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 This paper presents a tree search algorithm for the three-dimensional 

container packing problem (3D-CPP). There are many practical requirements 

for the 3D-CPP, and this paper considers the orientation, guillotine cutting, and 

complete-shipment constraints. A wall-building approach and the tabu search 

algorithm are used to maximize the volume utilization of the container. The 

famous Bischoff and Ratcliff test data from 1995 are used for testing the 

algorithm. This algorithm can quickly find an appropriate container packing 

plan with high volume utilization. Furthermore, it can offer a packing pattern 

that satisfies the complete-shipment constraint. It is easy and intuitive for staff 

to understand and can be quickly implemented. 

 

Keywords : Container packing problem, Guillotine cutting pattern, 

Complete-shipment, Wall-building approach, Tree search, Tabu search 

 

Student Number : 2014-20631  



 

ii 
 

Contents 

Chapter 1. Introduction ........................................................ 1 

Chapter 2. Literature review ............................................... 7 

Chapter 3. Problem description ......................................... 12 

3.1. Basic assumption .................................................... 12 

3.2. Wall-building approach ......................................... 14 

3.3. Tree search algorithm ........................................... 17 

3.4. Tabu search algorithm ........................................... 18 

Chapter 4. The proposed algorithm ................................... 23 

4.1. Creation of an initial strip ...................................... 23 

4.2. Derivation of additional strips from the initial 

strip 24 

4.3. Creation of walls .................................................... 26 

4.4. Satisfaction of the complete-shipment 

constraint .............................................................................. 28 

4.5. Establishment of the entire algorithm ................... 28 

Chapter 5. Computational experiments.............................. 31 

5.1. Test data and valuable resources ......................... 31 

5.2. Test results without the complete-shipment 

constraint .............................................................................. 33 

5.3. Test results with the complete-shipment constraint

 38 

Chapter 6. Conclusions ...................................................... 42 



 

iii 
 

Bibliography ....................................................................... 44 

초    록 .............................................................................. 47 

 

  



 

iv 
 

List of Tables 
 

Table 1 Summary of the contributions of relevant papers ............................... 11 

Table 2 Example of the BR test data ............................................................... 31 

Table 3 Comparison of test results for the 700 instances from BR1-BR7 without 

the complete-shipment constraint .................................................................... 35  

Table 4 Comparison of test results for the 700 instances from BR1-BR7 with 

the complete-shipment constraint .................................................................... 39 

 
 

  



 

v 
 

List of Figures 
 

Figure 1 Six possible orientations of a box ...................................................... 4 

Figure 2 Example of cutting patterns: (a), (c) guillotineable; (b), (d) 

nonguillotineable ...................................................................................... 5 

Figure 3 3D coordinate system ....................................................................... 12 

Figure 4 Residual space.................................................................................. 13 

Figure 5 Definition of (a) strip and (b) wall ................................................... 16 

Figure 6 Tree search algorithm ....................................................................... 17 

Figure 7 Examples of moves .......................................................................... 21 

Figure 8 Container packing procedure and a solution of an example from the 

BR1 data ................................................................................................. 33 

Figure 9 Correlation between computation time and iteration ....................... 36 

Figure 10 Correlation between the tabu tenure and the iteration ................... 36 

Figure 11 Trend of the standard value and the tabu tenure ............................ 37 

Figure 12 Comparison of the HAGC with other relevant algorithms ............ 37 

Figure 13 Correlation between the volume utilizations and number of box types

 ................................................................................................................ 40 

Figure 14 Comparison of two volume utilizations ......................................... 41 

 

  



 

1 
 

Chapter 1. Introduction 

 

As transportation and communication technologies have become more 

numerous and the world trade becomes increasingly globalized, logistics has 

become a key factor for companies seeking to maximize their profits. There are 

many transportation modes, and a container is one of the most effective, 

convenient, and relatively economical modes for use in maritime trade. Because 

of its importance, many researchers are carrying out studies on containers, such 

as the development of a foldable container and an operation system for empty 

containers. 

Many types of containers are used for oceanic and land transportation. The 

dry container is the standard for loading environment-insensitive cargos such 

as raw materials and clothes. The reefer container is used for temperature-

sensitive cargos. Temperature can be controlled inside the reefer container, so 

it is suitable for loading food. In addition to these containers, there are many 

varieties, such as the open top and the flat rack container for specific cargo. 

Typical containers are 20ft- or 40ft-long. Most have the same 8ft width and 

8.6ft height.  

The three-dimensional container packing problem (3D-CPP), also known 

as a container loading problem, is the subject of important practical and 

academic research. In the real world, managers must determine the best way to 

load cargo into a specified number of containers. Most of managers do not 

depend on a scientific decision maker but rather on their experience and luck, 

which causes a waste of money for their companies.  
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Research on the container packing problem has led to the development of 

various container packing algorithms and systems. These algorithms and 

systems can offer efficient and effective container packing plans that companies 

can use to increase their profits.  

The 3D-CPP is also an important subject in the literature of operations 

research (OR). It can be considered a three-dimensional extension of the cutting 

stock problem. The objective of the cutting stock problem is to minimize loss 

by partitioning stock adequately. Similarly, the objective of the 3D-CPP is to 

minimize loss (i.e. to maximize the volume utilization). In the case of the 

multiple container packing problem, the objective is to minimize the cost or the 

number of used containers. Because of the complexity of real-world situations 

and many practical constraints, container packing problems as well as cutting 

stock problems are valuable research areas in the OR literature. 

Variations of the 3D-CPP can be categorized in accordance with specific 

characteristics. Wäscher et al. (2007) proposed a typology and an SLOPP 

(single large-object placement problem); the typology is considered in this 

thesis. There are two sets of elements of a 3D-CPP: a set of containers (input) 

and a set of boxes (output). All of the 3D-CPPs can be categorized as either an 

input minimization problem or output maximization problem, or they can be 

considered a 3D bin packing problem or 3D knapsack problem, respectively. 

The SLOPP belongs to the output maximization category. 

According to the typology of Wäscher et al. (2007), the difference between 

the SKP (single knapsack problem) and the SLOPP is the degree of 

heterogeneity of box types. A box type is defined by its three dimensions; that 

is, the size of a box determines the box type. When one type of box is considered, 
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it is described as homogeneous. If there are only a few types with many boxes 

per type, then the boxes constitute a weakly heterogeneous box set. The SLOPP 

assumes a set of weakly heterogeneous boxes; however a variety of box types 

with a relatively small number of boxes per type is a strongly heterogeneous 

box set. The SKP assumes a set of strongly heterogeneous boxes. This paper is 

based on a weakly heterogeneous box set: an SLOPP.  

The 3D-CPP is difficult to solve because of its complexity conferred by 

the three-dimensional characteristics. Three basic geometric conditions must be 

satisfied for some box arrangements to be feasible: 

- All boxes must be loaded within a container. 

- No boxes can overlap each other. 

- All boxes must be parallel with the face walls of a container. 

In addition to these constraints, there are many practical constraints. 

Among them, three constraints are imposed in this paper: 

Orientation constraint. If three dimensions of a box can be placed in a 

vertical orientation, then a box can lie six ways, as in Figure 1. In reality, 

however, some vertical orientations are prohibited. We prohibit up to two 

vertical orientations for each box type.  
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Guillotine cutting constraint. In multi-dimensional cutting stock problems, 

staff has trouble implementing complex cutting patterns. These patterns are not 

practical. A guillotine cutting pattern can be described intuitively and used to 

pack items easily. It is derived from the 2D cutting stock problem. A pattern is 

said to be guillotineable if it can be obtained by a series of simple guillotine 

cuts in parallel to the edge of the stock. In this thesis, if the top view of a 3D 

loading pattern is guillotineable, the pattern is deemed consistent with a 

guillotine cutting pattern. Figure 2 shows some examples of guillotine patterns 

and non-guillotine patterns. 

Complete-shipment constraint. In the output maximization problem, items 

may not be loaded within a single container and some items may be inevitably 

left behind. However, if any part of a subset is packed, then all of the other 

boxes of the subset also should be packed within the same container. For 

example, if a set of kitchen furniture consists of a sink, a cook stove, a range 

Figure 1 Six possible orientations of a box 
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hood, several cabinets, a dining table, and four dining chairs, it is efficient to 

load all these together within the same container. This constraint can be applied 

to various situations:  

- Specific types of box should be loaded together.  

- The number of packed boxes of a specific type should be a multiple of 

a given lot size. 

A group consisting of several box types (e.g. two boxes of type 1, a box of type 

2, and a box of type 3) must be packed together. Whereas the orientation 

constraint is considered in most of the relevant papers, few researchers have 

consider the guillotine cutting and complete-shipment constraints in spite of 

their practical importance.  

In this thesis, the orientation, guillotine cutting, and complete-shipment 

constraints are considered with heuristic methods. A wall-building approach 

and a tree search algorithm are used for satisfying the guillotine cutting 

Figure 2 Example of cutting patterns: (a), (c) guillotineable; (b), (d) nonguillotineable 
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constraint and a tabu search is used to increase the container volume utilized.  

This paper is organized as follows. Chapter 2 provides a literature review 

on the 3D-CPP and relevant constraints and methods. Chapter 3 includes the 

specific problem definition and description as well as the explanation of used 

methods. In Chapter 4, a container packing algorithm named HAGC (heuristic 

algorithm with the guillotine cutting and complete-shipment constraints), based 

on a tree search and a tabu search, is presented. Chapter 5 is dedicated to 

computational experiments, and Chapter 6 summarizes this thesis and presents 

some perspectives for future research.  
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Chapter 2. Literature review 

 

The 3D-CPP is a three-dimensional extension of the cutting stock problem, 

which is a well-known NP-hard problem in the OR literature. Since Gilmore 

and Gomory (1965) first addressed problems more complex than those 

involving 2D cutting stock cases, the 3D-CPP has been studied actively and 

many papers and algorithms have been presented for solving the problem.  

Three papers give particularly valuable insights on research of the 3D-CPP. 

Bischoff and Ratcliff (1995) proposed some practical requirements for the 3D-

CPP, such as load stability and shipment priorities constraints. This paper also 

offered 700 instances of test data for the SLOPP and these data are also adopted 

in the research presented in this thesis. Wäscher et al. (2007) presented up-to-

date typology on cutting and packing problems. Bortfeldt and Wäscher (2013) 

presented a state-of-the-art review paper classifying the problems in accordance 

with the typology of Wäscher et al. (2007) and practical constraints. The 

authors analyzed and reviewed 163 papers published between 1980 and 2011.  

According to Bortfeldt and Wäscher (2013), 96 papers (58.9%) dealt with 

the output maximization problem, and among the total reviewed, 37 papers 

(22.7%) addressed the SLOPP. Davies and Bischoff (1999) dealt with an 

SLOPP and an SKP by considering weight distribution. The authors developed 

a new container loading heuristic with post-processing approaches to distribute 

cargo weight evenly. Eley (2002) considered heterogeneous single and multiple 

container packing problems. The author presented a block-building approach 

in which a block consists of the same identically oriented items. A tree search 

was also used and some conditions, such as load stability, were considered. Ren 
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et al. (2011) addressed an SLOPP with the shipment priority constraint. Their 

algorithm is also based on a block-building approach and a tree search. Moon 

and Nguyen (2014) presented an MIP (mixed integer programming) 

formulation and a hybrid genetic algorithm for solving an SLOPP. Their paper 

also considered weight limit and distribution constraints. 

A few papers dealt with guillotine cutting and complete-shipment 

constraints. Amossen and Pisinger (2010) presented a generalized constructive 

algorithm for a multi-dimensional bin packing problem with the guillotine 

cutting constraint. In the paper, they assumed that the boxes cannot be rotated 

and a constraint programming method was used. Liu et al. (2014) used a wall-

building approach and a tree search algorithm to satisfy the guillotine cutting 

condition. The algorithm of Liu et al. (2014) is based on IP (integer 

programming) models of one-dimensional knapsack problems. The only paper 

considering the complete-shipment constraint was presented by Eley (2003), 

which dealt with multiple container packing problems. The Eley’s paper 

presented a bottleneck assignment approach for minimizing the number of 

required containers. Furthermore, it considered two special practical constraints, 

the complete-shipment constraint and the separation constraint in which two 

boxes of differing type must not be stowed in the same container. 

In many relevant papers, specific box arrangement approaches were used. 

A wall-building approach and a block-building approach are two representative 

arrangements. Only a few papers, such as George and Robinson (1980), 

Bortfeldt and Gehring (2001), Pisinger (2002), and Liu et al. (2014), used a 

wall-building approach in which a container is filled with walls made of boxes. 

However, many papers explain use of a block-building approach, including 

Eley (2002), Bortfeldt et al. (2003), Fanslau and Bortfeldt (2010), Ren et al. 
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(2011), and others. In a block-building case, a container is filled with cuboid 

blocks that consist of a single-type of box.  

These two approaches have their particular advantages. In this thesis, a 

wall-building approach is used to find a simple and intuitive loading pattern. 

Most authors of 3D-CPP papers proposed their own heuristic algorithms 

despite the importance of the cutting stock problem in the OR literature. One 

of the reasons is that the 3D-CPP has many realistic constraints that require use 

of complicated mathematical equations. Heuristic algorithms cannot guarantee 

the optimality of a solution, but many offer a good solution in a reasonable time. 

Heuristic methods for the 3D-CPP can be divided into the tree search method 

and other types. Some adopted a block-building approach, such as Eley (2002), 

Fanslau and Bortfeldt (2010), and Ren et al. (2011), which used a tree search 

algorithm. Liu et al. (2014) offered the only paper featuring a binary tree search 

algorithm.  

Many researchers used metaheuristic algorithms entirely or partially to 

solve complex optimization problems or increase the performance of their 

whole algorithms; that is, they search neighborhood and escape a local optimum. 

A genetic algorithm and a tabu search algorithm are two of the most popular 

metaheuristic methods. Gonçalves and Resende (2012) presented a multi-

population, biased, random-key genetic algorithm for the single container 

packing problem. Bortfeldt and Gehring (2001) and Feng et al. (2015) proposed 

some hybrid genetic algorithms. A tabu search is so simple that many 

researchers, such as Bortfeldt et al. (2003), Crainic et al. (2009), and Liu et al. 

(2011), adopted this method. In this thesis, a tabu search is more suitable than 

a genetic algorithm for handling and encoding a solution.  

The problem considered in this thesis can be thought of as the 2D cutting 
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stock problem because using a strip as a unit of a container packing prevents 

concern over the height orientation in the packing process where a strip is a box 

tower. Bortfeldt and Jungmann (2012) also approached a 3D-CPP as if it were 

a 2D cutting stock problem by using strip packing. Furthermore, many papers 

on true 2D cutting stock problems, such as Alvarez-Valdes et al. (2002), de 

Armas et al. (2012), Dolatabadi et al. (2012), Clautiaux et al. (2013), and Russo 

et al. (2013), offered some valuable and applicable ideas. 

This study can contribute to the relevant literature. The complete-shipment 

constraint, which is quite practical and plausible but rarely addressed, is 

considered. This may motivate many researchers to do related studies and 

consider characteristics and correlation of boxes. Moreover, by using a tabu 

search method, computational time can be reduced effectively compared to 

other algorithms. But most importantly, the proposed algorithm can offer 

simple, easy, intuitive, and worker-friendly container loading plans. What is 

more, the algorithm can be made practical and realistic for loading patterns 

because the height limit of strips can be adjusted such that vertically stacking 

many boxes is restricted. The contributions of this study and all relevant 

references are summarized in Table 1. 
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Table 1 Summary of the contributions of relevant papers 

Author(s) 
Problem type Constraints Methods 

Output 
maximization Orientation Guillotine 

cutting 
Complete- 
shipment Heuristic Metaheuristic 

Davies and Bischoff (1999) √ √   √  

Bortfeldt and Gehring (2001) √ √   √ √ 

Alvarez-ValdeHs et al. (2002) √  √  √ √ 

Eley (2002) √ √   √  

Pisinger (2002) √  √  √  

Bortfeldt et al. (2003) √ √    √ 

Eley (2003)    √ √  

Crainic et al. (2009)      √ 

Amossen and Pisinger (2010)   √    

Fanslau and Bortfeldt (2010) √ √ √  √  

Liu et al. (2011) √ √   √ √ 

Ren et al. (2011) √ √   √  

Bortfeldt and Jungmann (2012) √ √ √  √  

Goncalves and Resende (2012) √ √    √ 

Liu et al. (2014) √ √ √  √  

Moon and Nguyen (2014) √ √   √ √ 

Feng et al. (2015)     √ √ 

This study √ √ √ √ √ √ 
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Chapter 3. Problem description 

 

3.1. Basic assumption 

 

The 3D coordinate system is used, and x, y, and z axes of the first octant of the 

3D space represent the length, width, and height of a container as shown in 

Figure 3. As can be seen, the origin corresponds to the rear-left-bottom corner 

of a container. All loaded boxes are always laid somewhere in the first octant 

parallel to the axes. 

The dimensions of a container are denoted by L, W, and H which represent 

the length, width, and height, respectively. The test data from Bischoff and 

Ratcliff (1995), which is used in this thesis, specify a 20ft container with 𝐿𝐿 =

587cm,𝑊𝑊 = 233cm, and 𝐻𝐻 = 220cm . In reality, a 40ft container is also 

Figure 3 3D coordinate system 
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commonly used, and the width and height of the 40ft container are the same as 

the 20ft container, but the length of the container is about 1200cm. 

Let 𝐵𝐵 = {𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑛𝑛} be the box set that contains n types of boxes. 

Box type 𝑖𝑖 has following specifications:  

(𝑙𝑙𝑖𝑖 ,𝛼𝛼𝑖𝑖,𝑤𝑤𝑖𝑖,𝛽𝛽𝑖𝑖,ℎ𝑖𝑖, 𝛾𝛾𝑖𝑖 , 𝑏𝑏𝑖𝑖) 

for all 𝑖𝑖. 𝑙𝑙𝑖𝑖,𝑤𝑤𝑖𝑖 , and ℎ𝑖𝑖 are the length, width, and height of box type 𝑖𝑖. For 

convenience, in the Bischoff and Ratcliff (1995) test data, it was assumed that 

𝑙𝑙𝑖𝑖 > 𝑤𝑤𝑖𝑖 > ℎ𝑖𝑖. 𝑏𝑏𝑖𝑖 is the number of available boxes of type 𝑖𝑖. 𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖 , and 𝛾𝛾𝑖𝑖 

are the binary parameters with respect to the possibility of a vertical orientation: 

- 𝛼𝛼𝑖𝑖 = 1 if the x-axis direction (length) of box type 𝑖𝑖 can be in the 

vertical orientation, 0 if it cannot; 

- 𝛽𝛽𝑖𝑖 = 1 if the y-axis direction (width) of box type 𝑖𝑖 can be in the 

vertical orientation, 0 if it cannot; 

- 𝛾𝛾𝑖𝑖 = 1 if the z-axis direction (height) of box type 𝑖𝑖 can be in the 

vertical orientation, 0 if it cannot. 

A cuboid, e.g. a box or a container, is referred to as oriented if the vertical 

Figure 4 Residual space 
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position of the cuboid is fixed. The dimensions of an oriented cuboid are 

denoted as 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚, and 𝑚𝑚𝑚𝑚, respectively. In this paper, superscripts b, s, and 

w are used to represent a box, strip, and wall, respectively. 

The residual space is an empty cuboid in a container and denoted by 𝑙𝑙𝑟𝑟 

and 𝑤𝑤𝑟𝑟  as shown in Figure 4. The height of the residual space is not 

considered because it is always equivalent to the height of a container.  

Solutions, i.e. container packing patterns, and groups of the complete-

shipment are simply denoted as n-dimensional nonnegative integer vectors in 

which each element represents the number of packed or required boxes of each 

type. A group of the complete-shipment is denoted as:  

𝐶𝐶𝐶𝐶 = (𝑐𝑐𝑠𝑠1, … , 𝑐𝑐𝑠𝑠𝑛𝑛) 

where 𝑐𝑐𝑠𝑠𝑖𝑖 is the number of box type 𝑖𝑖 in the group. 

 

3.2. Wall-building approach 

 

The basic packing unit is a strip which can be thought of as a tower made up of 

several types of oriented boxes. When building a strip, an initial oriented box 

is selected and an envelope cuboid is formed. The height of the cuboid is always 

equal to the height of the container or some height limit, and the length and the 

width are equal to mx and my of the initial box. In this situation, the heights of 

every strip do not need to be considered, so the problem becomes the 2D 

knapsack problem.  

Selecting an initial box type is really important because the choice 

determines the length and the width of a strip, the dimensions of the strip 

determine the depth of a wall, and the depth of the wall affects the performance 
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of the algorithm. George and Robinson (1980) presented a ranking rule for 

selecting a box: among remaining boxes, select the box with the largest size of 

the smallest dimension because it may be difficult to pack later in the procedure. 

In this thesis, the smallest dimension that can be an edge of the bottom is 

considered the standard. In the BR test data, if 𝛾𝛾𝑖𝑖 is 1, then ℎ𝑖𝑖 must be in the 

vertical orientation. In this case, the smallest dimension is 𝑤𝑤𝑖𝑖. If 𝛼𝛼𝑖𝑖 or 𝛽𝛽𝑖𝑖 is 

1, then ℎ𝑖𝑖 has the smallest dimension. 

Once the first box type is selected, mx and my of the box become the length 

and the width of an envelope cuboid. To apply the concept of the knapsack 

greedy heuristic algorithm, 𝑚𝑚𝑚𝑚  is determined by the shortest possible 

dimension of the box. Then box candidates for the strip are sorted. The 

orientation of each box is determined by the following definitions: 

𝐻𝐻𝛼𝛼�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = � 𝑙𝑙𝑖𝑖 if max{𝑤𝑤𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, min{𝑤𝑤𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝛼𝛼𝑖𝑖 = 1
+∞ otherwise                                                                        

, 

𝐻𝐻𝛽𝛽�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = � 𝑤𝑤𝑖𝑖 if max{𝑙𝑙𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, min{𝑙𝑙𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 ,𝛽𝛽𝑖𝑖 = 1
+∞ otherwise                                                                    

, 

𝐻𝐻𝛾𝛾�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = � ℎ𝑖𝑖 if max{𝑙𝑙𝑖𝑖 ,𝑤𝑤𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, min{𝑙𝑙𝑖𝑖 ,𝑤𝑤𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, 𝛾𝛾𝑖𝑖 = 1
+∞ otherwise                                                                     

. 

These formulas confirm the available orientations of box type 𝑖𝑖. If the bottom 

area of one possible orientation is larger than that of the initial box, the height 

of this orientation is defined as +∞. Then, the height of the final orientation is 

determined as 

𝐻𝐻�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = min�𝐻𝐻𝛼𝛼�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠�,𝐻𝐻𝛽𝛽�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠�,𝐻𝐻𝛾𝛾�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠�� . 

That is, the shortest possible dimension becomes the height of all boxes of the 

selected type. This may increase the volume utilization so the strip includes 

more boxes, and it may lower the center of gravity and strengthen the stability 

of the load. Using boxes of the selected type, the strip is built by maximizing 
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the volume utilization with the help of the tabu search. As shown in Figure 5 

(a), the 𝑗𝑗-th strip has 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 for the length and the width, respectively. 

When strips are loaded within the container, some strips form a wall like 

that shown in Figure 5 (b). Once initially formed, the strip is located on the rear-

left-bottom corner of the residual space and an envelope cuboid is formed. One 

of the dimensions of the strip becomes the depth of a wall. The length (x-axis) 

or the width (y-axis) and the height of the cuboid are defined as the length or 

the width of the residual space and the height of the container. Then available 

box types that satisfy max{𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚} ≤ max{𝑑𝑑𝑘𝑘𝑤𝑤, 𝑙𝑙𝑘𝑘𝑤𝑤}  and min{𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚} ≤

min{𝑑𝑑𝑘𝑘𝑤𝑤, 𝑙𝑙𝑘𝑘𝑤𝑤} for all possible box orientations are selected and available strips 

are built.  

When building available strips, the standard value (𝑠𝑠𝑠𝑠) of the volume 

utilization is introduced. If the volume utilization of a formed strip does not 

exceed 𝑠𝑠𝑠𝑠, the strip is discarded. The envelope cuboid is then filled with the 

available strips, and the wall is built. A tabu search algorithm is also used to 

maximize the volume utilization. A container is then filled through the 

Figure 5 Definition of (a) strip and (b) wall 
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successive placing of walls. 

 

3.3. Tree search algorithm 

 

When a wall is built, the initial strip can be loaded in one of two ways – along 

the 𝑚𝑚 or along the 𝑚𝑚 axis – and the wall can be also formed in the direction of 

either the x-axis or y-axis as shown in Figure 6. It is hard to explore all nodes, 

which would be computationally too expensive. To overcome this difficulty, a 

tree search algorithm is used to find the best set of walls in terms of the volume 

utilization. This is a greedy and myopic heuristic method.  

When branching a parent node, up to four children nodes can be made: 

Two nodes are derived from the initial strip (𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚) and the other two are 

from the strip (𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚) . Among the four options, the node having the 

Figure 6 Tree search algorithm 
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highest volume utilization is selected and the other nodes are pruned. This can 

reduce the computation time. 

All leaf nodes correspond to feasible complete container packing plans. 

Among them, the packing pattern of the highest volume utilization is selected 

as the output solution of the algorithm. The volume utilization of the pattern is 

defined as 

𝑠𝑠𝑣𝑣(𝑚𝑚) =  
∑ 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖 × 𝑚𝑚𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝐿𝐿 × 𝑊𝑊 × 𝐻𝐻
 

where 𝑚𝑚 = (𝑚𝑚1, … , 𝑚𝑚𝑛𝑛) is a container packing solution and each element refers 

to the number of packed boxes of each type. 

 

3.4. Tabu search algorithm 

 

An important role of the heuristic algorithm is as a means to find a good, 

feasible solution quickly. Greedy heuristic algorithms are used to find good, 

feasible strips, walls, and container packing plans. These algorithms, however, 

can lead to local optimal solutions, so neighborhood searches are needed to 

escape local optima. The tabu search is used for this purpose. 

The tabu search modifies an incumbent into another solution in the 

neighborhood even if its solution value is worse than the value of an incumbent. 

The algorithm may result in cycling and so the tabu list is adopted to avoid such 

cycling. The specific number of recent solutions or moves is placed on the tabu 

list so that each is excluded during later iterations. Wolsey (1998) described a 

basic version of the tabu search algorithm. 
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Algorithm 1 Tabu search algorithm     

      

TabuSearch()    

1 Initialize an empty tabu list and a solution 𝑠𝑠   

2 While the stopping criterion is not satisfied   

3  Choose a subset of non-tabu solutions 
4  Let 𝑠𝑠′ be the best solution of the subset 
5  Replace 𝑠𝑠 by 𝑠𝑠′ and update the tabu list 
6 Return the best solution 𝑠𝑠∗found  

 

The tabu search contains some important parameters, such as the tabu 

tenure. The tabu list has t of most recent solutions, and the number t is called 

the tabu tenure. The tenure is determined empirically. The iteration is also 

important. The number of iterations determines the stopping criterion. An 

adequate definition of the iteration can make good and quickly obtained results, 

so it is determined empirically. 

 

3.4.1. Solution representation and initialization 

 

The tabu search is used for maximizing the volume utilization of strips and 

walls. A strip is encoded in the form of 𝑠𝑠𝑗𝑗 = (𝑠𝑠1
𝑗𝑗, 𝑠𝑠2

𝑗𝑗 , … , 𝑠𝑠𝑛𝑛
𝑗𝑗)  where each 

element corresponds to the number of packed boxes of each type. The length of 

the encoded solution is always n. To obtain an initial solution for a strip, one 

stacks the initial box as high as possible. For example, if box type 1 is the largest 

size of the smallest dimension, one of the boxes of type 1 is selected as the 

initial box. Then the initial solution is as follows: 

�min��𝐻𝐻 𝑚𝑚𝑚𝑚1𝑏𝑏⁄ �,𝑏𝑏1� , 0, … , 0�. 
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A wall is encoded in the form of 𝑚𝑚𝑘𝑘 = (𝑚𝑚1𝑘𝑘 ,𝑚𝑚2𝑘𝑘 , … ) where 𝑚𝑚𝑗𝑗𝑘𝑘  is the 

number of packed strips of type j. The number of available strip types depends 

on the initial strip, so the length of the solution vector varies. An initial solution 

for building a wall is also similar to the one for the strip. The wall that consists 

of only one type of strips, which is the same as the initial strip, used as the initial 

solution: 

�min �⌊𝑙𝑙1𝑤𝑤 𝑚𝑚𝑚𝑚1𝑠𝑠(𝑚𝑚𝑚𝑚1𝑠𝑠)⁄ ⌋, min
𝑖𝑖

{𝑏𝑏𝑖𝑖 𝑚𝑚𝑖𝑖1⁄ }� ,  0,  0,  … �. 

 

3.4.2. Objective function 

 

The objective of the algorithm is to maximize the container volume utilization. 

The objective function for building the 𝑗𝑗-th strip is defined as: 

𝑓𝑓�𝑠𝑠𝑗𝑗� =  
∑ 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖 × 𝑠𝑠𝑖𝑖

𝑗𝑗𝑛𝑛
𝑖𝑖=1
𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 × 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 × 𝐻𝐻

. 

This objective function represents the volume utilization of the strip. Similarly, 

the objective function for building the 𝑘𝑘-th wall is defined as: 

𝑔𝑔(𝑚𝑚𝑘𝑘) =
∑ ∑ 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖 × 𝑚𝑚𝑖𝑖𝑗𝑗 × 𝑚𝑚𝑗𝑗𝑘𝑘𝑛𝑛

𝑖𝑖=1𝑗𝑗

𝑙𝑙𝑘𝑘𝑤𝑤 × 𝑑𝑑𝑘𝑘𝑤𝑤 × 𝐻𝐻
 

where 𝑚𝑚𝑖𝑖𝑗𝑗 is the number of boxes of type i included in strip j. 

 

3.4.3. Definition of moves 

 

In the tabu search, the term move means the modification of the incumbent in 

the neighborhood search. Designing moves is really important in the tabu 

search because they affect diversification in the search process such that well-
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designed moves can lead to powerful local searches and a near optimal solution. 

At each iteration, some possible moves are selected and the moves modify the 

incumbent. Among adjusted solutions, the best solution created by a move is 

accepted even if it is worse than the incumbent. 

The tabu search is used when building a strip and a wall. In these two cases, 

the same definition of the move is used: In the first type of move, corresponding 

to Figure 7 (a), two elements of the solution vector are selected. One is selected 

among positive elements and 1 is subtracted from this selected element. The 

other element is selected among those having spare boxes or strips and 1 is 

added to this selected element. In the second type of the move, corresponding 

Figure 7 Examples of moves 
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to Figure 7 (b), just one element of the solution vector is selected. Among 

elements which have spare boxes or strips, an element is selected and 1 is added 

to the selected element. 

Some moves may lead to an infeasible solution. In the strip case, a solution 

is feasible if ∑ 𝑚𝑚𝑚𝑚𝑖𝑖𝑏𝑏 × 𝑚𝑚𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≤ 𝐻𝐻. A solution for the wall case is feasible if 

∑ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠(𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠) × 𝑚𝑚𝑗𝑗𝑗𝑗 ≤ 𝑙𝑙𝑘𝑘𝑤𝑤 . The second type of move can lead to infeasible 

solutions with high probability. To guarantee the feasibility of modified 

solutions, the objective value of an infeasible solution is given as zero. 
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Chapter 4. The proposed algorithm 

 

In this chapter, the heuristic algorithm named HAGC (heuristic algorithm with 

guillotine cutting and complete-shipment constraints) is presented. This is a 

hybrid algorithm composed of many small heuristic and metaheuristic parts. 

 

4.1. Creation of an initial strip 

 

First of all, an initial strip is needed to determine the depth of an envelope of a 

wall. An initial strip is made through the following algorithm. 

 

Algorithm 2 Creation of an initial strip       

      

CreateAnInitialStrip (𝐵𝐵, 𝑙𝑙𝑟𝑟,𝑤𝑤𝑟𝑟,𝐻𝐻)     

1 Initialize a strip 𝑠𝑠 ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎 
2 Select boxes that can be loaded within the residual space 
3 If there is no suitable box, Return ∅ 
4 Select a box that has the largest size of the smallest dimension among 

 dimensions except for the vertical orientationas an initial box of 𝑠𝑠   

5 Set the shortest dimension among possible dimensions as  
 the vertical orientation of the initial box  

6 Select boxes that can be supported completely by the initial box 
7 Fix the orientation of each box 
8 Build the strip with the boxes and the tabu search by maximizing 𝑓𝑓(𝑠𝑠) 
9 Return 𝑠𝑠     

 

Some boxes that cannot be loaded within the residual space are deleted 

and an adequate box is selected as the initial box. The largest box of the smallest 
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dimension is suitable for an initial box, because small or thin boxes may be 

loaded easily when the residual space is quite small. Then, the vertical direction 

of the box must be determined. To use the concept of the knapsack greedy 

heuristic algorithm, the largest available face is used as the bottom and the 

shortest edge is oriented vertically.  

The determined 𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚 become the length and the width of a strip. 

An envelope of a strip with 𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚 × 𝐻𝐻  is formed and boxes fill this 

envelope cuboid; however, some boxes need to be thrown out to secure stability 

of the load. If all possible bottom areas of a box type cannot be supported 

completely by the initial box, then the box type is excluded from the strip’s 

components. Then, the vertical orientation of each component box is set up. 

The rule is described in Section 3.2: The shortest dimension available is set in 

the vertical direction so volume utilization can be maximized.  

The strip is built with component boxes. In this process, the tabu search, 

defined in Section 3.4, is used to search the neighborhood, escape local optima, 

and maximize the volume utilization of the strip. Finally, this algorithm 

produces the best strips found during the iterations. 

 

4.2. Derivation of additional strips from the initial strip 

 

Once an initial strip is formed, an envelope of a wall with a depth equal to one 

of the dimensions of the initial strip is defined. This envelope cuboid can be 

filled only with strips of the same type as the initial strip, but additional strips 

can be included in the envelope cuboid to increase diversification and maximize 

the volume utilization of the cuboid. Additional strips are made through the 
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following algorithm. 

 

Algorithm 3 Derivation of additional strips from the initial strip   

      

DeriveStrips (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 ,𝐻𝐻, 𝑠𝑠𝑠𝑠)     

1 Initialize a strip set 𝐶𝐶 and add 𝑠𝑠 to 𝐶𝐶 
2 Select boxes that can be loaded within the envelope cuboid 
3 For all of the boxes    

4  For all possible orientations of the box 
5   Initialize a strip 𝑠𝑠′ ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎 
6   Select the box as an initial box 
7   Set the shortest dimension among possible dimensions as  

   the vertical orientation of the initial box 
8   Select boxes that can be supported completely  

   by the initial box 
9   Build the strip with the boxes and the tabu search  

   by maximizing 𝑓𝑓(𝑠𝑠′) 
10   If 𝑓𝑓(𝑠𝑠′) > 𝑠𝑠𝑠𝑠 and the strip is not a duplicate   

11    Add 𝑠𝑠′ into 𝐶𝐶  
12 Return 𝐶𝐶       

 

The procedure is similar to the strip-building algorithm. However, for a 

wall, all possible orientations of boxes are considered as an initial box to 

diversify components and increase the probability of maximizing the volume 

utilization. For each initial box with a specific orientation, a strip is built by 

using the tabu search. If the volume utilization of this strip exceeds the standard 

value (𝑠𝑠𝑠𝑠) and not already in strip set 𝐶𝐶, then the strip is included in strip set 

𝐶𝐶. One box type can be oriented in various ways, so several strips can be derived 

from one box type. Once all of the box types are considered, the algorithm 

returns 𝐶𝐶. 
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4.3. Creation of walls 

 

Figure 6 showed that each parent node can take up to four child nodes, and two 

cases – walls with x- and y-axis directions – are considered to simplify the 

algorithm. The algorithm for creating a wall along the x-axis is presented in the 

following algorithm: 

 

Algorithm 4 Creation of a wall with an x-axis direction     

      

CreateWallX (𝑠𝑠,𝐵𝐵, 𝑠𝑠𝑠𝑠)     

1 For orientations 1 and 2 of the initial strip 𝑠𝑠 loaded  
 within the residual space 

2  Make an envelope cuboid of a wall along the x-axis 
3  An available strip set 𝐶𝐶 = DeriveStrips (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 ,𝐻𝐻, 𝑠𝑠𝑠𝑠) 
4  Initialize 𝑚𝑚1 ∈ ℤ+

|𝑆𝑆| ∪ 𝟎𝟎 or 𝑚𝑚2 ∈ ℤ+
|𝑆𝑆| ∪ 𝟎𝟎   

5  Build the wall with the available strips and the tabu search 
  by maximizing the volume utilization 𝑔𝑔(𝑚𝑚)  

6 Initialize a solution 𝑚𝑚 ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎    

7 If 𝑔𝑔(𝑚𝑚1) ≥ 𝑔𝑔(𝑚𝑚2)     

8  𝑚𝑚𝑖𝑖 = ∑ 𝑚𝑚𝑖𝑖𝑗𝑗 × 𝑚𝑚𝑗𝑗1𝑗𝑗  for all 𝑖𝑖    

9 Else 𝑚𝑚𝑖𝑖 = ∑ 𝑚𝑚𝑖𝑖𝑗𝑗 × 𝑚𝑚𝑗𝑗2𝑗𝑗  for all 𝑖𝑖     

10 Return 𝑚𝑚     

 

In the procedure, two building cases – orientations of (𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚) and 

(𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚)  of the initial strip – are considered simultaneously. For each 

envelope cuboid, the available strip set is formed by using Algorithm 3, and the 

wall is filled with the strips by using the tabu search. Once two walls are built, 

the more suitable wall is selected based on a comparison of the two volume 

utilizations.  
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Once a wall is built, the selected |𝐶𝐶| -dimensional vector should be 

converted into an 𝑛𝑛-dimensional solution vector because every wall vector has 

its own length and standardization is needed to reach an ultimate solution. 𝑚𝑚𝑖𝑖 

is the sum of 𝑚𝑚𝑖𝑖𝑗𝑗 multiplied by 𝑚𝑚𝑗𝑗 for all 𝑗𝑗 where 𝑚𝑚𝑖𝑖𝑗𝑗 is the number of boxes 

of type 𝑖𝑖 included in strip 𝑗𝑗, defined in Section 3.4.2. Finally, the wall in the 

form of an 𝑛𝑛-dimensional vector is the output. 

The algorithm for creating a wall with a y-axis direction is almost the same 

as the one for the 𝑚𝑚-axis direction: 

 

 

Algorithm 5 Creation of a wall with a y-axis direction     

      

CreateWallY (𝑠𝑠,𝐵𝐵, 𝑠𝑠𝑠𝑠)     

1 For orientations 1 and 2 of the initial strip 𝑠𝑠 loaded  
 within the residual space 

2  Make an envelope cuboid of a wall with a y-axis direction 
3  An available strip set 𝐶𝐶 = DeriveStrips (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 ,𝐻𝐻, 𝑠𝑠𝑠𝑠) 
4  Initialize 𝑚𝑚1 ∈ ℤ+

|𝑆𝑆| ∪ 𝟎𝟎 or 𝑚𝑚2 ∈ ℤ+
|𝑆𝑆| ∪ 𝟎𝟎   

5  Build the wall with the available strips and the tabu search 
  by maximizing the volume utilization 𝑔𝑔(𝑚𝑚)  

6 Initialize a solution 𝑚𝑚 ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎    

7 If 𝑔𝑔(𝑚𝑚1) ≥ 𝑔𝑔(𝑚𝑚2)     

8  𝑚𝑚𝑖𝑖 = ∑ 𝑚𝑚𝑖𝑖𝑗𝑗 × 𝑚𝑚𝑗𝑗1𝑗𝑗  for all 𝑖𝑖    

9 Else 𝑚𝑚𝑖𝑖 = ∑ 𝑚𝑚𝑖𝑖𝑗𝑗 × 𝑚𝑚𝑗𝑗2𝑗𝑗  for all 𝑖𝑖     

10 Return 𝑚𝑚     
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4.4. Satisfaction of the complete-shipment constraint 

 

If the solution found from the previous algorithms does not satisfy the 

complete-shipment constraint, unnecessary boxes should be deleted and 

specific elements of the solution should be adjusted to a multiple of the 

complete-shipment rule. For example, for the found solution of (30, 20, 14) 

and the complete-shipment rule (2, 1, 1) , (28, 14, 14)  is sufficient and 

(2, 6, 0) is unnecessary and deleted form the found solution.  

A sequence is used to satisfy the complete-shipment constraint. Divide 𝑚𝑚𝑖𝑖 

by 𝑐𝑐𝑠𝑠𝑖𝑖  for all 𝑖𝑖  for which 𝑐𝑐𝑠𝑠𝑖𝑖 > 0; the least value is the multiplier m. To 

delete unnecessary boxes from the container, set 𝑚𝑚𝑖𝑖 = 𝑚𝑚 × 𝑐𝑐𝑠𝑠𝑖𝑖  for all 𝑖𝑖 . 

Generated empty spaces can be filled with other boxes that are not elements of 

the complete-shipment group. To determine the boxes to fill the space, sort box 

types into descending order by box volume such that the largest box 𝑗𝑗 that 

satisfies 𝑙𝑙𝑖𝑖 ≥ 𝑙𝑙𝑗𝑗,𝑤𝑤𝑖𝑖 ≥ 𝑤𝑤𝑗𝑗, and ℎ𝑖𝑖 ≥ ℎ𝑗𝑗  is loaded within the empty space in 

place of deleted box 𝑖𝑖 from the complete-shipment group. 

 

4.5. Establishment of the entire algorithm 

 

The HAGC consists of the partial algorithms 1 through 5. The overall algorithm 

is as follows: 
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Algorithm 6 Heuristic algorithm with guillotine cutting 
and complete-shipment constraints       

      

HAGC (𝐵𝐵, 𝐿𝐿,𝑊𝑊,𝐻𝐻,𝐶𝐶𝐶𝐶,𝜔𝜔)     

1 Initialize a solution 𝑚𝑚 and 𝜇𝜇 // 𝜇𝜇 as a temporary solution    

2 Initialize a wall list 𝑊𝑊𝐿𝐿 and an orientation list of walls 𝑂𝑂𝐿𝐿 
3 Define 𝑐𝑐𝑐𝑐𝑣𝑣𝑛𝑛𝑐𝑐 ← 1 // for increasing the multiplier 
4 For 𝑐𝑐𝑐𝑐𝑣𝑣𝑛𝑛𝑐𝑐 ≤ 𝜌𝜌 
5  Initialize 𝑙𝑙𝑟𝑟 ← 𝐿𝐿,𝑤𝑤𝑟𝑟 ← 𝑊𝑊, a temporary wall list 𝑇𝑇𝑊𝑊𝐿𝐿,    

  and a temporary orientation list of walls 𝑇𝑇𝑂𝑂𝐿𝐿    

6  While there is a box that can be loaded within the residual space 

7   an initial strip 𝑠𝑠 ← CreateAnInitialStrip (𝐵𝐵, 𝑙𝑙𝑟𝑟,𝑤𝑤𝑟𝑟,𝐻𝐻) 
8   an x-axis wall 𝑚𝑚1 ← CreateWallX (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 , 𝑠𝑠𝑠𝑠) 
9   a y-axis wall 𝑚𝑚2 ← CreateWallY (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 , 𝑠𝑠𝑠𝑠) 

10   If 𝑓𝑓(𝑚𝑚1) ≥ 𝑓𝑓(𝑚𝑚2) Then   

11   𝜇𝜇 ← 𝜇𝜇 + 𝑚𝑚1    

12   Add 𝑚𝑚1 to 𝑇𝑇𝑊𝑊𝐿𝐿 and 1 to 𝑇𝑇𝑂𝑂𝐿𝐿 
13   Else   

14   𝜇𝜇 ← 𝜇𝜇 + 𝑚𝑚2    

15   Add 𝑚𝑚2 to 𝑇𝑇𝑊𝑊𝐿𝐿 and 2 to 𝑇𝑇𝑂𝑂𝐿𝐿 
16   Update 𝐵𝐵, 𝑙𝑙𝑟𝑟, and 𝑤𝑤𝑟𝑟 
17  Adjust 𝜇𝜇 in accordance with 𝐶𝐶𝐶𝐶  
18  If 𝑠𝑠𝑣𝑣(𝜇𝜇) > 𝑠𝑠𝑣𝑣(𝑚𝑚), Then 𝑚𝑚 ← 𝜇𝜇, 𝑊𝑊𝐿𝐿 ← 𝑇𝑇𝑊𝑊𝐿𝐿,𝑂𝑂𝐿𝐿 ← 𝑇𝑇𝑂𝑂𝐿𝐿   
19  Reset all 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑖𝑖 ← 𝑏𝑏𝑖𝑖 − 𝜔𝜔 × 𝑐𝑐𝑐𝑐𝑣𝑣𝑛𝑛𝑐𝑐  
20    𝑐𝑐𝑐𝑐𝑣𝑣𝑛𝑛𝑐𝑐 ← 𝑐𝑐𝑐𝑐𝑣𝑣𝑛𝑛𝑐𝑐 + 1    
21 Return 𝑚𝑚     

 

To initiate the HAGC, 𝑚𝑚 = (𝑚𝑚1, … , 𝑚𝑚𝑛𝑛) , which represents a container 

packing plan and 𝜇𝜇 = (𝜇𝜇1, … , 𝜇𝜇𝑛𝑛) , which is a temporary solution for the 

complete-shipment constraint, are initialized. Each element is an integral 

nonnegative variable, meaning the number of packed boxes of each type. After 

a solution is found through the partial algorithms, the HAGC solution is 
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adjusted to satisfy the complete-shipment constraint in accordance with Section 

4.4. If the volume utilization of the adjusted solution is higher than that of 𝑚𝑚, 

then 𝑚𝑚 is updated. 

Some solutions feature zero for some 𝑖𝑖 such that 𝑐𝑐𝑠𝑠𝑖𝑖 > 0, and in these 

cases, the multiplier also becomes zero. To prevent this situation, 𝜔𝜔  is 

introduced, and for all box types, 𝜔𝜔 boxes are deducted from each available 

box type. Then algorithm 6 is repeated from line 5 to line 20. After repetition 

𝜌𝜌 times, 𝜌𝜌 solutions are achieved with 𝜌𝜌 − 1 adjustments, and a solution 

with the highest volume utilization is selected. For example, if (𝑏𝑏1,𝑏𝑏2,𝑏𝑏3) =

(30, 25, 20), 𝜌𝜌 = 3, and 𝜔𝜔 = 2, three solutions are found from (𝑏𝑏1,𝑏𝑏2,𝑏𝑏3) =

(30, 25, 20), (28, 23, 18), and (26, 21, 16).  
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Chapter 5. Computational experiments 

 

The proposed algorithm, HAGC, was implemented in JAVA, and experiments 

were run on an Intel® Core™ i5-3570 CPU @ 3.40GHz processor with 8 GB 

RAM.  

 

5.1. Test data and valuable resources 

 

As mentioned in Chapter 2, Bischoff and Ratcliff (1995) proposed 700 test data 

(BR data) for the SLOPP, and many papers on the SLOPP have used these data 

for benchmarks. These data can be downloaded from 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/thpackinfo.html.  

The BR data include seven cases, BR1 to BR7 and each case includes 100 

instances. The differences among all cases represent the number of box types: 

3, 5, 8, 10, 12, 15, and 20, respectively. Davies and Bischoff (1999) stipulated 

that BR1 to BR7 are weakly heterogeneous container packing problems. In all 

instances, the container is always assumed to be 20ft (i.e. 587 × 233 ×

220 cm3). The BR data are composed as in Table 2, which shows one example 

of the BR1 data set. The length, width, and height of the table correspond to  

 

Table 2 Example of the BR test data 

Type Length Vert. Width Vert. Height Vert. Quantity 

1 108 0 76 0 30 1 40 

2 110 0 43 1 25 1 33 

3 92 1 81 1 55 1 39 

http://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/thpackinfo.html
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𝑙𝑙𝑖𝑖,𝑤𝑤𝑖𝑖 , and ℎ𝑖𝑖, and quantity corresponds to 𝑏𝑏𝑖𝑖. Vert. is the abbreviation of the 

vertical orientation from the data sets of Bischoff and Ratcliff (1995) and refers 

to the possibility of a vertical direction. If Vert. is 1, then this dimension can be 

in the vertical orientation. Each Vert. correspond to 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖, and 𝛾𝛾𝑖𝑖, respectively. 

JAVA is the most famous object-oriented programming (OOP) language. 

The OOP paradigm is based on the concept of objects, and a program is 

considered a set of objects. An instance casted from a class in a programming 

language corresponds to an object. One of the advantageous characteristics of 

the OPP is its reusability. Some classes made by other people can be used as a 

part of one’s own program. We use a JAVA tabu search framework from 

http://www.coin-or.org/Ots/index.html. 

The Computational Infrastructure for Operations Research (COIN-OR) 

Foundation, Inc., is a non-profit educational and scientific foundation for 

managing the COIN-OR project. Corporate members of the foundation include 

IBM and Maximal Software, among others, and a strategic partner is the 

INFORMS Computing Society. The COIN-OR project is an initiative to 

develop open-source software for the OR community. The project has 

developed and released open tabu search classes for JAVA to help users 

implement popular metaheuristic algorithms in well-defined, object-oriented 

designs.  

Classes such as Solution, ObjectiveFunction, Move, MoveManager, 

TabuList, TabuSearch, etc. were used in the experiment. Some critical 

parameters were determined empirically and definitions and configurations of 

some classes are described in Section 3.4.  

  

http://www.coin-or.org/Ots/index.html
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5.2. Test results without the complete-shipment constraint 

 

Eley (2003) is the only research that has considered and published on the 

complete-shipment constraint, and the related paper dealt with a multiple 

container packing problem. So, the algorithm without the complete-shipment 

constraint is tested and compared to other relevant algorithms. In this case, line 

17 of Algorithm 6 is omitted. 

Figure 8 is an example of the container packing procedure and a solution 

for a test instance of BR1 of the BR data shown in Table 2. The figures represent 

top views of the container and each square refers to a strip; for example, ① ×

7 describes a strip that consists of seven boxes of type 1. Other numbers in the 

Figure 8 Container packing procedure and a solution of an example from the BR1 data 
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figure, such as 233, 76, and, 108, represent lengths or widths of boxes and the 

container. Among three box types, the largest with the smallest dimension is 

type 1 because only the 𝑚𝑚-axis dimension of type 1 can be in the vertical 

orientation, and 76𝑐𝑐𝑚𝑚 is the smallest dimension of a box of type 1 that can be 

used as 𝑚𝑚𝑚𝑚 or 𝑚𝑚𝑚𝑚. So, in the first phase shown in Figure 8 (a), type 1 is 

selected as the initial box and a wall in the 𝑚𝑚-axis direction is built. This wall 

is the one selected among four possible walls mentioned in Section 3.3. and 

Figure 6. In Figure 8 (f), a guillotine cutting pattern is completed. The final 

solution is 𝑚𝑚 = (35, 26, 38) and the volume utilization is  

                𝑠𝑠𝑣𝑣(𝑚𝑚) =
∑ 𝑚𝑚𝑖𝑖 × 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖3
𝑖𝑖=1

𝐿𝐿 × 𝑊𝑊 × 𝐻𝐻
× 100

=
35 × 246,240 + 26 × 118,250 + 38 × 409,860

587 × 233 × 220
× 100

= 90.62%. 

The results of the proposed algorithm for the 700 instances are now 

compared with the results of Bischoff and Ratcliff (1995), Bortfeldt and 

Gehring (2001), and Liu et al. (2014); all of these papers fulfilled the orientation 

and guillotine cutting constraints. Table 3 shows the computational test results 

of the algorithms for the data from BR1 to BR7. All of the volume utilization 

and computation time data in this table represent the average values of the 100 

instances for each case.  

Many parameters of HAGC were determined empirically, and some 

correlations exist between parameters. In every cases, 𝜌𝜌 was three. Figure 9 

shows the correlation between computation times and iteration. The 

computation time increases as the number of box types increases. Moreover, 

the computation time tends to increase as the iteration increases. Figure 10  
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Table 3 Comparison of test results for the 700 instances from BR1-BR7 without the complete-shipment constraint 

Test case BR1 BR2 BR3 BR4 BR5 BR6 BR7 Mean BR1-BR7 

No. of box types 3 5 8 10 12 15 20  

Bischoff and Ratcliff 
(1995) 

Volume 
utilization (%) 81.76 81.70 82.98 82.60 82.76 81.50 80.51 81.97 

Computation 
time (sec.) - - - - - - - - 

Bortfeldt and Gehring 
(2001) 

Volume 
utilization (%) 87.81 89.40 90.48 90.63 90.73 90.72 90.65 90.06 

Computation 
time (sec.) - - - - - - - 316.00 

Liu et al. (2014) 

Volume 
utilization (%) 90.57 91.46 92.39 92.33 92.42 92.35 92.11 91.95 

Computation 
time (sec.) 61.13 64.37 64.40 63.34 59.52 73.63 86.80 67.60 

HAGC  
without the complete-
shipment constraint 

Volume 
utilization (%) 85.86 86.41 87.49 87.32 87.21 86.93 85.95 86.74 

Computation 
time (sec.) 0.05 0.07 0.15 0.28 0.41 0.62 1.29 0.41 

Standard value 
(%) 79.00 78.00 77.00 76.00 75.00 74.00 73.00 - 

Tabu tenure 
(unit) 23 37 45 50 55 57 61 - 

Iteration (cycle) 50 50 50 60 60 60 70 - 

𝜔𝜔 3 1 1 1 1 1 1 - 
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shows that all tabu tenures are lower than the respective number of iterations. 

When a tabu tenure is between 50 and 59, the optimal iteration is 60, but in an 

unexpected outcome, the optimal iteration was 50, not 30 or 40, when the 

optimal tabu tenure was 23 in BR1. Figure 11 shows that the standard value 

decreases monotonically and the tabu tenure increases monotonically.  

Figure 9 Correlation between computation time and iteration 

Figure 10 Correlation between the tabu tenure and the iteration 
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Figure 12 shows the comparison of the HAGC to relevant algorithms. The 

volume utilization of the HAGC is better than that of Bischoff and Ratcliff 

(1995), but worse than that of the other researchers. The mean gap of the 

volume utilization is about 3.7% of that of Bortfeldt and Gehring (2001) and 

about 5.7% of that of Liu et al. (2014).One of the reasons is that maximizing 

the volume utilization is the principal objective for the three relevant algorithms, 

Figure 11 Trend of the standard value and the tabu tenure 

 

Figure 12 Comparison of the HAGC with other relevant algorithms 
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but the principal objective of the HAGC is to satisfy the complete-shipment 

constraint. That is why the volume utilization of the HAGC is worse that of the 

other algorithms. In addition, Bortfeldt and Gehring (2001) devised a two-

phased hybrid genetic algorithm, which improved a solution in the second 

phase and facilitated diversified exploration for finding a solution. Although 

the HAGC uses the tabu search, the use is quite restricted. The tree search 

algorithm is one of the exhaustive search methods; i.e. it is a greedy heuristic 

algorithm. In the case of Liu et al. (2014), IP models were used to build strips 

and walls, but the procedure was not made clear. The authors described 

generalized processes for finding a container packing pattern. 

As shown in Table 3, the HAGC features faster computation than the 

others even if computational environments differ from each other. None of the 

related papers clarified that computation times are either averages of one 

instance or total times of 100 instances, but computation times of the HAGC 

are regarded as the average times of each instance. As the volume utilizations 

are mean values, it is reasonable to display average times. The mean 

computation time of the HAGC is about 770 times (or 7.7 times) faster than 

that of Bortfeldt and Gehring (2001) and about 165 times (or 1.7 times) faster 

than that of Liu et al. (2014). 

 

5.3. Test results with the complete-shipment constraint 

 

Under the complete-shipment constraint, complying with the complete-

shipment rule and maximizing the volume utilization are important. 

Experiments using the HAGC with the complete-shipment constraint were
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Table 4 Comparison of test results for the 700 instances from BR1-BR7 with the complete-shipment constraint 

Test case BR1 BR2 BR3 BR4 BR5 BR6 BR7 Mean 
BR1-BR7 

No. of box types 3 5 8 10 12 15 20 - 

Average no. of boxes per type 50 27 17 13 11 9 7 - 

HAGC  
without the complete-
shipment constraint 

Volume 
utilization (%) 85.86 86.41 87.49 87.32 87.21 86.93 85.95 86.74 

Computation 
time (sec.) 0.05 0.07 0.15 0.28 0.41 0.62 1.29 0.41 

HAGC  
with the complete-
shipment constraint 

Volume 
utilization (%) 73.10 77.26 80.09 80.55 80.94 81.17 80.86 79.14 

Computation 
time (sec.) 0.04 0.09 0.26 0.37 0.58 0.87 1.72 0.56 

Standard value 
(%) 79.00 78.00 77.00 76.00 75.00 74.00 73.00 - 

Tabu tenure 
(unit) 20 33 47 47 45 57 57 - 

Iteration 
(cycle) 40 50 50 50 60 60 70 - 

ω 2 1 1 1 1 1 1 - 
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conducted using the same BR data as in the tests without the complete-shipment 

constraint, and the results were compared with the results of the HAGC 

evaluation without the complete-shipment constraint. The results are shown in 

Table 4 and the average number of boxes per box type, as excerpted from 

Fanslau and Bortfeldt (2010), was added in the table.  

Figure 13 shows that as the number of box types increases, the volume 

utilization also increases. However, the gradient of the curve of the volume 

utilizations gradually decreases, and when the number of box types is 20, the 

gradient finally becomes a negative number. This situation can be analyzed by 

acknowledging that the more box types, the easier it is to fill up empty spaces 

during the complete-shipment process. However, generally the average number 

of boxes per type decreases as the number of box types increases. So, available 

boxes of each type are typically insufficient and it is not easy to increase the 

volume utilization. 

The complete-shipment constraint leads to a decrease in the volume 

Figure 13 Correlation between the volume utilizations and number of box types 

 



 

41 
 

utilizations as shown in Figure 14. However, the difference rate decreases 

constantly as the number of box types increases. The reason is that the more 

box types, the easier it is to fill up empty spaces during the complete-shipment 

process, similar to the above analysis.  

Figure 14 Comparison of two volume utilizations 
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Chapter 6. Conclusions 

 

This paper proposed the container packing algorithm named HAGC (heuristic 

algorithm with guillotine cutting and complete-shipment constraints) that 

satisfies three constraints. HAGC is a hybrid approach, combining a tree search 

algorithm and tabu search algorithms. The wall-building approach was used to 

make a guillotine cutting pattern. The performance of HAGC was evaluated 

with computational experiments by using the well-known test data from 

Bischoff and Ratcliff (1995), so that the volume utilization and the computation 

time of HAGC could be compared with several other relevant algorithms. When 

comparing the results, the complete-shipment constraint was not considered. 

This is because only one paper, Eley (2003), considered the constraint with a 

multiple container packing problem.  

In terms of the volume utilization, HAGC did not perform as well as the 

algorithms of Bortfeldt and Gehring (2001) and Liu et al. (2014). However, the 

computation time was shorter. With respect to the complete-shipment constraint, 

no benchmark paper was found at the time of this writing. Therefore, HAGC 

with the complete-shipment constraint was compared with HAGC without the 

constraint. Through experiments, it was confirmed that relative volume 

utilizations in terms of the HAGC values without the constraint increase as the 

number of box types increases.  

Many researchers have developed two-phased heuristic algorithms, which 

typically consist of a basic greedy heuristic algorithm and an improvement 

algorithm. HAGC can be used as a basic greedy heuristic algorithm in the role 

of offering an initial solution. Then, this research can be extended to improve 
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the performance of HAGC by devising an improvement phase. Also, a strip-

building approach is not suitable for considering the complete-shipment 

constraint. For example, if the complete-shipment group is (2, 1, 1), making a 

strip with these four boxes is quite inefficient in terms of the volume utilization. 

Therefore, research on a 3D-CPP with the complete-shipment constraint can be 

done with a block-building approach. 

In addition to these suggestions, some other possibilities for future 

research appear promising. Other practical constraints, such as the weight limit, 

need to be considered. More realistic algorithms should be developed. One 

container packing manager said that existing algorithms offer quite complicated 

packing patterns and these cannot be implemented within a reasonable time. 

Therefore, most packing methods depend on managers’ experience and some 

luck. The HAGC gives simple and intuitive packing patterns for manager 

consideration. 

  



 

44 
 

Bibliography 

 

[1] Alvarez-Valdes, R., A. Parajon and J. M. Tamarit (2002). "A tabu search 
alogorithm for large-scale guillotine (un)constrainted two-dimensional 
cutting problems." Computers & Operations Research 29: 925-947. 

  
[2] Amossen, R. R. and D. Pisinger (2010). "Multi-dimensional bin packing 

problems with guillotine constraints." Computers & Operations Research 
37(11): 1999-2006. 

  
[3] Bischoff, E. E. and M. S. W. Ratcliff (1995). "Issues in the development of 

approaches to container loading." Omega 23(4): 377-390. 
  
[4] Bortfeldt, A. and H. Gehring (2001). "A hybrid genetic algorithm for the 

container loading problem." European Journal of Operational Research 131: 
143-161. 

  
[5] Bortfeldt, A., H. Gehring and D. Mack (2003). "A parallel tabu search 

algorithm for solving the container loading problem." Parallel Computing 
29(5): 641-662. 

  
[6] Bortfeldt, A. and S. Jungmann (2012). "A tree search algorithm for solving 

the multi-dimensional strip packing problem with guillotine cutting 
constraint." Annals of Operations Research 196(1): 53-71. 

  
[7] Bortfeldt, A. and G. Wäscher (2013). "Constraints in container loading – A 

state-of-the-art review." European Journal of Operational Research 229(1): 
1-20. 

  
[8] Clautiaux, F., A. Jouglet and A. Moukrim (2013). "A New Graph-

Theoretical Model for the Guillotine-Cutting Problem." INFORMS Journal 
on Computing 25(1): 72-86. 

  
[9] Crainic, T. G., G. Perboli and R. Tadei (2009). "TS2PACK: A two-level tabu 

search for the three-dimensional bin packing problem." European Journal 
of Operational Research 195(3): 744-760. 

  
[10] Davies, A. P. and E. E. Bischoff (1999). "Weight distribution 

considerations in container loading." European Journal of Operational 
Research 114: 509-527. 

  
[11] de Armas, J., G. Miranda and C. León (2012). "Improving the efficiency 

of a best-first bottom-up approach for the Constrained 2D Cutting 



 

45 
 

Problem." European Journal of Operational Research 219(2): 201-213. 
  
[12] Dolatabadi, M., A. Lodi and M. Monaci (2012). "Exact algorithms for the 

two-dimensional guillotine knapsack." Computers & Operations Research 
39(1): 48-53. 

  
[13] Eley, M. (2002). "Solving container loading problems by block 

arrangement." European Journal of Operational Research 141: 393-409. 
  
[14] Eley, M. (2003). "A bottleneck assignment approach to the multiple 

container loading problem." OR Spectrum 25: 45-60. 
  
[15] Fanslau, T. and A. Bortfeldt (2010). "A Tree Search Algorithm for Solving 

the Container Loading Problem." INFORMS Journal on Computing 22(2): 
222-235. 

  
[16] Feng, X., I. Moon and J. Shin (2015). "Hybrid genetic algorithms for the 

three-dimensional multiple container packing problem." Flexible Services 
and Manufacturing Journal 27(2-3): 451-477. 

  
[17] George, J. A. and D. F. Robinson (1980). "A heuristic for packing boxes 

into a container." Computers & Operations Research 7: 147-156. 
  
[18] Gilmore, P. C. and R. E. Gomory (1965). "Multistage cutting stock 

problems of two and more dimensions." Operations research 13(1): 94-120. 
  
[19] Gonçalves, J. F. and M. G. C. Resende (2012). "A parallel multi-population 

biased random-key genetic algorithm for a container loading problem." 
Computers & Operations Research 39(2): 179-190. 

  
[20] Liu, J., Y. Yue, Z. Dong, C. Maple and M. Keech (2011). "A novel hybrid 

tabu search approach to container loading." Computers & Operations 
Research 38(4): 797-807. 

  
[21] Liu, S., W. Tan, Z. Xu and X. Liu (2014). "A tree search algorithm for the 

container loading problem." Computers & Industrial Engineering 75: 20-30. 
  
[22] Moon, I. and T. V. L. Nguyen (2014). "Container packing problem with 

balance constraints." OR Spectrum 36(4): 837-878. 
  
[23] Pisinger, D. (2002). "Heuristics for the container loading problem." 

European Journal of Operational Research 141: 382-392. 
  
[24] Ren, J., Y. Tian and T. Sawaragi (2011). "A tree search method for the 

container loading problem with shipment priority." European Journal of 
Operational Research 214(3): 526-535. 



 

46 
 

  
[25] Russo, M., A. Sforza and C. Sterle (2013). "An improvement of the 

knapsack function based algorithm of Gilmore and Gomory for the 
unconstrained two-dimensional guillotine cutting problem." International 
Journal of Production Economics 145(2): 451-462. 

  
[26] Wäscher, G., H. Haußner and H. Schumann (2007). "An improved 

typology of cutting and packing problems." European Journal of 
Operational Research 183(3): 1109-1130. 

  
[27] Wolsey, L. A. (1998). Integer Programming, Wiley-Interscience. 

  
 

  



 

47 
 

초    록 

 

이 논문은 3차원 컨테이너 적재 문제 (3D-CPP)를 풀 수 있는 

트리 탐색 알고리즘을 제시한다. 3D-CPP에 대한 많은 현실적인 

제약 조건이 존재하고, 이 논문에서는 화물 방향 제약과 길로틴 

절단, 완전 선적 제약을 고려하고 있다. 벽 구축 접근법과 타부 

서치를 이용하여 적재율을 최대화하는 알고리즘을 개발하였다. 많은 

연구자들이 사용한 BR 실험 데이터를 이용하여 실험한 결과, 본 

알고리즘은 빠른 시간 안에 적재율이 상당히 높은 화물 적재 

패턴을 찾을 수 있음을 확인하였다. 또한, 본 알고리즘을 통해 완전 

선적 조건을 만족하면서 작업자가 쉽게 이해하고 빠르게 구현할 수 

있는 화물 적재 패턴을 구할 수 있다. 

 

주요어 : 컨테이너 패킹 문제, 길로틴 절단 패턴, 완전 선적, 벽 

구축 접근법, 트리 탐색, 타부 서치 
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