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Abstract 

Since Arikan introduced in 2008, Polar Code has become one of the 

hot topics in channel code field. The best advantages of polar code are a low 

complexity algorithm for encoding as well as decoding and capacity 

achievement in binary input discrete memoryless channel (B-DMC). 

However, the decoding technique in Polar Codes is the controversial topic, in 

which the Successive Cancellation (SC) decoder in the Arikan’s paper only 

provided for the BEC channel. Nowadays, a lot of researchers are discussing 

about decoding in Polar Code to adapt for others channel, especially for 

continuous channel such as AWGN channel. In this case, Belief Propagation 

decoder from Low-Density Parity Check code (LDPC) code and List Success 

Cancellation decoder are considered as the potential decoders which provide 

the higher performance of Bit Error Rate (BER) not only BEC channel, also 

AWGN channel.  

In other ways, some authors take great effort to expand the block-

length for Polar Codes from 2
n

to 
n

 with 2  by figure out the 

characteristic of generator matrices of polar codes (from the transform 

matrices). From these properties, we apply a generator matrix for block-

length 3
n

N  , which are used as transform matrices for Polar code systems. 

There exist more than ten candidates of such size 3 3  kernel matrix. In 
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previous researches, the authors only apply SC decoder for polar code block 

length 3
n

N   in AWGN channel. However, not all of generator matrices in 

polar code block length 3
n

N  achieved the good performance with SC 

Decoder. In this study, I propose the Gaussian Belief Propagation Decoder 

which owns some advantages adapting for polar codes of block 

length 3
n

N  . This work improves the performance of BER for any cases 

which obtained the limited results when using SC decoder.  

In this thesis, I present the Gaussian Belief Propagation Decoder in 

Polar Code with the comparison to Belief Propagation decoder and SC 

decoder. In addition, the results will be the BER performance of Gaussian BP 

decoder and the capacity of system for each of generator matrices with block 

length 3
n

N  following varies of code rate and SNR.  

 

Key words:  Channel coding, Polar Codes, Gaussian Belief Propagation 

decoder, Belief Propagation decoder.  

Student number: 2013-22508 
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Chapter 1.                 

Introduction 

The information theory topic is developed by Claude E. Shannon 

(October 1948) and its applications are widely expanded in everywhere; 

considering as  statistical inference, natural language processing,  

cryptography, neurobiology, the evolution and function of molecular 

codes, model selection in ecology, thermal physics, quantum computing, 

plagiarism detection and other forms of data analysis.  Besides, the 

fundamental of information theory was also applied in channel coding - 

data encoding and error correction techniques.  

In data communication, a requirement of Bit Error Rate (BER) is 

around from 10-6 to 10-9 which values were achieved by employing 

channel coding such as using redundancy into the transmission. However, 

there are a trade of between performance and capacity. Fortunately, 

Claude E. Shannon said that the data could be transmitted without error as 

long as the bit rate is smaller than the channel capacity. The authors 

provided (infinitely long) random codes achieve capacity to absence 

errors, but these codes could not be used in practice. After more than 50 

http://en.wikipedia.org/wiki/Claude_E._Shannon
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Neurobiology
http://en.wikipedia.org/wiki/Quantum_computing
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Claude_E._Shannon
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years, there are many codes achieving almost error-free communications 

with rate close to channel capacity. For example, Turbo Codes or Low 

Density Parity Check (LDPC) approached the Shannon limit less than 1 

dB [1].  

Polar coding, invented by Arikan (2009), was also a channel coding 

technique to achieve capacity of binary symmetric channel with low 

encoding and decoding complexity [2]. This method achieved the 

symmetric capacity (the capacity of the channel with the same 

probabilities for the inputs) - I(W) - of any Binary Discrete Memory less 

Channel (B-DMC) such as Binary Erasure Channel (BEC). The origin of 

polar code bases on the Channel Polarization and Success Cancellation 

(SC) decoder. In Arikan paper [2], the code length of polar code was 

2
n

N   with generator matrix began from transform matrix 
1 0

1 1
G

 
  
 

 

and the performance of BER is based on which types of used decoder. 

Three common decoders for polar codes are Successive Cancellation (SC) 

decoder, Belief Propagation (BP) decoder and List Successive 

Cancellation (List SC) decoder. Among of them, List SC decoder 

provided the best performance for polar code but its complexity was so 

high if compared to BP decoder and SC decoder. In addition, the 

performance of BER using BP decoder was better than using SC decoder 
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but BP decoder has higher complexity than SC decoder for the case 

2
n

N   of polar code.  

However, if the code length of polar code changed from 2
n

N   to 

n
N   (with 2 ), the question was how we design the generator 

matrix for polar code with block-length 
n

N   (with 2 ). To solve 

this, authors [3] expanded code size from 2
n

to 
n

 (with 2 ) and 

changed the generator matrices in polar code, too (the code size and the 

number of generator matrices increase simultaneously) [3]. The authors 

introduced the properties of matrices which defined generator matrices for 

polar code and the effect of generator matrices to channel polarization in 

polar code. Another one specified with case 3 and showed that the 

performance of BER in Polar code with each generator matrix was not the 

same [4]. Each generator matrix provided differently performance of polar 

code in AWGN using SC decoder. Some matrices showed the good 

performance with SC decoder as
4 2 7

1 0 0

0 1 0

1 1 1

G

 

 

 
 
 

 and 
4 6 3

1 0 0

1 1 0

0 1 1

G

 

 

 
 
 

 or 

some matrices indicated the worse performance as
6 2 3

1 1 0

0 1 0

0 1 1

G

 

 

 
 
 

. The 

next question was how we enhance the performance of BER of polar code 

with generator matrices which show the bad performance when apply SC 
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decoder. In the original case, BP and List decoder can provide better 

performance than SC decoder. We also apply List SC decoder and BP 

decoder in case generator matrices of 3
n

N   providing bad performance. 

However, List SC decoder ( ( lo g )O L N N ) shows significant complexity 

if compared with SC decoder ( ( lo g )O N N ). It seems impossible if we 

reduce complexity of system when using List SC decoder. Besides, BP 

decoder with complexity 
2

( lo g )O N N  also provides the performance 

better than SC decoder. If we apply BP decoder, we could apply the trellis 

graphs for polar code. The trellis graphs of BP decoder in polar codes 

base on the generator matrices in polar code. So, each generator matrix 

will own trellis graph to decode data. With 3 , we have 12 transform 

matrices for generator matrices, and then we need design 12 trellis graphs 

for each matrix. For each trellis graph, we design equations and formulas 

of BP for each decoder algorithm. If we increase , the number of 

generator matrices increase simultaneously. So, the number of trellis 

graph as well as algorithm we need to design for BP decoder is very huge. 

Therefore, applying BP for this case is not optimal solution. 

Instead, I provide Gaussian Belief Propagation decoder to solve this 

problem. It is an efficient distributed iterative algorithm for solving 

systems of linear equations Ax = b (one of the most fundamental 

problems in algebra), with countless applications in the mathematical 
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sciences and engineering. In Gaussian BP decoder, the complexity of 

Gaussian BP decoder is lower than BP decoder. Furthermore, in Gaussian 

BP decoder, the design the trellis graph for each matrix is not necessary, 

we only base on the information of generator matrix to figure out 

estimation of receiving signal.  

In this thesis, based on the advantages of Gaussian Belief Propagation 

decoder, I propose applying it for the specific case when the code length 

of Polar Code is 3
n

N   in AWGN channel. In the next chapter, a brief of 

introduction about Polar Code and Polar Code with code length  3
n

N   

will be presented. In chapter 3, I present the method and algorithm of 

Gaussian BP decoder and compare to BP decoder algorithm in polar code. 

Chapter 4 will show the results of the performance of Gaussian BP 

decoder in Polar code and the final chapter (chapter 5) is designed for 

thesis conclusions. 
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Chapter 2.                                                 

Polar coding: A review 

In this chapter, we discuss about polar codes introduced by Arikan 

[2], the characteristic of matrices to become generator matrices in Polar Code 

and generator matrices for case 3
n

N   in polar code. 

2.1 Polar coding for channel coding 

Polar codes, introduced by Arıkan in [2], are linear codes which 

provably achieve the capacity of symmetric B-DMC’s with the 

encoding/decoding complexity of the codes is ( lo g )O N N .  We will 

introduce Original Polar code in [2] through communication over a B-DMC 

(W) channel. 

 

Figure 1. Communication over a B-DMC W 

a. Polar Encoder 
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Polar codes is the linear coding applying the transform 
2

n
F


 giving a 

2 2
n n
  matrix with the 

th
n Kronecker power of transform matrix 

2

1 0

1 1
F

 
  
 

 to the block 2
n

N  bits U with generator matrix 
2

n

N N
G B F


  

(
N

B is a bit-reversal permutation matrix defined in [2],). Besides, we define 

code rate /R K N and the information set I with I N where K I , so 

a source binary vector 
1

0

N
u


consisting of 𝐾 information bits and 

N K frozen bits can be mapped a codeword 
1

0

N
x


. Codeword will be 

present by
1 1

0 0

N N

N
x u G

 
 . 

b. Chanel Polarization 

Channel polarization is an operation which produces N channels 

 
( )

: 1
i

N
W i N  from N independent copies of a B-DMC W such that the 

new parallel channels are polarized in the sense that their mutual information 

is either close to 0 (completely noisy channels) or close to 1 (perfectly 

noiseless channels). Channel Polarization includes two phases: Channel 

Combining and Channel Splitting.   

 Channel Combining: 
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Consider from the transform matrix
2

1 0

1 1
F

 
  
 

, the corresponding channel 

configuration is drawn in figure 2 by combining two independent copies of W. 

 

Figure 2. Basic channel transformations 

As the basic channel transformations, W


and W


can be defined by the 

following transition probabilities 

2

1 2 1 1 1 2 2 2

1
( | ) ( | ) ( | )

2
W

u

P y y u P y u u P y u







   

1 2 1 2 1 1 2 2 2

1
( | ) ( | ) ( | )

2
W

P y y u u P y u u P y u    

And the evolution of (W )Z  satisfies  

2
( ) 2 ( ) ( )Z W Z W Z W


   

2
( ) ( )Z W Z W


  

Where equality holds in the first line when W is a binary erasure channel. 

After combining N independent copies of W in to a channel 
N

W , the next and 

final step of channel polarization is to split 
N

W back into a set of N binary-
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input channels. Thus, the transition probabilities for 
N

W  channel will be 

defined 

1

( ) 1

1 1 1 11

1
( , | ) ( | )

2N N i

i

i N i N N

N i NN

u

W y u u W y u












   

The channel 
( )i

N
W  exhibit a polarization effect in the sense that the fraction of 

indices i for which the Symmetric Capacity 
( )

( )
i

N
I W  is inside the interval 

( ,1 )  goes to zero as N goes to infinity for any fixed 0  .  

 Channel Splitting: 

Considering the channel combining obtained in Fig. 2 the mutual information 

of channel 
2

W can be splitted into two parts using the chain rule of the mutual 

information.  

2 2 2 2

1 1 1 1 1 1 1
( , ) ( , ) ( , | )I u y I u y I u y u   

And transition probabilities will be presented as Fig 3.  
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Figure 3. A recursive construction of Wn 

c. Polar Decoder 

In this part, I will introduce a basis algorithm for polar code decoder 

which was presented in Arikan [2]. Given an ( , , , )c
A

N K A u  
N

G - coset code, 

we will use a SC decoder that generates its decision 
1

N
u by computing 

( )
( , , , ) ( )c

i

e NA

i A

P N K A u Z W



   

       And the decision of 
1

N
u will be followed 

1 1

1 1

                 i f  

( , )   i f  

c

iN

N i

i

u i A
u

h y u i A


 
 


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The decision function 
1

1 1
( , )  

N i

i
h y u


will be defined by the equation 

( ) 1

1 1

1 ( ) 1

1 1 1 1

( , | 0 )
0 ,      1

( , )  ( , | 1)

1,      

i N i

N

N i i N i

i N

W y u
if

h y u W y u

o th e r w is e



 




 




 

2.2 Generator matrices in polar coding 

In the previous part, polar code mentioned only for case of 2
n

N   

and generator matrix will design basing on transform matrix
2

1 0

1 1
F

 
  
 

. 

However, authors in [3] can expand polar code for case of 
n

N  with 

2 by analyzing the properties of polarization matrices to find generator 

matrix for case of
n

N  . Generator matrices are presented in Fig.4.  

 

Figure 4. The transform 
n

G


 is applied and the resulting vector is transmitted 

through the channel W 
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They introduced Channel Transformation for Polarizing Matrices 

lemma as lemma to defined characteristics of polarizing matrix for any B-

DMC W.  

Lemma 1: For any B-DMC W [3] 

i. If G is not upper triangular, then there exists an i for which 

( )i k

G
W W


 or 

( ) 1i k

G
W W W

 
  for some 2k  ,i.e., G is polarzing. 

ii. If G is upper triangular, then 
( )i

G
W W or 

( )i

G
W W for all 1 i   ., 

G is polarizing.  

From lemma 1, the first characteristic of a matrix becoming transform matrix 

for polar code. So, from [3], if G is polarizing, then for any 0   

  
( )

1, .. . . , : ( ) ( ,1 )

lim 0

n

n i

G

n
n

i I W  

 

  

  

  
( )

1, .. . . , : Z ( ) ( ,1 )

lim 0

n

n i

G

n
n

i W  

 

  

  

Besides that generator matrix for polar code need to be not upper 

triangle, [3] shows that that matrices have to be an invertible matrix with 1s 

on the diagonal to adapt for permutation property. Because of an invertible -

matrix corresponding to a permutation, it is always possible to permute its 
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rows and columns to obtain a non-upper triangular matrix with an all-1 

diagonal [3]. 

Furthermore, in [3], authors defined rate of polarization, also called 

exponent. This is a parameter of generator matrices in polar code to show a 

meaningful performance measure of polar codes under successive cancellation 

decoding. Rate of polarization use Partial Distance to calculate by equation. 

1

1
( ) lo g

i

i

E G D



   

With ( )E G  is rate of polarization and 
i

D is calculated by  

 

1
( , , . . . , ) , 1, . . . , 1

, 0 .

i H i i

H

D d g g g i

D d g


  


 

where matrix 
1

, . . . ,
T

T T
G g g 

 
 

For example: rate of polarization of matrix 
1 0

1 1
F

 
  
 

 is 
1

( )
2

E G  . We have 

   2 1 2 2 2 2

1 1 1
( ) l lo g lo g lo g 1 lo g 2

2 2 2
E G D D      
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2.3      Generator matrices in case 3
n

N   

Basing on result in [3], the authors in [4] using all properties about 

polarization matrix apply for specific case 3 . With case 3 -block-

length 3
n

N  , the transform matrices in this case to apply for polar code. In 

case 3 , there are 16 matrices having properties of polarization, so [4] 

discuss how to choose a good 
3

G in around more 16 matrices. 

Firstly, we will divide matrices 
3

G  in three group. Group 1 includes 

matrices have three “1” in the last row, the group 2 is group of two “1” in the 

last row and the last group just has one “1” in the last row. Each group has the 

same way to design   
( )i

N
Z W . 

The second concerned thing is how to design the reliability 

  
( )i

N
Z W  for each group. Each group will be concerned and show up the 

reliability   
( )i

N
Z W for each group. For group three “1”, we have four 

matrices have enough properties of polarization. These are in the figure 5: 
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Figure 5. Matrices in group 1 

And the reliability   
( )i

N
Z W  of group is defined in [4] following this 

equation: 

( 3 2 ) 2

3

( 3 1 ) 2 3

3

( 3 ) 3

3

( ) 2

( )

( )

i

N

i

N

i

N

Z W Z Z

Z W Z Z Z

Z W Z





 

  



 

For the group two “1”, we also have 4 matrices G623, G463, G425 and G475, 

however, in this case, this group owning two formulas for the 

reliability   
( )i

N
Z W . Those are:  

( 3 2 )

3

( 3 1 ) 2

3

( 3 ) 2

3

( )

( ) 2

( )

i

N

i

N

i

N

Z W Z

Z W Z Z

Z W Z







 



and  

( 3 2 ) 3 2

3

( 3 1 ) 2

3

( 3 ) 2

3

( ) 3 3

( ) ( 2 )

( )

i

N

i

N

i

N

Z W Z Z Z

Z W Z Z Z

Z W Z





  

 


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Figure 6. Matrices includes one "1" 

Fig. 6 demonstrates matrix only including one “1” in the last row and the 

reliability   
( )i

N
Z W is  

( 3 2 )

3

( 3 1 ) 2

3

( 3 ) 2

3

( )

( ) 2

( )

i

N

i

N

i

N

Z W Z

Z W Z Z

Z W Z







 



, the same with the group 2. 

And the table 1 is the comparison rate of polarization of matrices in three 

group. 

 



17 

 

Table 1: Rate of Polarization for block length 3
n

N 

Types of matrices Matrices with three 1s in last 

row 

Matrices with two 1s in last row Matrices with one 1s in last row 

Characteristic 

Of matrices. 

G427 G467 G627 G637 G623 G463 G425 G475 G461 G471 G561 G571 

1 0 0 

0 1 0 

1 1 1 

1 0 0 

1 1 0 

1 1 1 

1 1 0 

0 1 0 

1 1 1 

1 1 0 

0 1 1 

1 1 1 

1 1 0 

0 1 0 

0 1 1 

1 0 0 

1 1 0 

0 1 1 

1 0 0 

0 1 0 

1 0 1 

1 0 0 

1 1 0 

1 0 1 

1 0 0 

1 1 0 

0 0 1 

1 0 0 

1 1 1 

0 0 1 

1 0 1 

1 1 0 

0 0 1 

1 0 1 

1 1 1 

0 0 1 

Exponent 0.753 0.5436 0.5436 0.333 0.4206 0.4206 0.4206 0.4206 0.2103 0.2103 0.2103 0.2103 
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Summary, the reliability   
( )i

N
Z W for case 3

n
N  has three type: 

Type   1:   

( 3 2 ) 2

3

( 3 1 ) 2 3

3

( 3 ) 3

3

( ) 2

( )

( )

i

N

i

N

i

N

Z W Z Z

Z W Z Z Z

Z W Z





 

  



for group matrices has three “1” in 

last row. Fig 7 and Fig 8 is the simulation of reliability of type 1 

 

Figure 7. Type 1 of reliability for BEC channel 
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Figure 8. Type 1 of reliability for AWGN channel 

Type 2: 

( 3 2 ) 3 2

3

( 3 1 ) 2

3

( 3 ) 2

3

( ) 3 3

( ) ( 2 )

( )

i

N

i

N

i

N

Z W Z Z Z

Z W Z Z Z

Z W Z





  

 



for only group has two “1” in the 

last row which simulated in Fig.9,10. 

 

Figure 9. Type 2 of reliability for BEC channel 
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Figure 10. Type 2 of reliability for AWGN channel 

Type 3:    

( 3 2 )

3

( 3 1 ) 2

3

( 3 ) 2

3

( )

( ) 2

( )

i

N

i

N

i

N

Z W Z

Z W Z Z

Z W Z







 



 for group matrices has two and one “1” 

in the last row. 
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Figure 11. Type3 of reliability for BEC channel 

 

Figure 12. Type 3 of reliability for AWGN channel 

From the simulation of each reliability of types, the polarization for 

each type is not equal. If type 1shows the best polarization which index 

almost divide in two areas, the type 3 show the worst polarization 

which capacity of each index is random without any rules.  
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The author in [4] using SC decoder to evaluate the performance of 

BER each matrices basing the reliability parameter in AWGN channel. 

The result will be present in the next part. 



23 

 

 

Chapter 3.                  

Gaussian BP decoder in 

polar coding 

In the previous part, we define transform matrix for block length 

3
n

N   and the reliability parameters for that case. In this part-the 

main part of this thesis, I propose Gaussian BP decoder for polar code 

with block length 3
n

N  . In this part, before presenting Gaussian BP 

decoder, I will introduce BP decoder to compare with Gaussian BP 

decoder. 

3.1Belief Propagation Decoding in Polar code 

Beginning from block length 2
n

N  , the BP decoder 

introduced firstly for polar code in [5] and [6]. BP decoder is the kind 

of decoding algorithm from low-density parity-check (LDPC).  Arikan 

compared performance of SC decoder and BP decoder in [5] and show 

that BP decoder provides performance better than SC decoder for polar 
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code in BEC channel. In [6], BP decoder still is better than SC decoder 

in AWGN channel. Figure 7 [7] shows performance of BP decoder, SC 

decoder and List SC decoder in B-AWGN channel. 

 

Figure 13. The performance in B-AWGN 

The rule to design BP decoder in polar code is based on trellis 

graph. The trellis graph in polar code is based on encoding graph of 

polar code. The encoding graph for block-length 2
n

N   is sampled in 

the Fig.8 [8] with 3n  . 



25 

 

 

Figure 14. The encoding graph for N=8 

We can consider the SC decoding as a special BP scheduling 

over the standard factor graph of polar codes in a lemma of [7]. This 

lemma said that using SC decoding for the bit i
U  is equivalent to 

applying BP with the knowledge of 
1

, ...,
o i

U U


and all other bits 

unknown (and a uniform prior on them) and the frozen bits 

belong
1

, ...,
i N

U U


then it is in general strictly better than a SC 

decoder. BP decoder uses a little different encoder than SC decoder. It 

means that the information bits will be chosen from the Reed Muller 

(RM) rule [8]. Polar codes differ from RM codes only in the choice of 

generator vectors. The method of finding the frozen and information 

bits of RM is based on minimum distance 
m in

d to decision.  
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So, applying BP algorithm for block-length 3
n

N  will be the 

same method. For this case, besides choosing frozen set by RM 

algorithm, the trellis graph will design basing on the generator matrices. 

Therefore, design BP decoder for block length 3
n

N   is not same for 

each generator matrices. I can cover all matrices for this case. 

Therefore, for each group of generator matrices of 3
n

N  , I will 

present BP decoder method for them.  

I consider three matrices in each group with 2n   (block 

length 9N  ), including:  

4 6 3

1 0 0

1 1 0

0 1 1

G

 

 

 
 
 

 
4 6 1

1 0 0

1 1 0

0 0 1

G

 

 

 
 
 

 
6 2 7

1 1 0

0 1 0

1 1 1

G

 

 

 
 
 

 

Beginning with matrix 
4 6 3

G of group 2, firstly, we consider the diagram 

of operator matrix with input and output in figure 15 

 

Figure 15. Diagram for 
4 6 3

G  
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So, from diagram in Fig.15, the decoding graph is designed with 
1N

i
x


 

is decoding bits and 
1N

i
u


 is estimation bits as in Fig.16 

 

Figure 16. Decoding Graph for 
4 6 3

G  

Basing on the decoding of Polar code, the formulas of BP decoder will 

be built from that. With graph of matrices 4 6 3
G  we have the formulas 

for each node as: 

1 1

1
( , 3 2 ) ( ( 1, 3 2 ), ( 1, 3 1))

t t t
p n i f p n i p n i

 
     

1 1

2
( , 3 1) ( ( 1, 3 1), ( 1, 3 ))

t t t
p n i f p n i p n i

 
    

1 1

3
( , 3 ) ( ( 1, 3 1), ( 1, 3 ))

t t t
p n i f p n i p n i

 
     
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With 
1 2 3
, ,f f f  base on the probability message passed node of 

pervious iteration. The decision will be decided in the last iteration with 

this equation: 

 

1    1
ˆ

0    

la s t t

i

i

i f p
u

e ls e

 
 


 

We can apply the same way with matrices in group 3 and 1. The Fig 17 

and 18 is graph for the matrix 
4 6 1

G of group 3 and Fig. 19 and 20 is for 

matrix 
6 2 7

G  of group 1 

 

Figure 17. Diagram for 
4 6 1

G  
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Figure 18. Decoding Graph for 
4 6 1

G  

 

Figure 19. Diagram for 
6 2 7

G  

 

Figure 20. Decoding Graph for 
6 2 7

G  
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3.2 Gaussian Belief Propagation Decoding in Polar code 

Gaussian Belief Propagation Decoding is method for linear 

system A x b , with A is generator matrix for encoding, x  is input 

data vector and b is encoding vector. This method will show a unique 

solution if and only if matrix A is full ranks. From the lemma 2, the 

generator matrices of polar code always are full ranks. 

Lemma 2:  

If matrix G is full rank, the Kronecker product of G  being 
n

G


 is 

full rank, too. 

Prof: 
n

G


is full rank if and only if rank of  
n

G


is total n  sum of 

rank of sub matrices G  

. . .
n

n
n

G G G G G G


       

( ) ( . . . ) ( )

                 ( ) ( ) . . . ( ) ( )

n

n
n

n

r a n k G r a n k G G G G r a n k G

r a n k G r a n k G r a n k G n r a n k G


    

    


 

So, if we apply the Gaussian BP decoder for polar code, we only get a 

unique solution decoding vector. The Gaussian BP decoding based on 

the graph  and the associated joint Gaussian probability density 

function
1 1

( ) ~ ( , )p x N A b A
 

 . So the target solution 
* 1

x A b


  is 
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equal to 
1

A b


 which is the mean vector of the distribution ( )p x  

basing on 
i

 - the marginal mean and 
i

P inverse variance (sometimes 

called the precision).  

Gaussian BP is a special case of continuous BP, where the 

underlying distribution is Gaussian. The Gaussian BP update rules by 

substituting Gaussian distributions into the continuous BP update 

equations below:  

( ) \

( ) ( , ) ( ) ( )

i

i j j i j i j i i k i i i

k N i jx

m x x x x m x d x 



   

With i j
m is the message send from node i to node j.  

( )

( ) ( ) ( )
i i i k i i i

k N i

p x x m x d x 



   

From the graph in Fig.20, the messages relevant for the computation of 

message 
i j

m  is shown. So, from the graphical model in fig.20 and 

equations above, to find the mean 
i

  to decision the decoding bits, we 

have to calculate 
i

  from 
i

P : 

  

( ) ( )

( )

i x k i i
x m x

i i i k i

k N i

P P P





    

( ) ( )

1

( )

( )

i i k i i
x m x

i i i i i i k i k i

k N i

P P P



  




    
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Figure 21. Graphical model: The neighborhood of node i 

And the figure 22 is the algorithm to implement the Gaussian BP 

decoder.  

 

Figure 22. Algorithm for Gaussian BP decoder 
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To apply in polar code, the matrix is needed to use as 

information for Gaussian BP decoder is the Kronecker product of F  

(following the encoder of polar code). Besides, the method to find the 

information bits index and frozen bits index bases on the RM rules 

which method use the maximum weight (minimum Hamming distance) 

of each row of matrix F . 

The results of the performance of BER in Polar code using 

Gaussian BP decoder in AWGN channel will be shown in the next part. 
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Chapter 4.             

Simulation 

In this chapter, the result of Gaussian BP decoder method in 

polar code will be presented with results of some matrices in polar code 

with block length 3
n

N  . This part includes two sections: section 1 is 

system model and section 2 focuses to the results of system. 

4.1 System model 

The system model of thesis is demonstrated in the fig below: 

 

Figure 23. Gaussian BP decoder in Polar code in AWGN channel 

Input data become the encoding data after encoding by Polar 

codes with RM rule to find the information bits set and frozen bits set 

and it modulated by Binary Phase Shift Keying (BPSK). The encoding 
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data is transmitted through AWGN channel and goes to the receiver. 

The receiving signal after BPSK demodulation, I use the Gaussian BP 

decoder method as method I mention in pervious to find the estimation 

bits.  

4.2 Simulation results 

In this part, I will show all result of Gaussian BP decoder in 

polar code for AWGN channel. Firstly, I will show the simulation 

results about comparison between SC decoder and Gaussian BP 

decoder in AWGN channel. The results will be shown in 4 matrices, 

including: G623, G463, G427 and G461 which matrices get the best results 

with SC decoder as in [3]. 
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Figure 24. Performance of Gaussian BP decoder in PC for G62 

 

Figure 25. Performance of Gaussian BP decoder in PC for G461 
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Figure 26. Performance of Gaussian BP decoder in PC for G463 

 

 

Figure 27. Performance of Gaussian BP decoder in PC for G427 
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From the simulation result, we see that with matrices G623 and 

G461, Gaussian BP decoder provides the better result than SC decoder. 

For example, at rate equals 0.15, Gaussian BP can get under 10-2 while 

SC decoder always higher than 10-2. However, Gaussian cannot get the 

better result than SC decoder in case for G463, G427 which matrices get 

really best results with SC decoder in polar code for AWGN channel. 

Next result will be the comparison of the performance of matrices in 

the same group. In these result, I figure out the matrix can adapt well 

for polar code in AWGN channel.      

 

Figure 28. Performance of Gaussian BP decoder for Group 1 
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Figure 29. Performance of Gaussian BP decoder for Group 2 

 

Figure 30. Performance of Gaussian BP decoder for Group 3 

From the results above, we easily to know that in group 1, 

G427 gets the best performance for Gaussian BP decoder. With group 
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2, G425 and G475 is absolutely close performance and are the best 

result for group 2. In group 3, G571 is the best with the performance is 

much better than others. 

The last result is the comparison of all matrices in block length 

3
n

N   with changing SNR. In the result to compare performance of 

Gaussian BP decoder with changing of SNR, only matrix G427 cannot 

go down even increasing SNR.  

 

Figure 31. Performance of matrices with SNR 

Besides, the capacity of channel in two cases G623 and G461 are 

considers in Fig. 22 and Fig.33. Clearly, the higher code rate is, the 

better capacity the channel gets. As in the part about polar code with 

block length 3
n

N  , the type 1 and 2 get the better channel 
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polarization, therefore, the capacity of matrix G623 belonging type 2 

have the better than the capacity of matrix G461 which belonging type 1- 

the worst polarization of polar code with block length 3
n

N  . From 

comparison Fig. 32 and Fig. 33 with same SNR equal 5 dB and same 

rate be 0.35, the capacity in case of matrix G461 only get higher than 

0.15 while the capacity of matrix G623 is higher than 0.25 ( if 

considering the maximum capacity is 1). In addition, the capacity will 

increase significantly when increasing SNR of system. With the same 

rate 0.35, the capacity grows up from 0.05 to 0.15 and to 0.27 when 

SNR increases from 0 dB to 3 dB and to 5 dB.   

 

Figure 32: Capacity of matrix G623 
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Figure 33: Capacity of matrix G461 
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Chapter 5.            

Conclusion 

The decoding method plays an important role in Polar code’s 

achievement in channel coding. There are many researches who 

decoding in Polar codes beside SC decoder - the decoder in Arikan 

paper - which provides better performance for polar code such as BP 

decoder, List SC decoder, even them still work well for polar code with 

block length 3
n

N  . However, they own some disadvantage not 

adapting for this case.  

Therefore, in this thesis, I present the new decoding algorithm - 

Gaussian Belief Propagation decoder - for polar code with block-

length 3
n

N  . If the number of algorithm of BP decoder for polar 

increase following the number of generator matrices, Gaussian BP 

decoder provide the technique which use for all matrices in this case 

and beyond cases with 3 . In block-length 3
n

N  , Gaussian BP 

decoder can achieve performance for some of matrices, which cannot 

get the good results with SC decoder in AWGN channel as cases of 



44 

 

matrices G463 and G641, the performance of theirs is not good when 

using the SC decoder. In addition, the capacity of polar code system 

using matrices G463 and G641 are checked with vary of rate and SNR. 

Furthermore, the complexity of Gaussian BP decoder is lower than BP 

decoder and Gaussian can be apply for bigger block-length of polar 

code.  
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