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Abstract 

Probing Point Defect Imaging 

 

Sangmoon Yoon 

Department of Materials Science and Engineering 

College of Engineering 

Seoul National University 

 

 

Sub angstrom resolution of scanning transmission electron microscope 

(STEM) was achieved in early 2000s due to the introduction of Cs-corrected 

electromagnetic lens. Since then, there have been many attempts to exceed the 

detecting-limit of STEM such as single atomic imaging or light element 

imaging in the community of electron microscopy. Detection of heavy dopant 

atoms and the column of light elements have been succeeded with HADDF-

STEM and ABF-STEM, respectively. However, these methods have limitation 

on detecting light dopant elements or vacancies. Therefore, it is necessary to 

introduce a new approach for detecting them. We think utilization of strain 

effect is a great solution for overcoming the limitation of existing methods. 

The strain field leads a different angular distribution by combination of 
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channeling effect and absorption effect. Even though strain field generated by 

light dopant atoms or vacancies is not that strong to modify the angular 

distribution significantly, there would be a specific angular region that can be 

distinguished from the original one. If we carry out the imaging only with 

electrons which are scattered toward that angular region, we expect that light 

dopant atoms and vacancies can be visualized. 

 

Here, we have studied the feasibility of detecting light dopant atoms and 

vacancies with strain effects through the computer simulation. The strain field 

is simulated by structural relaxations with the first principle calculations and 

the propagation of electron waves is simulated with the multislice calculation, 

one of the dynamic scattering theory. A boron dopant atom, a vacancy in 

silicon and an oxygen vacancy in strontium titanate have been investigated in 

this study. We found that the column with a vacancy in silicon is shown 200% 

brighter than other columns if Cs-corrected probe was used and elastically 

scattered electrons toward 30mrad to 50mrad were utilized. We think the 

imaging with elastically scattered electrons is experimentally possible through 

the cold stage holder which suppresses thermal diffuse scatterings. Though we 

have not carried out the imaging simulation of the strontium titanate case yet, 

it is expected that detecting an oxygen vacancy in TiO column could be 

achieved with elastically scattered electrons toward 35mrad to 50mrad.  
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Detecting light dopant atoms and vacancies will not only be meaningful itself 

in the community of electron microscopy, but will also give a great 

contribution to other materials science communities. We hope this computer 

simulation study will give a clue for detecting light dopant atoms or 

vacancies.  

 

Keywords: Point defect imaging, Electron microscopy, CBED/STEM, 

Strain contrast, Electron scattering, Dynamic scattering calculation  

Student Number: 2012-20616 
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Chapter 1. Introduction 

1.1 Resolution Limit of Optical Microscopy 

From a long time ago, people have endeavored to know the micro-

structure of objects or samples that cannot be seen with a human eye. This 

curiosity has led the development of microscopes, instruments to magnify 

objects from tens of times to thousands of times using lens, and people have 

naturally kept trying to improve the resolution of microscopes. However, there 

is an intrinsic resolution limit, diffraction limit, because waves determined by 

the aperture always make the diffracted patterns. This resolution limit is directly 

related to the motive to develop electron microscopy. In this chapter, diffraction 

patterns formed by the aperture and limitations of optical microscopes will be 

discussed in details.  

Diffraction is a macroscopic phenomenon that occurs when waves are 

scattered by the obstacles such as a slit, aperture or grating. Diffraction can be 

approximated into Fresnel diffraction and Fraunhofer diffraction. Fresnel 

diffraction and Fraunhofer diffraction are used for describing the near-field 

diffraction and the far-field diffraction, respectively. These two different kinds 

of diffraction are derived from Huygens-Fresnel principle which states how 

waves propagate. (Huygens-Fresnel principle will be treated with the 

considerable detail in Chapter 2.1.2) Specifically, Huygens-Fresnel principle is 

mathematically expressed as 

𝜓(𝑥, 𝑦) =
1

𝑖𝜆
∬𝑞(𝑥′ ,𝑦′)

𝑒𝑖𝐾𝜌
′

𝜌′
∙
1

2
(1+ 𝑐𝑜𝑠𝜃) 𝑑𝑥′𝑑𝑦′      (1) 
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where 𝒃 = (𝑥,𝑦) is the coordinate of the observation point, 𝒃′ = (𝑥′ ,𝑦′) is 

coordinate of the source and 𝝆′ = 𝒃−𝒃′ +∆𝑧 is the displacement between 

the source and the observation point. We can derive the mathematical 

expression of Fraunhofer diffraction from Equation (1) by assuming that the 

distance between the source and the observation plane is effectively infinite. 

Under this assumption, the distance 𝝆′ can be simplified and the incline factor 

𝐴(𝜃) = 1/2(1+ 𝑐𝑜𝑠𝜃) can be neglected out to the integral. Consequently, the 

waves at the observation point are expressed as  

𝜓(𝑥,𝑦) =
1

2𝑖𝜆
(1+ 𝑐𝑜𝑠𝜃)

𝑒𝑖𝐾𝜌0
′

𝜌0
′ ∬𝑞(𝑥′ , 𝑦′)𝑒𝑖(𝑲−𝑲𝟎)∙𝒃

′
𝑑𝑥′𝑑𝑦′       

 = 𝐶∬𝑞(𝑥′ , 𝑦′)𝑒𝑖(𝑲−𝑲𝟎)∙𝒃
′
𝑑𝑥′𝑑𝑦′       (2)                

where 𝝆𝟎
′ = 𝒃 +∆𝑧 is the displacement between the origin of source plane 

and the observation point. This is just the Fourier transform of the object 

function. (Detailed deviation is well described in the reference, Diffraction 

Physics, written by J.M Cowely.1) Equation (2) indicates that diffracted waves 

through Fraunhofer diffraction are definitely equivalent with the scattered 

waves derived from the first Born approximation. 

 

Figure 1. Coordinate system for Huygens-Fresnel principle. 
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Let’s consider the diffraction of a circular aperture. Applying the 

circular aperture to Equation (2), the diffracted waves are expressed as 

𝜓(𝑥,𝑦) = 𝐶∫ 𝑒𝑖(𝑲−𝑲𝟎)∙𝒃
′
𝑑𝐴′

𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒
      (3) 

When 𝑦′ is chosen as the variable of integration and the radius of a circular 

aperture is written as 𝑅, the waves can be approximated into 

𝜓(𝑥, 𝑦) = 𝐶∫ 𝑒𝑖𝐾𝑦
′sin𝜃2√𝑅2−𝑦′

2
𝑑𝑦′

𝑅

−𝑅
     (4) 

Substituting 𝐾𝑅sin𝜃 and 𝑦 𝑅⁄  as ξ and 𝑢 , this integral becomes standard 

integral of the 1st order Bessel function. 

𝜓(𝑥,𝑦) = 2𝐶𝑅2∫ 𝑒𝑖ξ𝑢√1−𝑢2𝑑𝑢
1

−1
= 𝜋𝐶𝑅2

2𝐽1(𝜉)

𝜉
     (5) 

As a result, the intensity of the diffraction pattern is   

𝐼 = 𝐼0(
2𝐽1(𝜉)

𝜉
)
2

     (6) 

This pattern is called Airy pattern and the bright central area is called Airy disk.  

 

Figure 2. Fraunhofer diffraction of a circular aperture: Airy pattern 
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Since the first zero of the 1st order Bessel function is 3.832, the angular 

radius of the first dark ring is  

sin𝛩 =
3.832

𝑘𝑅
=
0.61𝜆

𝑅
     (7) 

where R is the radius of the aperture and 𝜆 is the wavelength of the wave. 

Actually, the finite sized lens naturally makes an effect of a circular aperture, 

so that the diffraction by the lens is unavoidable in the microscope as far as the 

lens is used for magnification. Therefore, the diffraction by the lens usually acts 

as a resolution limit in the microscopic images. In other words, two points on 

the focal plane should be separated larger than the radius of Airy disk in order 

to be resolved. 

Δ𝑥 =
0.61𝜆

𝐷/𝑓
 ≈
0.61𝜆

𝛼
    (8) 

This condition is known as Rayleigh criterion. This indicates that optical 

microscopes cannot help having the intrinsic resolution limit because of the 

diffraction. For 500nm blue light, the best resolution would be about 0.3𝜇𝑚 

even if the aperture size is assumed to be enough large comparable to the focal 

length (𝐷/𝑓 ≈ 1).  

 

Fig3. Image resolution limit due to Airy disk 
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Therefore, a new type of waves with short wavelength is necessary to be 

introduced for the improvement of resolution. The good alternative was a high 

energy electron. For instance, the electron accelerated to 200kV has a 0.025Å 

wavelength, which means that the best resolution would be 0.016Å . This 

expectation for the better resolution has led to the development of the electron 

microscopes. 
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1.2 Resolution of STEM 

Scanning Transmission Electron Microscopy (STEM) is the imaging 

technique that provides direct structural information as the electron probe scans 

materials. In STEM, both lateral and longitudinal resolution are determined by 

the electron probe, of which the dimension is affected not only by aperture size 

but also by spherical aberration, chromatic aberration and source size. Actually, 

these four factors are so interrelated that these contributions should be 

coincidently considered to estimate the probe dimension. However, it is 

instructive to investigate each individual contribution using geometrical 

treatment. Wave optical treatment which can describe the combined effects of 

the four factors will be discussed together with other theories of STEM in 

Chapter 2.2. 

 

1.2.1 Lateral Resolution of STEM 

It is unavoidable that electrons passing through the aperture show 

diffraction patterns, since the electrons also have wave characteristics like light. 

This influences size of the electron probe. The radius of the probe blurred by 

the diffraction can be described with Rayleigh criterion 

𝛿𝐷 =
0.61𝜆

𝛼
     (9) 

where 𝛼 is the convergence angle.  
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The probe dimension is also affected by lens aberration; spherical 

aberration and chromatic abberation. Spherical aberration is the phenomenon 

that electron waves passing through the path far from the optic axis are focused 

closer than Gaussian focal plane since the magnetic force at the edge side of 

lens is stronger than that of the center. Gaussian focal plane indicates the plane 

that electron waves running along the optic axis are focused. As a result of 

spherical aberration, point source will make a broad disk on Gaussian focal 

plane. In fact, there is a minimum-sized disk in a certain distance in front of 

Gaussian focal plane. The blurred effect to the radius of probe by spherical 

aberration is defined using the minimum-sized disk, which is called the disk of 

least confusion.  

𝛿𝑆 =
1

4
𝐶𝑆𝛼

3     (10) 

We can move the focal plane to the site of the disk of least confusion by 

modifying the defocus.  

 

Figure 4. Impact of spherical aberration on the electron probe 
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Chromatic aberration occurs since electrons with different energies are 

focused on the different focal plane. If 𝐸0 is the standard energy, the electrons 

with larger energy than 𝐸0 are focused closer than Gaussian focal plane and 

the electrons with smaller energy than 𝐸0 are focused further than Gaussian 

focal plane. The radius of probe with chromatic aberration is defined using the 

disk size on the Gaussian focal plane. 

𝛿𝐶 = 𝐶𝐶𝛼
Δ𝐸

𝐸0
     (11) 

The radius increases with energy spreading. 

 

 

Figure 5. Impact of chromatic aberration on the electron probe 
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The size of the electron source is another critical factor for the probe 

dimension. The wave front coming into the lens can be approximated to the 

plane wave since the source is assumed to exist at the infinite distance from the 

lens. This leads the image of the source formed on Gaussian focal plane. For a 

given demagnification 𝑀, the radius of the source is expressed as 

𝛿𝑔𝑒𝑜 = √
𝐼𝑆𝑀

𝜋Ω𝐵
     (12) 

where 𝐼𝑆 is total current of the source, Ω is the solid angle that electron emits 

from the source and 𝐵 is the brightness of the source. It is worthy to note that 

the effective size of the source is irrelevant to the convergence angle 𝛼. 

 

 

Figure 6. Impact of effective source size on the electron probe 

 

 

 

Let’s numerically investigate the effects of each factor to the probe 
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dimension in the conventional TEM by substituting the parameters: Spherical 

aberration 𝐶𝑆 = 1𝑚𝑚 , Chromatic aberration 𝐶𝐶 = 1𝑚𝑚 , Acceleration 

Energy 𝐸0 = 200𝑘𝑉, Wavelength λ = 0.00251nm, Energy spreading ΔE =

1𝑒𝑉, and Effective source size 𝛿𝑔𝑒𝑜 = 0.05𝑛𝑚. Figure 7 shows the probe-size 

dependence of four factors on the convergence angle 𝛼 in the log scale. This 

shows that the dominant limiting factors of the probe radius are the aperture 

size and the spherical aberration. It would be better to choose a large source 

size as far as not exceeding the minimum probe size, since the demagnification 

is directly related with the decrease of beam currents. It is simply estimated that 

we can have a sub-nanometer scale probe with a conventional TEM, though the 

geometrical treatment cannot describe the combined effects of the four 

contributions. 

 

Figure 7. Effects of four contributions on the probe size in conventional 

STEM equipped with field-emission gun 
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 Let’s estimate how the resolution will be improved if spherical 

aberration corrected lens is used with a cold field-emission gun. (Spherical 

aberration 𝐶𝑆 = 0.005658𝑚𝑚 , Chromatic aberration 𝐶𝐶 = 1𝑚𝑚 , 

Acceleration Energy 𝐸0 = 200𝑘𝑉 , Wavelength λ = 0.00251nm , Energy 

spreading ΔE = 0.5𝑒𝑉, Effective source size 𝛿𝑔𝑒𝑜 = 0.05𝑛𝑚). The correction 

of spherical aberration is expressed as the parallel shift of spherical aberration 

contribution in Figure 8 compared with Figure 7. Parallel shift to the right 

indicates the reduction of the probe size. According to the geometrical 

interpretation, sub-angstrom scale probe can be obtained if Cs corrected lens is 

used. Besides, Figure 8 indicates that chromatic aberration would be the 

limiting factor in Cs-corrected STEM and the source would need to be 

demagnified for not being the limiting factor. 

 

Figure 8. Effects of four contributions on the probe size in Cs-corrected 

STEM equipped with cold field-emission gun 
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1.2.2 Longitudinal Resolution of STEM 

Since the electron probe is a three dimensional quantity, the depth 

information as well as the lateral information of the sample can be obtained 

using STEM. According to the geometrical treatment, the longitudinal 

resolution2 is mainly determined from the aperture size. 

∆𝑧 ≈ 2
𝜆

𝛼2
     (13) 

Longitudinal resolution according to the different aperture size is listed in Table 

1. With the objective aperture used in the conventional STEM (~10mrad), the 

depth resolution is generally larger than the sample thickness. However, the 

longitudinal resolution can be reduced to the nanometer scale in Cs-corrected 

STEM since the optimized probe is obtained with a large objective aperture.  

 

Table 1. Objective aperture size dependence on longitudinal 

resolution for 𝐸0 = 200𝑘𝑉 

High depth resolution can be applied to single atomic imaging. Also, 

high depth resolution could enable 3D reconstruction possible through focal 

series acquisition of STEM. However, this method has defects that make the 

lateral extended objects like participation elongated. In principle, this 
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elongation is unavoidable because 3D optical transfer function always has the 

missing cone along optic axis3 (the result derived from the wave optical 

treatment). For instance, the depth resolution would be more than 200nm for 

5nm participant. 
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1.3 Previous Attempts at Point-defect Imaging 

The possibility to visualize point defects like dopant atoms with 

STEM had been raised since HAADF-STEM was proposed to give incoherent 

images dependent upon atomic number (Z). However, it was practically 

difficult to realize point-defect imaging because of many restrictions such as 

sample thickness, signal-to-background ratio and signal-to-noise ratio. The first 

success to visualize single atoms using HADDF-STEM was platinum (Pt) 

atoms dispersed on aluminium oxide support (γ − Al2O3) by P.D Nellist and 

S.J Pennycook4 (Figure 9). These images were able to be obtained since signal-

to-background ratio had been improved due to the reduction of electron probe 

size. In Figure 9, platinum trimers and dimers can be distinguished through the 

band-filtered image.  

 

Figure 9. HADDF-STEM image of Pt atoms dispersed on the γ−

Al2O3 support: (A) Raw image (B) Bandpass-filtered image.     

X and Y,Z indicate trimer and dimer, respectively4.  



15 

 

 

After the spherical aberration corrector was introduced, probing dopant 

atoms embedded in the bulk crystal became possible with HADDF-STEM. 

Antimony (Sb) atoms in a silicon (Si) sample were visualized by P.M Voyle 

using an aberration-corrected STEM5 (Figure 10). It should be noticed that 

Figure 10 is a processed image. Second order polynomial fit was used for 

subtracting thickness variation along the wedge, and low pass filter was used 

for removing scan noise. Non-linear intensity was utilized to highlight the 

bright spots. 

 

 

 Figure 10. HADDF-STEM image of Sb atoms in the Si crystal5. 
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Imaging bismuth (Bi) atoms in a silicon (Si) sample were subsequently 

reported by A.R. Lupini6 (Figure 11). It is worthy of notice that Figure 11 is the 

result just by the statistical treatment without any image processing. The 

column with a bismuth atom is just a little brighter than other columns. 

 

 

 Figure 11. HADDF-STEM image of Bi atoms in the Si crystal6.   

Two example line scan are shown. 
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As mentioned in Chapter 1.2.2, another advantage of using spherical 

aberration corrector is that the large aperture, which leads the small depth of 

field, can be allowable. The small depth of field allows to observed only limited 

parts along the beam direction. In this case, the scattering by a single atom can 

give the significant contribution to the total intensity of a column. According to 

Equation (13), 300kV acceleration voltage and a 23 mrad aperture provide the 

6nm depth of field. Using through-focal series acquisition, K. van Benthem 

succeeded visualizing Hafnium (Hf) atoms diffused from Hafnium oxide (HfO2) 

to a silicon crystal without any image processing7 (Figure 12). Furthermore, 

S.H. Oh directly measured the different configurations of gold (Au) dopant 

atoms in the silicon nanowire8. 

 

 

Figure 12. Schematic diagram of gate dielectric device and 

through-focal series acquisition of HADDF-STEM7. A Hf atom 

appears in the white circles from ∆f = −0.5nm to ∆f = 1.5nm. 
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Tremendous advances in the realm of point-defect imaging have been 

made with the states-of-art TEM instruments. However, detecting light dopant 

atoms or vacancies has not achieved yet. Using HADDF-STEM is not 

promising since the column with a light dopant atom and a vacancy can be at 

most 10% darker than other columns. This percentage, 10%, is estimated from 

Z-contrast scheme proposed by Pennycook when the depth of field is about 

5nm. In this situation, a new approach is needed for detecting light dopant 

atoms or vacancies. 

 

 

 

 

 

 

 

 

 

 



19 

 

1.4 New Approach for Point-defect Imaging 

If defects such as dislocations, dopant atoms or vacancies exist in the 

crystal, the atoms near the defect will deviate from their original positions. 

Under this strain field, the scattering of electrons makes a different angular 

distribution due to the channeling effect as well as the absorption effect. 

Scattering distribution will cause the extra contrast in ADF STEM, which is 

called strain contrast. The representative example is the interface between 

amorphous silicon and crystal silicon.9 In Figure 13, the bright band at the 

interface result from strain contrast. Strain contrast generally shows different 

aspects depending on experimental condition such as the detector inner angle 

and the sample thickness, because angular distributions can be easily modified 

by the experimental condition. 

 

Figure 13. Example of strain contrast: the interface between A-Si/C-

Si9 
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We expect that utilization of strain field is a promising solution to 

overcome the limitation of existing methods for point-defect imaging. Even 

though strain field generated by light dopant atoms and vacancies may not be 

strong enough to modify the angular distribution significantly, strained columns 

can be distinguished from the non-strained ones in a specific angular ranges. If 

we carry out the imaging only with electrons which are scattered toward that 

angular region, we expect that light dopant atoms and vacancies can be 

visualized. 

Here, we have studied the feasibility of detecting light dopant atoms 

and vacancies with strain effects through the computer simulation. The strain 

field is simulated by structural relaxations with the first principle calculations 

and the propagation of electron waves is simulated with the multislice 

calculation, one of the dynamic scattering theory. Specifically, boron dopants 

and vacancies in silicon and oxygen vacancies in strontium titanate are 

investigated in this study. We hope this study provide a clue for visualizing a 

light impurity atom or a vacancy. 
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Chapter 2. Theoretical Background 

2.1 Scattering Theory 

Diffraction and scattering have been studied in the field of optics and 

quantum mechanics from a long time ago. However, these two terms actually 

indicate the same physical phenomena and derive the same result. Diffraction 

is just a macroscopic view of scattering process between waves and matters. 

This ordinary formalism for description of diffraction and scattering is called 

kinematic theory. Kinematic theory can lead to the position of Bragg conditions, 

and also describe various influences on electron diffractions such as the crystal 

structure or the external crystal size. However, kinematic theory is insufficient 

to describe electron diffractions quantitatively unlike x-ray diffractions or 

neutron diffractions since the interactions between electron waves are much 

stronger than those between other particles. The strong interaction between 

electron waves such as channeling and multiple scattering should be considered 

for the quantitative analysis of electron diffraction. This is called dynamic 

scattering effects and the theory that contains these effects is named as dynamic 

theory. Many calculation methods which include dynamic scattering effects are 

proposed. Among them, two representative approaches are Bloch method and 

the multislice method. These dynamic theories are used for the quantitative 

simulation of HREM, CBED or STEM. In this chapter, we will discuss the 

ordinary scattering theory, kinematic theory, and the multislice theory, one of 

dynamic theories. 

2.1.1 Kinematic Scattering Theory 
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Scattering Process is inherently a time-dependent process. However, 

it is not needed to solve a full time-dependent scattering in order to calculate 

physically important quantities. Scattering cross-section by fast electrons can 

be estimated with just time-independent solutions at asymptotic regions. At the 

asymptotic regions, scattering is dominated by the time-independent 

Schrodinger equation 

[−
ℏ2

2𝑚
𝛻2 +𝑒𝑉(𝒓)]𝜓𝑘(𝒓) = 𝐸𝑘𝜓𝑘(𝒓);  𝐸𝑘 =

ℏ2𝑘2

2𝑚
     (14) 

where the interaction potential 𝑉(𝒓) between the incident particle and the 

target vanishes as r → ∞ and an incident particle far away from the target is 

represented as 𝜙𝑘(𝒓) = (2𝜋)
−3/2𝑒𝑖𝒌∙𝒓. The full scattering wave function at 

asymptotic regions can be simply approximated  

𝜓𝑘
𝑟→∞
→  

1

(2𝜋)3/2
(𝑒𝑖𝒌∙𝒓+

𝑓(𝜃,𝜑)

𝑟
𝑒𝑖𝒌∙𝒓)     (15) 

where 𝑓(𝜃, 𝜑)  is called scattering amplitude, the square of which equals 

differential scattering cross-section. In fact, the exact solution can be obtained 

using Green’s function 𝐺(𝒓,𝒓′) = −𝑒𝑖𝑘|𝒓−𝒓
′| 4𝜋|𝒓− 𝒓′|⁄ . 

𝜓𝑘 =
1

(2𝜋)3/2
(𝑒𝑖𝒌∙𝒓−

(2𝜋)3/2

4𝜋
∙
2𝑚𝑒

ℏ2
∫𝑑𝒓′

𝑒𝑖𝑘|𝒓−𝒓
′|

|𝒓 − 𝒓′|
𝑉(𝒓′)𝜓𝑘(𝒓

′))     (16) 

If we consider the behavior of the exact solution at asymptotic regions, the 

analytic expression of the scattering amplitude becomes 
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𝜓𝑘
𝑟→∞
→  

1

(2𝜋)3/2
(𝑒𝑖𝒌∙𝒓−

(2𝜋)3/2

4𝜋

∙
2𝑚𝑒

ℏ2
∫𝑑𝒓′

𝑒𝑖𝑘𝑟

𝑟
𝑒−𝑖𝑘𝑟

−1𝒓∙𝒓′𝑉(𝒓′)𝜓𝑘(𝒓
′))     (17) 

𝑓(𝜃, 𝜑) = −
(2𝜋)

3
2

4𝜋
∙
2𝑚𝑒

ℏ2
∫𝑑𝒓′𝑒−𝑖𝒌

′∙𝒓′𝑉(𝒓′)𝜓𝑘(𝒓
′)     (18) 

However, it should be noticed that the wave function 𝜓𝑘(𝒓
′) is included in the 

integrand, which means that iterative calculations are needed to obtain the exact 

scattering amplitude. If the wave function in the integrand is assumed to be a 

plane wave 𝜙𝑘(𝒓) = (2𝜋)
−3/2𝑒𝑖𝒌∙𝒓 , the scattering amplitude can be 

summarized into the Fourier transform of the interaction potential 𝑉(𝒓). 

𝑓(𝜃, 𝜑) = −
𝑚

2𝜋ℏ2
∫𝑑𝒓′𝑒−𝑖(𝒌

′−𝒌)∙𝒓′𝑉(𝒓′)     (19) 

This is the first (order) Born approximation. When the incident particle energy 

is much higher than the interaction potential 𝑉(𝒓), the differential scattering 

cross-section is good enough to be descried with the first Born approximation. 

Therefore, high energy particle scatterings like x-ray scattering and neutron 

scattering have been studied using the first Born approximation. 

Let’s consider scattering of a periodic crystal using the first Born 

approximation. Under the rigid-body approximation, the potential of a crystal 

is assumed to be the superposition of atomic potentials. Bonding effects are 

neglected in the rigid-body approximation. 

𝑉(𝒓) =∑∑𝑉𝛼(𝒓 −𝑹 − 𝒓𝛼)

𝛼𝑛

     (20) 
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where n is the index of unit cell and 𝛼 is the index of atom in the unit cell. 

According to the first Born approximation, the scattering amplitude is the 

Fourier transform of the interaction potential 

𝑓(𝜃,𝜑) = −
𝑚

2𝜋ℏ2
∫𝑑𝒓′∑∑𝑉𝛼(𝒓

′−𝑅𝑛− 𝒓𝛼)

𝛼𝑛

𝑒−𝑖𝒖∙𝒓
′
 

                = −
𝑚

2𝜋ℏ2
∑𝑒−𝑖𝒖∙𝑅𝑛

𝑛

∑∫𝑑𝒓𝑉𝛼(𝒓)𝑒
−𝑖𝒖∙𝒓𝑒−𝑖𝒖∙𝒓𝜶

𝛼

 

                              = −
𝑚

2𝜋ℏ2
1

Ω
∑𝛿(𝒖 −𝒈)

𝒈

∑𝑓𝛼(𝒈)𝑒
−𝑖𝑀𝛼𝑔

2/4𝑒−𝑖𝒈∙𝒓𝜶

𝛼

    (21) 

where Ω is the volume of unit cell and 𝑒−𝑖𝑀𝑔
2/4  is called Debye-Waller 

factor. In deriving Equation (21), Dirac comb function is used ∑ 𝛿(𝒖 −𝒈)𝒈 =

∑ 𝑒−𝑖𝒖∙𝑅𝑛𝑛 , where 𝒈 is the reciprocal lattice vector. This Dirac comb function 

allows only reflections which satisfy the Bragg condition 𝒌−𝒌′ = 𝒈. 𝑓𝛼(𝒖) 

is called the atomic scattering factor, which is the Fourier transform of isolated 

atomic potential, and ∑ 𝑓𝛼(𝒖)𝑒
−𝑖𝒖∙𝒓𝜶

𝛼  is called geometrical structure factor of 

crystal, which indicates the intensity of Bragg reflections. Thermal vibrations 

are considered by Debye-Waller factor. It can be derived using the property 

〈𝑒𝐴 〉 = 𝑒〈𝐴
2〉/2 as 

〈𝑒−𝑖𝒖∙(𝒓𝜶+𝒖𝜶)〉 = 𝑒−𝑖𝒖∙𝒓𝜶 ∙ 〈𝑒−𝑖𝒖∙𝒖𝜶 〉 = 𝑒−𝑖𝒖∙𝒓𝜶 ∙ 𝑒
−
1
2
〈𝒖𝜶〉

𝟐𝑢𝟐
= 𝑒−𝑖𝒖∙𝒓𝜶𝑒

−
1
4
𝑀𝛼𝑢

𝟐

 

where 𝒖𝜶 is the time-dependent displacement of 𝛼 atom. Therefore, Debye-

Waller factor can be interpreted as a factor to reduce the elastic scattering power 

due to thermal vibrations. 

2.1.2 Dynamics Scattering Theory: Multislice Theory 
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 Multislice theory is one of calculation methods to consider dynamic 

scattering effects. At first, multislice theory was suggested from physical 

optics approach by Cowley and Moodie10. They assumed that a crystal is a set 

of two dimensional phase objects and transmission through the crystal is 

described as a repeat of phase shift by phase objects and propagation in the 

vacuum. In fact, it is possible to describe the effects of the crystal on the 

transmission electrons with a just phase shift, since these electrons are nearly 

deflected by the crystal. This is because transmission electrons have 

transmission electrons have enough high energy with respect to the crystal 

potential. This is called phase object approximation.  

With transmission electron energy E = eU0 and the crystal potential 

V(𝐫),  

𝐾𝑒𝑓𝑓 =
(2𝑚)

1
2

ℏ
(𝐸+ 𝑒𝑉(𝒓))

1
2 ≈

2𝜋

𝜆
(1+

𝑉(𝒓)

2𝑈0
)     (22) 

The phase shift of electron wave experienced in the crystal is 

∫ 𝑑𝑧 2𝜋 (
1

𝜆𝑒𝑓𝑓
−
1

𝜆
)

𝑧𝑛+∆𝑧

𝑧𝑛

≈
𝜋

𝜆𝑈0
∫ 𝑑𝑧 𝑉(𝒓)
𝑧𝑛+∆𝑧

𝑧𝑛

= 𝜎𝑉(𝒃)    (23) 

where 𝒃 is a two dimensional position vector. Therefore, the effect of the 

crystal potential on the transmission electrons can be simply considered 

through multiplying 𝑒𝑖𝜎𝑉(𝒃) to the incident electron waves. The function 

𝑄𝑛𝑐(𝒃,∆𝑧) = 𝑒
𝑖𝜎𝑉(𝒃) is called phase grating function or phase object.  
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Figure 14. Schematic diagram of crystal in multislice theory. A 

crystal is regarded as a set of phase objects 

 Between the phase objects, electron propagation can be described by 

Huygens principle. Huygens principle states how waves propagate: Every 

point on the wave front will be a point source for secondary spherical waves 

and another wave front is constructed by interference of near-by secondary 

spherical waves. About two centuries later after proposing Huygens principle, 

Fresnel experimentally found that secondary waves should have phase shift by 

1/i𝜆 with respect to the incident wave and be multiplied the incline factor 

𝐴(𝜃) = 1/2(1+ 𝑐𝑜𝑠𝜃). The incline factor 𝐴(𝜃) makes electron amplitude 

have maximum value on the forward direction and minimum value on the 

back scattered direction. With applying this Huygens-Fresnel principle to our 

case, the electron waves reaching another phase object are expressed as 

𝜓(𝒃,𝑧𝑛+1) =
1

𝑖𝜆
∫𝑑𝒃′𝜓(𝒃′ , 𝑧𝑛)

𝑒𝑖𝐾𝜌
′

𝜌′
∙
1

2
(1+

𝝆′ ∙ 𝒛

𝜌′𝑧
)     (24) 

where 𝝆′ is the displacement between the initial point, i.e. point source, and 

the final point: 𝝆′ = 𝒃′ −𝒃+∆𝑧.  

 

Since transmission electrons are nearly deflected as previously 

mentioned, we can modified Equation (24) to the simplified form. This is 
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called the small-angle scattering approximation. 

𝜓(𝑏, 𝑧𝑛+1) = 𝑒
𝑖𝐾∆𝑧∫𝑑𝒃′𝜓(𝑏, 𝑧𝑛)

𝑒𝑖𝐾|𝒃
′−𝒃|

2
/2∆𝑧

𝑖𝜆∆𝑧
 

           = 𝑒𝑖𝐾∆𝑧𝜓(𝑏, 𝑧𝑛)⨂𝑃(𝒃, ∆𝑧)     (25) 

Therefore, the electron waves reaching another phase object can be simply 

expressed as a convolution of the waves on the previous phase object and the 

propagation function 𝑃(𝒃, ∆𝑧).  

 

Figure 15. Schematic diagram of propagation between phase 

objects. (𝑥′ ,𝑦′) is the coordinates of scattering and (𝑥,𝑦) is 

the coordinates of observation. 

 

 

In multislice theory, the electron waves after the 𝑛𝑐th crystal slice are 

summarized into 

𝜓(𝒃,𝑧𝑛𝑐+1) = {𝜓(𝒃,𝑧𝑛𝑐)𝑄𝑛𝑐(𝒃,∆𝑧)}⨂𝑃(𝒃,∆𝑧)     (26) 

   (𝑥 ′ ,𝑦′) 

(𝑥, 𝑦) 

∆𝑧 
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and this process is repeated until the electron waves leave the crystal. Quantum 

mechanically, this multislice equation was also derived directly from 

Schrodinger equation by Ishizuka11 and derived using Feynman’s path-integral 

scheme by Van Dyck12. 

 

 

 

 

 

 

 

 

 

 

 

2.2 CBED, STEM & Scanning CBED 

2.2.1 CBED 

CBED (Convergent Beam Electron Diffraction) is the electron 
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diffraction technique obtained by converging electron beam onto the sample. 

Diffraction patterns generated by the electron probe give totally different kinds 

of information depending upon condenser apertures and convergence angles. 

For very large convergence angle, if the specific diffracted disk is recorded with 

the selected-area aperture and defocus, it is specially called LACBED (Large 

Angle Convergent Beam Electron Diffraction). For the small convergence 

angle, if diffraction pattern similar to SAED (Selected-Area Electron 

Diffraction) is obtained, it is called electron nano-diffraction named by 

Cowley13, which have been widely used in analyzing nano-sized materials like 

nano particles or nano rod. We will only focus on the diffraction patterns using 

medium convergence angle descried as CBED. Actually, CBED is one of the 

oldest electron diffraction technique proposed by Kossel and Mollenstedt14. 

This technique has continuously been developing along the advancement of 

TEM. The biggest change is the size of electron probe. Since thermionic source 

like LaB6 is a spatially incoherent source, the lateral coherence cannot help 

restricting the size of electron probe. For obtaining the nm-order probe with the 

thermionic source, it needs several hundred times of demagnification than the 

field-emission gun. In practice, CBED using thermionic source is generally the 

result of the μm-size electron probe. In contrast, the sub nm-size electron probe 

can be easily obtained by the field-emission gun. In the field-emission TEM, 

the sample volume in CBED is usually determined by electron propagation as 

well as by the probe size. Moreover the size of electron probe became the sub 

angstrom order as C3 spherical aberration was corrected. In the Cs-corrected 

TEM, CBED gives structure information sensitive to individual atomic column.  

While SAED gives structure information just by the Bragg position, 

CBED provides lots of crystallographic information through the CBED disk. 
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Symmetry of crystal like point group symmetry or space group symmetry can 

be determined with CBED. Stain of crystal can also be measured by measuring 

lattice parameters or unit cell information. Besides, CBED can be used for the 

sample thickness measurement. Sometimes, defects like dislocations and planar 

defects are analyzed with CBED. Another advantage of CBED is that the nm-

scale area can be analyzed with CBED, since the observed area is determined 

by the size of electron probe. However, there is also shortcoming in the CBED 

technique. The sample can be easily damaged or contaminated compared with 

other TEM techniques, since tons of electrons are focused into the small area 

in CBED.  

 

 

 

 

 

 

2.2.2 STEM 

When the nm-size electron probe is focused on the sample, differential 

scattering cross-section varies with the observing position. When electrons 

scattered into the specific angle range are collected while the probe scans the 

material, we can obtain the image which contains structure information. This 

imaging technique is called STEM. STEM can be separated into BF-STEM 
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and ADF-STEM according to the detection angle. BF-STEM makes use of a 

small detector on the optic axis and ADF-STEM uses the annular-type 

detector that collect electrons scattered into the large angles. We will only 

focus on ADF-STEM. 

There are two primary sources for generating high-angle scattering. One is 

Rutherford scattering, which is the asymptotic behavior of the elastic 

scattering. We can check the asymptotic behavior of electron scatterings 

through the following consideration. As we have known from chapter 2.1.1, 

the (elastic) scattering amplitude of electron is the Fourier transform of the 

potential. Similarly, the scattering amplitude of X-ray is the Fourier transform 

of the electron charge density. 

𝑓𝑒(𝒖) = ∫𝑑𝒓𝑒−𝑖𝒖∙𝒓𝑉(𝒓)     (19)′ 

𝑓𝑥(𝒖) = ∫ 𝑑𝒓𝑒−𝑖𝒖∙𝒓𝜌(𝒓)     (27) 

 

 

Potential is correlated with the electron charge density by Poisson equation. 

∇2𝑉(𝒓) = −
𝑒

4𝜋𝜀0
[𝑍0𝛿(𝒓) − 𝜌(𝒓)]     (28) 

Taking the Fourier transform of Equation (28) with the scattering amplitude of 

electron and x-ray (Equation (19)′, Equation (27)) 
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𝑓𝑒(𝒖) =
𝑒

4𝜋𝜀0

[𝑍0−𝑓
𝑥(𝒖)]

𝑢2
    (29) 

This relation is called Mott formula, which shows the relationship between 

electron scattering factor and x-ray scattering factor. In Mott formula, we can 

notice that electron scattering converges to Rutherford scattering at the high 

scattering angle (the asymptotic region). The second source for high-angle 

scattering is thermal diffuse scattering (TDS). TDS, one of inelastic 

scatterings, is the result of atomic vibrations in the crystal. TDS introduces 

small energy loss but large momentum transfer, so TDS is the major inelastic 

scattering event that affects high-angle scattering among various inelastic 

scatterings. 

Meanwhile, HAADF-STEM (High Angle ADF-STEM) is the widely used 

technique since it is intuitive incoherent imaging. Incoherent image indicate 

that there is no phase correlation between two points in the image. Imaging by 

TDS is inherently incoherent because there is no phase correlation between 

the inelastic events. Contrary to expectation, imaging by elastic scattering is 

also incoherent if we collect electrons with a large inner-angle. Let’s prove 

this statement by calculating the intensity of ADF-STEM using the single 

phase object approximation15. Let’s assume the source is totally coherent and 

C3 spherical aberration is not corrected. Then, the wave function of electron 

probe is expressed 

𝜓𝑝(𝒃− 𝒃𝟎) = ∫𝐴(𝒌)𝑒
−𝑖𝜒(𝒌)𝑒𝑖𝒌∙(𝒃−𝒃𝟎)𝑑𝒌     (30) 

where 𝐴(𝒌) is aperture function, having a value 1 when |𝒌| ≤ 𝒌𝑚𝑎𝑥, 𝜒(𝒌) 

is phase shift due to the aberration, 𝜒(𝒌) = 𝐶𝑠𝜆
3𝑘4 32𝜋3⁄ + Δf λ𝑘2 4𝜋⁄ , 𝐛 
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and 𝐤 are two dimensional position vector and reciprocal vector. In the phase 

object approximation, the wave exiting the sample is just multiplication of 

incident wave 𝜓𝑝(𝒃 − 𝒃𝟎) and phase object function Q(𝒃). 

𝜓𝑡(𝒃,𝒃𝟎) = 𝜓𝑝(𝒃− 𝒃𝟎)Q(𝒃)     (31) 

 

 

 

Figure 16. Schematic diagram of DDF STEM imaging. 

𝜓𝑝(𝒃),𝜓𝑝(𝒌) is the wave function of probe in the real space 

and reciprocal space. 𝜓𝑡(𝒃),𝜓𝑡(𝒌) is the exit wave function 

in the real space and reciprocal space. 

 

Since ADF-STEM is the technique that collects electrons scattered into the 

annular detector, the intensity is expressed as 

𝐼𝐴𝐷𝐹(𝒃𝟎) = ∫𝐷(𝒌𝒇) × |𝐹𝑇[𝜓𝑝(𝒃− 𝒃𝟎)Q(𝒃)]|
2
𝑑𝒌𝒇 

                                  = ∫𝐷(𝒌𝒇) × |∫Q(𝒌𝒇−𝒌)𝜓𝑝(𝒌)𝑒
−𝑖𝒌∙𝒃𝟎𝑑𝒌|

2

𝑑𝒌𝒇     (32) 

    

condenser 

aperture / 

specimen 

annular detector 

condenser lens 

𝜓𝑝(𝒃) 

𝜓𝑝(𝒌) 

𝜓𝑡(𝒃) 

𝜓𝑡(𝒌) 
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Where 𝐷(𝒌𝒇) is a detector function. Taking the Fourier transform and using 

the properties of Dirac delta function δ(𝑥′− 𝑥) = 1 2𝜋⁄ ∫𝑑𝑘𝑒𝑖𝑘(𝑥
′−𝑥), 

𝐼𝐴𝐷𝐹(𝒒) =∬𝐷(𝒌𝒇)𝜓𝑝(𝒌)𝜓𝑝
∗(𝒌+ 𝒒) × Q(𝒌𝒇−𝒌)Q

∗(𝒌𝒇−𝒌−𝒒)𝑑𝒌𝒇𝑑𝒌 

If we assume ADF detector is large enough to neglect aperture overlap region, 

𝐼𝐴𝐷𝐹(𝒒) = ∫𝜓𝑝(𝒌)𝜓𝑝
∗(𝒌+ 𝒒)𝑑𝒌× ∫𝐷(𝒌𝒇)Q(𝒌𝒇)Q

∗(𝒌𝒇− 𝒒)𝑑𝒌𝒇     (33) 

By the Fourier transformation, the intensity of ADF-STEM can be simplified 

into 

𝐼𝐴𝐷𝐹(𝒃𝟎) = |𝑃(𝒃𝟎)|
2 ⨂ 𝑂(𝒃𝟎)      (34) 

where |𝑃(𝒃𝟎)|
2 is point spread function and 𝑂(𝒃𝟎) is object function. 

Therefore, it is proven that ADF-STEM is incoherent imaging whether 

intensity comes from elastic scattering or TDS. 

 

 

 

 

 

2.2.3 Scanning CBED 

As the performance of experimental instrument develops, the method 

of TEM analysis will also be extended. The representative example is scanning 

CBED, which results from the advancement of CCD (Charge-Coupled Device). 

These days, CCD is used for quantitative analysis of electron diffraction, since 
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it can provide a large dynamic range and a great linearity. Furthermore, it 

becomes possible to record the electron diffraction patterns during scanning the 

material. Continuous records for CBED pattern in the scanning area provide 

new techniques for structural analysis with atomic resolution. One simple 

application of scanning CBED is reemergence of STEM image by integrating 

diffraction pattern. Also, our scheme for imaging point defect is based upon 

scanning CBED. In order to analyze the materials using scanning CBED, it is 

essential to characterize the noise in the scanning CBED. We will discuss the 

characteristic of the noise in scanning CBED later. 

 

 

 

 

 

 

2.3 STEM Simulation 

As mentioned above, there are two primary sources for generating the 

high-angle scattering: Rutherford scattering and TDS. Thus, STEM simulation 

requires both simulations of elastic scattering and TDS. Elastic scattering can 

be simulated with the dynamic scattering theories, Bloch method and multislice 

method. Each method has its own advantages: Bloch method makes physical 

interpretation simple, but the multislice method reduces a computing burden 
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for simulating STEM image of defective structure and Cs-corrected STEM 

image. On the other hands, TDS essentially requires approximations for 

simulating TDS effects because TDS is a time-dependent incoherent process. 

Nevertheless, there have been several attempts to include TDS in the dynamic 

scattering theories. Wang and Cowley directly derived generalized multislice 

equation including TDS from Yoshioka’s coupled equation16. Loane and Silcox 

inserted TDS effects in the multislice method using frozen phonon model17. 

Ishizuka used absorptive potential to describe TDS influence of HADDF STEM 

image18. ZMULT, the code used in our research, is based on the multislice 

method using the Ishizuka absorptive STEM potential. In the following 

chapters, we will discuss the elastic scattering with the multislice method and 

the insertion of TDS effects with Ishizuka method. 

 

 

 

2.3.1 Elastic Part of STEM Simulation  

In fact, we’ve already derived the elastic part of STEM simulation in 

the Chapter 2.2.2. However, the single phase object approximation is not 

appropriate for the thick samples. The STEM simulation with the multislice 

method follows the same formalism except for the interaction part between 

electrons and the sample. As before, the incident wave function of the probe is 

expressed as 
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𝜓𝑝(𝒃− 𝒃𝟎) = ∫𝐴(𝒌)𝑒
−𝑖𝜒(𝒌)𝑒𝑖𝒌∙(𝒃−𝒃𝟎)𝑑𝒌     (30)′ 

where 𝜒(𝒌) is phase shift due to the aberration, 𝜒(𝒌) = 𝐶𝑠𝜆
3𝑘4 32𝜋3⁄ +

Δf λ𝑘2 4𝜋⁄ . If more residual aberrations are necessary to be included, the phase 

shift should be modified into 

𝜒(𝒌) = 𝐶𝑠𝜆
3𝑘4 32𝜋3⁄ + Δf λ𝑘2 4𝜋⁄ + 𝑓𝛼2 λ𝑘

2sin [2(𝜙 −𝜙𝛼2)] 4𝜋⁄

+ 𝑓𝛼3𝜆
2𝑘3sin [3(𝜙−𝜙𝛼3)] 12𝜋

2⁄

+ 𝑓𝑐3𝜆
2𝑘3sin [𝜙−𝜙𝑐3] 12𝜋

2⁄  

where 𝑓𝛼2 is twofold astigmatism, 𝑓𝛼3 is threefold astigmatism and 𝑓𝑐3 is 

coma.19 As the primary electron pass the sample, the wave function of probe 

will evolve along the multislice equation (Equation (26)). Thus the wave 

function at the (𝑛𝑐 +1)th slice will be expressed as 

𝜓𝑝(𝒃 − 𝒃𝟎 ,𝑧𝑛𝑐+1) = {𝜓𝑝(𝒃− 𝒃𝟎 ,𝑧𝑛𝑐)𝑄𝑛𝑐(𝒃,∆𝑧)}⨂𝑃(𝒃,∆𝑧)     (26)
′ 

and the exit wave function 𝜓𝑡(𝒃− 𝒃𝟎) equals the wave function of probe 

evolved to the end. 

𝜓𝑡(𝒃− 𝒃𝟎) = 𝜓𝑝(𝒃− 𝒃𝟎 ,𝑑)      (35) 

Since ADF-STEM is the technique to collects electrons scattered into the 

annular detector, the elastic part intensity of HADDF STEM image is simply 

expressed as 

𝐼𝐴𝐷𝐹
𝐸𝑙𝑎𝑠𝑡𝑖𝑐(𝒃𝟎) = ∫𝐷(𝒌𝒇)× |𝐹𝑇[𝜓𝑝(𝒃− 𝒃𝟎 ,𝑑)]|

2
𝑑𝒌𝒇    (36) 

2.3.2 TDS Part of STEM Simulation18  
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 Scattering cross-section of TDS into the specific angle can be 

approximately calculated from the absorptive potential. Actually, this scheme 

is first introduced into the Bloch method by Pennycook and Jesson20 and is 

applied in the multislice equation (Equation (26)) by Ishizuka18. The only thing 

modified due to the absorptive potential in the multislice method is the phase 

grating function 𝑄𝑛𝑐(𝒃,∆𝑧). 

𝑄𝑛𝑐(𝒃,∆𝑧) = 𝑒
𝑖𝜎[𝑉(𝒃)+𝑖𝑉𝑎𝑏𝑠(𝒃)] = 𝑒𝑖𝜎𝑉(𝒃)𝑒−𝜎𝑉

𝑎𝑏𝑠(𝒃)      (37) 

Let’s investigate how this modification can give the TDS effects in HADDF 

STEM image. the Fourier transform of output wave function has the following 

magnitude 

|𝜓𝑝(𝒌,𝑧𝑛𝑐+1) | =  |𝐹𝑇[𝑄𝑛𝑐(𝒃,∆𝑧)𝜓𝑝(𝒃, 𝑧𝑛𝑐+1)] ∙ 𝑃(𝒖)| 

                              =  |𝐹𝑇[𝑄𝑛𝑐(𝒃,∆𝑧)𝜓𝑝(𝒃,𝑧𝑛𝑐+1)]|     (38) 

since 𝐹𝑇[P(𝐛,∆z)] = 𝑒−𝜋𝑖𝑢
2∆𝑧𝜆.  

Appling Parseval’s theorem (∫ 𝑓(𝑥)̅̅ ̅̅ ̅̅  𝑓(𝑥)𝑑𝑥
∞

−∞ = ∫ 𝑓(𝑘)̅̅ ̅̅ ̅̅  𝑓(𝑘)𝑑𝑘
∞

−∞ ) twice in 

the Equation (38), 

∫|𝜓𝑝(𝒃,𝑧𝑛𝑐+1)|
2
𝑑𝒃= ∫|𝜓𝑝(𝒌,𝑧𝑛𝑐+1)|

2
𝑑𝒖 

                                                             = ∫|𝐹𝑇[𝑄𝑛𝑐(𝒃,∆𝑧)𝜓𝑝(𝒃, 𝑧𝑛𝑐)]|
2
𝑑𝒖 

                                                                 = ∫|𝑄𝑛𝑐(𝒃,∆𝑧)𝜓𝑝(𝒃, 𝑧𝑛𝑐)|
2
𝑑𝒃     (39) 

Therefore, the loss energy at each slice due to absorptive potential is simply 
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calculated as 

𝐼𝑛𝑐 = ∫(|𝜓𝑝(𝒃,𝑧𝑛𝑐)|
2
− |𝜓𝑝(𝒃, 𝑧𝑛𝑐+1)|

2
)  𝑑𝒃 

= ∫|𝜓𝑝(𝒃,𝑧𝑛𝑐)|
2
[1 − 𝑒−2𝜎𝑉𝑛𝑐

𝑎𝑏𝑠(𝒃)]  𝑑𝒃 

                 ≈ ∫ 2𝜎|𝜓𝑝(𝒃, 𝑧𝑛𝑐)|
2
𝑉𝑛𝑐
𝑎𝑏𝑠(𝒃)𝑑𝒃     (40)                   

As noticed in this derivation, this absorptive potential scheme cannot describe 

the redistributions of TDS. However, this will not give an appreciable error if 

the intensity that fall into the annular detector is just considered. This scheme 

also approximates that TDS is fully incoherent, so that total TDS part intensity 

of HADDF STEM image is expressed as the summation of all intensity 

generated from each slice. 

𝐼𝐴𝐷𝐹
𝑇𝐷𝑆(𝒃𝟎) = ∑ ∫2𝜎|𝜓𝑝(𝒃,𝑧𝑛𝑐)|

2
𝑉𝑛𝑐
𝑎𝑏𝑠(𝒃)𝑑𝒃

𝑑

𝑧𝑛𝑐=0

     (41) 

Of course, it is important to construct absorptive potential for TDS scattered 

electrons toward the annular detector. The ordinary potential is usually 

reconstructed with atomic scattering factor 𝑓𝛼(𝒖) (rigid-body approximation). 

𝑉𝒈 = −
1

𝛺0
∑𝑓𝛼(𝒈)𝑒

−
1
4
𝑀𝛼𝑔

2
𝑒−𝑖𝒈∙𝒓𝛼

𝛼

     (42) 

( These atomic scattering factors can be calculated through many methods such 

as Hartree-Fock method21). Similarly, the absorptive potential for TDS can be 

made using the modified absorptive form factor. The modified absorptive form 
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factor used in this scheme is little different from the absorptive form factor 

proposed by Hall and Hirsh22,23. Concretely, Hall and Hirsh have interest in 

TDS for all direction, but TDS directed into the annular detector is only 

considered in this modified scheme. The modified absorptive form factor for 

STEM simulation is 

𝑓𝛼
𝑎𝑏𝑠(𝐻𝐴)(𝒖) =

𝜋ℏ

𝑚0𝑣
∫ 𝑑𝜎(𝒖′ )(𝑓𝛼 (𝒖

′ )𝑓𝛼 (𝒖
′ − 𝒖) {1 − 𝑒

−
1
2
𝑀𝛼 (𝒖

′2−𝒖′∙𝒖) })
𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

 

This equation indicates that the modified absorptive form factor consists of the 

usual atomic scattering factors24. Therefore, we can construct the absorptive 

potential for TDS toward the detector.  

𝑉𝒈 = −
1

𝛺0
∑𝑓

𝛼
𝑎𝑏𝑠(𝐻𝐴)(𝒈)𝑒−

1
4
𝑀𝛼𝑔

2
𝑒−𝑖𝒈∙𝒓𝛼

𝛼

     (43) 

 

 

 

3. Calculation Methods 

 

Strain contrast results from the combination of the channeling effect 

and the absorption effect under strain field. Therefore, the channeling effect and 

the strain field due to a point defect should be considered for our study. The 

first principle calculations based on the density functional theory was carried 
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out to get relaxed structure and the dynamic scattering calculation based on the 

multislice theory was conducted for CBED/STEM simulations. Also, the 

electron probe plays a dominant role in the formation of CBED. Thus, we 

optimized the electron probe using Simplex algorithms as implemented in 

PROBE. 

 

       

Figure 17. Summary of calculation methods 

 

 3.1 First Principle Calculations 

The first principle calculations based on the density functional theory 

has been carried out using the VASP25 (Vienna Ab initio Simulation Package) 

pseudopotential code to obtain relaxed structure containing a defect. We used 

the local-density approximations for the exchange-correlation functional and 

ultrasoft pseodupotentials for descriptions of core electrons. Plain-wave basis 

sets were used with plain-wave cutoff 500eV. Brillouin-zone integrations were 
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carried out on a grid of 2 ×2 ×2 Monkhorst-Pack special points and on a grid 

of 2× 2× 1 Monkhorst-Pack special points especially for surface structures. 

We used big-enough unit cell in order that the interaction energy between point 

defects can be negligible. For Si 100 direction, we used 3× 3× 4 Si supercell 

with a boron dopant or a vacancy positioned on (0.5,0.5,0.5) and 3× 3× 2 

Si slab with a surface defect. For Si 110 direction, we used 4× 2√2× 2√2 Si 

supercell with a boron dopant or a vacancy positioned on (0.5,0.5,0.5) and 

4× 2√2× 1√2 Si slab with a surface defect. Si slab had the vacuum region 

larger than 15 Å and the bottommost layer of Si slab was passivated with 

hydrogen atoms with 1.00 e. The last layers of all side were fixed to be applied 

into the unit cell of STEM/CBED simulation. Remaining coordinates were 

relaxed by minimizing the Hellmann-Feynman forces less than 0.02 eV Å⁄ . 

 

 

 

 

 

 



43 

 

 

Figure 18. Structure models for the relaxation using the first principle calculations 
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3.2 Probe Simulation 

The electron probe has been optimized in the two conditions using Simplex 

algorithms as implemented in PROBE. Conventional TEM is dominantly 

affected by defocus, but Cs-corrected TEM is sensitively influenced by the 

various residual aberrations like astigmatism or coma. Therefore, just defocus 

is optimized for the probe of the conventional TEM but two-fold astigmatism, 

three-fold astigmatism and coma as well as defocus are optimized for the probe 

of the Cs-corrected TEM. Each probe parameters are optimized toward 

minimizing the probe diameter defined as the diameter with 50 percent intensity 

within. The parameters about other residual aberrations are referred from the 

parameters of JEOL 2200 TEM in UIUC. The parameters of the optimized 

probes are shown in Table 2. 

 

Table2. Optimized parameters of the electron probe in CTEM/Cs-

corrected TEM   
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3.3 CBED/STEM Simulation 

Dynamic scattering calculation based on the multislice theory has 

been carried out using ZMULT code for CBED and STEM simulation. We used 

the atomic scattering factors calculated by Doyle and Turner21 and the 

absorptive form factors parameterized by Bird and King23. For STEM 

simulation, the additional absorptive form factors proposed by Ishizuka18 was 

used to describe the thermal diffuse scattering toward the ADF detector. We set 

up the electrons accelerated to the 200kV and propagated along the zone axis 

orientation. Since the size of unit cell is inversely proportional to the sampling 

size of reciprocal space, the large unit cell is needed for CBED and STEM 

simulation. Thus we incorporate the relaxed structure obtained by the first 

principle calculation into the large unit cell. For Si 100 direction, we used 20×

20 ×10 and 20 × 20× 20 unit cell to simulate CBED or STEM of 5nm 

thickness and 10nm thickness, respectively. For Si 110 direction, we used 16×

12√2× 6√2 and 16× 12√2× 14√2 unit cell to simulate CBED or STEM 

of 5nm thickness and 10nm thickness, respectively. 

 

 

 

 

 

 



46 

 

 

 

 

 

Figure 19. Structure models for CBED/STEM simulation: Si 100, Si 110  
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4. Results of Calculations 

4.1 Silicon 100 Direction 

We investigated strain effects of two kinds of point defects: one is a boron 

dopant atom and the other is a vacancy. Also, we additionally considered a 

surface roughness to make a division between the strain effect of surface 

roughness and the strain effect of a point defect. Specifically, Surface 

roughness indicates the surface reconstruction due to a surface defect. As 

mentioned above, we simulated the strain field by relaxing the structure with 

the first principle calculations. Figure 20 is the relaxed structures of three 

cases. Applying the optimized probes and the relaxed structures, CBED above 

the defected column were simulated for each case. We additionally simulate 

CBED of the defectless structure for the reference of scattering angular 

distribution. We conducted the azimuthal integration of CBED in order to find 

the specific scattering angular region that distinguishes from the original 

scattering angular distribution. Figure 21 shows the result of the azimuthal 

integrations. As a result of simulations, it is expected that the defected column 

can be distinguishable from other columns if the region between 30mrad and 

50mrad is used. Although the strain field due to a boron dopant does not 

induce a significant modification of scattering angular distribution, the strain 

field due to a vacancy makes more electrons scatter towards the region 

between 30mrad and 50mrad and the strain field of surface roughness shows 

the opposite effects of the vacancy case. 
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Figure 20. Relaxed structures of boron dopant, vacancy and surface 

roughness (Si 100 direction) 
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Figure 21. Azimuthal integrations of CBED for a boron dopant case, a 

vacancy case and surface roughness case (Si100 direction) 
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As the distinguishable angular distribution between 30mrad and 50mrad was 

calculated, we conducted STEM image simulations using that detection angle. 

Figure 22 are the results of STEM simulations. It is noticed that all STEM 

images show that the intensity of the defected column is about 10% darker 

than that of other neighboring columns. This indicates that the STEM image is 

already dominated by thermal diffuse scattering in the 30mrad to 50mrad 

detection angle. Therefore, we’ve additionally conducted STEM simulations 

with only consideration of the elastic scattering. Figure 23 are the results of 

STEM simulations dealing with only elastic contributions. As expected, the 

defected columns with a vacancy gave positive contrast comparing to other 

perfect columns and the defected column by surface reconstruction showed 

negative contrast. The impressive result of this simulation was the vacancy 

case with Cs-corrected probe. The defected column is about 200% brighter 

than other neighboring columns. Therefore, it seems experimentally possible 

to detect the column with a vacancy if thermal diffuse scattering is suppressed 

using cold stage holder. It is confirmed that the intensity of elastic 

contribution is 10 times smaller than that of STEM image considering both 

elastic and inelastic scattering, which also verify thermal diffuse scattering 

have already taken dominant portion at the detection angle between 30mrad 

and 50mrad.  
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Figure 22. Line scan of simulated STEM images (considering both 

elastic contribution and inelastic contribution): the center column is 

the defected column. (Si 100 Direction) 
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Figure 23. Line scan of simulated STEM images (considering just 

elastic contribution): the center column is the defected column. (Si 100 

Direction) 

 

 

4.2 Silicon 110 Direction 

Silicon 110 direction was also investigated as silicon 100 direction. We 
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conducted the simulations in the same steps: structural relaxation, CBED 

simulation and STEM simulation. There was no distinguishable region like 

30mrad to 50mrad in the case of silicon 100 direction. Nevertheless, we’ve tried 

to carry out STEM simulation with the detection angle between 30mrad and 

50mrad. We confirmed that strain effect also exists in silicon 110 direction. 

However, elastic contribution of STEM image which is directly affected by strain 

field has the complicated appearance due to asymmetric arrangement of silicon 

atoms. Therefore, it seems confusing to detect the defected column even though 

thermal diffuse scatterings are suppressed. 

 

Figure 24. Relaxed structures of boron dopant, vacancy and surface 

roughness (Si 110 direction) 
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Figure 25. Azimuthal integrations of CBED for a boron dopant case, a 

vacancy case and surface roughness case (Si110 direction) 
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Figure 26. Line scan of simulated STEM images (considering both 

elastic contribution and inelastic contribution): the right column among 

center two columns is the defected column. (Si 110 direction) 
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Figure 27. Line scan of simulated STEM images (considering just elastic 

contribution): the right column among center two columns is the defected column. 

(Si110 direction) 
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4.3 Strontium Titanate 100 Direction 

Many attempts have been made to detect oxygen vacancy in the 

transition metal oxide materials, since the physical properties are significantly 

influenced by the concentration and the dynamics of oxygen vacancies. As 

many applications of the transition metal oxide such as fuel cell, gas sensor, 

RRAM or ferroelectric material are on the rise, visualization of oxygen vacancy 

has been much more required. In this sense, we’ve investigated oxygen 

vacancies in strontium titanate. We conducted structural relaxation due to an 

oxygen vacancy and obtained azimuthal integration through the CBED 

simulations. Though STEM simulation is not carried out yet, it seems possible 

to detect an oxygen vacancy in the TiO column if we use the region between 

35mrad and 50mrad is used. We will calculate STEM simulations, soon or later. 

 

 

  

Figure 28. Relaxed structures of oxygen vacancy in TiO column and 

surface roughness (STO 110 direction) 
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Figure 29. Azimuthal integration of CBED for an oxygen vacancy in TiO 

column and surface roughness (STO 100) 

 

 

 

5. Conclusion 
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We’ve studied the feasibility of detecting a light dopant atoms and a 

vacancy with strain effects through the computer simulation. The strain field is 

simulated by structural reconstructions with First principle calculations and the 

propagation of electron waves is simulated with the multislice calculation, one 

of the dynamic scattering theory. A boron dopant atom, a vacancy in silicon and 

an oxygen vacancy in strontium titanate have been investigated in our study. 

We found that the column with a vacancy in silicon would be 200% brighter 

than other columns if Cs-corrected probe was used and elastically scattered 

electrons toward 30mrad to 50mrad were utilized. We thinks the imaging just 

with elastically scattered electrons is experimentally possible through the cold 

stage holder which suppress thermal diffuse scatterings. Though we’ve not 

carried out the imaging simulation of the strontium titanate case yet, it is 

expected that detecting an oxygen vacancy in TiO column can be achievable 

with elastically scattered electrons toward 35mrad to 50mrad. We hope our 

computer simulation study will give a clue to detect light dopant atoms or a 

vacancy. 
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한글 초록 

 

2000년대 초반 주사투과전자현미경(STEM)의 sub angstrom 분

해능이 구면수차보정 전자기렌즈의 도입으로 가능해진 이후, single 

atomic imaging 혹은 light element imaging과 같은 STEM의 측정한계를 

뛰어 넘으려는 시도가 전자현미경 학계에서 많이 있었다. 2000년대 

중반 HADDF-STEM을 이용해 무거운 원소의 단일원자를 관측하는 

데 성공하였고, 2010년에 들어서는 ABF-STEM을 이용한 가벼운 원소 

기둥 관측을 연달아 성공하였다. 하지만 아직도 가벼운 불순물 원자 

혹은 정공의 관측은 불가능한 것으로 알려져 있다. 우리는 기존 방

법의 틀에서 벗어나 점 결함을 strain effect를 이용하여 측정하면 가

벼운 불순물 원소와 정공을 구분할 수 있지 않을까 기대하고 있다. 

물론 점 결함 하나가 만들어내는 strain field가 산란의 전체적인 양상

을 바꾸지는 못하겠지만 특정 각도에서는 다른 양상으로 산란이 일

어날 수 있다. 만약 우리가 다른 산란 정보를 주는 각도를 예측하고 

그 각도로 산란되는 전자만을 이용하여 imaging한다면, 가벼운 불순

물 원자 및 정공을 시각화하는 것이 가능하다 생각하고 있다.  

본 연구에서는 strain effect를 이용한 가벼운 불순물 원자와 

정공을 관측의 구현 가능성을 컴퓨터 전산모사를 통해 연구하였다. 

점 결함이 만들어내는 Strain field는 제1원리 계산의 일종인 범 밀도 

함수 이론을 이용하여 구현하였고, 물질 내 전자의 산란은 dynamic 

산란 이론의 일종인 multislice 방법을 이용하여 계산하였다. 계산 결

과, 비탄성 산란(열 확산 산란)을 억제시키고 strain effect가 많이 일

어나는 산란각도 만을 이용한다면 가벼운 불순물 원소 및 정공을 
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시각화하는 것이 가능할 것으로 예측하였다. 구체적으로, 30mrad에서 

50mrad 사이의 각도로 탄성산란 된 전자들 만을 이용해 규소 결정

에 들어있는 정공을 imaging한다면, 정공을 가진 기둥이 다른 일반

적인 기둥들 보다 두 배 가량 밝은 contrast를 보임을 계산을 통해 

확인하였으며, STO 내의 정공 역시 35mrad에서 50mrad 산란각도를 

이용하면 정공을 시각화할 수 있을 것으로 예상하고 있다. 물론 실

험을 통해 본 방법을 구현하기 위해서는 아직 CCD의 성능이 필요

할 것으로 생각되지만, 본 연구의 방법으로 가벼운 불순물 원소 혹

은 정공을 시각화하는 데 성공한다면 그 자체 만으로도 전자현미경 

분야에서 의미 있을 뿐만 아니라 인접한 다른 재료 과학분야에도 

큰 기여를 할 수 있을 것으로 기대하고 있다.  

 

주요어: 점 결함 시각화, 전자현미경, 수렴각 전자회절, 주사투과전

자현미경, strain contrast, 전자 산란, dynamic 산란 이론 
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