 1.6, and θ = 1.33. We can

see the simulation results in Figure 3.6.

From simulation results, we can find that our proposed algorithm will achieve

best performance with θ = 1.33. But for other values, the performance is not good
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Figure 3.6: System load ratio discussions

as θ = 1.33 case. For classical greedy algorithms, there is a sufficient condition for

recovering sparsest representation of an input signal. By experiments, we find rela-

tionship between the sparsity of X and number of subcarriers Ns. If sparsity κ is much

smaller than Ns, the BER performance will be guaranteed. Combined with practical

requirements, this condition will provide a strategy for value selection for the number

of sensor nodes in each block.

3.5 Reconstruction Error

In this part, we define a new parameter as reconstruction error which reflects the

exact recovery degree of each algorithms. Then, the definition of reconstruction error
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Figure 3.7: Reconstruction error with θ = 2

is given as

C =
‖X−Xest‖2

‖X‖2
, (3.3)

where X and Xest are the original signal and the estimated signal, respectively. By

computing the normalized mean square error of estimated signal, we could achieve the

performance of reconstruction error. The simulation is done based on same parameter

setting in Section 3.4. As we can see in the simulation results (Figure 3.7, 3.8 and 3.9),

our proposed method provides better performance in θ = 2, θ = 1.6 and θ = 1.33

cases. When we increase the system load ratio value, the reconstruction error of the

proposed method will increase. In contrast, for conventional methods, the performance

dose not change a lot.
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Figure 3.8: Reconstruction error with θ = 1.6
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Figure 3.9: Reconstruction error with θ = 1.33
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Chapter 4

CONCLUSIONS

In this dissertation, we have studied the main challenges for IoT communications.

Specifically, we have introduced an algorithm, termed as the CS-BT-MUD algorithm,

for addressing the MAI in massive IoT applications. While previous researches on

massive access have been focused on single type CS-MUD problem, we have given a

new CS based algorithm for block type CS-MUD problem which exploits the block

sparsity nature in the activity detection. Moreover, we have given simulation results

under two types of data traffic models, instead of the simple Bernoulli data traffic

model in previous works. The aim of this dissertation is to provide feasible solutions

for addressing MAI in massive IoT applications and to apply the solutions to physical

layer design in IoT communications.

The main contributions of this dissertation are summarized as follows.

• We have proposed CS-BT-MUD algorithm for block type CS-MUD problems

and exploits block type activity detection problem.

• We have proposed complex-valued data preprocessing method which enables to

process complex-valued data with conventional CS algorithms.

• We have given two practical data traffic models for numerical evaluations.
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Essentially, various IoT applications have attracted much research interest in the

past few years as these techniques will change the life style. For more practical chal-

lenges, we need more creative solutions. This dissertation is part of our efforts in this

direction. For more critical MAI in physical layer, we remain it as our future work.
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초록

지난 10년 동안 사물인터넷 (IoT) 기술이 무선 네트워크 분야에서 주목을 받아

왔다. 사물인터넷은 수많은 디바이스가 서로 연결하는 플랫폼으로 사물들 사이의

통신을 원활하게 한다. 사물인터넷 기술 기반으로 개발된 다양한 서비스들이 앞으

로여러분야에서사람들의생활에많은영향을줄것이다.하지만실제로사물인터

넷을 적용하기 위해서도 아직도 해결해야 할 많은 이슈들이 존재한다. 그중에서도

대규모 접속 이슈가 중요하다. 따라서, 본 논문은 사물인터넷을 위한 대규모 접속

기술에대해서연구를진행했고 block sparsity를이용하여대규모접속이슈를해결

하기위한압축센싱기반 block type multi-user detection (CS-BT-MUD)알고리즘을

개발하였다. 특히, 복소수 형태의 데이터를 처리하는데 있어서 압축 센싱 기반 알

고리즘을응용할수있는새로운신호처리기법도함께제시하였다.다양한데이터

트래픽 모델을 활용하여 CS-BT-MUD 알고리즘의 성능을 모의시험을 통해 검증을

진행하였으며기존알고리즘대비향상된성능을보여주었다.

주요어:압축센싱,사물인터넷,무선네트워크,대규모접속

학번: 2015-22137
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