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ABSTRACT

The Role of Attention in the Generation of Human and

Robot Arm Movements

by

Jee-eun Lee

Department of Mechanical and Aerospace Engineering

Seoul National University

Even as robots are being asked to perform increasingly complex tasks simultaneously,

current robot motion planning and control laws for the most part fail to consider

limitations on the available computation, communication, and memory resources.

Humans on the other hand are adept at multi-tasking, continuously shifting their

attention from one task to another. In this thesis we investigate the role of con-

trol attention in the general of both robot and human and arm movements. We

examine robustness to spatiotemporal quantization as a means of evaluating the

performance of arm trajectory generation and control laws from the perspective of
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control attention. We then develop a stochastic control strategy for generating and

controlling arm movements that attempts to minimize the required computation and

communication resources, based on the minimum intervention principle put forth by

Todorov and Jordan. We perform numerical experiments for planar arm reaching

motions with respect to these spatiotemporal quantization metrics. Experimental

results show that our control laws share many of the distingushing features of human

reaching motions. We also examine the effectiveness of our measures in explaining

human arm movement data. Specifically, we examine if the directional bias in arm

movements reported in [1] can be explained with our attention-based principles for

trajecotory generation and control.

Keywords: Human arm movement, attention, optimal feedback control, minimum

intervention control.

Student Number: 2012-23185
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1
Introduction

1.1 Background and Motivation

1.1.1 Theories for Human Movement Generation and Control

Due to kinematic redundancies in the human arm, there exist an infinite number

of trajectories that connect a given and final arm configuration. As is well known,

humans do not use the full repertoire of possible trajectories on a consistent basis,

but produce movements with certain invariant properties. For example, human arm

movements are characterized by nearly straight line Cartesian hand paths, and bell-

shaped velocity profiles. Indeed, one of the main goals of human motor control

research has been to understand how the central nervous system (CNS) generates

movements, by discovering general principles that govern trajectory generation and

movement control strategies in humans and animals.

One of the earliest theories put forth to explain human movement control is the

Equilibrium Point Hypothesis (EPH) [2], [3], [4]. EPH postulates that the human

1



1.1. Background and Motivation 2

musculoskeletal system can be informally viewed as an elastic system connected by

pairs of antagonistic springs (muscles). In the case of an arm, the equilibrium point

is the configuration that the arm would tend to settle from wherever it was released,

like two rubber bands pulling the joints to a stable equilibrium. Given a desired

trajectory, the CNS then continually adjusts the equilibrium point to be along this

trajectory, thereby generating the arm movement.

Another general paradigm for understanding motor control is the optimal control

hypothesis. The premise behind this hypothesis is that movements are generated

so as to optimize some criterion, e.g., kinematic criteria like acceleration or jerk,

or energy-like criteria like muscle activation energy or joint torques, or criteria that

correspond to cognitive load. Of the many criteria that have been proposed to

explain human movements, some criteria that have received attention as being more

plausible than others include the following:

(i) Minimum jerk model: This model, proposed by Flash and Hogan [5], asserts

that human arm movements are generated so as to minimize the derivative of

the Cartesian hand acceleration, or jerk. In the case of planar arm movements,

the criterion is given by

J =
1

2

∫ tf

t0

(
d3x

dt3

)2

+

(
d3y

dt3

)2

dt, (1.1.1)

where (x, y) denotes the plnar coordinates for the Cartesian hand position.

The predicted trajectory has nearly straight-line hand paths and bell-shaped

velocity profiles. Because the minimum jerk model is based purely on the

kinematics of movement, and small discrepancies are observed in predicted and

observed human arm trajectories, the minimum jerk criterion is now generally

regarded as an overly simplistic principle for human motor control.
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(ii) Minimum torque change model: In the minimum torque change model

proposed by Uno et al [6], the premise is that human arm movements are

generated so as to minimize the changes in the vector of input joint torque τ :

J =
1

2

∫ tf

t0

‖τ̇‖2 dt (1.1.2)

Implicit in this assumption is the belief that the simplest control signal is a

constant one, and that the dynamics is accounted for in the generation of move-

ments. The performance measure is a sum of squares of the torque change rate

at the joints. Although the objective functions for the minimum jerk model

(which is purely kinematic) and minimum torque change model (which reflects

the arm dynamics) look quite different, they are in fact related, since the rate

of change of the torque is locally proportional to the jerk—observe that in the

dynamic equations, the product of the mass matrix and joint accelerations is

proportional to the joint torque vector. Experimental observations show that

the minimum torque change model produces arm movements that are more

closely correlated with actual human arm movements than the minimum jerk

model, particularly with respect to movements in the vertical plane working

against gravity, mirror-reflected via-point movements, movements emanating

from the side of the body to in front, and movements between two points while

resisting a spring-generated force.

(iii) Minimum variance model: The minimum variance model proposed by Har-

ris et al. [7] starts from the assumption that neural control signals have a noise

whose variance increases with the magnitude of the signals. According to this

model, the goal of motor planning is to minimize the variance of the final po-

sition in the presence of such signal-dependent neuronal noise; the criterion is
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of the form

J =
T+R∑
i=T+1

Tr(Cov[xi]), (1.1.3)

where, for example, in the case of human arm movements, xi represents the

Cartesian position of the hand, and the noise enters into the arm’s dynamic

state equations. One of the compelling features of the minimum variance model

is that not only does the model accurately predict human arm movements, but

also offers a plausible neuro-cognitive explanation of how the motor system cre-

ates movements, in particular the most salient geometrical features of human

arm trajectories as well as the inherent speed-accuracy tradeoff observed in

typical human arm movements.

(iv) Minimal intervention principle: Models such as minimum jerk, torque

change, and minimum variance initially postulate a cost criterion, and a stan-

dard variational analysis then produces a set of Euler-Lagrange equations that

can then be integrated to generate predicted movements. On the other hand,

the role of sensory feedback is widely acknowledged to be important in ac-

tual human movements, and yet is not explicitly addressed in sufficent detail

in many of the preceding works. The variability between movements with

the same task-goal is also not always adequately explained. The minimal in-

tervention principle proposed by Todorov and Jordan [8], [9] is an attempt

to overcome these and other shortcomings of existing human motor control

theories. It proceeds with the assumption that the cost function should be de-

pendent on the task-goal rather than the shapes of trajectories or the control

input. A stochastic optimal feedback control framework is proposed, in which

movements are governed by an optimal feedback control law that specifies how

feedback gains are adjusted for performing selective error correction in lieu of
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heavily modulating the entirety of a movement.

1.1.2 The Role of Attention and Perception in Human Movements

Although a number of the optimal control models successfully replicate various ge-

ometric and other invariant features of human movement, there is only limited ex-

perimental basis as to why these criteria should be minimized in generating human

movements. Recently several experimental studies on human motor control have

attempted to uncover the role of attention and biomechanics during voluntary arm

movement tasks [10], [1]. In these experiments, it is revealed that human arm move-

ments are characterized by directional biases that may not be the result of purely

physical energy-like considerations alone, and that become more pronounced as the

subject is more distracted cognitively. The experimental results support the idea

that in addition to physical energy-based criteria, cognitive load, or attention, is

also another factor to be considered when humans generate arm movements.

Other experimental studies on the contribution of perceptual distortion in hu-

man reaching movements are reported by Wolpert [11], [12]. In these experiments,

subjects are asked to reach target locations by observing not their actual hand tra-

jectory in physical space, but a distorted version of the trajectory projected to a

some plane—straight lines now appear as curved lines, and vice versa. The exper-

iments suggest that subjects’ tended to generate nearly linear hand trajectories in

the projected virtual image rather than physical space. These results imply that

the process underlying human trajectory formation is not based only on physical

considerations like energy, but may also take into account the perceptual process by

which trajectories are evaluated.

Today, robots are becoming increasingly more complex in structure and are

asked to perform increasingly complex tasks, many of them simultaneously. Despite
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this trend, current robot motion planning and control laws for the most part do

not take into account physical limitations on computation, communication, and

memory. For example, trajectory generation is often framed as a dynamics-based

optimization problem with respect to some physical criterion like energy. This is

usually decoupled from the problem of tracking control law design, which is often

done without regard to the cost of implementation, e.g., the amount of computation

required to compute model-based feed-forward control inputs, and the amount of

communication that takes place between the controller and actuators and sensors,

usually over a communication bus of limited bandwidth.

1.2 Quantifying Attention in a Control-Theoretic Frame-

work

Practical implementations of control laws ultimately require spatio-temporal quan-

tization of the control and measurement signals at some stage. One way in which

control performance can be measured is with respect to the resolution of the under-

lying quantization. There is in fact a growing body of literature on the control of

quantized systems, and more generally, on the control of systems subject to data

rate constraints (see, e.g., [13],[14] [15],[16]). Most of these works make various sim-

plifying assumptions about the underlying system that are often too restrictive for

typical robots (e.g., all systems are linear), or focus on a particular aspect of control

(e.g., feedback stabilization).

As an approach to formulate the problem of scheduling communication sub-

ject to data rate constraints, Hristu proposed the idea of limited communication

control [14]. Using the general notion of a communication bus to represent data

transfer between a controller and plant(sensors and actuators) at each time step,
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limited communication system can be embodied in the discrete time system with

restriction on the dimension of the communication bus. When the communication

bus is narrow, one possibility is to choose a sequence of operations for the switches

that select which inputs/outputs are to be updated/sampled at a particular time.

Another work that attempts to capture control implementation costs in a contin-

uous setting is the minimum attention control framework first proposed by Brockett

[17], [18]. There are two basic premises behind this paradigm: (i) the simplest con-

trol is a constant one, and (ii) the cost of control implementation can be directly

captured by the rate of the change of the control with respect to both time and

state. Specifically, for a system described in state-space form by ẋ = f(x, u), where

x and u respectively denote the state and control vectors, u can be prescribed as an

explicit function of both t and x; Brockett’s minimum attention functional is then

defined as

J(u) =

∫ ∫ ∥∥∥∥∂u∂t
∥∥∥∥2 +

∥∥∥∥∂u∂x
∥∥∥∥2 dx dt. (1.2.4)

Note that the integral is taken over both state and time. A control that mini-

mizes (1.2.4) is one that is least sensitive to changes in both the state x and time t,

and thus can be regarded as the most robust from the point of view of spatiotem-

poral quantization. As discussed later, practical implementations of this paradigm

are make difficulty by the multi-dimensional variational problem, for whom even the

existence of solutions cannot be guaranteed.

1.3 Goals and Contributions of this Thesis

Whereas much of the optimal control-related human motor control literature has fo-

cused on physical criteria like energy efficiency as the optimality principle governing

human motions, some of the more recent work suggests that cognitive load, or more
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generally the amoung of attention required by a control law, also plays a greater role

than once thought. This recent perspective is particularly relevant from the point

of robotics: as robotic structures become more complex and are asked to do more

things, the inherent limitations on computation, communication, and memory now

need to be accounted for when generating trajectories and control laws for robot

motions.

This thesis has two main goals. First, we take some of the more recent con-

trol theoretic work on control subjected to limited communication and computation

constraints, and also the robustness of control laws with respect to spatiotemporal

quantization, and use these tools to examine the robustness of a set of robot control

laws with respect to quantization. We consider the following control laws: (i) Brock-

ett’s minimum attention control law derived under a set of reasonable assumptions

(i.e., the control law consists of an feedforward term added to a linear feedback

term); (ii) a kinematic version of a minimum variance optimal feedback control law

recently derived in [19]; (iii) a PD tracking control law, and also a computed torque

control law, designed to track a minimum torque change reference trajectory that is

obtained a priori. We also develop an extension of Todorov’s minimum intervention

control law [8], [9], in which the cost is set to the minimum torque change criterion

rather than the torque as done in [8].

Taking a planar robot model as our benchmark system, we determine which of

these control laws is the most robust to spatiotemporal quantization, in the sense of

which control law achieves the best end-point positioning accuracy when the control

laws are subject to more coarse levels of quantization. Results of our experiments

suggest that control laws that take into account communication and computation

limitations do in fact perform better than other control laws that don’t account for

such limitations. We also find that the newly developed optimal stochastic feedback



1.3. Goals and Contributions of this Thesis 9

control law associated with the minimum torque change criterion produces control

laws that mimic certain features of humans, i.e., the transition from open-loop to

closed-loop control during certain movements.

The second goal of this thesis is to re-examine the results reported in [1] on

directional biases observed in human arm movements. We first point out and correct

a discrepancy in the choice of directional bias index formulated in [1]. We then use

this new index to determine to what extent some of the representative principles from

optimal control-based human motor control theory can explain the results reported

in [1]. We find that the reasons for the directional bias as reported in [1] are in fact

more complicated and subtle, and that both energy efficiency and control attention

together explain some of the directional bias.

It is hoped that the results of this thesis will offer insight on how to develop con-

trol laws for robots that require less communication and computational resources.

At the same time, some of the control laws, and more generally the methodologies

developed for quantitatively measuring the robustness of control laws to spatiotem-

poral quantization, and the amount of control attention required, can serve as a

useful tool for comparatively examining competing theories on human motor con-

trol.

The thesis is organized as follows. Chapter 2 discusses the mathematical formu-

lations for capturing control attention, beginning with the notion of robustness to

spatiotemporal quantization, and Brockett’s minimum attention functional. Then

we compares the performance of various robot control laws with respect to control

attention. Chapter 3 suggests an extension of minimal intervention principle that

can produce the control laws that are robust to the quantization while Chapter 4

re-examines the directional bias of human arm movements using the perspective of

attention developed earlier in this thesis and well-known optimization models.



2
Attention Analysis of Robot

Control Laws in Deterministic

system

From the perspective of attention, control laws that are robust to spatiotemporal

quantization are desirable. Based on this idea, we will discuss the mathematical

formulations for capturing control attention, beginning with the notion of robustness

to spatiotemporal quantization, and, Brockett’s minimum attention functional. We

then formulate and solve the problem of minimum attention control for planar arm

reaching motions and evaluate the performance compared to various control laws,

in the sense of which control law achieves the best end-point positioning accuracy

when the control laws are subject to more coarse levels of quantization.

10



2.1. Attention and Robustness to Quantization 11

2.1 Attention and Robustness to Quantization

A large class of related problems involves the control of multiple subsystems over a

single communication channel of finite bandwidth (see, e.g., [14], [20], [16]). For such

systems the controller must distribute its attention among the subsystems in some

appropriate fashion so as to achieve the control goal, e.g., collective stabilization of

all the systems subject to the communication bandwidth limits, and communication

with only one subsystem is allowable at any given time. Many of the previous works

typically make simplifying assumptions about the subsystems (e.g., discrete-time

linear systems with quantized controls) and communication sequence among the

subsystems (e.g., periodic).

Another way to measure a robot controller’s attention is checking robustness to

quantization. For a given continuous control u(x, t), we can consider three kinds of

quantization: time quantization, space quantization, and quantization of both time

and space.

Time quantization is as follows. Given the system ẋ = f(x)+G(x)u, we consider

its discretized version: the state equation is of the form

xk+1 = Φ(xk, uk, tk) (2.1.1)

The control can only be updated at a finite set of N ordered times {t0, . . . , tN−1},

and over each interval [ti, ti+1], the control ui is assumed constant.

We can also consider space quantization as follows. Shown in Figure 2.1, consider

the state space divided into the grid, where the spacing between grids are sensor

resolution. For a given state x, we can only predict the state by averaging the values

of grid cell where the state is located:

x̃ =
xl + xh

2
, for xl < x < xh, (2.1.2)
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Figure 2.1: State space divided into the grid

where xl, xh is each side value of the grid cell in which the state is placed.

In our later evaluational studies, we consider the problem of reaching motion

under time and space quantization, in which the evaluation standard is given by

sum of square of final error. For a given continuous control u(x, t), we check the

robustness of controls when the actual inputs to the system are quantized as follows:

(i) Time quantization : over the interval [ti−1, ti] the actual control input is set

to the following average value of u(x, t):

ui =
1

ti − ti−1

∫ ti

ti−1

u(x(ti−1), t) dt. (2.1.3)

(ii) Space quantization : with the resolution of state measurement xl < x(t) <

xh, the actual control input is set to:

u(t) = u(
xl + xh

2
, t). (2.1.4)

(iii) Spatio-temporal quantization : over the interval [ti−1, ti] with the reso-

lution of state measurement xl(ti−1) < x(ti−1) < xh(ti−1), the actual control
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input is set to the following average value of u(x, t):

ui =
1

ti − ti−1

∫ ti

ti−1

u(
xl(ti−1) + xh(ti−1)

2
, t) dt. (2.1.5)

2.2 Minimum Attention Control

Another work that attempts to capture control implementation costs in a continuous

setting is the minimum attention control framework first proposed by Brockett [17],

[18]. He proposed a measure of complexity in implementing the control law, which

is named attention functional:

J =

∫ tf

t0

∫
<n

α‖∂u
∂x
‖2 + (1− α)‖∂u

∂t
‖2dxdt (2.2.6)

It is clear that the control with the constant input is the easiest. On the contrary to

this, the more frequently the control changes, the more attention would be consumed.

So the cost of implementation is linked to the rate at which the control changes with

changing value of x and t for u = u(x, t).

Although conceptional meaning of attention functional is simple and easily un-

derstandable, you can see that this optimal control problem is highly nonlinear and

even the existence of solution can not be guaranteed for robotics application. To

make this problem solvable, S Lee [21] suggested some assumptions; (i) split the

control input into closed-loop term and open-loop term, (ii) consider an admissible

class of feedback controls in the form of a simple PD control law. Then problem can

be solved by parametrizing the trajectory through splines with the control modeled

in the form of

u(x, t) = −K(x(t)− xf ) + v(t). (2.2.7)

where xf is desired final state, K is a linear feedback gain matrix and v(t) is feed-

forward control term. With this assumption, we can manage this problem and get
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the solution using spline method, but there is still the problem of local minima.

2.3 Radial Reaching Motions

Figure 2.2 describes the experimental set-up. The initial posture of the arm is given

by shoulder and elbow joint values of 30◦, 100◦ respectively. The goal points for the

radial reaching motions are taken to be a set of 12 equally spaced points on the

circle of radius 18cm and they are shown with blue star(*) in Figure 2.2(b). The

duration for each movement is set to one second.

�
�

�
�

(a) Experimental set-up

Initial
position

Desired goal
positions

(b) Goal points in workspace

Figure 2.2: Radial reaching motion experiments set-up

Human-like arm can be simply modeled as 2-link manipulator moving in the

horizontal plane, with shoulder and elbow joints. The dynamics of the arm model

can be driven as:

τ = M(q)q̈ + C(q, q̇)q̇, (2.3.8)

where q ∈ R2 denote the joint angles and τ ∈ R2 the input joint torques. The

kinematic and inertial parameter values are taken from [22] and chosen to closely
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match those of typical human arms.

We first numerically determine the minimum attention control law that achieves

the desired point-to-point motions. The minimum attention control is assumed to

have a feedforward term v(t), and proportional and derivative feedback terms:

τ = −Kv q̇ −Kp(q − qd) + v(t), (2.3.9)

where qd denotes the joint space configuration corresponding to the hand goal point,

and Kv and Kp are assumed constant. Kp, Kv, and v(t) are then chosen to minimize

the following attention functional:

min
Kp,Kv ,v(t)

∫ tf

t0

α(‖Kp‖2 + ‖Kv‖2) + (1− α)‖v̇‖2 dt. (2.3.10)

For comparison purposes we consider three control laws: minimum variance

kinematic feedback control law [19], and minimum torque change control laws com-

bined with two kinds of feedback controller. As we discussed in the introduction,

minimum torque change model is formulated to generate only open-loop control so

sensory feedback can not be considered in this point. So we use two general ap-

proach to produce feedback term for robotics application; the standard form of the

computed torque control law, i.e.,

τ = M(q)(q̈d −Kv(q̇ − q̇d)−Kp(q − qd)) + C(q, q̇)q̇, (2.3.11)

and the augmented PD control law, i.e.,

τ = M(q)q̈d + C(q, q̇)q̇d −Kv(q̇ − q̇d)−Kp(q − qd). (2.3.12)

Here C(q, q̇) denotes the Coriolis terms. For both control laws the feedback gain

matrices Kv and Kp are chosen to be diagonal, with the gain values chosen to achieve

critical damping.
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Figure 2.3: Mean values of final errors for the four controllers under time and space

quantization

For the four control laws, we now conduct the following set of numerical exper-

iments. Time is uniformly discretized into N equal intervals over the movement

duration, with a 5Hz update rate. Joint position and velocity measurements are

quantized to 10◦ and 10◦/sec increments, respectively. The final position error is

measured in Cartesian hand space, i.e., as the Euclidean distance between the de-

sired and actual coordinates of the final hand position.

Figure 2.3 shows the mean values of the final positioning errors for the four con-

trollers under various time, space, and spatiotemporal quantization. The minimum

attention controller is seen to be the most robust to quantization in time and space,

while the minimum variance feedback control is the most sensitive. These results

confirm our intuition that feedforward control terms are important to achieving

robustness to quantization effects.
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Figure 2.4: Position errors with respect to heading angle direction for the minimum

attention, computed torque, and augmented PD control laws

We also compare the final positioning errors for the minimum attention, com-

puted torque, and augmented PD controllers with respect to the goal point direction.

As shown in Figure 2.4, we can see the minimum attention controller is the most

robust to the time quantization with respect to the all goal points.



3
Attention Analysis of Robot

Control Laws in Stochastic system

In this chapter, we analyze control laws in stochastic system using the similar eval-

uation method suggested in the previous chapter. To achieve our goal of producing

the control laws that take into account communication and computation limitations

in stochastic system, we suggest newly developed optimal stochastic feedback con-

trol law associated with the minimum torque change criterion. We find that this

control laws do in fact perform better than the one in which the cost is set to the

torque as done in [8],[23], and mimic certain features of humans, i.e., the transition

from open-loop to closed-loop control during certain movements.

3.1 Optimal Feedback Control Laws Considering Attention

Although many optimality models are suggested for the generation of human-like

motion in human motor control, most of them are only associated with the shape

18
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of trajectories or magnitude of control input. These models only offer an open-loop

control and do not consider the implementation of control. At an intuitive level,

it seems that biological motor control involves not only pure open-loop control but

also a gradation of modalities spanning a range between open-loop and closed-loop

operation.

There are two main approach to find a control law with both open-loop and

closed-loop control term based on the optimization. One is the minimum attention

control [17] discussed in the previous chapter. We can find balanced terms of open-

loop and closed-loop control reducing a measure of complexity in the implementation

of the control law with this approach. The other is minimal intervention principle [23]

that suggests a sensory feedback gains optimized to achieve task goal. Reminding

our purpose to find control laws that take into account attention, we consider an

extension version of minimal intervention principle with new task goals considering

attention.

From the point of view of the attention, the control laws for multi-tasking should

be robust to the low data rate and actuator update frequency. One way to generate

the simplest control law is minimizing attention functional introduced in the previous

sections. But controller minimizing only attention functional is hard to be applied in

practical system, because this control laws have difficulty modeling noise together.

In order to solve this problem, it is worth considering control change alternatively

which can be considered as the particular case of attention functional(α = 0) but

more manageable. With the purpose of producing the control laws for multi-tasking

which provide reliable feedback together, we suggest control laws that have following

two task goals:(i) minimizing torque change and (ii) minimizing final state error.
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Then our cost function to be minimized can be formulated as

J =
1

2

(
(x(tf )− xf )TQ(x(tf )− xf ) +

∫ tf

t0

ρ‖τ̇‖2dt
)

(3.1.1)

where t0, tf ,∈ < is given initial and final time, (x(tf )−xf )TQ(x(tf )−xf ) is final state

error in quadratic form with desired target state xf and ρ is the weight parameter

for sum of square of torque change integrated over time.

To obtain the optimal feedback gains based on the minimum intervention prin-

ciple, iterative LQG algorithm [23] will be used. In this algorithm, cost function

and state equation should be able to represent as a function of state and input vari-

ables. In this thesis, we suggest to set up state and input vector of the problem

as x = [q, q̇, τ ]T and, u = τ̇ to manage the problem. Under this setting, dynamic

system with noise modeling can be described by nonlinear stochastic differential

equation in general form of

dx = f(x, u)dt+ F (x, u)dω (3.1.2)

with standard Brownian motion noise ω.

Iterative Linear Quadratic Gaussian Algorithm

Iterative LQG algorithm was firstly suggested by Todorv [23]. It provides the control

laws with locally-optimal feedback term in nonlinear stochastic system. In this

section, we will introduce the algorithm slightly modified for our problem. We first

linearize the system around nominal state and input trajectory x̄ ∈ <n, ū ∈ <m.

Then the discrete time dynamics and the cost function can be described by derivate
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variables of the state and input δx, δu:

δxk+1 = Akδxk +Bkδuk + Ck(δxk)ξk

Ck(δxk) , [c1,k + C1,kδxk, c2,k + C2,kδxk]

δJ = δxTTQ(x̄T − xf ) +
1

2
δxTTQδx

T
T

+

T∑
k=1

δuTk (ρ4t)ūk +
1

2

T∑
k=1

δuTk (ρ4t)δuk

immediate costk = δuTk (ρ4t)ūk +
1

2
δuTk (ρ4t)δuk

where,

Ak = I +
∂f

∂x
(x̄k, ūk)4t, Bk =

∂f

∂u
(x̄k, ūk)4t,

ci,k = F [i]
√
4t, Ci,k =

∂F [i]

∂x

√
4t,

and the independent random variables ξk ∈ <m with zero-mean Gaussian white

noises with the covariance matrix of diag(σ1, σ2, ..., σm).

And then, we can compute the optimal input policy backwards in time by minimizing

cost-to-go function at the each step. In this algorithm, cost-to-go function remains

in the quadratic form with linearly designed optimal input policy from Bellman

equation.

vk(δxk) = sk + δxTk sk +
1

2
δxTk Skδxk

= immediate costk + E[vk+1(Akδxk +Bkδuk + Ck(δxk)ξk)]

vT (δxT ) = δxTTQ(x̄T − xf ) +
1

2
δxTTQδxT

By induction from final time T and applying input policy minimizing cost-to-go

function at each time step, we can compute backward recursion for s, s, S and design
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optimal input policy as:

sk = sk+1 +
1

2

2∑
i=1

cTi,kSk+1ci,k −
1

2
gTkH

−1
k gk

sk = Aksk+1 +
1

2

2∑
i=1

CTi,kSk+1ci,k −GTkH−1k gk

Sk = ATk Sk+1Ak +
1

2

2∑
i=1

CTi,kSk+1Ci,k −GTkH−1k Gk

δuk = πδk(δxk) = −H−1k gk −H−1k Gkδxk

where,

gk = ρūk +BT
k sk+1

Hk = BT
k Sk+1Bk +

1

2
ρIm×m

Gk = BT
k Sk+1Ak

Finally, apply the input policy πδk(δxk) to the deterministic system δxk+1 =

Akδxk +Bkδuk in a forward pass starting from δx1. We can take optimal δx1 from

solving the following problem,

δx1 = arg min
δx1

v1(δx1) Subject to [δq, δq̇]1 = 0

And then, computing the new trajectory x̃ = x̄+ δx, ũ = ū+ δu along the nominal

state and input variables. If the sequences ũ and ū are sufficiently close, end the

iteration. Otherwise set ū = ũ and go to the first step of iteration. To implement

line search, use πδk(δxk) = −(αH−1k gk +H−1k Gkδxk) in the forward pass, where α is

the line search parameter. In order to guarantee the convergence over the linearized

approximation of non-linear system, we use backtracking line search: start with

α = 1, and decrease it by a factor of nα < 1 until expected cost of the open-loop

control law becomes smaller than the old one. We also need to apply this parameter
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to the initial state derivative term, δx1 for the convergence. From the last iteration

optimal input policy input can be rewritten as:

uk = ūk + πδk(δxk) = ūk −H−1k gk −H−1k Gkδxk

We now, design locally optimized feedback control policy for the torque as a func-

tion of time and observable sensing values (y = [q, q̇]T : joint positions and joint

velocities). Following is one possible method:

τk = πk(yk) = Kk(yk − yd) + vk

where yd = [qgoal, q̇goal]T is desired goal joint positions and joint velocities and we

have following gains for n′ = n−m,

Kk = −H−1k Gk

 In′×n′

Om×n′

4t
vk = (Im×m −H−1k Gk

On′×m
Im×m

4t)τ̄k + (−H−1k Gk

 In′×n′

Om×n′

4t)yd
+ (ūk +H−1k Gkx̄k −H−1k gk)4t.

3.2 Radial Reaching Motions

Experiment set up for radial reaching motions is same to the one that described in

the previous chapter. Dynamics of the arm model we used here can be driven as:

M(q)q̈ + C(q, q̇) + Bq̇ = τ (3.2.3)

where q ∈ R2 is the joint angle vector(shoulder: q1 , elbow: q2), M(q) ∈ <2×2 is a

positive definite symmetric inertia matrix, C(q, q̇) ∈ <2 is a vector of centripetal and



3.2. Radial Reaching Motions 24

Coriolis forces, B ∈ <2×2 is the joint friction matrix, and τ ∈ <2 is the joint torque

that the muscles generate. Parameters for this arm model are taken from [23].

To produce optimal feedback controller that takes into account attention, we

suggest control laws that have two main task goal:(i) minimizing torque change and

(ii) minimizing final state error. Following is our cost function to be minimized:

J =
1

2

(
‖q(tf )− qf‖2 + ‖q̇(tf )‖2 +

∫ tf

t0

ρ‖τ̇‖2dt
)

(3.2.4)

where t0, tf ,∈ <, qf ∈ <n is given and ρ is the weight parameter of torque change

values integrated over time.

To solve the problem, we set the state vector and input vector of the system as

x = [q1, q2, q̇1, q̇2, τ1, τ2]
T and, u = [τ̇1, τ̇2]

T . We then organize system for human-like

arm model described in Equation 3.2.3 by following nonlinear stochastic differential

equation:

dx = f(x, u)dt+ F (x, u)dω (3.2.5)

with standard Brownian motion noise ω ∈ <2. We assumed signal-dependent noise,

which is general in both human motor system and robot, and here, the system

supposed to put their signal with the torque. We then have,

f(x, u) =


q̇

M(q)−1(τ − C(q, q̇)− Bq̇)

u

 ∈ <6 (3.2.6)

F (x, u) =


O2×2

M(q)−1

σ1|τ1| 0

0 σ2|τ2|


O2×2

 ∈ <
6×2 (3.2.7)

where σ1, σ2 ∈ < is standard deviation of noise.
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Then we can get feedback control laws optimized in discrete time domain using

the algorithm described in section 3.1,
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Figure 3.1: Numerical experiments in the quantized noisy system

To evaluate the performance of optimal feedback control laws from the perspec-

tive attention, we now conduct the numerical experiments for following three con-

trollers obtained by ILQG method: feedforward control laws and feedback control
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Figure 3.2: Final position error in quantized noisy system by various control laws

laws associated with the minimum torque change and feedback control laws asso-

ciated with the minimum torque, which are originally suggested in [8],[23]. In the

limited communication system, we assume that state sensing and actuator updating

can be done with only 10Hz frequency and actuator noise is modeled in stochastic

system with σ = 2 to be proportional to its torque size. Each radial reaching motion

to 12 goal positions is performed 50 times with randomly produced noise.

Figure 3.1 shows the hand trajectories resulting from various control laws in

stochastic system. In the figure, trajectories are described by red line starting from

initial position(black o) to final positions(blue x). Comparing the trajectories gen-

erated with torque change and torque, we can see more straight shape in 3.1(a),

3.1(b) than 3.1(c), which is more general in human motion. Furthermore, as shown

in the endpoint distribution, feedback control minimizing torque change scheme sub-

stantially reduces the effects of both the noise and quantization. Figure 3.2 shows
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this result more visibly. Black bars and orange bars represent the error sum of fi-

nal position produced by torque change open-loop control and closed-loop control

respectively and white bars represent the error sum of final position by closed-loop

control laws minimizing torque sum. For all the direction of control, minimum torque

change closed-loop control makes final position errors about 2 to 6 times as small as

open-loop control makes. In addition, closed-loop controls minimizing torque sum

instead of torque change, which is generally used to generate control laws, are poorly

performed under the low update frequency while the advantages are still existent in

energy effectiveness and compensation for signal-dependent noise.

3.2.1 Features of Reaching Motion Control

When humans do reaching motions, they usually apply open-loop control initially

and gradually change it to closed-loop control near the reaching. In this section,

we will discuss about these features by analyzing the feedback terms generated by

our approach. Figure 3.3 describes the feedback terms over time under various

conditions. To evaluate the magnitude of feedback term in matrix form, we use

Frobenius norm here in the paper. As shown in Figure 3.3, feedback gain is initially

small, but has large values near final times. It is clear that control needs large

feedback gain near the final time for the accurate reaching motion. Furthermore, as

shown in Figure 3.3(b) and 3.3(c), feedback gain does not change much with sigma

but change with weight parameter ρ in cost function. Smaller weight parameter ρ

tends to produce a control law taking smaller final state error and this causes larger

feedback gain. Therefore, in order to generate control laws well operated in practical

system, we can make it by adjusting the value of ρ.
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(a) σ1 = σ2 = 2, ρ = 5e− 5
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Figure 3.3: Feedback gain over time with various parameters

3.2.2 Comparison of Human Motions and Predicted Motions

To capture the features of human reaching motions, we obtained human experi-

mental data under same experiment setting described in the previous chapter. The

initial posture of the arm is given by shoulder and elbow joint values of 30◦, 100◦ re-

spectively in planar workspace. The goal points for the center-out reaching motions

are taken to be a set of 12 equally spaced points on the circle of radius 18cm and they



3.2. Radial Reaching Motions 29

are shown with blue star(*) in Figure 2.2(b). Real human hand-effector trajectories

were captured by Wiimote controller and IRED pointer shown in Figure 3.2.2.

Figure 3.4: Wiimote controller and IRED pointer

From previous chapter, we obtained the optimal feedback control policies achiev-

ing two task goals:(i) minimizing torque change and (ii) minimizing final error. For

this simulation, we set the noise parameters and weight parameters to be σ1 = σ2 = 2

and, ρ = 5e− 5.

To compare the motion resultant from human and our control laws, we try to

give same experiment set up as much as possible. The duration for each movement

is set to one second, and to make the human movement time duration constant,

we used metronome in the experiment. Experimenters do the reaching motion 4 6

times to each goal point with IRED pointer at their hand and data are captured by

wiimote controller. All the data are smoothen by cubic spline method to take out

the sensor noise and some inaccuracy of Wiimote system.
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Human

subject 1 subject 2

Human
Simulation

subject 3

Table 3.1: Hand end-effector trajectories for center-out reaching motion
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Table 3.2: Hand end-effector velocity profile for center-out reaching motion
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As shown in Table 3.1, trajectories for the reaching motion from human and our

control law seem to be similar except trajectories in the 4th quadrant. It is quite

different. One possible guess to explain this result is the human joints’ limit, which

is existent but not considered in the model used for our simulation. In Table 3.2,

both tangential velocity plot from human and our control law shows the features

of reaching motion, bell-shaped profile. Because human experiments are performed

with metronome to fix the movement time length as one second, our human result

has a halt at the initial time and final time. Except this halt and some noise, it

looks quite similar.



4
Human Arm movements and

Attention

In recent experimental studies on the the role of attention in human voluntary arm

movements [10][1], it is shown that humans have directional biases that are strongly

influenced by both the biomechanical properties of the arm and cognitive load. In

this section, we re-examine the experimental findings from our attention perspective,

to determine whether our model is appropriate to explain human attention.

4.1 Analysis on Human Experimental Data

The experimental setup is similar to that described earlier. Each human subject is

asked to repeatedly move from the center of the circle to random points distributed

uniformly along the circle, but under a range of cognitive loads (e.g. hit the name

of vegetables featured in the slide show). According to [1], clear directional biases

are observed when humans are subject to high cognitive load and we also discovered

33
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similar result from our re-examination in Figure 4.1.
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Figure 4.1: Polar histograms of strokes’ heading angle

Figure 4.1(a) shows one part of strokes data, which are collected from 26 sub-

jects(aged 20-36). We used this data after spline smoothing work to get rid of noise

and nonuniformity of time sampling. The polar histograms of strokes’ heading angle

shown in Figure 4.1 is produced by placing heading angle data into 36, 10◦ bins.

Heading angle data we used in this experiment were calculated from strokes data by

averaging the direction angle over the final half movement of each stroke. Compar-

ing Figure 4.1(b) and 4.1(c), with secondary task, we can see stronger directional

bias in the production of strokes to the direction of 45◦, 135◦, 230◦ and, 315◦. In the

findings reported in [1], subjects tend to show a dominant preferential bias for the

30◦, 60◦, and 240◦ directions, and also a slightly smaller preferential bias for the 315◦

direction. It looks slightly different but similar to the result from our experiment.

4.2 Directions of Minimal Cost Based on Human Data

To verify whether these directional biases can be explained by well known opti-

mization models, Dounskaia[1] plot following optimization index definition(4.2.1) as
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a function of heading angle. This index definition (4.2.1) suggested to be ranging

from 0 to 1 and values near 1 corresponding to the optimal value of each cost.

1− J(θ)

maxθ J(θ)
(4.2.1)

where θ is heading angle and following optimization models are used:

Joint jerk : J =
1

2

∫ tf

t0

(
d3q1
dt3

)2

+

(
d3q2
dt3

)2

dt

Torque change : J =
1

2

∫ tf

t0

‖τ̇‖2dt

Torque square sum : J =
1

2

∫ tf

t0

‖τ‖2dt

From her paper, she concluded these models can not explain the directional bias

but criteria such as interaction torque of each joint, inertial resistance and kinematic

manipulability have a significant relation with the directional bias. However, we

found that this result caused because suggested index cannot show the direction with

low cost clearly when the costs of the model are mostly distributed near minimum

value, and it is critical because the optimization costs introduced above are consist of

squared form while other criteria are consist of absolute form. To avoid this result,

we suggest following new optimization index definition (4.2.2), which also ranges

from 0 to 1 and values near 1 corresponds to the optimal value of each cost. But

this index definition can show the direction with low cost more clearly.

minθ J(θ)

J(θ)
, (4.2.2)

For the cost functions such as joint jerk, torque sum and torque change, we

calculate the optimization index(4.2.2) of each cost along the trajectory of each

stroke obtained by experimenters. And then, we plot them according to the heading

angle of stroke as shown in Figure 4.2. We also plot the cost separately for each joint,
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Figure 4.2: Optimization index plot according to the heading angle of strokes

since torque values for the shoulder joint are typically three times larger than torque

values for the elbow. This different scale of torque at each joint can ignore the cost

generated by elbow joint if we consider only sum of the values. To visualize our result,

we plot histogram in Figure 4.1(c) together. As shown in Figure 4.2, for all cases

the preferred directions for the torque and torque change integral criteria are nearly

identical and these directions with low cost of torque change and torque sum seem

to be quite similar to the preferred direction discovered in human experiment. It is

quite reasonable that the direction with minimum torque sum and torque change are

similar because both values appear to be very similar in planar motion. Especially,

cost of shoulder seems to be relevant to the directional bias in 45◦ and 135◦, and

cost of elbow seems to be relevant to the directional bias in 315◦ and, 230◦. Minor

differences in preference direction can be explained by differences in human arm

dynamics.
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4.3 Directions of Minimum Attention Functional Cost for

Various Controllers

We calculate Brockett’s attention functional cost for various controllers. Due to the

features of attention functional cost, only feedback controller can be used for this

analysis. Methodologies producing feedback control laws introduced earlier in this

thesis such as minimum attention control laws and optimal feedback control laws

associated with minimum torque change model will be used in the analysis. In addi-

tion, we will also calculate attention functional cost for minimum variance kinematic

feedback control [19], which produces human-like motion minimizing variance. For

each heading direction θ, the cost is calculated from (1.2.4), and the directional

preference index (4.2.2) is plotted.
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Figure 4.3: Indexed attention cost distribution for various control laws

The results are shown in Figure 4.3. The three control laws all produce similar

hand trajectories, but plot of attention functional cost distribution shows noticeable

differences depending on the choice of control law. Preferred directions predicted
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from minimum attention control laws are 60◦ and 250◦ and from minimum torque

change stochastic feedback control laws are 50◦ and 240◦. But this result fails to

explain preferred directions in 135◦ and, 315◦. While Figure 4.3 and 4.3(b) indicate

similar direction in the plot, Figure 4.3(c) looks different in shape. This result

seems to be caused because attention functional has partial torque change terms in

the cost while minimum variance stochastic kinematic feedback control law set its

parameters forcing to generate human-like motion. It is also interesting to observe

that the preferred directions for the minimum variance control law appear to be

similar to the experimental results reported in [1].

To conclude, we can see torque change and attention functional values seems to

have some kind of relation with human attention. Although we can not strongly

claim that torque change is more appropriate than torque sum to explain the role

of attention in human arm movement, it is the fact that minimizing torque change

generate more human-like trajectory than minimizing torque sum. And furthermore

we also compare the robustness to quantization based on the both criteria. There-

fore, according to these simulation results, we can conclude that our assumption

that minimizing torque change or attention functional is pertinent to reducing com-

plexity in control seems to be right. Clearly more careful experimental studies and

analysis are needed to draw meaningful conclusions.



5
Conclusion

In this thesis, we examine the various ways attention can be considered when gen-

erating trajectories and controlling movements. As robots being asked to perform

increasingly complex tasks, often simultaneously, it is timely to ask whether and

how robot motion planning and control laws should consider the limitations on the

available computation, communication, and memory resources. From the inspira-

tion by the way human do multi-tasking; continuously shifting their attention from

one task to another, we evaluate the control laws, in the sense of which control law

achieves the best end-point positioning accuracy when the control laws are subject

to more coarse levels of quantization.

Minimum attention control is the one of main approach that can control this

problem, so we firstly solve this optimal control problem for planar arm reaching

motion, and evaluate the control laws by checking the robustness to spatio-temporal

quantization. Compare to other control laws, we found that minimum attention

control theory produce the laws that are robust to the quantization.

In spite of their good performance in low data rate system, we recognize the
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needs of noise modeling to get reliable and effectively performing feedback term. To

solve this problem, we formulate optimal feedback control problem with these two

task goals:(i) minimizing torque change and (ii) minimizing final state error. In this

sense, minimizing torque change can be considered as a specific case of minimizing

attention functional that makes optimization problem manageable. And to get the

optimal feedback gains based on the minimum intervention principle, we solve the

problem using iterative Linear Quadratic Gaussian method [23] with modeling of

signal dependent noise in stochastic system. We also perform numerical experiments

for robotic planar arm reaching motions and show that this control law shares many

of the main features of human reaching motion, e.g., the transition from open-loop

to closed-loop control during the movement, and improved robustness to low date

rate and signal dependent noise. This approach is in fact applicable to much more

general control settings, in which multi-tasking must be performed by the system

under limited computation and communication resources.

Lastly, we try to analyze the experimental data on human arm movement. Re-

lated to the reported finding on the role of attention in directional bias for stroke

production [1], we try to explain it using various well known optimization models,

and conclude that both energy efficiency and control attention together explain some

of the directional bias.

It is hoped that the results of this thesis will offer insight on how to develop con-

trol laws for robots that require less communication and computational resources.

At the same time, some of the control laws, and more generally the methodologies

developed for quantitatively measuring the robustness of control laws to spatiotem-

poral quantization, and the amount of control attention required, can serve as a

useful tool for comparatively examining competing theories on human motor con-

trol.
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국문초록

로봇 산업이 발전함에 따라 로봇은 점점 더 복잡한 일을 수행하게 되었지만, 지금

쓰이고 있는 제어 및 동작 계획 방법들은 가용 메모리 용량 및 계산 처리 속도 내에

서 원하는 일을 수행하기에 어려움이 많다. 이에 따라 이 논문에서는 좀 더 세밀하

고 어려운 일들을 동시에 처리할 수 있는 제어기를 소개하고 이를 평가 하기 위한

방법을 제안 하였다. 사람이 동시에 여러 가지 일을 하기 위해 각각의 일에 집중을

시간에 따라 옮겨 가며 처리하는 것으로 부터 영감을 받아, 양자화 관점에서 문제

를 접근하였다.

우선 결정적 동적 시스템의 2 자유도 팔의 방사형 도달 움직임에 대한 시뮬레이

션을 시행하였으며 최소 집중 제어기가 다른 제어기에 비해 제한된 환경에서도 잘

작동하는 것을 확인하였다. 확률론적 동적 시스템의 경우 문제를 간단히 하기 위

해 집중 지수 대신에 토크 체인지를 고려하였으며 최소 간섭 원리에 따라 최적화된

피드백 항을 구하였다. 첫번째 시뮬레이션과 같은 방식으로 2 자유도 팔의 방사형

도달 움직임에 대한 시뮬레이션을 시행하였으며 낮은 정보 처리 속도 내에서 노이

즈가 모델링 되었을때 잘 작동함을 확인함 뿐만 아니라, 사람의 움직임과도 비교하

여 분석하였다. 또한 팔 동작 생성의 방향 편향성이 사람의 집중과 관련 있다는 실

험 결과를 이용하여 이 제어 기법이 사람의 집중과 연관성이 있는지에 대하여 논의

하였다.

주요어: 집중, 사람과 유사한 팔 동작, 최적 피드백 제어

학번: 2012-23185
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