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Abstract

There is a growing interest in 3D contents in the global market following the recent

developments in 3D movies, 3D TVs, and 3D smartphones. However, the 3D content

creation is still dominated by professionals due to the high cost of 3D motion capture

instruments. The availability of a low-cost motion capture system will promote 3D

content generation by general users and accelerate the growth of the 3D market. In

this paper, we propose a real-time low-cost motion capture system, called Samba. The

Samba motion capture system is based on a portable low-cost wireless camera sensor

network and it can reconstruct accurate 3D full-body poses at 16 frames per second

using only eight markers on the subject body. The processing times on camera motes

are significantly reduced by using a smaller number of markers. A pseudo-pose based

data-driven 3D human pose reconstruction method is proposed to reduce the required

computation time and to improve the 3D reconstruction accuracy. The performance of

Samba is evaluated extensively in experiments.

keywords: Camera sensor networks, Pseudo-samples, Motion capture system

student number: 2011-20878
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Chapter 1

INTRODUCTION

We are witnessing rapidly growing 3D industries, such as 3D movies, 3D TVs, and

3D smartphones. It is expected that the consumption of 3D contents will be further

increased as more 3D products are introduced into the market. While there are many

ways to consume 3D contents, 3D content generation is still an expensive task and

remained in the hands of professionals. As we have seen from the analog to digital

camera conversion in early 2000, an inexpensive way to create photos and videos has

revolutionized the industry and the society. As common users can create multimedia

contents with inexpensive cameras, the demand for digital cameras has become greater,

further lowering prices of hardware for content generation and consumption. In addi-

tion, the introduction of digital cameras has also revolutionized the Internet as creation

and sharing of photos and videos have been accelerated with help from social network

sites such as YouTube, Flickr, and Facebook. Based on these facts, it can be concluded

that the success of the 3D market depends on the availability of an inexpensive tool,

with which a common user can easily create 3D contents. The present paper proposes

a low-cost approach to 3D content generation.

There are two major approaches to create 3D contents: stereoscopy and motion

capture systems. Stereoscopy uses a stereo camera to take images at different view

points of the scene. Two sets of images are separately projected to the left and the right
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eye of the viewer, giving an illusion of depth in the brain. Since stereoscopy does not

reconstruct the scene in 3D, it cannot be used as a general 3D content generation tool.

On the other hand, motion capture systems, such as the Vicon MX motion capture

system [2], can provide a full 3D pose of the subject using a set of markers. They are

commonly used in the film and gaming industry for creating realistic and complex 3D

motions. While highly accurate 3D motions can be generated, motion capture systems

are still too expensive for common users. For example, a typical entry-level motion

capture system set with a minimum of three cameras costs more than $ 12,000. Hence,

there is no accessible instrument for general 3D content creation for common users

yet.

A wireless camera sensor network consists of inexpensive camera motes with wire-

less connectivity and has been applied to a number of applications, such as surveil-

lance, environmental monitoring, traffic modeling, human behavior understanding, hu-

man pose estimation, assisted living, and sports (see [28] and references therein). In

this paper, we propose a human motion capture system using a wireless camera sensor

network. An overview of the proposed system is shown in Figure 1.1.

The name of the proposed motion capture system is Samba. The Samba motion

capture system consists of a wireless camera sensor network, a server, and an optional

display. Note that a server can be a notebook computer or a smart device as in [28] to

make the overall system more portable. A human subject wears markers on her joints

and performs a series of motions in front of a wireless camera sensor network. Each

camera mote in a wireless camera sensor network detects markers and wirelessly trans-

mits marker locations to the Samba server. The server then reconstructs the 3D motion

using received marker positions and a human pose database. By using a wireless cam-

era sensor network, we have developed a portable personal human motion capture

system. A user can easily carry and deploy camera motes to collect 3D contents. Also

a minimal number of markers are used to make motion capture more convenient for

common users. The Samba motion capture system can track moving marker sets and
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Figure 1.1: An overview of the Samba motion capture system.

display 3D motion in real-time. Currently, the system runs at 16 frames per second.

Samba is a data-driven motion capture system which utilizes a human pose database

to reliably reconstruct human poses from noisy and missing observations from camera

motes. A human pose is reconstructed using the local pose space which is consistent

with the current observation. We propose a pseudo-pose based method to better rep-

resent the local pose space with a dense set of data points. In experiments, the recon-

struction error is reduced by 14% with a reduced computation time when pseudo-poses

are used to represent the local pose space.

A newly introduced Kinect depth camera from Microsoft is another motion capture

system. Kinect uses an infrared laser projector and a camera to construct a depth image.

However, the depth information from Kinect is not accurate and it can easily fail to

correctly construct a human pose. The proposed data-driven approach can be applied

to Kinect to improve reconstruction accuracy.

The remainder of this paper is organized as follows. Related work in 3D motion

capture is discussed in Section 2. The overview of the proposed Samba motion cap-
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ture system is described in Section 3. In Section 4, the data-driven 3D human pose

estimation method is presented. The system implementation of Samba is described in

Section 5. The experimental results of the Samba motion capture system are presented

in Section 6.
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Chapter 2

Related works

A motion capture system is used for a wide range of applications, including sports,

medicine, advertising, law enforcement, human-robot interaction, manufacturing, surveil-

lance, and entertainment [22, 24]. A number of different methods have been developed

for capturing human motions.

Wei and Chai reconstructed 3D human poses from uncalibrated monocular images

in [5]. They assumed that all positions of joints from images were known and the

camera was placed far from the human subject. These assumptions are based on the

reconstruction method for an articulated object by Taylor [4]. In [4], the author for-

mulated the 3D human pose reconstruction problem as an optimization problem using

three sets of constraints: bone projection, bone symmetry, and rigid body constraints.

Magnus Burenius et al. [6] developed a new bundle adjustment method for 3D human

pose estimation using multiple cameras. Their method is similar to [5] but temporal

smoothness constraints are added and spline regression is used to impose weak prior

assumptions on human motion. All three methods require known positions of joints

and lengths between pairs of joints. Since it is not possible to reliably detect all mark-

ers autonomously from images due to self-occlusion, they are not applicable for a

practical motion capture system.

Multiple cameras have been used to reconstruct 3D human poses using markers.
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In [31], four colored markers are used for extracting joints from two cameras. The

locations of other joints are estimated using four marker positions and a silhouette of

the subject. While it provides a low-cost solution, it cannot be run in real-time and the

reconstruction error is large to be used in practice. In [32], an optical motion capture

system with pan-tilt cameras is proposed. The proposed motion capture system runs

in real-time and labels markers automatically. However, the system requires a set of

pan-tilt cameras and computers. While the system is cheaper than commercial optical

motion capture systems, it is still too expensive for common users.

It is also possible to estimate 3D human poses from images without markers. For

example, markerless methods include silhouettes [15, 19], an articulated deformable

model [12], articulated surfaces [21], and the volume data representation [30]. In [15],

silhouettes are extracted from images and the likelihood of joint angles is computed.

The human pose is constructed by estimating joint angles using the maximum a pos-

teriori criterion. In [12], a 3D volume of an object is reconstructed from silhouettes

extracted from multiple video streams. Then parameters such as rotations and transla-

tions between cameras with respect to the center of the human subject are estimated,

along with joint angles, in order to reconstruct the 3D human pose. In [21], human mo-

tion is tracked by fitting articulated surfaces to 3D cloud points and surface normals.

In [30], voxels are computed from multiple images and skeleton poses are estimated

from voxels. They fitted a skeleton model to voxels by fitting each bone of a skele-

ton to a corresponding set of voxels. However, a markerless method is not appropriate

for real-time motion capture system since it is not accurate compared to marker-based

methods and it requires the computation of silhouettes from multiple images, which

cannot be done reliably in real-time.

The depth information can be used for 3D human pose estimation [8, 9]. In [8], the

authors developed a nonlinear optimization method based on the relationship between

joint angles and an observed pose from a depth image for human motion estimation.

In [9], notable image features, such as a head and a torso, are extracted from depth and
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color images and 3D human poses are estimated using constrained optimization based

on constraints among extracted image features.

In [20], a 3D human posture reconstruction system using a wireless camera net-

work was presented. The method detected five-upper body parts (a head, two shoul-

ders, and two wrists) and reconstructed a upper body in 3D. While our proposed system

is similar to [20], in our system, the motion capture data is used to improve the accu-

racy without compromising computational cost and 3D reconstruction of a full body

is possible in Samba.
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Chapter 3

An Overview of the Samba Motion Capture System

The Samba motion capture system is based on a wireless camera sensor network (see

Figure 1.1). A wireless camera sensor network consists of a number of camera motes

(e.g., a CITRIC camera mote [27]). Each camera mote has a camera, on-board proces-

sor for image processing, and wireless connectivity. We assume that a wireless camera

sensor network has been deployed and cameras are calibrated in advance as described

in [28].

The goal of the Samba motion capture system is to reconstruct 3D poses of a

human subject based on images taken from multiple camera motes with different view

points. We represent a human pose using 13 joints as shown in Figure 3.1. The 13

joints include a left shoulder, a right shoulder, a left elbow, a right elbow, a left wrist,

a right wrist, a left hip joint, a right hip joint, a left knee, a right knee, a left foot, and

a right foot.

The Samba motion capture system is a data-driven 3D human pose reconstruction

system to improve the accuracy and robustness. A 3D human pose is reconstructed

based on input images (i.e., 2D marker positions) and the human pose database, which

consists of publicly available human motion data sets and human poses collected using

Samba. Each pose in our database is represented as a 39 dimensional pose vector (13

joints × 3 dimensions).
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Figure 3.1: A 13-joint human skeleton model. The eight markers used by the Samba

motion capture system are indicated with larger circles around the joint. Red colored

joints have one degree of freedom and black colored joints have two degrees of free-

dom.

The overall computational flow of the Samba motion capture system is given in

Figure 3.2. While a human pose is reconstructed using 13 joint positions, the system

uses only eight markers and the locations of those eight markers are circled in Fig-

ure 3.1. The use of a reduced number of markers makes it more convenient for general

users and we can also reduce the computation time on camera motes. From an exten-

sive experimental study, we have found that eight is the minimum number of marker

locations which can provide the full 3D reconstruction of 13 joints with almost no loss.

The Samba motion capture system operates as follows. Each camera mote tracks

eight markers in its image frame and transmits locations of markers to a server at

fixed time intervals. When the server receives marker locations from camera motes,

it computes 3D positions of markers using multi-view geometry based on the camera

network calibration parameters computed during the calibration step (for more detail,

see [28]). The computed 3D markers are aligned to be compared with 3D poses in

the human pose database. From the human pose database, K poses which are close to

the computed 3D marker locations are selected. We then generate pseudo-poses from

the K selected poses to form a local pose space. We first reduce the dimensionality

of the local pose space using the principal component analysis (PCA) to reduce the
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Figure 3.2: A flowchart of the Samba motion capture system based on a wireless cam-

era sensor network.

computation time and noise.
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Chapter 4

Data-Driven Human Pose Estimation

The use of a local, lower dimensional representation of a human pose gives a better

pose estimation by eliminating ambiguity [1]. The local pose space can be constructed

using neighboring poses in the human pose database. In addition, the computation time

required for the optimization routine can be reduced since lower dimensional represen-

tations of human poses are used. However, the method suffers when data points in the

human pose database are clustered or sparse. Since we cannot have a complete human

pose database with dense data points in practice due to a vast number of possible poses,

it is difficult to use the method from [1] for diverse human poses. We address this is-

sue in Samba by generating pseudo-poses around the current pose in order to better

represent the local human pose space. Pseudo-poses are randomly generated based on

poses in the database while maintaining human joint constraints.

We first describe the local pose space approach which is adapted from [1] and

then explain how pseudo-poses are generated in Samba to better represent local pose

spaces.
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4.1 Local Pose Space Method

Suppose that i is the current frame number. From images of at least two different view

points, a 3D joint marker vector xi ∈ R24 (8 markers × 3 dimensions) is computed

and K poses {q(k)i |1 ≤ k ≤ K} that are close to the computed marker positions

are selected from the database. Note that not all eight markers are required to select

K neighboring poses. For each pose q(k)i , we randomly generate N pseudo-poses as

described in the next section. Let Qi = {q(k,n)i |1 ≤ k ≤ K, 1 ≤ n ≤ N} be a set of

KN pseudo-poses. Pose vectors in Qi form a local pose space for the current pose.

Let pi ∈ R39 (13 marker positions × 3 dimensions) be the mean of Qi. The PCA

is applied to the covariance matrix Λi of Qi to obtain an estimate of the current pose

vector q̄i ∈ R39 as follows:

q̄i = pi + Uiwi, (4.1)

where wi ∈ Rn is a low dimensional representation of q̄i and Ui ∈ R39×n is a projec-

tion matrix. The vector wi is constructed from n largest eigenvalues of the covariance

matrix Λi and columns of Ui are the corresponding eigenvectors.

In order to recover the low dimensional current pose, we solve the following energy

minimization problem.

w∗
i = arg min

wi

Ep(wi) + αEe(wi) + βEs(wi), (4.2)

where Ep, Ee, and Es are energy terms and α and β are weighting parameters. Ep

measures the deviation from the distribution of local poses, Ee measures the recon-

struction error, and Es measures the smoothness of motion. These three energy terms

are described below.

The prior term (Ep): We assume that a pose in the local pose space is distributed

according to a multivariate Gaussian distribution as follows:

P (q̄i|Qi) =
1

(2π)
d
2 |Λi|

1
2

exp

(
−1

2
(q̄i − pi)TΛi

−1(q̄i − pi)
)
, (4.3)
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where d = 39, the dimension of q̄i, and pi and Λi are the mean and covariance ma-

trix of pseudo-poses in Qi. We desire to find q̄i which is consistent with KN pseudo

samples, hence, q̄i maximizes the density function. Maximizing the density function

is equivalent to minimizing the following energy function.

Ep(wi) = (q̄i − pi)TΛ−1
i (q̄i − pi)

= (Uiwi)
TΛ−1

i (Uiwi) (4.4)

The reconstruction error term (Ee): The reconstruction error term measures the

distance between detected marker locations and marker locations from the estimated

pose.

Em(wi) = ‖xi − f(q̄i)‖, (4.5)

where f(q) is a function which extracts eight marker positions from the pose q.

The smoothness term (Es): Es measures the smoothness of the estimated pose

from two previous estimated poses q̄i−1 and q̄i−2 to make the current pose consistent

with previous estimates and defined as follows:

Es(wi) = ‖q̄i − 2q̄i−1 + q̄i−2‖. (4.6)

Combining all the energy terms from 4.4, 4.5, and 4.6 and substituting q̄i using

4.1, the energy minimization problem 4.2 becomes:

w∗
i = arg min

wi

(Uiwi)
TΛi

−1(Uiwi)

+ α‖xi − f(pi + Uiwi)‖

+ β‖pi + Uiwi − 2q̄i−1 + q̄i−2‖. (4.7)

The above optimization problem is solved for w∗
i using the Levenberg-Marquardt

method [3] and the current pose q̄i is computed using 4.1.
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4.2 Pseudo-Pose Generation

The success of the local pose space method depends on how well a local pose space is

represented by data points from the database. Since it is not practical to collect every

possible human pose and store them in a database, we propose the use of pseudo-poses

to better represent local pose spaces. Each pseudo-pose is generated randomly using an

existing pose from the database while maintaining human motion and joint constraints.

A pseudo-pose is generated by adding a little noise to a joint angle. Since each

entry in our human pose database is a joint position vector representing positions of 13

joints in 3D, in order to generate a pseudo-pose, we need to compute joint angles from

the joint position vector. Since it is faster to use joint position vectors when estimating

the current pose vector and we do not need to compute all joint angles, a joint position

vector is a more convenient representation for our human pose database.

There are two types of joints: joints with one degree of freedom (DOF) and joints

with two degrees of freedom (see Figure 3.1). In a general human body model, shoul-

ders, hip joints and a back bone have three degrees of freedom. However, we do not

consider the twist along the direction of the bone for joints with three DOFs since such

twisting causes a large variation. Hence, we treat the joints with three DOFs as joints

with two DOFs when generating pseudo-poses. In what follows, we describe how a

pseudo-pose is generated for each type of joints.

4.2.1 One-DOF Joints

Let us consider a joint with one DOF formed by joints p1, p2, and p3 (see Figure 4.1).

The corresponding joint angle is the angle between two lines −−→p1p2 and −−→p2p3. Let J1 =

−−→p2p3 and J2 = −−→p1p2. Then the angle ∠p1p2p3 can be computed as follows:

θ = π − arccos

(
JT
1 J2

‖J1‖‖J2‖

)
. (4.8)

The rotation axis R is

R =
J1 × J2
‖J1‖‖J2‖

, (4.9)
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Figure 4.1: Generation of a new joint angle for an one-DOF joint. The joint p3 is moved

to p3new by adding a noise to the joint angle ∠p1p2p3. The axis of rotation is R.

where × is a cross product between two vectors. By rotating p3 by a small noise with

respect to R, we assign a new joint angle ∠p1p2p3 to the joint p2 and obtain p3new.

4.2.2 Two-DOF Joints

Let us consider a joint with two DOFs. J1, J2, p1, p2 and p3 are defined the same as

Section 4.2.1. We add a small noise to each degree of freedom and obtain a new joint

angle for the two-DOF joint.

Let Z be a unit vector in the direction of −−→p2p3 (see Figure 4.2). Let v be a vector

from the right shoulder to the left shoulder. We obtain the x-axis of the local coordinate

for J1 based on v by the following equation.

X =
v − (vTZ)Z

‖v − (vTZ)Z‖2
. (4.10)

We also obtain the axis of rotation R1 by R1 = Z ×X .

For simplicity, let us assume that X = (1, 0, 0), R1 = (0, 1, 0), and Z = (0, 0, 1).

Then, p3 = (0, 0, L), where L is length of −−→p2p3. We now rotate p3 with respect to R1

by θ1 using the following equation. The resulting new position is p31.

p31 =


cos θ1 0 sin θ1

0 1 0

− sin θ1 0 cos θ1

 p3. (4.11)

15



(a) First rotation (b) Second rotation

Figure 4.2: Generation of a new joint angle for a two-DOF joint. The joint p3 is first

moved to p31 by adding a noise to the joint angle ∠p1p2p3 with respect to R1 (a) and

then moved to p32 by rotating with respect to Z (b).

Next, we rotate p31 by θ2 with respect to Z using the following equation to obtain p32.

p32 =


cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1

 p31. (4.12)

For a pose q from the human pose database, we generate N pseudo-poses by

adding a small noise to each joint angle as described above. Examples are shown

in Figure 4.3. By adding noises to the existing pose, we obtain a set of pose varia-

tions which is useful for representing the local pose space. In experiments, we have

found that N = 10 gives the best tradeoff between the reconstruction error and the

computation time.

4.2.3 Initial Values for Optimization

For the faster convergence of the nonlinear optimization problem given in 4.7, we

initialize wi using the linear least squares solution of following problem. Given Qi =

{q(k,n)i }, a set of pseudo-samples for the i-th pose, let r(k,n)i = f
(
q
(k,n)
i

)
for 1 ≤ k ≤

K and 1 ≤ n ≤ N , where f(q) is a function which extracts eight marker positions
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Figure 4.3: Examples of pseudo-poses. The top pose is from the human pose database

and the poses in the second and third rows are pseudo-poses generated by the proposed

algorithm.

from the pose q. We concatenate r(k,n)i and construct a matrix Ri as follows.

Ri =
[
r
(1,1)
i , r

(1,2)
i , . . . , r

(K,N)
i

]
.

Ri is a 24×KN matrix of eight marker positions of pseudo-poses. Let γi ∈ RKN be

a weight vector. We want to find γi which minimizes ‖xi−Riγi‖2, where xi is the ob-

served pose vector. The linear least squares solution γ∗i = (RT
i Ri)

−1RT
i xi minimizes

the error of representing xi using a linear combination of pseudo-poses. Given γ∗i , the

initial pose is computed as q̄i = Riγ
∗
i . We then project q̄i on to the low dimensional

space to obtain the initial value forwi, which will be used in the nonlinear optimization

routine.
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Chapter 5

System Implementation

Our implementation of the Samba motion capture system consists of a server and a

wireless camera sensor network with two camera motes. While a larger number of

camera motes is possible, we used the minimum possible number of camera motes,

which is two, to show the feasibility of Samba. Each camera mote is equipped with

a Gumstix Overo Fire computer-on-module [25] and a Logitech C250 webcam. A

camera mote runs a client program written using the OpenCV library which detects

and tracks markers and transmits marker positions to the Samba server regularly.

5.1 Camera Mote

A combination of a Gumstix Overo Fire computer-on-module and a webcam is used as

a camera mote (see Figure 5.1). Gumstix Overo Fire has an ARM Cortex-A8 processor

which can be run up to 720 MHz with 512 MB of RAM and 512 MB of ROM. The

module can provide wireless connectivity such as Bluetooth and Wi-Fi and it weighs

less than 50 g. Compared to other existing camera motes, such as CITRIC [27], the

developed Gumstix based mote has the higher processing power and supports floating-

point operations, which is required to run computer vision programs using OpenCV.

But it is still challenging to process high resolution images using Gumstix in real-time.
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(a) (b)

Figure 5.1: (a) Gumstix Overo Fire computer-on-module. (b) Logitech C250 webcam.

Hence, we reduced the image resolution to 160 × 120 for real-time operations. Since

Gumstix does not support OpenCV 2.x, we have ported OpenCV 1.0. While a Logitech

C250 webcam is used for Samba, other cameras with Linux drivers can be used. Wi-Fi

is used to communicate between camera motes and the Samba server.

5.2 Samba Server

The Samba server, which is a notebook computer, receives 2D marker positions from

camera motes. After camera initialization, camera motes start taking images and report

marker positions. The server reconstructs 3D marker positions using camera calibra-

tion parameters and performs data-driven human pose estimation using the human pose

database as discussed above.

5.3 Human Pose Database

The human pose database is constructed from two sources: a local database and the

CMU motion capture data [26]. A local database is a collection of 3D human poses

collected using Samba. For the collection of 3D human poses, a human subject wears

13 markers at joint positions. A total of eight different actions are collected: two upper

body actions, two lower body actions, and four whole body actions. See Figure 5.2 for
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(a) Arm

swinging

(horizontal)

(b) Arm swing-

ing

(c) Arm swing-

ing

(d) Arm lift-

ing

(e) Arm

lifting

(f) Arm lift-

ing

(g) Fake mo-

tion (soccer)

(h) Fake mo-

tion

(i) Fake motion (j) Zig-zag (k) Zig-zag (l) Zig-zag

(m)

Knee-kick

(n) Knee-

kick

(o) Knee-

kick

(p) Surfing (q) Surfing (r) Surfing

(s) Stretching 1 (t) Stretch-

ing 1

(u) Stretch-

ing 1

(v) Stretch-

ing 2

(w) Stretch-

ing 2

(x) Stretch-

ing 2

Figure 5.2: Examples of actions from the local human pose database.

examples. The CMU motion capture data is converted to align the 13 joint positions

and included in the Samba human pose database. The incorporation of an existing

human pose database, which has been collected using expensive motion capture sys-

tems, provides better 3D reconstruction results while a local database can be used to

customize the motion capture system with actions which are not typical in publicly

available databases.

Pose Alignment: All human pose vectors are aligned to a fixed coordinate system

with a fixed scale. The center of two shoulders is used as the origin (0, 0, 0). Let RS
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be the 3D position of the right shoulder and LS be the 3D position of the left shoulder.

The x-axis is chosen as the direction of LS − RS. The y-axis is determined by the

direction of the vector y:

y =
(RS −RW )− a(LS −RS)

‖(RS −RW )− a(LS −RS)‖2
, (5.1)

where a = (LS − RS)T (RS − RW ) and RW is the right wrist. Lastly, the z-axis is

chosen using the direction of z = y × x. Each 3D pose is scaled such that the length

of a lower leg has a unit length. An example of pose alignment is shown in Figure 5.3.

To further reduce the time required to search for neighboring poses, a neighbor-

hood graph is constructed for the entire human pose database.

5.4 Marker Detection and Tracking

Each camera mote takes images at a resolution of 160× 120 due to its computational

cost of image acquisition and processing. Moreover, storing images in a Gumstix local

memory causes a large overhead for the NAND flash memory. For this reason, images

are stored temporarily in the RAM when markers are detected and removed from the

RAM before taking the next image.

In Samba, a human subject wears retro-reflective markers, which reflect light when

illuminated, since they are easier to detect with a simple intensity based marker detec-

tion algorithm. Given a gray-scale image, the intensity value of each pixel is thresh-

olded. Then connected component analysis is used to extract blobs. The center of each

blob is declared as a marker position. In order to light the retro-reflective markers, we

have placed light stands behind camera motes. Currently, the use of retro-reflective

markers and light stands is a limitation of Samba but, with additional computation, it

is possible to detect and track non-reflective colored markers with a more sophisticated

image processing algorithm.

Samba tracks eight markers as shown in Figure 3.1 and they are placed on the

following joints: a left shoulder, a right shoulder, a left wrist, a right wrist, a left knee,
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a right knee, a left foot and a right foot. We assume that a human subject starts with a

standard pose, in which all marker positions are known, and all marker positions are

initialized based on the standard pose. Then each marker is tracked using a nearest

neighbor filter. Since the frame rate is high for low resolution images, we can reliably

track all markers using nearest neighbor filtering.

5.5 3D Reconstruction of Markers

As the Samba server receives two sets of marker positions from camera motes, it per-

forms 3D reconstruction of markers using the extrinsic camera parameters found dur-

ing the calibration step based on the method described in [13]. An example is shown

in Figure 5.3.

Since the reconstructed 3D marker positions are aligned with respect to the cam-

era coordinate system, they cannot be directly compared to human pose vectors in the

database. We rescale and align 3D marker positions as shown in Figure 5.3 such that

an observed pose is consistent with the coordinate system used in the human pose

database. The alignment step follows the pose alignment method described in Sec-

tion 5.3.
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Figure 5.3: 3D reconstruction of markers and alignment. Input images are shown on

the left. In the middle, the computed 3D positions of eight markers (blue dots) are

shown. The 3D positions of markers are based on the camera coordinate system. Then

the pose vector is aligned and scaled according to the coordinate system used in the

database as shown on the right.
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Chapter 6

Experimental Results

An extensive set of experiments is performed to validate the performance of the Samba

motion capture system. A notebook computer is used as a server, which receives data

wirelessly from camera motes. In order to measure reconstruction errors, we have de-

fined the length of the tibia (lower leg) as 45 cm. We first examine processing times

of the developed camera mote at different image resolutions. Then we measure re-

construction errors and computation times with different numbers of neighbors and

pseudo-poses. Lastly, the performance of the overall system is examined.

6.1 Image Processing Times at a Camera Mote

Table 6.1 shows image processing times at a camera mote for different image sizes.

The server program runs at 30 ms per frame, hence, a camera mote does not need to run

faster than 30 ms per frame. When the image resolution is 640 × 480, it takes 423 ms

on average to process one image while a 320 × 240 image takes 131 ms on average.

Hence, we have chosen to use images at 160×120 resolution, which takes about 64 ms

per frame on average. Due to the processing time at a camera mote, the overall frame

rate of the Samba motion capture system is 16 frames per second.
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Table 6.1: Processing times for different image sizes by a camera mote.

Image size 160× 120 320× 240 640× 480

Average 64 ms 131 ms 423 ms

Max 102 ms 360 ms 925 ms

Min 62 ms 75 ms 324 ms

Figure 6.1: Reconstruction errors of eight actions at different number of neighbors.

6.2 Number of Neighbors (K)

A local pose space is constructed using neighboring poses. In order to determine the

effect of the number of neighbors, we varied the number of neighbors, K, and mea-

sured the reconstruction errors and required computation times. The results are based

on image sequences of eight actions which are not in the database. Each action se-

quence contains about 900 frames. For all eight actions, we computed reconstruction

errors at different K and they are shown in Figure 6.1. The surfing action gave the

worst error due to a large variation when both arms are swung.

The average reconstruction error of all eight actions as a function of the number

of neighbors is shown in Figure 6.2. As expected, the reconstruction error decreases

as the number of neighbors K is increases. The computation times for different K

are shown in Figure 6.3. The computation time increases rapidly and decreases when

25



Figure 6.2: Average reconstruction errors of all eight actions at different number of

neighbors.

Figure 6.3: Computation times at different number of neighbors.

K = 8. Then it slowly decreases untilK = 30 and then slowly increases again. This is

due to the fact that optimization routine requires more time for finding a solution when

the number of data is small (the optimization problem becomes numerically unstable).

6.3 Number of Pseudo-Poses (N )

We have also evaluated the effect of pseudo-poses in terms of the reconstruction error

and computation time. Figure 6.4 shows reconstruction errors as more pseudo-poses

are used to represent the local pose space. We have tested three different values of
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K (10, 20, and 30). Again, the results are based on image sequences of eight actions

which are not in the database and each action sequence contains about 900 frames.

For all three cases, the reconstruction error decreases rapidly until N = 10 and then

decreases slowly. Note that, when N = 1, no pseudo-pose is used and the local pose

space is constructed usingK neighboring poses. The result clearly indicates the benefit

of using pseudo-poses. The reduction of the reconstruction error from using pseudo-

poses is about 14% when K = 10 and N = 10. Figure 6.6 shows some examples

where the 3D reconstruction of a pose is improved by the use of pseudo-poses. The re-

quired computation times at different values of N are shown in Figure 6.5. We see that

the computation time increases linearly with N when N is larger than two. It is inter-

esting to note that the computation time is significantly reduced when pseudo-poses are

used. When K = 10 and N = 10, the average computation time is 0.0235 sec and the

optimization routine requires about 49 iterations on average. But, when K = 100 and

pseudo-poses are not used, it requires about 0.0886 sec and 78 iterations on average.

The use of pseudo-poses has reduced the computation time by 73%. When K = 10

and N = 1, it still requires about 0.04 sec. It illustrates that pseudo-poses can better

represent the local pose space with a dense set of data points, which results in faster

convergence. Hence, we can better reconstruct a 3D human pose using pseudo-poses

given a limited amount of time.

We have found that the best trade-off between the reconstruction error and com-

putation time is when K = 10 and N = 10. These values are used for experiments

described below.

6.4 CMU Motion Capture Database

The human pose database in Samba is a combination of the CMU motion capture

data and locally collected motions as described above. See Figure 5.2 for examples

of locally collected motions. The CMU motion capture data used in the human pose
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Figure 6.4: Reconstruction errors at different number of pseudo poses for K = 10,

K = 20, and K = 30.

Figure 6.5: Computation times at different number of pseudo poses for K = 10, K =

20, and K = 30.

database consists of five motions: march, guard, jump, run, and walk. As shown in

Figure 6.7, the Samba motion capture system can reconstruct poses that are from the

CMU motion capture database as well.

6.5 Demonstration of the Samba Motion Capture System

Some snapshots from a demonstration of the Samba motion capture system are shown

in Figure 6.8. For each photo in Figure 6.8, the left half of the photo shows a human
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Figure 6.6: Examples of reconstructed poses. The red dots indicate ground-truth posi-

tions of eight markers. The green lines are reconstruction results without pseudo-poses

and the blue lines are reconstruction results with pseudo-poses.

Figure 6.7: Reconstruction of poses from the CMU motion capture database. (a)

March. (b) Guard. (c) Jump. (d) Run. (e) Walk.

(a) Arm lifting (b) Surfing (c) Fake motion (d) Knee-kick motion

Figure 6.8: A real-time demonstration of the Samba motion capture system.

subject performing a motion and the right half of the photo shows the reconstructed

3D pose displayed on a monitor, demonstrating a real-time operation of Samba.

Figure 6.9 shows reconstruction results from a kneekick action. While only eight

markers are used by Samba, Samba reconstructs the entire human pose reliably through-

out the action sequence. We have also tested the system on a new subject. As shown

in Figure 6.10, we can reliably reconstruct a motion by another user. Note that the

surfing motion has the worst reconstruction error. But reconstruction results are quite

impressive.
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Figure 6.9: 3D reconstruction results from a kneekick motion. (a) and (b) are images

taken by webcam connected to laptop. We use 8 markers in red circles as input. (c),

(d), and (e) are reconstructed poses from different view points.

We have performed eight actions from the local pose database in front of the Samba

system. The resulting reconstruction errors are shown in Figure 6.11. The reconstruc-

tion errors from the Samba system are slightly larger than reconstruction errors re-

ported in Section 6.2. This is due to the fact that the local database is constructed

using images at 640 × 480 resolution, which results in better localization of markers.

However, the proposed system reconstructs various motions with an average error of

2.37 cm at 16 frames per second, which is small enough to represent a wide range

of motions reliably. It demonstrates the feasibility of the Samba system as a low-cost

alternative for a real-time motion capture system.

One limitation of the data-driven human pose estimation method is that it may not

be able to reconstruct a pose which is significantly different from poses in the database.

This problem can be addressed by adding more poses to the database as allowed by

the Samba system. The next issue is whether the system can make a smooth transition
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Figure 6.10: 3D reconstruction results from a surf motion by another user. (a) and

(b) are images taken by camera motes. (c), (d), and (e) are reconstructed poses from

different view points.

Figure 6.11: Reconstruction errors of eight actions using the Samba motion capture

system. The average error is 2.37 cm which is slightly larger than 1.7 cm from Sec-

tion 6.2, which is based on higher resolution images.

from a pose from one database to a pose from another database. We can make a tran-

sition between databases by introducing more importance to the smoothness term in
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Figure 6.12: Reconstruction of a composite action: walk (CMU), zigzag (local), and

jump (CMU).

Figure 6.13: Reconstruction of a composite action: Stretching (local), Guard (CMU),

and arm lifting (local).

4.7 and increasing the number of pseudo-poses and noises added to pseudo-poses. Fig-

ure 6.12 and Figure 6.13 show transitions between different databases, demonstrating

that Samba can reliably capture complex composite actions in real-time.
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Chapter 7

Conclusion

In this paper, we have described the development of Samba, a low-cost real-time mo-

tion capture system, which is based on a portable wireless camera sensor network.

A new class of camera motes is constructed in order to process images in real-time.

We have also reduced the required number of joint markers to eight to make it eas-

ier for general users. The proposed system provides accurate reconstruction of 3D

human poses at 16 frames per second using the data-driven pose estimation method

augmented with pseudo-poses. An ability to combine existing human pose databases

with a locally generated pose database makes Samba scalable and a practical solution

for general motion capture applications.
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국문초록

3D TV, 3D 스마트폰, 3D 영화등의 3D 디스플레이 산업의 발달로인해 3D

컨텐츠에대한관심이증가하고있다. 3D산업의발달로인해 3D컨텐츠의소모

량이 증가할 것으로 예상된다. 만약 일반 사용자가 쉽게 3D contents를 제작 및

배포할수있다면 3D디스플레이가좀더유용하게쓰이며 3D산업의성장으로

이어질것이다.그러나기존의모션캡쳐시스템은일반사용자들이사용하기에

너무 비싸고 어렵다. 본 연구에서는 SAMBA Mocap system이라고 하는 pseudo-

sample을 기반으로 한 wireless camera sensor network를 사용한 저비용의 모션

캡쳐 시스템을 제안한다. Wireless sensor mote를 webcam과 연동하여 이동가능

한 일반 사용자용 모션 캡쳐 시스템을 제작하였다. 모션 캡쳐를 하기위한 마커

를 최소한으로 줄였기 때문에 일반 사용자들이 쉽게 이용할 수 있다. SAMBA

Mocap system은움직이는마커를실시간으로감지,추적하며 3D motion capture

데이터를실시간으로구한다. Camera sensor mote로마커를감지하고추적하는

것이 실시간으로 이루어지기 때문에, 추적 알고리즘을 쉽게 디자인할 수 있었

다. 또한 현재의 동작을 optimization하는 데에 30ms밖에 걸리지 않았기 때문에

전체시스템이실시간으로돌아갈수있다.

주요어: Camera sensor networks, Pseudo-samples, Motion capture system
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