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Abstract

Nguyen Gia Quan
School of Electrical Engineering and Computer Science
The Graduate School

Seoul National University

As device dimensions are minimized, random telegraph noise (RTN) is
dominant in determining the performance and reliability of metal-oxide-
semiconductor field effect transistor (MOSFET). The origin of RTN is
attributed to trapping/de-trapping of carriers in trap located in a gate oxide or
at a Si/Si0O; interface. Until now, most research on the characterization of an
oxide trap investigates for the channel or gate leakage current and a few for
gate-induced drain leakage current, a significant leakage component of current
in modern MOSFETs which is mainly associated with both band-to-band or
trap-assisted-tunneling in a gate to drain overlapped region. As a result, RTN
in GIDL current is believed to be a cause of variable retention time in DRAM
devices. Due to those reasons, there has been much interest regarding RTN in
GIDL current. Previous authors have reported that oxide traps cause RTN in
GIDL current from experimental work. For better understanding of

characterization of oxide traps that lead to fluctuations of GIDL current, it is



necessary to obtain accurate information about the characterization of these

traps.

In this thesis, we have developed an accurate model to represent the
variation of GIDL current which depends on location of an oxide trap by all
vertical, lateral and width direction, and expected the trap’s position at the gate
oxide. We also analyzed the amplitude of RTN in GIDL current as a function
of the drain to gate voltage. Also, we investigated the characterization of the
oxide trap with 20-nm Saddle MOSFET, a promising candidate for DRAM

high-density applications.

Keywords

Gate-induced drain leakage (GIDL), random telegraph noise (RTN), Saddle

MOSFET, location of an oxide trap, amplitude of Algipr/IgipL

Student No. : 2011-24088
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1. Introduction

As device dimensions are minimized, random telegraph noise (RTN) is
dominant in determining the performance and reliability of metal-oxide-
semiconductor field effect transistor (MOSFET). The origin of RTN is
attributed to trapping/de-trapping of carriers in trap located in a gate oxide or
at a Si/Si0O; interface. Until now, most research on the characterization of an
oxide trap investigates for the channel or gate leakage current and a few for
gate-induced drain leakage current, a significant leakage component of current
in modern MOSFETs which is mainly associated with both band-to-band or
trap-assisted-tunneling in a gate to drain overlapped region. As a result, RTN
in GIDL current is believed to be a cause of variable retention time in DRAM
devices. Due to those reasons, there has been much interest regarding RTN in
GIDL current. Previous authors have reported that oxide traps cause RTN in
GIDL current from experimental work. For better understanding of
characterization of oxide traps that lead to fluctuations of GIDL current, it is
necessary to obtain accurate information about the characterization of these

traps.

Chapter 2 is about gate-induced drain leakage current which significant

effect the performance and reliability of memory cell transistors. Several



models of GIDL current were developed to planar MOSFET. We described a
model for GIDL current included Trap-assisted tunneling and band-to-band

tunneling and compared with the measurement data with the modeling data.

In chapter 3, the dependence both on the trap position of RTN in GIDL
current and on drain to gate voltage of conventional n-MOSFET is provided.
We extracted the possible trap position at the gate oxide from both simulation

and measurement data.

In chapter 4, the investigation of RTN in GIDL current of 20-nm Saddle
MOSFET, a promising candidate of high-density DRAM cell, is given.

Especially, we analyze the effect of multi-traps with RTN in GIDL current.



2. Gate-Induced Drain Leakage
(GIDL) Current

Gate-Induced Drain Leakage Current is one of the significant leakage
current components, especially, determining data retention time of DRAMs.
GIDL current is attributed to tunneling taking place in the deep depleted drain
region underneath the gate oxide. GIDL current is mainly affected by the

electric field at the gate to drain overlapped region.

For an n-MOSFET transistor with grounded gate and drain bias at Vd,
significant band bending in the drain allows electron-hole pair generation
through avalanche multiplication and band-to-band tunneling. A deep depletion
condition is created since the holes are rapidly swept out to the substrate. At the

same time, electron are collected by the drain, resulting in GIDL current.
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Figure 2.1: Cross-sectional view of planar n-MOSFET

The total GIDL current is obtained through the integration of the generation

function over the structure:

Lopr = WQH (Rypsr + Ry )dxdy  (2.1)

where W is the gate width.

Trap-assisted tunneling (TAT) and band-to-band tunneling (BBT) are
the main mechanisms contributing to GIDL with proportions depending on

electric field.
2.1 Band-to-band tunneling

Band to band tunneling is only possible in the presence of a high

electric field and when the band bending is larger than the energy band gap E,



[1]. The electric field in silicon at the interface also depends on the doping
concentration in the diffusion region and the drain to gate voltage.

2.2)

3/2
R™ =A-D-Fp-exp(— BEe(T) J

Eg(300)*F

2.2 Trap-assisted tunneling

Trap-assisted tunneling dominates under the condition of small electric
field and its carriers enhances the Shockley-Read-Hall (SRH) generation of
electron-hole pairs in space charge region. Trap-assisted tunneling is modeled
by including Trap-assisted tunneling is modeled by including appropriate

enhancement 75,”" and I;,”"* in the trap lifetimes.

Rpyr =

T E -FE, 7, E,-E
—| p+n,exp| — + n+n; exp :
1+T kT 1+r,, kT

tat

Field-effect factor:

An approximate for field-effect factor: (4)

(3)
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- - E /4 - _ 3/4 ~ -
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E

L»J|»—

(2.5)

2.3 Result and discussion
We performed the structure of 3D — n-MOSFET using TCAD

Sentaurus tool to investigate GIDL current change with an electron trapped:

The width/length of transistor is 0.2/0.1 um, the oxide thickness is 3.7
nm, the doping concentration of body is 1.4x10'® cm™, gate is n - type poly-si
licon which has the doping concentration 5.8x10* ¢m™, and the doping conce

ntration of n* region is 1x10?° cm™.



10* 3

10°}
10°}
107}
10°}
< 10°F
210"
10"k
10"}
10" |

Figure 2.3: Fitting Ip — Vb between measurement data and simulation data. The drain
currents are GIDL current in case of negative gate bias.
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GIDL current has two main components, band-to-band tunneling
current and trap-assisted tunneling current. At high Vpg, GIDL current
increases rapidly with increasing bias while at low Vpg, it changes a little. Data

obtained by simulation fits well with measurement data.



3. Dependence on an oxide trap’s

position of Random Telegraph Noise
(RTN) in GIDL current of n-
MOSFET

Abstract

We investigated the variation of random telegraph noise (RTN) in gate-
induced drain leakage (GIDL) current by changing location of a trap inside the
gate oxide of n type metal-oxide semiconductor field effect transistor (n-
MOSFET). The dependence on drain to gate bias was then considered. This
approach has been assessed with Technology Computer Aided Designed

(TCAD) simulations.
Keywords

Gate-induced drain leakage (GIDL), random telegraph noise (RTN), location

of an oxide trap, amplitude of Algipi/Icipr



3.1 Introduction

As device dimensions are minimized, random telegraph noise (RTN) is
dominant in determining the performance and reliability of metal-oxide-
semiconductor field effect transistor (MOSFET). The origin of RTN is
attributed to trapping/de-trapping of carriers in trap located in a gate oxide or
at a Si/Si0; interface [2]- [3]. Until now, most research on the characterization
of an oxide trap investigates for the channel or gate leakage current [4, 5, 6, 7,
8] and a few for gate-induced drain leakage current, a significant leakage
component of current in modern MOSFETs which is mainly associated with
both band-to-band or trap-assisted-tunneling in a gate to drain overlapped
region [9]. As a result, RTN in GIDL current is believed to be a cause of
variable retention time in DRAM devices [10]. Due to those reasons, there has
been much interest regarding RTN in GIDL current. Previous authors have
reported that oxide traps cause RTN in GIDL current from experimental work
[11, 12, 13]. For better understanding of characterization of oxide traps that
lead to fluctuations of GIDL current, it is necessary to obtain accurate
information about the dependence on the location of these traps.

In this paper, we have developed an accurate model to represent the
variation of GIDL current which depends on location of an oxide trap by all
vertical, lateral and width direction, and analyzed the amplitude of RTN in

GIDL current as a function of the drain to gate voltage.

10 M=



3.2 Simulation Set-up and background

In the gate-to-drain overlapped region, if an electron is captured in an
oxide trap, the electric field at the Si/SiO; interface is enhanced, as shown in
Fig. 3.1. As the tunneling process can take place more easily due to the
increased electric field, GIDL current is in high state when the trap is filled with
an electron and GIDL current is low when the trap is empty [11]. The captured
electron creates its own electric field that has the same direction with the
vertical electric field from drain to gate, the main component leading to
tunneling process. The amplitude of an electron’s electric field is inversely

proportional with square of distance.

11 =



—— Electron de—trapping
— — Electron trapping

Trap

Gate SiO; n-type drain

Figure 3.1: illustration of energy band diagram variation as electron captured (dash
line) and emission (solid line)

For experimental work, we measured RTN in GIDL from the n type of
metal-oxide semiconductor field effect transistor having a channel width of 0.2
um, a gate length of 0.1 um and an oxide thickness of 3.7nm. We obtain the
two-level RTN in GIDL current as a function of time at a certain drain to gate
voltage shown in Fig. 3.2. The gate, the source, and the substrate were biased

to OV in order to neglect other leakage components, except GIDL current [14].

12
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Figure 1.2: The measured RTN in GIDL current. AlcioL/IcioL=1.55% and calculated

x1=1.4A are used to extract the oxide trap’s position

Three-dimensional simulation was performed by using TCAD [15].
The oxide thickness is 3.7 nm, the gate to drain overlapped length is 11 nm with
the doping concentration for source/drain is 10%° cm™ and for substrate is 1.4 x
10" cm3. A trap is located respectively at one position among six
predetermined positions inside the gate oxide on the gate to drain overlapped
region shown in the Fig. 3.3. At every trap’s position, we investigated the
difference of GIDL currents when the trap is neutral and charged with an

electron having charge of -1.602 x 10" C.
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Figure 3.3: An oxide trap is located respectively at one position among six pre-

determined positions
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3.3 Result and Discussion

3.3.1 Location Dependence of Algipi/IgibL
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Figure 3.4: The amplitudes of AlcipL/IcipL increase due to decreasing distance from an
oxide trap to Si/SiO: interface
Fig. 3.4 shows the amplitudes of Algmi/lgipr versus vertical trap
positions (xr). As the trap was closer to the Si/SiO; interface, the relative
amplitudes of Alsipi/Igipr increased significantly. At the positions near gate

poly-silicon, the relative amplitudes of Algipi/lipL are almost zero and cannot
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make the appreciable RTN. An oxide trap which can make appreciable RTN is

almost close to the Si/SiO; interface.
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Figure 3.5: From the channel toward the edge of gate oxide, the amplitudes of

Algio/IcipL increase significantly until yr= 8.8nm and after that decrease

Fig. 3.5 shows the amplitudes of Algii/IgioL versus lateral trap
positions (yr). The largest amplitude of Algipi/IgipL 1s at the lateral position of
8.8 nm, we believe that it is the closest to the band-to-band tunneling generation
shown in Fig. 7. The amplitudes of Algioi/IgmoL at trap’s position of 6.6 & 11

nm are almost same but the one at the lateral position of 11 nm is smaller a little
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because of edge effect. The amplitudes of Algipi/Igior decrease significantly at

positions for which yris smaller than 8.8 nm.

1,00} = .
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Figure 3.6: The amplitudes of AlcipL/IcipL are symmetric and almost same by the width

direction

Fig. 3.6 shows the amplitudes of Algipi/IgipL along the width direction.
They are reduced at the edge of device and do not change at other positions

because of the uniformity of GIDL current inside the device.

3.3.2 Extract the trap’s location
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After investigating the amplitudes of Algipi/IgibL by all dimensions of
the trap’s position, we had the variation of GIDL current with the trap located
at any position inside the gate oxide at gate to drain overlapped region. The
relative amplitudes of Algint/Igioe is almost same by the width direction so we
just drew the 2D - contour along vertical and lateral direction as shown in Fig.

3.7.

Figure 3.7: Illustration the contour of amplitudes of AlgipL/IcipL with band to band

generation. We can extract the trap’s position from measurement and calculation data

(experimented amplitude of AlcipL/IcipL and xT)

18




From the experimental work of measuring RTN in GIDL current at Vpg
=3.2V, as shown in the Fig. 3.2. The relative amplitude of Algiot/Igor is 1.55%
and calculated depth of trap (xr) at the gate oxide is 1.4A. The xt was extracted
by using the method in the previous study [12]. Using these data, we extracted
two available trap’s positions from the 2D-contour as shown in the Fig. 3.7 as

the red points.

3.3.3 Bias Dependence of Algipr/IgioL

16 1.8 2.0 22 24 26 28 30 32
Vs (V)

Figure 3.8: The amplitudes of Alcioi/IcipL increase at low drain to gate and decrease at

high drain to gate voltage
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Fig. 3.8 shows the dependence of the amplitudes of Algipi/Icior at each
trap’s position on drain to gate voltage Vpc. When Vpg increases, the electric
field at the Si/SiO; interface (F) increases a lot. The amplitudes of Algii/Icipe
at low Vpg region were represented by the equation (1) [16]. The exponential

term increases leading to increasing the amplitudes of Algipr/Igipr.

Al AF 2FAF

—=|1 -1 3.1

I (+ Fjexp[ = J G-D
\l24m* k.T)

Fl—yn — n( B ) (32)

qan

where F is the electric field, AF is the increment of electric field due to a
captured electron in the oxide trap at the overlap region, m," is the effective
mass of the carriers, kg is the Boltzmann constants, T is absolute temperature,

q is electronic charge, and h is reduced Planck constant.

At high Vpg region, the exponential term of the equation (3) decreases

significantly leading to decreasing the amplitudes of Algipt/Igior [12].

m:exp(ﬂ%j—l (3.3)

GIDL

where parameter B is defined in [10].

20 | = *1]



The highest points of AlgipL/IcibL are at the transitional region between

trap-assisted tunneling region and band-to-band tunneling region.

3.4 Conclusion

We have proposed the dependence on trap’s location of RTN in GIDL
current when an electron was captured. The amplitudes of Algmi/Icipr vary
significantly by vertical and lateral direction, while they are almost same by the
width direction. An oxide trap is at the edge of gate oxide could make the
appreciate RTN compared with the measurement data. From the 2D-contour of
the amplitudes of Algini/IcinL, We extracted the trap’s location at the gate oxide
of n-MOSFET. The amplitudes of Algioi/lgior were analyzed as functions of

drain to gate voltage.

21 M=



4. Simulation Study of Random
Telegraph Noise (RTN) in GIDL
current of Saddle MOSFET

Abstract

Random telegraph noise (RTN) magnitude in gate induced drain
leakage (GIDL) current of Saddle MOSFET, a promising candidate for high-
density DRAM applications, is analyzed using three-dimensional simulation
TCAD. The RTN magnitude in GIDL current with electrons captured depend

on oxide trap location, drain to gate voltage and numbers of oxide traps.

22



4.1 Introduction

Random telegraph noise (RTN) in GIDL current has been a serious
concern in scaled down DRAM technology. The origin of RTN is attributed to
trapping/de-trapping of carriers in trap located in a gate oxide or at a Si/SiO»
interface [2, 3]. There are a few researches which investigate the
characterization of an oxide trap for gate leakage current and GIDL current, a
significant leakage component of current in modern MOSFETSs which is mainly
associated with both band-to-band or trap-assisted-tunneling in a gate to drain
overlapped region [4, 5]. As aresult, RTN in GIDL current is believed to cause
variable retention time in DRAM devices [10]. As device dimensions are
minimized, RTN in GIDL current becomes dominant, therefore there has been
much interest regarding RTN in GIDL current. In this paper, we propose an
approach for RTN in GIDL current with Saddle MOSFET structure, a
promising candidate for high-density DRAM applications [17, 18], to

determine its performance and reliability.

23 =



4.2 Method

X-X
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(d)

@

Y-Y

Fig 4.1: (a) 3-dimensional structure of Saddle MOSFET (b) (c) Cross section view across
the gate and fin body (d) Location of a simulated oxide trap at gate-to-drain overlap
region

Figure 4.1(a) shows a 3-D schematic view of Saddle MOSFET. The
overlapped side gate is defined near the source/drain (S/D) junction depth to
reduce the GIDL current. Fig. 4.1(b) and (c) shows the cross section views
across the gate and the fin body, respectively. The LDD S/D junction depth is
21nm and the heavily doped S/D junction depth is about 33nm. The oxide
thickness is 3.5nm. The fin body is directly connected to the substrate and the
fin body thickness (Wpody) is 20nm. The length of gate is fixed at 20nm. The

uniform body doping is 1x10'” cm™ and the LDD doping is 5x10'® cm?. Saddle

25 =r



MOSFET, a promising candidate for highly scalable device application, has
some advantages such as excellent short-channel effect (SCE) immunity, high
Ion, low drain-induced barrier lowering (DIBL), excellent sub-threshold swing

(SS) as shown in Fig. 4.2 [17, 18].
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Figure 4.2: In-Vg curves of Saddle MOSFET and Recess Channel MOSFET

3-Dimensional simulation is performed by using TCAD [15]. A
simulated oxide trap is located inside the gate oxide on the gate to drain

overlapped region as shown in Fig. 4.1(d). At every trap’s position, we

26 M=



investigate the difference between GIDL current when the trap is neutral and

charged with an electron having charge of -1.602x10"°C.

4.3 Result and Discussion

4.3.1 Dependence on trap’s location

If an electron is captured in an oxide trap in the gate-to-drain overlap
region, the electric field at the Si/SiO2 interface increases as shown in Fig.
4.3(b). The increased electric field leads to the tunneling process can take place

more easily, GIDL current increases [11, 14].

In Fig. 4.3(a), when the trap is located at xr=0.1nm, the amplitude of
AU/l is about 71% at Vpg=1.2V while the trap is at xy=3nm, the amplitude of
Al/l is about 1%. The amplitude of Al/I with xt=3nm trap is very small due to
the energy level of conduction band with trap does not change compared with

the conduction band without trap as shown in Fig. 4.3(b).
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Fig.4.3: (a) Dependence on trap location by lateral direction - xt of AI/I (b) The energy
level of conduction band increases significant at the interface when the oxide trap is at

0.1nm and it does not change when the trap is at 3nm.

To estimate the highest amplitude of Al/I, we locate the trap at
x71=0.1nm and we continue to investigate the trap’s position by width direction

from y1=0~20nm.
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0 0.005 .01 0015 0.02

Fig.4.4: (a) Dependence on trap location by width direction— yr of AI/I (b) The contour

of electron current density by width direction.

The amplitudes of A/l at the edge of fin body are higher than other
position inside body. At Vpg=1.2V, the highest amplitude of Al/I is about 71%
at xr=0.1nm, yr = Inm. The distribution of AI/I values is quite symmetric by
width direction as shown in Fig.4.4(a). The highest points of AI/I is located
same with the highest points of electron current density, near the corner of fin

body as shown in Fig.4.4(b).

We continue investigating the AI/l from z=0~20nm by vertical

position with a trap fixed at xr=0.1nm and yr=1nm.

30



70}
60 |
? -
S 50}
—‘D -
\D
3 40+
30}
20
-5
0
-0.005
E
=
N 901
-0.015

31



Fig.4.5: (a) Dependence on trap location by vertical direction — zr of AI/I (b) The

contour of electron current density by vertical direction.

As shown in Fig.4.5(a), the highest amplitudes is 71% at zr=5nm and
the distribution of AI/I is same with the contour of electron current density by

vertical direction in Fig.4.5(b).

4.3.2 Dependence on drain-to-gate voltage
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Fig.4.6: (a) Ip-Vpc curve of Saddle MOSFET with and without the captured electron (b)
Dependence on Drain to Gate Voltage of Al/I
Figure 4.6(a) shows the Ip-Vpg curves with and without a captured
electron. In Fig.4.6(b), the amplitudes of A/l increase at low drain to gate
voltage region and change inversely in high drain-to-gate voltage region [12,
16]. The highest amplitude of A/l is about 76% at VDG=1.3V with trap located

at xr=0.1nm, yr = Inm and zr=5nm.
4.3.3 Dependence on numbers of oxide traps

We investigate the changing of Al/I with multi-traps which are located

at xr=0.1nm, yr = Inm and get the result shown in Fig.4.7(a) and (b).
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Fig.4.7: (a) Ip-Vbc curves with traps or without trap (b) Dependence on number of traps

of Al/T

The amplitudes of AI/I with 2 electrons captured increase twice
compared with AI/I with a single electron captured and more than 3 times with
3 electrons captured. RTN in GIDL current increases significant not only with

a single trap but also with several traps in the gate oxide.

4.4 Conclusion

We investigated the RTN in GIDL current of Saddle MOSFET, a
promising candidate for highly-density DRAM application. We found that the
highest value of Al/l is about 76% with a single electron captured at Vpg=1.3V
and it increases significantly with two or three electrons captured. The
amplitudes of RTN in GIDL current depend on trap’s location, drain-to-gate

voltage, and numbers of traps.
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5. Conclusion

In this thesis work, we have carried out a study of random-telegraph-noise
(RTN) in gate-induced drain leakage (GIDL) current and presented the

characterization of an oxide trap.

With a planar n-MOSFET, RTN in GIDL current depends on the trap position
by all three directions, vertical, lateral and width direction. We already

presented a contour to extract two available trap at the gate oxide.

RTN in GIDL current also depends on drain-to-gate voltage. At high drain-to-
gate voltage, RTN in GIDL current decreases with increasing bias while at low
drain-to-gate voltage, it increases with increasing bias and reach the highest

value at the transition region.

Saddle MOSFET is a promising candidate for high-density DRAM application.
We investigated RTN in GIDL current with saddle MOSFET by all three
direction and especially, the highest value of RTN in GIDL current is much

higher than the one of planar MOSFET.

We also investigated the multi-level RTN in GIDL current. RTN in GIDL

current also increases significantly with multi-traps.



This work can be useful to determine the performance and reliability of high-

density DRAM cell transistor.
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