

저 시-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/

저 시-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/

공학석사학위논문

비압축성나비에-스토크스
방정식의 GPGPU구현을위한
semi-implicit레드/블랙 solver

Semi-Implicit Red/Black Solver for
Incompressible Navier-Stokes Equations on

GPGPU

2013년 8월

서울대학교대학원

전기컴퓨터공학부

Dmitry Timofeev

Abstract

Semi-Implicit Red/Black Solver for
Incompressible Navier-Stokes

Equations on GPGPU

School of Electrical Engineering and Computer Science

The Graduate School

Seoul National University

A novel Semi-Implicit Bicolor Navier-Stokes solver, inspired by red/black

scheme for Poisson equation, was developed for simulating incompressible

fluids on GPGPU. The solver was shown to be beneficial for simulating

highly unsteady flows. Also, it allows more freedom in choice of time step

because of the relaxed stability condition. Spatial discretization uses stag-

gered grid and approximates convective terms with WENO scheme to cap-

ture the effects of convection-dominated flows. The computation is domi-

nated by the Poisson solver, which uses matrix-free Preconditioned Conju-

gate Gradient algorithm. Several known matrix-free preconditioners were

considered. Red/Black SSOR was found to be the most suitable matrix-free

preconditioner for PCG, even though it is usually used as a main solver. A

mixed precision modification with explicit restarts of the PCG was shown to

be slightly beneficial in unsteady region, while giving a negative effect for

1

steady flow. Sensitivity analysis of the solver was carried for further perfor-

mance optimization.

Keywords : Incompressible Navier-Stokes equations, Red/Black scheme,

unsteady flow, staggered grid, WENO, Poisson equation, Red/Black SSOR,

mixed precision

Student Number : 2011-24073

2

Contents

Abstract . 1

I. Introduction . 5

II. Related Work . 7

III. CUDA computing model . 9

IV. Navier-Stokes and Poisson equations 11

4.1 Navier-Stokes Equations 11

4.2 Projection method . 12

V. Poisson problem . 15

5.1 Discretization . 15

5.2 The PCG Algorithm . 16

5.3 Preconditioning . 17

5.4 Existing Matrix-Free Preconditioners for GPU 18

5.4.1 Jacobi Preconditioning 19

5.4.2 Symmetric Successive Over-Relaxation 20

5.4.3 Block-Grained SSOR 21

5.4.4 Approximate Inverse SSOR 23

5.4.5 Red/Black SSOR 23

5.5 Implementation Details . 25

5.6 Performance of Poisson Solver 29

3

5.6.1 Iteration count and convergence gain 29

5.6.2 Iteration cost . 29

5.6.3 Overall performance 31

VI. Navier-Stokes Problem Approach 35

6.1 Spatial discretization . 35

6.2 Setting up Pressure Poisson Problem 37

6.3 Semi-Implicit Bicolor Time Marching Algorithm 39

6.4 Implementation Details . 41

6.5 Verification . 43

6.6 Performance of Navier-Stokes Solver 44

VII. Mixed Precision Modification 49

7.1 Iterative Refinement . 50

7.2 Further Elaboration . 53

VIII. Unsteady flows . 57

IX. Summary . 59

4

제 1장

Introduction

Numerical solution of incompressible Navier-Stokes equations is a very

computationally expensive task even in two-dimensional case. In fact, dur-

ing past decades high resolution fluid simulations were perfomed on large

clusters and supercomputers only. However, in last several years general

purpose graphic cards (GPGPUs) became more recognized by the scientific

community as a powerfull computational tool. Graphic processors allow to

perform same calculations on small cost-effective workstations.

However, GPGPU architecture is beneficial only for highly parallel

computations. This restriction, along with computational accuracy and sta-

bility issues of known numerical algorithms limits the choice of solvers. In

order to ensure highly parallel nature of the algorithm, which is necessary

for GPU computing, explicit schemes are usually chosen as basic time dis-

cretization. However, this choice results in restrictions on time step and, as a

consequence, in high overall time cost. This work presents two approaches

to reduce overall computational cost.

First, an ordinary explicit time marching scheme is considered. Most of

the time in such schemes is spent on solving the Poisson problem for pres-

sure (from 97% in rapidly changing phase to 45% close to steady state solu-

tion). Therefore, optimization of Poisson solver will have a good impact on

5

overall performance. Matrix-free Preconditioned Conjugate Gradient (PCG)

algorithm is considered in this work. Absence of the explicit problem matrix

in the main solver limited the choice of preconditioner to matrix-free ones.

Red/Black Successive Over-Relaxation (RB-SSOR) preconditioner showed

the best performance on test problems, compared to other known matrix-

free preconditioning techniques, including recently published.

Second, the marching scheme was considered for optimization. In-

spired by Red/Black SSOR, a bicolor semi-implicit time marching algo-

rithm for Navier-Stokes was developed. Semi-implicit character of the solver

allows a weaker restriction on time step. This results in smaller overall cost

for unsteady flows and could also be beneficial itself, since the engineer has

more freedom in choosing the time step.

6

제 2장

Related Work

Fluid simulations on graphics hardware have long been of interest mainly

for computer graphic applications, where accuracy is not essential, but speed

is. In this field, flow simulations using the method presented by Stam [1]

are very popular. It allows large time stepping for solving Navier-Stokes

equations with excelent stability. Unfortunately, the method is not accurate

enough for engineering applications, but does capture the fluid motion with

good visual appearence. Harris et al. [2] performed visually-realistic cloud

simulation using Stam’s method. Liu et al. [3] performed flow calculations

over the obstacles, e.g. flow over a city, using the same method. Goal of all

these authors was to have a real-time solver along with visualization running

on GPU.

With appearence of double precision calculation capabilities on GPG-

PUs, some papers with engineering CFD solvers on GPGPU came out.

Bradvic and Pullan [4] implemented a finite volume solver for compress-

ible Euler equations, modeling inviscid fluid. They achieved speed-ups up

to 29 compared to their CPU solver. Elsen et al. [5] developed a finite dif-

ference solver for compressible Euler equations. They saw speedup of up to

17 in simulations of flow over the hypersonic vehicle.

Most papers on simulating viscous fluids on GPU, use projection method

7

with Euler marching. Liu et al. [6] implemented an Euler marching algo-

rithm for incompressible Navier-Stokes problem. They used a Red/Black

SOR for solving the Poisson equation on every time step, seeing up to sec-

ond order speedup (compared to sequential solver) in simulations of lid-

driven cavity problem with Reynolds number Re = 100. Griebel and Za-

spel [7] developed a multi-GPU implementation of their CPU based solver

for two-phase incompressible Navier-Stokes problem. They used Euler time

marching and a Conjugate Gradient solver with Jacobi preconditioning to

handle the Poisson problem. Griebel and Zaspel reached speed-up of al-

most 70 compared to their serial CPU code. Thibault and Senocak [8] de-

veloped a multi-GPU solver with Jacobi method for pressure problem and

Euler marching for time stepping. Projection method with Euler marching

was implemented in this work as a reference algorithm for comparison.

Since the Poisson problem for pressure alone is an important part of

CFD algorithms, it was considered for solving on GPU by some authors.

Here we will mention some of these works. Konstantinidis and Cotronis de-

scribed their Red/Black SOR solver in [9]. They saw a speedup of 10 com-

pared to sequential implementation of the same solver. Ament et al. [10]

developed an approximate inverse preconditioner for Conjugate Gradient

solver of Poisson problem on multi-GPU platform. This heuristic precondi-

tioner was later obtained theoretically by Helfenstein and Koko in [11]. This

Incomplete Poisson Preconditioner for CG method by Ament et al. was im-

plemented for comparison in this research.

8

제 3장

CUDA computing model

In CUDA computing model functions, called kernels, are executed on a

computational grid. Computational grid consists of some amount of blocks,

which in turn consist of threads (fig. 1).

Each block resides on a separate streaming multiprocessor (SM). SMs

have some amount of on-chip shared memory, which is available for all

threads of the same block. Also, individual thread gets some register mem-

ory, which is unaccessable for other threads. Synchronization mechanism

for block of threads is available. On the contrary, there is practically no

global synchronization mechanism for different blocks, apart from start of a

new kernel.

Before the kernel launch, all the data is loaded to the global memory

(DRAM). During the kernel execution, data should be fetched to the SM.

Unfortunately, access to the global memory has a very high latency, so the

values to be reused should be saved in shared memory of the block or regis-

ters of individual threads, depending on the access patterns.

Parallelerism analysis and data access patterns, along with specific im-

plementation details for Poisson and full Navier-Stokes solvers could be

found in subsections 5.5 and 6.4 correspondingly, after the algorithms are

discussed.

9

Grid 0

block (0,0)

block (0,1)

block (1,0)

block (1,1)

t(0,0) t(1,0)

t(0,1) t(1,1)

t(0,0) t(1,0)

t(0,1) t(1,1)

t(0,0) t(1,0)

t(0,1) t(1,1)

t(0,0) t(1,0)

t(0,1) t(1,1)

Fig. 1: Computational Grid

10

제 4장

Navier-Stokes and Poisson equations

Incompressible Navier-Stokes (INS) equations describe a conservation law

of fluid’s velocities. Given the physical properties, initial and boundary con-

ditions (IC and BCs), INS equations desribe the evolution of velocities in

the domain. In contrast to graphic fluid simulations (which usually assume

inviscid fluid), engineering and scientific applications demand modeling of

incomressible fluids with non-zero viscosity, also called Newtonian fluids.

The mathematical formulation of Navier-Stokes problem is given below.

4.1 Navier-Stokes Equations

Let Ω be the simulation domain with boundary Γ and T > 0 the sim-

ulation time. Then, governing equations of unsteady Newtonian flow with

Dirichlet boundary conditions are written in pimitive variables as:

∂u

∂t
+∇p =−(u ·∇u)+g+

1

Re
∆u

∇ ·u = 0

u(x, t) = U(x, t), x ∈ Γ

u(x,0) = U0(x), x ∈Ω

(4.1)

Here, u - fluid velocities, p - hydrostatic pressure, Re = ρV L
µ - Reynolds

11

number for given density ρ, characteristic length L and velocity V and dy-

namic viscosity µ. First equation describes velocity field evolution in time

and is often refered as Navier-Stokes equation. Second equation in (4.1)

states both mass conservation law and incompressibility. Two other equali-

ties give boundary (BC) and initial (IC) conditions respectively.

This system contains equations, coupling the velocities and pressure.

In this form a system of equations is hard to solve. A commonly used ap-

proach to separate the variables is projection method, like Helmholtz-Hodge

decomposition or Chorin’s projection method [12].

4.2 Projection method

Main idea of the projection methods is the following: on every time

step, consider an intermidiate solution u∗, which satisfies only the evolution-

ary equation without the pressure. Such a solution will be not divergence-

free, which is demanded by conservation law. Based on it, formulate the

problem for pressure, such that the solution on the next time step un+1 =

u∗−∇p will be divergence-free. The projection method [13], which is used

in current work is sketched below.

Denote right-hand side of the first equation in (4.1) as f:

f =−(u ·∇u)+
1

Re
∆u (4.2)

12

Then the governing equation becomes

∂u

∂t
=−∇p+ f (4.3)

Applying divergence operator ∇· to both sides of equation (4.3) and

taking into account that ∇ ·
∂u

∂t
= 0 (due to incompressibility law), we obtain

an equation for pressure only:

∇
2 p = ∆p = ∇ · f (4.4)

This is a Poisson problem for pressure. In order to solve (4.4), we need

to specify appropriate BCs for pressure. In order to get these, mutiply (4.3)

by an outer normal vector n on the boundary:

∇p ·n =
∂p

∂n
= f ·n−

∂u

∂t
·n (4.5)

The right-hand side of Poisson problem (4.4-4.5) is changing on every

marching step, so it should be solved as many times, as there will be time

steps.

The resulting time marching process is done as following:

1. Compute f, with (4.2), using the velocity field from the previous time

step un

2. Solve the Poisson problem with Neumann BC (4.4-4.5) for pressure

13

3. Compute divergence-free velocity field on the next time step from

∂un+1

∂t
= f−∇p (4.6)

using some time discretization method.

14

제 5장

Poisson problem

Consider an isolated Poisson problem with Neumann type boundary condi-

tion

∆p = ϕ,
∂p

∂n
= γ (5.1)

where ∆ denotes a Laplacian, p is a function in closed domain Ω = Ω∪Γ,

ϕ and γ are functions in Ω and Γ respectively.

5.1 Discretization

Unfortunately, analytical solution of the problem (5.1) is feasible only for

simplified domains and specific right-hand side functions ϕ. Instead, a finite

number of grid points is introduced to approximate the derivatives with finite

differences. We will use an equidistant structured grid, which is a widely

used procedure for Poisson problem. Denote solution and right-hand side

values at the point (xi,y j,zk) as pi jk and ϕi jk. Then, the discrete approxima-

tion of (5.1) in three-dimensional case for an internal point is

∆p≈
pi+1 + pi−1 + p j−1 + p j+1 + pk−1 + pk+1−6p

h2 = ϕ (5.2)

15

For convinience, unmodified indices corresponding to the node (xi,y j,zk)

are omitted in (5.2).

System with equations for all the grid points should be solved. Since

the demands for accuracy in engineering and scientific applications are usu-

ally quite high, such systems could be very large.

5.2 The PCG Algorithm

The Preconditioned Conjugate Gradient (PCG) method is a widely used it-

erative algorithm for solving symmetric positive definite linear systems. The

matrix of the problem (5.2) is well studied and satisfies all the constraints of

convergence for PCG.

Provided input vectors of initial guess p0 and right-hand side ϕ, the

solution of Ap = ϕ with the PCG algorithm and a preconditioner M takes a

form of

r0 = ϕ−Ap0 h = M−1r0 d0 = h rold = (r0,h) l = 1 (5.3)

While l < lmax and rold > ε do

t = Adl−1 α =
rold

(dl−1, t)

rl = rl−1−αt pl = pl−1 +αdl−1

h = M−1rl rnew = (rl,h)

β =
rnew

rold
dl = h+βdl−1

rold = rnew l = l +1

(5.4)

16

Note that it is possible to avoid keeping the matrices A and M−1 ex-

plicitely in the memory - if multiplication of an arbitrary vector by these ma-

trices can be done with some point operator (applying some operator node

by node). Such matrix-free implementation will limit storage and memory

access demands to only five one-dimensional vectors.

For more background, theory and derivation of PCG algorithm and

other contemporary Krylov subspace methods, refer to a book by Saad [14].

5.3 Preconditioning

Roughly speaking, a preconditioner is any form of implicit or explicit mod-

ification of an original linear system which makes it “easier” to solve by a

given iterative method. For example, scaling all rows of a linear system to

make the diagonal elements equal to one is an explicit form of precondi-

tioning. The resulting system can be solved by a Krylov subspace method,

such as CG, and may require fewer steps to converge than with the original

system (although this is not guaranteed).

The right preconditioned linear system Ax = b takes the form:

AM−1u = b, u = Mx (5.5)

The matrix M is the preconditioning matrix. It should be close to A, i.e.

M ≈ A and the preconditioning operation M−1v should be easy to apply for

an arbitrary vector v.

The convergence rate of iterative methods is highly dependent on the

quality of the preconditioner used. Computational complexities of different

17

types of preconditioning operations are different. Moreover, their perfor-

mance varies significantly on different computing platforms.

CG method’s convergence rate depends mainly on two parameters: size

of the system and its condition number. For symmetric positive definite ma-

trices, the condition number κ is defined as

κ(A) =
λmax

λmin
(5.6)

with maximum and minimum eigenvalues λmax(A) and λmin(A). Note, that

the identity matrix has a condition number κ(I) = 1.

The closer system’s condition number is to that of identity matrix,

the faster CG method will converge. The objective of preconditioning is

to transform the original system into an equivalent system with the same

solution, but a lower condition number.

However, the computational overhead of applying the preconditioner

must not cancel out the benefit of fewer iterations. Also, increased memory

demands (for storing the preconditioning matrix) should be taken into ac-

count.

5.4 Existing Matrix-Free Preconditioners for GPU

Since large Poisson problems are very common in scientific applications, so

are matrix-free implementations of CG for them. However, most of recent

works on numerical linear algebra on GPU (refer to, for example, [15, 16,

17, 18]) consider explicit storage of the problem matrix and preconditioner.

18

Usage of such preconditioners may be not possible with the matrix-free CG

method.

Only matrix-free preconditioners for GPU will be discussed in this

work. For other preconditioning and implementation schemes the reader can

refer to the above mentioned papers [15, 16, 17, 18] and other recent works

on efficient GPGPU computing.

We will take advantage of matrix notation below where it is useful. For

a symmetric matrix of system (5.2), the following decomposition is used:

A = L+D+LT (5.7)

where D is a diagonal matrix of diagonal elements of A and L is a lower

triangular part of A.

5.4.1 Jacobi Preconditioning

Jacobi preconditioner basically applies single iteration of Jacobi method.

The idea of point-Jacobi iteration is to cancel out each component of the

residual vector individually. Thus, for i-th component:

(b−Ax)i = 0 (5.8)

Gathering equations of the form (5.8) in a vector form of iterative tech-

nique, one can obtain

xk+1 = xk +D−1(b−Axk) (5.9)

19

Or, componentwise

xk+1
i = xk +

1
aii

(bi− (Axk)i) (5.10)

If the matrix-free operator standing for applying matrix A is available,

Jacobi iteration could be applied component-wise in an independent manner.

This fact offers a full parallelerism on GPU: each thread could apply this

operation to every node, with no communication overhead.

However, the information about other updated nodes is not used. This

results in just a minor decrease in number of iteration for convergence,

which could possibly be outweighted by increased computational effrots.

5.4.2 Symmetric Successive Over-Relaxation

Gauss-Seidel (G-S) method in a classic sequential formulation corrects the i-

th component of the current approximate solution, in the order i= 1,2, . . . ,N,

again, to annihilate the i-th component of the residual. However, this time

the approximate solution is updated immediately after the new component is

determined. This difference allows to take advantage of newly refined solu-

tion on previous nodes. Practically this implies solution of lower triangular

system

(D+L)xk+1 = (D+L)xk +(b−Axk) (5.11)

Successive Over-Relaxation (SOR) modification of G-S introduces re-

laxation parameter to system (5.11) for better convergence rate:

(D+ωL)xk+1 = (D+ωL)xk +ω(b−Axk) (5.12)

20

Same process could be applied in opposite direction - in the backward

order i = N,N−1, . . . ,1, resulting in solution of upper triangular system

(D+ωLT)xk+1 = (D+ωLT)xk +ω(b−Axk) (5.13)

This procedure is called backward SOR.

Symmetric SOR (SSOR) includes a forward SOR sweep (5.12), fol-

lowed by a backward sweep (5.13). SSOR is a widely used preconditioning

method in sequential applications, since it is relatively easy to implement

and gives good convergence properties.

However, solving the triangular system is a sequential operation, which

could not be effectively mapped on any parallel architectures without loos-

ing some of performance advantages.

In the following, we will discuss some modifications of SSOR, de-

signed for parallel architectures and present red-black SSOR for parallel ar-

chitectures.

5.4.3 Block-Grained SSOR

The most natural design idea of SSOR metod modification is to divide the

matrix in blocks (see fig. 2) and apply the algorithm to each block indepen-

dently. This will result in some loss of information - since not all the nodes

are updated with the most recent information. However, the approach will

still be advantageous in comparison with Jacobi or absence of precondition-

ing.

This strategy is often used in practice for multicore CPU implemen-

21

tations. Since the number of computing cores is small, so is the number of

blocks. For big block sizes, impact of Block-Grained SSOR (BG-SSOR) on

CG convergence rate is still quite high.

GPUs offer a massive fine-grained parallelerism, but the computing

power of a single thread is quite low. While BG-SSOR allowes certain par-

allelerism in working with separate blocks of the matrix, triangular system

of each block still has to be solved sequentially by a single thread.

To make the computation on GPU more effective, we will have to di-

vide the matrix in smaller blocks, which will result in a much slower con-

vergence. Resulting in just a minor decrease in number of iterations, this

gain of preconditioning could be outweighted by a highly increased compu-

tational effort, since practically all the calculations in a block are done by a

single thread.

t t t t tt t t t tt t t t tt t t t tt t t t t
q q q q q q q q q q q q q q q

qqqqq
qqqqq
qqqqq

Fig. 2: Breaking the mesh into blocks for independent SSOR precondition-
ing

22

5.4.4 Approximate Inverse SSOR

SSOR preconditioning matrix M could be expressed in terms of splitting

(5.7) of A:

M(ω) =
1

2−ω
(

1

ω
D+L)(

1

ω
D)−1(

1

ω
D+L)T (5.14)

Unfortunately, PCG algorithm requires knowledge of inverse of matrix

M, computing which is not feasible for arbitrary boundary conditions. How-

ever, approximate inverse of this matrix could be obtained. This approach is

used in recent paper [10] by Ament et.al.

The Incomplete Poisson (IP) preconditioner, obtained by Ament et.al.

in [10] by heuristic approach could be expressed as

M−1 ≈ M̄ = (I−LD−1)(I−D−1LT) (5.15)

In order to reduce the computational cost, IP preconditioner could be

computed with enforced sparsity pattern of matrix A. Resulting loss in con-

vergence rate was found to be rather small in comparison to decrease in

computational effort [10].

For both preconditioners explicit matrix-free formulas could be ob-

tained - see [10] for those of IP preconditioner.

5.4.5 Red/Black SSOR

Red/Black SSOR (RB-SSOR) is usually used as a main solver itself. How-

ever, since it is a modification of SSOR method, carrying most of its good

convergence properties, it could be used as preconditioner as well.

23

Red-Black scheme exploits the properties of the grid used for dis-

cretization (5.2). As the name suggests, this grid could be colored in red

and black (fig. 3), such that no adjacent nodes have same color.

This means, that nodes of the same color are not connected, so their

corresponding values do not appear in same equation. Therefore, nodes of

the same color could be updated simultaneously.

The idea is to simultaneously update red nodes first (which depend

on black nodes only) and then do the simmilar operation for black nodes

(depending only on red ones) using the most recently updated values. This

will complete the forward red-black SOR sweep.

To do the backward sweep, we need to update the nodes in a reverse

order: all the black ones simultaneously first and the red ones afterwards.

Mathematically, this is simmilar to reordering the matrix by colors (fig. 4)

before applying the original sequential SSOR.

However, there is no need to reorder the matrix explicitly - we can

process the nodes with (i+ j+ k) even as red and (i+ j+ k) odd as black

ones.

If the original sequential SSOR method was applied to color-ordered

tt t
t t t
t t t t

t t t t t

t t t t
t t t

t tt
Fig. 3: Red/Black colored grid

24

red-black matrix - the resulting convergence rate will be simmilar, so there

is practically no loss in mapping the algorithm to the parallel architecture.

Decrease in convergence rate compared to original sequential SSOR is only

due to this virtual reordering and is very small.tt t
t t t

t tt
1 2 3

4 5 6

7 8 9
tt t
t t t

t tt
1 6 2

7 3 8

4 9 5

x x x
x x x x

x x x
x x x x

x x x x x
x x x

x x x
x x x x

x x x

=⇒

x x x
x x x

x x x x x
x x x

x x x
x x x x
x x x x

x x x x
x x x x

Fig. 4: Red/Black reordering of the grid nodes and corresponding matrix
reordering

5.5 Implementation Details

Recall the PCG algorithm 1 for the Poisson problem. Examining the main

loop, one can mention the following:

25

Algorithm 1 PCG
1: r0 = ϕ−Ap0 h = M−1r0 d0 = h rold = (r0,h) l = 1

2: while l < lmax and rold > ε do

3: t = Adl−1

4: α =
rold

(dl−1, t)
5: rl = rl−1−αt

6: pl = pl−1 +αdl−1

7: h = M−1rl

8: rnew = (rl,h)

9: β =
rnew

rold

10: dl = h+βdl−1

11: rold = rnew

12: l = l +1

13: end while

• Result of step 3 is used for dot product in 4 and has to be computed

first. It should be implemented in a separate kernel

• Dot product on lines 4 and 9 is a reduction operation

• Residual (5) and solution (3) are updated independently, which could

be done in the same kernel

• Preconditioning (7) demands a separate kernel, since the result is used

immidiately after. Jacobi and IP preconditioners are implemented in

a single kernel, while Red/Black SSOR needs 4 kernel calls - one for

each color update

26

• The residual value rold has to be transfered to the host side after each

loop for checking the convergence criteria. However, this could as

well be done in asynchronous manner: it could result in a few extra

iterations, but the computation will not be stalled between iterations

Taking into account all the above, algorithm could be rewritten (each

line is a kernel call):

Algorithm 2 PCG
1: r0 = ϕ−Ap0

2: h = M−1r0, d0 = h

3: Compute rold = (r0,h) with parallel reduction, set l = 1

4: while l < lmax and rold > ε do

5: t = Adl−1

6: Compute (dl−1, t) with parallel reduction

7: Compute α =
rold

(dl−1, t)
, rl = rl−1−αt and pl = pl−1 +αdl−1

8: Apply preconditioner h = M−1rl

9: Compute rnew = (rl,h) with parallel reduction

10: Get β =
rnew

rold
and compute dl = h+βdl−1, set rold = rnew, l = l +1

11: end while

There are 3 types of kernels in PCG algorithm 2:

• Vector-vector summ (updating p, r and d)

• Two-phase reduction for dot product

• Matrix-vector operation (application of problem operator and precon-

27

ditioning)

Vector-vector summation doesn’t require loading the values to shared

memory: coordinate-wise data is loaded, processed in a single operation and

not reused again. These are done using global memory only.

Two-phase parallel reduction is used for dot product. It makes use of

shared memory and is a widely known procedure. On the first phase, reduc-

tion is carried by blocks. On the second phase, the resulting vector is re-

duced by a single block.

Both matrix-vector operations are implemented with point operators,

in a matrix-free manner. Problem operator approximates Laplacian ∆p and

needs values of p at the corresponding node (i, j) an its neighbours (i±

1, j±1). These values are also used for computations in other nodes. Global

memory has high latency, so it is necessary to store these values in shared

memory for reusing. On launch of matrix-vector kernel each thread loads

value at corresponding node. Threads on the block boundary also load neigh-

bouring data from the block halo.

To ensure coalescing of the memory access, data is organized accord-

ing to the computational grid. Values are stored in one-dimensional array

with natural thread indexing. For example, to access the cell to be processed

by thread (th.x,th.y) in block (b.x,b.y) of grid (g.x,g.y), we

need to use its global index:

gid= t.x+t.y ·bDim.x+(b.x+b.y ·g.x) ·bDim.x ·bDim.y ·g.x ·g.y

28

Since the data is organized according to natural thread order, memory access

is coalesced.

Preconditioner follows the grid pattern of the problem operator, so data

access requirements are simmilar.

5.6 Performance of Poisson Solver

Performance of PCG with described preconditioning techniques was mea-

sured on Poisson problem with Dirichlet boundary conditions for various

domain sizes. Sequential algorithm with classic SSOR was implemented on

CPU to compare platform-independent covergence properties of precondi-

tioners. PCG with Block-Grained SSOR was tested only on problem with

dimensions 64×64×64 because of its poor performance.

5.6.1 Iteration count and convergence gain

Total iteration count and covergence gain of considered preconditioners are

given on fig. 5-6.

As expected, Jacobi preconditioner showed only minor gain in conver-

gence rate, as well as Block-Grained SSOR. Implementation of Incomplete

Poisson preconditioner gave a significant decrease in total iteration count -

up to 39%, while Red-Black SSOR was close to performance of state-of-

the-art SSOR preconditioning with up to 65% increase of convergence rate.

5.6.2 Iteration cost

Computed cost per iteration is given on fig. 7.

29

64^3 128^3 256^3 256^2 x 512

Problem size

0

200

400

600

800

1000
It

e
ra

ti
o
n
 c

o
u
n
t

None Jacobi IP RB-SSOR
BG-SSOR SSOR

Fig. 5: Comparison of total iteration count for considered preconditioners
on a reference problem

64^3 128^3 256^3 256^2 x 512

Problem size

0%

10%

20%

30%

40%

50%

60%

70%

C
o
n
v
e
rg

e
n
ce

 g
a
in

,
%

Jacobi IP RB-SSOR SSOR

Fig. 6: Convergence gain of considered preconditioners as compared to ab-
sence of preconditioning

30

64^3 128^3 256^3 256^2 x 512

Problem size

0

0,1

0,2

0,3

0,4

Ti
m

e
 p

e
r

it
e
ra

ti
o
n
,
s None

Jacobi
IP
RB-SSOR

Fig. 7: Comparison of time cost per iteration

In most tests increase of iteration cost of IP preconditioner was almost

simmilar to that of Jacobi. This is expcted, since the computational cost of

IP is close to cost of application of the point-wise operator A.

The Red-Black SSOR increased the iteration cost twice more than Ja-

cobi or IP. Although 4 kernel launches and more global memory accesses

are performed, it needs twice less threads to perform the preconditioning

and most of the global memory accessing latency is hidden. As a result, in-

crease of iteration cost is not much higher compared to absence of precon-

ditioning, while gain in convergence is considerable.

5.6.3 Overall performance

Finally, overall performance of different preconditioners is compared on fig.

8.

Block-Grained SSOR showed very poor performance even on a rela-

tively small problem. This is due to extremely high computational complex-

31

64^3 128^3 256^3 256^2 x 512

Problem size

0

50

100

150

200

250
Ti

m
e
 c

o
st

,
s

None Jacobi IP RB-SSOR BG-SSOR

Fig. 8: Comparison of overall computing time

ity and only a minor increase in convergence rate.

Jacobi preconditioning showed better results, but additional computa-

tional complexity still outweighted small convergence gain.

In fact, only IP and RB-SSOR preconditioners turned out to be bene-

ficial in overall computation. Even though RB-SSOR is about twice more

costly to apply than IP, it outperforms the latter thanks to a significantly

higher convergence rate.

Overall performance gain (fig. 9) of RB-SSOR reached 37%, while that

of IP was getting up to 11%.

32

64^3 128^3 256^3 256^2 x 512

Problem size

−30%

−20%

−10%

0%

10%

20%

30%

40%

Pe
rf

o
rm

a
n
ce

 g
a
in

,
%

Jacobi IP RB-SSOR

Fig. 9: Comparison of overall performance gain

33

제 6장

Navier-Stokes Problem Approach

Approaching the INS Problem with the projection method described earlier

in section 4 needs three issues to be resolved. First, we need to choose the

spatial discretization technique for right-hand side f in (4.2) to have both a

good approximation and capture convection-dominated flows. Second, Pois-

son problem for pressure has to be set up consistently. Third, appropriate

time marching procedure should be chosen.

6.1 Spatial discretization

Let us consider the numerical treatment of momentum equation. We will

use a staggered grid for discretization of velocities. Staggered grids are

formed the following way: the cell centers xi, j,k correspond to pressure

nodes, whereas the cell-face centers xi+1/2, j,k, xi, j+1/2,k and xi, j,k+1/2 give

the velocity nodes for u1, u2 and u3 respectively. Fig. 10 gives an example

of two-dimensional staggered grid cell.

For diffusive terms we will use central second order differences. This

will be simmilar grid operator as the one used for discretization of Poisson

equation.

However, to properly approximate convection dominated flows, we

cannot use central differences for convective terms. Instead, a third-order

34

WENO (Weighted Essentially Non-Oscillatory) scheme was used (for more

information on WENO scheme refer, for example, to pioneering paper by

Liu et.al. [19]). Constructed 3-rd order WENO scheme is sketched below

for approximation of ∂u
∂x .

Consider three point stencil (fig. 11). We will approximate the deriva-

tive by a weighted combination of forward difference ux and backward dif-

ference ux̄. Weights are computed based on nonlinear local smoothness in-

dicators:

∂u

∂x
≈ w1ux̄ +w2ux

wk =
w̃k

w̃1 + w̃2

w̃k =
1

ε+β2
k

β1 = (u−u−1)
2, β2 = (u+1−u)2

(6.1)

Here, βk are nonlinear smoothness indicators and ε - some small number (in

this work, ε = 10−6 was chosen), which is introduced to avoid dividing by

t ✲

✻

p
u1

u2

Fig. 10: Staggered grid cell in two-dimensional case

35

t t t
uu−1 u+1

ux̄ ux

Fig. 11: Three point WENO stencil

zero.

6.2 Setting up Pressure Poisson Problem

Once the right-hand side values fi, i = 1,2,3 are calculated, we can proceed

to formulating pressure problem (4.4-4.5). Approximation of the right hand

side in the Poisson equation (4.4) is straightforward. Proper approximation

of the BC (4.5) is more involved [13].

Consider two-dimensional discrete continuity equation for accelera-

tions u̇ and v̇ in the right boundary cell (N, j) on fig. 12:

(u̇N, j− u̇N−1, j)+(v̇N, j− v̇N, j−1) = 0 (6.2)

where u̇N, j is given on boundary Γ as a BC and other accelerations must be

obtained from the discretized momentum equations:

u̇N−1, j = f 1
N−1, j−

pN, j− pN−1, j

h

v̇N, j = f 2
N, j−

pN, j+1− pN, j

h

v̇N, j−1 = f 2
N, j−1−

pN, j− pN, j−1

h

(6.3)

36

tt
t

t

✄✂�✁

✄✂�✁

✄✂�✁

✄✂�✁ ✄✂ �✁

✄✂ �✁✄✂ �✁

✄✂ �✁

pN, jpN−1, j

pN, j+1

pN, j−1

uN, j

uN, j+1

uN, j−1

uN−1, j

vN, j

vN, j−1

vN−1, j

vN, j+1

Fig. 12: Two-dimensional problem disctretization near the right boundary

Inserting the above accelerations into (6.2) and rearranging yields

3pN, j− pN−1, j− pN, j+1− pN, j−1

h2 =−

 u̇N, j− f 1
N−1, j

h
+

f 2
N, j− f 2

N, j−1

h

(6.4)

The Taylor expansion of (6.4) approximates boundary condition (4.5)

applied on the right boundary:

∂p

∂n
= f ·n− u̇ ·n+O(h2) (6.5)

37

6.3 Semi-Implicit Bicolor Time Marching Al-
gorithm

Consider Euler stepping procedure for discretization of evolution step (4.6)

of marching process:

un+1 = un + τ(fn−∇pn+1) (6.6)

Any explicit marching procedure should satisfy the stability condition.

This time step restriction takes convection, viscosity and gravity into ac-

count and ensures, that discrete information can evolve no further than one

grid cell. This is necessary, since the discrete difference equations consider

only fluxes between adjacent cells.

Let’s define

Ci =

∥ui∥∞

h
+

1

Re
·

6

h2

+

√√√√√√
∥ui∥∞

h
+

1

Re
·

6

h2

2

+
|gi|
h

−1

(6.7)

Values Ci in (6.7) are computed independently for each velocity com-

ponent. The overall time step restriction is then expressed as

τ≤ 2ξmin(C1,C2,C3) (6.8)

where ξ ∈ (0,1] is a safety factor.

In practice, however, due to accumulation of truncation errors, stability

requires choosing ξ not exceeding 0.3. Resulting time step is quite short, so

38

the overall computing time is high. Usage of implicit time stepping could re-

solve the issue, but purely implicit solvers with good accuracy are very hard,

if even possible, to implement with the level of parallelerism demanded for

effective GPGPU computing.

However, a mathematically semi-implicit solver could be constructed,

using the simmilar feature of the grid as RB-SSOR.

First, compute f(u) = f(un) for red nodes only. Then, compute f(u) =

f(un + τf(un)) for black nodes. Even though the second formular is mathe-

matically imlpicit, the actual computation is done in explicit manner, since

only the most recent data from red nodes (which was obtained just before)

is needed. In fact, this procedure could be rewritten as

fred(u) = fred(un
black)

fblack(u) = fblack(ũn+1
black) = fblack(un

black + τfred(un
black))

(6.9)

This semi-implicit marching procedure allows to increase the safety

factor for time step restriction due to better computational stability. This,

in turn, results in a smaller overall amount of time steps. However, potential

drawback of increasing the time step is a lower convergence rate of the Pois-

son solver on each time step, which is also decreased by computing right-

hand side for black nodes with divergent velocity field. Also, for GPGPU

computation, two kernel launches, instead of one for explicit scheme, will

be needed for computing (6.9) correctly.

Depending on the specific problem properties, it could be whether ben-

eficial in terms of overall computational time or not. However, the choice of

39

safety factor ξ is problem-dependent. Moreover, there is no formal proce-

dure to determine it, so improved stability itself is worth of sacrificing some

performance.

6.4 Implementation Details

Let’s consider parallelerism of the described algorithm. Recall the marching

procedure 5.

Algorithm 3 Marching process
1: while t < T do

2: Compute f = −(u ·∇u) +
1

Re
∆u, using the velocity field from the

previous time step un

3: Solve the Poisson problem for pressure ∆p = ∇ · f, ∇p · n =
∂p

∂n
=

f ·n−
∂u

∂t
·n

4: Compute divergence-free velocity field on the next time step from

∂un+1

∂t
= f−∇p using some time discretization method.

5: t = t +dt

6: end while

Note, that on this coarse-grained level main loop of the algorithm 5 is

sequential. First, accelerations for each velocity component are computed

(step 2 in Algorithm 5).

Components of predicted acceleration field f, f1 and f2, are computed

independently. Since they use the same data about the velocity field on the

40

previous time step, they could be updated concurently in the single kernel.

Since Euler stepping is a fully explicit procedure, there is no global

synchronization needed and only one kernel should be called.

However, for the Red/Black marching two kernel calls (for red and for

black nodes) are necessary. In each of these calls, only half of the accelera-

tions (one color) are computed, so it needs twice less threads for processing.

Red color is denoted to nodes with i+ j+ k even and black - to those with

this index summ being odd.

Computation of corrected velocity field is done in explicit manner with

∂un+1

∂t
= f−∇p and could be done in parallel in a single kernel call.

Consider predicted acceleration in two-dimensional case for x-direction

(u and v - velocities in x and y directions correspondingly)

fx =−u
∂u

∂x
− v

∂u

∂y
+

1

Re
∆u (6.10)

To approximate the derivatives on the right-hand side we need veloc-

ity data from same neighbours as was needed for Poisson solver. For this

reason, velocities are stored in the same way as pressure and simmilarily

loaded to shared memory.

Finally, let’s describe the data transfers between CPU and GPU during

solver execution. Computational flow of the algorithm is sketched below.

After all memory allocations and ititialization of the problem, compu-

tation begins starting with t = 0:

41

Algorithm 4 Navier-Stokes Solver
1: while t < T do

2: Compute time step dt = 2ξmin{Cx,Cy}

3: Predict acceleration field f with Euler or Red/Black kernel

4: Compute right-hand side for Poisson equation ϕ = ∇ · f

5: Solve the Poisson problem for pressure with PCG alg. 2

6: Compute corrected velocity field, using pressure

7: t← t +dt

8: end while

During algorithm 4 execution, there are following GPU-CPU transfers:

• Values Cx and Cy need to be transfered to CPU for computing time

step. Since the flow of the algorithm is controlled by CPU, this couldn’t

be avoided

• Residual in PCG alg. 2 is transfered asynchronously on every Pois-

son iteration. This is again, algorithm control issue and couldn’t be

avoided

• Velocity and (if necessary) pressure field. GPU memory is not large

enough for keeping the solutions on all time steps during the execu-

tion. They have to be transfered to CPU.

6.5 Verification

The classical lid-driven cavity problem has been investigated by many au-

thors since some pioneer works giving good results of steady solutions twenty

42

years ago [21, 22]. Their results were confirmed by many other studies and

the solution obtained at Re = 1000 for instance is quite close from one au-

thor to another [20, 24]. It became, in fact, a standard validation test for CFD

algorithms.

Consider a square cavity with three fixed walls and a moving lid. At the

initial moment t = 0, velocities are zero and the lid starts moving. Problem

setting is sketched on fig. 13.

To numerically validate the GPU solver, the results were compared

with the data from [21]. As is shown on fig. 14-15, the velocity compo-

nents along the vertical and horizontal lines through the geometric center

are in good agreement with results by Ghia [21] for both Reynolds numbers

Re = 100 and Re = 1000.

6.6 Performance of Navier-Stokes Solver

Performance of the full INS solver was measured on a lid-driven cavity

problem, described in the previous subsection.

✲u = 1,v = 0

u = 0,v = 0 u = 0,v = 0

u = 0,v = 0

u0 = 0

v0 = 0

Fig. 13: Sketch of the lid-driven cavity problem formulation

43

Fig. 14: Numerical data verification, Re = 100

Fig. 15: Numerical data verification, Re = 1000

44

Computation was done both for the steady-state and highly unsteady

solutions. In case of lid-driven cavity problem, steadiness of the solution

completely depends on the length of time domain. For the small computing

times velocity field evolvs rapidly, which allows us to measure solver per-

formance on rapidly changing type of problems.

On the contrary, for relatively large time domains, steady solutions

dominate.

Numerical experiments were run for two-dimensional problem with

Re = 1000 on a grid with size 512× 512. The performance measurements

are summarized on the fig. 16. There, Euler-03 denotes computations with

ordinary explicit Euler stepping without RB-SSOR preconditioning for Pois-

son and safety factor ξ = 0.3, Euler-03-SSOR stands for the same solver

with RB-SSOR-preconditioned Poisson solver. Analogously, RB-08-SSOR

denotes semi-implicit bicolor time marching with RB-SSOR-preconditioned

Poisson solver and a safety factor ξ = 0.8.

As seen on fig. 16, for both time marching processes preconditioning

of Poisson problem is beneficial, especially for rapidly changing problem.

While the solution is approaching steady state, the gain from precondition-

ing is getting lower.

This effect is due to the following: the smaller the velocity changes are

in the ”prediction” step, the less ”correction” iterations (Poisson iterations

in this case) are necessary. So, for steady solutions a very low number of

Poisson iterations is needed and the preconditioning becomes a pure waste

of extra computational power. The only reason, why it is still beneficial is

extensive use of the Poisson solver in the initial unsteady region. Overall

45

0,2 0,3 0,4 0,5 0,6 0,7 0,8 1 1,5

T, s

0

50

100

150

200

250

300

350

Ti
m

e
 c

o
st

,
s

Euler-03 Euler-03-SSOR
RB-08 RB-08-SSOR

Performance Evaluation

Fig. 16: Performance comparison

cost is decomposed on fig. 17 to demonstrate the use of Poisson solver in

steady and unsteady regions.

The developed bicolor time marching procedure without precondition-

ing actually decreases performance, even though the time step was increased.

This is due to the following: with increased time step and extra diffusion an

extensive use of Poisson solver is necessary, even for the late steady stages.

That is why preconditioning had such a significant impact on bicolor march-

ing.

Red/Black time stepping with preconditioned Poisson solver was found

to be beneficial only for highly unsteady solutions. However, as mentioned

before, it allows more freedom for choice of safety factor, which could be

important as well, since there is no formal procedure to determine it and

46

Euler, T=0,2 Euler, T=1,5 Red/Black, T=0,2 Red/Black, T=1,5
0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Marching Poisson Solver

Time cost breakdown

Fig. 17: Time cost breakdown

thus the choice is left to engineer.

47

제 7장

Mixed Precision Modification

From one hand, due to high accuracy demands, computation should be done

with the double precision. Moreover, purely single precision solver gives

a poor convergence for the Poisson problem. Due to restriction on maxi-

mum amount of Poisson iterations, for some time steps it doesn’t cancel out

the error complitely, which introduces the divergence to the velocity field.

The solution obtained this way is not divergence-free and is, therefore, non-

physical. With certain amount of introduced divergence, the whole algo-

rithm will not converge. All these factors lead to choice of double precision

as an only option for algorithm.

From the other hand, originally, GPUs suppoted single precision com-

putations only. Even though last several generations support double preci-

sion, it is still much slower than handling single precision floats. Hence, it

is desired to do as much computation in single precision as it is possible.

Considering both arguements, a compromise could be found in devel-

oping a mixed precision solver. It has to satisfy the following demands:

1. The most expensive operations should be carried out in single preci-

sion.

2. Operations, having the biggest impact on convergence, should be done

in double precision.

48

3. Result of each time step should be simmilar to the one carried com-

pletely in double precision.

7.1 Iterative Refinement

Recall the general description of the marching algorithm:

Algorithm 5 Marching process
1: while t < T do

2: Compute f = −(u ·∇u) +
1

Re
∆u, using the velocity field from the

previous time step un

3: Solve the Poisson problem for pressure ∆p = ∇ · f, ∇p · n =
∂p

∂n
=

f ·n−
∂u

∂t
·n

4: Compute divergence-free velocity field on the next time step from

∂un+1

∂t
= f−∇p using some time discretization method.

5: t← t +dt

6: end while

Steps 2 and 4 and third task are done only once in a time step and are of

crucial importance for convergence. These operations are not available for

lowering the precision.

The Poisson solver dominates the overall computation, which satisfies

the demand 1. Inner iterations of Poisson solver don’t affect the overall ve-

locity field convergence (demand 2), if the final overall solution of pressure

problem is simmilar to the one computed with double precision (demand 3).

49

Thus, computations in the Poisson solver could be partly simplified to single

precision.

Consider iterative refinement procedure with explicit PCG restarts. It

is summarized in algorithm 6.

Algorithm 6 Iterative refinement
1: while l < lmax and rd

old > εd do

2: rd
l ← ϕd−Apd

l

3: hd←M−1rd
l

4: df← hf

5: rd
old ← (rd

l ,h
d), i← 0

6: while i < irestart and rf
old > εf do

7: tf← Adf

8: α←
rf

old

(df, t)
9: rf

l+1← rf
l −αtf

10: pf
l+1← pf

l +αdf

11: hf←M−1rf
l+1

12: rf
new← (rf

l+1,h
f)

13: β←
rf

new

rf
old

14: df
l+1← hf +βdf

l

15: rf
old ← rf

new, i← i+1, l← l +1

16: end while

17: end while

Upper indices ”f” and ”d” denote values in single and double precision

50

respectively.

The computations in outer loop (2-5) are carried out in double preci-

sion, which makes the overall solution satisfy the equivalence demand 3.

On the contrary, inner loop (7-15), which dominates the computation, is re-

peated in single precision - satisfying the performance bottleneck demand

2.

Best performance results for double precision solver were compared to

the corresponding results of the mixed iterative refinement solver (see fig.

18).

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5

T,s

0

50

100

150

200

250

300

350

C
o
m

p
u
ti

n
g

 c
o
st

,
s

Euler Mixed Euler
RB Mixed RB

Comparison with mixed precision solver

Fig. 18: Performance comparison of double and mixed precision solvers

Upgrade in performance due to the use of mixed precision solver doesn’t

51

exceed 5% in the highly unsteady phase, decreasing with further time march-

ing to the steady region. In fact, for Euler marching it even increases the

overall computation cost of obtaining steady solution. Explanation of this

performance drawback in steady region is provided below.

The mixed precision Poisson solver needs more iterations to converge

because of higher round-off errors. For rapidly changing velocity field the

amount of Poisson iterations is high for both double and mixed precision

solvers and poorer convergence is outweighted by higher average speed of

floating point operations. On the contrary, in the steady region only several

Poisson iterations are needed for convergence of double precision solver,

while the mixed precision one increases this amount to tens of them. Hence,

the outcome of tradeoff between number of iterations and individual itera-

tion cost is opposite to the one above and the gain from a more complicated

mixed precision solver becomes neglectable and even negative.

7.2 Further Elaboration

Performance of the mixed precision algorithm 6 could be further refined. In

order to do that, we will use a heuristic approach inspired by work [23]. In

this work, fixed point processing is considered for optimization with choos-

ing an appropriate word length for each part of the system. Simmilarily, we

will consider choice of single or double precision for each part of the solver.

Consider inner loop operations (7-15) in algorithm 6. Each of them

could be carried whether in single or double precision. We will investigate

an impact of doing each of them in single precision, while others are com-

52

puted with double precision. Thus, we can obtain an impact of lowering pre-

cision for an individual operation on overall computing cost.

Simulation was run for a Poisson solver with right-hand side corre-

sponding to unsteady and steady region. Resulting impact on the overall

time cost is summarized in the table 1.

표 1: Impact of lowering precision

Operation carried in single precision Performance Gain
t← Ad +4%

α← (d, t) +2%
α← rold/α −3%
p← p+αd 0%
r← r−αt 0%
h←M−1r +4%

rnew← (r,h) +2%
β← rnew/rold −3%
d← h+βd −1%

It could be noted from table 1, that lowering the precision of different

operations has a different impact on overall cost. Precision should be low-

ered only for operations, which impact on convergence is positive, and kept

high for those with negative and zero effect. Practically, only matrix-vector

and dot product operations should be carried in single precision.

Performance of the resulting mixed precision solver is shown on fig.

19.

For Euler stepping, performance is further upgraded (compared to pre-

viously discussed mixed precision solver) in unsteady region. This perfor-

mance gain is around 3% as compared to first mixed solver. On the other

hand, in steady region, where the previous mixed precision modification

53

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5

T, s

0

50

100

150

200

250

300

350

C
o
m

p
u
ti

n
g
 c

o
st

,
s

Euler Mixed Euler
Mixed Euler Opt. RB
Mixed RB Mixed RB Opt.

Comparison with mixed precision

Fig. 19: Performance of the optimized mixed precision solver

was giving a negative effect, current solver shows simmilar performance as

double precision solver.

For Red/Black marching, performance is further refined in all simula-

tion domain. As compared to algorithm 6, gain is varying from 5% in un-

steady region to 3% in steady part.

54

제 8장

Unsteady flows

Tools for simulation of unsteady flows are crucial for many engineering

applications. They include variety of start up processes, such as cold start

of a turbine or beginning of flow in pipes. These processes have both steady

and unsteady parts.

Turbulence is another unsteady flow effect. Most flows of interest, such

as fluid transfer in a pipe with a pulp, are turbulent in nature and don’t

converge to any steady state.

Performance of developed marching process in comparison with Euler

marching was measured on a lid-driven cavity problem. It is known [24],

that with Reynolds number close to Re = 10000 flow in a lid-driven cavity

becomes turbulent. Result of numerical experiments with Re = 10000 are

shown on the fig. 20. The relative speedup compared to Euler marching was

varying from 13% to 30%, depending on size of time domain.

Illustrated performance was compared to sequential CPU code. Result-

ing speedup is shown on fig. 21.

55

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5

T, s

0

100

200

300

400

500

C
o
m

p
u
ti

n
g
 c

o
st

,
s

Mixed Euler Opt. Mixed RB Opt.

Solver comparison for turbulent flow with Re=1E4

Fig. 20: Performance comparison for Re = 10000

0,2 0,8 1,5

T, s

0

5

10

15

20

25

S
p
e
e
d
u
p

Red/Black marching Euler marching

Speedup from sequential code

Fig. 21: Speedup relative to CPU code (Re = 10000)

56

제 9장

Summary

Projection method was used to develop a GPGPU solver for incompressible

Navier Stokes equations.

As a Poisson solver for inner iterations, matrix-free version Precon-

ditioned Conjugate Gradient method was chosen. Several existing matrix-

free preconditioners were considered, including recently introduced Incom-

plete Poisson preconditioner [10]. After the tests, Red/Black SSOR, which

is mostly used as a separate solver, was chosen.

Secondly, time marching process was considered. A semi-implicit bi-

color marching process, inspired by Red/Black scheme was developed. It

was shown to be beneficial for rapidly changing flows by measuring solver’s

performance on a turbulent problem, compared to explicit Euler marching

technique.

Finally, Poisson solver was considered for further optimization with

introducing mixed precision computation. Impact of lowering the precision

of individual operations was measured. Based on this information, a mixed

precision solver was developed.

The final version of the solver showed speedup of up to 22 as compared

with sequential CPU code performance (fig. 21).

57

참고문헌

[1] J. Stam, - ”Stable Fluids”, SIGGRAPH, 1999, pp 121-128

[2] M.J. Harris, W.V. Baxter, T. Scheuermann, A. Lastra, - ”Simulation of

cloud dynamics on graphics hardware”, Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Conference on Graphics Hardware, 2003,

pp 92–101

[3] Y. Liu, X. Liu, E. Wu, - ”Real-time 3D fluid simulation on GPU with

complex obstacles”, 12th Pacific Conference on Computer Graphics

and Applications, 2004, pp 247–256

[4] T. Brandvik, G. Pullan, - ”Acceleration of a 3D Euler solver us-

ing commodity graphics hardware”, 46th AIAA Aerospace Sciences

Meeting and Exhibit, 2008

[5] E. Elsen, P. LeGresley, E. Darve, - ”Large calculation of the flow over

a hypersonic vehicle using a GPU”, Journal of Computational Physics

227 (2008), pp 10148–10161

[6] J. Liu, Z. Ma, S. Li, Y. Zhao, - ”A GPU Accelerated Red-Black SOR

Algorithm for Computational Fluid Dynamics Problems”

[7] M. Griebel, P. Zaspel, - ”A multi-GPU accelerated solver for

the three-dimensional two-phase incompressible Navier-Stokes equa-

tions”, Comput Sci Res Dev 25 (2010), pp 65–73

58

[8] J.C. Thibault, I. Senocak, - ”CUDA Implementation of a Navier-

Stokes Solver on Multi-GPU Desktop Platforms for Incompressible

Flows”, 47th AIAA Aerospace Sciences Meeting Including The New

Horizons Forum and Aerospace Exposition, 2009

[9] E. Konstantinidis, Y. Cotronis, - ”Graphics processing unit accelera-

tion of the red/black SOR method”, Concurrency Computatation: Prac-

tice Experience (2012)

[10] M. Ament, G. Knittel, D. Weiskopf, W. Strasser, - ”A Parallel Pre-

conditioned Conjugate Gradient Solver for the Poisson Problem on

a Multi-GPU Platform”, Parallel, Distributed and Network-Based Pro-

cessing (PDP), 2010 18th Euromicro International Conference, pp 583

- 592

[11] R. Helfenstein, J. Koko, - ”Parallel preconditioned conjugate gradient

algorithm on GPU”, Journal of Computational and Applied Mathemat-

ics, Vol. 236, Issue 15, Sep. 2012, p. 3584–3590

[12] A.J. Chorin, - ”Numerical Solution of the Navier-Stokes Equations”,

Math. Comp. Vol. 22, pp 745–762

[13] P.M. Gresho, R.L. Sani, - ”On Pressure Boundary Conditions for the

Incompressible Navier-Stokes Equations”, Int. J. for Numerical Meth-

ods in Fluids, Vol.7, pp 1111-1145

[14] Y. Saad, - ”Iterative methods for sparse linear systems”, 2nd edition,

SIAM, Philadelpha, PA, 2003

59

[15] R. Li, Y. Saad, - ”GPU-Accelerated Preconditioned Iterative Linear

Solvers”, The Journal of Supercomputing, Vol. 63, Issue 2, Feb. 2013,

pp 443-466

[16] J.M. Elble, N.V. Sahinidis, P.Vouzis, - ”GPU computing with Kacz-

marz’s and other iterative algorithms for linear systems”, Parallel

Computing 36 (2010), pp 215–231

[17] L. Li, L. Li and Y. Guangwen, - ”A Highly Efficient GPU-CPU Hybrid

Parallel Implementation of Sparse LU Factorization”, Chinese Journal

of Electronics, Vol.21, No.1, Jan. 2012

[18] N. Galoppo, N.K. Govindaraju, M. Henson, D. Manocha, - ”LU-GPU:

Efficient Algorithms for Solving Dense Linear Systems on Graphics

Hardware”, Proceedings of the 2005 ACM/IEEE conference on Su-

percomputing

[19] X.-D. Liu, S. Osher and T. Chan, - ”Weighted essentially non-

oscillatory schemes”, Journal of Computational Physics, Vol. 115, pp

200-212, 1994

[20] C.-H. Bruneau, M. Saad, - ”The 2D lid-driven cavity problem revis-

ited”, Computers & Fluids, Vol. 35, pp 326-348 (2006)

[21] U. Ghia, K.N. Ghia, C.T. Shin, - ”High-resolutions for incompressible

flows using Navier–Stokes equations and a multigrid method”, Journal

of Computational Physics, Vol.48 (1982)

60

[22] R. Schreiber, H.B. Keller, - ”Driven cavity flows by efficient numerical

techniques”, Journal of Computational Physics, Vol. 49 (1983)

[23] Wonyong Sung, Ki-Il Kim, - ”Simulation-based word-length optimiza-

tion method for fixed-point digital signal processing systems”, IEEE

Transactions on Signal Processing Vol. 42, Is. 12, pp 3087-3090

[24] P. N. Shankar, M. D. Deshpande, - ”Fluid Mechanics in the Driven

Cavity”, Annual Reviews in Fluid Mechanics, Vol. 32, pp 93-136

(2000)

61

초록

푸아송 방정식을 위한 레드/블랙 접근 방법에서 착안된 새로운 반-내

포의 이색 나 비에 스토크스 방정식이 GPGPU를 활용한 비압축성 유

체 시뮬레이션을 위해 연 구되었다. 이 방법은 극도로 불안정한 유체

흐름을시뮬레이션하는경우에특히효과적이라는것이입증된바있

다.또한이방법은안정조건에여유가있기때문에,시간간격을선택

하는데있어더큰자유도를제공한다는장점이있다.공간적이산은

엇갈림격자를사용하고,대류에의해결정되는흐름을관찰하기위해

WENO 방법을 사용하여 대류항을 근사한다. 이 연산에 지배적인 영

향을주는것은행렬을사용하지않는전처리된켤레구배법(Precondi-

tioned Conjugate Gradient)알고리즘을사용하는푸아송방정식풀이방

식이다.이미알려진행렬을사용하지않는여러전처리조절방법들이

고려되었다. 레드/블랙 SSOR은 일반 적으로 주 풀이방법으로 사용되

지만,행렬을 사용하지 않는 PCG의 전처리 조절방 법 중 가장 적합한

방법인 것으로 밝혀졌다. 명시적인 PCG의 재시작을 이용한 혼 합 정

밀도조정은불안정한구간에서약간의이득을주지만,안정적인구간

에서는 불이익을 준다. 보다 나은 성능의 최적화를 위해 풀이 방법의

감도에대한연구가수행되었다.

주요어 : 비압축성나비에-스토크스방정식,레드/블랙접근방법,불특

정한 유체 흐름,엇갈림격자, WENO, 푸아송 방정식,레드/블랙 SSOR,

혼합정밀도

62

학번 : 2011-24073

63

	1 Introduction
	2 Related Work
	3 CUDA Computing Model
	4 Navier-Stokes and Poisson equations
	4.1 Navier-Stokes Equations
	4.2 Projection method

	5 Poisson problem
	5.1 Discretization
	5.2 The PCG Algorithm
	5.3 Preconditioning
	5.4 Existing Matrix-Free Preconditioners for GPU
	5.4.1 Jacobi Preconditioning
	5.4.2 Symmetric Successive Over-Relaxation
	5.4.3 Block-Grained SSOR
	5.4.4 Approximate Inverse SSOR
	5.4.5 Red/Black SSOR

	5.5 Implementation Details
	5.6 Performance of Poisson Solver
	5.6.1 Iteration count and convergence gain
	5.6.2 Iteration cost
	5.6.3 Overall performance

	6 Navier-Stokes Problem Approach
	6.1 Spatial discretization
	6.2 Setting up Pressure Poisson Problem
	6.3 Semi-Implicit Bicolor Time Marching Algorithm
	6.4 Implementation Details
	6.5 Verification
	6.6 Performance of Navier-Stokes Solver

	7 Mixed Precision Modification
	7.1 Iterative Refinement
	7.2 Further Elaboration

	8 Unsteady flows
	9 Summary

<startpage>8
1 Introduction 1
2 Related Work 3
3 CUDA Computing Model 5
4 Navier-Stokes and Poisson equations 7
 4.1 Navier-Stokes Equations 7
 4.2 Projection method 8
5 Poisson problem 11
 5.1 Discretization 11
 5.2 The PCG Algorithm 12
 5.3 Preconditioning 13
 5.4 Existing Matrix-Free Preconditioners for GPU 14
 5.4.1 Jacobi Preconditioning 15
 5.4.2 Symmetric Successive Over-Relaxation 16
 5.4.3 Block-Grained SSOR 17
 5.4.4 Approximate Inverse SSOR 19
 5.4.5 Red/Black SSOR 19
 5.5 Implementation Details 21
 5.6 Performance of Poisson Solver 25
 5.6.1 Iteration count and convergence gain 25
 5.6.2 Iteration cost 25
 5.6.3 Overall performance 28
6 Navier-Stokes Problem Approach 30
 6.1 Spatial discretization 30
 6.2 Setting up Pressure Poisson Problem 32
 6.3 Semi-Implicit Bicolor Time Marching Algorithm 34
 6.4 Implementation Details 36
 6.5 Verification 38
 6.6 Performance of Navier-Stokes Solver 39
7 Mixed Precision Modification 44
 7.1 Iterative Refinement 45
 7.2 Further Elaboration 48
8 Unsteady flows 51
9 Summary 53
</body>

