

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Container Packing Problem

with Guillotine Cutting and

Complete-Shipment Constraints

길로틴 절단 및 완전 선적 제약을 고려한

컨테이너 패킹 문제

2016 년 2 월

서울대학교 대학원

산업공학과

정 민 철

i

Abstract

Container Packing Problem

with Guillotine Cutting and

Complete-Shipment Constraints

Mincheol Jeong

Industrial Engineering

The Graduate School

Seoul National University

 This paper presents a tree search algorithm for the three-dimensional

container packing problem (3D-CPP). There are many practical requirements

for the 3D-CPP, and this paper considers the orientation, guillotine cutting, and

complete-shipment constraints. A wall-building approach and the tabu search

algorithm are used to maximize the volume utilization of the container. The

famous Bischoff and Ratcliff test data from 1995 are used for testing the

algorithm. This algorithm can quickly find an appropriate container packing

plan with high volume utilization. Furthermore, it can offer a packing pattern

that satisfies the complete-shipment constraint. It is easy and intuitive for staff

to understand and can be quickly implemented.

Keywords : Container packing problem, Guillotine cutting pattern,

Complete-shipment, Wall-building approach, Tree search, Tabu search

Student Number : 2014-20631

ii

Contents

Chapter 1. Introduction .. 1

Chapter 2. Literature review ... 7

Chapter 3. Problem description ... 12

3.1. Basic assumption .. 12

3.2. Wall-building approach ... 14

3.3. Tree search algorithm ... 17

3.4. Tabu search algorithm ... 18

Chapter 4. The proposed algorithm 23

4.1. Creation of an initial strip 23

4.2. Derivation of additional strips from the initial

strip 24

4.3. Creation of walls .. 26

4.4. Satisfaction of the complete-shipment

constraint .. 28

4.5. Establishment of the entire algorithm 28

Chapter 5. Computational experiments.............................. 31

5.1. Test data and valuable resources 31

5.2. Test results without the complete-shipment

constraint .. 33

5.3. Test results with the complete-shipment constraint

 38

Chapter 6. Conclusions .. 42

iii

Bibliography ... 44

초 록 .. 47

iv

List of Tables

Table 1 Summary of the contributions of relevant papers 11

Table 2 Example of the BR test data ... 31

Table 3 Comparison of test results for the 700 instances from BR1-BR7 without

the complete-shipment constraint .. 35

Table 4 Comparison of test results for the 700 instances from BR1-BR7 with

the complete-shipment constraint .. 39

v

List of Figures

Figure 1 Six possible orientations of a box .. 4

Figure 2 Example of cutting patterns: (a), (c) guillotineable; (b), (d)

nonguillotineable .. 5

Figure 3 3D coordinate system ... 12

Figure 4 Residual space.. 13

Figure 5 Definition of (a) strip and (b) wall ... 16

Figure 6 Tree search algorithm ... 17

Figure 7 Examples of moves .. 21

Figure 8 Container packing procedure and a solution of an example from the

BR1 data ... 33

Figure 9 Correlation between computation time and iteration 36

Figure 10 Correlation between the tabu tenure and the iteration 36

Figure 11 Trend of the standard value and the tabu tenure 37

Figure 12 Comparison of the HAGC with other relevant algorithms 37

Figure 13 Correlation between the volume utilizations and number of box types

 .. 40

Figure 14 Comparison of two volume utilizations ... 41

1

Chapter 1. Introduction

As transportation and communication technologies have become more

numerous and the world trade becomes increasingly globalized, logistics has

become a key factor for companies seeking to maximize their profits. There are

many transportation modes, and a container is one of the most effective,

convenient, and relatively economical modes for use in maritime trade. Because

of its importance, many researchers are carrying out studies on containers, such

as the development of a foldable container and an operation system for empty

containers.

Many types of containers are used for oceanic and land transportation. The

dry container is the standard for loading environment-insensitive cargos such

as raw materials and clothes. The reefer container is used for temperature-

sensitive cargos. Temperature can be controlled inside the reefer container, so

it is suitable for loading food. In addition to these containers, there are many

varieties, such as the open top and the flat rack container for specific cargo.

Typical containers are 20ft- or 40ft-long. Most have the same 8ft width and

8.6ft height.

The three-dimensional container packing problem (3D-CPP), also known

as a container loading problem, is the subject of important practical and

academic research. In the real world, managers must determine the best way to

load cargo into a specified number of containers. Most of managers do not

depend on a scientific decision maker but rather on their experience and luck,

which causes a waste of money for their companies.

2

Research on the container packing problem has led to the development of

various container packing algorithms and systems. These algorithms and

systems can offer efficient and effective container packing plans that companies

can use to increase their profits.

The 3D-CPP is also an important subject in the literature of operations

research (OR). It can be considered a three-dimensional extension of the cutting

stock problem. The objective of the cutting stock problem is to minimize loss

by partitioning stock adequately. Similarly, the objective of the 3D-CPP is to

minimize loss (i.e. to maximize the volume utilization). In the case of the

multiple container packing problem, the objective is to minimize the cost or the

number of used containers. Because of the complexity of real-world situations

and many practical constraints, container packing problems as well as cutting

stock problems are valuable research areas in the OR literature.

Variations of the 3D-CPP can be categorized in accordance with specific

characteristics. Wäscher et al. (2007) proposed a typology and an SLOPP

(single large-object placement problem); the typology is considered in this

thesis. There are two sets of elements of a 3D-CPP: a set of containers (input)

and a set of boxes (output). All of the 3D-CPPs can be categorized as either an

input minimization problem or output maximization problem, or they can be

considered a 3D bin packing problem or 3D knapsack problem, respectively.

The SLOPP belongs to the output maximization category.

According to the typology of Wäscher et al. (2007), the difference between

the SKP (single knapsack problem) and the SLOPP is the degree of

heterogeneity of box types. A box type is defined by its three dimensions; that

is, the size of a box determines the box type. When one type of box is considered,

3

it is described as homogeneous. If there are only a few types with many boxes

per type, then the boxes constitute a weakly heterogeneous box set. The SLOPP

assumes a set of weakly heterogeneous boxes; however a variety of box types

with a relatively small number of boxes per type is a strongly heterogeneous

box set. The SKP assumes a set of strongly heterogeneous boxes. This paper is

based on a weakly heterogeneous box set: an SLOPP.

The 3D-CPP is difficult to solve because of its complexity conferred by

the three-dimensional characteristics. Three basic geometric conditions must be

satisfied for some box arrangements to be feasible:

- All boxes must be loaded within a container.

- No boxes can overlap each other.

- All boxes must be parallel with the face walls of a container.

In addition to these constraints, there are many practical constraints.

Among them, three constraints are imposed in this paper:

Orientation constraint. If three dimensions of a box can be placed in a

vertical orientation, then a box can lie six ways, as in Figure 1. In reality,

however, some vertical orientations are prohibited. We prohibit up to two

vertical orientations for each box type.

4

Guillotine cutting constraint. In multi-dimensional cutting stock problems,

staff has trouble implementing complex cutting patterns. These patterns are not

practical. A guillotine cutting pattern can be described intuitively and used to

pack items easily. It is derived from the 2D cutting stock problem. A pattern is

said to be guillotineable if it can be obtained by a series of simple guillotine

cuts in parallel to the edge of the stock. In this thesis, if the top view of a 3D

loading pattern is guillotineable, the pattern is deemed consistent with a

guillotine cutting pattern. Figure 2 shows some examples of guillotine patterns

and non-guillotine patterns.

Complete-shipment constraint. In the output maximization problem, items

may not be loaded within a single container and some items may be inevitably

left behind. However, if any part of a subset is packed, then all of the other

boxes of the subset also should be packed within the same container. For

example, if a set of kitchen furniture consists of a sink, a cook stove, a range

Figure 1 Six possible orientations of a box

5

hood, several cabinets, a dining table, and four dining chairs, it is efficient to

load all these together within the same container. This constraint can be applied

to various situations:

- Specific types of box should be loaded together.

- The number of packed boxes of a specific type should be a multiple of

a given lot size.

A group consisting of several box types (e.g. two boxes of type 1, a box of type

2, and a box of type 3) must be packed together. Whereas the orientation

constraint is considered in most of the relevant papers, few researchers have

consider the guillotine cutting and complete-shipment constraints in spite of

their practical importance.

In this thesis, the orientation, guillotine cutting, and complete-shipment

constraints are considered with heuristic methods. A wall-building approach

and a tree search algorithm are used for satisfying the guillotine cutting

Figure 2 Example of cutting patterns: (a), (c) guillotineable; (b), (d) nonguillotineable

6

constraint and a tabu search is used to increase the container volume utilized.

This paper is organized as follows. Chapter 2 provides a literature review

on the 3D-CPP and relevant constraints and methods. Chapter 3 includes the

specific problem definition and description as well as the explanation of used

methods. In Chapter 4, a container packing algorithm named HAGC (heuristic

algorithm with the guillotine cutting and complete-shipment constraints), based

on a tree search and a tabu search, is presented. Chapter 5 is dedicated to

computational experiments, and Chapter 6 summarizes this thesis and presents

some perspectives for future research.

7

Chapter 2. Literature review

The 3D-CPP is a three-dimensional extension of the cutting stock problem,

which is a well-known NP-hard problem in the OR literature. Since Gilmore

and Gomory (1965) first addressed problems more complex than those

involving 2D cutting stock cases, the 3D-CPP has been studied actively and

many papers and algorithms have been presented for solving the problem.

Three papers give particularly valuable insights on research of the 3D-CPP.

Bischoff and Ratcliff (1995) proposed some practical requirements for the 3D-

CPP, such as load stability and shipment priorities constraints. This paper also

offered 700 instances of test data for the SLOPP and these data are also adopted

in the research presented in this thesis. Wäscher et al. (2007) presented up-to-

date typology on cutting and packing problems. Bortfeldt and Wäscher (2013)

presented a state-of-the-art review paper classifying the problems in accordance

with the typology of Wäscher et al. (2007) and practical constraints. The

authors analyzed and reviewed 163 papers published between 1980 and 2011.

According to Bortfeldt and Wäscher (2013), 96 papers (58.9%) dealt with

the output maximization problem, and among the total reviewed, 37 papers

(22.7%) addressed the SLOPP. Davies and Bischoff (1999) dealt with an

SLOPP and an SKP by considering weight distribution. The authors developed

a new container loading heuristic with post-processing approaches to distribute

cargo weight evenly. Eley (2002) considered heterogeneous single and multiple

container packing problems. The author presented a block-building approach

in which a block consists of the same identically oriented items. A tree search

was also used and some conditions, such as load stability, were considered. Ren

8

et al. (2011) addressed an SLOPP with the shipment priority constraint. Their

algorithm is also based on a block-building approach and a tree search. Moon

and Nguyen (2014) presented an MIP (mixed integer programming)

formulation and a hybrid genetic algorithm for solving an SLOPP. Their paper

also considered weight limit and distribution constraints.

A few papers dealt with guillotine cutting and complete-shipment

constraints. Amossen and Pisinger (2010) presented a generalized constructive

algorithm for a multi-dimensional bin packing problem with the guillotine

cutting constraint. In the paper, they assumed that the boxes cannot be rotated

and a constraint programming method was used. Liu et al. (2014) used a wall-

building approach and a tree search algorithm to satisfy the guillotine cutting

condition. The algorithm of Liu et al. (2014) is based on IP (integer

programming) models of one-dimensional knapsack problems. The only paper

considering the complete-shipment constraint was presented by Eley (2003),

which dealt with multiple container packing problems. The Eley’s paper

presented a bottleneck assignment approach for minimizing the number of

required containers. Furthermore, it considered two special practical constraints,

the complete-shipment constraint and the separation constraint in which two

boxes of differing type must not be stowed in the same container.

In many relevant papers, specific box arrangement approaches were used.

A wall-building approach and a block-building approach are two representative

arrangements. Only a few papers, such as George and Robinson (1980),

Bortfeldt and Gehring (2001), Pisinger (2002), and Liu et al. (2014), used a

wall-building approach in which a container is filled with walls made of boxes.

However, many papers explain use of a block-building approach, including

Eley (2002), Bortfeldt et al. (2003), Fanslau and Bortfeldt (2010), Ren et al.

9

(2011), and others. In a block-building case, a container is filled with cuboid

blocks that consist of a single-type of box.

These two approaches have their particular advantages. In this thesis, a

wall-building approach is used to find a simple and intuitive loading pattern.

Most authors of 3D-CPP papers proposed their own heuristic algorithms

despite the importance of the cutting stock problem in the OR literature. One

of the reasons is that the 3D-CPP has many realistic constraints that require use

of complicated mathematical equations. Heuristic algorithms cannot guarantee

the optimality of a solution, but many offer a good solution in a reasonable time.

Heuristic methods for the 3D-CPP can be divided into the tree search method

and other types. Some adopted a block-building approach, such as Eley (2002),

Fanslau and Bortfeldt (2010), and Ren et al. (2011), which used a tree search

algorithm. Liu et al. (2014) offered the only paper featuring a binary tree search

algorithm.

Many researchers used metaheuristic algorithms entirely or partially to

solve complex optimization problems or increase the performance of their

whole algorithms; that is, they search neighborhood and escape a local optimum.

A genetic algorithm and a tabu search algorithm are two of the most popular

metaheuristic methods. Gonçalves and Resende (2012) presented a multi-

population, biased, random-key genetic algorithm for the single container

packing problem. Bortfeldt and Gehring (2001) and Feng et al. (2015) proposed

some hybrid genetic algorithms. A tabu search is so simple that many

researchers, such as Bortfeldt et al. (2003), Crainic et al. (2009), and Liu et al.

(2011), adopted this method. In this thesis, a tabu search is more suitable than

a genetic algorithm for handling and encoding a solution.

The problem considered in this thesis can be thought of as the 2D cutting

10

stock problem because using a strip as a unit of a container packing prevents

concern over the height orientation in the packing process where a strip is a box

tower. Bortfeldt and Jungmann (2012) also approached a 3D-CPP as if it were

a 2D cutting stock problem by using strip packing. Furthermore, many papers

on true 2D cutting stock problems, such as Alvarez-Valdes et al. (2002), de

Armas et al. (2012), Dolatabadi et al. (2012), Clautiaux et al. (2013), and Russo

et al. (2013), offered some valuable and applicable ideas.

This study can contribute to the relevant literature. The complete-shipment

constraint, which is quite practical and plausible but rarely addressed, is

considered. This may motivate many researchers to do related studies and

consider characteristics and correlation of boxes. Moreover, by using a tabu

search method, computational time can be reduced effectively compared to

other algorithms. But most importantly, the proposed algorithm can offer

simple, easy, intuitive, and worker-friendly container loading plans. What is

more, the algorithm can be made practical and realistic for loading patterns

because the height limit of strips can be adjusted such that vertically stacking

many boxes is restricted. The contributions of this study and all relevant

references are summarized in Table 1.

11

Table 1 Summary of the contributions of relevant papers

Author(s)
Problem type Constraints Methods

Output
maximization Orientation Guillotine

cutting
Complete-
shipment Heuristic Metaheuristic

Davies and Bischoff (1999) √ √ √

Bortfeldt and Gehring (2001) √ √ √ √

Alvarez-ValdeHs et al. (2002) √ √ √ √

Eley (2002) √ √ √

Pisinger (2002) √ √ √

Bortfeldt et al. (2003) √ √ √

Eley (2003) √ √

Crainic et al. (2009) √

Amossen and Pisinger (2010) √

Fanslau and Bortfeldt (2010) √ √ √ √

Liu et al. (2011) √ √ √ √

Ren et al. (2011) √ √ √

Bortfeldt and Jungmann (2012) √ √ √ √

Goncalves and Resende (2012) √ √ √

Liu et al. (2014) √ √ √ √

Moon and Nguyen (2014) √ √ √ √

Feng et al. (2015) √ √

This study √ √ √ √ √ √

12

Chapter 3. Problem description

3.1. Basic assumption

The 3D coordinate system is used, and x, y, and z axes of the first octant of the

3D space represent the length, width, and height of a container as shown in

Figure 3. As can be seen, the origin corresponds to the rear-left-bottom corner

of a container. All loaded boxes are always laid somewhere in the first octant

parallel to the axes.

The dimensions of a container are denoted by L, W, and H which represent

the length, width, and height, respectively. The test data from Bischoff and

Ratcliff (1995), which is used in this thesis, specify a 20ft container with 𝐿𝐿 =

587cm,𝑊𝑊 = 233cm, and 𝐻𝐻 = 220cm . In reality, a 40ft container is also

Figure 3 3D coordinate system

13

commonly used, and the width and height of the 40ft container are the same as

the 20ft container, but the length of the container is about 1200cm.

Let 𝐵𝐵 = {𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑛𝑛} be the box set that contains n types of boxes.

Box type 𝑖𝑖 has following specifications:

(𝑙𝑙𝑖𝑖 ,𝛼𝛼𝑖𝑖,𝑤𝑤𝑖𝑖,𝛽𝛽𝑖𝑖,ℎ𝑖𝑖, 𝛾𝛾𝑖𝑖 , 𝑏𝑏𝑖𝑖)

for all 𝑖𝑖. 𝑙𝑙𝑖𝑖,𝑤𝑤𝑖𝑖 , and ℎ𝑖𝑖 are the length, width, and height of box type 𝑖𝑖. For

convenience, in the Bischoff and Ratcliff (1995) test data, it was assumed that

𝑙𝑙𝑖𝑖 > 𝑤𝑤𝑖𝑖 > ℎ𝑖𝑖. 𝑏𝑏𝑖𝑖 is the number of available boxes of type 𝑖𝑖. 𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖 , and 𝛾𝛾𝑖𝑖

are the binary parameters with respect to the possibility of a vertical orientation:

- 𝛼𝛼𝑖𝑖 = 1 if the x-axis direction (length) of box type 𝑖𝑖 can be in the

vertical orientation, 0 if it cannot;

- 𝛽𝛽𝑖𝑖 = 1 if the y-axis direction (width) of box type 𝑖𝑖 can be in the

vertical orientation, 0 if it cannot;

- 𝛾𝛾𝑖𝑖 = 1 if the z-axis direction (height) of box type 𝑖𝑖 can be in the

vertical orientation, 0 if it cannot.

A cuboid, e.g. a box or a container, is referred to as oriented if the vertical

Figure 4 Residual space

14

position of the cuboid is fixed. The dimensions of an oriented cuboid are

denoted as 𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚, and 𝑚𝑚𝑚𝑚, respectively. In this paper, superscripts b, s, and

w are used to represent a box, strip, and wall, respectively.

The residual space is an empty cuboid in a container and denoted by 𝑙𝑙𝑟𝑟

and 𝑤𝑤𝑟𝑟 as shown in Figure 4. The height of the residual space is not

considered because it is always equivalent to the height of a container.

Solutions, i.e. container packing patterns, and groups of the complete-

shipment are simply denoted as n-dimensional nonnegative integer vectors in

which each element represents the number of packed or required boxes of each

type. A group of the complete-shipment is denoted as:

𝐶𝐶𝐶𝐶 = (𝑐𝑐𝑠𝑠1, … , 𝑐𝑐𝑠𝑠𝑛𝑛)

where 𝑐𝑐𝑠𝑠𝑖𝑖 is the number of box type 𝑖𝑖 in the group.

3.2. Wall-building approach

The basic packing unit is a strip which can be thought of as a tower made up of

several types of oriented boxes. When building a strip, an initial oriented box

is selected and an envelope cuboid is formed. The height of the cuboid is always

equal to the height of the container or some height limit, and the length and the

width are equal to mx and my of the initial box. In this situation, the heights of

every strip do not need to be considered, so the problem becomes the 2D

knapsack problem.

Selecting an initial box type is really important because the choice

determines the length and the width of a strip, the dimensions of the strip

determine the depth of a wall, and the depth of the wall affects the performance

15

of the algorithm. George and Robinson (1980) presented a ranking rule for

selecting a box: among remaining boxes, select the box with the largest size of

the smallest dimension because it may be difficult to pack later in the procedure.

In this thesis, the smallest dimension that can be an edge of the bottom is

considered the standard. In the BR test data, if 𝛾𝛾𝑖𝑖 is 1, then ℎ𝑖𝑖 must be in the

vertical orientation. In this case, the smallest dimension is 𝑤𝑤𝑖𝑖. If 𝛼𝛼𝑖𝑖 or 𝛽𝛽𝑖𝑖 is

1, then ℎ𝑖𝑖 has the smallest dimension.

Once the first box type is selected, mx and my of the box become the length

and the width of an envelope cuboid. To apply the concept of the knapsack

greedy heuristic algorithm, 𝑚𝑚𝑚𝑚 is determined by the shortest possible

dimension of the box. Then box candidates for the strip are sorted. The

orientation of each box is determined by the following definitions:

𝐻𝐻𝛼𝛼�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = � 𝑙𝑙𝑖𝑖 if max{𝑤𝑤𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, min{𝑤𝑤𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝛼𝛼𝑖𝑖 = 1
+∞ otherwise

,

𝐻𝐻𝛽𝛽�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = � 𝑤𝑤𝑖𝑖 if max{𝑙𝑙𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, min{𝑙𝑙𝑖𝑖 , ℎ𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 ,𝛽𝛽𝑖𝑖 = 1
+∞ otherwise

,

𝐻𝐻𝛾𝛾�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = � ℎ𝑖𝑖 if max{𝑙𝑙𝑖𝑖 ,𝑤𝑤𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, min{𝑙𝑙𝑖𝑖 ,𝑤𝑤𝑖𝑖} ≤ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠, 𝛾𝛾𝑖𝑖 = 1
+∞ otherwise

.

These formulas confirm the available orientations of box type 𝑖𝑖. If the bottom

area of one possible orientation is larger than that of the initial box, the height

of this orientation is defined as +∞. Then, the height of the final orientation is

determined as

𝐻𝐻�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠� = min�𝐻𝐻𝛼𝛼�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠�,𝐻𝐻𝛽𝛽�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠�,𝐻𝐻𝛾𝛾�𝐵𝐵𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠,𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠�� .

That is, the shortest possible dimension becomes the height of all boxes of the

selected type. This may increase the volume utilization so the strip includes

more boxes, and it may lower the center of gravity and strengthen the stability

of the load. Using boxes of the selected type, the strip is built by maximizing

16

the volume utilization with the help of the tabu search. As shown in Figure 5

(a), the 𝑗𝑗-th strip has 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 and 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠 for the length and the width, respectively.

When strips are loaded within the container, some strips form a wall like

that shown in Figure 5 (b). Once initially formed, the strip is located on the rear-

left-bottom corner of the residual space and an envelope cuboid is formed. One

of the dimensions of the strip becomes the depth of a wall. The length (x-axis)

or the width (y-axis) and the height of the cuboid are defined as the length or

the width of the residual space and the height of the container. Then available

box types that satisfy max{𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚} ≤ max{𝑑𝑑𝑘𝑘𝑤𝑤, 𝑙𝑙𝑘𝑘𝑤𝑤} and min{𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚} ≤

min{𝑑𝑑𝑘𝑘𝑤𝑤, 𝑙𝑙𝑘𝑘𝑤𝑤} for all possible box orientations are selected and available strips

are built.

When building available strips, the standard value (𝑠𝑠𝑠𝑠) of the volume

utilization is introduced. If the volume utilization of a formed strip does not

exceed 𝑠𝑠𝑠𝑠, the strip is discarded. The envelope cuboid is then filled with the

available strips, and the wall is built. A tabu search algorithm is also used to

maximize the volume utilization. A container is then filled through the

Figure 5 Definition of (a) strip and (b) wall

17

successive placing of walls.

3.3. Tree search algorithm

When a wall is built, the initial strip can be loaded in one of two ways – along

the 𝑥𝑥 or along the 𝑦𝑦 axis – and the wall can be also formed in the direction of

either the x-axis or y-axis as shown in Figure 6. It is hard to explore all nodes,

which would be computationally too expensive. To overcome this difficulty, a

tree search algorithm is used to find the best set of walls in terms of the volume

utilization. This is a greedy and myopic heuristic method.

When branching a parent node, up to four children nodes can be made:

Two nodes are derived from the initial strip (𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚) and the other two are

from the strip (𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚) . Among the four options, the node having the

Figure 6 Tree search algorithm

18

highest volume utilization is selected and the other nodes are pruned. This can

reduce the computation time.

All leaf nodes correspond to feasible complete container packing plans.

Among them, the packing pattern of the highest volume utilization is selected

as the output solution of the algorithm. The volume utilization of the pattern is

defined as

𝑣𝑣𝑣𝑣(𝑥𝑥) =
∑ 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖 × 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝐿𝐿 × 𝑊𝑊 × 𝐻𝐻

where 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is a container packing solution and each element refers

to the number of packed boxes of each type.

3.4. Tabu search algorithm

An important role of the heuristic algorithm is as a means to find a good,

feasible solution quickly. Greedy heuristic algorithms are used to find good,

feasible strips, walls, and container packing plans. These algorithms, however,

can lead to local optimal solutions, so neighborhood searches are needed to

escape local optima. The tabu search is used for this purpose.

The tabu search modifies an incumbent into another solution in the

neighborhood even if its solution value is worse than the value of an incumbent.

The algorithm may result in cycling and so the tabu list is adopted to avoid such

cycling. The specific number of recent solutions or moves is placed on the tabu

list so that each is excluded during later iterations. Wolsey (1998) described a

basic version of the tabu search algorithm.

19

Algorithm 1 Tabu search algorithm

TabuSearch()

1 Initialize an empty tabu list and a solution 𝑠𝑠

2 While the stopping criterion is not satisfied

3 Choose a subset of non-tabu solutions
4 Let 𝑠𝑠′ be the best solution of the subset
5 Replace 𝑠𝑠 by 𝑠𝑠′ and update the tabu list
6 Return the best solution 𝑠𝑠∗found

The tabu search contains some important parameters, such as the tabu

tenure. The tabu list has t of most recent solutions, and the number t is called

the tabu tenure. The tenure is determined empirically. The iteration is also

important. The number of iterations determines the stopping criterion. An

adequate definition of the iteration can make good and quickly obtained results,

so it is determined empirically.

3.4.1. Solution representation and initialization

The tabu search is used for maximizing the volume utilization of strips and

walls. A strip is encoded in the form of 𝑠𝑠𝑗𝑗 = (𝑠𝑠1
𝑗𝑗, 𝑠𝑠2

𝑗𝑗 , … , 𝑠𝑠𝑛𝑛
𝑗𝑗) where each

element corresponds to the number of packed boxes of each type. The length of

the encoded solution is always n. To obtain an initial solution for a strip, one

stacks the initial box as high as possible. For example, if box type 1 is the largest

size of the smallest dimension, one of the boxes of type 1 is selected as the

initial box. Then the initial solution is as follows:

�min��𝐻𝐻 𝑚𝑚𝑧𝑧1𝑏𝑏⁄ �,𝑏𝑏1� , 0, … , 0�.

20

A wall is encoded in the form of 𝑦𝑦𝑘𝑘 = (𝑦𝑦1𝑘𝑘 ,𝑦𝑦2𝑘𝑘 , …) where 𝑦𝑦𝑗𝑗𝑘𝑘 is the

number of packed strips of type j. The number of available strip types depends

on the initial strip, so the length of the solution vector varies. An initial solution

for building a wall is also similar to the one for the strip. The wall that consists

of only one type of strips, which is the same as the initial strip, used as the initial

solution:

�min �⌊𝑙𝑙1𝑤𝑤 𝑚𝑚𝑚𝑚1𝑠𝑠(𝑚𝑚𝑚𝑚1𝑠𝑠)⁄ ⌋, min
𝑖𝑖

{𝑏𝑏𝑖𝑖 𝑧𝑧𝑖𝑖1⁄ }� , 0, 0, … �.

3.4.2. Objective function

The objective of the algorithm is to maximize the container volume utilization.

The objective function for building the 𝑗𝑗-th strip is defined as:

𝑓𝑓�𝑠𝑠𝑗𝑗� =
∑ 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖 × 𝑠𝑠𝑖𝑖

𝑗𝑗𝑛𝑛
𝑖𝑖=1
𝑚𝑚𝑥𝑥𝑗𝑗𝑠𝑠 × 𝑚𝑚𝑦𝑦𝑗𝑗𝑠𝑠 × 𝐻𝐻

.

This objective function represents the volume utilization of the strip. Similarly,

the objective function for building the 𝑘𝑘-th wall is defined as:

𝑔𝑔(𝑦𝑦𝑘𝑘) =
∑ ∑ 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖 × 𝑧𝑧𝑖𝑖𝑖𝑖 × 𝑦𝑦𝑗𝑗𝑘𝑘𝑛𝑛

𝑖𝑖=1𝑗𝑗

𝑙𝑙𝑘𝑘𝑤𝑤 × 𝑑𝑑𝑘𝑘𝑤𝑤 × 𝐻𝐻

where 𝑧𝑧𝑖𝑖𝑖𝑖 is the number of boxes of type i included in strip j.

3.4.3. Definition of moves

In the tabu search, the term move means the modification of the incumbent in

the neighborhood search. Designing moves is really important in the tabu

search because they affect diversification in the search process such that well-

21

designed moves can lead to powerful local searches and a near optimal solution.

At each iteration, some possible moves are selected and the moves modify the

incumbent. Among adjusted solutions, the best solution created by a move is

accepted even if it is worse than the incumbent.

The tabu search is used when building a strip and a wall. In these two cases,

the same definition of the move is used: In the first type of move, corresponding

to Figure 7 (a), two elements of the solution vector are selected. One is selected

among positive elements and 1 is subtracted from this selected element. The

other element is selected among those having spare boxes or strips and 1 is

added to this selected element. In the second type of the move, corresponding

Figure 7 Examples of moves

22

to Figure 7 (b), just one element of the solution vector is selected. Among

elements which have spare boxes or strips, an element is selected and 1 is added

to the selected element.

Some moves may lead to an infeasible solution. In the strip case, a solution

is feasible if ∑ 𝑚𝑚𝑚𝑚𝑖𝑖𝑏𝑏 × 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≤ 𝐻𝐻. A solution for the wall case is feasible if

∑ 𝑚𝑚𝑚𝑚𝑗𝑗𝑠𝑠(𝑚𝑚𝑦𝑦𝑗𝑗𝑠𝑠) × 𝑦𝑦𝑗𝑗𝑗𝑗 ≤ 𝑙𝑙𝑘𝑘𝑤𝑤 . The second type of move can lead to infeasible

solutions with high probability. To guarantee the feasibility of modified

solutions, the objective value of an infeasible solution is given as zero.

23

Chapter 4. The proposed algorithm

In this chapter, the heuristic algorithm named HAGC (heuristic algorithm with

guillotine cutting and complete-shipment constraints) is presented. This is a

hybrid algorithm composed of many small heuristic and metaheuristic parts.

4.1. Creation of an initial strip

First of all, an initial strip is needed to determine the depth of an envelope of a

wall. An initial strip is made through the following algorithm.

Algorithm 2 Creation of an initial strip

CreateAnInitialStrip (𝐵𝐵, 𝑙𝑙𝑟𝑟,𝑤𝑤𝑟𝑟,𝐻𝐻)

1 Initialize a strip 𝑠𝑠 ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎
2 Select boxes that can be loaded within the residual space
3 If there is no suitable box, Return ∅
4 Select a box that has the largest size of the smallest dimension among

 dimensions except for the vertical orientationas an initial box of 𝑠𝑠

5 Set the shortest dimension among possible dimensions as
 the vertical orientation of the initial box

6 Select boxes that can be supported completely by the initial box
7 Fix the orientation of each box
8 Build the strip with the boxes and the tabu search by maximizing 𝑓𝑓(𝑠𝑠)
9 Return 𝑠𝑠

Some boxes that cannot be loaded within the residual space are deleted

and an adequate box is selected as the initial box. The largest box of the smallest

24

dimension is suitable for an initial box, because small or thin boxes may be

loaded easily when the residual space is quite small. Then, the vertical direction

of the box must be determined. To use the concept of the knapsack greedy

heuristic algorithm, the largest available face is used as the bottom and the

shortest edge is oriented vertically.

The determined 𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚 become the length and the width of a strip.

An envelope of a strip with 𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚 × 𝐻𝐻 is formed and boxes fill this

envelope cuboid; however, some boxes need to be thrown out to secure stability

of the load. If all possible bottom areas of a box type cannot be supported

completely by the initial box, then the box type is excluded from the strip’s

components. Then, the vertical orientation of each component box is set up.

The rule is described in Section 3.2: The shortest dimension available is set in

the vertical direction so volume utilization can be maximized.

The strip is built with component boxes. In this process, the tabu search,

defined in Section 3.4, is used to search the neighborhood, escape local optima,

and maximize the volume utilization of the strip. Finally, this algorithm

produces the best strips found during the iterations.

4.2. Derivation of additional strips from the initial strip

Once an initial strip is formed, an envelope of a wall with a depth equal to one

of the dimensions of the initial strip is defined. This envelope cuboid can be

filled only with strips of the same type as the initial strip, but additional strips

can be included in the envelope cuboid to increase diversification and maximize

the volume utilization of the cuboid. Additional strips are made through the

25

following algorithm.

Algorithm 3 Derivation of additional strips from the initial strip

DeriveStrips (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 ,𝐻𝐻, 𝑠𝑠𝑠𝑠)

1 Initialize a strip set 𝑆𝑆 and add 𝑠𝑠 to 𝑆𝑆
2 Select boxes that can be loaded within the envelope cuboid
3 For all of the boxes

4 For all possible orientations of the box
5 Initialize a strip 𝑠𝑠′ ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎
6 Select the box as an initial box
7 Set the shortest dimension among possible dimensions as

 the vertical orientation of the initial box
8 Select boxes that can be supported completely

 by the initial box
9 Build the strip with the boxes and the tabu search

 by maximizing 𝑓𝑓(𝑠𝑠′)
10 If 𝑓𝑓(𝑠𝑠′) > 𝑠𝑠𝑠𝑠 and the strip is not a duplicate

11 Add 𝑠𝑠′ into 𝑆𝑆
12 Return 𝑆𝑆

The procedure is similar to the strip-building algorithm. However, for a

wall, all possible orientations of boxes are considered as an initial box to

diversify components and increase the probability of maximizing the volume

utilization. For each initial box with a specific orientation, a strip is built by

using the tabu search. If the volume utilization of this strip exceeds the standard

value (𝑠𝑠𝑠𝑠) and not already in strip set 𝑆𝑆, then the strip is included in strip set

𝑆𝑆. One box type can be oriented in various ways, so several strips can be derived

from one box type. Once all of the box types are considered, the algorithm

returns 𝑆𝑆.

26

4.3. Creation of walls

Figure 6 showed that each parent node can take up to four child nodes, and two

cases – walls with x- and y-axis directions – are considered to simplify the

algorithm. The algorithm for creating a wall along the x-axis is presented in the

following algorithm:

Algorithm 4 Creation of a wall with an x-axis direction

CreateWallX (𝑠𝑠,𝐵𝐵, 𝑠𝑠𝑠𝑠)

1 For orientations 1 and 2 of the initial strip 𝑠𝑠 loaded
 within the residual space

2 Make an envelope cuboid of a wall along the x-axis
3 An available strip set 𝑆𝑆 = DeriveStrips (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 ,𝐻𝐻, 𝑠𝑠𝑠𝑠)
4 Initialize 𝑦𝑦1 ∈ ℤ+

|𝑆𝑆| ∪ 𝟎𝟎 or 𝑦𝑦2 ∈ ℤ+
|𝑆𝑆| ∪ 𝟎𝟎

5 Build the wall with the available strips and the tabu search
 by maximizing the volume utilization 𝑔𝑔(𝑦𝑦)

6 Initialize a solution 𝑥𝑥 ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎

7 If 𝑔𝑔(𝑦𝑦1) ≥ 𝑔𝑔(𝑦𝑦2)

8 𝑥𝑥𝑖𝑖 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖 × 𝑦𝑦𝑗𝑗1𝑗𝑗 for all 𝑖𝑖

9 Else 𝑥𝑥𝑖𝑖 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖 × 𝑦𝑦𝑗𝑗2𝑗𝑗 for all 𝑖𝑖

10 Return 𝑥𝑥

In the procedure, two building cases – orientations of (𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚) and

(𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚) of the initial strip – are considered simultaneously. For each

envelope cuboid, the available strip set is formed by using Algorithm 3, and the

wall is filled with the strips by using the tabu search. Once two walls are built,

the more suitable wall is selected based on a comparison of the two volume

utilizations.

27

Once a wall is built, the selected |𝑆𝑆| -dimensional vector should be

converted into an 𝑛𝑛-dimensional solution vector because every wall vector has

its own length and standardization is needed to reach an ultimate solution. 𝑥𝑥𝑖𝑖

is the sum of 𝑧𝑧𝑖𝑖𝑖𝑖 multiplied by 𝑦𝑦𝑗𝑗 for all 𝑗𝑗 where 𝑧𝑧𝑖𝑖𝑖𝑖 is the number of boxes

of type 𝑖𝑖 included in strip 𝑗𝑗, defined in Section 3.4.2. Finally, the wall in the

form of an 𝑛𝑛-dimensional vector is the output.

The algorithm for creating a wall with a y-axis direction is almost the same

as the one for the 𝑥𝑥-axis direction:

Algorithm 5 Creation of a wall with a y-axis direction

CreateWallY (𝑠𝑠,𝐵𝐵, 𝑠𝑠𝑠𝑠)

1 For orientations 1 and 2 of the initial strip 𝑠𝑠 loaded
 within the residual space

2 Make an envelope cuboid of a wall with a y-axis direction
3 An available strip set 𝑆𝑆 = DeriveStrips (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 ,𝐻𝐻, 𝑠𝑠𝑠𝑠)
4 Initialize 𝑦𝑦1 ∈ ℤ+

|𝑆𝑆| ∪ 𝟎𝟎 or 𝑦𝑦2 ∈ ℤ+
|𝑆𝑆| ∪ 𝟎𝟎

5 Build the wall with the available strips and the tabu search
 by maximizing the volume utilization 𝑔𝑔(𝑦𝑦)

6 Initialize a solution 𝑥𝑥 ∈ ℤ+𝑛𝑛 ∪ 𝟎𝟎

7 If 𝑔𝑔(𝑦𝑦1) ≥ 𝑔𝑔(𝑦𝑦2)

8 𝑥𝑥𝑖𝑖 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖 × 𝑦𝑦𝑗𝑗1𝑗𝑗 for all 𝑖𝑖

9 Else 𝑥𝑥𝑖𝑖 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖 × 𝑦𝑦𝑗𝑗2𝑗𝑗 for all 𝑖𝑖

10 Return 𝑥𝑥

28

4.4. Satisfaction of the complete-shipment constraint

If the solution found from the previous algorithms does not satisfy the

complete-shipment constraint, unnecessary boxes should be deleted and

specific elements of the solution should be adjusted to a multiple of the

complete-shipment rule. For example, for the found solution of (30, 20, 14)

and the complete-shipment rule (2, 1, 1) , (28, 14, 14) is sufficient and

(2, 6, 0) is unnecessary and deleted form the found solution.

A sequence is used to satisfy the complete-shipment constraint. Divide 𝑥𝑥𝑖𝑖

by 𝑐𝑐𝑐𝑐𝑖𝑖 for all 𝑖𝑖 for which 𝑐𝑐𝑐𝑐𝑖𝑖 > 0; the least value is the multiplier m. To

delete unnecessary boxes from the container, set 𝑥𝑥𝑖𝑖 = 𝑚𝑚 × 𝑐𝑐𝑐𝑐𝑖𝑖 for all 𝑖𝑖 .

Generated empty spaces can be filled with other boxes that are not elements of

the complete-shipment group. To determine the boxes to fill the space, sort box

types into descending order by box volume such that the largest box 𝑗𝑗 that

satisfies 𝑙𝑙𝑖𝑖 ≥ 𝑙𝑙𝑗𝑗,𝑤𝑤𝑖𝑖 ≥ 𝑤𝑤𝑗𝑗, and ℎ𝑖𝑖 ≥ ℎ𝑗𝑗 is loaded within the empty space in

place of deleted box 𝑖𝑖 from the complete-shipment group.

4.5. Establishment of the entire algorithm

The HAGC consists of the partial algorithms 1 through 5. The overall algorithm

is as follows:

29

Algorithm 6 Heuristic algorithm with guillotine cutting
and complete-shipment constraints

HAGC (𝐵𝐵, 𝐿𝐿,𝑊𝑊,𝐻𝐻,𝐶𝐶𝐶𝐶,𝜔𝜔)

1 Initialize a solution 𝑥𝑥 and 𝜇𝜇 // 𝜇𝜇 as a temporary solution

2 Initialize a wall list 𝑊𝑊𝑊𝑊 and an orientation list of walls 𝑂𝑂𝑂𝑂
3 Define 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 1 // for increasing the multiplier
4 For 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝜌𝜌
5 Initialize 𝑙𝑙𝑟𝑟 ← 𝐿𝐿,𝑤𝑤𝑟𝑟 ← 𝑊𝑊, a temporary wall list 𝑇𝑇𝑇𝑇𝑇𝑇,

 and a temporary orientation list of walls 𝑇𝑇𝑇𝑇𝑇𝑇

6 While there is a box that can be loaded within the residual space

7 an initial strip 𝑠𝑠 ← CreateAnInitialStrip (𝐵𝐵, 𝑙𝑙𝑟𝑟,𝑤𝑤𝑟𝑟,𝐻𝐻)
8 an x-axis wall 𝑥𝑥1 ← CreateWallX (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 , 𝑠𝑠𝑠𝑠)
9 a y-axis wall 𝑥𝑥2 ← CreateWallY (𝑠𝑠,𝐵𝐵,𝑑𝑑𝑘𝑘𝑤𝑤 , 𝑙𝑙𝑘𝑘𝑤𝑤 , 𝑠𝑠𝑠𝑠)

10 If 𝑓𝑓(𝑥𝑥1) ≥ 𝑓𝑓(𝑥𝑥2) Then

11 𝜇𝜇 ← 𝜇𝜇 + 𝑥𝑥1

12 Add 𝑥𝑥1 to 𝑇𝑇𝑇𝑇𝑇𝑇 and 1 to 𝑇𝑇𝑇𝑇𝑇𝑇
13 Else

14 𝜇𝜇 ← 𝜇𝜇 + 𝑥𝑥2

15 Add 𝑥𝑥2 to 𝑇𝑇𝑇𝑇𝑇𝑇 and 2 to 𝑇𝑇𝑇𝑇𝑇𝑇
16 Update 𝐵𝐵, 𝑙𝑙𝑟𝑟, and 𝑤𝑤𝑟𝑟
17 Adjust 𝜇𝜇 in accordance with 𝐶𝐶𝐶𝐶
18 If 𝑣𝑣𝑣𝑣(𝜇𝜇) > 𝑣𝑣𝑣𝑣(𝑥𝑥), Then 𝑥𝑥 ← 𝜇𝜇, 𝑊𝑊𝑊𝑊 ← 𝑇𝑇𝑇𝑇𝑇𝑇,𝑂𝑂𝑂𝑂 ← 𝑇𝑇𝑇𝑇𝑇𝑇
19 Reset all 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑖𝑖 ← 𝑏𝑏𝑖𝑖 − 𝜔𝜔 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
20 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1
21 Return 𝑥𝑥

To initiate the HAGC, 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) , which represents a container

packing plan and 𝜇𝜇 = (𝜇𝜇1, … , 𝜇𝜇𝑛𝑛) , which is a temporary solution for the

complete-shipment constraint, are initialized. Each element is an integral

nonnegative variable, meaning the number of packed boxes of each type. After

a solution is found through the partial algorithms, the HAGC solution is

30

adjusted to satisfy the complete-shipment constraint in accordance with Section

4.4. If the volume utilization of the adjusted solution is higher than that of 𝑥𝑥,

then 𝑥𝑥 is updated.

Some solutions feature zero for some 𝑖𝑖 such that 𝑐𝑐𝑠𝑠𝑖𝑖 > 0, and in these

cases, the multiplier also becomes zero. To prevent this situation, 𝜔𝜔 is

introduced, and for all box types, 𝜔𝜔 boxes are deducted from each available

box type. Then algorithm 6 is repeated from line 5 to line 20. After repetition

𝜌𝜌 times, 𝜌𝜌 solutions are achieved with 𝜌𝜌 − 1 adjustments, and a solution

with the highest volume utilization is selected. For example, if (𝑏𝑏1,𝑏𝑏2,𝑏𝑏3) =

(30, 25, 20), 𝜌𝜌 = 3, and 𝜔𝜔 = 2, three solutions are found from (𝑏𝑏1,𝑏𝑏2,𝑏𝑏3) =

(30, 25, 20), (28, 23, 18), and (26, 21, 16).

31

Chapter 5. Computational experiments

The proposed algorithm, HAGC, was implemented in JAVA, and experiments

were run on an Intel® Core™ i5-3570 CPU @ 3.40GHz processor with 8 GB

RAM.

5.1. Test data and valuable resources

As mentioned in Chapter 2, Bischoff and Ratcliff (1995) proposed 700 test data

(BR data) for the SLOPP, and many papers on the SLOPP have used these data

for benchmarks. These data can be downloaded from

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/thpackinfo.html.

The BR data include seven cases, BR1 to BR7 and each case includes 100

instances. The differences among all cases represent the number of box types:

3, 5, 8, 10, 12, 15, and 20, respectively. Davies and Bischoff (1999) stipulated

that BR1 to BR7 are weakly heterogeneous container packing problems. In all

instances, the container is always assumed to be 20ft (i.e. 587 × 233 ×

220 cm3). The BR data are composed as in Table 2, which shows one example

of the BR1 data set. The length, width, and height of the table correspond to

Table 2 Example of the BR test data

Type Length Vert. Width Vert. Height Vert. Quantity

1 108 0 76 0 30 1 40

2 110 0 43 1 25 1 33

3 92 1 81 1 55 1 39

http://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/thpackinfo.html

32

𝑙𝑙𝑖𝑖,𝑤𝑤𝑖𝑖 , and ℎ𝑖𝑖, and quantity corresponds to 𝑏𝑏𝑖𝑖. Vert. is the abbreviation of the

vertical orientation from the data sets of Bischoff and Ratcliff (1995) and refers

to the possibility of a vertical direction. If Vert. is 1, then this dimension can be

in the vertical orientation. Each Vert. correspond to 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖, and 𝛾𝛾𝑖𝑖, respectively.

JAVA is the most famous object-oriented programming (OOP) language.

The OOP paradigm is based on the concept of objects, and a program is

considered a set of objects. An instance casted from a class in a programming

language corresponds to an object. One of the advantageous characteristics of

the OPP is its reusability. Some classes made by other people can be used as a

part of one’s own program. We use a JAVA tabu search framework from

http://www.coin-or.org/Ots/index.html.

The Computational Infrastructure for Operations Research (COIN-OR)

Foundation, Inc., is a non-profit educational and scientific foundation for

managing the COIN-OR project. Corporate members of the foundation include

IBM and Maximal Software, among others, and a strategic partner is the

INFORMS Computing Society. The COIN-OR project is an initiative to

develop open-source software for the OR community. The project has

developed and released open tabu search classes for JAVA to help users

implement popular metaheuristic algorithms in well-defined, object-oriented

designs.

Classes such as Solution, ObjectiveFunction, Move, MoveManager,

TabuList, TabuSearch, etc. were used in the experiment. Some critical

parameters were determined empirically and definitions and configurations of

some classes are described in Section 3.4.

http://www.coin-or.org/Ots/index.html

33

5.2. Test results without the complete-shipment constraint

Eley (2003) is the only research that has considered and published on the

complete-shipment constraint, and the related paper dealt with a multiple

container packing problem. So, the algorithm without the complete-shipment

constraint is tested and compared to other relevant algorithms. In this case, line

17 of Algorithm 6 is omitted.

Figure 8 is an example of the container packing procedure and a solution

for a test instance of BR1 of the BR data shown in Table 2. The figures represent

top views of the container and each square refers to a strip; for example, ① ×

7 describes a strip that consists of seven boxes of type 1. Other numbers in the

Figure 8 Container packing procedure and a solution of an example from the BR1 data

34

figure, such as 233, 76, and, 108, represent lengths or widths of boxes and the

container. Among three box types, the largest with the smallest dimension is

type 1 because only the 𝑧𝑧-axis dimension of type 1 can be in the vertical

orientation, and 76𝑐𝑐𝑐𝑐 is the smallest dimension of a box of type 1 that can be

used as 𝑚𝑚𝑚𝑚 or 𝑚𝑚𝑚𝑚. So, in the first phase shown in Figure 8 (a), type 1 is

selected as the initial box and a wall in the 𝑦𝑦-axis direction is built. This wall

is the one selected among four possible walls mentioned in Section 3.3. and

Figure 6. In Figure 8 (f), a guillotine cutting pattern is completed. The final

solution is 𝑥𝑥 = (35, 26, 38) and the volume utilization is

 𝑣𝑣𝑣𝑣(𝑥𝑥) =
∑ 𝑥𝑥𝑖𝑖 × 𝑙𝑙𝑖𝑖 × 𝑤𝑤𝑖𝑖 × ℎ𝑖𝑖3
𝑖𝑖=1

𝐿𝐿 × 𝑊𝑊 × 𝐻𝐻
× 100

=
35 × 246,240 + 26 × 118,250 + 38 × 409,860

587 × 233 × 220
× 100

= 90.62%.

The results of the proposed algorithm for the 700 instances are now

compared with the results of Bischoff and Ratcliff (1995), Bortfeldt and

Gehring (2001), and Liu et al. (2014); all of these papers fulfilled the orientation

and guillotine cutting constraints. Table 3 shows the computational test results

of the algorithms for the data from BR1 to BR7. All of the volume utilization

and computation time data in this table represent the average values of the 100

instances for each case.

Many parameters of HAGC were determined empirically, and some

correlations exist between parameters. In every cases, 𝜌𝜌 was three. Figure 9

shows the correlation between computation times and iteration. The

computation time increases as the number of box types increases. Moreover,

the computation time tends to increase as the iteration increases. Figure 10

35

Table 3 Comparison of test results for the 700 instances from BR1-BR7 without the complete-shipment constraint

Test case BR1 BR2 BR3 BR4 BR5 BR6 BR7 Mean BR1-BR7

No. of box types 3 5 8 10 12 15 20

Bischoff and Ratcliff
(1995)

Volume
utilization (%) 81.76 81.70 82.98 82.60 82.76 81.50 80.51 81.97

Computation
time (sec.) - - - - - - - -

Bortfeldt and Gehring
(2001)

Volume
utilization (%) 87.81 89.40 90.48 90.63 90.73 90.72 90.65 90.06

Computation
time (sec.) - - - - - - - 316.00

Liu et al. (2014)

Volume
utilization (%) 90.57 91.46 92.39 92.33 92.42 92.35 92.11 91.95

Computation
time (sec.) 61.13 64.37 64.40 63.34 59.52 73.63 86.80 67.60

HAGC
without the complete-
shipment constraint

Volume
utilization (%) 85.86 86.41 87.49 87.32 87.21 86.93 85.95 86.74

Computation
time (sec.) 0.05 0.07 0.15 0.28 0.41 0.62 1.29 0.41

Standard value
(%) 79.00 78.00 77.00 76.00 75.00 74.00 73.00 -

Tabu tenure
(unit) 23 37 45 50 55 57 61 -

Iteration (cycle) 50 50 50 60 60 60 70 -

𝜔𝜔 3 1 1 1 1 1 1 -

36

shows that all tabu tenures are lower than the respective number of iterations.

When a tabu tenure is between 50 and 59, the optimal iteration is 60, but in an

unexpected outcome, the optimal iteration was 50, not 30 or 40, when the

optimal tabu tenure was 23 in BR1. Figure 11 shows that the standard value

decreases monotonically and the tabu tenure increases monotonically.

Figure 9 Correlation between computation time and iteration

Figure 10 Correlation between the tabu tenure and the iteration

37

Figure 12 shows the comparison of the HAGC to relevant algorithms. The

volume utilization of the HAGC is better than that of Bischoff and Ratcliff

(1995), but worse than that of the other researchers. The mean gap of the

volume utilization is about 3.7% of that of Bortfeldt and Gehring (2001) and

about 5.7% of that of Liu et al. (2014).One of the reasons is that maximizing

the volume utilization is the principal objective for the three relevant algorithms,

Figure 11 Trend of the standard value and the tabu tenure

Figure 12 Comparison of the HAGC with other relevant algorithms

38

but the principal objective of the HAGC is to satisfy the complete-shipment

constraint. That is why the volume utilization of the HAGC is worse that of the

other algorithms. In addition, Bortfeldt and Gehring (2001) devised a two-

phased hybrid genetic algorithm, which improved a solution in the second

phase and facilitated diversified exploration for finding a solution. Although

the HAGC uses the tabu search, the use is quite restricted. The tree search

algorithm is one of the exhaustive search methods; i.e. it is a greedy heuristic

algorithm. In the case of Liu et al. (2014), IP models were used to build strips

and walls, but the procedure was not made clear. The authors described

generalized processes for finding a container packing pattern.

As shown in Table 3, the HAGC features faster computation than the

others even if computational environments differ from each other. None of the

related papers clarified that computation times are either averages of one

instance or total times of 100 instances, but computation times of the HAGC

are regarded as the average times of each instance. As the volume utilizations

are mean values, it is reasonable to display average times. The mean

computation time of the HAGC is about 770 times (or 7.7 times) faster than

that of Bortfeldt and Gehring (2001) and about 165 times (or 1.7 times) faster

than that of Liu et al. (2014).

5.3. Test results with the complete-shipment constraint

Under the complete-shipment constraint, complying with the complete-

shipment rule and maximizing the volume utilization are important.

Experiments using the HAGC with the complete-shipment constraint were

39

Table 4 Comparison of test results for the 700 instances from BR1-BR7 with the complete-shipment constraint

Test case BR1 BR2 BR3 BR4 BR5 BR6 BR7 Mean
BR1-BR7

No. of box types 3 5 8 10 12 15 20 -

Average no. of boxes per type 50 27 17 13 11 9 7 -

HAGC
without the complete-
shipment constraint

Volume
utilization (%) 85.86 86.41 87.49 87.32 87.21 86.93 85.95 86.74

Computation
time (sec.) 0.05 0.07 0.15 0.28 0.41 0.62 1.29 0.41

HAGC
with the complete-
shipment constraint

Volume
utilization (%) 73.10 77.26 80.09 80.55 80.94 81.17 80.86 79.14

Computation
time (sec.) 0.04 0.09 0.26 0.37 0.58 0.87 1.72 0.56

Standard value
(%) 79.00 78.00 77.00 76.00 75.00 74.00 73.00 -

Tabu tenure
(unit) 20 33 47 47 45 57 57 -

Iteration
(cycle) 40 50 50 50 60 60 70 -

ω 2 1 1 1 1 1 1 -

40

conducted using the same BR data as in the tests without the complete-shipment

constraint, and the results were compared with the results of the HAGC

evaluation without the complete-shipment constraint. The results are shown in

Table 4 and the average number of boxes per box type, as excerpted from

Fanslau and Bortfeldt (2010), was added in the table.

Figure 13 shows that as the number of box types increases, the volume

utilization also increases. However, the gradient of the curve of the volume

utilizations gradually decreases, and when the number of box types is 20, the

gradient finally becomes a negative number. This situation can be analyzed by

acknowledging that the more box types, the easier it is to fill up empty spaces

during the complete-shipment process. However, generally the average number

of boxes per type decreases as the number of box types increases. So, available

boxes of each type are typically insufficient and it is not easy to increase the

volume utilization.

The complete-shipment constraint leads to a decrease in the volume

Figure 13 Correlation between the volume utilizations and number of box types

41

utilizations as shown in Figure 14. However, the difference rate decreases

constantly as the number of box types increases. The reason is that the more

box types, the easier it is to fill up empty spaces during the complete-shipment

process, similar to the above analysis.

Figure 14 Comparison of two volume utilizations

42

Chapter 6. Conclusions

This paper proposed the container packing algorithm named HAGC (heuristic

algorithm with guillotine cutting and complete-shipment constraints) that

satisfies three constraints. HAGC is a hybrid approach, combining a tree search

algorithm and tabu search algorithms. The wall-building approach was used to

make a guillotine cutting pattern. The performance of HAGC was evaluated

with computational experiments by using the well-known test data from

Bischoff and Ratcliff (1995), so that the volume utilization and the computation

time of HAGC could be compared with several other relevant algorithms. When

comparing the results, the complete-shipment constraint was not considered.

This is because only one paper, Eley (2003), considered the constraint with a

multiple container packing problem.

In terms of the volume utilization, HAGC did not perform as well as the

algorithms of Bortfeldt and Gehring (2001) and Liu et al. (2014). However, the

computation time was shorter. With respect to the complete-shipment constraint,

no benchmark paper was found at the time of this writing. Therefore, HAGC

with the complete-shipment constraint was compared with HAGC without the

constraint. Through experiments, it was confirmed that relative volume

utilizations in terms of the HAGC values without the constraint increase as the

number of box types increases.

Many researchers have developed two-phased heuristic algorithms, which

typically consist of a basic greedy heuristic algorithm and an improvement

algorithm. HAGC can be used as a basic greedy heuristic algorithm in the role

of offering an initial solution. Then, this research can be extended to improve

43

the performance of HAGC by devising an improvement phase. Also, a strip-

building approach is not suitable for considering the complete-shipment

constraint. For example, if the complete-shipment group is (2, 1, 1), making a

strip with these four boxes is quite inefficient in terms of the volume utilization.

Therefore, research on a 3D-CPP with the complete-shipment constraint can be

done with a block-building approach.

In addition to these suggestions, some other possibilities for future

research appear promising. Other practical constraints, such as the weight limit,

need to be considered. More realistic algorithms should be developed. One

container packing manager said that existing algorithms offer quite complicated

packing patterns and these cannot be implemented within a reasonable time.

Therefore, most packing methods depend on managers’ experience and some

luck. The HAGC gives simple and intuitive packing patterns for manager

consideration.

44

Bibliography

[1] Alvarez-Valdes, R., A. Parajon and J. M. Tamarit (2002). "A tabu search
alogorithm for large-scale guillotine (un)constrainted two-dimensional
cutting problems." Computers & Operations Research 29: 925-947.

[2] Amossen, R. R. and D. Pisinger (2010). "Multi-dimensional bin packing

problems with guillotine constraints." Computers & Operations Research
37(11): 1999-2006.

[3] Bischoff, E. E. and M. S. W. Ratcliff (1995). "Issues in the development of

approaches to container loading." Omega 23(4): 377-390.

[4] Bortfeldt, A. and H. Gehring (2001). "A hybrid genetic algorithm for the

container loading problem." European Journal of Operational Research 131:
143-161.

[5] Bortfeldt, A., H. Gehring and D. Mack (2003). "A parallel tabu search

algorithm for solving the container loading problem." Parallel Computing
29(5): 641-662.

[6] Bortfeldt, A. and S. Jungmann (2012). "A tree search algorithm for solving

the multi-dimensional strip packing problem with guillotine cutting
constraint." Annals of Operations Research 196(1): 53-71.

[7] Bortfeldt, A. and G. Wäscher (2013). "Constraints in container loading – A

state-of-the-art review." European Journal of Operational Research 229(1):
1-20.

[8] Clautiaux, F., A. Jouglet and A. Moukrim (2013). "A New Graph-

Theoretical Model for the Guillotine-Cutting Problem." INFORMS Journal
on Computing 25(1): 72-86.

[9] Crainic, T. G., G. Perboli and R. Tadei (2009). "TS2PACK: A two-level tabu

search for the three-dimensional bin packing problem." European Journal
of Operational Research 195(3): 744-760.

[10] Davies, A. P. and E. E. Bischoff (1999). "Weight distribution

considerations in container loading." European Journal of Operational
Research 114: 509-527.

[11] de Armas, J., G. Miranda and C. León (2012). "Improving the efficiency

of a best-first bottom-up approach for the Constrained 2D Cutting

45

Problem." European Journal of Operational Research 219(2): 201-213.

[12] Dolatabadi, M., A. Lodi and M. Monaci (2012). "Exact algorithms for the

two-dimensional guillotine knapsack." Computers & Operations Research
39(1): 48-53.

[13] Eley, M. (2002). "Solving container loading problems by block

arrangement." European Journal of Operational Research 141: 393-409.

[14] Eley, M. (2003). "A bottleneck assignment approach to the multiple

container loading problem." OR Spectrum 25: 45-60.

[15] Fanslau, T. and A. Bortfeldt (2010). "A Tree Search Algorithm for Solving

the Container Loading Problem." INFORMS Journal on Computing 22(2):
222-235.

[16] Feng, X., I. Moon and J. Shin (2015). "Hybrid genetic algorithms for the

three-dimensional multiple container packing problem." Flexible Services
and Manufacturing Journal 27(2-3): 451-477.

[17] George, J. A. and D. F. Robinson (1980). "A heuristic for packing boxes

into a container." Computers & Operations Research 7: 147-156.

[18] Gilmore, P. C. and R. E. Gomory (1965). "Multistage cutting stock

problems of two and more dimensions." Operations research 13(1): 94-120.

[19] Gonçalves, J. F. and M. G. C. Resende (2012). "A parallel multi-population

biased random-key genetic algorithm for a container loading problem."
Computers & Operations Research 39(2): 179-190.

[20] Liu, J., Y. Yue, Z. Dong, C. Maple and M. Keech (2011). "A novel hybrid

tabu search approach to container loading." Computers & Operations
Research 38(4): 797-807.

[21] Liu, S., W. Tan, Z. Xu and X. Liu (2014). "A tree search algorithm for the

container loading problem." Computers & Industrial Engineering 75: 20-30.

[22] Moon, I. and T. V. L. Nguyen (2014). "Container packing problem with

balance constraints." OR Spectrum 36(4): 837-878.

[23] Pisinger, D. (2002). "Heuristics for the container loading problem."

European Journal of Operational Research 141: 382-392.

[24] Ren, J., Y. Tian and T. Sawaragi (2011). "A tree search method for the

container loading problem with shipment priority." European Journal of
Operational Research 214(3): 526-535.

46

[25] Russo, M., A. Sforza and C. Sterle (2013). "An improvement of the

knapsack function based algorithm of Gilmore and Gomory for the
unconstrained two-dimensional guillotine cutting problem." International
Journal of Production Economics 145(2): 451-462.

[26] Wäscher, G., H. Haußner and H. Schumann (2007). "An improved

typology of cutting and packing problems." European Journal of
Operational Research 183(3): 1109-1130.

[27] Wolsey, L. A. (1998). Integer Programming, Wiley-Interscience.

47

초 록

이 논문은 3차원 컨테이너 적재 문제 (3D-CPP)를 풀 수 있는

트리 탐색 알고리즘을 제시한다. 3D-CPP에 대한 많은 현실적인

제약 조건이 존재하고, 이 논문에서는 화물 방향 제약과 길로틴

절단, 완전 선적 제약을 고려하고 있다. 벽 구축 접근법과 타부

서치를 이용하여 적재율을 최대화하는 알고리즘을 개발하였다. 많은

연구자들이 사용한 BR 실험 데이터를 이용하여 실험한 결과, 본

알고리즘은 빠른 시간 안에 적재율이 상당히 높은 화물 적재

패턴을 찾을 수 있음을 확인하였다. 또한, 본 알고리즘을 통해 완전

선적 조건을 만족하면서 작업자가 쉽게 이해하고 빠르게 구현할 수

있는 화물 적재 패턴을 구할 수 있다.

주요어 : 컨테이너 패킹 문제, 길로틴 절단 패턴, 완전 선적, 벽

구축 접근법, 트리 탐색, 타부 서치

학 번 : 2014-20631

	1.Introduction
	2.Literature review
	3.Problem description
	3.1.Basic assumption
	3.2.Wall-building approach
	3.3.Tree search algorithm
	3.4.Tabu search algorithm

	4.The proposed algorithm
	4.1.Creation of an initial strip
	4.2.Derivation of additional strips from the initial strip
	4.3.Creation of walls
	4.4.Satisfaction of the complete-shipment constraint
	4.5.Establishment of the entire algorithm

	5.Computational experiments
	5.1.Test data and valuable resources
	5.2.Test results without the complete-shipment constraint
	5.3.Test results with the complete-shipment constraint

	6. Conclusions
	Bibliography
	초록

<startpage>8
1.Introduction 1
2.Literature review 7
3.Problem description 12
 3.1.Basic assumption 12
 3.2.Wall-building approach 14
 3.3.Tree search algorithm 17
 3.4.Tabu search algorithm 18
4.The proposed algorithm 23
 4.1.Creation of an initial strip 23
 4.2.Derivation of additional strips from the initial strip 24
 4.3.Creation of walls 26
 4.4.Satisfaction of the complete-shipment constraint 28
 4.5.Establishment of the entire algorithm 28
5.Computational experiments 31
 5.1.Test data and valuable resources 31
 5.2.Test results without the complete-shipment constraint 33
 5.3.Test results with the complete-shipment constraint 38
6. Conclusions 42
Bibliography 44
ÃÊ·Ï 47
</body>

