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Abstract 

 

Development of Point Generation 

Technique for a Meshless Method 

Jae Sang Rhee 

School of Mechanical and Aerospace Engineering 

The Graduate School 

 

This study aims to develop meshless point generation technique which can be applied 

to complicated geometry or moving boundary. Unlike the conventional finite volume 

method, meshless method requires only point system as a computational domain. Therefore 

Generation of computational domain is relatively easier than conventional FVM.  

In this study, meshless point generation technique is developed. For the validation, the 

results obtained from the meshless method were compared with the results obtained from 

the conventional FVM. Practical models, such as Space shuttle or Missile, were selected as 

a validation model. 

For the steady calculation, governing equation is Euler equation. And for the unsteady 

calculation, Euler equation in Arbitrary Lagrangian Eulerian form is selected as governing 

equation 

Meshless method developed by Huh is used for a flow solver. In both meshless method 



 

 

ii 

and FVM, AUSMPW+ was used for numerical flux scheme, minmod limiter was used for 

limiting process and LU-SGS was used for time integration.  

From the results, the robustness and the accuracy of meshless point generation 

technique are verified. 
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Chapter 1. Introduction 

1.1 Meshless method 

A meshless method is a newly suggested computational fluid dynamics (CFD) 

algorithm in recent year. This method requires only neighboring points of each point which 

is called local points cloud without using the concept of mesh. Generally, the conventional 

finite volume method requires a large amount of time for generating mesh for a complex 

geometry. Therefore it is less restrictive when generating the computational domain for a 

complicated or moving geometry than mesh based methods.   

1.2 Motivation 

A meshless method was introduced in 1977 at first. Since then, a variety of Meshless 

algorithms have been studied by former researchers. Since 2000, meshless algorithms 

which analyze compressible flow using moving least square method (LSM) have been 

developed by Katz (2009) [1] respectively and so on. 

The ultimate goal of meshless method is to analyze the unsteady compressible flow 

around multi-bodies which consider 6-DOF (Degree of Freedom) motion. However the 

previous researchers did not consider all kind of moving such as 6-DOF motion. As part of 

the development of the ultimate point generation technique, point generation technique for 

one body which has complicated geometry was developed in this study. Validation models 

are Space shuttle, NASA X TM2059, moving cylinder and moving sphere. Numerical 

analysis on the flow around those models are carried out using meshless solver developed 

by Huh [2], [4]. And those results are compared with the structured finite volume method 
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Figure 2 X-51 scramjet with a Pegasus booster Figure 1 Grid system of X-51 

scramjet

Figure 3 comparison of unstructured grid and meshless points

for validation. In both methods, AUSMPW+, minmod limiter, and LU-SGS are used  
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Chapter 2. Point generation technique 

2.1 Meshless point system 

The meshless point system consists of two point systems. The first is the near surface 

point system, and the other is the background point system. The near surface point system 

is used for boundary layer. Therefore, it is generated along the surface, as shown in Figure 

4.  

 

Figure 4 the near surface point system 

On the other hand, the background point system is generated outside the near surface 

point system. And it is created from the Cartesian grid point. As shown in Figure 5 

 
Figure 5 the background point system 
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2.2 Near surface point system 

As explained in chapter 2.1, near surface point system is used to enhance the accuracy 

of calculation in the boundary layer. In this study, the near surface point system is generated 

along the Electric field line from the surface. The E-field line is easily computed using 

surface mesh information using Coulomb’s law. It is shown in Eq. (1) 

 
𝐸𝑥,𝑖 =∑

𝑘𝑗

𝑑
3
2

(𝑥𝑆,𝑗 − 𝑥𝑖)

𝑗

  

 
𝐸𝑦,𝑖 =∑

𝑘𝑗

𝑑
3
2

(𝑦𝑆,𝑗 − 𝑦𝑖)

𝑗

 
 

 
𝐸𝑧,𝑖 =∑

𝑘𝑗

𝑑
3
2

(𝑧𝑆,𝑗 − 𝑧𝑖)

𝑗

 (1) 

In Eq. (1), 𝐸𝑥,𝑖 , 𝐸𝑦,𝑖 , 𝐸𝑧,𝑖 are x, y, z component of the electric field at point 𝑖 which 

is located outside the surface, 𝑥S,j, 𝑦S,j, 𝑧S,j are x, y, z-coordinate of the surface mesh 

point which has index 𝑗. And 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖  are x, y, z-coordinate of the point 𝑖, 𝑑 is the 

distance between point 𝑖 and 𝑗, and 𝑘𝑗  is the constant which is determined by users. The 

electric field line can be obtained by Eq. (1). Figure 6 shows the generated three 

dimensional near surface point system of the concave-shaped object.  

2.3 Background point system 

The background point system is generated from the Cartesian grid point. In order to 

generate the background point system, three input values are needed in each x, y, z direction. 

The first is interval of point, the second is coordinate of initial point, and the last is the 

number of points. From these input values, the coordinates of the background point can be 

derived, as shown in Eq. (2).   



 

 

5 

 

   𝑥𝑖,𝑗,𝑘 = 𝑥𝑖𝑛𝑖 + (𝑖 − 1)∆𝑥, (1 ≤ 𝑖 ≤  𝑁𝑥)   

   𝑦𝑖,𝑗,𝑘 = 𝑦𝑖𝑛𝑖 + (𝑗 − 1)∆𝑦, (1 ≤ 𝑗 ≤  𝑁𝑦)   

  𝑧𝑖,𝑗,𝑘 = 𝑧𝑖𝑛𝑖 + (𝑘 − 1)∆𝑧, (1 ≤ 𝑘 ≤ 𝑁𝑧) (2) 

In Eq. (2), ∆𝑥, ∆𝑦 ∆𝑧 denote the interval of point, 𝑁𝑥 , 𝑁𝑦, 𝑁𝑧  are the number of 

points, and 𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝑧𝑖𝑛𝑖  are the coordinates of the initial point. Among the background 

points, the points which are located in the near surface point system are excluded from the 

calculation. The total point system is shown in both Figure 7 and Figure 8. 

 
Figure 6 the three dimensional near surface point system 
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Figure 7 the three dimensional meshless point system 

 

 

Figure 8 the two dimensional meshless point system 
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2.4 Local points cloud 

Most of computational methods, including finite element method (FEM), finite 

difference methods (FDM), and finite volume method (FEM), depend on the interlaced 

grids or finite volumes. In order to discretize PDE, every point require the set of 

neighboring points not the grid information in meshless scheme. The set of neighboring 

points is called local points cloud. For the accuracy, the robustness, and the efficiency, 

appropriate composition of local points cloud is critical. In this paper, the strategy of 

generation of local points cloud is proposed. The strategy is shown as follows. 

2.4.1 Two dimensional local points cloud 

In two dimensional space, total 8 points to be chosen for the local points cloud. The 

criterion for composing the local points cloud is as follows. 

 Find the closest point of the central point. 

 Divide the region into eight sector equally, which the line between the central point 

and the closest point is the bisecting line of angle of the sector. As shown in Figure 

9. 

 Within each sector, the closest point is selected as a point of local cloud. 

2.4.2. Three dimensional local points cloud 

In three dimensional space, total 18 points constitute the local points cloud. the 

criterion for composing the local points cloud is as follows. 

 Generate virtual cube which has a point as a center. 

 Draw square, consist of internal division point between center point and vertex on 

the face, on each face as show in Figure 10. 
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 Connect every vertex on the bigger square and the corresponding vertex on the little 

one 

 Then, every face will be split into the five polygon, one square, and four trapezoids. 

 If the ratio of internal division is a: b = (√5 + 2)/2 (golden ratio), 18 zones which 

have same are generated, as shown in Figure 11. The same zone is denoted as same 

color. 

 Find the closest point in each zone, these points constitute the local points cloud. 

 

 

 

 

 

 

Figure 9 two dimensional cloud shape 
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Figure 10 face splitting on cube 

 

 

Figure 11 divided region 
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2.5 Moving principle of points 

2.5.1 Moving methodology 

When the object moves, the near surface point system moves with same speed of 

object. On the other hand, the background point system is fixed. Therefore, the near surface 

point system and the background point system are overlapped, as shown in Figure 13. The 

overlapped background points must be eliminated for the computation. For the better 

computational speed, the background point system change their state when the point moves, 

not being eliminated in this study. For example, when a background point is overlapped, 

the point is set to ‘OFF’. They can be seen as the red points in Figure 12. Then the point 

become non-overlapped, the point is set to ‘ON’. They also can be seen as the green points 

in Figure 13. Figure 13 Shows the regenerated point system for the next physical time step 

  

Figure 12 initial point system 
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Figure 13 overlapping and vacancy 

 

 

 

Figure 14 regenerated point system 
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2.5.2 Sorting point for local point cloud 

After the regeneration of the point system, points should constitute their own local 

points cloud again. However, to constitute local points cloud for all points consumes a lot 

of time. Therefore, points which constitute new local points cloud unconditionally should 

be sorted. Except those points, they use their old local points cloud. The sorting strategy is 

as follows. 

 The outmost points of the near surface point system  

The outmost points of the near surface point system move with the object. The 

neighboring points of these points change when the object moves, because the background 

points are fixed. It is shown in the Figure 15. 

 The newly included points due to the movement of the object 

As shown in Figure 14, when the object moves, the background points are generated. 

These points was ‘OFF’ in the previous physical time step. They don’t have local point 

cloud. Consequently, these points constitute local point cloud. 

 The neighboring points of ‘OFF’ state points  

In Figure 13, the overlapped points are denoted as red color. Because those points are 

excluded from the computational domain, a point which uses those points as a local point 

cloud lose their connectivity. Therefore, these points should constitute the local point cloud 

again.      
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Figure 15 outmost points of the near surface point system 

 

 

 

Figure 16 newly included points (green points) 
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Figure 17 neighboring point of the overlapped points 
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2.5.2 Strategy : rapid generation of new local point cloud 

When a point searching their new local point cloud, to search point for all domain is 

not desirable. In order to decrease the time for searching, two strategies are established. The 

first is for the outmost points of the near surface point system, and the other is for the 

background point system. Methodology is as follows. 

 Outmost points  

The outmost points have their own block information. Block information means that 

Cartesian ‘I’ and ‘J’ index of the background point which exists upper-left corner to the 

outmost point and this point called ‘background block point’. Additionally, the background 

number of the background block point is required. This number is called ‘N’. These are 

shown in the Figure 18. Using given information, the existing background points which 

have Cartesian index ‘I’ or ‘I+1’ or ‘I-1’, and index ‘J’ or ‘J+1’ or ‘J-1’ are the candidates 

of local point cloud. Then, in the old local point cloud, the point which is the near surface 

point is used again. It is denoted as color dot in Figure 18.   

 Background points 

Using Cartesian ‘I’ and ‘J’ index of the background point, the existing background 

points which have Cartesian index ‘I’ or ‘I+1’ or ‘I-1’, and index ‘J’ or ‘J+1’ or ‘J-1’ are the 

candidates of local point cloud. Then the outmost points of the near surface point system 

are selected for candidate. It is shown in Figure 19  
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Figure 18 indicating the candidates of local point cloud (near surface point) 

 

 

 

 

 

Figure 19 indicating the candidates of local point cloud (background point) 
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Chapter 3. Numerical Method 

3.1 Governing Equation 

3.1.1 Euler equation  

For a non-equilibrium and inviscid gas, the governing equation is a three-dimensional 

Euler equation which considering species continuity and vibrational energy equation. The 

equation is as follows.  

 𝜕𝑈

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
+
𝜕𝐻

𝜕𝑧
= 𝑆 (3) 

Where, 

𝑈 =

[
 
 
 
 
 
 
 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝐸
𝜌𝑖
⋮

∑𝜌𝑒𝑣𝑖𝑏,𝑖]
 
 
 
 
 
 
 
 

,  𝐹 =

[
 
 
 
 
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝐸 + 𝑝)𝑢
𝜌𝑖𝑢
⋮

∑𝜌𝑒𝑣𝑖𝑏,𝑖𝑢]
 
 
 
 
 
 
 
 

  

𝐺 =  

[
 
 
 
 
 
 
 
 

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑤𝑣

(𝐸 + 𝑝)𝑣
𝜌𝑖𝑣
⋮

∑𝜌𝑒𝑣𝑖𝑏,𝑖𝑣]
 
 
 
 
 
 
 
 

, 𝐻 =  

[
 
 
 
 
 
 
 
 

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝
(𝐸 + 𝑝)𝑤
𝜌𝑖𝑤
⋮

∑𝜌𝑒𝑣𝑖𝑏,𝑖𝑤]
 
 
 
 
 
 
 
 

, 𝑆 =  

[
 
 
 
 
 
 
 

0
0
0
0
𝑊𝑖

⋮

∑𝑊𝑣𝑖𝑏,𝑖]
 
 
 
 
 
 
 

, (4) 

S is source term that includes Wi in the species continuity equations and Wvib,i in 

the vibrational energy equation which are calculates according to Ref. [6] and [7]. 
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3.1.2. Euler eqation in Arbitrary Lagrangian Eulerian form 

An appropriate choice of kinematic description is primarily important consideration 

when simulating unsteady problems. However, purely Lagrangian and purely Eulerian 

descriptions have demerits, a technique, combining the best features of both descriptions, 

has been developed. Such a technique is called Arbitrary Lagrangian Eulerian (ALE) 

description. In Lagrangian description, the computational nodes are moved with the 

continuum. Then, in Eulerian description, the computational nodes are held in fixed. On the 

other hand, in ALE description, the computational nodes are moved with arbitrary speed 

[8]. And Euler equation in ALE form is shown as follows. 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹

𝜕𝑥
+
𝜕𝐺

𝜕𝑦
+
𝜕𝐻

𝜕𝑧
= 𝑆 (5) 

Where, 

𝑈 =

[
 
 
 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝐸 ]
 
 
 
 

,  𝐹 =

[
 
 
 
 

𝜌(𝑢 − �̂�)

𝜌𝑢(𝑢 − �̂�) + 𝑝

𝜌𝑣(𝑢 − �̂�)

𝜌𝑤(𝑢 − �̂�)

𝐸(𝑢 − �̂�) + 𝑝𝑢]
 
 
 
 

,    

𝐺 =  

[
 
 
 
 

𝜌(𝑣 − �̂�)

𝜌𝑢(𝑣 − �̂�)

𝜌𝑣(𝑣 − �̂�) + 𝑝

𝜌𝑤(𝑣 − �̂�)

𝐸(𝑣 − �̂�) + 𝑝𝑣]
 
 
 
 

, 𝐻 =  

[
 
 
 
 

𝜌(𝑤 − �̂�)

𝜌𝑢(𝑤 − �̂�)
𝜌𝑣(𝑤 − �̂�)

𝜌𝑤(𝑤 − �̂�) + 𝑝
𝐸(𝑤 − �̂�) + 𝑝𝑤]

 
 
 
 

 (6) 

In Eq. (6), û, v̂, ŵ  denote the velocity component of points x, y, z direction 

respectively.  
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3.2 Least square method 

In the meshless method, least square method based on Taylor series expansion has 

been used to discretize PDE. Given a function ϕ(χ) with χ = (x, y, z) in three dimension, 

the Taylor expansion from the point cloud center (x0, y0, z0) is denoted as 

 
𝜙(𝑥, 𝑦, 𝑧) = ∆𝑥

𝜕𝜙(𝑥0)

𝜕𝑥
+ ∆𝑦

𝜕𝜙(𝑦0)

𝜕𝑦
+ ∆𝑧

𝜕𝜙(𝑧0)

𝜕𝑧
+ 𝑂(∆2) (7) 

The least square method with weighted function may be expressed as follows.  

   min∑𝜔0𝑗 [∆𝜙0𝑗 − ∆𝑥
𝜕𝜙(𝑥0)

𝜕𝑥
− ∆𝑦

𝜕𝜙(𝑦0)

𝜕𝑦
− ∆𝑧

𝜕𝜙(𝑧0)

𝜕𝑧
]

2𝑛

𝑗=1

 (8) 

𝜕𝜙

𝜕𝑥
≈∑𝑎0𝑗(𝜙𝑗 − 𝜙0)

𝑗

 (9) 

𝜕𝜙

𝜕𝑦
≈∑𝑏0𝑗(𝜙𝑗 − 𝜙0)

𝑗

 (10) 

𝜕𝜙

𝜕𝑧
≈∑𝑐0𝑗(𝜙𝑗 − 𝜙0)

𝑗

 (11) 

In Eq. (8), j is an index of point in the local point cloud and n is the number of points 

in the cloud. 

In a three dimensional case, the matrix equation which derives least square coefficient 

a0j,  b0j,  c0j is as follows.  

𝐴𝑋 = 𝐵 (12) 

Where, 

𝑋𝑇 = [𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘] (13) 

𝐴 = [

𝛴𝜔𝛥𝑥2 𝛴𝜔𝛥𝑥𝛥𝑦 𝛴𝜔𝛥𝑥𝛥𝑧

𝛴𝜔𝛥𝑥𝛥𝑦 𝛴𝜔𝛥𝑦2 𝛴𝜔𝛥𝑦𝛥𝑧

𝛴𝜔𝛥𝑥𝛥𝑧 𝛴𝜔𝛥𝑦𝛥𝑧 𝛴𝜔𝛥𝑧2
] (14) 

    𝐵𝑇 = [𝛴𝜔𝛥𝑥𝛥𝜑, 𝛴𝜔𝛥𝑦𝛥𝜑, 𝛴𝜔𝛥𝑧𝛥𝜑]  (15) 
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Solving Eq. (12), the solution is as follows. 

𝑎𝑘 =
𝑀11
|𝐴|

∑𝜔∆𝑥∆𝜑 +
𝑀12
|𝐴|

∑𝜔∆𝑦∆𝜑 +
𝑀13
|𝐴|

∑𝜔∆𝑧∆𝜑 (16) 

𝑏𝑘 =
𝑀21
|𝐴|

∑𝜔∆𝑥∆𝜑 +
𝑀22

|𝐴|
∑𝜔∆𝑦∆𝜑 +

𝑀23
|𝐴|

∑𝜔∆𝑧∆𝜑 (17) 

𝑐𝑘 =
𝑀31
|𝐴|

∑𝜔∆𝑥∆𝜑 +
𝑀32

|𝐴|
∑𝜔∆𝑦∆𝜑 +

𝑀33
|𝐴|

∑𝜔∆𝑧∆𝜑 (18) 

Where,  

|𝐴| =∑𝜔∆𝑥2∑𝜔∆𝑦2∑𝜔∆𝑧2  

[1 −
(∑𝜔∆𝑥∆𝑧)2 

∑𝜔∆𝑥2 ∑𝜔∆𝑧2
−

(∑𝜔∆𝑥∆𝑦)2 

∑𝜔∆𝑦2 ∑𝜔∆𝑥2
−

(∑𝜔∆𝑦∆𝑧)2 

∑𝜔∆𝑧2 ∑𝜔∆𝑦2
]  

+2[∑𝜔∆𝑥∆𝑦∑𝜔∆𝑦∆𝑧∑𝜔∆𝑥∆𝑧] (19) 

𝑀11 =∑𝜔∆𝑦2∑𝜔∆𝑧2 − (∑𝜔∆𝑦∆𝑧)
2

   (20) 

𝑀12 =∑𝜔∆𝑥∆𝑧∑𝜔∆𝑦∆𝑧 −∑𝜔∆𝑥∆𝑦∑𝜔∆𝑧2 (21) 

𝑀13 =∑𝜔∆𝑥∆𝑦∑𝜔∆𝑦∆𝑧 −∑𝜔∆𝑥∆𝑧∑𝜔∆𝑦2 (22) 

𝑀21 =∑𝜔∆𝑦∆𝑧∑𝜔∆𝑥∆𝑧 −∑𝜔∆𝑥∆𝑦∑𝜔∆𝑧2 (23) 

𝑀22 =∑𝜔∆𝑥2∑𝜔∆𝑧2 − (∑𝜔∆𝑥∆𝑧)
2

   (24) 

𝑀23 =∑𝜔∆𝑥∆𝑧∑𝜔∆𝑥∆𝑦 −∑𝜔∆𝑦∆𝑧∑𝜔∆𝑥2 (25) 

𝑀31 =∑𝜔∆𝑥∆𝑦∑𝜔∆𝑦∆𝑧 −∑𝜔∆𝑥∆𝑧∑𝜔∆𝑦2   (26) 

𝑀32 =∑𝜔∆𝑥∆𝑦∑𝜔∆𝑥∆𝑧 −∑𝜔∆𝑦∆𝑧∑𝜔∆𝑥2 (27) 

𝑀33 =∑𝜔∆𝑥2∑𝜔∆𝑦2 − (∑𝜔∆𝑥∆𝑦)
2

  (28) 
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3.3 Spatial Discretization 

3.3.1 AUSMPW+ for meshless method 

The AUSMPW+ scheme [9] is used for chemically reactive flow, i.e. equilibrium and 

non-equilibrium flow. 

The main feature of AUSMPW+ is to remove oscillations of AUSM+ near wall or 

across a strong while maintain the accuracy of the original scheme. In this study, 

AUSMPW+ modified for the meshless scheme is used. Ignoring source term and three 

dimensional term, Eq. (3) can be simply expressed as  

𝜕𝑈𝑖
𝜕𝑡

+∑𝑎𝑖𝑗∆𝑓𝑖𝑗

𝑛

𝑗=1

+∑𝑎𝑖𝑗∆𝑓𝑖𝑗

𝑛

𝑗=1

+∑𝑏𝑖𝑗∆𝑔𝑖𝑗

𝑛

𝑗=1

= 0 (29) 

Then,  

𝜕𝑈𝑖
𝜕𝑡

+∑∆ℱ𝑖𝑗

𝑛

𝑗=1

= 0 (30) 

In Eq. (30), ℱ = af + bg is a directed flux along the metric weight vector (a, b). 

Because AUSMPW+ scheme uses mid flux at j+1/2 instead of the flux at j, Eq. (30) can be 

expressed as follows [10].  

∑∆ℱ𝑖𝑗

𝑛

𝑗=1

= 2∑∆ℱ
𝑖𝑗+

1
2

𝑛

𝑗=1

= 2∑(ℱ
𝑖𝑗+

1
2
− ℱ𝑖𝑗)

𝑛

𝑗=1

 (31) 

The numerical flux of AUSMPW+ is given by 

ℱ1
2
= �̅�𝐿

+𝑐1
2
𝛷𝐿 + �̅�𝑅

−𝑐1
2
𝛷𝑅 + (𝑃𝐿

+𝑃𝐿 + 𝑃𝑅
−𝑃𝑅) (32) 

Φ = (ρ, ρu, ρH)T  and P = (0, p, 0)T . The subscripts 1/2 and (L,R) stand for a 

quantity at a midpoint on the edge of Figure 20 and the left and the right states across the 

edge, respectively. The Mach number at midpoint is defined as 
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𝑚1
2
= 𝑀𝐿

+ +𝑀𝑅
− (33) 

When M̅L
+ and M̅R

− are given as follows. 

 

i)  𝑚1

2

= 𝑀𝐿
+ +𝑀𝑅

0 ≥ 0, then  

�̅�𝐿
+ = 𝑀𝐿

+ +𝑀𝑅
−[(1 − 𝑤)(1 + 𝑓𝑅) − 𝑓𝐿] (34) 

�̅�𝑅
− = 𝑤(1 + 𝑓𝑅) (35) 

i)  𝑚1

2

= 𝑀𝐿
+ +𝑀𝑅

0 < 0, then  

�̅�𝐿
+ = 𝑀𝐿

+ +𝑤(1 + 𝑓𝐿) (36) 

�̅�𝑅
− = 𝑀𝑅

− +𝑀𝐿
+[(1 − 𝑤)(1 + 𝑓𝐿) − 𝑓𝑅] (37) 

In Eq. (34)~(37), w does not mean the z-directional velocity. w is given as follows. 

𝑤(𝑃𝐿 , 𝑃𝑅) = 1 − 𝑚𝑖𝑛 (
𝑃𝐿
𝑃𝑅
,
𝑃𝑅
𝑃𝐿
)
3

 (38) 

The pressure-based weight function is simplified to 

𝑓𝐿,𝑅 = (
𝑃𝐿,𝑅
𝑃𝑠

− 1) , 𝑃𝑠 ≠ 0 (39) 

Where 

𝑃𝑠 = 𝑃𝐿
+𝑃𝐿 + 𝑃𝑅

−𝑃𝑅 (39) 

The split Mach number is defined by 

𝑀± = {
±
1

4
(𝑀 ± 1)2, |𝑀| ≤ 1

1

2
(𝑀 ± |𝑀|), |𝑀| > 1

  (40) 

𝑃± = {
±
1

4
(𝑀 ± 1)2(2 ∓ 𝑀), |𝑀| ≤ 1

1

2
(1 ± 𝑠𝑖𝑔𝑛(𝑀)), |𝑀| > 1

  (41) 

The Mach number of each side is 

𝑀𝐿,𝑅 =
𝑈𝐿,𝑅 

𝐶1/2
 (42) 
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And the speed of sound c1/2 is  

𝑐1/2 =

{
 
 

 
 𝑚𝑖𝑛 (

𝑐∗2

𝑚𝑎𝑥 (|𝑈𝐿|, 𝑐
∗
) ,

1

2
(𝑈𝐿 + 𝑈𝑅) > 0

𝑚𝑖𝑛 (
𝑐∗2

𝑚𝑎𝑥 (|𝑈𝑅|, 𝑐
∗
) ,

1

2
(𝑈𝐿 + 𝑈𝑅) < 0

 (43) 

Where 

𝑐∗ = √2(𝛾 − 1)/(𝛾 + 1)𝐻𝑛𝑜𝑟𝑚𝑎𝑙 (44) 

𝐻𝑛𝑜𝑟𝑚𝑎𝑙 =
1

2
(𝐻𝐿 −

1

2
𝑉𝐿
2 + 𝐻𝑅 −

1

2
𝑉𝑅
2) (45) 

 

Figure 20 illustration of mid-point value on the edge connecting nodes i and j 

3.3.2 Minmod limiter for meshless method 

To improve accuracy, TVD scheme is adopted to the meshless scheme. In this study, 

minmod limiter [11] is used at AUSMPW+. The basic form of spatial interpolation is given 

by 

𝛷𝐿 = 𝛷𝑖 + 0.5𝜙𝐿(𝛷𝑗 − 𝛷𝑖) (46) 

𝛷𝑅 = 𝛷𝑗 + 0.5𝜙𝑅(𝛷𝑖 − 𝛷𝑗) (47) 

In order to apply to meshless method, it is necessary to modify minmod limiter as 

follows.  

𝜙 = 𝑚𝑎𝑥(0,𝑚𝑖𝑛(1, 𝑟𝑘)) (48) 

Where 𝑘 ∈ {local point cloud of node 𝑖 & 𝜃𝑘𝑖𝑗  𝑖𝑠 𝑚𝑎𝑥} 
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𝑟𝑘 =
𝑠𝑖𝑘′  

𝑠𝑗𝑖
=
𝑠𝑘𝑖
𝑠𝑗𝑖
𝑐𝑜𝑠(𝜃𝑘𝑖𝑗) (49) 

𝑠𝑘𝑖 =
𝛷𝑘 −𝛷𝑖
‖𝑥𝑘⃗⃗⃗⃗ − 𝑥𝑖⃗⃗  ⃗‖

 (50) 

Since there is no point on the opposite side of point j in the vicinity of point i in general 

point system, nearest point k to the opposite side is used to calculate rk shown in Figure 

21. 

 

 

Figure 21 minmod limiter for the meshless method 
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3.4 Time Integration 

Referring to the works of Yoon [12], and Chen [13], LU-SGS is adopted to the 

meshless method. By applying Eq. (30) and Eq. (31), Euler equation can be rewritten in a 

semi-discrete form as follows. 

𝜕𝑈𝑖
𝑛+1

𝜕𝑡
+ 2∑(𝐹𝑖𝑗

𝑛+1 − 𝐹𝑖
𝑛+1)

𝑛

𝑗=1

= 𝑆𝑖
𝑛 (51) 

The flux function Fij
n+1 may be linearized by setting 

𝐹𝑖𝑗
𝑛+1(𝜔𝑖 , 𝜔𝑗) ≈ 𝐹𝑖𝑗

𝑛 + 𝐴𝑖𝑗
+ (𝜔𝑖)𝛿𝜔𝑖 + 𝐴𝑖𝑗

− (𝜔𝑗)𝛿𝜔𝑗 (52) 

When n is the time level and matrices Aij
± are constructed as follows 

𝐴𝑖𝑗
± =

1

2
(𝐴𝑖𝑗 ± 𝜆𝑖𝑗𝐼) (53) 

Where, 

𝜆𝑖𝑗 ≥ 𝑚𝑎𝑥(|𝜆𝐴|) (54) 

Here, λA represents eigenvalues of Jacobian matrix. 

Using Eq. (52) ~ (54), Eq. (51) can be LU decomposed, the result is as follows. 

(
1

∆𝑡
+∑𝑘|𝜌|

𝑗

)∆𝑈𝑖 + ∑ 2𝐴−∆𝑈𝑗
𝑗∈𝐿𝐶

+ ∑ 2𝐴−∆𝑈𝑗
𝑗∈𝑈𝐶

−∑𝐴∆𝑈𝑖
𝑗

= −𝑅𝐸𝑆 

(55) 

In Eq. (55), LC denotes lower cloud in the cloud index, and UC denotes upper cloud 

in the cloud index.  
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3.5 Dual-time stepping for meshless method 

For time-accurate unsteady analysis, pseudo-time sub iteration strategy is adopted to 

solve the unsteady problems. 

𝜕𝑄

𝜕𝑡
= −�̂� (56) 

The time derivative term is differenced using a backward second-order there point 

implicit formula and moved to the right-hand side of the equation: 

0 = −
1.5𝑄𝑛+1 − 2𝑄𝑛 + 0.5𝑄𝑛−1

∆𝑡
− �̂�𝑛+1 (57) 

A pseudo-time derivative of Q is added on the left-hand side of Eq. (37) 

𝜕𝑄𝑛+1

𝜕𝜏
= −

1.5𝑄𝑛+1 − 2𝑄𝑛 + 0.5𝑄𝑛−1

∆𝑡
− �̂�𝑛+1

= −�̂�𝑛+1 − �̂�𝑛+1 

(58) 

The pseudo-time derivative term is discretized using the first-order Euler implicit 

formula. 

𝑄𝑛+1,𝑚+1 − 𝑄𝑛+1,𝑚

∆𝜏
= −�̂�𝑛+1,𝑚+1 − �̂�𝑛+1,𝑚+1 (59) 

Where, a superscript m denotes the pseudo-time iteration level. 

The dual-time steeping method adopted here has a second order time accuracy. Then, 

Eq. (59) can be written as 

[
1

∆𝜏
𝐼 + {

𝜕�̂�

𝜕𝑄
+
𝜕�̂�

𝜕𝑄
}

𝑛+1,𝑚

] ∆𝑄𝑛+1,𝑚 = −�̂�𝑛+1,𝑚 − �̂�𝑛+1,𝑚 (60) 
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Chapter 4. Numerical Analysis 

4.1 Steady problems 

4.1.1 Space shuttle reentry simulation  

The first validation case is Space shuttle reentry simulation. Space shuttle has a highly 

complex geometry. And the flow condition is also highly extreme. The angle of attack is 40 

Degree, and the Mach number is 20. The three cases had been conducted for the validation. 

The first case is the result from the meshless solver based on the meshless point system 

(MPS) generated from the meshless point generation technique. And the second is the result 

obtained from the finite volume method, using the structured grid (SG). Lastly, the third 

case is the result obtained from the meshless solver, using the structured grid point (SGP). 

The flow condition is shown in the table 1. And the Figure 22 and the Figure 23 show the 

meshless point system and the structured grid for Space shuttle respectively. Both methods 

use AUSMPW+ as spatial discretization, and minmod limiter is chosen as a limiting process. 

For a time integration, LU-SGS is used.  

 

 

Altitude (Km) 60 

Pressure (Pa) 22.461 

Temperature (K) 255.77 

Ma 20 

Angle of attack (Degree) 40 

Species (non-equilibrium) 5 (N, O, NO, N2, O2) 

Table 1 the flow conditions (Space shuttle reentry) 



 

 

28 

 

 

 

Figure 22 meshless point system (Space shuttle) 

 

 

 

Figure 23 structured grid (space shuttle) 
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Figure 24, 25, 26 denote results which show the pressure contour. Figure 24 shows 

the result obtained from the meshless analysis carried on the MPS. Then Figure 25 shows 

that of FVM. Lastly Figure 26 is the result obtained from the meshless solver based on the 

SGP.  

 

 

 

 

Figure 24 meshless result with MPS 
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Figure 25 FVM result with SG 

 

 

Figure 26 FVM result with SGP 
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Figure 27 and 28 show the pressure contour at x=300. Figure 27 is the comparison of 

two solvers on the same computational domain. The left is the result obtained from the 

meshless method calculated on the SGP. And the right is that of the structured finite volume 

method. And Figure 28 shows the meshless results which are calculated on the different 

point systems, SGP and MPS. The left figure is same as the left contour in Figure 27. And 

the right contour denotes the meshless result using MPS. and the Figure 29 shows the 

comparison of the pressure coefficient along the surface. The, Table 2 denotes the 

comparison of the aerodynamic coefficients.  

From those results, though the meshless method requires the short time for pre-process, 

the meshless method has almost same level of accuracy, compared with FVM. 

 

 

Figure 27 the comparison of the results on the same computational 

domain( Left : meshless, Right : FVM ) 
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Figure 28 the comparison of the meshless results on the different computational 

domain( Left : SGP, Right : MPS ) 

 

 

 

Figure 29 the comparison of pressure coefficient 



 

 

33 

 

 

 SG 

FVM 

SGP 

meshless 

MPS 

meshelss 

CD 0.585 0.590 0.579 

error - 0.84% 1.08% 

CL 0.751 0.758 0.748 

error - 0.93% 0.47% 

L/D 1.284 1.285 1.292 

error - 0.05% 0.60% 

Table 2 the comparison of the aerodynamic coefficients 
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4.1.2 NASA TM X 2059 

An analysis on the flow around a highly complicated geometry is the one of the main 

goals. In order to generate such a model, the modified NASA TM X 2059 model [14] is 

selected as a next validation model. Four tail fins, the twenty-degree conical nozzle [15] 

and four vanes are added added to the model. Consequently, this model integrates the 

internal flow and the external flow. In Figure 32, the generated model is shown.  

 

 

 

Figure 30 the configuration of NASA TM X 2059 

 

 

 

 

Figure 31 the twenty-degree conical nozzle 
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Figure 32 the modified NASA TM X 2059 

 

For a validation, 2 spices flow is analyzed. The freestream flow is air and the nozzle 

flow is plume. Its freestream conditions are at altitude 10 km and the Mach number is 5. 

The flow conditions are shown in Table 3. And the meshless point system for the model is 

shown in Figure 33. For a spatial discretization, AUSMPW+ was used, and as a limiting 

process, minmod limiter was selected. LU-SGS was selected as a time integration method. 

 

Altitude (km) 10 

Pressure (Pa) 26,500 

Temperature (K) 223.25210 

Mach number 5 

Angle of attack (Degree) 0 

Spices  Air 

Table 3 flow conditions ( the modified NACA TM X 2059) 
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Figure 33 the computational domain for the second validation 

 

 

Figure 34 ~ 35 show the results and Figure 36 shows the convergence history.   

Figure 35 shows that 2 spices flows are successfully analyzed. 

From the figure 34 ~ 36, no matter how geometry is complicated, the 

generation technique is available. Consequently, the robustness of the meshless 

point generation technique and the meshless method was verified. 
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Figure 34 pressure contour ( y=0 ) 

 

 

Figure 35 heat of ratio contour ( y=0 ) 
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Figure 36 convergence history 
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4.2 Unsteady problems  

4.2.1 moving sphere 

in order to verify the meshless point generation technique for moving system, 

an analysis on the flow around moving sphere was carried out. For verification, 

the steady state result which has freestream Mach number 2 is selected as the 

reference. Then, three unsteady cases are carried out. They have three different 

Mach number of the sphere and three different freestream Mach number 

respectively. In all the unsteady case, freestream Mach number observed from the 

sphere is 2. The unsteady results are compared with the reference. It indicates that 

all cases have same result, because the relative velocity of the four cases is same. 

The information of the case is shown in the Table 4 

 

 

 Freestream Mach 

number 

Mach number  

of the sphere 

Case 1 0.0 2.0 

Case 2 1.0 1.0 

Case 3 1.5 0.5 

Case 4(reference) 2.0 0.0 

Table 4 the outline of the unsteady problem (moving sphere) 
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The results are shown in Figure 37 and Figure 38. Figure 37 denotes the comparison 

of the pressure coefficient along z=0. It indicates that all cases have almost same pressure 

coefficient. Additionally, Figure 38 shows the comparison of the density contour. The shock 

of the two cases are almost same. These results verify that the point generation technique 

is available for the unsteady problem including moving boundary.  

 

 

 

 

 

 

Figure 37 the comparison of the pressure coefficient 

 

 

  

inflow 
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Figure 38 the comparison of the density contour  

( upper : unsteady, nether : steady) 
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Chapter 5. Conclusions 

In this study, the point generation technique was developed. Using hybrid of the near 

surface point system and the background point system, both the effectiveness and the 

accuracy were considered. Additionally, hybrid point system is useful for the moving point 

system. Through the developed technique, no matter how the geometry is complex, it is 

possible to generate the computational domain is easily using the developed method.  

The three cases are carried out for validation. the first case is the space shuttle reentry 

simulation. This case verified the robustness of the point generation technique for the 

complex object which has both concave and convex geometry. Additionally, it is verified 

that the method is available to hypersonic region including highly strong shock. The second 

case is flow around the missile body. Because this model integrates the internal flow and 

the external flow, it can be considered as highly complicated geometry than Space shuttle.  

With successful analysis of the second case, the tremendous robustness of the point 

generation technique and the meshless method was verified. The last case is the flow around 

the moving sphere. This validation showed a success of expansion to unsteady region of 

the meshless point generation technique. Consequently, a result which has similar levels of 

accuracy can be obtained within a short time using the developed method.   
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국문 초록 

 

본 연구에서는 무격자 유동해석 기법을 위한 질점 생성 프로그램을 개발

하였다. 본 연구에서는 개발된 프로그램을 이용해 미사일 형상, 우주왕복선 형

상 등 여러 복잡한 형상에 대해 computational domain 을 생성하였고, 생성된 

domain 을 토대로 무격자 유동 해석을 수행하였다. 무격자 유동해석은 Huh 에 

의해 개발된 무격자 유동해석 코드를 사용하였고, reference 는 본 연구실에서 

개발된 Structured Finite Volume Method 결과로 하였다. 두 코드 모두 AUSMPW+

를 Numerical Flux scheme 으로 사용하였고, 시간적분법은 LU-SGS, Limiter 는 

Minmod 를 적용하였다. 수행된 결과 비교를 통해 무격자 질점 생성 기법과 유

동해석 기법의 정확성와 효율성 강건성을 검증하였다. 따라서 본 연구에서 개

발된 무격자 유동 해석 기법은 무격자 유동 해석 기법의 접근성 및 효율성 연

구에 기여할 수 있을 것으로 판단된다.   
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