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Abstract 
 

On the Study of a Robust History Matching 

of Facies Model by Distance-based Method 

and Ensemble Kalman Filter 

 

Seojin Lim 

Department of Energy Systems Engineering 

The Graduate School 

Seoul National University 

 

This paper develops a robust history matching method that improves 

prediction performance of facies models and evaluates interwell connectivity 

by integrating dynamic and static data. Previous studies have been focused on 

matching history based on dynamic data. Thus, it is impossible to predict static 

properties and facies distribution and this results in deterioration of reliability 

of production estimation. The developed method predicts facies distribution by 

selecting training images among multiple training images using distance-based 

method. Reservoir models are regenerated from the selected training images 
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and history matched. The method predicts interwell connectivity accurately 

with 88.7% probability. The prediction performance is improved by 70.9% 

lower error than the conventional method. The proposed method reliably 

predicts the fluid production behavior of reservoir without breakthrough 

information. This paper can improve the prediction performance of fluid 

production. This can contribute to a reasonable production design based on 

reliable facies models obtained from the integration of dynamic and static data. 

 

Keywords: facies model, history matching, distance-based method, training 

image  
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1. Introduction 
 

History matching is an inverse modeling to generate geomodels that shows 

similar production behavior with observed production history. It is necessary to 

predict and optimize future production performance but challenging since it is 

impossible to get a solution that is identical to the earth due to the ill-posed 

nature of the history matching. Thus, reliable optimization method is needed 

for reliable prediction of production performance in history matching. 

History matching algorithms can be categorized as the gradient based 

method and the non-gradient based method. Anterion et al. (1989) suggested 

analytical method using continuous equation and newton method and applied 

to history matching. The results were accurate in case a proper extrapolation 

method was used. Roggero et al. (1998) integrated gradual deformation method 

(GDM) to the gradient based method for preservation of geostatistical 

information. However, the gradient based methods have risk that converge to 

local minimum. To overcome the local minimum problem, the non-gradient 

based method was suggested. Soleng (1999) showed applicability of genetic 

algorithm (GA) for history matching by finding optimum solution in history 

matching of PUNQ-S3 reservoir. Schluze-Riegert et al. (2002) applied 

evolutionary algorithm (EA) and successfully matched history of bottom hole 

pressure (BHP) and fluid production performance. The non-gradient based 

methods have limitation that it is hard to mimic geologic trends since it perturbs 

reservoir properties in a random manner. The previous history matching 

methods are not able to preserve static data since it focuses on matching 

dynamic data and ignored static information. 
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Nowadays, Ensemble Kalman Filter (EnKF), the method that can 

characterize properties of reservoirs, is widely used in history matching. This 

method was first introduced to history matching by Næ vdal and Vefring (2002) 

who reproduce the permeability distribution of synthetic reservoirs using EnKF. 

Gu and Oliver (2005) reproduced both permeability and porosity distribution 

using EnKF.  

However, history matching with facies description is still challenging. 

Sarma and Chen (2009) and Lorentzen et al. (2012) integrated kernel method 

and level set method into EnKF for history matching of facies models 

respectively. They improved history matching performance but there were 

limitation in prediction of fluid production due to failure in prediction of facies 

distribution.  

The objective of this study is developing a robust history matching method 

that improves prediction performance of facies model and is able to evaluate 

interwell connectivity by integrating dynamic and static data. The method relies 

on preprocess of facies model using distance-based method before history 

matching with EnKF. The method predicts facies distribution by selecting 

training images among multiple training images stochastically generated from 

static information using distance-based method. The distance-based method 

allows selecting geomodels that show similar production behavior with true 

history data by defining distance based on dynamic data. Reservoir models are 

regenerated from the selected training images. Part of reservoir models are 

selected from clustering to improve accuracy of prediction of facies distribution 

and history matched. The flow of the developed method is shown in Figure 1.1.  
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This research consists of 5 chapters. Chapter 1 is introduction. Limitations 

of previous researches are revealed and the objective of this research is 

presented. Chapter 2 is theoretical background. Multiple-point geostatistics, 

distance-based method and Ensemble Kalman Filter that are used for 

characterization of facies models and history matching are explained. In chapter 

3, the new robust history matching method is proposed. In chapter 4, the 

proposed method is validated. Conclusions are presented in chapter 5.   
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Figure 1.1 Procedure for characterization of channel reservoir and 

performance prediction. 
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2. Theoretical background 
 

2.1. Multiple-point Geostatistics 

 

The veriogram based method has been generally used for generating 

reservoir models. However, it has limitation that is hard to represent geological 

patterns since it uses only two-point information. Therefore, multiple-point 

geostatistics is used for facies modeling. Unlike two-point geostatistics, 

multiple-point geostatistics can generate reservoir models having geological 

patterns since it captures patterns from a training image by considering spatial 

information of multiple points.  

 

2.1.1. Training image 

A training image is a description of a geologic pattern. Figure 2.1 is the 

schematic diagram of model generation from training image. Training image 

doesn’t have geologic information of specific location. The pattern of the 

training image is reproduced in reservoir models constraining facies of specific 

spots known from core data.  

The size of training image is important. Training image should be large 

more than twice reservoir models to be generated to reproduce channels without 

breaks. On the other hand, smaller training image than reservoir models should 

be used to reproduce small scale pattern.  
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Figure 2.1 Procedure of reservoir model generation using multiple-point 

geostatistics. 
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2.1.2. Single normal equation simulation (Snesim) 

After generation of training image, a method to reproduce patterns of 

training image in reservoir models while core data is preserved is required. One 

of multiple-point geostatistics, Snesim (Guardiano and Srivasta, 1993) 

calibrates probability of each facies at every point from training image by 

considering multiple points nearby. For example, corresponding pattern to ‘?’ 

exists at three points in the training image of the Figure 2.2. The facies of ‘?’ 

is ‘Cat 1’ at one point and ‘Cat 0’ at two points. Therefore, the probability to be 

‘Cat 1’ at ‘?’ is 1/3. Strebelle (2002) applied search tree to make the simulation 

efficient. Search tree saves conditional probability of every case by scanning 

training image only once.  

The procedure of Snesim is as follows (Lee, 2014). 
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Step1. Data template is defined. 

Step2. A training image is scanned by data template. Spatial distribution 

of the training image is saved as conditional probability in a search 

tree. 

Step3. Static data is located in a grid system. Random path is defined. 

Step4. A case which corresponds to the facies information of visited grid 

is searched in the search tree. Facies is allocated in the visited grid 

depending on conditional probability of the case. 

Step5. Step4 is repeated following the random path until facies is 

allocated in every grid. 

 

Reservoir models are generated from a training image by this simulation 

procedure.  
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Figure 2.2 Scanning of a training image for probability evaluation   

(modified from Caers, 2011). 
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2.2. Distance-based method 

 

2.2.1. Concept of distance-based method 

Distance quantifies dissimilarity between two models. The closer the 

distance is, the similar the reservoir models are. Distance can be defined by 

anything but should be highly correlated with the interested object.  

Distance is classified into dynamic based distance and static based 

distance. Static based distance is the distance defining dissimilarity based on 

appearance such as facies distribution and connected hydrocarbon volume 

(CHV). Dynamic based distance is the distance defined by dynamic data which 

are interested or highly related to the interested object. For example, well oil 

production rate (WOPR) and well water cut (WWCT). Suzuki and Caers (2006) 

showed static based distance can be used for history matching by integrating 

Hausdorff distance to searching algorithm. Scheidt and Caers (2009) showed 

dynamic based distance can be used for uncertainty analysis.  

The dynamic based distance have advantage that the distance from true 

value is known but is time consuming since it needs forward simulation. In this 

research, dynamic based distance is used to determine geologic patterns of 

reservoirs.  

The general form of distance calculation between model 𝑥𝑎 and 𝑥𝑏 is 

Minkowski model as shown in equation (2.1) (Park, 2008).  
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𝑑(𝑥𝑎 , 𝑥𝑏) = [∑|(𝑥𝑎)𝑖 − (𝑥𝑏)𝑖|𝑝

𝑇

𝑖=1

]

1/𝑝

 (2.1) 

 

Where, (𝑥)𝑖 is 𝑖𝑡ℎ element of vector 𝑥. 𝑇 is the number of total observation 

time.  𝑝 is the variable defining the distance space. 𝑝 equals 2 if the space is 

Euclidian space. If distances between N reservoir models are calculated, N ×

N distance matrix is made and can be visualized in 2 dimensional space by 

multi-dimensional scaling (MDS).  
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2.2.2. k-medoid clustering 

Clustering is a grouping method that can group models having similar 

characteristics. Clustering allows selecting models showing similar production 

behavior without analyzing production behaviors one by one. The procedure of 

k-medoid clustering used in this research is as follows. It is illustrated in Figure 

2.3. Cluster centers are selected among existing points in a distance space. 

 

Step1. Cluster centers are selected randomly. 

Step2. A distance from each cluster center to each model is calculated.  

Step3. Each model is allocated in the cluster of the nearest cluster center.  

Step4. The models of which the mean of distance is smallest among 

models in same cluster become new cluster centers.  

Step5. Step 2-4 are repeated until the cluster centers don’t change 

anymore.  
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(a) Step1                     (d) Step5 

 

(b) Step2-3                    (c) Step4 

Figure 2.3 Procedure of k-medoid clustering: (a) Cluster centers chosen 

randomly, (b) allocation of models to each cluster, (c) cluster centers 

updated and (d) iteration of (b)-(c) until cluster centers are fixed. 
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2.2. Ensemble Kalman Filter 

 

Ensemble Kalman Filter (EnKF) is composed of prediction step and 

assimilation step. In the prediction step, reservoir models are simulated from a 

present observation time to a next observation time. In the assimilation step, 

reservoir models are corrected based on observed data. The correction 

procedure is conducted using state vector 𝑥𝑘 in equation (2.2) (Evensen, 1994). 

The state vector consists of three vectors: static variables, 𝑚𝑘
𝑠 , such as 

permeability and porosity, dynamic variables, 𝑚𝑘
𝑑 , such as pressure and 

saturation and model predictions, 𝑑𝑘, such as well oil production rate (WOPR) 

and well water cut (WWCT). A ensemble is a reservoir model. 

 

𝑥𝑘,𝑗 = [

𝑚𝑘
𝑠

𝑚𝑘
𝑑

𝑑𝑘

]

𝑗

, j = 1, 2, … , 𝑁𝑒 (2.2) 

 

Where,  𝑘 : observation time 

 𝑗 : 𝑗th ensemble 

 

The prediction step is conducted using initial ensembles. EnKF is time 

efficient method since it simulates all ensembles simultaneously. The equation 

(2.3) is input and output of the prediction step.  
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[
𝑚𝑘

𝑑

𝑑𝑘
] = 𝑓(𝑚𝑠, 𝑚𝑘−1

𝑑 ) (2.3) 

 

The assimilation step begins using observation data obtained from the 

prediction step. EnKF corrects ensembles to minimize estimated error 

covariance. The mean of state vectors from all ensembles is assumed to be the 

estimated error since the true state vector is unknown (equation (2.4)).  

 

𝑒𝑘,𝑗
− ≡ 𝑥𝑘 − 𝑥𝑘,𝑗

− ≅ 𝑥̅𝑘 − 𝑥𝑘,𝑗
−  (2.4) 

 

Where,  𝑒𝑘,𝑗
−  : estimated error 

 𝑥𝑘 : true value of state vector 

 𝑥𝑘,𝑗
−  : state vector of each ensemble 

 𝑥̅𝑘 : mean of state vectors from all ensembles 

 

The estimated error covariance is calculated from the estimated error using 

equation (2.5).  
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𝑃𝑘
− ≡ 𝐸[𝑒𝑘

−𝑒𝑘
−𝑇] =

1

𝑁𝑒 − 1
∑ 𝑒𝑘,j

− 𝑒𝑘,j
−𝑇

𝑁𝑒

j=1

 (2.5) 

 

Where,  𝑃𝑘
− : estimated error covariance 

 𝑁𝑒 : the number of ensemble 

 𝑗 : 𝑗th ensemble 

 

Kalman gain, 𝐾𝑘 is the weight vector that minimizes the estimated error 

covariance. It is calculated using equation (2.6). State vectors are updated using 

Kalman gain (equation (2.7)).  

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅𝑘)−1 (2.6) 

𝑥𝑘,𝑗 = 𝑥𝑘,𝑗
− + 𝐾𝑘(𝑑𝑜𝑏𝑠 + 𝑣𝑘,𝑗 − 𝐻𝑘𝑥̂𝑘,𝑗

− ) (2.7) 

 

Where,  𝑅𝑘 : observation error covariance 

 𝐻 : observation vector 

 𝑑𝑜𝑏𝑠 : observed data 

 𝑣𝑘,𝑗 : observation error 
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𝑣𝑘,𝑗 is the error originated from measurement tool or method. It is random 

normalized error of which average is 0 and covariance is 𝑅𝑘. H is a vector 

composed of 0 and 1 in order to extract corresponding variables to observation 

data. Updated state vectors become input for the next prediction step.  
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3. Development of a new history matching method 
 

This paper proposes a robust history matching method that integrates 

dynamic and static data using EnKF coupled with distance-based method. The 

proposed method considers static information by using multiple training images. 

By selecting proper training image, the method predicts spatial distribution of 

geologic facies accurately and improves performance of history matching. The 

procedure is described in Figure 3.1. The proposed method is consisted of three 

steps: the first step, selection of training image, is presented in section 3.1. The 

second step, reproduction of facies model, is presented in section 3.2. The last 

step, history matching with Ensemble Kalman Filter, is presented in section 3.3. 
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Figure 3.1. Flow chart of the proposed method. 
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3.1. Selection of training image 

 

In the selection step, facies distribution is predicted by selecting training 

image. Firstly, multiple training images are generated based on static data. 

Facies models are produced from training images. Secondly, the facies models 

are simulated. Lastly, distances between facies models are calibrated using 

dynamic data obtained from simulation to characterize facies distribution. The 

distance is defined as difference of production behavior between models. 

Distances between N+1 vectors which are N prediction vectors and 1 observed 

production history data vector are calculated by equation (3.1). As a result, 

facies models that show similar production behavior with the observed data are 

located nearby the reference field in a distance map. The closest 5 models from 

the observed history are selected in each distance map as shown in Figure 3.2. 

The reason why select 5 models is presented in Appendix A. Training images 

that generated the selected models become the source of reproduction. 

 

𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗), 𝑖, 𝑗 = 1, 2, … , N, N + 1 (3.1) 

 

Where,  𝑖, 𝑗 : number of a reservoir model 

 𝑥 : vector of production behavior 
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(a) WOPR of P1                (b) WOPR of P2 

Figure 3.2 2D distance maps of response parameters: (a) WOPR of a             

production well P1 and (b) WOPR of the other production             

well P2. 
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3.2. Reproduction of facies model 

 

In the reproduction step, ratio of facies models from each training image 

is adjusted. Among the training images selected in section 3.1., the closer the 

training image is to the observed production history, the more the training image 

reproduces facies models.  

Regeneration ratio of facies model is determined depending on distance 

weight 𝑤𝑖
𝑜  defined as equation (3.2). Distance weight is proportion of a 

reciprocal of distances between the reservoir models selected and the observed 

history divided by the number of response parameters since the weight of each 

response parameter is all the same. Response parameter is object of history 

matching such as oil production rate and water cut. Each training image used 

to generate the 𝑖𝑡ℎ reservoir model selected reproduces 𝑇𝐼𝑖 reservoir models 

as equation (3.3). 

Reproduced facies models are simulated and distance is calculated from 

newly simulated data. Facies models allocated in same cluster with the 

observed production data are selected. Figure 3.3 shows an example of facies 

model selection. In Figure 3.3(a), observed production history is belong to 

cluster2. In Figure 3.3(b), it is belong to cluster3. Facies models involved in 

cluster2 of Figure 3.3(a) and cluster3 of Figure 3.3(b) are selected. Sum of 

cluster2 of Figure 3.3(a) and cluster3 of Figure 3.3(b) becomes initial 

ensemble for history matching with Ensemble Kalman Filter. The number of 

cluster is determined as a number which makes the number of the sum around 
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100 since the minimum number of ensemble which allows Ensemble Kalman 

Filter operate without any serious error is it generally. 

 

𝑤𝑖
𝑜 =

1

𝑁𝑜
× (

1
𝑑𝑖

𝑜

∑
1

𝑑𝑖
𝑜

5
𝑖=1

⁄ ) (3.2) 

𝑇𝐼𝑖 = 𝑤𝑖
𝑜 × 𝑁 (3.3) 

 

Where,  𝑑𝑖
𝑜 : the distance between  𝑖𝑡ℎ  reservoir model selected and the 

observed history 

 o : number of the response parameter 

 𝑁𝑜 : the number of the response parameters 

 𝑇𝐼𝑖 : the number of regenerated facies models using the training 

image from 𝑖𝑡ℎ reservoir model selected 

 𝑁 : the number of initial reservoir models 
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(a) WOPR of P1                 (b) WOPR of P2 

Figure 3.3 Clustering and selection of facies models: (a) WOPR of a 

production well P1 and (b) WOPR of the other production well P2.  



 

25 

 

3.3. History matching with Ensemble Kalman Filter 

 

History matching is performed using facies models obtained from the 

aforementioned preprocessing procedure. Ensemble Kalman Filter is used for 

the history matching. Permeability distribution is updated using production 

performance data newly simulated. Facies distribution data required for 

forward simulation is determined in the preprocessing step.  
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4. Results and discussion 
 

A reservoir used for validation of the proposed model is a synthetic 

channeled reservoir. The assumptions used in characterization of facies model 

are as follows. 

 

- Channeled reservoirs are consisted of two facies: sand and shale. The 

permeability and porosity of sand is 2,000 md and 0.3 respectively. 

That of shale is 20 md and 0.15.  

- Flow behavior follows two phase flow: oil and water. 

- History matching is conducted during 360 days and production 

behaviors are predicted until 1,800th day. Time step is 60 days.  

- The number of initial ensemble is 360.  

 

Channeled reservoir models are generated by SGeMS (Stanford 

Geostatistical Modeling Software) and history matched by EnKF. ECLIPSE100 

of Schlumberger is used for forward simulation.  

Average relative error is estimated for the quantitative evaluation of 

performance as equation (4.1). 
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𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
× 100

𝑁

𝑡=1

 (4.1) 

  

Where,  𝑁 : The number of observed time 

 

The reference field is described in section 4.1. The result of preprocessing 

of facies model using the proposed method is presented in section 4.2. The 

performance prediction of the proposed method is evaluated in section 4.3. The 

effects of multiple training images are analyzed in section 4.4. The robustness 

of the method is verified in section 4.5. The discussion is in section 4.6. 
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4.1. Reservoir description 

 

4.1.1 Reference field description 

A reference field is cuboid reservoir of which the length and the width are 

2,500 ft and depth is 20 ft. It has high permeable sand channel of 2,000 md and 

low permeable shale matrix of 20 md. The porosity of sand and shale are 0.3 

and 0.15 respectively. The distribution of reference permeability and porosity 

are described in Figure 4.1. Relative permeability and capillary pressure curves 

of sand and shale are shown in Figure 4.2 and 4.3 respectively. 400 STB of 

water is injected every day in one injector, I1. Oil is produced in two production 

wells, P1 and P2, under condition of 500 psia. The simulation information and 

well data are shown in Table 4.1 and 4.2.  
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(a) Permeability (log md) 

 

(b) Porosity (fraction) 

Figure 4.1 Permeability and porosity distribution of the reference field. 
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Figure 4.2 Relative permeability curves of sand and shale. 

 

 

Figure 4.3 Capillary pressure curves of sand and shale. 
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Table 4.1 Simulation information of the reference field and reservoir         

models 

Property Value 

Grid size 50×50 

Width (ft) 2,500 

Length (ft) 2,500 

Thickness (ft) 20 

Porosity (fraction) 
Sand 0.3 

Shale 0.15 

Initial pressure (psia) 2,000 

Permeability (md) 
Sand 2,000 

Shale 20 

 

 

Table 4.2 Well information and boundary conditions of the reference field 

and reservoir models 

Well Location (ft) Control mode Facies 

Injection well I1 (500, 500) 400 STB/day Sand 

Production well 
P1 (500, 2,000) 500 psia Sand 

P2 (2,000, 2,000) 500 psia Sand 
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4.1.2. Comparison model description 

The proposed model is compared with the conventional method which is 

the original Ensemble Kalman Filter without preprocessing of facies model. 

The difference between them is described in Table 4.3. The comparison model 

uses the training image of which the orientation is 45° and the width is 2 for 

generation of facies models. It matches history using Ensemble Kalman Filter.  
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Table 4.3 Comparison between the proposed model and the comparison 

model 

Characteristic The proposed model The comparison model 

Training image 

Multiple training images Single training image 

 
 

  
Orientation: 45°, Width: 2 

Methodology 

Selection of training image 

 
Reproduction of 

facies model 

 
EnKF 

EnKF 

* Orientation:  
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4.2. Model development 

 

Facies prediction is performed using the proposed method. Sensitivity 

analysis, selection of training image, reproduction of facies model and 

clustering are proceeded sequentially. 

 

4.2.1. Sensitivity analysis 

Distance-based generalized sensitivity analysis (DGSA, detailed 

explanation about DGSA is presented in Fenwick et al., 2014) is used for 

sensitivity analysis of uncertainty parameters in generation of training image. 

Uncertainty parameters for training image in SGeMS are channel width, 

thickness, orientation and net-to-gross ratio (NTG). Channel thickness is 

ignored since 2D reservoir models are used in this research. The response 

parameter is oil production rate. 

Figure 4.4 shows the result of sensitivity analysis. Channel width and 

orientation are effective to oil production rate. Therefore, those two parameters 

are used as uncertainty parameters for the generation of training images.  
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Figure 4.4 Result of sensitivity analysis. 

 

  



 

36 

 

4.2.2. The selection of training images 

12 training images varies in channel orientation and width are generated 

as shown in Table 4.4. 360 reservoir models are generated from the training 

images (30 reservoir models each). Other characteristics of training images are 

described in Table 4.5.  

Training images selected are shown in Figure 4.5. 4 training images, TI1 

(orientation=0°, width=2), TI2 (orientation=0°, width=6), TI3 (orientation=0°, 

width=10) and TI6 (orientation=45°, width=10), are selected and 3 of them 

which are TI1, TI2 and TI3 generate facies models that have identical interwell 

connectivity with the reference field.  
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Table 4.4 Uncertainty parameters of training images 

Training image name 
Orientation 

(°) 

Width 

(unitless) 

Reference TI 0 6 

TI1 0 2 

TI 2 0 6 

TI 3 0 10 

TI 4 45 2 

TI 5 45 6 

TI 6 45 10 

TI 7 90 2 

TI 8 90 6 

TI 9 90 10 

TI 10 135 2 

TI 11 135 6 

TI 12 135 10 

* Orientation:  
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Table 4.5 Constant parameters of training images 

Parameter Value 

Grid size 250×250 

Length (unitless) 10,000 

Thickness (unitless) 1 

Amplitude (unitless) 5 

Net-to-gross ratio (fraction) 0.2 
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(a) TI2                       (b) TI3 

    

(c) TI1                       (b) TI6 

Figure 4.5 Training images selected: (a) TI2 (Orientation is 0° and width is 

6), (b) TI3 (Orientation is 0° and width is 10), (c) TI1 (Orientation is 0° and 

width is 2) and (d) TI6 (Orientation is 45° and width is 10). 

 

  

Sand 

Shale 
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4.2.3. The reproduction of facies model 

Reproduction ratio of training images are shown in Figure 4.6. 

Reproduction of facies model is proceeded using TI1, TI2, TI3 and TI6 that 

selected in section 4.2.2. Among the reproduced 360 facies models, 65.2% is 

from TI2, 13.3% is from TI3, 11.3% is from TI6 and 10.2% is from TI1.  

Training images that generate facies models having identical interwell 

connectivity with the reference field reproduce 88.7% of total facies models. 

TI2 which have identical characteristic with the reference field in the 

perspective of facies distribution reproduces facies models dominantly by 

65.2%.  

Total 104 facies models are selected from the clustering after simulation 

with reproduced models. 
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Figure 4.6 Reproduction ratio of training images. 
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4.3. Evaluation of performance prediction 

 

The history matching and prediction results from the comparison model 

and proposed model are shown in Figures 4.7-4.10. In the production 

estimation of oil, the true value is out of uncertainty range of the comparison 

model, whereas it is within uncertainty range of the proposed model as shown 

in Figures 4.7 and 4.8. The average relative error between oil production rate 

of P50 and reference is 90.6% in the comparison model and 19.7% in the 

proposed model.  

The proposed method predicts water breakthrough time more accurately 

than the comparison model as shown in Figures 4.9 and 4.10. Especially, the 

comparison model make wrong estimation in water production of P2 due to 

misinterpretation about interwell connectivity between I1 and P2. It expects 

water breakthrough in P2 on or after the 1000th, whereas there is no water 

breakthrough in the reference field during the entire prediction period.  
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(a) 

 

(b) 

 

 

Figure 4.7 Oil production rate of P1: (a) the comparison method and (b) 

the proposed method. 
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(a) 

 

(b) 

 

 

Figure 4.8 Oil production rate of P2: (a) the comparison method and (b) 

the proposed method. 
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(a) 

 

(b) 

 

 

Figure 4.9 Prediction of water breakthrough time from water cut of P1:       

(a) the comparison method and (b) the proposed method. 
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(a) 

 

(b) 

 

 

Figure 4.10 Prediction of water breakthrough time from water cut of P2:        

(a) the comparison method and (b) the proposed method. 
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4.4. Effects of multiple training images 

 

Multiple training images are used for generating facies models to consider 

geological uncertainty. To evaluate the effects of multiple training images, 

facies models are generated from multiple training images and matched to 

history using the methods as follows.  

 

- EnKF  

- EnKF coupled with clustering 

- The proposed method: EnKF coupled with the selection of training 

image, reproduction of facies model and clustering 

 

The effect of using raw multiple training images and training images passed 

selection procedure are analyzed in this section. 

The results of history matching and prediction are shown in Figures 4.11-

4.14. The original EnKF fails history matching due to the high uncertainty of 

facies distribution (Figures 4.11(a) and 4.12(a)). Even though the clustering 

procedure improves accuracy by selecting facies distribution having similar 

production behavior with the true value, EnKF coupled with clustering fails 

history matching too (Figures 4.11(b) and 4.12(b)).  The proposed model 

matches history accurately and predicts production performance within 

allowable error range (Figures 4.11(c) and 4.12(c)). The average relative error 

between oil production rate of P50 and reference is 36.5% in the result from the 



 

48 

 

original EnKF, 20.1% in the result from the EnKF coupled with clustering and 

19.7% in the result from the proposed model. Also, the proposed method 

predicts existence of water breakthrough and the time of it accurately as shown 

in Figures 4.13 and 4.14.  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.11 Oil production rate of P1: (a) EnKF and (b) EnKF with 

clustering and (c) the proposed method. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.12 Oil production rate of P2: (a) EnKF and (b) EnKF with 

clustering and (c) the proposed method. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.13 Water cut of P1: (a) EnKF and (b) EnKF with clustering and 

(c) the proposed method. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.14 Water cut of P2: (a) EnKF and (b) EnKF with clustering and 

(c) the proposed method. 
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4.5. Robustness test 

 

The situation adding a new Injection well is assumed. Prediction is 

proceeded assuming a new injection well, I2, is added at the location of (1,900 

ft, 1,750 ft). Facies distribution and well location in the results from each 

method is described in Figure 4.15. I2 starts water injection at 360th day. The 

production changes due to the additional water injection are shown in Figures 

4.16-4.19. The average relative error between oil production rate of P50 and 

reference is 51.1% in the result of the comparison model, 21.0% in the result of 

the proposed model. Also, the proposed method predicts the water 

breakthrough time and oil-water ratio more accurately than the comparison 

model as shown in Figures 4.18 and 4.19. The proposed model is able to predict 

future production with the change in well composition accurately based on 

reliable prediction of facies distribution.  
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(a) Facies distribution of the reference field 

 
(b) Mean of facies distributions of the comparison model 

 
(c) Mean of facies distributions of the proposed model 

Figure 4.15 Facies distribution and the location of newly added well, I2. 
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(a) 

 

(b) 

  

 

Figure 4.16 Oil production rate of P1: (a) the comparison method and (b)         

the proposed method. Red line describes the true value in case the new well, 

I2, injects water and pink line describes the true value in case no well added. 

Blue lines are P10, 50, 90. 
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(a) 

 

(b) 

 

 

Figure 4.17 Oil production rate of P2: (a) the comparison method and (b)     

the proposed method. Red line describes the true value in case the new well, 

I2, injects water and pink line describes the true value in case no well added. 

Blue lines are P10, 50, 90. 
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(a) 

 

(b) 

 

 

Figure 4.18 Water cut of P1: (a) the comparison method and (b) the           

proposed method. Red line describes the true value in case the new well, 

I2, injects water and pink line describes the true value in case no well added. 

Blue lines are P10, 50, 90. 
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(a) 

 

(b) 

 

 

Figure 4.19 Water cut of P2: (a) the comparison method and (b) the 

proposed method. Red line describes the true value in case the new well, 

I2, injects water and pink line describes the true value in case no well added. 

Blue lines are P10, 50, 90.  
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4.6. Discussion 

 

The developed model improves prediction performance of production 

behavior based on reliable facies model obtained from the preprocess 

integrating dynamic and static data. However, the proposed model finishes 

prediction of facies distribution at the preprocessing step—step1. Selection of 

training image and step2. Reproduction of facies model. In history matching 

step with Ensemble Kalman Filter, it modifies permeability distribution while 

faices distribution is fixed. To improve the performance of the proposed model, 

it is recommended to reproduce facies itself by applying a tool that can suggest 

criteria such as level set method. Additionally, this approach will be efficient to 

maintain bimodal distribution, which is representative characteristic of 

channeled reservoir.  
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5. Conclusions 
 

This paper develops a new history matching method that allows reliable 

prediction of facies distribution and production performance by integrating 

dynamic and static data. The conclusions are as follows.  

 

1. This paper proposes the history matching method that can predict both 

facies and permeability distribution reliably by Ensemble Kalman 

Filter coupled with distance-based method. The closest training 

images to observed history are selected using distance-based method 

to integrate the static data. Facies and permeability distributions are 

estimated and future production is predicted by reproducing the facies 

model from the selected training images and history matching with 

Ensemble Kalman Filter. 

 

2. The proposed method predicts interwell connectivity with 88.7% 

accuracy. The prediction error for the oil production rate using the 

proposed method is 70.9% lower than that using the conventional 

method. 
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3. Multiple training images allows securing diversity but it is hard to 

characterize the facies model due to its high uncertainty. The selection 

procedure reduces the prediction error for production performance by 

16.6% on average compared to Ensemble Kalman Filter without a 

selection procedure. The proposed method predicts the water 

breakthrough time more accurately than the other methods by around 

200 days.  

 

4. The proposed method is able to predict the facies distribution reliably 

using dynamic data without a water breakthrough time. The method 

accurately predicts the production change originated from adding a 

new injection well based on reliable prediction of the facies 

distribution.  

 

This paper can contribute to reliable prediction of production performance 

and reasonable decision making based on the ability that predicts facies 

distribution stably and accurately.   
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Appendix A. Determination of the optimum 

number of training images 
 

The purpose of the selection of reservoir models using distance-based 

method is increasing accuracy of history matching by characterizing channels 

using reservoir models showing similar production behavior with observed data. 

Selecting few reservoir models has risk that only improper training images are 

to be selected and selecting too many reservoir models results in high 

uncertainty. Accuracy of history matching decreases in both cases. Therefore, 

it is important to select the proper number of reservoir models that makes proper 

training images selected most dominantly. 

Figure A.1 shows the average probability of improper training images to 

be selected depending on the selecting number of reservoir models. For the 

generalization of selecting number, the selection procedure was conducted 

several times using diverse reference fields having different interwell 

connectivity. The proper training image is defined as the training image that has 

identical value with the training image of each reference field in the perspective 

of channel width and orientation. The other training images are regarded as 

improper ones.  

The performance of the selection is the most accurate when the 5 nearest 

models are selected on average. Therefore, 5 reservoir models are selected at 

every response parameter.  
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Figure A.1 Error variance depending on the number of selected reservoir 

models. 
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요약(국문초록) 

이 연구는 동적 및 정적 자료의 통합을 통해 불균질 저류층의 

유체 생산추이 예측성능을 향상시키고, 유정 간 유체거동 연결성을 

규명할 수 있는 히스토리매칭 모델을 개발하였다. 기존 

히스토리매칭은 주로 동적 자료의 매칭에 집중하였기 때문에, 정적 

물성과 암종 분포의 예측은 불가능하였고 장기적인 생산추이 예측의 

신뢰도가 낮았다. 이 연구에서 개발한 히스토리매칭 기법은 정적 

자료의 불확실성을 포함한 다수의 트레이닝 이미지를 생성한 후 

거리기반방법을 이용한 트레이닝 이미지 선택을 통해 암종 분포를 

예측하였다. 예측한 암종 분포를 따르는 저류층 모델을 

다점지구통계기법을 이용하여 재생산하고 히스토리매칭하였다. 

트레이닝 이미지 선택 결과 유정 간 연결성을 88.7%의 높은 확률로 

예측하였다. 저류층 물성 교정만 가능했던 기존의 히스토리매칭 

기법과는 달리 암종모델 전처리 과정을 거친 제안 기법은 저류층 

물성과 암종 분포의 교정이 모두 가능하였다. 기존 방법에 비해 유체 

생산추이의 오차가 70.9% 감소되어 향상된 예측성능을 보였다. 물 

돌파 정보가 없는 경우에도 암종모델의 높은 신뢰도를 확보함으로써 

실제 생산추이에 가깝게 예측하였다. 이 연구결과는 동적 및 

정적자료의 통합을 통해 신뢰도 높은 암종모델을 구성할 수 있어, 

생산추이 예측의 안정성을 제고하고 합리적인 생산설계를 가능하게 

한다. 

 

주요어: 암종모델, 히스토리매칭, 거리기반방법, 트레이닝 이미지 

학번: 2014-20529 
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