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Abstract

Genetic programming is very computationally intensive, particularly in its use

of CPU time. A number of approaches to evaluation cost reduction have been

proposed, including algebraic simplification, caching, fitness approximation,

training subset evaluation, and so on. Among them, this thesis suggests early

termination of evaluation, which is applicable in problem domains where esti-

mates of the final fitness value are available during evaluation.

In this method, predefined condition for early termination is checked at

each step of fitness evaluation to see if an estimate of the ultimate fitness at

that point is sufficiently reliable with respect to its impact on the trajectory

of evolution, and if satisfied, fitness evaluation is terminated early, reducing

evaluation cost. Like all cost reduction techniques, early termination balances

overall computation cost against the risk of finding worse solutions.

We measure the costs and benefits of early termination in terms of mean

best fitness and mean running time using original and early termination al-

gorithms. Search performance, in general, does not deteriorate. Rather, early

termination actually enhances search performance in the majority of cases. In

terms of time performances, most problems see improvements ranging from

substantial to negligible.

Then we evaluate the influence of various properties of the problem domain

– problem class, reliability of fitness estimates, trajectory of fitness estimates,

and evolutionary trajectory – to determine whether any is able to predict the

effects of early termination. There is little correlation with any of these, with

one exception: Boolean problems see little change in running time, and hence

only small changes in performance, are distinguished by both problem class,

i
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and each of the other metrics.

Keywords: Genetic Programming, Evaluation Cost Reduction
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Chapter 1

Introduction

Right from the start, Genetic Programming (GP) has been used to generate

solutions to many real-world problems in diverse fields [4, 14, 15]. Yet there

remain many real-world problems which lie outside GP’s reach purely because

of the computational cost of search, both in CPU time and in memory [4].

While many problems can be solved with relatively modest computational

effort, many other potential applications make very high processor demands,

with most of the time spent in performing fitness evaluations [1].

In our direct experience, the initial C++ implementation of the fitness func-

tion for the water quality model which motivated this work, by a highly expe-

rienced and expert programmer, required 5 CPU minutes per evaluation. The

project would have been abandoned had this not been reduced. The prob-

lem was only finally overcome through a combination of the techniques de-

scribed here, and a highly complex (and fragile) C++ run-time compilation-

and-loading architecture, requiring months of development that would be un-

acceptable in most industrial environments. Another project was terminated

after a pilot study, once it became clear that the evaluation cost for the full

1



CHAPTER 1. INTRODUCTION 2

problem was likely to be of the order of hours. But even much lower evaluation

costs can block an application. In on-line applications, even millisecond eval-

uation times, that would generally be acceptable off-line, may be intolerable.

The problem becomes more serious with growth in problem size and com-

plexity – both in direct computational cost, and in the cost of manual code

optimisation. There are a number of ways to alleviate this problem, which we

introduce in chapter 2. One relevant to a wide range of problems – those in

which evaluation either is or can be made incremental – is early termination.

In this approach, the system learns to estimate the final fitness from early

stages of the evaluation, and also how to determine when the estimate is suf-

ficiently accurate. It has the important advantage of being – at least concep-

tually – orthogonal to the other approaches which have been proposed, sug-

gesting the possibility of combining these approaches, and generating greater

savings. This thesis represents the first stage of this investigation, examining

the effects of early termination on the evaluation cost of GP runs, and the cor-

responding changes in the solution-finding capacity of GP. It also investigates

problem characteristics that might explain and/or predict the effect of early

termination on specific problem classes. Finally, it discusses how the method

might be combined with other cost-reduction techniques.

The remainder of the thesis is organised thus: In chapter 2, we overview

methods for accelerating GP running time. We summarise research on noisy

fitness evaluation that forms a backdrop to early termination methods, and

summarise Grammar Guided Genetic Programming (GGGP), used for one

of the problems. In chapter 3, we detail early termination, and its relation-

ship with time-series and machine learning problems. Chapter 4 describes the

benchmark problems and the experiment settings. In chapter 5, results are



CHAPTER 1. INTRODUCTION 3

provided and their implications are discussed. We conclude in chapter 6 with

a summary and pointers for future work.



Chapter 2

Background

Evaluation cost reduction techniques divide naturally into two classes: some

fully evaluate fitness of all individuals, while others make a cheaper approx-

imation to the fitness, and use that cheaper approximation for some evalua-

tions. The latter depend heavily on the robustness of evolutionary algorithms

to noise in fitness evaluation, a topic that has been heavily researched in recent

years.

2.1 Uncertain Evaluation in Evolutionary Algorithms

The literature on noise in evolutionary algorithms has two main branches –

theoretical analysis as exemplified by the work of Beyer [5] and Arnold [2],

and the practical experimentation detailed in Jin and Branke’s survey [12]. To

summarise, evolutionary algorithms handle noise better than other algorithms

applying the same resources to the same domain. However the effect of noisy

evaluation varies. For simpler domains, noise leads to slower convergence to

good solutions, and the solutions may not be quite as good [2]. On the other

4
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hand, improved performance has been reported on more complex domains [3],

perhaps because noise can permit escape from local optima.

2.2 Reducing the Cost of Fitness Evaluation

A wide range of methods have been used to speed up fitness evaluation. Among

those which do so directly, we may include direct machine code evaluation,

parallel execution, simplification, caching and more pragmatic solutions such

as run-time compilation. In more detail:

2.2.1 Machine code evolution [4, 18]

represents solutions as fragments of machine code (embedded in other machine

code structures that maintain the semantics). These fragments are the direct

targets of evolution, and thus avoid the overheads of compilation – Nordin

reported speed-ups of up to two orders of magnitude relative to an interpreted

C-language system. More recently, even higher speed-ups have been reported

from direct implementations on GPUs [8], and also from GPU-implemented

interpreters for GP [16]. This speed comes at a cost in terms of programming

flexibility and interpretability.

2.2.2 Parallel implementations [1]

have been attempted at a number of granularity levels. The most successful,

partly because of simplicity, use coarse-grained parallelism as in the island

model, where whole populations are evolved in parallel, with slow exchange of

individuals between populations. Precisely speaking, these algorithms reduce

not the computational resources, but the elapsed time, since the same (or even

greater) resources may be used, but in parallel rather than in sequence. They
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may gain further advantage from the demic isolation, but this is a benefit from

the grid structure, which is often used in sequential systems as well, rather

than of parallelism per se.

2.2.3 Algebraic simplification [9]

directly reduces the cost of evaluation by simplifying GP trees before they are

evaluated. Early approaches retained the simplified individuals in the popula-

tion (a Lamarckian perspective), leading to inconsistent results from prema-

ture convergence. More recent systems generally retain the complex individual

in the population, using simplification purely for evaluation.

2.2.4 Caching [22]

trades off memory resources against computation time, storing the results of

subtree evaluation in case they may be evaluated again. Hashing is used to

detect this, the stored result being used in future evaluations. The effective-

ness depends on the hit rate of repeated evaluations, which varies from do-

main to domain, since reductions in evaluation cost must be traded off against

the cost of hashing and storage. Caching may be effectively combined with

simplification, which improves the hit rate.

2.2.5 Pragmatic approaches

apply a combination of software engineering methods (code profiling, struc-

tured design) and compiler mechanisms (run-time compilation, just-in-time

compilation methods) to speed up code in more generally applicable ways.

These methods all conduct exact fitness evaluation, employing a variety of

strategies to speed it up. The remainder rely on the robustness of evolutionary
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algorithms to noise, providing fitness estimates which, while not exact, are

good enough to guide the GP system to an equivalent destination.

2.2.6 Fitness approximation [11]

evaluates a surrogate for the fitness. The surrogate is usually built by machine

learning, and approximates the value that would have been obtained. The

use of learning requires some instances to be fully evaluated. As evolution

progresses, the new instances will differ from the training population, so that

re-learning must be conducted – determining how often is a key issue.

2.2.7 Clustering [23]

uses a heuristic estimate of similarity to cluster individuals. Only one individ-

ual is evaluated per cluster, the others being assigned the same fitness. It can

be viewed as a subtype of fitness approximation, in which the set of exemplars

from the clusters form an instance-based model.

2.2.8 Training subset evaluation [7]

estimates the fitness of an individual using only a subset of training data.

How to select a subset, and how to use the partial evaluation resulting from

it determine the effectiveness of this method. A previous study [6] applied

limited error fitness to a classification problem, where the fitness is computed

according to the number of cases an individual misclassifies after it exceeds an

error limit, at which point the fitness evaluation stops.

Early termination, which is the primary theme of this thesis, falls into

this category, though it differs from aforementioned training subset evaluation

methods in handling cases where the evaluation order of training instances is
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fixed. We will describe it in detail in chapter 3.

2.3 Grammar Guided Genetic Programming

Most domains in these experiments were encoded in Koza-style expression-tree

GP (denoted as GP). One domain required more sophisticated mechanisms to

restrict the individuals generated. We used Grammar Guided GP (GGGP), in

which grammars delineate the search space in the form of the Context-Free

Grammar (CFG)-based GGGP of [21].



Chapter 3

Early Termination

GP is computationally intensive: large populations and many generations lead

to many fitness evaluations; bloat leads to large individuals so that each eval-

uation is expensive [4]; for many problems, multiple tree evaluations are re-

quired for each individual. In the latter cases, fitness evaluation is incremental,

and early stages may give a more or less reliable estimate of the ultimate fit-

ness, depending on the specific problem. One way to reduce the cost of fitness

evaluation is to terminate early, and use the estimate as a surrogate, when it

is sufficiently reliable.

For such problems that require incremental fitness evaluation, we use a

sequence of intermediate fitness values for the current individual, along with

previous fitness values from fully-evaluated individuals, to decide whether to

stop evaluating. If we stop, we use this information to estimate the final fitness

value of the individual. We aim to stop as early as possible, without adversely

affecting the algorithm behaviour.

There is a trade-off between evaluation time and reliability: full evaluation

is reliable, but at high cost; entirely omitting evaluation eliminates that cost,

9
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but gives random results. The ‘sweet spot’ lies between. There is one other

important consideration: the anticipated fitness of the individual should feed

into the determination of effort. The best-of-run individual needs to be eval-

uated exactly, since we eventually need to know its exact fitness. Conversely

we do not care whether an individual is the least fit in a population or the

second-least-fit – it is highly unlikely to be selected, and its progeny are un-

likely to survive. So predictions of high fitness justify more evaluation effort

than predictions of low fitness.

Intermediate fitness values from multiple evaluations generate a kind of

time-series problem, as the update to a previous intermediate fitness value

with the current evaluation result determines the next intermediate fitness

value. However the problem differs from classical time series prediction in that

we care only about estimates of the final value, not about intermediate values.

Conversely, in some ways it looks like an on-line learning problem, but violates

the common assumptions of machine learning in at least the following ways:

1. Goal: what we wish to optimise is not the accuracy of estimation of the

individual’s final fitness per se, but its effect on the GP system’s eventual

solution

2. Cost: what we minimise is the evaluation effort on each instance, not the

number of instances

3. Training distribution: we cannot afford to fully evaluate an unbiased set

of training instances. We must learn from a biased sample: individuals

which are likely to be fit (and thus justify full evaluation).

4. Independence: we could potentially treat estimation at each evaluation

stage as a separate learning problem; but this ignores time relationships,
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discarding information in an already information-poor domain. If we

treat the estimates from different stages together, we lose the assumption

of independence.

So while this problem resembles both time-series estimation and machine

learning, it is rather different from either; we have been unable to find any

preceding theory.

We focus on the case where the evaluation order of fitness cases is fixed,

although the proposed method can handle the non-fixed case as well. In the

former case, other instance-based evaluation cost reduction techniques such

as [6, 7] are inapplicable, since they rely on re-ordering or random sampling

of fitness cases.

Our aim in this thesis is to

1. Better understand how the problem domain affects the amount of speed-

up gained from early termination

2. Better understand how early termination affects algorithm performance

(quality of solutions), and its variation with problem domain

For one class of problems, deciding when to stop, and how to extrapolate

fitness, are easier. Many incremental evaluation problems minimise an error

function over a set of points. Many use the l1 norm (mean absolute error,

MAE), with an important property: the absolute error monotonically increases

as we evaluate cases. If we terminate after it exceeds the best individual so far,

and extrapolate linearly over remaining cases, the actual MAE must exceed

that of the best-so-far: we will fully evaluate the best individual. Others use

higher norms, notably the l2 norm (root mean square error, RMSE). We are

not guaranteed to fully evaluate the fittest individuals, but its approximate
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Algorithm 1 Fitness Computation with Early Termination
Initialize bestSoFar to a large value.
procedure ComputeFitness(individual)

fitness ⇐ 0
i ⇐ 0
while i < NumFitcases do

Update fitness of individual with fitness case i
if fitness > bestSoFar then ▷ Early Termination

return Extrapolate(fitness, i, NumFitcases)
end if
i ⇐ i+ 1

end while
if fitness < bestSoFar then

bestSoFar ⇐ fitness
end if
return fitness ▷ Full Evaluation

end procedure

procedure Extrapolate(fitness, i, NumFitcases)
slope = fitness/(i+ 1)
return NumFitcases× slope ▷ Linear Extrapolation

end procedure

monotonicity means we are unlikely to get very wrong estimates. In either case,

the earlier we terminate, the more likely it is that the actual fitness is bad (in

which case, any errors do not matter much). In this thesis, we concentrated

on such problems. The detail is shown in algorithm 1.



Chapter 4

Experiments

4.1 Experimental Design

We studied the effects of early termination on a number of problems: some

symbolic regressions, two toy differential equations, and a further one ab-

stracted from a real-world application. For each, we ran a statistically mean-

ingful number of two types of runs: with and without early termination.

4.2 Test Problems

The test problems are shown in table 4.1, and detailed below:

4.2.1 Symbolic Regression Problems

Each consists of a target real-valued function, sampled at random points over

a range; target, range, and number of samples are shown in table 4.1.

13
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Table 4.1: Problem Details

Problem Problem Target Range Fitness
Class Name Function Cases
Alg Qrt x4 + x3 + x2 + x x ∈ [−1, 1] 200
Alg Root

√
x x ∈ [0, 4] 200

Alg 2vFrac 1
1+x−4 + 1

1+y−4 x, y ∈ [−5, 5] 400

Alg 2vQrt x4 − x3 + y2

2
− y x, y ∈ [−3, 3] 400

Trig Trg1 cos 3x x ∈ [0, 2] 200
Trig Trg2 sinx2 cosx x ∈ [−2, 2] 200
Trig 2vTrg1 xy + sin (x− 1)(y − 1) x, y ∈ [−3, 3] 400
Trig 2vTrg2 6 sinx cos y x, y ∈ [−5, 5] 400
Parity E5P parity function of 5 inputs bi ∈ {0, 1} 32
Parity E6P parity function of 6 inputs bi ∈ {0, 1} 64
Parity E7P parity function of 7 inputs bi ∈ {0, 1} 128
DE DE1 e− sin x + 2 x ∈ [−2, 2] 400
DE DE2 x4 + x3 + x2 + x x ∈ [−2, 2] 400
Real Lake See detail below 2424

4.2.2 Parity Problems

The target Boolean even parity function is sampled over all possible Boolean

inputs; the problem size and number of samples are shown in table 4.1.

4.2.3 Differential Equation Problem

In Koza’s form [14], differential equations are symbolic regression problems in

which the target function is specified indirectly by a differential equation and

sufficient boundary conditions.

The equations we used were:

dy

dx
+ y cosx− 2 cosx = 0

where y0 = 3 for x0 = 0

(4.1)
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dy

dx
− 4x3 − 3x2 − 2x− 1 = 0

where y0 = 0.6496 for x0 = 0.4

(4.2)

with closed form solutions e− sinx + 2 and x4 + x3 + x2 + x.

Fitness Calculation

The absolute values of the differential equation (substituted by the individual)

are summed to obtain the first component of fitness (fit to the differential

equation). The derivative, dy
dx is obtained by numerical approximation: for

endpoints, the slope to the nearest point; for others, the average of the slope to

left and to right. The second component (satisfaction of the initial condition)

is the absolute difference between y0 and the value of an individual at x0,

multiplied by the number of fitness cases. The overall fitness is 75% of the

first component plus 25% of the second.

4.3 Lake Problem

Table 4.2: Grammar for Lake Problem

T → BA BZ
BA → EXP BZ → EXP

EXP → EXP OP EXP EXP → PRE EXP | VAR
PRE → ê OP → + | − | × | /
VAR → Vba | Vbz | Valk VAR → Vsi | Vtb | Vcd
VAR → Vdo | Vlgt | Vn VAR → Vp | Vph | Vsd
VAR → Vtmp | R

This problem is abstracted from a real world problem (too expensive to use

in a parametric study; moreover we don’t know the optimum solution), mod-

elling algal growth in Korea’s Lower Nakdong River. It incorporates a com-
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plex river flow model (derived from knowledge) and an evolved algal growth

model [13]. The river is regulated by a sea barrage, and often flows quite slowly,

with algal blooms concentrated at these times – so it may be modelled, with

some cost to fidelity, as a lake. Indeed, this has been in some previous models

of its algal growth [10]. To produce a realistic but less expensive version of this

problem, we took the best model output from the river modelling system. We

simplified the model manually, omitting river flows and other complexities,

while retaining the overall behaviour:

∂BA

∂t
= Vph + [(−0.126× Vba)− (Vbz ×Grazing)]

∂BZ

∂t
= Vbz × [(3.35×Grazing)− 0.01] (4.3)

Grazing = 0.0123× Vba
Vba + 42.949

×e−0.0057 ∗ (Vtmp − 20)2

BA and BZ mean measurements of phytoplankton and zooplankton respec-

tively, while other variables in the equation represent various parameters used

in the model.

We used this model to generate new artificial data, which we took as the

target of a differential equation modelling process similar to the preceding. En-

vironmental attributes such as water temperature, alkalinity, etc. were taken

from the measured data. The overall structure of the model was fixed, but the

details were evolved. An individual contains two growth functions (BA for al-

gae and BZ for zooplankton concentrations), which update the corresponding

variables. The target is a growth model that can accurately predict BA. The

grammar for the GGGP system is shown in table 4.2.
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Fitness cases

(Simulated) data measured at 36 hour intervals from 1996 to 2005 were used,

forming 2424 fitness cases in all. As is standard in ecological modelling, we

used an RMSE error function (thus we could not guarantee that an early-

terminated individual was less fit than the best-so-far).

4.4 Evolutionary Parameters

Table 4.3: Parameter Settings

Number of Runs 60 Generations per Run 51
Population 500 Tournament Size 3
Minimisation Objective SAE (for lake) RMSE
Crossover prob. 0.9 Mutation prob. 0.1
Elite Size 2
Function Set (except Lake, Parity) +,−,×, /, exp, log, sin, cos

Function Set (Parity) AND,OR,NAND,NOR
Function Set (Lake) See table 4.2

The evolutionary settings used in all experiments are shown in table 4.3.



Chapter 5

Results

5.1 Costs and Benefits of Early Termination

Table 5.1: Mean Best Fitness: Original and Early Terminating Algorithms

Problem Problem Mean Best Fitness
Class Name Original Early Term. Ratio

Qrt 2.97±1.35 1.09±1.68 2.72
Root 2.93±2.28 3.43±3.42 0.85

Algebraic 2vFrac 43.22±9.42 39.57±9.81 1.09
2vQrt 618±310 818±280 0.76
Trg1 5.20±4.05 3.01±2.74 1.73

Trigonometric Trg2 3.58±1.97 3.49±2.41 1.02
2vTrg1 191±19 167±36 1.14
2vTrg2 228±273 194±255 1.18

Differential DE1 28.91±10.75 28.2±7.64 1.02
Equation DE2 153±132 105±76 1.466

E5P 6.95±0.91 7.38±1.08 0.94
Parity E6P 19.83±1.29 20.35±1.23 0.97

E7P 50.15±1.67 49.72±1.51 1.01
Real Lake 17.74±3.20 21.01±2.64 0.84

Table 5.1 presents the performance (in terms of mean best fitness) of the

18
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Table 5.2: Mean Running Time: Original and Early Terminating Algorithms

Problem Problem Mean Running Time (millisecs)
Class Name Original Early Term. Ratio

Qrt 57817±1337 13850±809 4.17
Root 72430±15781 31125±9070 2.33

Algebraic 2vFrac 147723±23488 85853±19949 1.72
2vQrt 150609±30796 77942±24708 1.93
Trg1 76256±18901 35858±17541 2.13

Trigonometric Trg2 89180±16233 46403±15448 1.92
2vTrg1 128473±24779 102691±22913 1.25
2vTrg2 149180±27371 73617±46872 2.02

Differential DE1 277641±86364 162727±43934 1.71
Equation DE2 200224±65314 103176±40509 1.94

E5P 17170±2053 14776±3080 1.16
Parity E6P 40083±3648 41361±4095 0.96

E7P 93414±8548 97098±9980 0.96
Real Lake 268642±71929 172266±87096 1.56

original and early termination algorithms on all problems, together with the

ratio, showing how much the performance deteriorated. The first notable point

is that in general it did not deteriorate: early termination actually enhanced

performance in the majority of cases, and on average the performance im-

provements somewhat exceeded the performance decrements. Thus the fitness

landscape smoothing discussed in [3] outweighed other effects – though not,

unfortunately, in the semi-real-world Lake problem.

Table 5.2 also shows the corresponding time performances. Here, as would

be expected, the improvements ranged from substantial to negligible or, in

a couple of cases, slightly negative (presumably, in these cases, the cost of

checking for early termination outweighed gains from early termination; it

is notable that these were among the fastest runs, so that evaluation costs
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were relatively low). Overall, the benefits of early termination are modest,

but this is to be expected of the conservative termination policy used (only

terminating when we could be virtually certain that the individual was worse

than the best-so-far, and terminating very early only if it was very much

worse). The gains would undoubtedly increase with a more optimistic policy.

However performance improvement is not the focus of this thesis: our aim is

to examine possible determinants of performance improvement.

5.2 Classifying Performance

Table 5.3: Classification of Problems by Early Termination Effects

Running Time
Performance Similar Improved

Lake
Worse Root

2vQrt
E5P DE1

Similar E6P Trg2
E7P 2vFrac

DE2
Qrt

Improved Trg1
2vTrg1
2vTrg2

Table 5.3 classifies the different problems by two characteristics: whether

or not there is a speed-up from early termination, and whether the resulting

performance is better or worse than, or similar to, the original performance.

The combination yields six classes, two being unrepresented. We would like to

find what is common among them, to understand when early termination will

be useful.
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The only group with little or no improvement in running time were the

Boolean parity problems: changes were so small that most termination must

have been late, close to the last stage. Thus there was little change in resulting

fitness. But it would be desirable to understand why termination was generally

so late. Of the problems which did see speed-up, some saw an improvement in

performance, others a decrease, and still others little change. We would like

to understand why we saw these effects: what problem properties determined

this behaviour?

5.3 The Effect of Estimation Accuracy

Figure 5.1: Mean Order Difference dorder (Averaged over Runs and Stages) by
Generation for All Problems

One potential determinant of the effect of early termination is the accuracy

of fitness estimates: if early estimates were accurate in all generations, and at
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Figure 5.2: Mean Order Difference dorder (Averaged over Runs and Genera-
tions) by Fitness Case Proportion for All Problems
(the value for 2vQrt at 0.0 is off-scale at 1.78).

all stages of the fitness estimation process, then we would expect early ter-

mination to have no effect on the progress of runs (because early-terminated

individuals would be ranked in the same order as they would have been under

normal conditions, and thus the same individuals would be selected, meaning

that the trajectory of evolution would be unchanged). Of course this is un-

achievable: there will be some error, and so there will be some change to the

evolutionary trajectory. So the interesting question is whether that trajectory,

either over generations or over evaluation stages (or perhaps both) can help

to explain the behaviours we observed.
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To assess this, we completed a further series of runs, without early ter-

mination, recording at selected stages of fitness evaluation the estimated fit-

ness that would have been generated by early termination. Due to space con-

straints, these stages were chosen logarithmically – more in the early stages,

fewer later, the actual stages depending on the problem. At each stage of fit-

ness estimation, over all individuals in the population, we compared the rank

order resulting from early termination with that resulting from full evaluation.

We needed some way to measure the difference between these orders. We used

the sum of the absolute differences in ranks over the population, as shown in

equation 5.1:

dorder(i) =
N∑
j=1

|P (rank(j, i))− P (rank(j,N))| (5.1)

where i is the stage number, N is the population size, rank(j, i) is the rank

of individual j at stage i, P (r) is the probability that individual of rank r

is chosen in a tournament under the assumption that all individuals have

distinct fitnesses and the worst one is ranked first, i.e. rk−(r−1)k

Nk , k being the

tournament size [17].

In generating plots, we averaged the distance dorder across all runs. In fig-

ure 5.1, we further averaged across all stages so that we could see the trajectory

over generations (since all problems used the same number of generations, no

normalisation of the x axis was required). In figure 5.2, we instead averaged

across all generations so that we could see the trajectory over the stages of

fitness case evaluation. However in this case, different problems had different

numbers of stages; we normalised each problem by the total number of fitness

case evaluations, so that all had the same x-axis scale, 0.0 to 1.0. In figures 5.1



CHAPTER 5. RESULTS 24

and 5.2, we used similar line qualities for problems with the same behaviour in

table 5.3, so that where the property summarised in the table helps to classify

the problem, we should see similar line qualities grouping together.

It is apparent from both that the Boolean problems group together: early

termination generates the worst estimates, so that early termination will gen-

erate substantial noise in the estimates – perhaps large enough to deteriorate

solution quality. However the case for the other problems is more complex.

Figure 5.1 does not give us much further useful information. There is little

to differentiate the problem classes, and for most problems there is little trend

in the order distance by generation, though it is worth noting that the 2vTrg2

and DE1 problems do exhibit a decreasing trend with generations (that is, the

rank ordering generated by early termination improves as the run progresses);

the other problems do not exhibit this trend, except perhaps weakly in DE2

(so perhaps this is a commonality generated by the form of the DE fitness

function).

Figure 5.2 shows more structure: in general, the fitness ordering monoton-

ically converges toward the final as more fitness cases are evaluated, but the

shapes of the curves differ greatly, being upward convex in the case of the

Boolean problems and DE2, and concave in the other cases: that is, early

estimates are much better for the other problems. If anything, though, the

problems with the worst early-termination performance (Lake, Root, 2vQrt)

exhibited the least change in fitness ordering with early termination – in the

case of 2vQrt, termination after 10% of the fitness cases would yield a very

accurate approximation of the final fitness ordering, and yet this problem saw

the worst decrement in performance from early termination. Thus it seems

that the extent or trajectory of fitness order changes with evaluation stage
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offer us only limited guidance as to which problems are likely to benefit from

early termination.

We repeated this analysis with the symmetric Kullback-Leibler divergence,

and both directions of the asymmetric divergence, with essentially the same

results (omitted for lack of space): the exact metric does not seem to matter.

5.4 The Exploration - Exploitation Trade-off and

Early Termination

Figure 5.3: Scaled Mean Best Fitness by Generation for All Problems (Full
Evaluation)

Another reasonable hypothesis is that early termination, in generating eval-

uation noise, provides additional exploratory power to the algorithm (the

essence of the explanation in [3]), and thus helps it to overcome attraction
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to local optima. One way to evaluate this hypothesis is to look at the fitness

curves of the evolution, since the shape of the fitness curve is correlated with

the need for exploration. Figure 5.3 shows the mean best fitness by generation

for runs with full evaluation. Again, we see that we can readily distinguish the

Boolean problems, which are still seeing improvements in performance, but it

is difficult to otherwise separate the early-termination performance classes in

this figure. The 2vTrg1 performance curve stagnates at fairly poor fitness lev-

els, suggesting that greater exploration might be desirable, and indeed we do

see a performance improvement with early termination – yet the Lake problem

exhibits a similar curve, but suffers a deterioration in performance with early

termination.

We analysed this in another way by increasing the exploration in these

algorithms more directly, increasing the rate of mutation in runs without early

termination, on the basis that, if the effects of early termination noise were due

to increased exploration, then directly increasing the exploration should show

similar behaviour. The results (omitted due to lack of space) were similarly

equivocal.
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Discussion and Conclusions

Early termination is a promising technique. In the very conservative form pre-

sented here it offers reasonably substantial reductions in computational cost

with no loss, or even some quite substantial gains, in performance. However

some problems see either little improvement in computational cost or signifi-

cant decrements in performance. It is worth trying, since on average the effect

is likely to be beneficial – and the cost of implementing it is low.

We have investigated candidate explanations for the differences in be-

haviour on different problems, based both on the quality of the fitness es-

timates generated by early termination, and on the probable exploration re-

quirements of the problem domain. They were able to distinguish problems the

likely improvement in computational cost. But we were not able to generate

good predictions of the effect on performance. Thus the best advice we can

give is to try it and see. Finding criteria that can provide good forecasts of

the effects of early termination is an important future research direction.

Early termination is a potentially valuable addition to the arsenal of GP

practitioners. In the very conservative form used here, its application is limited

27
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to problems with at least expected monotonicity in the fitness function. This

is still, of course, a vast array of problem domains, covering for example all lk

norms, and indeed almost any conceivable error functions. But we probably

don’t need to be as conservative in terminating early – we don’t need a guar-

antee that the current individual is fairly unfit before we terminate, we just

need some reasonable confidence (precisely because of the well-known toler-

ance of evolutionary algorithms for error). Thus early termination should be

extensible to other problem domains so long as we can find reasonable theory

for the mixed time series/learning problem as delineated in chapter 3. We see

this also as an important direction for future research.

One important advantage of early termination is its seeming orthogonality

to other methods for speeding up GP. In particular, there is no in-principle

problem in combining early termination with surrogate or clustering methods;

in neither case does the method need as accurate estimates of the fitness of

its training cases when they are unfit as it does when they are highly fit

(although current versions of surrogacy and clustering methods do not take

advantage of this). For surrogacy methods in particular, noise in the less fit

training examples may even be an advantage, forcing the surrogacy learner

to concentrate on the highest fitness region of the search space, where its

predictions are most important. So combining surrogacy and early termination

methods is one of our highest priorities in future research.

As early termination changes the evolutionary trajectory, the generalisation

ability of solutions may change as well. In a preliminary study, we measured

the mean fitness of the best individuals over a test set (for all problems except

parity), using the same settings. The ratio of mean best fitness between runs

with and without early termination was generally similar to that for training
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error. In four of the eleven problems, the direction of change was the same,

though the degree of change increased by between 10% and 20%.

While the current early termination controls only the termination point of

each fitness evaluation, early stopping [20], which is used to fight overfitting

in training a neural network, controls when the run should stop. They are

completely orthogonal, so that they can be combined together, offering the

prospect of both better generalisation and reduced evaluation. We intend to

investigate this in the near future.

Thus more generally, we see early termination as a technique that warrants

both experimental and theoretical research, to determine how it may most

effectively be used. We hope that this thesis represents a useful first step in

that direction.
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초 록

An Investigation on Early Termination
for Genetic Programming

박남용

전기컴퓨터공학부 컴퓨터공학전공

서울대학교 대학원

유전 프로그래밍 (Genetic Programming) 은 매우 집약적인 연산 비용을

지니는데, 특히 CPU 시간을 집중적으로 사용하는 특징이 있다. 유전 프로그

래밍의 평가 비용 (evaluation cost) 을 절감하기 위한 방법으로, 대수적 간소화

(algebraic simplification),캐싱(caching),적합도근사 (fitness approximation),

부분훈련집합평가 (training subset evaluation)등을포함한여러가지기법이

제안되었다. 그 중에서, 본 논문에서는적합도평가 (fitness evaluation)의초기

종료 기법 (early termination) 을 제안하는데, 이는 적합도 평가 도중에 최종

적합도의 예측치를 구할 수 있는 문제 영역에서 적용 가능한 기법이다.

초기 종료 기법에서는 적합도 평가 중간에 계산되는 최종 적합도에 대한 예

측값이 알고리즘의 진화 궤도에 미치는 영향력 측면에서 충분히 신뢰할만한지

를 확인하기 위하여, 적합도 평가의 매 단계마다 미리 정해진 초기 종료 조건이

충족되는지를 확인하고, 충족되는 경우에는 적합도 평가를 초기에 종료하여 평

가 비용을 절감한다. 다른 모든 비용 절감 기법과 같이, 초기 종료 기법은 전체

연산 비용의 감소와 나쁜 해를 발견하게 될 위험 간에 균형을 맞춘다.

논문에서는 기존 알고리즘과 초기 종료 기법 알고리즘을 각각 사용하여 초

기 종료 기법 사용시의 비용과 혜택을 평균 최고 적합도 (mean best fitness) 와

평균 수행 시간 (mean running time) 측면에서 측정하였다. 탐색 성능은 일반

적으로 나빠지지 않았고, 오히려 초기 종료 기법 사용시 대부분의 경우에서 탐
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색 성능이 개선되었다. 수행 시간 측면에서는, 미미한 정도부터 상당한 수준에

이르는 성능 향상을 대부분의 문제들에서 볼 수 있었다.

이후, 본 논문에서는문제영역의여러가지속성들 –문제종류, 적합도 예측

치의 신뢰도, 적합도 예측치의 궤도와 진화 궤도 – 중 초기 종료 기법의 효과를

예측하는데 사용 가능한 것이 있는지를 확인하고자 이 속성들이 갖는 영향력을

평가하였다. 한 가지 예외를 제외하고는 이들 중에 상관관계를 발견하기는 어

려웠는데, 불리언 (Boolean) 문제들의 경우, 수행 시간은 거의 변화가 없었고

따라서 성능 상에 작은 변화만 있었다. 이들은 문제 종류와 각각의 다른 기준에

의해서 구분 가능했다.

주요어: 유전 프로그래밍, 평가 비용 절감 기법

초기 종료 기법

학번: 2010-23264
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