

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

M.S. THESIS

Hierarchical Power Management Framework

on Manycore Systems Using OS Migration

Techniques

매니코어 시스템 상에서 OS Migration 기술을 활용한

계층적 전력 관리 구조

FEBRUARY 2015

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Chanseok Kang

M.S. THESIS

Hierarchical Power Management Framework

on Manycore Systems Using OS Migration

Techniques

매니코어 시스템 상에서 OS Migration 기술을 활용한

계층적 전력 관리 구조

FEBRUARY 2015

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Chanseok Kang

Hierarchical Power Management Framework on

Manycore Systems Using OS Migration Techniques

매니코어 시스템 상에서 OS Migration 기술을 활용한

계층적 전력 관리 구조

지도교수 Bernhard Egger

이 논문을 공학석사학위논문으로 제출함

2014 년 10 월

서울대학교 대학원

전기 컴퓨터 공학부

강 찬 석

강 찬 석의 석사학위논문을 인준함

2014 년 12 월

위 원 장 유 석 인 (인)

부위원장 Bernhard Egger (인)

위 원 Robert Ian McKay (인)

Abstract

Hierarchical Power Management

Framework on Manycore Systems Using

OS Migration Techniques

Chanseok Kang

Department of Electrical Engineering and Computer Science

Collage of Engineering

The Graduate School

Seoul National University

Recently, power management schemes are required in manycore systems for

gratifying the chip-level power and thermal constraints. Most research focuses

on optimizing power consumption for parallel applications running on all cores.

In this thesis, we tried to investigate the possibilities of feasible power man-

agement of a manycore systems running several independent operating systems

(OS). Exploiting hardware support such as memory address indirection and

global shared memory, a zero-copy OS migration technique is implemented on

the Linux platform with minimal overhead. In the context of dynamic voltage

and frequency scaling for many-core chips where due to the cost and few practi-

cal reasons, the voltage and frequency can only be controlled for a group of cores

physically grouped into a voltage and/or frequency domain. In this case, Zero-

copy OS migration can be employed to group OSes with similar performance

characteristics into one voltage domain which then allows DVFS algorithm to

better match the voltage and frequency settings to the characteristics of that

i

domain. From hierarchical power management framework implemented on the

Intel Single-chip Cloud Computer (SCC) running up to 40 independent Linux

instances, We show that our approach, on average, saves the energy consump-

tion by 30% over existing DVFS policies for a wide range of load patterns

with minimal performance degradation. In the conclusion, it can improve the

performance per watt ratio by 27% in most of benchmark situations.

Keywords: Many-core Architecture, OS Migration, Power Management, SCC

Student Number: 2013-20738

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

Chapter 1 Introduction 1

1.1 Outline . 4

Chapter 2 Intel Single-chip Cloud Computer 5

2.1 Architecture Overview . 5

2.2 Dynamic Voltage/Frequency Scaling 6

2.3 Power Measurement . 8

2.4 Memory Addressing . 9

Chapter 3 Implementation 10

3.1 Zero-copy OS Migration . 10

3.1.1 Migration Steps . 11

3.1.2 Migrating Volatile State 13

3.1.3 Networking . 14

3.2 Hierarchical Power Management 15

iii

3.2.1 Organization . 15

3.2.2 Local Performance Monitoring and Prediction 15

3.2.3 Domain Managers . 16

3.2.4 Power Management Policies 18

3.2.5 DVFS Policies . 18

3.2.6 OS Migration Policy . 18

3.2.7 Phase Ordering and Frequency Considerations 24

Chapter 4 Experimentation and Evaluation 25

4.1 Experimental Setup . 25

4.2 Results . 26

Chapter 5 Related Work 35

Chapter 6 Conclusion 37

요약 43

Acknowledgements 44

iv

List of Figures

Figure 2.1 Intel Single-chip Cloud Computer(SCC) block diagram . 6

Figure 2.2 Voltage and clock domains on the Intel SCC 7

Figure 2.3 Core-to-system address translation on the SCC 9

Figure 3.1 OS Migration Steps . 12

Figure 3.2 Example of Buyer-seller algorithm 21

Figure 4.1 Simple alternating synthetic load 27

Figure 4.2 Requested Frequency map dependent on management

policies . 28

Figure 4.3 Results for a real-world load pattern. 31

Figure 4.4 Requested Frequency map dependent on management

policies . 32

Figure 4.5 Results for different benchmark scenarios. 34

v

List of Tables

Table 2.1 Voltage and frequency settings on the SCC 8

Table 3.1 Example of Keep/Sell lists for the configuration. 21

vi

Chapter 1

Introduction

According to the improvement in transistor integration on chip during the

last decade, the recent trend of CPU architecture has changed from single-

core to multi-core. But it led to power consumption and thermal constraints

becoming one of the primary design consideration. Originally, Moore‘s law [1],

coupled with Dennard scaling [2], tends to increase the performance of a core

by increasing the number of transistors on the chip. But in fact, the power

wall effect causes more switching activities on it as we increase the number

of transistors, and core itself requires more power density [3]. As a result, the

higher power consumption leads to an increase not only energy costs but also

chip temperature, and it affects chip reliability and lifetime.

For managing power consumption, most processors provide hardware sup-

port for the dynamic voltage and frequency scaling (DVFS). Examples are Intel

SpeedStep [4] and AMD PowerNow [5]. The operating system (OS) periodically

monitors the workload of each core, and changes the voltage and frequency to

improve the efficiency of power management. Viewed from an abstract design

level, the dynamic power consumption of a semiconductor device is proportional

to the frequency of the processor cores and the voltage supplied to the cores.

1

It means that when the user wants high performance, DVFS policies manages

to increase the core frequency. In the other case, by lowering the voltage and

frequency, it can reduce the dynamic power consumption.

But the drawback of DVFS is that it can be reduced both frequency and

voltage changes incur some overhead. In some situations, it may degrade the

performance of task execution. For this reason, algorithms for maintaining en-

ergy efficiency are required. Albers [6] reviewed some DVFS algorithms to min-

imize energy consumption and maintain the task performance. Actually, task

is aware of time variable. To minimize performance degradation which may

result in missed deadlines, the core itself should notice the execution time of

task. In fact, it is an online problem, so core does not know about the next

workload. More briefly, when the core operates in idle mode, core does not have

any time information about the task. This increases the probability of deadline

misses, and causes the performance degradation. Machine Learning techniques

are proposed to solve these kind of problems [7, 8, 9].

In views of chip multiprocessors (CMP), [10] shows the compared result

between the per-core DVFS and chip-wide DVFS. And some researches men-

tioned that domain-specific power management can achieve good performance

[11, 12]. Cores are physically allocated in voltage/frequency domains. All cores

located in a specific domain, have the same power properties. So it can reduce

the hardware overhead, and eventually increase the performance.

Prior research on power management for CMPs has mainly focused on opti-

mizing power consumption/performance under a certain limit such as a power

budget [13]. To deal with the constraints imposed by voltage and/or frequency

domains, different heuristics to compute appropriate settings for each voltage

and frequency domain without moving threads around have been proposed [14].

Due to the cost for managing voltage/frequency through hardware, this kind

of approach get effects of power management. But the user cannot obtain the

full potential of DVFS through this approach in some cases. For example, when

2

core executing different processes required different voltage/frequency setting

are co-located in the same domain, the individual cores may have either been

observed a power-overconsumption or performance degradation. To overcome

this problem, cores with similar performance requirements should be merged in

to one domain. Some research has dealt with this approach in views of threads

[15, 16]. Implemented in the context of one operating system with shared mem-

ory, moving a task to a different core is a scheduling decision and does not

involve copying of a task’s memory.

For power management on manycore systems, scalability is one of the most

important considerations. Usually, when the number of cores are increased, the

complexity of handling features (DVFS, task scheduling, data analysis) also

increases linearly. Especially in a centralized framework where one dedicated

core manages the entire process, the computational complexity leads to a lack

of scalability for manycore systems. To overcome this problem, agent-based

approach has been proposed [17].

This paper proposes a new zero-copy OS live migration method for inde-

pendent OSes running on CMPs exploiting hardware features such as global

shared memory, address translation and domain-specific power management.

In the past, OS Migration was an expensive operation due to the high cost

of copying the volatile state of the OS, i.e., contents of the memory. In order

to provide separable address spaces to OSes running in parallel, CMPs often

provides an additional level of indirection in the memory address translation

from core-physical to system memory addresses. This feature enables us to im-

plement zero-copy migration of completely independent OSes by modifying the

physical-to-system address translation tables. Contrary to the previous migra-

tion techniques, it has same effect of physical memory copying with low over-

head. Currently, no commercial CMP provides the means to access the register

file of a halted core. To overcome this limitation, an interrupt handler processes

migration requests by copying and restoring the internal volatile state of a core

3

to a designated space in the global shared memory. We have implemented the

zero-copy migration techniques in the Linux operating system running on the

Intel Single-chip Cloud Computer (SCC) [18], a research prototype CMP com-

prising 48 IA-32 Pentium III processors. With hierarchical power management

policy, it measured the Energy-Delay Product [19], and compared with state-

of-the-art techniques [14]. As a result, the proposed approach gets significantly

better figures by 27% over wide range of synthetic benchmarks.

1.1 Outline

The rest of this thesis is organized as follows: Chapter 2 gives the informa-

tion about the architecture of the Intel Single-chip Cloud Computer(SCC) and

necessary background. Chapter 3 describes the implementation of the proposed

zero-copy OS migration and power management framework in detail. Chapter

4 presents the experimental setup and results. Related work is discussed in

Chapter 5; and Chapter 6 concludes the thesis.

4

Chapter 2

Intel Single-chip Cloud Computer

The proposed technique can be implemented on any DVFS-capable CMP

architecture providing global shared memory or private memory with core-to-

system address translation. In this section, it provide an overview of the many-

core architecture used in our experiments and discuss some of the relevant

capabilities in more detail.

2.1 Architecture Overview

The Single-chip Cloud Computer (SCC) [18] is a 48-core prototype many-

core architecture created by Intel Labs. It consists of 48 independent cores

interconnected by a routed Network-on-Chip (NoC). The cores are Intel P54C

Pentium R©cores with L1 caches (16KB) and L2 caches (256KB). And it sup-

ports for managing the on-chip scratchpad memory termed message passing

buffer (MPB), which is typically used to implement message passing. No cache

coherence is provided for the core-local L1 and L2 caches. Two neighbor cores

are bundled in frequency domain so-called tile; the 24 tiles are organized on

a 6 by 4 grid. Four memory controllers in the four corners of the chip provide

5

access to up to 32GBs of memory. A system FPGA provides the interface be-

tween the CMP and the management console PC (MCPC). Figure 2.1 shows

the SCC block diagram.

tile 17

tile 11

tile 5

tile 16

tile 10

tile 4

tile 21

tile 15

tile 9

tile 3

tile 20

tile 14

tile 8

tile 19

tile 13

tile 7

tile 18

tile 12

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

MC

MC

MC

MC

D
IM

M
D

IM
M

D
IM

M
D

IM
M

System
FPGA

Control
PC

core 0

core 1

core 2

core 3

core 4

core 5

core 12

core 13

core 44

core 45

core 46

core 47

Figure 2.1: Intel Single-chip Cloud Computer(SCC) block diagram

2.2 Dynamic Voltage/Frequency Scaling

The SCC provides voltage and frequency control over the cores and the

NoC. The frequency can be controlled per-tile. It means that the neighbor cores

located on the same tile always run at the same frequency and constitute a clock

domain. The voltage can be regulated for a group of four tiles. For example, a

voltage domain comprises a total of eight cores. Figure 2.2 illustrates the clock

and voltage domains on the SCC. The figure does not show the voltage domain

2 and 6, because they are the same and represents the entire mesh and system

interface.

Voltage and frequency are controlled and queried through registers. Each

tile has specific register to write/read the tile‘s frequency. Voltage control is

6

voltage domain 0 voltage domain 1 voltage domain 3

voltage domain 4 voltage domain 5 voltage domain 7

clock
domain

clock
domain

clock
domain

clock
domain

Figure 2.2: Voltage and clock domains on the Intel SCC

also controlled through the register interface. Frequency changes happen almost

immediately (10ms) , however, measurements on SCC revealed that voltage

changes may take up to 100ms to complete (this value is obtained by comparing

the difference in progress of two cores, one control core running on a unchanged

voltage domain, and one operating on the domain whose voltage is changed).

In addition, voltage change requests can only affect in single domain; requests

for several domains must be serialized.

In specification document, SCC supports seven different supply voltage

level, but only three level are of practical interest: 1.1V to run at a frequency

of 800MHz, 0.8V to run at a frequency of 533MHz, and 0.7V for frequencies

between 400MHz and 100MHz. But when it is measured the actual voltage in

practice, the required voltage for running core in 400MHz is over 0.7V. So it

decides to increase the reference voltage for 533MHz and remaining frequen-

cies by 0.1V. The frequency is set by writing a divisor between 2 and 16 for the

1.6GHz(1600MHz) clock resulting in core frequencies from 800MHz to 100MHz.

7

Table 2.1 lists the available voltage and frequency settings for the cores. The

notation of designator is selected from the first digits of Frequency. We‘ll use

this notation to explain the migration policy in Section 3.2.6.

Voltage [V] Frequency [MHz] Designator

1.1 800 8

0.9 533 5

0.8 400 4

0.7 320 3

200 2

100 1

Table 2.1: Voltage and frequency settings on the SCC

2.3 Power Measurement

The SCC provides a number of heat sensors by each core plus voltage and

ampere meters on-board for measuring supply power on SCC board. The total

power consumed by the SCC is obtained by multiplying the (almost constant)

supply voltage with the supply current for the entire board. The power con-

sumption of individual voltage domain cannot be computed because only the

per-domain supply voltage is available but not the current consumed by the do-

main. So this thesis always report the total power consumption of entire board

in our experiments in Chapter 4, not the individual core.

The sensors and meters can be read via telnet protocol from the system

FPGA in management console or by directly querying the system FPGA from

a core in the SCC. We chose the former approach because it can obtain the

power consumption without core overhead.

8

2.4 Memory Addressing

Each core provides the standard virtual-physical memory translation; all

addresses leaving the core are 32 bit physical addresses. 32 bit addresses are

not wide enough to express the entire 32-GB address range; to allow access to a

total of 4 GB of memory located somewhere in the SCC‘s 32GB address space,

an additional address translation takes place.

The address translation from core (physical) to system address is provided

by a core-local lookup table (LUT). Each LUT has 256 entries and is indexed

by the top eight bits of the 32 bit core address. Without going into much detail,

a LUT entry contains an 8 bit destination ID destID designating one of the

four memory controllers (MC), and 10 address bits that are pre-pended to the

remaining 24 bits of the core address to form a 34 bit address. One LUT entry

maps 16 MB of memory. Together with the memory controller designation, this

translation allows to access the entire 32 GB memory space of the SCC. Figure

2.3 illustrates the core-to-system address translation.

24 bit8 bit

24 bit

LUT

10 bit8 bit

core address

system address
MC id MC address

Figure 2.3: Core-to-system address translation on the SCC

9

Chapter 3

Implementation

In the previous sections, it have motivated the need to cluster workloads

with similar performance requirements in a voltage and/or frequency domain

to achieve optimal results when applying DVFS. A workload in this context can

mean anything from a thread of a parallel application to an entire operating

system running exclusively on a core. Clustering threads or processes in the

presence of an operating system with shared memory amounts to re-scheduling

them on a different core. For applications exhibiting periodic behavior and

fork-join parallel programs special techniques allow accurate estimation of the

expected performance requirements and thus more aggressive DVFS policies.

This sections describes the technical issues of OS migration; the migration

policy is discussed in the section on power management.

3.1 Zero-copy OS Migration

Moving an operating system from one physical core to another can be im-

plemented with or without cooperation of the migrated OS. In a co-operative

setting, the OS can enter a safe state in which it is moved to the newly assigned

10

core and then resumed. The OS itself takes care of changed memory mappings

and the like. To keep the modifications to the OS to a minimum and poten-

tially support a wide range of OSes, it exploit features of CMPs to implement

uncooperative zero-copy OS migration.

For independent workloads running on different physical cores the main

caveat is how to deal with the volatile state, i.e., the assigned memory of

the workload and values currently held in registers in the CPU core. If the

CMP implements a global shared address space, the assigned memory does not

have to be moved physically; the same physical addresses are still valid on the

new core. Since such designs cannot provide total isolation of independently

running workloads, CMPs often implement an additional step in the memory

translation process from physical to system addresses. The physical-to-system

address translation operates in almost the same way virtual-to-physical trans-

lation works: instead of per-process page tables, the CMP provides per-core

translation tables indexed by the higher part of the core address . We exploit

this additional translation step to realize zero-copy migration for independently

running OSes.

Without cooperation from the OS, the volatile state of the OS also includes

the data values kept in the registers of the CPU core. Similar to preemptive task

switch, these register values need to be saved on the source core and restored

on the destination core. If the CMP provides the means to read and write

the register file of physical cores, OS migration can be implemented without

any cooperation from the migrated OS. To this day, however, no many-core

chip aware of provides such a feature. As a consequence, a minimal amount of

cooperation from the migrated OS is necessary.

3.1.1 Migration Steps

In the proposed implementation, zero-copy OS migration is orchestrated by

a migration manager. The migration manager initially signals the OS running

11

source migration manager destination

signal migration

signal ready
stop

resume

signal migration

signal ready

stop

resume

save
registers

wait

restore
registers

update
network

tables

resume
execution

save
registers

wait

restore
registers

update
network
tables

resume
execution

MCPCall other cores

update
network
tables

resume
execution

update
network
tables

resume
execution

update
network
tables

resume
execution

update
network
tables

resume
execution

update
network
tables

resume
execution

swap register values
and LUT mappings

signal

Figure 3.1: OS Migration Steps

on the source core that it is about to be migrated. The OS then saves the

values of CPU-internal registers to a designated memory area and enters a

special state during which the actual migration takes place. On the destination

core, the system is brought into an identical migration state as the source core.

As soon as both cores signal completion readiness, the core-to-system memory

mappings are swapped. The migration manager then signals the completion of

the migration to the destination core which then restores the register values

and resumes execution. Figure 3.1 illustrates the migration steps.

Since it is required a minimal amount of cooperation from all involved cores,

it assumes that the bare OS runs on all (including unused) cores. The clock of

unused cores can be gated to avoid wasting power. The migration signal is trans-

mitted in form of an interrupt to the affected cores. The migration interrupt

is handled by our custom interrupt handler which saves the necessary registers

into a per-core designated memory area. After all registers have been saved, the

affected cores signal completion to the migration manager and completely flush

12

their caches. The migration manager then stops all affected cores by gating their

clock, and swaps the cores’ register values and the memory mappings. Next, the

migration manager signals completion of the migration by resuming the clock

on the migrated cores. The cores proceed by restoring the (new) register values

from memory, exit the interrupt handler and resume operation. In addition, all

cores, including the MCPC need to update internal network routing tables to

reflect the new locations of the cores.

3.1.2 Migrating Volatile State

The migrated cores save/restore register values to a designated memory

area in a custom interrupt handler. In principle, exactly the same registers

need to be saved/restored as when performing a process context switch in a

preemptive multitasking system. After saving the registers, the migrated cores

flush all caches and enter a busy loop. It is impossible to flush a core’s cache

externally; as a consequence the code of the busy loop will reside in a migrated

core’s instruction cache. In addition, it is impossible to set the program counter

immediately after resuming the clock since we do not know what instruction

of the busy loop the core was executing when the clock was gated. However, it

can ignore this technical difficulty by assuring that the busy loop, including the

code to save and restore the registers, is located at identical virtual addresses

on all migrated cores. Since we currently only use a modified version of the

sccLinux OS, this condition is always met. If several different OSes are involved

in OS migration, it may be necessary to turn off virtual-to-physical memory

translation temporarily and only re-enable it once the new page table base

register has been set.

The memory of the affected cores is migrated by swapping the corresponding

entries in the LUT tables. All 256 entries are swapped.

13

3.1.3 Networking

Apart from the migration interrupt handler, no modifications have been

made to the sccLinux kernel. As a consequence, the cores keep their networking

configuration, including IP addresses across migrations.

On the SCC, there exist two separate networks: one network for on-chip

networking, and a subnet for communication with the MCPC. Data packets

sent on-chip from one core to another are first stored in a buffer (in a special

on-chip SRAM buffer called message-passing buffer (MPB)) on the sender side.

The sender then signals the receiver with an interrupt, and the receiver fetches

the message data directly from the sender’s buffer. For migrated cores the loca-

tion of their MPB remains unchanged; storing/retrieving network packets from

the buffer is thus unaffected by migration. However, the target core of a net-

work interrupt is identified by its physical core ID which corresponds to the

x/y-coordinates of the core on the grid. In the original sccLinux the interrupt

target ID is computed from the core ID. In order to support migration, a table

containing the IP-to-coreID mappings is added and kept up-to-date by each

core. After each migration, the migration manager thus notifies all cores about

the changes necessary to the IP-to-coreID mapping table.

A very similar data structure is maintained by the MCPC to route data

packets from external sources to each of the individual cores. The migration

manager notifies the MCPC through the system interface about migrations

taking place such that the MCPC can keep an up-to-date list of IP-to-coreIDs.

These two simple modifications are enough to keep networking, including

open connections, alive across migrations. No other devices exist on the SCC;

input/output, including access to permanent storage, are routed through the

network.

14

3.2 Hierarchical Power Management

Power management for many-core CMPs is often organized in a hierarchical

manner in order to remain scalable even for a large number of cores. This section

describes our implementation.

3.2.1 Organization

The structure of the hierarchical power manager reflects the structure of the

SCC with its different voltage and frequency domains. At the lowest level in the

hierarchy is a single core because individual cores exhibit different performance

values and can be clock-gated individually. The next level is the tile which

comprises two cores and represents a clock domain. Decisions about which clock

frequency to run at are made at this level. One level up is the voltage domain.

A clock domain consists of four tiles and represents the unit where voltage

changes can be initiated. The highest level models the entire chip.

For simplicity of the implementation, currently all three levels except the

core-level are grouped together and executed on one single core in the SCC.

This is feasible for the 24 clock domains, the 6 voltage domains, and the global

manger on top; for CMP with more cores the voltage and/or clock domain

managers will need to be distributed as well.

3.2.2 Local Performance Monitoring and Prediction

On each active core, a local agent monitors the current performance of the

core. Depending on the load factor, it requests a higher, the same, or a lower

frequency from the next-higher level in the hierarchy. In its current implemen-

tation, the local agent only considers the CPU load. We expect better results

with more sophisticated implementations such as using the core’s performance

monitoring unit to measure the number of ALU and memory instructions. In

this thesis, we just considered the CPU workload as performance measure cases.

15

The local agent uses the core‘s performance monitoring unit (PMU) to

gether statistics about the number of executed instructions. During the reg-

ular intervals, the local agent collects the instruction counts, and predicts the

load of a core based on weighted average of collected data. When the core is

not fully utilized, the optimal frequency can be analytically computed. In the

case of CPU-bound test case, for example, if the core operates in 800MHz with

50% utilization, we expect that it also works optimally in 400MHz with 100%

utilization. Frequency values we use in this system are discrete, the computed

frequency is thus always rounded up to the next higher available frequency.

However, if the core is fully optimized, it is not clear by how much the

next frequency is appropriated. In the previous example, if the core works in

100% utilization at 400MHz, we are not sure that the optimal frequency is

either 533MHz or 800MHz. So we have experimented with three policies: STEP,

2-UP, HALF-UP. The first two policies increase the operating frequency by one

and two steps in that case. And HALF-UP policy computes the next frequency

by adding half the difference of the current frequency to the maximal frequency

(800MHz). Experiments have shown that in our framework the performance

and power consumption are almost indifferent in regard to the three policies.

Performance is measured periodically; experiments have shown that values

between 0.5 and one second are short enough to quickly react to changing

performance requirements, but long enough to avoid too much noise in the

signal.

3.2.3 Domain Managers

Each domain, clock, voltage, and global, maintains its own domain manager.

Each level only communicates directly with the level above or below, i.e., the

clock domain manager interacts with the voltage domain manager, the voltage

domain manager interacts downstream with the clock domain, and upstream

with the global domain manager. The functionality of the different domain

16

managers is elaborated in more detail in the following expression.

• Clock Domain Manager: For each clock domain, its manager computes

and sets the appropriate frequency. The frequency of a clock domain is

constrained by the current voltage level of the corresponding voltage do-

main and computed based on the performance counters reported by the

local agents and the currently active DVFS policy. Each clock domain

manager maintains sorted lists of the current and requested frequencies

for all of its cores. The clock domain managers communicate with their

voltage domain manager by periodically sending the list of requested fre-

quencies. The voltage domain manager signals changes in the voltage

level.

• Voltage Domain Manager: The voltage domain manager computes

and sets the operating voltage of a voltage domain. Due to the nature of

DVFS, voltage changes must happen in close collaboration with frequency

changes: before lowering the voltage, all frequencies must be lowered to

a values supported by the lower voltage. Similarly, for higher voltages,

the voltage must be increased before the frequencies can be raised as

well. Each voltage domain manager maintains sorted lists of the current

and requested voltages per clock domain. The voltage domain managers

communicate with the global manager by periodically sending the list of

requested frequencies and voltages upstream.

• Global Domain Manager: The global manager gathers the sorted volt-

age/frequency requests from the domain managers and determines which

cores to migrated where based on the current policy. After the migration

has completed, the global domain managers informs the voltage domain

managers of the migration such that the voltage may be changed immedi-

ately. This is not absolutely necessary since the information will eventually

be sent from the local agents to the voltage domain managers, however,

17

giving the voltage domain managers a chance to immediately react to

migration leads to slightly better results.

3.2.4 Power Management Policies

We employ DVFS and OS migration to achieve a better performance per

watt ratio. Other goals such as, for example, avoiding local hot spots are also

possible but outside the scope of this thesis.

3.2.5 DVFS Policies

We implement the same DVFS policies as a state-of-the-art hierarchical

power manager for CMPs [14]. This power manager has been implemented

for the Intel SCC chip and thus provides a good reference point. The policies

proposed in [14] and duplicated here are:

• Allhigh: this policy runs all cores within a voltage domain at the highest

requested frequency.

• TileIndiv grants the requested frequency to each clock domain and sets

the voltage accordingly. Within each clock domain, the higher of the re-

quested frequencies is chosen.

For all policies, the voltages of the voltage domains are computed such that

the all clock frequencies of the associated clock domains can be satisfied, i.e.,

vV D = maxi v(fCDi). v(f) for a given frequency f is a simple table lookup

(Table 2.1).

3.2.6 OS Migration Policy

Without OS migration, OSes are pinned to their cores. For voltage domains

containing very busy cores and mostly idle cores any voltage setting thus has

its shortcomings: if the voltage is too low, the performance of busy cores is

18

severely affected. On the other hand, if the voltage is set high enough to satisfy

the performance needs of the busy cores, the idle cores waste energy because

they operate at a higher than necessary voltage.

Thanks to OS migration, it is possible to migrate cores with similar per-

formance requirements onto the same voltage domain. Since all cores in the

voltage domain require similar performance the requested frequency range is

narrower which in turn allows for a more optimal voltage setting.

In other words, the goal of OS migration is to group workloads with similar

performance requirements in the same voltage and/or frequency domain such

that the DVFS policy can set a voltage/frequency closer at the optimal value

for a given voltage/frequency domain.

A näıve algorithm is to sort the OSes by their performance requirements

and then assign them in order to the voltage and frequency domains. While

the resulting allocation of cores to domains is optimal for one time quantum,

this algorithm fails to consider the overhead of OS migration. The actual live

migration of a OS is very quick (≤ 3ms), each time a OS is migrated it will

experience a lot of cold misses in the local instruction and data caches which

will lead to both a performance reduction as well as increased memory traffic.

The migration algorithm must thus also consider the current positions of the

OSes and minimize the number of migrations.

Algorithm 1 shows the pseudo-code of the migration process worked in

global domain manager. For achieving the advantage of hierarchical power man-

agement, the decision part is separated with two parts: voltage decision and

frequency decision. We implemented the simple migration policy based on eco-

nomic principle, named Buyer-Seller algorithm. The goal of this policy is to

minimize the number of migrations with consideration of voltage and frequency

domain at the same time. Mentioned in Section 2, two cores consists in one fre-

quency domain. So it is impossible to set the optimal frequency for each core.

To minimize the performance degradation or over power consumption, similar

19

Algorithm 1 BuyerSellerMigration

1: procedure MIGRATE

2: while target > 1 do

3: for each voltage domain do

4: buyer ← getBuyerDomain()

5: while hasTileBuyer(buyer) do

6: if seller ← getTileSellerDomain() then

7: break

8: end if

9: target←doTileMigration(buyer, seller)

10: end while

11: while hasCoreBuyer(buyer) do

12: if seller ← getCoreSellerDomain(buyer) then

13: break

14: end if

15: target←doCoreMigration(buyer, seller)

16: end while

17: end for

18: end while

19: end procedure

20

workloads should operates in same domain. In this algorithm, it tries to migrate

the core/domain unit as a view of Buyer or Seller. The concept of Buyer is

that specific domain wants to bring some cores from another domain, and vice

versa.

vdom Keep Sell

0 (5), (5) {3, 3}, {2, 3}, (5), (5)

1 {8, 8} {2, 2}, {4, 5}, {3, 2}

3 (4) {3, 3}, {2, 2}, {2, 2}

4 {5, 4}, {5, 4}, {3, 3}, {4, 4}

5 (5) {3, 1}, {5, 3}, {2, 2}, (5)

7 (4) {1, 1}, {4, 5}, {1, 1}, (4)

Table 3.1: Example of Keep/Sell lists for the configuration.

vdom 0

8 5 8 5
3 3 2 3

SCC
vdom 4

5 4 5 4
3 3 4 4

vdom 1

8 8 2 2
4 5 3 2

vdom 5

3 1 5 8
5 3 2 2

vdom 3

8 4 3 3
2 2 2 2

vdom 7

1 1 4 5
4 8 1 1

(a) (b)

vdom 0

8 8 8 8
8 8 8 3

SCC
vdom 4

5 4 5 4
3 3 4 4

vdom 1

3 3 2 2
4 5 3 2

vdom 5

3 1 5 5
5 3 2 2

vdom 3

5 4 3 3
2 2 2 2

vdom 7

1 1 4 5
4 2 1 1

(c) (d)

vdom 0

8 8 8 8
8 8 8 3

SCC
vdom 4

5 5 5 5
5 5 4 5

vdom 1

3 3 2 2
4 4 3 2

vdom 5

3 1 3 3
3 3 2 2

vdom 3

4 4 3 3
2 2 2 2

vdom 7

1 1 4 4
4 2 1 1

vdom 0

8 8 8 8
8 8 8 3

SCC
vdom 4

5 5 5 5
5 5 4 5

vdom 1

3 3 2 2
1 1 3 2

vdom 5

3 1 3 3
3 3 2 2

vdom 3

1 1 3 3
2 2 2 2

vdom 7

4 4 4 4
4 2 4 4

Figure 3.2: Example of Buyer-seller algorithm

Figure 3.2 (a) displays the estimated frequencies for each core before the

buyer-seller algorithm starts. Figures 3.2 (b)-(d) show the layout after each

21

repetition for vi = 8, 5 and 4, respectively; (d) represents the final configuration.

In this figure, bold values represent tiles/cores migrated in that iteration.

This algorithm runs once for each voltage level except the lowest, starting

at the highest voltage. In each iteration, domains report the information about

which tiles or cores they would like to buy and which to sell. In the iteration for

voltage vi, a voltage domain adds to its Sell list (a) all tiles which request a

frequency that can be run at a lower voltage than vi, i.e., vreq(tile) ≤ vi, and (b)

all single cores that requires a voltage smaller than vi but are located on a tile

where the other core requests a higher or equal voltage than vi, vreq(core) ≤ vi.

On the Keep list tiles and cores that request voltage vi, that is vreq(tile/core) =

vi, are included. Table 3.1 shows the Keep and Sell lists for the configuration

shown in Figure 3.2 (a). Note that in the Keep list not the actual single core

itself is listed but its sibling from the same tile. Consider vdom0: the two tiles

at the top are expected to require the frequencies 8 and 5 (800 and 533MHz,

respectively, see Table 2.1, described in Section 2). The Keep list of vdom0 then

contains two single core entries (5), (5), expressing that it contains two tiles with

one core each running at the target frequency that it wants to keep. It would

like to buy two single cores running at vi and can in return offer two single

cores running at frequency 5. On the Sell side, on the other hand, the actual

cores are listed. Sell for vdom0 contains the two single core entries (5), (5),

representing the fact that vdom0 is offering two single cores expected to run at

frequency 5. The reason for this somewhat inconsistent notation is that it is

then straightforward to match single cores on the buyer list with those from

the seller side.

After initializing the Keep/Sell lists, the buyer-seller algorithm runs. The

algorithm repeatedly selects two tiles or single cores to swap based on the infor-

mation in the Keep/Sell lists until no further chances occur. In each repetition,

it first selects the voltage domain that offers the fewest tiles for sale and as its

counterpart the domain that tries to keep the fewest tiles. In the first round

22

for vi = 1.1V (i.e. frequency 8) the domains vdom0 and vdom1 are chosen (Ta-

ble 3.1). Vdom0 offers only two tiles for sale which means that it tries to keep

the other two. Vdom1 is the only domain containing a tile running at the target

frequency operated in vi. The algorithm pairs the two domains up with vdom0

representing the buyer and vdom1 the seller. When selecting a tile to exchange

on the Sell side, the tile that most closely matches the average frequency of

the seller after selling the tile running at vi is chosen. In the example at hand,

vdom1 contains the frequencies 2, 2, 4, 5, 3, 2 after giving tile {8, 8} away with

an average of 3.2. Tile {3, 3} in vdom0’s seller list is closest to this value and

is thus selected and exchanged with tile {8, 8} from vdom1. This operation also

updates the domains’ Keep/Sell lists. The process is repeated until no more

tiles can be exchanged. Then, the algorithm proceeds to swap single cores. First,

again the domain with the fewest tiles to sell is chosen, then the Keep lists of

all other domains are searched for a matching value. Keep in mind that the

actual core to be exchanged is a core running at voltage vi and the entry in the

Keep list represents the frequency of the sibling on the same tile. Again, this

process is repeated until no further cores can be exchanged. Tiles on the Keep

list can be split up into two single cores if there are single cores to be sold but

the Keep lists only contain tiles. In our running example, again vdom0 is chosen

as the seller domain since it contains the fewest tiles to be sold (one after the

tile exchange). The core to be sold runs at frequency 5; vdom5 is offering a core

running at frequency 8 and would like to get one running at 5 in return. The

two are thus exchanged, and the Keep/Sell lists updated.

As a result, the buyer-seller algorithm returns the instructions to perform

the actual migration in form of several circular lists of cores that are to be

migrated.

23

3.2.7 Phase Ordering and Frequency Considerations

In order to achieve maximum power saving, migration should occur be-

fore applying DVFS. The probability of migration occurrence, voltage, and

frequency changes is determined by the cost of these operations: the time for

migration is largely unaffected by the number of cores begin migrated because

all involved cores can store/restore the volatile state in parallel. Migrated cores

are stopped and have their caches flushed while unaffected cores continue to run

during migration process. Voltage changes are quite expensive operation be-

cause the clock of all affected cores(i.e., whole cores in one domain) is stopped

during the rather long voltage adjustment. Frequency changes, on the other

hand, are almost instantaneous and can thus be performed often. On the SCC

specifically, it have measured latencies of each operation: ≤ 20ms for migration

and ≤ 30ms for voltage changes. On this particular architecture, migration is

cheaper than voltage changes. In addition, the SCC only supports one voltage

change at a time: i.e., different domains cannot change the voltage in paral-

lel. Nevertheless, for our server/desktop benchmark scenarios with rather slow

changes in the CPU load, migration and voltage changes can be performed at

every step. Chapter 4 discusses the benchmarks and results in more detail.

24

Chapter 4

Experimentation and Evaluation

4.1 Experimental Setup

All experiments are executed on an Intel Single-chip Cloud Computer. The

cores all run independent instance of sccLinux executing a variety of work-

loads reflecting some corner cases and desktop usage patterns. The baseline

is obtained by running the benchmark at the SCC‘s default setting with all

cores running at 533MHz and no DVFS or OS migration taking place before

experimentation.

The proposed technique is compared with a state-of-the-art domain-specific

power management techniques implemented on the Intel SCC[14]. Unlike the

work in [14], phase-detector based on message passing buffer is not implemented

on the proposed framework since it is aimed at independently running OSes on a

CMP. We compare each of their DVFS policies without OS migration, Allhigh,

and TileIndiv, against the same policy with zero-copy OS migration.

For comparing the performance among previous policies, this thesis choose

the Energy-Delay Product(EDP)[19] as a measurement factor. To calculate this,

total energy consumption and the total progress of each core are required.

25

Especially on power consumption, this data is stored in system registers, so it

can obtained from reading these registers via telnet protocol.

The workload scenarios comprise a number of synthetic and real-world work-

loads mimicked after desktop usage pattens[20].

4.2 Results

The setup and the results of the first benchmark scenario are shown in

Figure 4.1 and Figure 4.2. The load pattern shown in Figure 4.1(a) consists

of two simple periodic synthetic workloads that alternate between 10% and

90% load. The second workload s2 is slightly time-shifted compared to s1. The

initial OS distribution onto the different voltage domains of the SCC is shown

in the left chart of Figure 4.1 (b). Each domain initially contains three or four

OSes of both load patterns.

The results of running this first benchmark scenario are shown in Figure 4.1

(b) - (c). Figures 4.1 (b) (right-hand chart) and (c) show the normalized power

consumption, the normalized performance, and the normalized performance per

watt, respectively, for the Allhigh and the TileIndiv policy, denoted AH and

T, without and with (appended +M postfix) OS migration.

We observe that both DVFS only and DVFS with migration suffer from a

performance loss. In the case of DVFS only, there are two reasons for this loss:

first, a voltage change operation of an island stops execution on all cores, adjusts

the voltage, and then resumes the core clock. This process is implemented in

hardware and takes about 10ms per voltage change. The second reason for

reduced performance is observed when the workload prediction model fails to

foresee a sudden raise in the load and selects a too low operating frequency

for a workload. OS migration also requires stopping and resuming all involved

cores during migration (3ms). Additionally, the changes in the routing tables

are propagated to all active OSes through external interrupt; processing these

interrupts on the individual cores also causes a minimal performance overhead.

26

0

50

100

0 60 120 180 240 300

lo
ad

 (%
)

t (s)

s1 s2

(a) Load pattern

0

1

2

3

4

V0 V1 V3 V4 V5 V7

of

 O
Se

s

s1 s2

0.0

0.5

1.0

1.5

AH AH+M T T+M

no
rm

. p
ow

er

(b) Load distribution & power consumption

0.0

0.5

1.0

1.5

AH AH+M T T+M

no
rm

. p
er

f.

0.0

0.5

1.0

1.5

AH AH+M T T+M

no
rm

. p
er

f./
w

at
t

(c) performance & performance per watt

Figure 4.1: Simple alternating synthetic load

27

(a) Requested Frequency map - Allhigh

(b) Requested Frequency map - TileIndiv

Figure 4.2: Requested Frequency map dependent on management policies

28

Nonetheless, as can be seen from the normalized power consumption in Fig-

ure 4.1 (b) on the right-hand side, the reduction in power by far outweighs the

loss in performance. In terms of performance per watt (right-hand of Figure 4.1

(c)), both DVFS only and DVFS with migration show better results. In par-

ticular, the proposed method of combining DVFS with OS migration achieves

about a 30% improved performance per watt compared to DVFS-only policies.

Figures 4.2 (a) and (b), finally, visualize the effect of DVFS only and DVFS

with migration on the individual voltage domains’ frequency settings for the

two DVFS policies Allhigh and TileIndiv. The frequency over time is shown

for each voltage domain for DVFS only (upper part) and DVFS with migration

(middle part of the figure). Higher frequency (and thus voltage) settings are

represented by darker levels of gray. The lower part of the chart shows the

number of migrations over time.

Comparing DVFS and DVFS+migration with the Allhigh DVFS policy in

Figure 4.2 (a) clearly shows how migration is able to group OSes with similar

performance characteristics together and thus select voltages that are closer

to the optimal value. In the Allhigh policy in particular, if only one core in a

particular voltage domain requests a frequency of 800MHz and thus the highest

voltage setting, the entire domain will run at 1.1V . This can be clearly seen by

the dark parts in the figure. Since the OSes are evenly spread over all voltage

domains, with DVFS only all domains run at maximum voltage as long as

only of the load patterns is at 90%. In comparison with DVFS+migration, we

clearly observe that the migration policy first gathers all OSes into the first

two domains, vdom0 and vdom1, also visibly by the first spike in the number

of migrations. About 30 seconds into the benchmark, the OSes running load

pattern s1 drop to 10% load which causes another batch of migrations and

results in grouping the OSes running the same load pattern together. After this,

the OSes running in the same voltage domain observe similar load patterns and

no more migrations are necessary. The DVFS policy can select the appropriate

29

voltage and frequency for the first two domains.

For the Tile DVFS policy we observe a similar pattern (Figure 4.2 (b)).

Here, the frequency can be set on a tile-basis which is clearly visible by the

different frequency settings within the different voltage domains. Again, DVFS

only cannot consolidate OSes with similar load patterns into few voltage do-

mains, resulting in voltage settings that are too high for most cores in a domain.

DVFS with migration, on the other hand, groups all OSes into vdom1 and vdom4.

We see that migration fails to group the OSes running identical load patterns

into distinct domains at first which causes some migration activity after about

one third of the benchmark’s runtime. From then on, the two load patterns are

nicely separated. Even though the load patterns are perfectly synchronized at

the beginning of the run, the overhead of DVFS and migration causes them to

drift apart slowly which then again triggers migrations. For real-world bench-

marks without perfectly recurring load patterns this is not an issue.

Figure 4.3 and Figure 4.4 show the setup and the results of a real workload

scenario. Seven different load patterns obtained from profiling data of graduate

students’ computers, s1 to s7, are assigned to a total of 40 OSes and initially

placed onto the different voltage domains (Figures 4.3 (a) and left-hand of (b)).

The results of this real-world benchmark scenario are shown in Figure 4.3

(b) - (c). Figures 4.3 (b) (right-hand chart) and (c) show the normalized power

consumption, the normalized performance, and the normalized performance per

watt, respectively, for the Allhigh and the TileIndiv policy, denoted AH and

T without and with (appended +M postfix) OS migration. We observe that with

real load patterns the performance loss is not as pronounced as with the syn-

thetic load pattern. This is because real benchmarks have smoother transitions

between busy and idle periods whereas the synthetic benchmark repeatedly

jumps from 10 to 90% and back to 10%. The workload estimation, based on

the weighted average of a sliding window over the observed load, predicts the

required performance for the real load patterns much more accurately then in

30

0

100

0 75 150 225 300

lo
ad

 (%
)

t (s)

s1 s2 s3 s4
s5 s6 s7

(a) Load pattern

0

1

2

3

4

V0 V1 V3 V4 V5 V7

of

 O
Se

s

s1 s2 s3 s4
s5 s6 s7

0.0

0.5

1.0

1.5

AH AH+M T T+M

no
rm

. p
ow

er

(b) Load distribution & power consumption

0.0

0.5

1.0

1.5

AH AH+M T T+M

no
rm

. p
er

f.

0.0

0.5

1.0

1.5

AH AH+M T T+M

no
rm

. p
er

f./
w

at
t

(c) performance & performance per watt

Figure 4.3: Results for a real-world load pattern.

31

(a) Requested Frequency map - Allhigh

(b) Requested Frequency map - TileIndiv

Figure 4.4: Requested Frequency map dependent on management policies

32

the case of synthetic loads. The power savings of DVFS with migration com-

pared to DVFS only range from 25 to 30% which results in an increase of the

performance per watt by about the same ratio.

The parts (a) and (b) of Figure 4.4 again visualize the operating frequencies

of the different voltage domains. With the Allhigh DVFS policy without mi-

gration, all voltage islands run at the highest frequency for almost all the time.

With OS migration, however, OSs exhibiting similar load patterns are grouped

together and despite the Allhigh DVFS policy, most voltage domains are able

to operate at considerably lower frequencies than with DVFS only. Due to the

irregularities of the different load patterns the migration manager fails to con-

solidate only OSs exhibiting the same load into one voltage domain. This leads

to a significantly increased number of migrations, however, since the migration

overhead is very small the performance loss caused by the migration is of no

consequence.

A similar picture is presented in Figure 4.4 (b) for the TileIndiv DVFS

policy. Since the frequency is regulated individually for each frequency domain

(each tile), the DVFS only policy is able to reduce the operating frequency for

tiles requesting less than the maximum frequency. Note, however, that the volt-

age domains operate at maximum voltage for almost the entire duration of the

benchmark because the required voltage is determined by the highest frequency

in each domain. The results for the TileIndiv DVFS policy with migration dis-

play the grouping of similar workloads into voltage domains. Again, it is difficult

to clearly identify and separate the different load patterns, nevertheless, OS mi-

gration is able to group similar loads together which allows the DVFS manager

to select both lower voltages and frequencies.

Figure 4.5, finally, displays the normalized power, normalized performance,

and normalized performance per watt over the baseline, respectively, for the

Allhigh and the TileIndiv policy, denoted AH and T, without and with (ap-

pended +M postfix) OS migration for five different benchmark scenarios. The

33

0

0.5

1

1.5

1 2 3 4 5

no
rm

. p
er

f.

0

0.5

1

1.5

1 2 3 4 5

no
rm

. p
er

f./
w

at
t

0

0.5

1

1.5

1 2 3 4 5

no
rm

. p
ow

er

AH AH+M T T+M

avg

avg

avg

Figure 4.5: Results for different benchmark scenarios.

first two scenarios are constructed from synthetic benchmarks whereas the other

three benchmark scenarios are based on real workload patterns. The last group

of bars shows the arithmetic average over all benchmark scenarios.

Independent of the workload at hand, migration OSes before applying a

DVFS policy results in a significantly reduced power consumption at the ex-

pense of a very moderate performance degradation. The increase in performance

per watt ranges from 20 to 50% with an average increase of 32% for the Allhigh

and 25% for the TileIndiv DVFS policy. The TileIndiv policy allows more

fine grain control over the frequency, which is why the effect of migration is a

bit less than in the case of Allhigh. Overall, the results show that combining

OS migration with DVFS is feasible for CMPs and achieves significantly better

results than a DVFS-only policy.

34

Chapter 5

Related Work

There is a significant amount of work focusing on the design and implemen-

tation of power management techniques for CMPs. This thesis mainly focuses

on the independent workloads(i.e., OSes) executing in a space-shared manner

on the CMP and on exploiting the hardware capabilities of existing and future

many-core systems with regard to coarse-grained voltage and/or frequency do-

mains.

Some research has focused on exploiting idle periods, Meisner et al propose

PowerNap [21] and DreamWeaver [22]. Both techniques assume quick transition

between on-state and off-state with hardware support; the letter work imple-

mented wake-up events to increase the sleep periods. Our approaches is quite

different with that kind of implementation. In some situations like frequently

changing the state, this feature will leads to longer the execution time. In our

approaches, we try to choose the optimal voltage/frequency while runtime.

A number of researchers have proposed heterogeneous power management

techniques for CMPs [15, 14, 13, 23, 24]. Qiong et al [15] propose the Thread

Shuffling, the method of combining DVFS features and thread migration in one

operating system. Isci et al [13] apply different DVFS policies under a given

35

power budget and show that their best policy performs almost as good as an

oracle policy having some limited knowledge of the future. Meng et al [23]

propose an adaptive power saving strategy that adheres to a global chip-wide

power budget through run-time adaptation of configurable processor. Rangan et

al [24] propose ThreadMotion, a technique that moves threads around in order

to improve power consumption. Their approach requires hardware support to

move threads quickly from one core to another. Our approach is similar, but it

can be implemented on an available CMP without additional hardware support.

For implementing the hierarchical power management, we get an idea of

agent-based framework [17]. Ebi et al proposed agent-base approach for man-

aging thermal issue. In every period, agent operated on each core can commu-

nicate adjacent cores. Unlike this, our approach is to transfer the data globally

through global shared memory. So it can communicate not only neighbor cores

but ones far away from origin.

The work most closely related to ours has been presented by Ioannou et al

[14]. In their work, a hierarchical power manager for the Intel SCC is proposed.

And they also described several domain-specific policy. A phase detector imple-

mented on their framework detects application phases to exploit DVFS better.

In contrast to their work, we add zero-copy OS live migration and can thus

achieve significantly improved performance/watt ratio from grouping similar

works in one domain.

36

Chapter 6

Conclusion

Current and future many-core chips are likely to support DVFS with volt-

age and frequency domains at a coarser level than individual cores. As a con-

sequence, cores with similar performance requirements should be grouped in

one domain to achieve optimal results when managing the system’s power re-

sources. Grouping similar workloads requires moving the workload from one

core to another core (or set of cores). This is standard practice for multi-core

OSes executing several applications; for independent OSes running indepen-

dently on different cores the large overhead of copying the volatile state of the

OS is often prohibitive.

In this work, it shows that features of many-core systems allow zero-copy

OS migration and that combining zero-copy OS migration with DVFS achieves

significantly improved performance/watt ratios on a real system. Our exper-

iments reveal that zero-copy OS migration has a lower latency than voltage

changes; therefore, it is, in fact, more beneficial to move OSes from one voltage

domain to another voltage domain than changing the voltage of the domain.

We have implemented the zero-copy OS migration in Linux running on the

Intel SCC. Experiments show that, compared to a state-of-the-art hierarchical

37

power management for many-core chips exploiting DVFS, the proposed method

achieves, on average, around a 27% improved performance per watt ratio for a

wide range of workloads.

38

Bibliography

[1] Gordon E Moore et al. Cramming more components onto integrated cir-

cuits, 1965.

[2] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous,

and Andre R LeBlanc. Design of ion-implanted mosfet’s with very small

physical dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268,

1974.

[3] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark silicon and the end of multicore scaling.

In Computer Architecture (ISCA), 2011 38th Annual International Sym-

posium on, pages 365–376. IEEE, 2011.

[4] Intel Corporation. Enhanced intel speedstep technology for the intel pen-

tium m processor - white paper, March 2004.

[5] Advanced Micro Devices. Amd powernow! technology: Dynamically man-

ages power and performance, 2000.

[6] Susanne Albers. Energy-efficient algorithms. Communications of the ACM,

53(5):86–96, 2010.

[7] Hwisung Jung and Massoud Pedram. Supervised learning based power

management for multicore processors. Computer-Aided Design of In-

39

tegrated Circuits and Systems, IEEE Transactions on, 29(9):1395–1408,

2010.

[8] Shie Mannor, Branislav Kveton, Sajid Siddiqi, and Chih-Han Yu. Ma-

chine learning for adaptive power management. Autonomic Computing,

10(4):299–312, 2006.

[9] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S

Nikolopoulos, Bronis R de Supinski, and Martin Schulz. Prediction models

for multi-dimensional power-performance optimization on many cores. In

Proceedings of the 17th international conference on Parallel architectures

and compilation techniques, pages 250–259. ACM, 2008.

[10] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei, and David Brooks.

System level analysis of fast, per-core dvfs using on-chip switching regu-

lators. In High Performance Computer Architecture, 2008. HPCA 2008.

IEEE 14th International Symposium on, pages 123–134. IEEE, 2008.

[11] Efraim Rotem, Avi Mendelson, Ran Ginosar, and Uri Weiser. Multiple

clock and voltage domains for chip multi processors. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture,

pages 459–468. ACM, 2009.

[12] Sebastian Herbert and Diana Marculescu. Analysis of dynamic volt-

age/frequency scaling in chip-multiprocessors. In Low Power Electron-

ics and Design (ISLPED), 2007 ACM/IEEE International Symposium on,

pages 38–43. IEEE, 2007.

[13] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and

Margaret Martonosi. An analysis of efficient multi-core global power man-

agement policies: Maximizing performance for a given power budget. In

Proceedings of the 39th annual IEEE/ACM international symposium on

microarchitecture, pages 347–358. IEEE Computer Society, 2006.

40

[14] Nikolas Ioannou, Michael Kauschke, Matthias Gries, and Marcelo Cin-

tra. Phase-based application-driven hierarchical power management on

the single-chip cloud computer. In Parallel Architectures and Compilation

Techniques (PACT), 2011 International Conference on, pages 131–142.

IEEE, 2011.

[15] Cai Qiong, José González, Grigorios Magklis, Pedro Chaparro, and Anto-

nio González. Thread shuffling: Combining dvfs and thread migration to

reduce energy consumptions for multi-core systems. In Low Power Elec-

tronics and Design (ISLPED) 2011 International Symposium on, pages

379–384. IEEE, 2011.

[16] Vaibhav Jain. Fast Process Migration on Intel SCC. PhD thesis, Arizona

State University, 2013.

[17] Thomas Ebi, M Faruque, and Jörg Henkel. Tape: Thermal-aware agent-

based power econom multi/many-core architectures. In Computer-Aided

Design-Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM In-

ternational Conference on, pages 302–309. IEEE, 2009.

[18] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Fi-

nan, Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Ger-

hard Schrom, et al. A 48-core ia-32 message-passing processor with dvfs in

45nm cmos. In Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2010 IEEE International, pages 108–109. IEEE, 2010.

[19] JHI Laros, Kevin Pedretti, Suzanne M Kelly, Wei Shu, Kurt Ferreira,

JV Dyke, and Courtenay Vaughan. Energy-efficient high performance com-

puting. Springer, 2013.

[20] Cao LeThanhMan and M. Kayashima. Desktop workload characteristics

and their utility in optimizing virtual machine placement in cloud. In Cloud

41

Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International

Conference on, volume 01, pages 333–337, Oct 2012.

[21] David Meisner, Brian T Gold, and Thomas F Wenisch. Powernap: elimi-

nating server idle power. ACM SIGARCH Computer Architecture News,

37(1):205–216, 2009.

[22] David Meisner and Thomas F Wenisch. Dreamweaver: architectural sup-

port for deep sleep. ACM SIGPLAN Notices, 47(4):313–324, 2012.

[23] Ke Meng, Russ Joseph, Robert P Dick, and Li Shang. Multi-optimization

power management for chip multiprocessors. In Proceedings of the 17th

international conference on Parallel architectures and compilation tech-

niques, pages 177–186. ACM, 2008.

[24] Krishna K Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-

grained power management for multi-core systems. In ACM SIGARCH

Computer Architecture News, volume 37, pages 302–313. ACM, 2009.

42

요약

최근에 연구용으로 사용되는 매니코어 기반의 시스템에는 core 자체가 소모

하는 전력과 chip에 가해지는 열에 대한 trade-off를 만족시키기 위한 전력 관리

체계가 필요하다. 학계에 발표된 대부분의 연구는 전체 core에서 돌아가는 병렬

처리 프로그램에 초점을 맞춰서 전력을 효율적으로 관리하는데 초점을 맞추고

있다. 이 논문에서는 매니코어 시스템상에서 독립된 운영체제가 돌아갈 경우 효율

적으로 전력을 관리할 수 있는 방법에 대해서 다뤘다. 이 논문에 다룬 Framework

는 memory address indirection 이나 global shared memory와 같은 하드웨어적

인 기능을 포함한 매니코어 시스템이라면 구현할 수 있는 형태로 되어 있다. 이

논문에서 주로 다룬 기술인 Zero-copy OS migration은 도메인 단위로 관리되는

시스템에서 같은 성능을 요구하는 Core들끼리 묶어서 관리하게 함으로써 기존에

언급되어 있던 도메인 단위에서의 전력 관리 정책과 함께 적용할 경우 조금 더 효

율적인성능을얻을수있다.실제실험에서는 Intel에서출시된 Single-chip Cloud

Computer (SCC) 에서 40개의 리눅스 운영체제가 각 core에 돌아가고 있는 상태

에서 계층적으로 전력 관리에 필요한 Data를 주고받을 수 있도록 구현되었으며,

대부분의 시나리오에서 평균적으로 27% 정도의 성능 향상을 얻을 수 있었다.

주요어: 매니코어 시스템, OS Migration, 전력관리, SCC

학번: 2013-20738

43

	Chapter 1 Introduction
	1.1 Outline

	Chapter 2 Intel Single-chip Cloud Computer
	2.1 Architecture Overview
	2.2 Dynamic Voltage/Frequency Scaling
	2.3 Power Measurement
	2.4 Memory Addressing

	Chapter 3 Implementation
	3.1 Zero-copy OS Migration
	3.1.1 Migration Steps
	3.1.2 Migrating Volatile State
	3.1.3 Networking

	3.2 Hierarchical Power Management
	3.2.1 Organization
	3.2.2 Local Performance Monitoring and Prediction
	3.2.3 Domain Managers
	3.2.4 Power Management Policies
	3.2.5 DVFS Policies
	3.2.6 OS Migration Policy
	3.2.7 Phase Ordering and Frequency Considerations

	Chapter 4 Experimentation and Evaluation
	4.1 Experimental Setup
	4.2 Results

	Chapter 5 Related Work
	Chapter 6 Conclusion
	요약

<startpage>12
Chapter 1 Introduction 1
 1.1 Outline 4
Chapter 2 Intel Single-chip Cloud Computer 5
 2.1 Architecture Overview 5
 2.2 Dynamic Voltage/Frequency Scaling 6
 2.3 Power Measurement 8
 2.4 Memory Addressing 9
Chapter 3 Implementation 10
 3.1 Zero-copy OS Migration 10
 3.1.1 Migration Steps 11
 3.1.2 Migrating Volatile State 13
 3.1.3 Networking 14
 3.2 Hierarchical Power Management 15
 3.2.1 Organization 15
 3.2.2 Local Performance Monitoring and Prediction 15
 3.2.3 Domain Managers 16
 3.2.4 Power Management Policies 18
 3.2.5 DVFS Policies 18
 3.2.6 OS Migration Policy 18
 3.2.7 Phase Ordering and Frequency Considerations 24
Chapter 4 Experimentation and Evaluation 25
 4.1 Experimental Setup 25
 4.2 Results 26
Chapter 5 Related Work 35
Chapter 6 Conclusion 37
¿ä¾à 43
</body>

