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Abstract

Development of Point Generation

Technique for a Meshless Method
Jae Sang Rhee
School of Mechanical and Aerospace Engineering

The Graduate School

This study aims to develop meshless point generation technique which can be applied
to complicated geometry or moving boundary. Unlike the conventional finite volume
method, meshless method requires only point system as a computational domain. Therefore
Generation of computational domain is relatively easier than conventional FVM.

In this study, meshless point generation technique is developed. For the validation, the
results obtained from the meshless method were compared with the results obtained from
the conventional FVM. Practical models, such as Space shuttle or Missile, were selected as
a validation model.

For the steady calculation, governing equation is Euler equation. And for the unsteady
calculation, Euler equation in Arbitrary Lagrangian Eulerian form is selected as governing
equation

Meshless method developed by Huh is used for a flow solver. In both meshless method



and FVM, AUSMPW+ was used for numerical flux scheme, minmod limiter was used for
limiting process and LU-SGS was used for time integration.
From the results, the robustness and the accuracy of meshless point generation

technique are verified.

Keywords : Meshless method, Gridless method, Point generation technique, Moving
boundary

Student Number ; 2014 — 20671



Table of Contents

Chapter 1. INTrOdUCTION ......c.ooiiiiiieie e 1
1.1 MeShless MEtNOd..........ccvoiiiiiiiieeeee e 1
1.2 IMOTIVALION ... 1

Chapter 2. Point generation teChNIQUE.........c.cccevieiii e 3
2.1 MesShIess POINt SYSTEM.......ccviiiiiecicie e enes 3
2.2 Near surface POINt SYSEEM ........ccooiiirirerieieeeise e 4
2.3 Background point SYSIEM .......c.cieiiiiiiieie et 4
2.4 L.0Cal POINES ClOUT ........oiiiiieiieic e 7
2.5 Moving principle of POINtS........ccccvie i 10

Chapter 3. Numerical Method ..........c..cccooiiii e 17
3.1 GOoVerning EQUALION ........c.ccceiviieiiiiie e 17
3.2 Least SqQuare MetOd...........coveviiriiiieieeee s 19
3.3 Spatial DiSCretization ..........ccccvevveiiiieicie e e 21
3.4 TIME INTEGIatiON ..o 25
3.5 Dual-time stepping for meshless method ..........cccccoovveve i, 26

iii 2] o



Chapter 4. Numerical ANalYSiS........c.cccviveieiiiieie st 27

4.1 Steady ProbIEMS ......cc.oiiiiieiiie e 27
4.2 Unsteady ProbIEMS ........cciviiiiiiicc e 39
Chapter 5. CONCIUSIONS .......coiiiiiiieieeee e 42
Chapter 6. REFEFENCES .......cviiviiiccece e e 43
T B s 45
\Y% ’J“:E f F r]



List of Figures

Figure 1 Grid system Of X-51 SCramjet........cccccvreiriiriinine e 2
Figure 2 X-51 scramjet with a Pegasus DOOSEEN ..........ccvvveieeie v 2
Figure 3 comparison of unstructured grid and meshless points .............c.cccccvvennen. 2
Figure 4 the near surface point SYStEM .......cccccveieiiiiiiir s 3
Figure 5 the background point SYSIEM .........cccoeiiiiiiiiiiiie e 3
Figure 6 the three dimensional near surface point System ...........ccccccevvevicvinnnnns 5
Figure 7 the three dimensional meshless point SYStem ...........ccoccovvviiiincicnienen, 6
Figure 8 the two dimensional meshless point SYStem .........cccccvevivevievievicninnnnns 6
Figure 9 two dimensional cloud Shape ..........ccccveiiiiiiicie e 8
Figure 10 face splitting 0N CUDE .......cocvviiiiiceee e 9
Figure 11 divided regION ......ccooiiiiiiiiiie e 9
Figure 12 initial point SYSEM .......cccviiieiiccec e 10
Figure 13 overlapping and VACANCY..........ccceruerieirinisiiniesie e 11
Figure 14 regenerated point SYSIEM .......cccviviiiiiiiieeie e 11
Figure 15 outmost points of the near surface point System..........ccccceevvvvvvnennne 13
Figure 16 newly included points (green points)........cccccevveeviveviesiesieeseesnesenenns 13
Figure 17 neighboring point of the overlapped points ..........cccoceveivriirienineniene 14

Figure 18 indicating the candidates of local point cloud (near surface point) ....16

Figure 19 indicating the candidates of local point cloud (background point).....16


file:///E:/2015meshless/Master_thesis/석사논문/Mater_thesis_v6.docx%23_Toc441015561
file:///E:/2015meshless/Master_thesis/석사논문/Mater_thesis_v6.docx%23_Toc441015562
file:///E:/2015meshless/Master_thesis/석사논문/Mater_thesis_v6.docx%23_Toc441015563
file:///E:/2015meshless/Master_thesis/석사논문/Mater_thesis_v6.docx%23_Toc441015565
file:///E:/2015meshless/Master_thesis/석사논문/Mater_thesis_v6.docx%23_Toc441015566
file:///E:/2015meshless/Master_thesis/석사논문/Mater_thesis_v6.docx%23_Toc441015572

Figure 20 illustration of mid-point value on the edge connecting nodes i and j .23

Figure 21 minmod limiter for the meshless method.............ccccooeiiiiiiiiiicnnn 24
Figure 22 meshless point system (Space Shuttle) .........ccccccevvevieiiiiieccecnecci, 28
Figure 23 structured grid (Space ShULLIE) ..........covvriiiiiiiieee 28
Figure 24 meshless result With MPS ... 29
Figure 25 FVM result With SG.........ccoiiiiiiiii e 30
Figure 26 FVM result With SGP ... 30

Figure 27 the comparison of the results on the same computational
domain( Left : meshless, Right : FVM ) ..o 31

Figure 28 the comparison of the meshless results on the different computational

domain( Left : SGP, Right : MPS ).....ccooiiiiiicsc e 32
Figure 29 the comparison of pressure COeffiCient ..........cccoocvveveiiiniiininen 32
Figure 30 the configuration of NASATM X 2059 ......ccccoeviivievin e, 34
Figure 31 the twenty-degree conical NOZzle............ccocviiiiiiiiiie 34
Figure 32 the modified NASATM X 2059.......ccccoiiiiiiieiiin i 35
Figure 33 the computational domain for the second validation ...............cc.cc...... 36
Figure 34 pressure CONtOUr ((Y=0 ) ...cccieiriiiiiiesie e see e ee e 37
Figure 35 heat of ratio cONtOUr (Y=0 ) ....cocerveririiiiiiire e 37
Figure 36 CONVEIgeNnCe NISTOMY .....cccuvcieeiiciic e 38
Figure 37 the comparison of the pressure coefficient ...........cccocevviviiiniiennn 40
Figure 38 the comparison of the density CONtOUT .............coooveiiieiieii e, 41

vi 2



List of Tables

Table 1 the flow conditions (Space shuttle reentry) .......cccccocevvevieniii v, 27
Table 2 the comparison of the aerodynamic coefficients ...........ccccovevviniienens 33
Table 3 flow conditions ( the modified NACATM X 2059) ......c.ccccvvvvveevinenne. 35
Table 4 the outline of the unsteady problem (moving sphere) ..........ccccocvvnenn. 39
vii 21 2 11



Chapter 1. Introduction

1.1 Meshless method

A meshless method is a newly suggested computational fluid dynamics (CFD)
algorithm in recent year. This method requires only neighboring points of each point which
is called local points cloud without using the concept of mesh. Generally, the conventional
finite volume method requires a large amount of time for generating mesh for a complex
geometry. Therefore it is less restrictive when generating the computational domain for a
complicated or moving geometry than mesh based methods.

1.2 Motivation

A meshless method was introduced in 1977 at first. Since then, a variety of Meshless
algorithms have been studied by former researchers. Since 2000, meshless algorithms
which analyze compressible flow using moving least square method (LSM) have been
developed by Katz (2009) [1] respectively and so on.

The ultimate goal of meshless method is to analyze the unsteady compressible flow
around multi-bodies which consider 6-DOF (Degree of Freedom) motion. However the
previous researchers did not consider all kind of moving such as 6-DOF motion. As part of
the development of the ultimate point generation technique, point generation technique for
one body which has complicated geometry was developed in this study. Validation models
are Space shuttle, NASA X TM2059, moving cylinder and moving sphere. Numerical
analysis on the flow around those models are carried out using meshless solver developed

by Huh [2], [4]. And those results are compared with the structured finite volume method



for validation. In both methods, AUSMPW+, minmod limiter, and LU-SGS are used

Figure 1 Grid system of X-51 Figure 2 X-51 scramjet with a Pegasus booster

scramjet

Figure 3 comparison of unstructured grid and meshless points



Chapter 2. Point generation technique

2.1 Meshless point system
The meshless point system consists of two point systems. The first is the near surface
point system, and the other is the background point system. The near surface point system
is used for boundary layer. Therefore, it is generated along the surface, as shown in Figure

4.

Figure 4 the near surface point system
On the other hand, the background point system is generated outside the near surface

point system. And it is created from the Cartesian grid point. As shown in Figure 5

Figure 5 the background point system



2.2 Near surface point system

As explained in chapter 2.1, near surface point system is used to enhance the accuracy
of calculation in the boundary layer. In this study, the near surface point system is generated
along the Electric field line from the surface. The E-field line is easily computed using

surface mesh information using Coulomb’s law. It is shown in Eq. (1)

kj
Eyi= Z —3 (X5, — x;)
j dz
kj
Ey; = Z —S s — Vi)
j dz2
kj
E,i= Z —= (25— 2) (1)
j dz

INEq. (1), Ex;, Ey;, E; areX,y,zcomponent of the electric field at point i which
is located outside the surface, xg;, ys;, zs; are X, Yy, z-coordinate of the surface mesh
point which has index j. And x;, y;, z; are X, Y, z-coordinate of the point i, d is the
distance between point i and j,and k; is the constant which is determined by users. The
electric field line can be obtained by Eq. (1). Figure 6 shows the generated three
dimensional near surface point system of the concave-shaped object.

2.3 Background point system

The background point system is generated from the Cartesian grid point. In order to
generate the background point system, three input values are needed in each X, y, z direction.
The first is interval of point, the second is coordinate of initial point, and the last is the
number of points. From these input values, the coordinates of the background point can be

derived, as shown in Eq. (2).



Xijk =Xmi + (@ —DAx, (A <i< Ny)

Yijk = Yimi + (= DAy, (1 <j< Ny
Zijk = Zimi + (k= 1Az,  (1<k<N,) )

In Eq. (2), Ax, Ay Az denote the interval of point, Ny, N,, N, are the number of
points, and X;n;, Yini» Zini are the coordinates of the initial point. Among the background
points, the points which are located in the near surface point system are excluded from the

calculation. The total point system is shown in both Figure 7 and Figure 8.
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Figure 6 the three dimensional near surface point system



Figure 7 the three dimensional meshless point system




2.4 Local points cloud
Most of computational methods, including finite element method (FEM), finite
difference methods (FDM), and finite volume method (FEM), depend on the interlaced
grids or finite volumes. In order to discretize PDE, every point require the set of
neighboring points not the grid information in meshless scheme. The set of neighboring
points is called local points cloud. For the accuracy, the robustness, and the efficiency,
appropriate composition of local points cloud is critical. In this paper, the strategy of
generation of local points cloud is proposed. The strategy is shown as follows.
2.4.1 Two dimensional local points cloud
In two dimensional space, total 8 points to be chosen for the local points cloud. The
criterion for composing the local points cloud is as follows.
® Find the closest point of the central point.
® Divide the region into eight sector equally, which the line between the central point
and the closest point is the bisecting line of angle of the sector. As shown in Figure
9.
® Within each sector, the closest point is selected as a point of local cloud.
2.4.2. Three dimensional local points cloud
In three dimensional space, total 18 points constitute the local points cloud. the
criterion for composing the local points cloud is as follows.
®  Generate virtual cube which has a point as a center.
® Draw square, consist of internal division point between center point and vertex on

the face, on each face as show in Figure 10.



Connect every vertex on the bigger square and the corresponding vertex on the little
one

Then, every face will be split into the five polygon, one square, and four trapezoids.
If the ratio of internal divisionis a:b = (v/5 + 2)/2 (golden ratio), 18 zones which
have same are generated, as shown in Figure 11. The same zone is denoted as same
color.

Find the closest point in each zone, these points constitute the local points cloud.

Figure 9 two dimensional cloud shape



Figure 10 face splitting on cube

Figure 11 divided region




2.5 Moving principle of points
2.5.1 Moving methodology
When the object moves, the near surface point system moves with same speed of
object. On the other hand, the background point system is fixed. Therefore, the near surface
point system and the background point system are overlapped, as shown in Figure 13. The
overlapped background points must be eliminated for the computation. For the better
computational speed, the background point system change their state when the point moves,
not being eliminated in this study. For example, when a background point is overlapped,
the point is set to ‘OFF’. They can be seen as the red points in Figure 12. Then the point
become non-overlapped, the point is set to ‘ON’. They also can be seen as the green points

in Figure 13. Figure 13 Shows the regenerated point system for the next physical time step

Figure 12 initial point system

10 F



Figure 13 overlapping and vacancy

Figure 14 regenerated point system
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2.5.2 Sorting point for local point cloud
After the regeneration of the point system, points should constitute their own local
points cloud again. However, to constitute local points cloud for all points consumes a lot
of time. Therefore, points which constitute new local points cloud unconditionally should
be sorted. Except those points, they use their old local points cloud. The sorting strategy is
as follows.
® The outmost points of the near surface point system
The outmost points of the near surface point system move with the object. The
neighboring points of these points change when the object moves, because the background
points are fixed. It is shown in the Figure 15.
® The newly included points due to the movement of the object
As shown in Figure 14, when the object moves, the background points are generated.
These points was ‘OFF’ in the previous physical time step. They don’t have local point
cloud. Consequently, these points constitute local point cloud.
® The neighboring points of ‘OFF’ state points
In Figure 13, the overlapped points are denoted as red color. Because those points are
excluded from the computational domain, a point which uses those points as a local point
cloud lose their connectivity. Therefore, these points should constitute the local point cloud

again.

12 F
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Figure 15 outmost points of the near surface point system
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Figure 17 neighboring point of the overlapped points
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2.5.2 Strategy : rapid generation of new local point cloud
When a point searching their new local point cloud, to search point for all domain is
not desirable. In order to decrease the time for searching, two strategies are established. The
first is for the outmost points of the near surface point system, and the other is for the
background point system. Methodology is as follows.
®  QOutmost points
The outmost points have their own block information. Block information means that
Cartesian ‘I’ and ‘J’ index of the background point which exists upper-left corner to the
outmost point and this point called ‘background block point’. Additionally, the background
number of the background block point is required. This number is called ‘N’. These are
shown in the Figure 18. Using given information, the existing background points which
have Cartesian index ‘I’ or ‘I+1” or ‘I-1°, and index ‘J’ or ‘J+1’ or ‘J-1" are the candidates
of local point cloud. Then, in the old local point cloud, the point which is the near surface
point is used again. It is denoted as color dot in Figure 18.
® Background points
Using Cartesian ‘T" and ‘J” index of the background point, the existing background
points which have Cartesian index ‘I’ or ‘I+1” or ‘I-1’, and index ‘J’ or ‘J+1” or ‘J-1" are the
candidates of local point cloud. Then the outmost points of the near surface point system

are selected for candidate. It is shown in Figure 19

15 3] & 1



B : Background

@ : Near Surface

Figure 18 indicating the candidates of local point cloud (near surface point)

|

|

! |

I BOER , ’

I . |: . ,/ 4 .

| I '0._‘0',/ ,/ .

1 I

I : //. // .

I ] : // e

Lm— s 7 @ B : Background
,

- @ : Near surface

Figure 19 indicating the candidates of local point cloud (background point)

16 : fﬁ i



Chapter 3. Numerical Method

3.1 Governing Equation
3.1.1 Euler equation
For a non-equilibrium and inviscid gas, the governing equation is a three-dimensional

Euler equation which considering species continuity and vibrational energy equation. The

equation is as follows.

oU OF 0G  OH _

ot "ax Ty T 0 ©)
Where,
p 7 i pu
pu pu’ +p
pv puv
pw puw
Pi pil
Z Pevibi] Z Peyip,iU|
pv - pw
puv puw 0
pv? +p pvw 8
pwv pw? +p 0
G=| E+pw |[H=|E+pw [S=| , | @
piv piw sl
. . W
Z Peyip,iV | z Peyip,iV | 2 vib,i |

S is source term that includes W; in the species continuity equations and Wy in

the vibrational energy equation which are calculates according to Ref. [6] and [7].

17 F



3.1.2. Euler egation in Arbitrary Lagrangian Eulerian form

An appropriate choice of kinematic description is primarily important consideration
when simulating unsteady problems. However, purely Lagrangian and purely Eulerian
descriptions have demerits, a technique, combining the best features of both descriptions,
has been developed. Such a technique is called Arbitrary Lagrangian Eulerian (ALE)
description. In Lagrangian description, the computational nodes are moved with the
continuum. Then, in Eulerian description, the computational nodes are held in fixed. On the
other hand, in ALE description, the computational nodes are moved with arbitrary speed

[8]. And Euler equation in ALE form is shown as follows.
oU OoF 0G OH _ S

sttt oyt T )
Where,
[P pu—>
Ipu pu(u—1)+p
U=lpvl, F=| pv(u-1a) |,
[pWJ pw(u — 1)
E E(u—1) + pu
[ Pv=D0) ] [ P(w—w)
| pu(v—-7) | | pu(w—w) |
G= |pvw—D)+p|,H=| prv(w—-w) | (6)
[ pw(v — D) pw(w — W) +p
E(w—19)+pv E(w—w)+pw

In Eq. (6), G, ¥, W denote the velocity component of points X, y, z direction

respectively.

18 F



3.2 Least square method
In the meshless method, least square method based on Taylor series expansion has
been used to discretize PDE. Given a function ¢(x) with x = (x,y,z) inthree dimension,

the Taylor expansion from the point cloud center (xq,yq,Zo) 1S denoted as

$(x,y,7) = Ax y f’¢a<yyo) A a¢a(ZzO)

ad’a(x‘)) +A +0(2) )

The least square method with weighted function may be expressed as follows.

n

2
min Y v, [A%j 0800, 0900) _, 09(o)

£ dx dy 0z (®)
=1

0

2 D0~ $0) )

7

dp

ay ~ j boj(¢; — ¢o) (10)

0

6_(5 ~ Z Coj(Pj — do) (11)

j
In Eq. (8), j is an index of point in the local point cloud and n is the number of points

in the cloud.

In a three dimensional case, the matrix equation which derives least square coefficient

aj, boj, Coj Is as follows.

AX = B (12)
Where,
X" = [ay, by, ¢, ] (13)
JwAx?  SwlAxAy YwAxAz
A= |Zwlxdy ZwAy? ZwlyAz (14)

SwlxlAz Zwldyldz ZwAz?
BT = [ZwlAxAp, EwlAyAp, SwlAzAp] (15)

19 1] .



Solving Eq. (12), the solution is as follows.
_ M Z wAxAg + wAyAp + Z wAzAp
=4 |A| IAI

M21Z
wAxA + Za)A A + ZwAZA
b= Ta] Tl yee |A| ¢

31 32
=— AxA —z AyA ZAA
Ck |A|wa(p+|A| wyg0+|A| WAZAQ

Where

|A| = Z wAx? Z wAy? Z w Az?

O wAxAz)? C wAxAy)?  wAyAz)?

B Y wAx? Y wAz? B Y wAy? Y, wAx? - Y wAz? Y, wAy?

2[2 waAyz wAyAz Z wAxAz]
2
My, = Z wAy? z wAz? — (Z a)AyAz)
M, = Z wAxAz Z wAyAz — z wAxAy Z wAz?
M;; = Z wAxAy Z wAyAz — Z wAxAz Z wlAy?
My, = Z a)AyAzz wAxAz — Z waAyZ wAz?
M,, = 2 wAx? Z wlAz? — Z a)AxAz)
My3 = Z a)AxAZZ wAxAy — Z a)AyAZZ wAx?
Ms, = Z waAyZ wAyAz — Z wAxAz Z wAy?
Ms, = Z wAxAy Z wAxAz — Z wAyAz Z wAx?
2
Mg; = Z wAx? Z wlAy? — (z a)AxAy)

20

(16)

17)

(18)

(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)

(28)



3.3 Spatial Discretization
3.3.1 AUSMPW+ for meshless method
The AUSMPW+ scheme [9] is used for chemically reactive flow, i.e. equilibrium and
non-equilibrium flow.
The main feature of AUSMPWH+ is to remove oscillations of AUSM+ near wall or
across a strong while maintain the accuracy of the original scheme. In this study,
AUSMPW+ modified for the meshless scheme is used. Ignoring source term and three

dimensional term, Eq. (3) can be simply expressed as

n n n
aU;
j=1 j=1 j=1
Then,
n
U,
]:

In Eq. (30), F = af + bg is a directed flux along the metric weight vector (a,b).
Because AUSMPW+ scheme uses mid flux at j+1/2 instead of the flux at j, Eqg. (30) can be

expressed as follows [10].

n n n
2 AF;; = 2 Z Aﬂ-"l,j% =2 Z(fm% - Fij) (31)
=1 j=1 J=1
The numerical flux of AUSMPWH+ is given by
T% = MZC%GDL + Mgc%qu + (PP, + Pg PR) (32)

® = (p,pu,pH)T and P = (0,p,0)T. The subscripts 1/2 and (L,R) stand for a
quantity at a midpoint on the edge of Figure 20 and the left and the right states across the

edge, respectively. The Mach number at midpoint is defined as

21 F



m1 =M + Mg (33)
2

When M;{ and My are given as follows.

i) mi= M + M2 >0,then

Mf =M{ + MR[(1—w)(1 + fp) — f1] (34)
Mg =w(1 + fr) (35)
i) mi= M + MQ <O0,then

2

M =M} +w@+f) (36)
Mg = Mg + M{[(1=w)(1 + f1) — fz] 37)

In Eq. (34)~(37), w does not mean the z-directional velocity. w is given as follows.

P, Pp\®
=1—-—min|l— = 38
w(P,, Pr) min (PR , PL> (38)

The pressure-based weight function is simplified to

PL,R
fur = —-1),K#0 (39)
» PS
Where
P, = PP, + Py Py (39)

The split Mach number is defined by
1
iZ(Mil)z, M| <1

M* =4 (40)
S(MEIMD,  IM|>1

1
iZ(MJ_rl)Z(ZTrM). M| <1

Pt = 1 (41)
S Esign(M)), M| >1
The Mach number of each side is
UL,R
ML,R = C (42)
1/2

22 3] & 1



And the speed of sound ¢/, is

(1mi c” L, +u >0
min max(|U.|,c*)’ 2 LT TR

C1/2 = o2 1 (43)
min (W)j E(UL +Ug) <0
Where
¢ =20 — /¥ + DHnorma (44)
Huorma = 5 (Hy =5 Vi + Hy —5 V) (45)

Figure 20 illustration of mid-point value on the edge connecting nodes i and j
3.3.2 Minmod limiter for meshless method
To improve accuracy, TVD scheme is adopted to the meshless scheme. In this study,

minmod limiter [11] is used at AUSMPW+. The basic form of spatial interpolation is given

by
@, =P+ 0.5¢,(P; — D)) (46)
Pp = @ + 0.5¢(P; — D)) 47
In order to apply to meshless method, it is necessary to modify minmod limiter as
follows.

¢ = max(0,min(1,1,)) (48)

Where k € {local point cloud of node i & 8y;; is max}

23 2] _'\-'.':_-|-Ii =1 —



Sir S
T = X —ﬁcos(eku) (49)

S]l
P — Py
Spi = TS 50
4 = g =l 0)

Since there is no point on the opposite side of point j in the vicinity of point i in general
point system, nearest point k to the opposite side is used to calculate r, shown in Figure

21.

Figure 21 minmod limiter for the meshless method
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3.4 Time Integration
Referring to the works of Yoon [12], and Chen [13], LU-SGS is adopted to the
meshless method. By applying Eq. (30) and Eq. (31), Euler equation can be rewritten in a

semi-discrete form as follows.

aU.n+1 n
A2 ) (F - R = 57 (51)

j=1

The flux function F{}“ may be linearized by setting
F Y (wi, 0)) = Fl} 4+ Afj(w)dw; + A7 (w))dw; (52)
When n is the time level and matrices A;—g are constructed as follows
Af = %(Aij + A1) (53)
Where,
Aij = max(|A4]) (54)
Here, A, represents eigenvalues of Jacobian matrix.
Using Eq. (52) ~ (54), Eq. (51) can be LU decomposed, the result is as follows.

1 _ _
A—t+2k|p| AU; + Z 24°AU; + Z 24 AUj—ZAAUi )
7

jeLc jeuc I

= —RES
In Eq. (55), LC denotes lower cloud in the cloud index, and UC denotes upper cloud

in the cloud index.
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3.5 Dual-time stepping for meshless method

For time-accurate unsteady analysis, pseudo-time sub iteration strategy is adopted to

solve the unsteady problems.
aQ o
—_—=— 56
at K (56)

The time derivative term is differenced using a backward second-order there point

implicit formula and moved to the right-hand side of the equation:

1.5Q™*1 —2Q™ + 0.5Q™" Y

— Rntl 57
0 A (57)

A pseudo-time derivative of Q is added on the left-hand side of Eq. (37)
0Q™!  1.5Q™*' —2Q"+0.5Q""

n+1
ot At R (58)

— _R‘n+1 _ §n+1

The pseudo-time derivative term is discretized using the first-order Euler implicit

formula.

Qn+1,m+1 _ Qn+1,m

i — _R‘n+1,m+1 _ S‘~n+1,m+1 (59)

Where, a superscript m denotes the pseudo-time iteration level.
The dual-time steeping method adopted here has a second order time accuracy. Then,

Eg. (59) can be written as

1 {aﬁ aﬁ}"“"”
—I+

= A n+im _— _R‘n+1,m _ &n+1m 60
At a0 a0 ¢ S (60)

26 3] & 1



Chapter 4. Numerical Analysis

4.1 Steady problems
4.1.1 Space shuttle reentry simulation
The first validation case is Space shuttle reentry simulation. Space shuttle has a highly
complex geometry. And the flow condition is also highly extreme. The angle of attack is 40
Degree, and the Mach number is 20. The three cases had been conducted for the validation.
The first case is the result from the meshless solver based on the meshless point system
(MPS) generated from the meshless point generation technique. And the second is the result
obtained from the finite volume method, using the structured grid (SG). Lastly, the third
case is the result obtained from the meshless solver, using the structured grid point (SGP).
The flow condition is shown in the table 1. And the Figure 22 and the Figure 23 show the
meshless point system and the structured grid for Space shuttle respectively. Both methods
use AUSMPW+ as spatial discretization, and minmod limiter is chosen as a limiting process.

For a time integration, LU-SGS is used.

Altitude (Km) 60
Pressure (Pa) 22.461
Temperature (K) 255.77

Ma 20

Angle of attack (Degree) 40

Species (non-equilibrium)

5(N, O, NO, N2, 02)

Table 1 the flow conditions (Space shuttle reentry)




Figure 22 meshless point system (Space shuttle)

Figure 23 structured grid (space shuttle)
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Figure 24, 25, 26 denote results which show the pressure contour. Figure 24 shows
the result obtained from the meshless analysis carried on the MPS. Then Figure 25 shows
that of FVM. Lastly Figure 26 is the result obtained from the meshless solver based on the

SGP.

Meshless with MPS

Figure 24 meshless result with MPS
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Structured FVYM

Figure 25 FVM result with SG

Meshless with SGS

Figure 26 FVM result with SGP
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Figure 27 and 28 show the pressure contour at x=300. Figure 27 is the comparison of
two solvers on the same computational domain. The left is the result obtained from the
meshless method calculated on the SGP. And the right is that of the structured finite volume
method. And Figure 28 shows the meshless results which are calculated on the different
point systems, SGP and MPS. The left figure is same as the left contour in Figure 27. And
the right contour denotes the meshless result using MPS. and the Figure 29 shows the
comparison of the pressure coefficient along the surface. The, Table 2 denotes the
comparison of the aerodynamic coefficients.

From those results, though the meshless method requires the short time for pre-process,

the meshless method has almost same level of accuracy, compared with FVM.

Left : Meshless with SGS
Right : Structured FVM

P(pa)
15000
13000
11000
9000
7000
5000
3000
1000

-1000

-3000

Figure 27 the comparison of the results on the same computational

domain( Left : meshless, Right : FVM)
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Left : Meshless with SGS
Right : Meshless with MPS

Figure 28 the comparison of the meshless results on the different computational

domain( Left : SGP, Right : MPS)

Pressure on surface at x=70

4500
4000 ———— Structured FVYM

y Meshless with SGS
3500 ———— Meshless with MPS
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SG SGP MPS
FVM meshless meshelss

Co 0.585 0.590 0.579
error - 0.84% 1.08%
CL 0.751 0.758 0.748
error - 0.93% 0.47%
L/D 1.284 1.285 1.292
error - 0.05% 0.60%

Table 2 the comparison of the aerodynamic coefficients
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4.1.2 NASATM X 2059
An analysis on the flow around a highly complicated geometry is the one of the main
goals. In order to generate such a model, the modified NASA TM X 2059 model [14] is
selected as a next validation model. Four tail fins, the twenty-degree conical nozzle [15]
and four vanes are added added to the model. Consequently, this model integrates the

internal flow and the external flow. In Figure 32, the generated model is shown.

Orifice reference station

|
X
< ‘Lo,.,.i.wi?“‘*“j[j@‘

I e ‘JI Model base

Figure 30 the configuration of NASA TM X 2059

|

2.004 2.5

1.309—|

Figure 31 the twenty-degree conical nozzle
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nozzle

Figure 32 the modified NASA TM X 2059

For a validation, 2 spices flow is analyzed. The freestream flow is air and the nozzle
flow is plume. Its freestream conditions are at altitude 10 km and the Mach number is 5.
The flow conditions are shown in Table 3. And the meshless point system for the model is
shown in Figure 33. For a spatial discretization, AUSMPW+ was used, and as a limiting

process, minmod limiter was selected. LU-SGS was selected as a time integration method.

Altitude (km) 10
Pressure (Pa) 26,500
Temperature (K) 223.25210
Mach number 5
Angle of attack (Degree) 0
Spices Air

Table 3 flow conditions ( the modified NACA TM X 2059)
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Figure 33 the computational domain for the second validation

Figure 34 ~ 35 show the results and Figure 36 shows the convergence history.
Figure 35 shows that 2 spices flows are successfully analyzed.

From the figure 34 ~ 36, no matter how geometry is complicated, the
generation technique is available. Consequently, the robustness of the meshless

point generation technique and the meshless method was verified.
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Figure 34 pressure contour (y=0)

Figure 35 heat of ratio contour (y=0)
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Figure 36 convergence history
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4.2 Unsteady problems
4.2.1 moving sphere
in order to verify the meshless point generation technique for moving system,
an analysis on the flow around moving sphere was carried out. For verification,
the steady state result which has freestream Mach number 2 is selected as the
reference. Then, three unsteady cases are carried out. They have three different
Mach number of the sphere and three different freestream Mach number
respectively. In all the unsteady case, freestream Mach number observed from the
sphere is 2. The unsteady results are compared with the reference. It indicates that
all cases have same result, because the relative velocity of the four cases is same.

The information of the case is shown in the Table 4

Freestream Mach Mach number

number of the sphere
Case 1 0.0 2.0
Case 2 1.0 1.0
Case 3 1.5 0.5
Case 4(reference) 2.0 0.0

Table 4 the outline of the unsteady problem (moving sphere)



The results are shown in Figure 37 and Figure 38. Figure 37 denotes the comparison
of the pressure coefficient along z=0. It indicates that all cases have almost same pressure
coefficient. Additionally, Figure 38 shows the comparison of the density contour. The shock
of the two cases are almost same. These results verify that the point generation technique

is available for the unsteady problem including moving boundary.

1.5 .
inflow
1
o
o | - - = - M=00,M, =20
0.5} M.=1.0, M, =10
| M_=1.5, =0.5
X =0.0
O -
1 -ﬂ

-
0
X

Figure 37 the comparison of the pressure coefficient
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Figure 38 the comparison of the density contour

(upper : unsteady, nether : steady)
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Chapter 5. Conclusions

In this study, the point generation technique was developed. Using hybrid of the near
surface point system and the background point system, both the effectiveness and the
accuracy were considered. Additionally, hybrid point system is useful for the moving point
system. Through the developed technique, no matter how the geometry is complex, it is
possible to generate the computational domain is easily using the developed method.

The three cases are carried out for validation. the first case is the space shuttle reentry
simulation. This case verified the robustness of the point generation technique for the
complex object which has both concave and convex geometry. Additionally, it is verified
that the method is available to hypersonic region including highly strong shock. The second
case is flow around the missile body. Because this model integrates the internal flow and
the external flow, it can be considered as highly complicated geometry than Space shuttle.
With successful analysis of the second case, the tremendous robustness of the point
generation technique and the meshless method was verified. The last case is the flow around
the moving sphere. This validation showed a success of expansion to unsteady region of
the meshless point generation technique. Consequently, a result which has similar levels of

accuracy can be obtained within a short time using the developed method.
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