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Abstract

This thesis presents an acoustic classification and multi-sensor tracking algorithm with

WSNs for multiple targets is suggested. The goal for this study is to classify and track the

traces of moving multi-targets with their acoustic characteristics and received signal strength

indicator. The thesis includes unique method to select features from the raw acoustic signal

which contains both time and frequency domain analysis. For localization, Gaussian process

based algorithm for estimating unidentified traces from received signal strength indicator is

presented. In addition, the unique method for labeling unidentified traces with appropriate

target is introduced. By using suggested algorithm, the classifier shows more accurate and

faster responding performance than the classifiers which use only frequency domain in-

put. Experimental results with show the satisfactory performance of the proposed algorithm.

keywords: multi-target tracking, acoustic classification, wireless sensor networks, SVM

classifier, Gaussian process based localization
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1
Introduction

Wireless sensor networks (WSNs) consist of small and low-power sensor nodes that collect,

process and communicate the specified physical state. The WSNs are appropriate for

monitoring environmental phenomena that are widely distributed in space and time. This

paper focuses on classification and tracking of multiple targets moving within the region of

interest where sensor nodes are deployed. Classification and tracking of multiple targets has

an important role in military applications [1], habitat monitoring [2] and traffic monitoring [3]

in surveillance system. In particular, this paper considers the acoustic signal that is widely

used for classification since it offers a rich set of features.

1.1 Literature Review

Once set of features are extracted, it can be used to classify acoustic signals by conventional

classifier such as support vector machine (SVM) [4], k nearest neighbor rule (KNN) [5],

multi-layer perceptron (MLP) [6] and artificial neural networks (ANNs) [7].

In this study, the method to extract features from the raw signal is one of the main

concerns for classification part. There are several methods to analyze the acoustic data. The
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most conventional tool of signal analysis is Fourier transform (FT). FT converts time domain

signal into constituent sinusoids of different frequencies. However, FT has a disadvantage in

that it loses the time domain information of the signal. For example, analyst cannot tell

when a particular event took place from a Fourier Spectrum. Especially for a non-stationary

signal, time domain analysis is not possible through FT.

To overcome this drawback, short time fourier transform (STFT), using a technique

called windowing, was proposed [8]. STFT maps the signal into a two-dimensional space

of time and frequency using single fixed window. STFT can be regarded as a compromise

between the time information and frequency information. It provides some information

about both time and frequency domain. However, the precision of the information is limited

by the size of the window. The size of windowing function which means length of data

sample determines whether there is good time resolution or good frequency resolution.

Good frequency resolution separates the frequency component into small pieces. Good time

resolution represents the time at which frequencies change. A wider window gives better

frequency resolution but poorer time resolution and vice versa

Wavelet transform (WT) represents the next logical step: a windowing technique with

variable size. Thus, it preserves both time and frequency information of the signal. Wavelet

techniques are successfully applied to various problems in signal and image processing.

Data compression [9], motion estimation [10], segmentation and classification [11, 12]

and denoising [13] are only some examples. It is perceived that the wavelet transform

is an important tool for analysis and processing of signals and images. In spite of its

efficient computational algorithm, the wavelet transform suffers from two disadvantages that

undermines its application for certain signal and image processing tasks [14, 15]. They are

shift sensitivity and directional selectivity. A transform is shift sensitive, if the shifting in

time. For input-signal causes an unpredictable change in transform coefficients. It has been

observed that the standard discrete wavelet transformation (DWT) is severely disadvantages

by the shift sensitivity that arises from down samplers in the DWT implementation [14, 16].

Shift sensitivity is an undesirable property because it implies that DWT coefficients fail to
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distinguish between input-signal shifts. Especially the setting that has frequent changes in

input-signal, this is crucial defect for feature data that is used to classify acoustic data.

On the other hand, the low cost sensor limits to adopt existing multi-target tracking

algorithm. First, it does not satisfy the assumption that the individual observation of the

each sensor node has information of the target directly. Based on this assumption, many

algorithms such as Gaussian mixture probabilistic hypothesis density filter [17], Markov

chain Monte Carlo data association [18] and other research [19, 20] are developed. However

these algorithms cannot be applied to the low cost sensor networks. Second, the low-cost

sensor node does not use additional hardware support. Conventional tracking algorithm

such as tome of arrival (TOA), time difference of arrival (TDOA) and angle of arrival (AOA)

need special high cost hardware [21]. For example, the radar sensor used in [22] needs much

more electrical power than small-size sensor node such as MicaZ, so the node equipped

with the radar sensor has to become huge hardware. Third, the low-cost sensor limits data

memory. Some works for target classification described in [23], [24] and [25] use fast Fourier

transformation (FFT) and image processing in order to extract feature data from raw data.

These need excessive calculation time and large data memory, which are intractable for

low-cost sensor node without additional digital signal co-processors.

A few papers adopt the low-cost sensor nodes for the multi-target tracking scenario [26]

focuses on classification of different target based on the signal characteristics of employed

sensors. [27] defines the specific areas that each specific target is potentially located. The

areas are used to classify the target via sensor fusion and approximate the locations of target

as the centers of each area. This algorithm needs exact empirical sensor modeling and the

tracking allows default error whose maximum is volume of the defined area. From there

limitations and the lack of researches, it could be claimed that simultaneous classification

and tracking of multi-target is still challengeable for low cost sensor network.

On the other hand, unlabeled data which becomes unidentified traces is not directly

obtained from the sensor measurement. It is generated from predictive target distribution

which represents the probability of predicted target locations. For instance, if interested
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locations of the targets are in two dimensional space, the predictive target distribution is

3-D distribution where a value z(x,y) on z-axis shows the probability that the targets are

located at the (x,y) point. As the representative method obtaining the predictive target

distribution, a Gaussian Process (GP) regression is used in [28]. It gives precise modeling

against noisy environment. (picture) predictive target distribution which gives information

about the predicted locations of targets in a surveillance area. As the samples for making

the predictive target distribution, we employ received signal strength indicator (RSSI) which

is nonlinear and noisy measurement. The RSSI is popular choice for the low-cost sensor

networks as in [29] [30] and [31] because most commercially available transceivers can process

the RSSI. In addition, it does not have a noticeable weak point on power consumption, cost

and size of the sensor node.

1.2 Thesis Contribution

The main purpose of this thesis is to propose classifier that includes both frequency and

time domain features and introduce labeling algorithm for the unidentified traces.

First, the thesis contains the classifier with acoustic data input and eight different classes

as output. The feature set used for classifier is consist of both frequency and time domain

which gives both accurate and time sensitive classification performance.

Second, in order to meet the requirement of the integrated classification and target

tracking, an algorithm based on estimating distance from the acoustic sensor to each target

is proposed. This is referred to as Trace Labeling in this work. The distance from the

acoustic sensor to each target is calculated from both localization results and acoustic data

modeling.

The proposed algorithm is applied to an experiment for classification and tracking of

moving one aerial and two ground vehicles. It is hard to compare with other algorithms

due to different experimental setting. Instead, I show the experimental results to verify the

accuracy and validity of an algorithm. The entire flowchart is depicted below.
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Figure 1.1: Flow chart of whole process

1.3 Thesis Outline

The structure of this paper is organized as follows. A problem formulation and experimental

setting are described in chapter 2. In chapter 3, the acoustic classification method is

introduced. The classification algorithm contains three parts: 1) feature extraction, 2)

feature reduction, 3) regressor construction. SVM regressor is considered for the classifier.

The experimental results for performance of classifier is presented at the end of the chapter.

Gaussian process based target tracking is shown in chapter 4. The Gaussian process

regression is used for estimating unidentified traces. Experimental result is also attached at

the end of the chapter. The basic concept and data processing method for trace labeling

are introduced in chapter 5. Finally, in chapter 6, conclusions are given.
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2
Experimental Setting

In this section, we describe the experimental setting with scheme for overall process. The

data process is summarized into three steps : acoustic classification, Gaussian process

based target tracking and trace labeling algorithm. Since each part has different features

and evaluation The experimental results will be presented and analysed in each chapter.

However, whole process share the experimental setting and rather be introduced once in

the beginning. In that, this chapter we describe experimental setting.

In this study, we employ a SVM training approach for multi-target classification in WSNs

and GMM for target localization. The term localization in this paper means estimating the

position of target without identification while the term target tracking includes identification

of target. The main objectives of multi-target classification and target tracking is firstly to

classify the types of targets using SVM classifier with acoustic measurement and secondly

to estimate the position of targets separately based on RSSI sensor measurements and

trace labeling algorithm. In order to validate feasibility and performance of the tracking

algorithm, we construct one scenarios as shown in Fig.2.1

In the experimental setup shown in Fig. 2.1, a total of 18 RSSI sensor nodes and two
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Figure 2.1: Experimental setup for scenario classification and tracking of three heterogeneous

targets, two ground robots and an aerial robot.

acoustic sensors are deployed in an indoor environment. All sensors lie on a flat two-

dimensional region of interest and two heterogeneous targets (a ground robot and an aerial

robot) move in the workspace.

For the experiment, each sensor node employs TinyOS with TelosB platform and

communicates using the IEEE 802.15.4 standard. Each node has a micro processor MSP430

and sensors such as received signal strength indicator (RSSI) sensors. Acoustic sensors

measure sound pressure level (SPL) and send it to the central processor (PC) using the

WiFi. As targets for classifying and tracking, we use two ground robots and one aerial

robot which are mobile robots Stella (from NTRexLAB) and a quadrotor ARdrone (from

Parrot) respectively. Although the quadrotor is loud enough to make measureable acoustic

signal, ground robots are relatively silent which makes measurement difficult. For the sake

of experimental convenience, we added acoustic signal of car and jet for two ground robots.

The artificially affixed signals are both 30 second long. In this paper, we will call three

robots as car, quadrotor and jet respectively. The true trajectories of targets are measured

by a VICON vision-based tracking system in order to validate the tracking performance.

7



3
Acoustic Classification

3.1 Problem Formulation

This subsection describes an algorithmic framework of machine learning for target classi-

fication in WSNs. Assume that the measurement differences among the acoustic sensors

is negligible in the workspace especially for the classification. Without loss of generality

we can use data measurement from the acoustic sensor 1 only for the classification. Since

there are two different robots in the workspace, four different type of classes (ground robot,

aerial robot, none of them and both of them) are available for acoustic measurement. For

the sake of convenience, let four classes : ground robot, aerial robot, none of them and

both of them, as A,B,C and D respectively. The acoustic sensor 1 measures local binary

decision variables yIJ(t) at time t, where yIJ(t) = 1 indicates class I with current situation

for I, J ∈ [A,B,C,D] and I 6= J , while yIJ(t) = −1 indicates class J. For the SVM training,

the acoustic sensor 1 should generates data in the form of input-output pairs. Considering

six types (AB, AC, AD, BC, BD and CD) of classifier, we can obtain the paired data from

the acoustic sensor 1 in the form of M1(t) =
(
x̄1(t), y

(IJ)
1 (t)

)
for k= AB, AC, AD, BC, BD
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and CD with time t. The input vector can be defined as x̄1 = (xfd1, xtd1) which xfd1 and

xtd1 represent the extracted features from frequency domain and time domain respectively.

After training with paired data, we can obtain a function fIJ(x̄1) that discriminates which

class the acoustic data measurement is more likely to be among the AB, AC, AD, BC, BD

and CD.

Suppose that there are binary decision variables yIJ for I, J ∈ [A,B,C,D] and I 6= J .

The data fusion center gathers the measured data from each sensor node and solve the

following dual form of the SVM problem for each type of classifier.

min
λi

(IJ)

1

2

∑
i,j

yi
(IJ)yj

(IJ)λi
(IJ)λj

(IJ)Φ (x̄i, x̄j)−
∑
i

λIJi (3.1)

s.t.
∑
i

λIJi y
IJ
i = 0, 0 ≤ λIJi ≤ C, i, j = 1, · · · , L , (3.2)

where,
(
x̄i, y

(IJ)
i

)
is an input-output pair, λIJi is the corresponding Lagarangian multiplier

for I, J ∈ [A,B,C,D] and I 6= J , C is a regularization constant, L is the length of training

data, and Φ (·, ·) is a kernel function to express the nonlinearity of the data distribution.

Solving the optimization problem (1) with quadratic programming, we can obtain the

discriminant function as,

fIJ(x̄) =
L∑
j=1

yj
(IJ)λj

(IJ)Φ (x̄, x̄j) + b (3.3)

and for each type of classifier such that λIJi > 0, we call the corresponding input-output

pair
(
x̄i, y

(IJ)
i

)
the support vector [32].

3.2 Methodology

Acoustic classification method consists of three stages as shown in Fig 3.1. This is the

cardinal principle and standard classification method which has already been proved as the

best classification method [33]. Selecting appropriate feature set from raw data is key issue
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Figure 3.1: Methodology of our proposed algorithm.

for accurate classification. Since the classification task is a multi-stage process, the role of

dimensionality reduction is to reserve information that is important for class distinguishing

and renounce that which is irrelevant. A classifier with fewer inputs has fewer parameters

to be determined, leading to a classifier with better generalization properties.

There are two ways to analyse acoustic signal: frequency and time domain analysis.

Since both domain analysis are complementary for each other, we select feature from both

domain for SVM inputs. The time domain analysis gives real-time information but contains

low dimension of feature set while the frequency domain analysis gives high dimension

feature space but loses real-time performance. Unlike to other feature extraction algorithm,

we construct feature set from frequency and time domain linearly. The latest technique such

as WT uses coupled feature set of time-frequency analysis which causes high computational

load and difficulties in parameter tuning.

3.3 Feature Extraction and Reduction

Since it is difficult to use raw acoustic measure directly into SVM classifier, feature extraction

and reduction process are essential. For the frequency domain analysis, we select STFT with

window size as two seconds. As this window size gets wider, the real-time performance gets

poorer. As shown in Fig. 3.2, high dimension feature space is extracted from raw acoustic

data. This STFT graph shows unique distribution with different targets. The position and

amplitude of peak point cluster varies over different target signals.

For the time domain analysis, we select Weibull likelihood function. Weibull function is

a continuous probability distribution which is widely used for indicating failure rate. The

probability density function of a Weibull random variable is: f(x;λ, k) = k
λ
(x
λ
)k−1e−(x/λ)

k

,
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Figure 3.2: Frequency domain analysis : short time Fourier transform of quadrotor sound

with window size two seconds.

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.

The Weibull likelihood function is the function that calculated the likelihood between input

signal and it’s Weibull fit function. The Weibull fit function calculate the parameter λ

and k which makes the closest Weibull distribution with respect to original signal in root

mean square error manner. As a result, Weibull likelihood function returns single scalar

value when the input signal is given. Fig. 3.3 represents Weibull likelihood of 4 different

cases versus time. As shown in figure, each Weibull likelihood result is distinguishable with

different cases. Both time and frequency domain feature space are extracted from the raw

acoustic measurement and these features from two domain of feature space are merged into

an input vector for SVM input.

Fig. 3.4 and Fig. 3.5 is the verification of feature set for 4 cases of our experimental

scenario. As shown in figure, selected feature space are suitable for classification.

When the acoustic sensor measures data, the two seconds of acoustic data is transformed
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Figure 3.3: Time domain analysis : Weibull likelihood function of 4 cases.

Figure 3.4: Segmented STFT distribution for each 4 case. There are clear differences among

the cases.

into STFT distribution. This distribution contains 51.2k feature points with 25.6kHz

range. So the STFT coefficients ci(t) are calculated at every seconds for i = 1, · · · , 25600.
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Figure 3.5: Weibull likelihood measured from two acoustic sensor for each 4 case. There are

differences among the cases.

For feature redcution, STFT values are segmented with 1kHz from 1Hz to 10kHz and

averaged with section. Therefore ten reduced feature points can be represented as following:

Ci(t) =
∑1000+1000i

j=1+1000i cj(t)/1000 for i = 0, · · · , 9. For normalizing scale of input vector, Ci(t)

are normalized. Thus segmented and normalized STFT value Cnormi(t) is represented as

following: Cnormi(t) = Ci(t)∑
Ci(t)

. Fig. 3.6 shows the raw feature set and the reduced feature

set.

Meanwhile, Weibull likelihood function is calculated with the one second of acoustic

measurement input. Therefore, Cnormi(t) for i = 1, · · · , 10 and wbl (t) are the input vector

x̄(t) for every second. For SVM training, labeled data y(IJ) are given from the user. As a

result, the input-output pair
(
x̄(t), y(IJ)(t)

)
for t = 1, · · · , L is constructed. This method of

selecting feature set is different from existing method since there is a direct time domain

feature space. Fig. 3.7 shows the difference in selecting feature set.
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Figure 3.6: The feature space of raw data has so many feature points (left), so reduction of

feature set is applied to the feature space (right).

3.4 Classification Algorithm

For accomplishing classification, SVM classifier requires two stages: training and test. In this

experimental scenario, there are three different targets which makes 23 = 8 different class

of acoustic signal. Thus the acoustic signal of each class is measured and the discriminant

function fIJ(x̄) =
∑L

j=1 yj
(IJ)λj

(IJ)Φ (x̄, x̄j)+b from the Eq. 3.3 is constructed for each (I, J)

pair for training stage. After the training stage, the classification tree can be constructed for

investigating the class of unknown acoustic measurement. Fig. 3.8 shows classification tree

for 6 types of classifiers with 4 different classes. In this experimental setting,
(
8
2

)
= 28 types

of classifiers with 8 different classes are constructed. After passing through the classification

tree, the class of unknown signal can be categorized.
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Figure 3.7: Difference between existing method and proposed method in selecting input

vector

3.5 Experimental Results

In this section, we describe the results of experimental scenario of WSNs especially for

acoustic classification part only. In this experimental scenario, three heterogeneous targets

(a car sound, a quadrotor sound and a jet sound) are deployed and turn on and off with 30

seconds of certain pattern. Fig 3.9 shows comparison of proposed classifier and existing

classifier with the regressor output as following: 1 for a car, 2 for a quadrotor and 3 for a

jet. The blue line is true scenario, the red line is proposed algorithm and the green line is

existing algorithm. Since the time domain data is selected as feature set, it shows quicker

respond through time. However, there is still some delay caused by STFT window size.

Since quicker respond leads classifier to more accurately, the classification performance
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Figure 3.8: Classification tree for 6 types of classifiers with 4 different classes.

Figure 3.9: Comparison of proposed classifier and existing classifier with the regressor

output as following: 1 for a car, 2 for a quadrotor and 3 for a jet.

is also slightly improved with proposed algorithm. Table.3.1 shows the classification succeed

rate of existing algorithm and proposed algorithm.
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Class
Existing algorithm (STFT only) Proposed algorithm (+Weibull likelihood)

Training data Test data Training data Test data

car 100 100 100 100

quad 100 86.15 100 96.87

no target 96.87 96.87 96.87 100

car+qaud 95.24 86.75 100 92.75

jet 100 100 100 100

jet+car 100 94.08 100 97.82

jet+quad 96.87 95.72 98.63 97.82

all of them 92.57 90.53 95.33 93.14

Table 3.1: Classification success rate comparison of existing algorithm and proposed algo-

rithm for 8 different classes
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4
Gaussian Process based Localization

In this section, we describe the localization algorithm with Gaussian process. As the samples

for constructing the predictive target distribution, we employ RSSI sensor which is nonlinear

and noisy measurement. To overcome the nonlinearity and noise, probability based approach

is applied for estimation. The goal for this part is to estimate the traces of multi-targets

moving in the region of interest.

4.1 Problem Formulation

This subsection briefly describes the method for constructing predictive target distribution.

In a RSSI-based aproach, the signal strength emitted by targets is measured by several

distributed sensors near the target. With the assumption that the location of sensor nodes

are known, these measurements are processed into 3-D distribution which represents the

probability of the predicted target locations. Let this distribution as predictive target

distribution.

In order to construct the predictive target distribution, we use radial basis function (RBF)

based approximation. Let N units of RSSI sensors measures RSS signal from target and the

18



true target position as X = [x, y]T ∈ R2, position of ith sensor node as Si = [si1, si2]
T ∈ R2 ,

measurement of ith sensor as yi ∈ R and yRi is the true RSS signal. Then RSS measurement

can be represented as following:

yi = yRi + vi = p0 − 10α log(‖ X − Si ‖ + vi) (4.1)

p0 means free-space Friis model [34] constant which is RSS measurement at the unit reference

distance. α is path loss exponent constant and vi is the Gaussian measurement noise.

Let the position and measurement vector of sensor nodes as S̄ = [S1, · · · , SN ] , Y =

YR + V = [yR1, · · · , yRN ] + [vR1, · · · , vRN ]. The RSSI sensor measurement with noise can

be represent as following equation.

Y ∼ N(YR, K(S̄, S̄) + σ2In×n), (4.2)

where Y is the measured RSSI sensor data, K(S̄, S̄) is the kernel function matrix with (i, j)th

element is k(s̄i, s̄j). In this paper, kernel function is defined as k(s̄i, s̄j) = θ1exp(
−‖si−sj‖2

2θ2
).

The parameter θ1, θ2 are estimated with maximum likelihood using conjugate gradient

method. Note that this kernel function is different kernel function from SVM dual problem.

Through the Gaussian Process Regression, with the X which is the position of target, the

expected RSS measurement and the standard variation can be calculated. Figure 4.1 is the

example for 3-D distribution of predicted location of the targets.

4.2 Gaussian Process Regression

In order to make the predictive target distribution described in section 4.1, we utilize

RBF based approximation. As the representitive method obtaining the predicted target

distribution, a Gaussian process regression works well in modeling environmental information

described in [35]. Derived from equation. 4.2, expected RSS intensity ŷ (X) and it’s variance

σ2
gp (X) of unknown target position X is represented as following :

ŷ (X) = K
(
X, S̄

)T
(K(S̄, S̄) + σ2In×n)

−1
Y (4.3)
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Figure 4.1: The 3-D distribution using the radial basis function (RBF) based approximation.

In this distribution, higher value on z-axis represents higher probability of the predicted

locations of the targets.

σ2
gp (X) = K

(
X, S̄

)T
(K(S̄, S̄) + σ2In×n)

−1
K
(
X, S̄

)
, (4.4)

where position and measurement vector of sensor nodes as S̄ = [S1, · · · , SN ] , Y = YR+V =

[yR1, · · · , yRN ] + [vR1, · · · , vRN ], K(S̄, S̄) is the kernel function matrix with (i, j)th element

is k(s̄i, s̄j). In this paper, kernel function is defined as k(s̄i, s̄j) = θ1exp(
−‖si−sj‖2

2θ2
). Using

RSS measurement, the 3-D distribution of targets are predicted. Fig. 4.1 shows two peaks

of target distribution. These peaks can be regarded as the estimated position of each target.

4.3 Experimental Results

In this subsection, localization result of experimental scenario described in Sec. 4.2 is

presented. In this experimental scenario, we deal with multi-target tracking problem in a

2-dimensional workspace W = [(x1, x2)| − 250cm ≤ x1 ≤ 250cm,−250cm ≤ x2 ≤ 250cm].

Fig. 4.2 shows the localization results. Dashed lines are estimated position of each target

and solid lines are true position measured from VICON. Purple dots are the acoustic sensor
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Figure 4.2: Localization results for three moving targets: car, quadrotor and jet. Purple

dots are the acoustic sensor and green dots are the RSSI sensors.

and green dots are the RSSI sensors. Although there is no labels for traces in this steps, we

colored the traces with appropriate target for the convenience in visualization manner.

The calculated average root mean-squared error (RMSE) of the ground vehicle is 20.38cm

and 34.72 for aerial vehicle. We infer that the moving speed and dynamics of the two targets

causes the difference in RMSE. Since the aerial vehicle moves faster and noisier than the

ground robot, the RMSE of aerial vehicle is slightly larger than ground vehicle.
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5
Data Integration with Trace Labeling

In this section, we suggest the trace labeling algorithm that designates the unidentified

traces with the relevant targets. The goal of this part is that identify the traces by

comparing distance from acoustic sensor to each target. The time series of distance data

from localization part and acoustic modelling part can be compared with convolution

method. In order to meet the requirement of the integrated target tracking, the labeling

process should not be post-processing. However, smaller window size of distance data makes

lower labeling performance accuracy. Therefore, there is a compromise in labeling accuracy

and time delay.

5.1 Problem Formulation

For the last part of multi-target tracking, we introduce trace labeling as matching algorithm.

The trace labeling is the process that labels the unidentified traces from localization part to

the appropriate targets. Since each target makes certain trace and it’s own acoustic signature,

it is possible to designate the traces with the relevant targets. After the localization part, the

estimated traces are given but they are unidentified. With the assumption that the position
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of acoustic sensors is known, we can calculate the distance between target and acoustic

sensors for each target. However, there is no information about the identification of targets

in this step. Thus, we suggest temporal labeling such as target a,b and c instead of target

1,2 and 3 which represent ground robot 1, aerial robot and ground robot 2 respectively.

Then the distance between a target and jth acoustic sensor at time t can be defined as

Daj(t) and same form for other targets. On the other hand, the we can also calculate the

fractional ratio of each target from acoustic measurement. With the assumptions that the

acoustic signal has linearly additive property, region of interest is small enough to make

TDOA as zero and the effect of reverberation is negligible, the acoustic measurement can

be present as analytic model.

Xj(t) =
n∑
i=1

aij
r2ij(t)

Si(t) (5.1)

Eq. 5.1 is the acoustic measurement model with fractional ratio where Xj(t) means acoustic

measurement of jth acoustic sensor at time t. aij means acoustic constant for ith target at

jth acoustic sensor. rij(t) is the distance between ith target and jth acoustic sensor at time t.

Si(t) is the acoustic data sample of ith target which is consist of acoustic data of ith target

with the 1 second length. The acoustic data sample is prepared before the test scenario

by acoustic recording. In this scenario, there are two acoustic sensors and three targets.

Therefore i varies from 1 to 3 and j varies from 1 to 2.

After solving the Eq. 5.1, rij(t), the distance between ith target and jth acoustic sensor at

time t can be calculated. In this time, we know the target identification with the estimated

distance from the sensor. Let the distance between ith target and jth acoustic sensor at

time t as Dij(t). Then it is possible to compare Daj(t), Dbj(t) and Dcj(t) with Dij(t) for i

= 1,2,3. After the comparison, we can finally match the unidentified traces with relevant

target identification.
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Figure 5.1: Mean and variance of car sound pressure level versus distance from the sound

source.

5.2 Acoustic Signal Modeling

With the assumptions that the acoustic signal has superpositive property, workspace is

small enough to make TDOA as almost zero and the effect of reverberation is negliable,

the acoustic signal measurement can be modelled as Xj(t) =
∑n

i=1
aij
r2ij(t)

Si(t) (Eq. 5.1). The

acoustic data sample of each target Si(t) from Eq. 5.1 is secured when the training for

acoustic classification is done. In the acoustic model, each signal component follows inverse

square law which means the intensity of signal is inversely proportional to the square of the

distance from the source. For the short range of distance, the inverse square property is

roughly effective. After investigating simple experiment which moves single target from 1m

to 3m, we obtain Fig. 5.1, 5.2and 5.3. The figures show mean and variance of sound pressure

level (SPL) for each target versus distance from the source with inverse square fitting. SPL

constant aij from Eq. 5.1 are also calculated with the experiment. Equivalent amount of

95.2 dB, 97.4 dB and 88.4 dB of SPL are estimated as a11,a21 and a31 respectively.
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Figure 5.2: Mean and variance of quadrotor sound pressure level versus distance from the

sound source.

Figure 5.3: Mean and variance of jet sound pressure level versus distance from the sound

source.

5.3 Acoustic Data Sampling

Since the raw acoustic signal changes over time very frequently, some transformation is

required to process acoustic signal. One way to transform acoustic data is FT which makes
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the raw signal relatively static data. Apply Fourier transfromation to Eq. 5.1 for each side

of equation, we obtained the coefficient equation as following:

Cj(t) =
n∑
i=1

aij
r2ij(t)

Di(t), (5.2)

where, Cj(t) =


cj1(t)

· · ·

cjn(t)

 = FT (Xj(t)), Di(t) =


di1(t)

· · ·

din(t)

 = FT (Si(t)), and n is half of

sampling frequency which is equivalent to 25600/s.

Since this FT coefficient matrix Cj(t) = is calculated every one second, feature reduction

is required in this part too. To reduce computational cost, we downsampled FT coefficient

from 25600 to 256. Same method as feature reduction in classification part is applied:

segmentation and normalization. Fig. 5.4 shows the original and reduced FT distribution of

car sound sample. In the same way, acoustic data sample of quadrotor and jet are prepared.

Fig. 5.5 and 5.6 shows reduced FT distribution of quadrotor and jet respectively.

5.4 Trace Labeling

For each acoustic sensor j, every time t Eq. 5.2 becomes systems of 256 linear equations

with 3 variables 1
r2ij(t)

for i = 1, 2 and 3. Solving the systems of linear equation by least

square method, we can estimated the distance between the acoustic sensor and the each

target for every time t. Fig. 5.8 shows estimated fraction of each acoustic signal within

experimental scenario described in Sec. 4.2. and Fig. 5.9 shows estimated distance from

acoustic sensor to each target. Dashed lines are estimated position of each target from

acoustic analysis and solid lines are estimated position calculated from localization part.

Although there is no labels for traces from localization in this steps, we colored the traces

with appropriate target for the convenience in visualization manner.

On the other hand, with the assumption that position of every sensor node is known,

the distance from acoustic sensor 1 to each target can be calculated by using localization
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Figure 5.4: Original and downsampled FT distribution. Original FT has 25600 feature

points while reduced FT has onl 256 feature points

results. Fig. 5.7 shows the estimated distance from acoustic sensor 1 to each target.

There are two sets of three signals for each part. For localization part, let the distance

between ith target and 1st acoustic sensor at time t as Di1(t). Then it is possible to compare

Dcar1(t), Dquad1(t) and Djet1(t) with Di1(t) for i = 1,2,3. Since only one to one corresponding

relation is possible for this comparison, six combinations are possible:

The average cross correlation computed from each pair, [Dcar1(t), D11(t)], [Dquad1(t), D21(t)], [Djet1(t), D31(t)]
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Figure 5.5: Downsampled FT distribution of quadrotor sound.

Figure 5.6: Downsampled FT distribution of jet sound.

is highest for the first combination which is correct answer. Therefore the trace labeling

algortihm is validated with experimental scenario. After calculating maximum correlation

value between distance estimation, the results indicates the appropriate target accurately.

However this is the post-processing with whole size window which is not suitable for real-time

application. By calculating the labeling accuracy versus correlation window size, we get

obtain this Fig. 5.10. From this graph, it is inferred that 10 seconds of window size is
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Figure 5.7: Calculated distance from acoustic sensor 1 to each target using localization

results.

Figure 5.8: Estimated fractional ratio of each acoustic signal within experimental scenario.

enough for successful labeling.
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combination mean cross-correlation

[Dcar1(t), D11(t)], [Dquad1(t), D21(t)], [Djet1(t), D31(t)] 0.978

[Dcar1(t), D11(t)], [Dquad1(t), D31(t)], [Djet1(t), D21(t)] 0.921

[Dcar1(t), D21(t)], [Dquad1(t), D11(t)], [Djet1(t), D31(t)] 0.899

[Dcar1(t), D21(t)], [Dquad1(t), D31(t)], [Djet1(t), D11(t)] 0.895

[Dcar1(t), D31(t)], [Dquad1(t), D21(t)], [Djet1(t), D11(t)] 0.903

[Dcar1(t), D31(t)], [Dquad1(t), D11(t)], [Djet1(t), D21(t)] 0.956

Table 5.1: The average cross correlation computed from each pair is highest for the first

combination.

Figure 5.9: Estimated distance from acoustic sensor 1 to each target. .
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Figure 5.10: Labeling accuracy versus window size.
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6
Conclusion

In this thesis, acoustic classification and multi-sensor tracking algorithm with WSNs for

multiple targets is suggested. The classifier with both time and frequency domain input for

SVM classier makes not only more accurate but also faster response classification performance

than classifier which uses only frequency domain input. Also, the labeling algorithm which

matches unidentified traces into appropriate target is described. Trace labeling algorithm

works well with a certain range of correlation window size. The experimental results show

satisfactory classification and tracking performance with three heterogeneous moving targets.
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국 문 초 록

본 논문에서는 무선 센서 네트워크를 이용한 다중 물체의 음향을 통한

분류와 다중 센서 위치 추정 알고리즘 연구를 수행하였다. 다중 물체

가 고유한 음향 신호를 내보내며 이동하는 상황에서 물체들의 종류와

그 위치를 추정해 내는 것이 그 목표이다. 음향 분류을 위한 전 과정

으로 측정된 음향 정보로부터 주파수 영역과 시간 영역의 특징점을 추

출하였으며 이를 통하여 차후 분류을 위해 필요한 훈련 데이터를 생성

하였다. 기존의 음향 분류기와 제안된 분류 알고리즘의 차이는 주파수

영역 정보만을 사용한 것이 아닌 시간 영역 정보와 주파수 영역 정보

를 동시에 사용한 특징점 추출 기법이다. 이를 통해 기존의 주파수 영

역 정보만을 사용한 분류기보다 더 정확하고 시간 응답이 빠른 분류기

를 구성하였다. 가우시안 과정을 이용한 위치 추정기법을 통해 식별되

지 않은 다중 물체의 위치를 추정하였다. 최종적으로 식별되지 않는

물체의 위치 정보와 실제 물체를 연결시키는 식별 알고리즘을 제안하

였다. 실험결과를 통해 분류 성능과 위치추정 및 식별 성능이 성공적

으로 검증되었다.

주요어 : 다중 물체 위치 추정, 음향을 이용한 식별기법, 무선 센서

네트워크, SVM 분류기, 가우시안 프로세스 위치 추정

학 번 : 2013-20701
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