

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

불연속 다양체에서의 동작 계획

Motion Planning on Disconnected
Manifolds: Manipulation under Task

and Obstacle Constraints

2013년 2월

서울대학교 대학원

기계항공공학부

김 진 규

ABSTRACT

Motion Planning on Disconnected Manifolds:

Manipulation under Task and Obstacle Constraints

by

Jinkyu Kim

School of Mechanical and Aerospace Engineering

Seoul National University

In this thesis we introduce an algorithm for motion planning on disconnected man-

ifolds. Constraint manifolds can be disconnected if, for example, both task con-

straints and obstacles are present in the task space. Our proposed algorithm uses

sampling-based motion planning on a foliation structure that consists of parallel

submanifolds of lower dimension. Some case studies are performed to evaluate the

performance of our proposed algorithm.

iii

iv

Keywords: Motion Planning, disconnected manifolds, foliation, rapidly-exploring

random tree

Student Number: 2011-20698

Contents

Abstract iii

List of Tables vii

List of Figures viii

1 Introduction 1

2 Planning on Disconnected Manifolds 4

2.1 Preliminaries . 4

2.1.1 Task Space and Configuration Space 4

2.1.2 Task Constraints . 5

2.1.3 Foliation . 6

2.2 Problem Definition . 6

2.3 Proposed Algorithm . 8

2.3.1 Extension in Task Space . 10

2.3.2 Decision Whether to Proceed or to Jump 11

2.3.3 Projection . 12

v

CONTENTS vi

2.3.4 Line Segment . 14

3 Case Studies 15

3.1 3 DOF Planar Manipulator . 16

3.2 6 DOF Spatial Manipulator 1 . 17

3.3 6 DOF Spatial Manipulator 2 . 17

4 Conclusion 24

Bibliography 26

국문초록 28

List of Tables

2.1 Whole Algorithm . 9

2.2 RRT-like extension in the task space 10

2.3 Decision whether to proceed or to jump 11

2.4 Proceeding to next leaf . 12

2.5 Jumping in same leaf . 12

2.6 Projection by Newton-Raphson method 13

3.1 Simulation results of 3 DOF planar manipulator 18

3.2 Simulation results of 6 DOF spatial manipulator (1) 19

3.3 Simulation results of 6 DOF spatial manipulator (2) 19

vii

List of Figures

2.1 A motivational Example . 7

2.2 A simple illustration of the proposed planner 8

2.3 Explanation of LineSegment function 14

3.1 Simulation results of 3 DOF planar manipulator 20

3.2 Simulation results of 6 DOF spatial manipulator (1) 21

3.3 Problem definition of 6 DOF spatial manipulator (2) 22

3.4 Simulation results of 6 DOF spatial manipulator (2) 23

viii

1
Introduction

One of the most widely-used planners among sampling-based motion planning al-

gorithms is the rapidly-exploring random tree (RRT) [1], [2]. Recently RRT-based

algorithms have been developed to improve the planning performance by using some

simple techniques [3], [4], [5] or to solve problems with various constraints [6], [7].

Generating more than two trees (basically two trees are built from start and goal

configuration) in the configuration space [3] works well for the problem with nar-

row passages. Sampling constrained configurations [4] and considering path cost

for growth of tree [5] can also improve the performance of motion planning. Con-

strained bi-direnctional rapidly-exploring random tree (CBiRRT) [6] and tangent

space rapidly-exploring random tree (TSRRT) [7] can handle many kinds of con-

straints such as pose constraints, static torque limits, loop closure conditions, etc.

What makes the CBiRRT able to handle those constraints is the projection of con-

figurations to constraint manifolds by iterative method. TSRRT, however, reduces

time of projection by using tangent space as an approximation of constraint mani-

folds.

1

1. Introduction 2

Oriolo et al proposed a control-based algorithm for task-constrained motion [8].

The advantage of [8] compared to other task-constrained motion planners is the

continued satisfaction of the constraint. The planner used motion generation scheme

of differential model of the robot, so it can handle velocity and acceleration bounds.

Furthermore, it used the foliation structure. The foliation structure consists of

its parallel submanifolds of lower dimension and the planner searches constraint

manifolds by a submanifold. The foliation structure is useful when the robot has

kinematic redundancy.

A planner has been developed to solve a special problem with both task con-

straints and obstacles in the task space [9]. Constraint manifolds is possibly dis-

connected if both task constraints and obstacles exist in the task space at the same

time. Releasing and re-grasping motion is needed to leap the disconnected region.

Two kinds of planners are proposed in [9], C-based planner and T-based planner. C-

based planner makes two types of tree, the first one extends on constraint manifolds

to make a path and the other one extends in the ambient configuration space to con-

nect two trees of the former type. T-based planner has a tree on the task constraints

and each node has a configuration set in the configuration space. It finds a path

between two configuration sets of two nearest nodes. T-based planner outperforms

C-based planner because T-based planner has much less projection procedure.

In this thesis we present a new algorithm for motion planning problems on dis-

connected manifolds. Our proposed planner solves this kind of problems by using

the concept of foliation. We will call a submanifold in the foliation structure as a

leaf. Our planner also has a tree on the task constraints and it is extended similar

to CBiRRT algorithm. Every node of the tree has its own leaf because of redun-

dancy. Our planner does not make a configuration set at a leaf, but has a single

configuration and searches its surroundings with some conditions. Not making a

1. Introduction 3

configuration set reduces the time to solve the problem because it takes less time for

projection. Our planner also can make a natural motion because it uses very close

configuration to proceed.

We list the concepts of some preliminaries including a foliation and explain the

algorithm of our planner in Chapter 2. In Chapter 3, three case studies are performed

and performance indices are reported compared to T-based planner [9]. Finally,

conclusion follows in Chapter 4.

2
Planning on Disconnected

Manifolds

2.1 Preliminaries

This section contains some necessary concepts of motion planning problem, such as

task space, configuration space and constraints. Moreover, a simple description of a

foliation in motion planning problem is included.

2.1.1 Task Space and Configuration Space

Motion planning problem is to find a joint trajectory from given initial and final joint

values or other given conditions. Let T denote the task space where a manipulator

moves and constraints exist, and let C denote the configuration space also called

joint space that consists of axes with each joint values of the manipulator.

We will use x ∈ T as the position of the end-effector and q ∈ C as its joint variables,

4

2.1. Preliminaries 5

also called configuration. Forward kinematics can compute the position of the end-

effector from given joint values by using kinematic equation.

x = f(q) (2.1.1)

To compute configurations from the position of the end-effector is called inverse

kinematics, and its equation is given by

q = f−1(x) (2.1.2)

Kinematic redundancy occurs if the number of degrees of freedom exceeds the

dimension of the task space. Inverse kinematic solutions is not unique when the

redundancy exists

2.1.2 Task Constraints

In this thesis, task constraints can be a constrained path, a surface or a higher

dimensional structure. Task constraints are applied to the object not the end-

effector. The end-effector should drive the object while satisfying task constraints

and is allowed to release and re-grasp the object if needed. Task constraints can be

expressed in

tc(x) = 0 where x ∈ T (2.1.3)

We can divide the task space into two subspaces, space satisfying task constrains

and not. Let CT ∈ T denote the former one and the latter one is the complementary

set of CT in T.

We can also divide the configuration space into two subspaces by using Equa-

tion (2.1.1). Let CC ∈ C denote the constraint manifolds in C and it satisfies:

2.2. Problem Definition 6

CC = {q tc(f(q)) = 0} where q ∈ C (2.1.4)

2.1.3 Foliation

A motivational example is sketched in Figure 2.1. 3-DOF planar manipulator, T-

shape object and one circular obstacle are placed in the task space and constraint

manifolds CC are described in the configuration space. The object must lie on the

dotted line, task path constraint.

The manipulator has the redundancy because its DOF is larger than the task

space dimension. Various poses of the manipulator can be found to grasp the object

placed at specific position. It is described in configuration space as a ring-shape

closed curve. We will call this curve a leaf. In other words, all configurations at the

same leaf have the same end-effector position.

As can be seen in the Figure 2.1, constraint manifolds CC consist of many par-

allel submanifolds of lower dimension. This structure is called a foliation and more

mathematical description is given in the book [10].

2.2 Problem Definition

Figure 2.1 describes the motivational example. Our goal is to move the object

following the task path constraint from top to bottom while avoiding collision with

the obstacle. The solution trajectory of joint values must lie on CC. Infeasible

region is formed in constraint manifolds, shaded region, because of the obstacle in

the task space (see Figure 2.1(b)). These are called disconnected manifolds that

we are dealing with in this thesis. To leap shaded region, the manipulator should

release the object, move to a different pose than before and re-grasp the object.

2.2. Problem Definition 7

(a) A problem without obstacles

(b) A problem with an obstacle

Figure 2.1: A motivational Example

2.3. Proposed Algorithm 8

Figure 2.2: A simple illustration of the proposed planner

To make problem more general, task constraints, from Equation (2.1.3), can be a

surface or a higher dimensional structure seen in Figure 2.2. The planning problem

with two or more disconnected manifolds due to multiple obstacles is our goal.

2.3 Proposed Algorithm

Our proposed planner has a tree, TT, in the task space and every node of the tree

has its own leaf. In Figure 2.2, xp is the node may be added to the tree and xn is

the nearest node of xp in TT. Leaves of two nodes are described in the figure. The

planner solves the problem by a leaf. First, the tree is extended in the task space and

load the saved configuration at the leaf of original node, qcurr. Then, the planner

decides whether to proceed to the next leaf or to jump to another configuration at

2.3. Proposed Algorithm 9

the same leaf.

Whole algorithm of the planner is described in Table 2.1.

Whole Algorithm

1: Tree TT.initialize with start position

2: repeat {

3: Extension(TT)

4: if distance(xp, goal position) < stepsize

5: xp ← goal position

6: bool CloseToGoal = true

7: end if

8: switch (Decision(qcurr, xn, xp))

9: case 1: ProceedToNextLeaf

10: case 2: JumpInSameLeaf

11: end switch

12: } until CloseToGoal = true && case 1 is performed

13: return Success

Table 2.1: Whole Algorithm

At first line, ‘TT.initialize’ means making a tree in T and setting root node with

start position in T and a configuration at its leaf. The functions of Extension(TT),

Decision(qcurr), ProceedToNextLeaf and JumpInSameLeaf will be explained in fol-

lowing subsections. The variable stepsize at line 4 is the pre-defined value and

also used in Extension function. The function ‘distance’ at the same line calculates

Euclidean distance between two configurations.

2.3. Proposed Algorithm 10

2.3.1 Extension in Task Space

The tree, TT, searches whole task space like a tree in RRT algorithm [2]. It is more

similar with CBi-RRT algorithm [6] because we deal with task constraints problem.

Table 2.2 shows this algorithm.

Extension(TT)

1: repeat {

2: if random(0.0, 1.0) > probability of goal

3: xr ← Random(T)

4: else

5: xr ← goal position

6: end if

7: xn ← NearestNeighbor(TT,xr)

8: xe ← Extend(xn,xr, stepsize)

9: xp ← ProjectToT(xe, CT)

10: } until xp does not collide with obstacles

11: add xp to TT

12: return TT

Table 2.2: RRT-like extension in the task space

From line 2 to 6 describes the procedure that we use the goal position as a random

node in the chance of pre-defined probability. The function NearestNeighbor(TT,xr)

finds a nearest node in the tree TT from random node xr. In Extend(xn,xr, stepsize)

function, xn is extended toward xr as far as pre-defined stepsize. ProjectToT(xe, CT)

function projects xe to the task constraints, CT, by using Newton-Raphson method

(will be discussed in Section 2.3.3).

2.3. Proposed Algorithm 11

2.3.2 Decision Whether to Proceed or to Jump

This section explains some conditions to decide whether to proceed to the next leaf

or to jump to another configuration at the same leaf. After decision, the planner

finds a path from qcurr to qnext or from qcurr to qarrival.

Given: qcurr, xn, xp from Extension function

Decision(qcurr, xn, xp)

1: qnext ← ProjectToLeaf(qcurr,xp)

2: if qnext collides with obstacles

3: repeat {

4: qnext ← ProjectToLeaf(qrand,xp)

5: } until qnext does not collide with obstacles

6: end if

7: qcurrqnext ← LineSegment(qcurr,qnext)

8: if the path qcurrqnext does not pass via obstacle region

9: return ProceedToNextLeaf

10: else

11: return JumpInSameLeaf

12: end if

Table 2.3: Decision whether to proceed or to jump

The function ProjectToLeaf(q,x) projects q to x and will be discussed in Sec-

tion 2.3.3. In Section 2.3.4, LineSegment function will be explained that finds a

path on CC. At line 8, ‘passing via obstacle region of a path’ means that one or

more configurations in the path collide with obstacles. Lastly, qrand is a random

configuration in C not exceeding joint limits of the manipulator.

2.3. Proposed Algorithm 12

ProceedToNextLeaf

1: save the path qcurrqnext to JointTrajectory

Table 2.4: Proceeding to next leaf

The path qcurrqnext is given from Table 2.3 and JointTrajectory is a desired

solution of whole algorithm.

JumpInSameLeaf

1: repeat {

2: qarrival ← ProjectToLeaf(qrand,xn)

3: qcurrqarrival ← LineSegment (qcurr,qarrival)

4: } until qarrival does not collide && qcurrqarrival pass via obstacle region

5: qcurrqarrival ← BasicRRT (qcurr,qarrival)

6: save the path qcurrqarrival to JointTrajectory

Table 2.5: Jumping in same leaf

The motion of the manipulator in the algorithm of Table 2.5 is release the object,

moving to a different pose than before and re-grasp the object. Intuitively, the

condition ‘qcurrqarrival pass via obstacle region’ is needed to leap obstacles that make

constraint manifolds disconnected. At line 5, BasicRRT function finds a path from

qcurr to qarrival by using RRT algorithm [2].

2.3.3 Projection

We have three kinds of projections, ProjectToT, ProjectToC and ProjectToLeaf.

ProjectToT(x, CT) projects x to task constraints in T and ProjectToC(q, CC) projects

a configuration q to constraint manifolds in C. ProjectToLeaf(q,x) is the inverse

2.3. Proposed Algorithm 13

kinematics and it returns a configuration qret that satisfying f(qret) = x with q

as an initial guess. We used Newton-Raphson method, which needs to define error

function e = g(x) or e = g(q), for projection. The algorithm in Table 2.6 is written

with e = g(x).

ProjectToT, ProjectToC or ProjectToLeaf

1: e← g(x)

2: repeat {

3: x← x− J(x)†e

4: e← g(x)

5: } until ‖ e ‖ < ε

6: return x

Table 2.6: Projection by Newton-Raphson method

To calculate J(x)†, use the first order Tayler expansion of g(x) first of all.

e+ δe ' g(x) +
∂g

∂x
(x)δx (2.3.5)

We denote the Jacobian matrix ∂g
∂x(x) by J(x). Solving for δx, we get the update

rule

xnew ← x− J(x)†δe (2.3.6)

where J(x)† denotes the pseudo-inverse of J(x)

J(x)† = J(x)T [J(x)J(x)T]−1 (2.3.7)

Lastly, error function is defined as

2.3. Proposed Algorithm 14

- ProjectToT: e(x) = norm(x, CT)

- ProjectToC: e(q) = norm(f(q), CT)

- ProjectToLeaf: e(q) = norm(f(q),x)

We used Euclidean norm for ProjectToLeaf function and defined norm operation

properly to the task constraints for others.

2.3.4 Line Segment

The function LineSegment(q1,q2) returns a path on CC from ProjectToC(q1, CC)

to ProjectToC(q2, CC).

Figure 2.3: Explanation of LineSegment function

This function works as follows:

- Draw a linear line from q1 to q2.

- Chop the line into several pieces in pre-decided size.

- Project every piece to constraint manifolds by using function ProjectToC(q, CC).

- Return projected trajectory.

3
Case Studies

We performed three simulation of case studies to evaluate the performance of the

proposed algorithm. All simulations are performed with Intel Core2 Quad processor,

Q9450, @ 2.66GHz and 5.0GB RAM on Windows 7. We compared operation time,

the number of projection, the number of leap and the path length in the configuration

space to the algorithm of T-based MMP-UE method in [9]. Projection is counted

when the functions ProjectToLeaf and ProjectToC are called (Section 2.3.3). Let Q

denote the solution path of the problem, then the path length, l, is defined as

l =

m−1∑
j

n∑
i

| Q(i, j + 1)−Q(i, j) | (3.0.1)

where Q(i, j) is the i-th component of j-th element in Q (i is the variable for the

configuration space and j for the number of configurations in Q), n is the dimension

of the configuration space and m is the number of configurations in Q. The path

length can represent how much the joint values of the manipulator changes and how

natural the result motion is. All performance indices are calculated from the solution

15

3.1. 3 DOF Planar Manipulator 16

path Q with omitted leap path because the principal purpose of the planner is to

find where or when to leap. Furthermore, the number of leap varies to solutions. So

comparing operation time and path length with whole configurations, including leap

path, is meaningless. Reported values of the performance indices are the average of

20 times of trial.

In [9], a set of configurations is needed for each node of the tree in the task space.

The number of configurations in one set, nc, is an important and influential variable

to the results. So, we performed simulations several values of nc and compared all

of them.

3.1 3 DOF Planar Manipulator

This simulation is performed in MATLAB and 2 circular obstacles and linear path

constraint are placed in the task space. The length of all links are 1, obstacles are

placed at (1.5, 0.85) and (1.5, -0.85) with their radius 0.1 and the line from (2.0,

2.0) to (2.0, -2.0) is the path constraint. We extend the tree in the task space to the

goal node (set the probability of goal as 1 in Table 2.2) because the task constraint

is a path.

Simulation results are expressed in Table 3.1 and Figure 3.1. Our planner out-

perform T-based planner [9] in all of the performance indices. T-based planner takes

much more time than ours because the number of projection is higher. The path

length gets lower as nc goes higher among T-based planner. The motion is shown

in Figure 3.1, and the manipulator release the object at (c) and re-grasp at (g). It

is also found at (i) and (m).

3.2. 6 DOF Spatial Manipulator 1 17

3.2 6 DOF Spatial Manipulator 1

This simulation is performed in C++ language and used MPNN library [11] to find a

nearest neighbor node. Linear path constraint and 2 pillar-like obstacles are placed

in the task space. First link’s length is 0.5 and the others’ lengths are 0.35. Two

pillar-like obstacles are located at (0.35, 0.25, 0.0) and (0.35, -0.25, 0.0). The path

constraint is given from (1.0, 0.7, 0.0) to (1.0, -0.7, 0.0). We set the probability of

goal as 1 because of the same reason in case 1.

Simulation results are expressed in Table 3.2 and Figure 3.2. Our planner takes

much less time due to smaller number of projection. It is also reported that our

planner’s number of leap and the path length are less than T-based planner. It

means that the solution path from our planner is more natural. The motion without

leap is shown in Figure 3.2. The manipulator release the object and re-grasp it at

(f)-(g) and (k)-(l).

3.3 6 DOF Spatial Manipulator 2

This simulation is also performed in C++ language, used MPNN library [11] and

has the same manipulator with case 2. The environment of this case is shown in

Figure 3.3. Start and goal position are shown in Figure 3.3(a) and (b). The big flat

surface is the task constraint where the object must lie on and the smaller object is

the obstacle which is placed above the surface (see Figure 3.3(c) and (d)). In this

case, the manipulator cannot deliver the object along the linear line from the start

to the goal position because the obstacle blocked it. So, instead of extending the

tree to the goal position, it should search the task constraint region randomly. The

probability of goal is set as 0.2.

3.3. 6 DOF Spatial Manipulator 2 18

The results are shown in Table 3.3 and Figure 3.4. Our planner takes less time

and has the lower number of projection and path length. The leap motion, however,

is too much because the environment is complicated and our planner decides to jump

whenever the obstacle is detected.

Time

(sec)

of

projection

of

leap

Path

length

Our algorithm 0.62 811.85 2.50 5.54

T-based

planner
nc

3 34.13 7414.55 5.40 46.95

5 13.04 4507.00 3.80 30.50

10 3.27 3265.90 2.90 21.24

20 2.69 2503.10 2.60 12.07

50 3.94 2980.00 3.10 9.44

100 7.14 4716.00 2.80 8.89

Table 3.1: Simulation results of 3 DOF planar manipulator

3.3. 6 DOF Spatial Manipulator 2 19

Time

(sec)

of

projection

of

leap

Path

length

Our algorithm 9.00 987.55 2.25 8.11

T-based

planner
nc

3 101.26 9848.05 8.75 112.23

5 85.73 9619.40 5.70 94.34

10 94.77 11892.65 4.35 72.00

20 150.39 18984.95 3.25 57.83

50 328.26 41600.90 2.50 42.19

Table 3.2: Simulation results of 6 DOF spatial manipulator (1)

Time

(sec)

of

projection

of

leap

Path

length

Our algorithm 102.93 15175.75 10.25 8.03

T-based

planner
nc

3 1340.77 191746.15 23.05 164.44

5 432.09 65518.30 26.25 135.50

10 676.35 99554.25 21.00 130.74

20 1345.04 186565.85 7.20 122.01

50 1598.12 234124.05 3.60 78.14

Table 3.3: Simulation results of 6 DOF spatial manipulator (2)

3.3. 6 DOF Spatial Manipulator 2 20

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(e)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(f)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(g)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(h)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(i)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(j)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(k)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(l)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(m)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(n)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(o)

Figure 3.1: Simulation results of 3 DOF planar manipulator

3.3. 6 DOF Spatial Manipulator 2 21

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.2: Simulation results of 6 DOF spatial manipulator (1)

3.3. 6 DOF Spatial Manipulator 2 22

(a) start position (b) goal position

(c) the obstacle and the surface constraint (d) the obstacle and the surface con-

straint

Figure 3.3: Problem definition of 6 DOF spatial manipulator (2)

3.3. 6 DOF Spatial Manipulator 2 23

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.4: Simulation results of 6 DOF spatial manipulator (2)

4
Conclusion

This thesis has presented a new algorithm for motion planning on disconnected man-

ifolds. Task constraints and obstacles can make constraint manifolds disconnected,

and the solution must leap the obstacles. The key point of solving this kind of

problems is to find where or when to leap.

The distinct feature between our algorithm and other existing algorithms is that

our planner uses the concept of a foliation structure. A foliation structure consists

of lower dimensional submanifolds, called leaves. Our planner has only one config-

uration at a leaf, instead of making a set of configurations. Planning based on the

leaves makes our planner outperform other algorithms. It also has the features of

RRT, sampling-based motion planning. It has a tree on the task constraints to deal

with higher dimensional task constraints problem and uses a basic RRT algorithm

to find a path of releasing and re-grasping motion.

A problem with multiple obstacles that divide constraint manifolds into several

pieces or higher dimension of the configuration space (simulated up to 6) can be

solved by our planner. This planner can be applied to real robots of sewing or

24

4. Conclusion 25

moving a toy train through the tunnel.

The results which are shown in Section 3 evaluate that our planner takes much

less time, has smaller number of projections and leap. The path length, however,

depends on cases.

As can be seen from the results the number of leap is more than ideal number,

especially in case 3. Usually, ideal number equals to the number of obstacles. It

comes from that the planner does not know how the constraint manifolds look like

and how many times leap is needed. It only knows where or when to release and

re-grasp the object. It is being investigated now and could be resolved by post-

processing.

Bibliography

[1] S.M. LaValle. Rapidly-exploring random trees a new tool for path planning.

1998.

[2] S.M. LaValle and J.J. Kuffner Jr. Rapidly-exploring random trees: Progress

and prospects. 2000.

[3] M. Strandberg. Augmenting rrt-planners with local trees. In Robotics and

Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference

on, volume 4, pages 3258–3262. IEEE, 2004.

[4] M. Stilman. Task constrained motion planning in robot joint space. In Intelli-

gent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Confer-

ence on, pages 3074–3081. IEEE, 2007.

[5] C. Urmson and R. Simmons. Approaches for heuristically biasing rrt growth.

In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003

IEEE/RSJ International Conference on, volume 2, pages 1178–1183. IEEE,

2003.

[6] D. Berenson, S.S. Srinivasa, D. Ferguson, and J.J. Kuffner. Manipulation plan-

ning on constraint manifolds. In Robotics and Automation, 2009. ICRA’09.

IEEE International Conference on, pages 625–632. IEEE, 2009.

[7] C. Suh, T.T. Um, B. Kim, H. Noh, M. Kim, and F.C. Park. Tangent space

rrt: A randomized planning algorithm on constraint manifolds. In Robotics

26

BIBLIOGRAPHY 27

and Automation (ICRA), 2011 IEEE International Conference on, pages 4968–

4973. IEEE, 2011.

[8] G. Oriolo and M. Vendittelli. A control-based approach to task-constrained mo-

tion planning. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ

International Conference on, pages 297–302. IEEE, 2009.

[9] Jung-Tae. Kim. Motion Planning for Manipulator under End-effector and Ob-

stacle Constraint. PhD thesis, Computer Science and Engineering, Pohang

Unversity of Science and Technology, 2012.

[10] D. Rolfsen. Knots and Links. American Mathematical Society, 1976.

[11] A. Yershova and S.M. LaValle. Improving motion-planning algorithms by effi-

cient nearest-neighbor searching. Robotics, IEEE Transactions on, 23(1):151–

157, 2007.

국문초록

본 논문에서는 끊어진 다양체에서의 동작 계획의 새로운 알고리즘을 제안하였다.

제한 조건을 만족하는 관절 공간 내의 다양체는 작업공간에 제한 조건과 장애물이

동시에 존재하는 경우 끊어질 수도 있다. 제안하는 알고리즘은 foliation(기하학, 엽

리구조)상에서 rapidly-exploring random tree(확률 기반의 동작 계획)를 이용한다.

Foliation은 그보다 작은 차원의 평행한 하위 다양체들로 구성되어 있으며 하위 다

양체를 단위로 하여 관절 경로를 찾는 것이 제안하는 알고리즘의 핵심 기능이다.

몇 가지의 예제를 통하여 제안하는 알고리즘의 성능을 기존의 다른 알고리즘과 비

교하여 검증한다.

주요어: 동작 계획, 불연속 다양체, 확률 기반

학번: 2011-20698

28

	1 Introduction
	2 Planning on Disconnected Manifolds
	2.1 Preliminaries .
	2.1.1 Task Space and Conguration Space
	2.1.2 Task Constraints .

	2.1.3 Foliation
	2.2 Problem
	2.3 Proposed Algorithm .
	2.3.1 Extension in Task Space .
	2.3.2 Decision Whether to Proceed or to Jump.
	2.3.3 Projection.
	2.3.4 Line Segment .

	3 Case Studies
	3.1 3 DOF Planar Manipulator.
	3.2 6 DOF Spatial Manipulator
	3.3 6 DOF Spatial Manipulator

	4 Conclusion
	Bibliography
	국문초록

<startpage>9
1 Introduction 1
2 Planning on Disconnected Manifolds 4
 2.1 Preliminaries . 4
 2.1.1 Task Space and Conguration Space 4
 2.1.2 Task Constraints . 5
 2.1.3 Foliation 6
 2.2 Problem Denition6
 2.3 Proposed Algorithm . 8
 2.3.1 Extension in Task Space . 10
 2.3.2 Decision Whether to Proceed or to Jump. 11
 2.3.3 Projection. 12
 2.3.4 Line Segment . 14
3 Case Studies 15
 3.1 3 DOF Planar Manipulator. 16
 3.2 6 DOF Spatial Manipulator 117
 3.3 6 DOF Spatial Manipulator 217
4 Conclusion 24
Bibliography 26
±¹¹®ÃÊ·Ï 28
</body>

