

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Inverse Reinforcement Learning Control for Trajectory Tracking of a
Quadrotor UAV

A Dissertation

by

SEUNGWON CHOI

Presented to the Faculty of the Graduate School of

Seoul National University

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

School of Mechanical & Aerospace Engineering

Seoul National University

Supervisor : Associate Professor H. Jin Kim

February 2014

to my

MOTHER, FATHER, and BROTHER

with love

ii

Abstract

Inverse Reinforcement Learning Control for

Trajectory Tracking of a Quadrotor UAV

Seungwon, Choi

Department of Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

The main purpose of this thesis is to imitate the demonstrations of a quadrotor UAV flown by

an expert pilot. First, we collect a data set of several demonstrations by an expert for a certain

task which we want to learn. We extract a representative trajectory from the dataset. Hidden

Markov model (HMM) and dynamic time warping (DTW) are used for obtaining the trajectory.

We extract the sequence of state and input data. But a direct use of the input data can cause the

danger in stability. For that reason, a controller is required. We design a reinforcement learning

controller with reward function of linear quadratic form. To track the extracted trajectory well, an

inverse reinforcement learning algorithm is suggested. Using particle swarm optimization (PSO),

the reward function that minimizes the trajectory tracking error is learned. With the simulation

and experiment applied to a quadrotor UAV, the successful imitation result is presented.

Keyword : Apprenticeship learning, Quadrotor trajectory tracking, Imitation learning, Trajectory

learning, Inverse reinforcement learning

Student Number : 2012-20710

iii

Table of Contents

Page

Abstract . iii

Table of Contents . iv

List of Figures . vi

Chapter

1 Introduction . 1

1.1 Literature review . 2

1.2 Thesis contribution . 3

1.3 Thesis outline . 3

2 Quadrotor dynamics . 4

2.1 Translational dynamics . 4

2.2 Attitude dynamics . 5

3 Reinforcement learning controller . 7

3.1 Policy iteration . 8

3.2 Trajectory tracking controller . 9

3.3 Quadrotor controller . 10

4 Inverse reinforcement learning control . 12

4.1 Trajectory learning algorithm . 13

4.1.1 EM algorithm with hidden Markov model 14

4.1.2 EM algorithm with dynamic time warping 16

4.2 Inverse reinforcement learning algorithm . 17

5 Simulation . 19

5.1 Simulation setup . 19

5.2 Way-point tracking simulation result . 21

5.3 Circuit tracking simulation result . 26

6 Experiment . 31

6.1 Experiment setup . 31

iv

6.2 Experiment result . 33

7 Conclusion . 38

References . 39

v

List of Figures

2.1 Quadrotor configuration . 5

3.1 Quadrotor controller diagram . 10

4.1 Concept of trajectory learning algorithm . 13

4.2 Hidden Markov model . 14

5.1 Trajectory of way-point tracking . 20

5.2 Trajectory of circuit tracking . 20

5.3 Effect of dynamic time warping (DTW) . 22

5.4 Result of trajectory learning for way-point tracking (1) 22

5.5 Result of trajectory learning for way-point tracking (2) 23

5.6 Cost in inverse reinforcement learning algorithm for way-point tracking 24

5.7 Performance of quadrotor with learned reward function for way-point tracking (1) 24

5.8 Performance of quadrotor with learned reward function for way-point tracking (2) 25

5.9 Result of trajectory learning for circuit tracking (1) 27

5.10 Result of trajectory learning for circuit tracking (2) 28

5.11 Cost in inverse reinforcement learning algorithm for circuit tracking 29

5.12 Performance of quadrotor with learned reward function for circuit tracking (1) . . 29

5.13 Performance of quadrotor with learned reward function for circuit tracking (2) . . 30

6.1 Hardware setup configuration for experiment . 32

6.2 Configuration of the control system . 32

6.3 Result of trajectory learning for experiment (1) . 34

6.4 Result of trajectory learning for experiment (2) . 35

6.5 Cost in inverse reinforcement learning algorithm for experiment 36

6.6 Performance of quadrotor with learned reward function for experiment(1) 36

6.7 Performance of quadrotor with learned reward function for experiment(2) 37

vi

1
Introduction

Apprenticeship learning, also called learning from demonstration (LfD), is learning a complex

task by observing a demonstration of an expert. This framework has been considered for various

robotic applications [1]-[7]. It is difficult for a robot to autonomously accomplish a tough task

such as aerobatic movement of a helicopter [1], humanoid robot tasks [2],[3], or maneuvering of a

quadruped robot in extreme terrain [5]. The demonstrations for the tasks done by an expert can

enhance the performance by extracting a trajectory or reward function.

In robotics, a task is often defined as a trajectory and a controller is designed for a robot to

follow the trajectory. For a satisfying performance of the complex tasks, the trajectory consid-

ered with the robot dynamics is needed. When a teacher is available, a feasible trajectory can be

extracted based on the real movements of the robot [1]-[3]. We call this procedure as trajectory

learning in this thesis. Instead of learning a trajectory, by obtaining a reward function in rein-

forcement learning (RL) setting, the robot also can imitate the expert’s demonstrations [4]-[7].

This is called inverse reinforcement learning [8],[9]. In the data of the demonstrations, the expert’s

private reward function is hidden. Inverse reinforcement learning algorithm learns the latent re-

ward function to imitate the performance of the expert. We combine both concepts.

The main purpose of this thesis is to imitate the demonstrations of a quadrotor UAV per-

formed by an expert pilot. First, we extract a representative trajectory from the demonstrations

1

for a certain tasks. The trajectory is time-specified and includes the state and input informations.

Because a direct use of the desired input data can degrade the stability, a controller is needed. We

designed a reinforcement learning controller for tracking performance [10]. Additionally we use the

concept of inverse reinforcement learning. We suggest an simulation-based inverse reinforcement

learning algorithm to find a reward function which minimizes the trajectory tracking error using

particle swarm optimization (PSO) [11], a reward function is a linear quadratic form.

1.1 Literature review

Related works on this paper are the trajectory learning and the inverse reinforcement learning.

Here, trajectory learning means extracting the desired trajectory and inverse reinforcement learn-

ing means the process of finding a good reward function from the learned trajectory.

In [1], they use multiple demonstrations to learn the helicopter aerobatics. They proposed

a trajectory learning algorithm using hidden Markov model (HMM) and dynamic time warping

(DTW). A method of imitating the humanoid tasks by learning the trajectory with Gaussian mix-

ture regression (GMR) is presented in [2]. In [1],[2], they designed optimal controllers to reproduce

the demonstration with the learned trajectory. In [3], an online quantum mixture regression al-

gorithm was suggested for learning the trajectory of a robotic manipulator with high degree of

freedom.

In [4], a reward function is obtained using an optimal control techniques for imitating the

swing up task of pendulum. In [8],[9], an inverse reinforcement learning algorithm with Markov

decision process (MDP) has been proposed. Based on this algorithm, several researches have been

progressed [5],[6]. In [5], the algorithm was applied to the locomotion of a quadruped robot in

extreme terrain. In [6], they considered a problem for leaning from multiple strategies. Multi-

ple strategies mean the existence of the several reward functions. An optimal reward function

was driven from different reward function. In [7], imitating problem from the demonstration of

dissimilar robot was solved by extracting the context-dependent reward function using Gaussian

mixture model.

2

1.2 Thesis contribution

The contributions of this paper are the following: first, we apply the trajectory learning algorithm

using HMM and DTW to a quadrotor UAV. Considering quadrotor dynamics, a state and input

trajectory is learned from a dataset of demonstrations performed by an expert for certain maneu-

ver. For tracking the learned trajectory we design a reinforcement learning controller. Next, we

propose an inverse reinforcement learning algorithm using PSO. Based on simulation, a proper

reward function is learned to make the quadrotor fly similarly with the extracted trajectory. Fi-

nally using the desired trajectory and reward function, we perform the experiment to validate the

overall approach.

1.3 Thesis outline

The rest of this paper is organized as follows. In Chapter 2, the quadrotor dynamics is presented.

In Chapter 3, a reinforcement learning based feedback controller is designed and its derivation

is included. In Chapter 4, a trajectory learning algorithm on quadrotor (Section 4.1) and an

inverse reinforcement learning algorithm (Section 4.2) are introduced. In Chapter 5 and Chap-

ter 6, simulation and experiment results are shown. Finally concluding remarks are included in

Chapter 7.

3

2
Quadrotor dynamics

The equation of motion of a quadrotor with the mass m and the moment of inertia J is

mẌ = mge3 − TRe3 (2.1)

Ω̇ = −Ω× JΩ +M (2.2)

where X is the position of the quadrotor in the inertial frame, Ω is the angular velocity in the

body frame, g is the gravitational acceleration, T is the input thrust in the direction of −zB, M

is the input moment in x-y-z axis, and e3 is the unit vector of z axis. The configuration is in

Fig. 2.1. The subscript O means the inertial frame and B means the body frame. The detail of

quadrotor dynamics are included in [12], [13].

2.1 Translational dynamics

Translational dynamics of the quadrotor is presented in Eq. (2.1). It can be represented as

mẍ = −T (cosφ sin θ cosψ + sinφ sinψ)

mÿ = −T (cosφ sin θ sinψ − sinφ cosψ)

mz̈ = mg − T cosφ cos θ

(2.3)

4

Figure 2.1: Quadrotor configuration

Here, x, y, z are the position and φ, θ, ψ are the Euler angle in the inertial frame. With the

assumption of small Euler angle which means the quadrotor flies near hover, the translational

dynamics can be linearized into,

mẍ = −mgθ

mÿ = mgφ

mz̈ = −δT

(2.4)

where δT = T −mg.

2.2 Attitude dynamics

Attitude dynamics of the quadrotor is shown in Eq. (2.2). As in the Section 2.1, using small Euler

angle assumption, it can be simplified into

Jxxφ̈ = (Jyy − Jzz)θ̇ψ̇ +Mφ

Jyy θ̈ = (Jzz − Jxx)ψ̇φ̇+Mθ

Jzzψ̈ = (Jxx − Jyy)φ̇θ̇ +Mψ

(2.5)

where Jxx, Jyy, Jzz are the moment of inertia and Mφ, Mθ, Mψ are the input moment generated

from the motors along the x, y, z axis. Also if the Euler angular rates are small, the attitudinal

5

dynamics can be linearized into

Jxxφ̈ = Mφ

Jyy θ̈ = Mθ

Jzzψ̈ = Mψ.

(2.6)

6

3
Reinforcement learning controller

Markov decision process (MDP) is a common framework for reinforcement learning. In our setting,

MDP is used to represent quadrotor dynamics as follows. The set of states are the state of the

quadrotor and the set of actions are the input of the quadrotor. The state transition occurs with

the following stochastic, discrete linear model,

x̄k+1 = Ax̄k +Būk + wk (3.1)

where x̄ is the state vector, ū is the input vector, A and B are system matrices, and wk is the

gaussian noise with zero mean at iteration k. We assume the reward function to be a linear

quadratic form:

rk = x̄TkQx̄k + ūTkRūk (3.2)

rk is the reward at time step k. Q and R are the positive definite matrix. Value function Vk is

defined as the expected sum of discounted reward function.

E [Vk] = E

[∞∑
i=k

γi−kri

]
=
∞∑
i=k

E
[
γi−kri

]
(3.3)

where γ is the discount factor and has the value between 0 and 1 and E is an operator for

expectation. Bellman optimality equation can be obtain from Eq. (3.3).

E [Vk] = E
[
x̄TkQx̄k + ūTkRūk

]
+ E [γVk+1] (3.4)

7

Because the system model is linear and the reward function has the form of linear quadratic,

assume that

Vk = x̄Tk Px̄k (3.5)

ūk = −Kx̄k (3.6)

Here, P is the positive definite matrix and K is the optimal gain matrix. Subsituting the

Eqs. (3.1), (3.5) and (3.6) into Eq. (3.4),

E
[
x̄Tk Px̄k

]
= E

[
x̄TkQx̄k + x̄TkK

TRKx̄k
]

+ E
[
γx̄Tk (A−BK)TP (A−BK)x̄k

] (3.7)

3.1 Policy iteration

Policy iteration is a method to find the optimal policy by iterating two processes consisting of

policy evaluation and policy improvement. Policy evaluation is to update the value function with

a given policy. In our work, P is newly evaluated in given K through policy evaluation. In the

policy improvement, the optimal policy, K, is updated using the new value function, P .

First, we will derive the update rule for policy evaluation at iteration j, with P j and Kj . From

Eq. (3.7),

E
[
x̄Tk P

j+1x̄k
]

= E
[
x̄TkQx̄k + x̄Tk (Kj)TRKj x̄k

]
+ E

[
γx̄Tk (A−BKj)TP j(A−BKj)x̄k

] (3.8)

Because of E is linear operator, the new P j+1 is driven directly from Eq. (3.8).

P j+1 = Q+ (Kj)TRKj + γ(A−BKj)TP j(A−BKj) (3.9)

Next, with the newly updated P j+1, from the Eq. (3.7),

E
[
x̄Tk P

j+1x̄k
]

= E
[
x̄TkQx̄k + x̄Tk (Kj+1)TRKj+1x̄k

]
+ E

[
γx̄Tk (A−BKj+1)TP j+1(A−BKj+1)x̄k

] (3.10)

Policy,Kj+1, which optimizes the Eq. (3.10) is the improved value with updated value function.

Because the linear quadratic form is a scalar quantity and both E and trace operator, tr, are linear

operator, E
[
x̄TPx̄

]
= tr

(
E
[
x̄TPx̄

])
= E

[
tr
(
x̄TPx̄

)]
holds. And by the cyclic property of the

8

trace operator, E
[
tr
(
x̄TPx̄

)]
= E

[
tr
(
Px̄x̄T

)]
also holds. With those properties, Eq. (3.10)

becomes,

tr
(
P j+1χ

)
= tr

(
Qχ+ (Kj+1)TRKj+1χ

)
+ tr

(
γ(A−BKj+1)TP j+1(A−BKj+1)χ

)
where χ = E

[
x̄x̄T

]
. Taking the derivative by Kj+1,

[
RKj+1 − γBTP j+1

(
A−BKj+1

)]
χ = 0

Kj+1 = γ
(
R+ γBTP j+1B

)−1
BTP j+1A (3.11)

By repeating this update, an improved policy is obtained.

Now we summarize the policy iteration. First, P 0 and K0 should be initialized, j = 0. Second,

we evaluate P j+1 using Eq. (3.9) with P j and Kj from previous iteration. Next, improved Kj+1

is obtained using Eq. (3.11) from newly updated P j+1. Then repetition of the above two processes

until P and K converge yields the optimal policy K. The convergence was proved in [14].

3.2 Trajectory tracking controller

In our problem, the trajectory tracking controller is needed. Because the desired trajectory was

extracted from the trajectory learning algorithm, it is feasible,

x̄∗k+1 = Ax̄∗k +Bū∗k (3.12)

where x̄∗ is the desired state vector and ū∗ is the desired input vector. Assume that,

x̃k , x̄k − x̄∗k, ũk , ūk − ū∗k

The error dynamics is given,

x̃k+1 = Ax̃k +Bũk + wk (3.13)

Then, the same derivation in Section 3.1 is possible. With the optimal gain K,

rk = x̃TkQx̃k + ũTkRũk

ũk = −Kx̃k

ūk = ū∗k −K (x̄k − x̄∗k) (3.14)

9

3.3 Quadrotor controller

A quadrotor is under-actuated system with highly coupled states. In general, controller of the

quadrotor is composed of position and attitude controller, because the attitude of the quadrotor

is vulnerable to disturbance. In our work, we design a controller with RL controller in Section 3.1

for control the position and yaw angle, and a classical PID controller for roll and pitch angle

control. The configuration of the controller is in Fig. 3.1. Because most of the tasks of quadrotor

is performed near hover, we can use the linear dynamics, Eqs. (2.4) and (2.6).

x̄ ,
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]T
ū , [T Mφ Mθ Mψ]T

Figure 3.1: Quadrotor controller diagram

As in Fig. 3.1, the output of the RL controller are the T , Mψ, φd, and θd. The linear dynamics

used in RL controller is 
ẍ

ÿ

z̈

ψ̈

 =


−gθd
gφd

−δF/m

Mψ/Jzz

 (3.15)

Using Euler discretization with sampling time dt, discrete linear dynamics can be obtained.

10

With the RL controller derived in Section 3.2,


T

Mψ

φd

θd


k

=


T ∗

M∗ψ

φ∗

θ∗


k

−K





x

y

z

ψ

ẋ

ẏ

ż

ψ̇


k

−



x∗

y∗

z∗

ψ∗

ẋ∗

ẏ∗

ż∗

ψ̇∗


k


(3.16)

φd and θd are used in the roll and pitch attitude controller. We use a classical PID controller

as follows,

Mφ = −Kp(φ− φd)−Kd(φ̇)−Ki

∫
(φ− φd)dt

Mθ = −Kp(θ − θd)−Kd(θ̇)−Ki

∫
(θ − θd)dt

(3.17)

11

4
Inverse reinforcement learning control

In this chapter, trajectory learning algorithm (Section 4.1) and inverse reinforcement learning

algorithm (Section 4.2) are introduced. The purpose of trajectory learning algorithm is to extract

the representative trajectory among the demonstrations. Let the demonstration trajectory, ȳ, and

the representative trajectory, z̄, be,

ȳlj ,

 x̄lj

ūlj

 (4.1)

z̄t ,

 x̄∗t

ū∗t

 (4.2)

for j = 0, ..., N l− 1, l =, 1..., L, t = 0, ..., T ∗− 1. x̄ is the state vector, ū is the input vector, N l is

the maximum time step for each demonstration, L is the total demonstration number, and T ∗ is

the maximum time step for the trajectory. We use the probabilistic model to obtain the intended

trajectory z̄ (Section 4.1).

A simulation-based inverse reinforcement learning algorithm is suggested to make the quadro-

tor fly similarly to the trajectory which is learned in trajectory learning algorithm. Trajectory

tracking RL controller we designed in Chapter 3 is used. We assume that the reward function is a

linear quadratic form. The object of the algorithm is obtain the reward function which minimizes

the trajectory tracking error. The details are given in Section 4.2.

12

4.1 Trajectory learning algorithm

The concept of trajectory learning algorithm is considering the demonstrations as the observations

of one intended trajectory. It is expressed as

z̄t+1 = f (z̄t) + wz̄t , wz̄ ∼ N (0,Σz̄) (4.3)

ȳlj = h(z̄τ lj
) + wȳ

l

t , wȳ
l ∼ N (0,Σȳl) (4.4)

τ lj ∼ P(τ lj+1|τ lj) (4.5)

where wz̄ and wȳ are the system and observation noise with gaussian distribution and τ lj is the

time index of the observation in j-th time step of k-th observations. τ is assumed to be under the

multinomial distribution. We use the Eqs. (2.3), (2.5) and Euler discretization for f(z̄).

Figure 4.1: Concept of trajectory learning algorithm

It can be also represented in graphical model in Fig. 4.1. Circles are random variables and

filled circles mean observed variables.

We want to find the hidden trajectory z̄t which maximizes the log-likelihood,

max
τ,Σ(·)

logP(ȳ, τ ; Σ(·)) (4.6)

However, it is difficult to optimize the likelihood over Σ and τ at once. We maximize Eq. (4.6)

through two EM algorithms. First, we update the covariance matrix Σ(·) with fixed τ (Subsec-

tion 4.1.1). Next, we reassign τ for new Σ(·) (Subsection 4.1.2).

13

4.1.1 EM algorithm with hidden Markov model

With fixed τ , Fig. 4.1 becomes a form of standard hidden Markov model (Fig. 4.2).

Figure 4.2: Hidden Markov model

In this subsection, covariance which maximizes the Eq. (4.6) will be updated. First in the

E-step, the distribution, N (µ̄, Σ) , of the latent variable, z̄ is evaluated with the current Σ(·) and

τ by using extended Kalman filter and smoother. The M-step uses the distribution to update the

covariance matrix Σ(·). We have

z̄t+1 = f(z̄t) + wz̄t , wz̄ ∼ N (0,Σz̄)

ȳt+1 = h(z̄t) + wȳt , wȳ ∼ N (0,Σȳ)

In the E-step, extended Kalman filter computes the µt+1|t, Σt+1|t, µt|t, Σt|t through forward

prediction and measurement update along time t. Let the Ft and Ht be

Ft =
∂f

∂z̄

∣∣∣∣
µ̄t|t

Ht =
∂h

∂z̄

∣∣∣∣
µ̄t|t−1

In the prediction step,

µ̄t+1|t = f(µ̄t|t)

Σt+1|t = FtΣt|tF
T
t + Σz̄

(4.7)

14

In the filtering step, with the observations ȳ,

r̄t = ȳt − h(µ̄t|t−1)

St =HtΣt|t−1H
T
t + Σȳ

Kt = Σt|t−1H
T
t S
−1
t

µ̄t|t = µ̄t|t−1 +Ktr̄t

Σt|t = (I −KtHt)Σt|t−1

(4.8)

Finally in the smoothing process, µ̄t|T and Σt|T are computed through the backward pass.

Lt = Σt|tF
T
t Σ−1

t+t|t

µ̄t|T = µ̄t|t + Lt(µ̄t+1|T − µ̄t+1|t)

Σt|T = Σt|t + Lt(Σt+1|T − Σt+1|t)L
T
t

(4.9)

Using the extended Kalman filter and smoother, Eqs. (4.7),(4.8), and (4.9), the distribution

of the latent variable z̄ can be evaluated. In the M-step, we can use the computed distributions

to update the covariance matrix Σz̄, Σȳ. Here, we redefine the Ft, Ht as

Ft =
∂f

∂z̄

∣∣∣∣
µ̄t|T

Ht =
∂h

∂z̄

∣∣∣∣
µ̄t|T−1

The update equations are the following.

δµ̄t = µ̄t+1|T − f(µ̄t|T)

δȳt = ȳt − h(µ̄t|T)

Σz̄ =
1

T

T−1∑
t=0

{δµ̄δµ̄T + Σt+1|T − Σt+1|TL
T
t F

T
t

− FtLtΣt+1|T + FtΣt|TF
T
t }

Σȳ =
1

T + 1

T∑
t=0

{δȳtδȳTt +HtΣt|TH
T
t }

(4.10)

With the assumption of fixed time index, we can learn the most likely hidden trajectory over

covariance matrix Σ(·). Then we can use the computed quantities to update the time index.

15

4.1.2 EM algorithm with dynamic time warping

The approach in this subsection is not needed when the exact time indices of all observations

are known. When they are unknown, the observations should be aligned properly. Dynamic time

warping (DTW) is a sequence alignment algorithm by measuring similarity between two different

signals. We align the time index which maximizes the log-likelihood, Eq. (4.6).

τ̄ = arg max
τ

logP(ȳ, τ ; Σ)

= arg max
τ

logP(ȳ; µ̄t|T , τ)P(µ̄t|T)P(τ)

= arg max
τ

logP(ȳ; µ̄t|T , τ)P(τ)

= arg max
τ

L∑
l=1

N l−1∑
j=0

[log p(ȳlj |z̄τ lj |T , τ
l
j) + log p(τ lj |τ lj−1)]

(4.11)

We define a new quantity s = 0, ..., N l − 1, t
′ ∈ {t− 3, t− 2, t− 1}, and Q(s, t),

Q(s, t) = log p(ȳs|z̄τs|T , τs = t)

+ max
t′

log p(τs = t|τs−1) +
s−1∑
j=0

{log p(ȳj |z̄τj|T , τj) + log p(τj |τj−1)}


= log p(ȳs|z̄τs|T , τs = t) + max

t′

[
log p(τs = t|τs−1 = t

′
) +Q(s− 1, t

′
)
]

(4.12)

For s = 0, ..., N l − 1, we compute Q(s, t). From the maximum value of Q(N l − 1, t) for each

observation, we can assign the new τjs by finding which t
′

is used for maximization in Eq. (4.12).

Used t
′
s are the time index difference which maximizes the log-likelihood between two adjacent

observation data. With the reassigned observations, we compute the distribution of τ using stan-

dard maximum likelihood estimation for multinomial distribution.

Through Subsection 4.1.1 and 4.1.2, we can obtain most likely hidden trajectory over obser-

vations which maximizes the log-likelihood, Eq. (4.6). The trajectory includes the time-specified

state and input data. We call this trajectory as desired trajectory in the next section and it is

denoted as (x̄∗, ū∗).

16

4.2 Inverse reinforcement learning algorithm

In this section, we propose an inverse reinforcement learning algorithm. We assume that the

reward function is a linear quadratic form.

rk = x̃TkQx̃k + ũTkRũk (4.13)

The objective of the algorithm is obtain Q, R which minimizes the trajectory tracking error.

arg min
Q,R

J = arg min
Q,R

∑
{W T

x̄ (x̄k+1 − x̄∗k+1)2 +W T
ū (ūk − ū∗k)2} (4.14)

where Wx̄ and Wū are the weight matrix for each state and input, x̄k+1 and ūk is calculated in

simulation using the trajectory tracking RL controller with the specific Q and R. For minimizing

Eq. (4.14), we utilize particle swarm optimization (PSO). PSO is a computational method to

improve the candidate solutions iteratively. PSO does not need the gradient of the objective

function which is hard to obtain for stochastic system. However it does not guaranteed to find

the global optimum. For applying PSO, several particles over search space and a quality which

should be optimized are needed. Because we want to find Q and R that minimize J in Eq. (4.14),

the value of Q and R becomes the particle and we measures the quality of each particle using J .

The followings are the detail of the algorithm.

1. Initialize the position of several candidate particles,

wi = [Q1, ..., Qn, R1, ...Rm] (4.15)

for i = 1, ..., ncand. Particles are spread throughout search space which is composed of the

values of Q and R. The element of wi should be larger than zero.

2. Simulate the quadrotor using the trajectory tracking RL controller in Chapter 3, Eqs. (3.16)

and (3.17) for k = 1, ..., T ∗.

ūk = ū∗k −K(x̄k − x̄∗k)

3. Calculate the cost function for each particle,

Ji =
T ∗−1∑
k=0

{W T
x̄ (x̄k+1 − x̄∗k+1)2 +W T

ū (ūk − ū∗k)2} (4.16)

Wx̄ and Wū are the weight matrix.

17

4. Evaluate the local best known position wlbi for each particle. Here, best known position

means the position when the particle has minimum cost, J .

5. Evaluate the global best known position wgbi among all particles.

6. Update the position of the candidate particles,

wi = wi + 2c1(wlbi − wi) + 2c2(wgbi − wi) (4.17)

c1 and c2 are the random numbers between 0 and 1.

7. Repeat 2. to 6. until J converges.

After running the algorithm, wgbi is the learned value of reward function Q and R which

minimizes the trajectory tracking error.

Some properties of the algorithm are:

• The large number of particles has a chance to find better optimal solution. But it takes

more computational time.

• Because the same ratio of Q and R has same role, the actual magnitude of their initial value

can vary.

• The weight matrices Wx̄ and Wū can be easily chosen by using the value which is inverse

proportional to the unit of each state and input.

18

5
Simulation

5.1 Simulation setup

To validate the trajectory learning and inverse reinforcement learning algorithms we perform two

simulations: way-point tracking and circuit tracking. Fig. 5.1 and Fig. 5.2 indicates the trajectory

which the robot should follow for each simulations. We collect the demonstration data using

conventional PID controller in the simulation environment. 5 and 10 demonstrations are used for

way-point tracking and circuit tracking simulation respectively. We set the different maximum

time for each demonstration to check out the effect of DTW in trajectory learning algorithm. The

quadrotor model parameters used in simulation are in table 5.1.

Parameter Symbol Value

Mass m 0.8kg

Inertia tensor (x) Jxx 0.008kg ·m2

Inertia tensor (y) Jyy 0.008kg ·m2

Inertia tensor (z) Jzz 0.016kg ·m2

Table 5.1: Quadrotor model parameters in simulation

19

−1
0

1
2

−3

−2

−1

0

−3

−2.5

−2

−1.5

−1

−0.5

0

x (m)y (m)

z
(m

)

Figure 5.1: Trajectory of way-point tracking

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

Figure 5.2: Trajectory of circuit tracking

20

5.2 Way-point tracking simulation result

First, Fig. 5.3 ∼ Fig. 5.8 show the way-point tracking simulation result. Fig. 5.3 ∼ Fig. 5.5 repre-

sent the result of trajectory learning algorithm. In Fig. 5.3, we can see the effect of DTW. While

it seems that the trajectory which does not use DTW is more similar to the mean value of the

demonstrations, the slope of the trajectory with DTW is similar to those of demonstrations. It

means that the trajectory includes the exact behavior with demonstrations regardless of time

difference by using DTW. In the following simulation and experiment, DTW is always applied.

Fig. 5.4 plots the demonstration data and learned trajectory in 3-D space. Fig. 5.5 displays all

state and input of demonstration and extracted trajectory.

Inverse reinforcement learning algorithm learns the reward function which minimizes the tra-

jectory tracking error. Fig. 5.6 presents the convergence of the cost function, Eq. (4.16). It means

that the proper reward function which minimizes the error locally is learned. With the reward

function and RL controller in Chapter 3, the performance of the quadrotor is in Fig. 5.7 and

Fig. 5.8. We can see that the quadrotor follows the extracted trajectory well.

21

26 28 30 32 34 36 38
−3.5

−3

−2.5

−2

−1.5

t (s)

y
(m

)

Figure 5.3: Effect of dynamic time warping (DTW)

−1
0

1
2

−3

−2

−1

0

−3

−2.5

−2

−1.5

−1

−0.5

0

x (m)y (m)

z
(m

)

Figure 5.4: Result of trajectory learning for way-point tracking (1)

22

0 20 40 60
−2

−1

0

1

2

3

t (s)

x
(m

)

0 20 40 60
−4

−3

−2

−1

0

1

t (s)

y
(m

)

0 20 40 60
−2.5

−2

−1.5

−1

−0.5

t (s)

z
(m

)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

t (s)

φ
(r
a
d
)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

t (s)
θ
(r
a
d
)

0 20 40 60
−0.04

−0.02

0

0.02

0.04

t (s)

ψ
(r
a
d
)

0 20 40 60
−2

−1

0

1

2

t (s)

ẋ
(m

/
s)

0 20 40 60
−2

−1

0

1

2

t (s)

ẏ
(m

/
s)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)

ż
(m

/
s)

0 20 40 60
−4

−2

0

2

4

t (s)

φ̇
(r
a
d
/
s)

0 20 40 60
−4

−2

0

2

4

t (s)

θ̇
(r
a
d
/
s)

0 20 40 60
−0.2

−0.1

0

0.1

0.2

t (s)

ψ̇
(r
a
d
/
s)

0 20 40 60
6

7

8

9

10

t (s)

T
(N

)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)

M
φ
(N

m
)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)

M
θ
(N

m
)

0 20 40 60
−0.1

−0.05

0

0.05

0.1

t (s)

M
ψ
(N

m
)

Figure 5.5: Result of trajectory learning for way-point tracking (2)

23

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Number of iteration

J

Figure 5.6: Cost in inverse reinforcement learning algorithm

for way-point tracking

−2
−1

0
1

2
3

−4

−2

0

2
−2.5

−2

−1.5

−1

−0.5

x (m)y (m)

z
(m

)

Figure 5.7: Performance of quadrotor with learned reward function

for way-point tracking (1)

24

0 10 20 30 40 50
−2

0

2

4

t (s)

x
(m

)

0 10 20 30 40 50
−4

−2

0

2

t (s)

y
(m

)

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

t (s)

z
(m

)

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

t (s)

φ
(r
a
d
)

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

t (s)
θ
(r
a
d
)

0 10 20 30 40 50
−0.04

−0.02

0

0.02

0.04

t (s)

ψ
(r
a
d
)

0 10 20 30 40 50
−2

−1

0

1

2

t (s)

ẋ
(m

/
s)

0 10 20 30 40 50
−2

−1

0

1

2

t (s)

ẏ
(m

/
s)

0 10 20 30 40 50
−1

−0.5

0

0.5

1

t (s)

ż
(m

/
s)

0 10 20 30 40 50
−4

−2

0

2

4

t (s)

φ̇
(r
a
d
/
s)

0 10 20 30 40 50
−4

−2

0

2

4

t (s)

θ̇
(r
a
d
/
s)

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

t (s)

ψ̇
(r
a
d
/
s)

0 10 20 30 40 50
6

7

8

9

t (s)

T
(N

)

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

t (s)

M
φ
(N

m
)

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

t (s)

M
θ
(N

m
)

0 10 20 30 40 50
−0.04

−0.02

0

0.02

0.04

t (s)

M
ψ
(N

m
)

Figure 5.8: Performance of quadrotor with learned reward function

for way-point tracking (2)

25

5.3 Circuit tracking simulation result

Same as a way-point tracking simulation, Fig. 5.9 ∼ Fig. 5.13 present the result of trajectory

learning and inverse reinforcement learning algorithm for circuit tracking. In Fig. 5.9 and Fig. 5.10,

a representative trajecoty is extracted from 10 demonstrations. Using Kalman filter and smoother,

variances in demonstrations and noise are reduced during the trajectory includes overall tendency

of the demonstrations.

Fig. 5.11 shows the cost function, Eq. (4.16), when inverse reinforcement learning algorithm

runs. We can see that the cost function converges to small value. Fig. 5.12 and Fig. 5.13 indicate

that the trajectory tracking error is small, that is the reward function is well learned. For the

simulation, the apprenticeship learning algorithm in this thesis works well. In the next section,

we will perform an experiment to validate the applicability of the algorithm in a real quadrotor

system.

26

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

Figure 5.9: Result of trajectory learning for circuit tracking (1)

27

0 20 40 60
−2

−1

0

1

2

t (s)

x
(m

)

0 20 40 60
−1

−0.5

0

0.5

1

1.5

t (s)

y
(m

)

0 20 40 60

−1.1

−1

−0.9

−0.8

t (s)

z
(m

)

0 20 40 60
−0.1

−0.05

0

0.05

0.1

t (s)

φ
(r
a
d
)

0 20 40 60
−0.1

−0.05

0

0.05

0.1

t (s)

θ
(r
a
d
)

0 20 40 60
−0.04

−0.02

0

0.02

0.04

t (s)

ψ
(r
a
d
)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)

ẋ
(m

/
s)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)

ẏ
(m

/
s)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)
ż
(m

/
s)

0 20 40 60
−3

−2

−1

0

1

2

3

t (s)

φ̇
(r
a
d
/
s)

0 20 40 60
−2

−1

0

1

2

t (s)

θ̇
(r
a
d
/
s)

0 20 40 60

−0.2

−0.1

0

0.1

0.2

0.3

t (s)

ψ̇
(r
a
d
/
s)

0 20 40 60
6

7

8

9

10

t (s)

T
(N

)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)

M
φ
(N

m
)

0 20 40 60
−1

−0.5

0

0.5

1

t (s)

M
θ
(N

m
)

0 20 40 60
−0.1

−0.05

0

0.05

0.1

t (s)

M
ψ
(N

m
)

Figure 5.10: Result of trajectory learning for circuit tracking (2)

28

0 10 20 30 40 50 60
2

4

6

8

10

12

14

Number of iteration

J

Figure 5.11: Cost in inverse reinforcement learning algorithm

for circuit tracking

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

Figure 5.12: Performance of quadrotor with learned reward function

for circuit tracking (1)

29

0 20 40 60
−2

−1

0

1

2

t (s)

x
(m

)

0 20 40 60
−1

0

1

2

t (s)

y
(m

)

0 20 40 60
−1.05

−1

−0.95

t (s)

z
(m

)

0 20 40 60
−0.2

−0.1

0

0.1

0.2

t (s)

φ
(r
a
d
)

0 20 40 60
−0.2

−0.1

0

0.1

0.2

t (s)

θ
(r
a
d
)

0 20 40 60
−0.01

−0.005

0

0.005

0.01

t (s)

ψ
(r
a
d
)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

t (s)

ẋ
(m

/
s)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

t (s)

ẏ
(m

/
s)

0 20 40 60
−0.1

−0.05

0

0.05

0.1

t (s)
ż
(m

/
s)

0 20 40 60
−2

−1

0

1

2

t (s)

φ̇
(r
a
d
/
s)

0 20 40 60
−2

−1

0

1

2

t (s)

θ̇
(r
a
d
/
s)

0 20 40 60
−0.04

−0.02

0

0.02

0.04

t (s)

ψ̇
(r
a
d
/
s)

0 20 40 60
7

7.5

8

8.5

9

t (s)

T
(N

)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

t (s)

M
φ
(N

m
)

0 20 40 60
−0.4

−0.2

0

0.2

0.4

t (s)

M
θ
(N

m
)

0 20 40 60
−0.02

−0.01

0

0.01

0.02

t (s)

M
ψ
(N

m
)

Figure 5.13: Performance of quadrotor with learned reward function

for circuit tracking (2)

30

6
Experiment

6.1 Experiment setup

The hardware setup for experiment appears in Fig. 6.1. First, Vicon, a motion capture system

estimates the position of the quadrotor. In the ground station, the position data from vicon is

transmitted to an onboard computer of quadrotor through wifi module. On the quadrotor, the

onboard computer, AHRS (Attitude and heading reference system), and ESC (Electric speed

controller) with motors are equipped. AHRS is composed of gyro sensor, accelerometer, and

magnetometer. It estimates the attitude (Euler angle and angular rate) of the quadrotor. Onboard

computer receives position and attitude of the quadrotor from vicon and AHRS. Using those data,

control inputs are computed. The control inputs are used for activating the motor through ESC.

Control sequence is represented in Fig. 6.2. As mentioned before, the controller consists of position

controller and attitude controller. The position controller runs at 25Hz using position data from

Vicon. Attitude data from AHRS and desired roll and pitch angle from the position controller

are used in the attitude controller at 200Hz frequency. The controller computes the desired rpm

for each motors to control the quadrotor. Through ESC, 4 motors rotate as commanded by the

controller. The quadrotor used in experiment has 1.15kg mass, (0.012,0.012,0.024)kg ·m2 inertia

tensor, and 0.23m arm length. The task for experiment is tracking the eight(8)-shaped trajectory

two times maintaining the altitude. seven demonstrations are performed by a pilot.

31

Figure 6.1: Hardware setup configuration for experiment

Figure 6.2: Configuration of the control system

32

6.2 Experiment result

Experiment results are shown in Fig. 6.3 ∼ Fig. 6.7. Fig. 6.3 and Fig. 6.4 represents the result

of trajectory learning algorithm with real flight data. In the Fig. 6.5, we can see that the reward

function which minimizes the trajectory tracking error is learned. With the extracted trajectory

and learned reward function, we perform the task using the same quadrotor which is used for

demonstrations. The results are in Fig. 6.6 and Fig. 6.7. Althogh the suggested inverse reinforce-

ment learning algorithm in this thesis is based on simulation, the experiment result is acceptable.

The altitude, z only has some noticeable error. It’s because the relation between desired thrust

and the thrust of motor is influenced by the battery. It can be reduced by improving the con-

trol structure such as adding error integration term. By applying the introduced algorithm to

quadrotor, we can imitate the demonstrations of eight-shaped trajectory tracking.

33

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x (m)

y
(m

)

Figure 6.3: Result of trajectory learning for experiment (1)

34

0 10 20 30
−1

−0.5

0

0.5

1

t (s)

x
(m

)

0 10 20 30
−0.5

0

0.5

1

1.5

2

t (s)

y
(m

)

0 10 20 30

−0.65

−0.6

−0.55

−0.5

t (s)

z
(m

)

0 10 20 30
−0.1

−0.05

0

0.05

0.1

t (s)

φ
(r
a
d
)

0 10 20 30
−0.2

−0.1

0

0.1

0.2

t (s)

θ
(r
a
d
)

0 10 20 30
−0.1

−0.05

0

0.05

0.1

t (s)

ψ
(r
a
d
)

0 10 20 30
−1

−0.5

0

0.5

1

t (s)

ẋ
(m

/
s)

0 10 20 30
−0.5

0

0.5

t (s)

ẏ
(m

/
s)

0 10 20 30
−0.1

−0.05

0

0.05

0.1

t (s)
ż
(m

/
s)

0 10 20 30
−0.5

−0.25

0

0.25

0.5

t (s)

φ̇
(r
a
d
/
s)

0 10 20 30
−0.5

−0.25

0

0.25

0.5

t (s)

θ̇
(r
a
d
/
s)

0 10 20 30
−0.4

−0.2

0

0.2

0.4

t (s)

ψ̇
(r
a
d
/
s)

0 10 20 30
10

10.5

11

11.5

12

t (s)

T
(N

)

0 10 20 30
−0.1

−0.05

0

0.05

0.1

t (s)

M
φ
(N

m
)

0 10 20 30
−0.1

−0.05

0

0.05

0.1

t (s)

M
θ
(N

m
)

0 10 20 30
−0.1

−0.05

0

0.05

0.1

t (s)

M
ψ
(N

m
)

Figure 6.4: Result of trajectory learning for experiment (2)

35

0 1 2 3 4 5
4

8

12

16

20

24

Number of iteration

J

Figure 6.5: Cost in inverse reinforcement learning algorithm for experiment

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x (m)

y
(m

)

Figure 6.6: Performance of quadrotor with learned reward function for experiment(1)

36

0 10 20 30 40
−1

−0.5

0

0.5

1

t (s)

x
(m

)

0 10 20 30 40
−1

0

1

2

t (s)

y
(m

)

0 10 20 30 40
−0.8

−0.7

−0.6

−0.5

t (s)

z
(m

)

0 10 20 30 40
−0.1

−0.05

0

0.05

0.1

t (s)

φ
(r
a
d
)

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

t (s)

θ
(r
a
d
)

0 10 20 30 40
−0.06

−0.03

0

0.03

0.06

t (s)

ψ
(r
a
d
)

0 10 20 30 40
−1

−0.5

0

0.5

1

t (s)

ẋ
(m

/
s)

0 10 20 30 40
−0.5

0

0.5

t (s)

ẏ
(m

/
s)

0 10 20 30 40
−0.1

−0.05

0

0.05

0.1

t (s)
ż
(m

/
s)

0 10 20 30 40
−0.5

−0.25

0

0.25

0.5

t (s)

φ̇
(r
a
d
/
s)

0 10 20 30 40
−0.5

−0.25

0

0.25

0.5

t (s)

θ̇
(r
a
d
/
s)

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

t (s)

ψ̇
(r
a
d
/
s)

0 10 20 30 40
10

10.5

11

11.5

12

t (s)

T
(N

)

0 10 20 30 40
−0.1

−0.05

0

0.05

0.1

t (s)

M
φ
(N

m
)

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

t (s)

M
θ
(N

m
)

0 10 20 30 40
−0.1

−0.05

0

0.05

0.1

t (s)

M
ψ
(N

m
)

Figure 6.7: Performance of quadrotor with learned reward function for experiment(2)

37

7
Conclusion

In this thesis, we proposed an apprenticeship learning algorithm to imitate the demonstrations

and applied it to a quadrotor UAV. To imitate the demonstrations, we divide the process into

two parts; first, we extract a representative trajectory from demonstrations which a quadrotor

should follow to behave like demonstrations. Then the controller learns the reward function which

follows the extracted trajectory perfectly. The former part is called trajectory learning and the

latter is inverse reinforcement learning. Through simulation and experiment results, we validate

the algorithms. Using trajectory learning algorithm using hidden Markov model (HMM) and

dynamic time warping (DTW), the most likely trajectory which describes the demonstrations

well is learned. The inverse reinforcement learning algorithm with particle swarm optimization

(PSO) let the reinforcement learning based controller learn the good reward function to track the

extracted trajectory. In simulation and experiments, successful imitation results are obtained. The

quadrotor flies similar to demonstrations with the learned trajectory and reward function. Overall

we can conclude that the proposed apprenticeship learning works well for the quadrotor UAV.

As future work, system identification or improved control structure can improve the algorithm,

because the optimization of reward function is performed in the simulation environment.

38

References

[1] P. Abbeel, A. Coates, and A. Y. Ng, ”Autonomous helicopter aerobatics through apprentice-

ship learning,” The International Jounal of Robotics Research, vol. 29, no. 13, pp. 1608-1639,

2010.

[2] S. Calinon, F. Guenter, and A. Billard, ”On learning, representing and generalizing a task in

a humanoid robot,” IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS,

PART B, vol. 37, no. 2, pp. 286-298, 2007.

[3] D. Korkinof, and Y. Dimiris, ”Online quantum mixture regression for trajectory learning by

demonstration,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, 2013.

[4] C. G. Atkeson, S. Schaal, ”Robot learning from demonstration,” Proceedings of the 14th

International Conference on Machine Learning, ICML’97, 1997.

[5] J. Z. Kolter, P. Abbeel, A. Y. Ng, ”Hierarchical apprenticeship learning with application

to quadruped locomotion,” Proceedings of the Advances in Neural Information Processing,

NIPS’08, 2008.

[6] A. K. Tanwani, and A. Billard, ”Transfer in inverse reinforcement learning for multiple strate-

gies,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013.

[7] M. S. Malekzadeh, D. Bruno, S. Calinon, T. Nanayakkara, and D. G. Caldwell, ”Skills transfer

across dissimilar robots by learning context-dependent rewards,” 2013 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2013.

[8] A. Y. Ng, and S. Russell, ”Algorithms for inverse reinforcement learning,” Proceedings of the

17th International Conference on Machine Learning, 2000.

[9] P. Abbeel, and A. Y. Ng, ”Apprenticeship learning via inverse reinforcement learning,” Pro-

ceedings of the 21st International Conference on Machine Learning, 2004.

39

[10] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, ”Reinforcement learning and feedback

control,” IEEE Control Systems Magazine, Vol. 32, Issul. 6, pp. 76-105, 2012.

[11] J. Kennedy, and R. Eberhart, ”Particle Swarm Optimization,” Proceedings of the 1995 IEEE

International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.

[12] S. Bouabdallah, ”Design and control of quadrotors with application to autonomous flying,”

Lausanne Polytechnic University, 2007.

[13] H. B. Lee, ”Trajectory tracking of a quadrotor UAV using geometric-based backstepping

control,” Seoul National University, 2013.

[14] G. A. Hewer, ”An iterative technique for the conputation of the steady state gains for the

discrete optimal regulator,” IEEE Transactions on Automation Control, 1971.

40

국 문 초 록

본 논문에서는 전문가로부터 구현된 쿼드로터의 시범 데이터를 모방하는 것을 목표로 한다. 먼저

학습하고자 하는 임무를 동일하게 수행하는 여러번의 데이터를 수집한다. 전문가의 시범을 모방하

기 위하여 먼저 여러 시범 데이터를 잘 나타내는 하나의 경로를 추출한다. 본 논문에서는 hidden

Markov model (HMM)과 dynamic time warping (DTW)를 이용하여 경로를 학습하는 알고리즘을

소개하였다. 이 때 쿼드로터가 추종해야 할 상태와 그 때의 제어 입력 값을 학습한다. 이 제어 입력을

바로 사용할 경우 쿼드로터의 안정성을 보장할 수 없기 때문에 추가적인 제어기가 필요하다. 본 논문

에서는 선형 이차 형태의 보상함수를 갖는 강화학습 기반 제어기를 설계하였다. 쿼드로터가 학습된

경로를 잘 추종하도록 역 강화학습 알고리즘을 제안하여 궤적 추종 오차를 최소화 하는 보상함수를

학습하였다. 이 때 입자 군집 최적화 (PSO) 방법을 이용하여 학습을 진행하였다. 시뮬레이션과 실험

을 통하여 소개한 알고리즘을 검증하고 이를 쿼드로터에 적용하여 성공적인 모방 결과를 얻었다.

주요어 : 도제 학습, 모방 학습, 쿼드로터, 경로 학습 알고리즘, 역 강화학습 알고리즘

학번 : 2012-20710

	1. Introduction
	1.1 Literature review
	1.2 Thesis contribution
	1.3 Thesis outline

	2. Quadrotor dynamics
	2.1 Translational dynamics
	2.2 Attitude dynamics

	3. Reinforcement learning controller
	3.1 Policy iteration
	3.2 Trajectory tracking controller
	3.3 Quadrotor controller

	4. Inverse reinforcement learning control
	4.1 Trajectory learning algorithm
	4.1.1 EM algorithm with hidden Markov model
	4.1.2 EM algorithm with dynamic time warping

	4.2 Inverse reinforcement learning algorithm

	5. Simulation
	5.1 Simulation setup
	5.2 Way-point tracking simulation result
	5.3 Circuit tracking simulation result

	6. Experiment
	6.1 Experiment setup
	6.2 Experiment result

	7. Conclusion

<startpage>10
1. Introduction 1
 1.1 Literature review 2
 1.2 Thesis contribution 3
 1.3 Thesis outline 3
2. Quadrotor dynamics 4
 2.1 Translational dynamics 4
 2.2 Attitude dynamics 5
3. Reinforcement learning controller 7
 3.1 Policy iteration 8
 3.2 Trajectory tracking controller 9
 3.3 Quadrotor controller 10
4. Inverse reinforcement learning control 12
 4.1 Trajectory learning algorithm 13
 4.1.1 EM algorithm with hidden Markov model 14
 4.1.2 EM algorithm with dynamic time warping 16
 4.2 Inverse reinforcement learning algorithm 17
5. Simulation 19
 5.1 Simulation setup 19
 5.2 Way-point tracking simulation result 21
 5.3 Circuit tracking simulation result 26
6. Experiment 31
 6.1 Experiment setup 31
 6.2 Experiment result 33
7. Conclusion 38
</body>

