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Abstract

Viewers of videos are likely to absorb more information from the part of the screen

that attracts visual attention. This fact has lead to the visual attention models that is

being used in producing and evaluating videos. In this paper, we investigate the factors

that are significant to visual attention and the mathematical form of the visual attention

model, and then estimate the visual attention probability using the statistical design of

experiments. The analysis of variance (ANOVA) verifies that the motion velocity, dis-

tance from the screen, and amount of defocus blur are the factors that strongly affect

human visual attention. Using the response surface modeling (RSM), we create a vi-

sual attention score model that concerns the three factors, and from which model we

calculate the visual attention probabilities (VAPs) of image pixels. The VAPs are di-

rectly applied to existing gradient based 3D effect perception measurement. By giving

weights according to our VAPs, more accurate measurement is possible. The perfor-

mance of the proposed measurement is assessed by comparing them with subjective

evaluation as well as with existing methods. The comparison verifies that the proposed

measurement outperforms the existing ones.

keywords: Visual attention probability, stereoscopic video, Statistical design of

experiments, 3D effect perception measurement, Defocus blur estimation

student number: 2013-20759
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Chapter 1

Introduction

In recent years, with the growth of the display industry, new technology-based products

were released such as 3D TVs, high-definition and large-screen TVs, and curved TVs.

Accordingly, the video contents were varied, and researches on video-making and

evaluation methods became important. In the video-making or evaluation stage, it

would be of great help to estimate the part of the image the viewer visually pays

attention to among the other parts on the screen. When people stare at the screen, they

cannot see the entire screen with the same visual sensitivity. Their visual sensitivity

is keener at the points closer to the visually fixed-at point [1]. Therefore, viewers are

likely to accept information more significantly from the part visually concentrated on.

Using this fact, the visual attention model is being used in studies such as on video

quality assessment [2].

In this paper, we estimate the visual attention probability (VAP) model in videos

using the statistical design of experiments to investigate which factors are significant

to visual attention and what would be the concrete form of the visual attention model.

In the second part of this paper, the VAP model is applied to the three-dimensional

(3D) effect perception measurement method for stereoscopic videos. Since the 3D

1



movie Avatar was released in 2009, 3D movies have become a trend in the film indus-

try. Also, 3D-watching devices have become common, as 3D functions are included

in most of the latest TV models. It is very important to control the 3D effect when

producing 3D videos. Film makers make depth charts before shooting, considering

the story flow and the impact of the scenes. Likewise, when evaluating 3D videos, it

is important to evaluate the degrees of the 3D effect perceived by the viewers. If we

could measure the 3D effect from the video information, we could cut the evaluation

time and cost [13]. Conversely, we can also use the measurement to adjust the 3D

effect of the scenes when making videos.

In this paper, we aim to measure the 3D effects perceived by viewers of different

scenes of stereoscopic videos. We propose the VAP model application method for the

conventional 3D effect measurement method using the depth image to improve the

performance. To measure the 3D effect more accurately, high weights were given to

the parts with a high VAP.
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Chapter 2

Visual Attention Probability (VAP)

2.1 Previous Studies and Motivation

Visual attention models have been studied previously. Park first combined skin color

information with Itti’s model, which used color, intensity, and the orientation of the

intensity to make a 2D visual attention model, and he combined a disparity factor to

propose a visual attention model of a 3D still image [4-6]. Park multiplied a nonlinear

function by a 2D model with a heavy weight in the comfortable 3D viewing disparity

range.

Kim proposed the visual attention model for 3D videos by adding a depth factor

to Itti’s model [2][4]. He made functions for a depth factor and a movement factor,

and added them up after multiplying them by different weights. The function of the

movement factor (T) is the linearly normalized function of S·m.

T = ψ(S ·m) (2.1)

S is the result of Itti’s 2D model, and m is the motion vector magnitude. ψ is the
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linear normalization function that adjusts the value of the S·m from 0 to 255. For the

function of the depth factor (D), original depth value (d) is linearly normalized, and

the normalized values are transformed into zero, except for the top 15%.

D = P (ψ(d)) (2.2)

P (a) =

 a , if a > Dth

0 otherwise
(2.3)

Dth =
(
max(D)−min(D)

)
× 0.15 (2.4)

Kim made the 3D Visual Attention (3DVA) model by multiplying different weights by

the 2D model S, movement factor T, and depth factor D, and by linearly combining

the three weighted terms. He set the values of ws, wt,wd, and empirically at 0.2, 0.32,

and 0.48, respectively.

3DV A = wsS + wtT + wdD (2.5)

In this paper, we estimate the visual attention probability (VAP) model of videos

through experiments. We analyzed which factors are actually significant to visual at-

tention and how the visual attention degree changes according to the significant factors.

We scored the visual attention at discrete data points through subject evaluations. By

modeling with these scores, we estimated the visual attention scores (VASs) in a con-

tinuous range. With this score model, we determined the probability that a viewer will

concentrate on each pixel in a video frame (the VAP). Chapter 2.2 describes the factors

that influence the visual attention. Chapter 2.3 describes the design of the experiments

to obtain the VAS model and its results. Finally, Chapter 2.4 describes the VAP.
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2.2 Factors that Influence the Visual Attention

For a 2D still image, color and intensity are considered the factors that significantly

influence the visual attention. Itti used color, intensity, and the orientation of the inten-

sity characteristics [4]. In the case of 3D videos, depth and movement are the factors

that influence the visual attention. Kim composed a model that includes these two

factors [2]. In this paper, we use the term ‘distance from the screen’ (DFS) instead of

‘depth’.

In this paper, we estimate the VAP model of videos. The estimated model is suit-

able for both 2D and 3D videos. We used two factors that were proposed by Kim and

the defocus blur amount (DBA) information. Velocity (V) is expected to be a signifi-

cant factor because the targets are videos. The DFS information is used to respond to

3D videos. In addition, the focus is expected to significantly influence the visual at-

tention. When we take a picture, we focus the camera on the main objects at a certain

distance, and they come out clearly on the photograph. The visual attention degree

would be higher in the region in focus than in the region that is out of focus.The DBA

reflects whether the region is in focus or not. Consequently, these three factors–the

V, DFS, and DBA–are expected to significantly influence the visual attention, so the

experiment was conducted with such factors.

2.3 Statistical Design of the Experiment and the Visual At-

tention Score Model

2.3.1 Experiment Design

The visual attention scores (VASs) were obtained through an experiment at different

levels of each of these three factors: the velocity (V), distance from the screen (DFS),

and defocus blur amount (DBA). The levels of factor were selected from the range of
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numbers usually appear in real 3D movies. The levels are summarized in Table 2.2.

They are expressed as -α, -1, 0, +1, and + α for convenience, but it does not mean

that the difference between the level values is proportional to the difference between

the level expressions. For generalization, the unit of the V was converted from the

pixel/frame length on the image to m/s on the screen. The experiment environment

in Table 2.1 was used as a standard for the conversion. The DFS was expressed as a

negative value when the object was behind the screen, a positive value when the object

stuck out in front of the screen, and zero when the object was on the screen. Gaussian

kernels are generally used in order to express defocus blurs. In the case of the DBA

factor, Gaussian filters with different standard deviations were used to produce the

experiment videos. Such standard deviation values are arranged at the DBA level

in Table 2.2. The unit of the DBA level used for the modeling was m, which was

converted to such from the pixel.

Table 2.1: Experimental environments

Test video resolution 1920×1080 stereoscopic videos

Frame rate 24 fps

Display 16:9 / 46 inch 3DTV

Viewing distance 3m

We cannot obtain the interactions between the factors if we construct three exper-

iments related to each factor, respectively, to examine the effect of the three factors of

visual attention [8]. Therefore, in this paper, we constructed an experiment related to

all three factors at the same time. The points in Figure 2.1 are the data points from the

combinations of the levels of the factors. The vertical, horizontal, and up-down axes

are the level variation axes of the three factors, respectively. Eight black points were

required for the Analysis of Variance (ANOVA), and seven gray points were addition-

ally used for the Response Surface Modeling (RSM).
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Table 2.2: Factors and levels

Factors Units
Levels

−α −1 0 +1 +α

Velocity (V)
pixel/(1/24sec) 0 8 16 24 44

m/s 0 0.101 0.202 0.303 0.556

Distance from

the screen (DFS)
m −0.646 −0.321 0 +0.317 +0.630

Defocus blur

amount (DBA)

pixel 0 1.6 2.4 4 6

10−2m 0 0.084 0.126 0.210 0.316

Thirty subjects who had no problem with watching 3D videos participated in the

experiment. Their average age was23.0. Their eyesight was above 0.6, and the dif-

ference between their left and right eyesights was below 0.3. The experiment was

performed as follows. We showed the subjects a video of two fish swimming, and

asked them to select the fish on which they visually concentrated. The two fish on the

video were made at the corresponding levels of the two different data points in Figure

2.1. A total of 105 combinations of two different points were produced from among

15 selected points, and the subjects evaluated the 105 videos. For each data point,

the VAS was determined from the number of times the subject selected the fish that

corresponded to that data point.

2.3.2 Analysis of Variance (ANOVA)

We performed Analysis of Variance (ANOVA) to determine if the velocity (V), dis-

tance from the screen (DFS), and defocus blur amount (DBA) were significant factors

with respect to visual attention. We performed the analysis with the SPSS statistical

program. We analyzed the combinations of the factors at level +1 and -1 for each

factor. The data points according to these combinations are the black points in Figure

7



Figure 2.1: Data points.

Table 2.3: ANOVA table

Source Sum of squares
Degree of

Mean square F p-value
freedom

V 82.838 1 82.838 12.965 0.000

DFS 24.704 1 24.704 3.866 0.050

DBA 972.037 1 972.037 152.130 0.000

V×DFS 0.104 1 0.104 0.016 0.899

V×DBA 24.704 1 24.704 3.866 0.050

DFS×DBA 7.704 1 7.704 1.206 0.273

V×DFS×DBA 1.838 1 1.838 0.288 0.592

error 1482.367 232 6.390

total 14539.000 240
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2.1. The analysis results are shown in Table 2.3. The p-value of the V and the DBA

was less than 0.001, and the p-value of the DFS was 0.05. Therefore, all three factors

were significant at a 5% significance level. That means all three factors are important

factors of visual attention. Moreover, there was a significant interaction between the

V and the DBA.

2.3.3 Response Surface Modeling (RSM)

In this chapter, we obtain the visual attention scores (VASs) at discrete data points and

estimate the VAS model with respect to a continuous range. We define the scores as

real numbers. For the discrete points, the experiment result values are between 0 and

15, but the scores at the other level combinations can be any value below 0 or above 15.

We obtained the experiment result scores of the data points required for the RSM and

performed regression with those scores. For the RSM, we used the Central Composite

Design, which is widely used. All three factors could be included in the VAS model

because they have been proven to be significant factors. In the case of the three factors,

15 data points were required for the Central Composite Design, and they are plotted in

Figure 2.1. The average result score of each data point is shown in Table 2.4.

Following characteristics were obtained by average VAS distribution. Firstly, the

visual attention increases when the object moves faster. And the faster the object is,

the smaller the increment of the visual attention according to velocity increment is.

Generally, when a fixed object and a slow-moving object exist on the same screen,

viewers are highly likely to visually concentrate on the latter. However, when a fast-

moving object and a object which moves faster exist together, their visual attention

gap would be smaller than the first case. Fractional function form was selected for the

V.

Secondly, the visual attention increases linearly when the object sticks out farther

of the screen. However, the effect of this factor was less significant than the effects of

9



Table 2.4: Mean of visual attention scores at each data point

Data points

Levels of each factor

Mean VASsV DFS DBA

(m/s) (m) (10−2m)

(−1,−1,−1) 0.101 −0.321 0.084 8.23

(−1,−1,+1) 0.101 −0.321 0.210 4.10

(−1,+1,−1) 0.101 +0.317 0.084 9.37

(−1,+1,+1) 0.101 +0.317 0.210 4.17

(+1,−1,−1) 0.303 −0.321 0.084 8.90

(+1,−1,+1) 0.303 −0.321 0.210 5.70

(+1,+1,−1) 0.303 +0.317 0.084 9.77

(+1,+1,+1) 0.303 +0.317 0.210 6.20

( 0 , 0 , 0 ) 0.202 0 0.126 7.47

(−α, 0 , 0 ) 0 0 0.126 5.67

(+α, 0 , 0 ) 0.556 0 0.126 8.33

( 0 ,−α, 0 ) 0.202 −0.646 0.126 7.37

( 0 ,+α, 0 ) 0.202 +0.630 0.126 7.63

( 0 , 0 ,−α) 0.202 0 0 9.97

( 0 , 0 ,+α) 0.202 0 0.316 2.13
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other two factors. Viewers generally encounter stuck out objects which are fast such

as objects flying toward viewers. The reason that the viewers visually concentrate on

theose kind of objects would be an effect of the V as well as such of the DFS. Affine

function form was selected for the DFS.

Thirdly, the visual attention increases when the object gets in focus or less blurred.

Gaussian filter standard deviations are used for the indicator of the blur amount, and

the smaller the standard deviation is, the smaller the increment of the visual attention

according to the standard deviation increment is. We selected quadratic function form

for the DBA.

Finally, the visual attention significantly varies according to the DBA at a low V

level, however, the VAS variance is relatively small at a high V level. Similarly, the

VAS varies a lot according to the V at a high DBA level and varies less at a low DBA

level. If one of the factor could attract the visual attention sufficiently, the effect of the

other factor would be imperceptible. The multiplication term DBA2 · 1
V+k was added

in response to the interaction of the V and the DBA.

We selected the function forms by considering the average VAS arrangement,

graph form, and sum of the residual squares. The VAS model is as follows.

V AS = a ·DBA2+b1 ·DBA+b2 ·DFS+c · 1

V + k
+d ·DBA2 · 1

V + k
+e (2.6)

The coefficient and constant values drawn from the regression are as follows.

a = 202901.342, b1 = −1677.090, b2 = 0.609, c = −0.003,

d = −146448.366, e = 10.412, k = 0.080
(2.7)
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Figure 2.2: Visual Attention Score (VAS) graphs. (a), (b), (c), (d), (e) Velocity (V) is

fixed to 0m/s, 0.101m/s, 0.202m/s, 0.303m/s, and 0.556m/s, respectively. Points are

data points.
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Figure 2.3: Visual Attention Score (VAS) graphs. (a), (b), (c), (d), (e) Distance From

the Screen (DFS) is fixed to −0.646m, −0.312m, 0 m, +0.317m, and +0.630m, re-

spectively. Points are data points.
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Figure 2.4: Visual Attention Score (VAS) graphs. (a), (b), (c), (d), (e) Defocus Blur

Amount (DBA) is fixed to 0m, 0.084×10−2m, 0.126×10−2m, 0.210×10−2m, and

0.316×10−2m, respectively. Points are data points.
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Figure 2.2 through 2.4 shows three dimensional graphs of the VAS model. Four

axes are needed to represent the VAS according to the three factors. One factor should

be fixed at a certain value to represent the model as a three dimensional graph. For

instance, in Figure 2.2 (a), the V is fixed at 0 m/s, and the vertical and horizontal axes

are for the DFS and the DBA, respectively. The up-down axis represents the VAS.

2.4 Visual Attention Probability and Its Application

2.4.1 Visual Attention Probability

We defined the Visual Attention Probability (VAP) of a pixel as the probability that a

viewer will pay attention to the pixel from among all the image pixels. In this chapter,

we calculate the VAP of each pixel in video frames using the earlier-obtained VASs.

In a video frame, people will most likely pay attention to the pixel with the highest

VAS. First, we mapped the VASs of all the pixels on the image. The mapping differed

depending on the VAS range of the image. The mapping range was determined from

the difference between the maximum VAS and the minimum VAS of the image. We

mapped the VAS to make the mid-point of the maximum and minimum VASs 0.5, and

the range, the mapping range. We increased the mapping range linearly according to

the difference between the maximum VAS and the minimum VAS, when the difference

was below the threshold, 2. When the difference was over the threshold, we saturated

the mapping range to 1.

mapping range =

 1 , if max(V AS)−min(V AS)>th

max(V AS)−min(V AS)
th , otherwise

(2.8)
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m(V AS(i, j)) =
V AS(i, j)

max(V AS)−min(V AS)
·mapping range

+
[
0.5− max(V AS) +min(V AS)

2

]
(2.9)

i and j are the vertical and horizontal pixel indexes, respectively, and m is the mapping

function. We calculated the VAP using the mapped VAS, as follows.

V AP (i, j) =
m(V AS(i, j))∑height

i=1

∑width
j=1 m(V AS(i, j))

(2.10)

We performed the mapping with the standard mid-value, 0.5, so that the probabilities

would not differ according to the bias. For example, assume that there are two images

that consist of only two objects, and that one image has two objects with VASs 1 and 2,

and the other image has two objects with VASs 9 and 10. If we calculate the probability

without mapping, the difference between the probabilities of the objects will be much

smaller in the latter image than the former image, even though the differences between

the VASs are the same, i.e., 1. Therefore, we solved this problem by bringing the VAS

values to around the standard mid-value.

We varied the mapping ranges depending on the VAS range of the image because

of the human recognition ability. For example, when the difference between the max-

imum VAS and the minimum VAS of the images is so small that even the viewers

cannot detect it, the VAP of the entire image should have little variance, but if we

mapped the VAS from 0 to 1 for that image, the difference between the calculated

probabilities would be significant. By observation, the probability that a viewer would

concentrate on the pixel that had a maximum VAS value was very high when the dif-

ference between the maximum VAS and the minimum VAS was over 2. Therefore, we
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saturated the mapping range over 2.

2.4.2 Application to Movie Frames

We applied the VAP to 3D movie frames. A 3D movie frame consists of a left image

and a right image. To find the VAP, the V, DFS, and DBA of each pixel should be

known. We used the following methods to obtain them.

In the case of V, we used Chan’s method to calculate the motion from the left

images of the target frame and the previous frame [9]. Chan increased the accuracy of

the motion estimation by combining the block matching algorithm and the optical flow

algorithm. In the experiment, we selected 30 pixels as the block size, and 60 pixels as

the search range for 960 pixels with images.

To obtain the DFS, we need a disparity map. We used the software StereoTracer

to obtain the disparity map from the left and right image of the frame. We calculated

DFS from the disparity with the following equation [10].

DFS =
d · viewing distance

−d+ eye2eye
(2.11)

DFS has a negative value when the pixel is behind the screen, and a positive value when

the pixel is in front of the screen. d is the disparity distance on the screen converted

from the number of disparity pixels. The unit of d is m. The viewing distance is the

distance between the screen and the viewer, and for the experiment, we set it at 3 m.

eye2eye is the distance between the left and right eyes, and for the experiment, we set

it at 0.065 m, the average eye2eye of adults.

The defocus blur amounts for the edge pixels have been precisely determined in

previous studies. But the blur amounts must be known for every pixels on an image.

Some studies propagated the blur amount information on the edge pixels to an entire

area, but the methods were not precise enough to be used in this paper. In this paper, we
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devised a more accurate method of estimating the DBA using the distance information

already known from the DFS.

We first obtained the in-focus distance, which is the distance from the viewer to

the point most focused on, and assigned different DBAs depending on the distance

from the in-focus distance. We obtained the in-focus distance from the fact that the

defocus blur amount is lowest at the focused point. At first, we obtained the defocus

blur amount at the edge pixels using Zhuo’s method [11]. His method determines the

standard deviation of the Gaussian kernel while assuming that the defocus blur is a

Gaussian blur. Next, we divided the distance into sections. We used a 0.2m interval

for each section, in the following experiment environment: viewing distance, 3 m,

and screen width, 1.01 m. We calculated the mean blur amount in the edge pixels

(MBAEP) in each section.

MBAEP (k) =

∑Nk
i=1BAEP (i)

Nk
(2.12)

i is the index of the edge pixel in the kth section; BAEP(i), the blur amount in the

ith edge pixel; and Nk, the number of edge pixels in the kth section. When the stan-

dard deviation of the MBAEPs was smaller than the threshold, we considered the blur

amount difference very small in an entire image and assigned the average value of the

MBAEPs to all the pixels in the image. We used a 0.15 pixel as the threshold for a

960-pixel width image. When the standard deviation was larger than the threshold,

we found the section with the minimum MBAEP. The focused point would be around

that section. To find a more accurate in-focus distance, we scanned around that sec-

tion with a 0.2m window and found the window that had the minimum MBAEP. We

determined the in-focus distance as the center distance of that window.

We decided the function of DBA according to the distance from the in-focus dis-

tance as the modified-Gaussian form. It is shown in Equation 2.13.
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DBA(i, j) =


mean(MBAEP (k)) , if std(MBAEP (k))<threshold

max(MBAEP (k))−
[
(max(MBAEP (k))−min(MBAEP (k)))

· exp −(DFS(i,j)−infocus distance)2

2×σf (i,j)

]
, otherwise

(2.13)

σf = 0.6 ·DOF (viewing distance−DFS(i, j)) (2.14)

The DBA function is like an upside-down Gaussian function, and its maximum value

is max(MBAEP(k)), and its minimum value, min(MVAEP(k)). The term that corre-

sponds to the standard deviation differs depending on the distance. It was determined

as proportional to the Depth of Field (DOF), which was calculated assuming that each

distance is the in-focus distance. The proportional coefficient was determined to have

been 0.6, considering the shape of the graph and the DOF. The DOF is the distance

between the nearest and farthest objects in a scene that appears acceptably sharp in

an image, and it changes depending on the in-focus distance. When the focused point

comes nearer to the viewer, the DOF becomes smaller. The DOF is obtained using the

following formula, according to Greenleaf [12].

H =
f2

Nc
+ f (2.15)

Dn(s) =
s(H − f)

H + s− 2f
, Df (s) =

s(H − f)

H − s
(2.16)

DOF (s) = |Dn(s)−Df (s)| (2.17)

H is the hyperfocal distance; f, the lens focal distance; s, the focus distance; Dn, the

near distance for acceptable sharpness; Df , the far distance for acceptable sharpness;
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Figure 2.5: In-focus distance and DOF.

N, the f-number; and c, the circle of confusion. In the experiment, the DOF was

calculated based on the canon 7D (circle of confusion, 0.019 mm; focal length, 55

mm; and f-number, 3.2). Figure 2.5 represents the DOF values according to the in-

focus distance. Figure 2.6 presents the DBA values according to the distance, in case

the in-focus distance is 1 and -1, respectively.

The VAP is calculated from the V, DFS, and DBA, which are obtained as previ-

ously described. Figure 2.7 through 2.16 present the results. (a) shows the left image;

(b), VAP; (c), V; (d), DFS; and (e), DBA. For each factor, a number is multiplied by the

values shown well by the image. In the images, the color of the pixel with a large VAP,

V, DFS, and DBA appears close to white. In the case of test sequence 3, presented in

Figure 2.9, there was a slight difference in the background and the object. Therefore,

all the pixels in the image had a constant DBA.

Cases that the effects of multiple factors conflict are mainly selected for the exam-

ples. In these cases, visual attention would be changed according to the levels of the

factors and it is hard to derive visual attention model which is robust on such cases

without an experiment performed with the factor level combinations. Our model is

estimated by above-mentioned experiment and we obtained reasonable results on the

20



Distance from the screen (m)
-3 -2 -1 0 1 2 3

D
B

A
 (

10
-2

m
)

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

(a)
Distance from the screen (m)

-3 -2 -1 0 1 2 3

D
B

A
 (

10
-2

 m
)

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

(b)

Figure 2.6: Example graphs of DBA according to distance from the screen in the

specific in-focus distances. (a) when in-focus distance is 1, (b) when in-focus distance

is -1. When max(BAEP(k)) = 0.2×10−2m, min(BAEP(k)) = 0.1×10−2m.

tests.

In the case of Fig. 2.11, from the image (a), we expect that the viewers would

be concentrated on the person on the left which was the salient object when shooting,

even though person on the right stuck out. And the VAP map corresponds with the

expectation. In Fig. 2.8, the V and the DBA which affect visual attention a lot were

distributed to the different parts; the hand and the body, so the VAPs of the parts are

expected to come out similar. In Fig. 2.7, head of the person in the center moved,

stuck out and got in-focus, so the VAP of the head are expected to be the biggest one.

In Fig. 2.9, two people in the center moved fast, therefore the VAPs are expected to

be the biggest ones. Two people in the edge moved slow but stuck out, therefore the

VAPs would be quite big.
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(a) (b)

(c) (d) (e)

Figure 2.7: Result images for test sequence 1. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.

(a) (b)

(c) (d) (e)

Figure 2.8: Result images for test sequence 2. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.
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(a) (b)

(c) (d) (e)

Figure 2.9: Result images for test sequence 3. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.

(a) (b)

(c) (d) (e)

Figure 2.10: Result images for test sequence 4. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.

23



(a) (b)

(c) (d) (e)

Figure 2.11: Result images for test sequence 5. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.

(a) (b)

(c) (d) (e)

Figure 2.12: Result images for test sequence 6. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.
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(a) (b)

(c) (d) (e)

Figure 2.13: Result images for test sequence 7. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.

(a) (b)

(c) (d) (e)

Figure 2.14: Result images for test sequence 8. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.
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(a) (b)

(c) (d) (e)

Figure 2.15: Result images for test sequence 9. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.

(a) (b)

(c) (d) (e)

Figure 2.16: Result images for test sequence 10. (a) Test frame’s left image. (b) VAP

map. (c) V map. (d) DFS map. (e) DBA map. White represents a big value.
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Chapter 3

3D Effect Perception Measurement Us-

ing the VAP

3.1 Previous Studies

In this paper, we estimate the 3D effect perceived by the viewers of different scenes

of stereoscopic videos.Many studies have focused on visual fatigue as a criterion of

3D video evaluation, but there have been few studieson3D effect perception. Choi

measured the quality of the 3D effect through a depth image histogram [14]. He argued

that the bigger the depth variety is, the more details are represented and the more

natural the object edges seem, in the same image. He estimated that the depth variety

is big when the depth image histogram is similar to the uniform distribution. Kim

measured the 3D effect from the Gradient Magnitude Average (GMA) of the depth

image [15]. He argued that the gradient operation extracts the spatial variations of

the depth image, and that the spatial variation of the depth image provides meaningful

information on the front-back relationship of objects.
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▽I = (Ix, Iy) =
(∂I
∂x
,
∂I

∂y

)
(3.1)

∥ ▽ I∥ =
√
I2x + I2y (3.2)

GMA =

∑height
x=1

∑width
y=1 ∥ ▽ I∥

height · width
(3.3)

▽I represents the gradient of a depth image, and ∥ ▽ I∥, the gradient magnitude. In

Kim’s experiments, he produced eight different depth images for the same scene, and

measured the perceived 3D effects of the 3D images produced by the depth images.

However, it is also possible to measure the perceived 3D effect for different scenes

using the GMA.

In this paper, we propose a method that more accurately measures the 3D effect

perception by applying VAP to the gradient method.

3.2 Gradient Method with the VAP

A viewer accepts information around a visually concentrated point. A 3D effect per-

ceived by viewers would be significantly affected by the depth information around a

visually concentrated point. In this paper, we gave weights to gradient magnitudes

of the pixels around a visually concentrated point depending on the Visual Sensitivity

Kernel (VSK). By applying the VAP to each pixel, we derived the following equation

for an entire image. We call this measurement the “Weighted Gradient Magnitude by

the VAP (WGMVAP).”

WGMVAP =

height,width∑
i,j=1

height,width∑
x,y=1

V AP (i, j) ·V SK(x− i, y− j) · ∥▽D(x, y)∥

(3.4)
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We used disparity images obtained from the left and right images of stereoscopic

videos instead of Kim’s depth image. D refers to the disparity image; ∥ ▽ D(x, y)∥,

the gradient magnitude of the disparity image; i and x, the vertical indexes of an image;

and j and y, the horizontal indexes of an image. Equation 3.4 can be expressed again

as Equation 3.5 and 3.6 using convolution.

weight = V AP ⊗ V SK (3.5)

WGMVAP =

height,width∑
x,y=1

weight(x, y) · ∥ ▽D(x, y)∥ (3.6)

The VSK is determined as follows. In the medical field, Goldmann studied visual

sensitivity to light [1]. He found that the visual sensitivity rises steeply within a two-

degree angle from a visually fixed point. We could not directly use the figures for

sensitivity from his study to this paper because his research was for light. However,

we refer to the range in which the sensitivity increases steeply. In the case of a 3D

space, a steeply increasing range would be narrower than a plane case. If a human

focused on an object at a certain distance, the visual sensitivity would fall with respect

to the objects at another distance. In the experiment, we estimated the angular range in

which the sensitivity increases steeply as 1 degree, and made a kernel. We converted

this angular range to the distance range on the screen using the following equation:

viewing distance · tan(1◦). We selected a cone as the form of the kernel, and we

decreased it linearly from a point visually fixed at on the vertical and horizontal axes,

respectively. Figure 3.1 shows a graph of the kernel.
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Figure 3.1: Visual Sensitivity Kernel (VSK).

3.3 Experiment Results

To check the accuracy of the 3D effect perception measurement, we compared the

measurement results with the results of the subject evaluation. For the evaluation, we

asked the subjects to evaluate their perceived 3D effect with respect to 20 video clips

that were each one to two seconds long. The evaluation scores were 1 (very small), 2

(small), 3 (middle), 4 (big), and 5 (very big), and we showed two standard videos that

were relevant to 1 and 5. We asked the subjects to evaluate the 3D effect in the last

parts of the videos. Video clips were extracted from four well-known 3D movies: Men

in Black 3, Gravity, Life of Pi, and Avengers. Thirty-five subjects who had no problem

with watching 3D videos participated in the experiment. Their average age was 23.1.

All of them had an eyesight above 0.6, and the difference between their left and right

eyesights was below 0.3.

We compared the performance of the existing method, GMA [15] and the proposed

method, WGMVAP. In addition, we applied Kim’s visual attention model, 3DVA [2]

to the 3D effect perception measurement and obtained the performance of the mea-

surement. We call this measurement the ”Weighted Gradient Magnitude by 3DVA

(WGM3DVA).” 3DV An in the equations below denotes the normalized 3DVA model
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[2].

WGM3DV A =

height,width∑
i,j=1

height,width∑
x,y=1

3DV An(i, j) · V SK(x− i, y − j) (3.7)

3DV An(i, j) =
3DV A(i, j)

1
height·width

∑height,width
i,j=1 3DV A(i, j)

(3.8)

Figure 3.2 presents the experiment results. Figure 3.2 (a) shows the scatter plot

whose horizontal axis is the average value of the subjective evaluation and whose

vertical axis is the result derived from the GMA. Each point represents a video clip.

Figure 3.2 (b) shows the scatter plot whose vertical axis is the result derived from

the WGM3DVA. Figure 3.2 (c) shows the scatter plot whose vertical axis is the result

derived from the proposed method, WGMVAP. We confirmed that the performance

improved after the application of the visual attention model in terms of the coefficient

of determination R2. In addition, we confirmed that the performance was higher when

the VAP was applied than when the 3DVA was applied. R2 for the GMA, WGM3DVA,

WGMVAP were 0.456, 0.591, and 0.612, respectively.
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(a) (b)

(c)

Figure 3.2: (a) Scatter plot of GMA and subjective evaluation result. Linear op-

timum function : y = 1.74 × 10−2x + 4.28 × 10−3, R2 = 0.456. (b) Scat-

ter plot of WGM3DVA and subjective evaluation result. Linear optimum function :

y = 6.61× 10x− 2.15× 10, R2 = 0.591. (c) Scatter plot of WGMVAP and subjec-

tive evaluation result. Linear optimum function : y = 1.21 × 10−4x − 1.69 × 10−5,

R2 = 0.612.
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Chapter 4

Conclusion

In this paper, we estimated the visual attention probability (VAP) model for videos

using the statistical experiment design. From the ANOVA, we confirmed that the ve-

locity (V), distance from the screen (DFS), and defocus blur amount (DBA) are the

factors that significantly affect people’s visual attention. In addition, from the RSM,

we estimated the visual attention score (VAS) form in continuous factor ranges. From

this VAS model, we calculated the VAPs of the image pixels.

Next, we applied the VAP model to the 3D effect perception measurement for

stereoscopic videos. We proposed the application method to improve the performance

of Kim’s measurement using the gradient method. From the experiment results, we

confirmed that the proposed method improved the performance of the existing mea-

surement.

In this paper, we used 15 data points for the response surface modeling (RSM),

but a more accurate model could be made with more data points. More studies are

needed to determine the shape of the visual sensitivity kernel (VSK). In addition, if

more accurate measurement methods for the velocity and disparity are used, especially

around the edge pixels, a more accurate VAP could be obtained.
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국문초록

시청자들은 화면상 시각이 집중된 곳 주변의 정보를 영향력 있게 받아들일

가능성이크다. 이러한사실을이용하여최근연구들은시각주의모델을영상

제작및평가방법에이용하고있다. 본연구에서는실제로사람들의시각주의

도가어떠한인자에영향을많이받는지,또시각주의확률모델은구체적으로

어떠한 형태가 되는지 통계적 실험 계획법을 이용하여 추정하였다. 분산 분석

법을이용하여속도,화면으로부터의거리,비초점흐림정도가시각주의에영

향을 미치는 유의한 인자인 것을 확인하였고, 반응 표면 계획법을 이용하여 이

세가지인자들에따른시각주의점수모델을도출하였다. 이시각주의점수모

델로부터이미지각픽셀의시각주의확률을구하였다. 본연구의뒷부분에서

는시각주의확률모델을기존의기울기기반 3차원영상의입체감추정방법

에적용하는방법을제안하였다. 화면상에서시선을집중할확률이큰부분에

높은비중을둠으로써시청자가느끼는입체감을더욱정확하게측정할수있도

록하였다. 제안된방법의성능을검증하기위해주관적평가를실시하여피실

험자들이느끼는입체감과제안된방법으로부터도출한결과를비교하였다. 실

험결과제안된방법이기존의방법에비해성능이향상된것을확인하였다.

주요어: 시각주의확률, 3차원동영상,통계적실험계획법,입체감측정,

디포커스흐림

학번: 2013-20759
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