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Abstract

A viscoelastic efficient higher-order

plate theory for composite laminates

Ngoc, Nguyen Sy
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

An efficient higher-order plate theory for viscoelastic materials is
developed to obtain the accurate and efficient time-dependent mechanical
behaviors of composite laminates. In-plane displacement fields are constructed
by superimposing a cubic varying displacement field on a linear zigzag varying
field. Time-dependent relaxation modulus has the form of Prony series which
can be determined by the master curve based on experimental data. The
constitutive equation which has the form of Boltzmann superposition integral
for linear viscoelastic materials is simplified by convolution theorem in the
Laplace transformed domain to avoid direct integration as well as to improve
both computational accuracy and efficiency. Moreover, by using linear elastic
stress-strain relationship in the corresponding Laplace domain, the transverse
shear stress free conditions at the top and bottom surfaces and the transverse
shear stress continuity conditions at the interface between layers can be satisfied

conveniently to reduce the number of primary unknown variables. To validate



the present theory, the viscoelastic responses in the real time domain are
obtained through various numerical inverse Laplace transforms. The numerical
results for graphite/epoxy GY70/339 material are obtained and compared with

the solutions of elastic composite laminated plates.

Keywords: Viscoelastic, Composite laminate, Efficient Higher-Order Plate

Theory, Laplace transform.

Student Number: 2011-24057
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Chapter 1. Introduction

Recently, multilayered composite structures have been increasingly used in
various engineering fields such as automotive, marine, and aerospace industry
which require high stiffness and strength to weight ratio. Due to these
advantages, laminated composites have been applied and expanded their
application continuously to high engineering structural areas for last three
decades.

These applications require accurate prediction of the mechanical and
thermo-mechanical behaviors of composite laminates for the analysis and
design of structural composites. Thus, a lot of computational models [1-5] have
been developed to overcome lack of accuracy of the classical laminated plate
theory (CLPT) which underestimates the deflections and overestimates natural
frequencies and buckling loads. These inaccuracies are the consequence of
neglecting the effects of transverse shear deformation (TSD). To improve this
situation, various refined theories considering the effects of TSD have been
developed. For example, first-order shear deformation theory (FSDT) considers
TSD of the plate requiring the shear correction factor [5, 6]. Even though the
FSDT is more reliable than CLPT, it still cannot predict the detailed through the
thickness mechanical behaviors accurately. Hence, third-order shear
deformation theory (TSDT) using a cubic polynomial for the in-plane

displacement fields is proposed to improve accuracy as well as avoid using



shear correction factors [7]. Nevertheless, TSDT is only adequate in the
prediction of global responses such as deflection, natural frequency and
buckling load. It fails to describe the local responses such as in-plane
displacement and stress distributions of laminates in each layer. In order to
predict both global and local behavior in thick multilayered plates accurately,
Cho and Parmerter [8-11] have developed efficient higher-order plate theory
(EHOPT) by combining a linear zigzag and a cubic varying in-plane
displacement field. Moreover, the number of unknown variables of EHOPT is
the same as that of FSDT and does not depend upon the number of layers. Thus,
EHOPT is very efficient for analyzing laminated composite plates with a large
number of layers and gives reliable results compared to the exact elasticity
solution. With these advantages, EHOPT has been extended to various
applications: post process method, strain energy transformation, thermo-
electro-mechanical problem, multiple-delamination and vibration analysis [12-
17].

However, in all these studies using EHOPT, the materials considered in the
analysis have been limited to linear elastic ones with the assumption that the
relaxation modulus is independent of time. Actually, the laminated composite
consists of elastic fibers and viscoelastic matrix. Therefore, in high temperature
environment, the mechanical behaviors of laminated composites lead to creep
and relaxation responses because of the time-dependent properties of
viscoelastic matrix [18]. For instance, Crossman has determined relaxation
modulus as the function of time in the form of Prony series for graphite/epoxy

T300/934, T300/5209, and GY70/339 composite materials [19].



On the other hand, to study the time-dependent behavior of laminated
composites, several researches have analyzed the dynamic response of the
composite laminates considering the viscoelastic effect. However, the previous
works have some limitations:

Firstly, the Boltzmann superposition principle as the constitutive equation
for viscoelastic materials in integral form has been utilized to be solved by
numerical procedures based on Taylor method [20-23] or trapezoidal method
[24]. The computational accuracy depends on a time step At. To achieve the
solution at the time t, it needs enormous computational resources for many
repetitive solutions for each time step. Especially, such error significantly
increases for long-term problems. Thus, this approach is not effective in the
analysis of viscoelastic behaviors because of extensive computational storage
requirements.

To avoid the above-mentioned limitation, some researchers [25-28] have
introduced the Laplace or Fourier transforms. The results in real time domain
are obtained by inverse Laplace transforms based on numerical calculations.
Therefore, these methods seem to be effective for long-term problems of
viscoelastic analysis. However, the accuracy of previous works is limited for
multilayered plate because of employing FSDT or TSDT.

Lastly, many researches [23, 25-28] have assumed viscoelastic behavior as
simple of analog models constructed from linear springs and dashpots such as
Maxwell model, Kelvin model or simple Prony series with low number of terms.
However, relaxation modulus of real composite materials is much more

complicated. Indeed, the properties of some real composite materials such as



GY70/339, T300/5209 and T300/934 have been experimentally characterized
[19]. It is necessary to express the time-dependent relaxation moduli of these
composites as many-term Prony series obtained by mastering curves
experimental data.

In the present study, the mechanical behaviors of viscoelastic composite
laminates are investigated by applying Laplace transforms based on the
accurate and efficient method (EHOPT) for the real composite material
GY70/339 at the room temperature and moisture (T=75°F, M=0.1%). By
applying Laplace transformation instead of direct time integrations of
Boltzmann superposition equation and inversing in the time domain, the
computational accuracy increases significantly [29-33]. Because of EHOPT’s
advantages, both global and local time-dependent mechanical behaviors such
as deflections, in-plane displacement, in-plane normal stress and transverse
shear stress can be analyzed adequately. In addition, by employing Laplace
transform, the top and bottom transverse shear stress free conditions as well as
continuity conditions at interface layers are conveniently applied, which makes
the degrees of freedom of the proposed method be much smaller than those of
the layerwise one. The properties of real material graphite/epoxy GY70/339
with the time-dependent relaxation modulus in many-term Prony series form
are employed. Numerical results are demonstrated to prove accuracy and

efficiency of the present model.



Chapter 2. Mathematical Formulation

2.1. Governing Equations for Linear Viscoelastic Material
As the constitutive equation of viscoelastic materials, the Boltzmann’s

superposition principle for linear viscoelastic materials is employed as follows:

° ) M

where t denotes time, t’ is a dummy variable for integration, oij(t) and ea(t) are
the time-dependent stress and strain, respectively. Ji°(t) is a compliance and
Qij(t) is a relaxation modulus which can be represented by a series of decaying

exponentials, as in a Prony series:

t
m ’TiT
Qi ® = Qya@ya (t) = Qa | L+ Z‘ibi}:}kle W 2
p:

where the initial relaxation modulus Qi can be determined by the elastic
properties; the viscoelastic coefficients b and the characteristic time ij®

can be obtained by experimental relaxation curves.

It is assumed that Qi111 is independent of time (p1112=1) since the property
in the longitudinal direction shows fiber dominant characteristics. Other moduli

have the same time-dependent function (piju= ¢(t)) with each other because of



matrix dominant characteristic. Therefore, for 3-D orthotropic materials, the
constitutive equations for orthotropic layers in the principal axes system of the

materials can be expressed as follows:

ou (t) t I Quu Quz Biki (t —t ) 0 B &1 (t )

o (t) :J Qa1 Pija (t=1")  Qugp B (t—1) 0 s &5, (1) |dt” (3a)
op(t)) °L 0 0 Quz12 Py (t—1') &, (1)

o3 (t) B : _Q3232 Bija (t-t) 0 0| % (t') .

["31(0} ) ! 0 Q12 @i (¢ —t')} atl[gﬁ(tl)jdt )

By taking the Laplace transform with respect to the time, the Boltzmann

superposition integral equation in Laplace domain can be derived as follows:

o7 (s) le% Quzz @ (8) 0 en(s)
625 (3) |=| Q1@ (5) Quz @ (5) 0 S| &(3) (42)
012 (s) 0 0 Qi (5) | | &0, (s)

[0'52 (S)J _ _Q3232 ¢ (S) 0 ) }{53:2 (S)J (4b)
oy (s) 0 Quan @ (5)] \&a(s)

where ()* are parameters in the Laplace domain. It is well recognized that the
form of Boltzmann superposition integral equation in the Laplace domain for
viscoelastic material reduces to linear elastic Hook’s law. Hence, it is possible
to analyze the viscoelastic laminated composite plates in the Laplace domain

as the same elastic counterpart.



2.2. Efficient Higher-Order Plate Theory for Viscoelastic

Material

Unidirectional composite laminates with rectangular geometry is shown in
Fig. 1a, with the n layers and the thickness h. The mid-plane of laminated plate
is considered as reference plane. The fibers of the k™ lamina are oriented at an
angle 6« to the x;-axis. Considering the material anisotropies of the composite
laminates, the in-plane displacement fields can be assumed as the one of the
original EHOPT [8, 9], which superimposes linear zigzag displacements, with
different slope in each layer, on an overall cubic varying field. The plane stress
assumption is applied and the transverse displacement field is assumed to be
constant along the thickness direction. Therefore, the deflection w is only a

function of the in-plane coordinates. The displacement fields are assumed as

follows:
s
A3 n
6, &
) A
h'2
6‘( .«\‘2 <
> 7
h/2 >

Figure 1la. Geometry and coordinates of rectangular laminated plates
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U, (%, y,8) =w(x,y,t)

(6)

where u,’ and w are displacements defined at the mid-plane of the laminated

plates. n is the number of layers, and H(z-z) is the Heaviside unit step function.

A schematic of the layup configuration and in-plane displacement field is

shown in Fig. 1b. It is worth to note that all of relaxation moduli and slopes

depend on the time for viscoelastic laminates.

Following EHOPT, to reduce number of unknown primary variables in the

in-plane displacement fields, the requirements that the transverse stress should

X3
Zn n—1
) Sy (1) ol (1)
n—1 S;72 l‘) Qi('n_l) (I)
/
° X
S >
0
Z <«
5 (2)
z, Sa(t) QEI) (I)
5 AL
Figure 2b. In-plane displacement field configuration of laminated

composite plates.
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be vanished on the top and bottom surface of the plate, and be continuous at
interface between layers are imposed. There are unknown variables S, in the
displacement fields depending on the number of layers. Thus, traction free
boundary conditions for the top and bottom surface of the plate o,s|.=+n2=0 are

utilized to reduce unknown variables in Laplace domain, as follows:

(7)

Moreover, the transverse shear stress continuity conditions at the interfaces
between the layers should be imposed to reduce the layer-dependent variables
S, in Laplace domain S,*'=Db,,*#,". Hence, the displacement fields in Laplace

domain are written as follows:

n-1
up =ul+urz+ufz? +ul + ) u(z -z )H (2 -z,)
k=1

“ - (8)
ut=w"
where
" . " 12, .
u, = Cay¢7 _W,a u, = _%ébay¢'/ (9)
u=¢, u =big,

where b,,* and c,, denote the matrices in the Laplace transformed domain which

depend on both the material properties and the thickness of each ply. The



procedure determining b,,* and c,, is shown in Appendix 1. It is well recognized
that all of u,®, ¢,", b,,* and c,, are functions of s in Laplace domain. The number
of primary variables in Laplace domain is the same as that of FSDT, and they

are independent of the number of layers.

By using the Hamilton’s principle and integrating by parts, the following

equilibrium equations are obtained as follows:

[Iﬁaﬂ5€aﬂdV+ Iaa35ya3va+ Ip(uaéua +Wow)dv —_[ pswdA =0 (10)
v v v A
*0 0 N1
ou, :=N,, ,+N,=0
p— n71 pa—
5¢a:_[ .8C zbvkaszﬂﬂJ’R:ﬂ,ﬂ”L;byka(Mykﬂ —z N:ﬂﬂ)j
p— p— n71 p—
+ [CyaQ, - b'jaVV +3V7+ Zb:aQ:j (11)
k=1 k=1

{c M, ——beaRf+R3 :zjb;a(m;_zfm;)}:o

oW i—Maﬂ,aﬂ+Ma,a +W-p=0

where the stress resultants are defined as follows:

h/2

(N M, R RS} = I 0,5 {12,2°,2°Jdz (12a)
-h/2
Q)= T 0,5{1,2,2°jdz (12b)
—h/2
(Nl M, | = hjz o {L2}H (z2-2,)dz = hfoaﬁ {1,2)dz (12c)
Qf = hj'z o, H (2-2,)dz = h'/[zaasdz (12d)
10



(Naﬂ’Maﬂ’ o RapQu Va,Va,Naﬂ,Ma,],Q ) (13)
E(Naﬂ’ aff ! aﬂ' Qa’va’va’Naﬂ’MaﬂlQ )

n-1
N, = Uy + Lus™ + 1,us? + L,us® + Y u ™ (1 =z, 1) (14)
k=1
W= 1w
where
u;® (s)=u’s*—su? (0)-u’ (0 u;(s) =u's* —sul (0)-d (0
7 (5) = us? —suZ (0) (2 (0 17 (5) = us® = st (0)—t (0 (15)
u; (s) = uzfs® —suf (0) s (0 W (s) = w's? - s(0) - (0)
and
hi2 hi2
I, = j' pz°dz ¥ = j' pztdz (16)

-h/2 Z

M,.R2,R:,N, and m/have the similar forms with N, . These resultants in

Laplace domain can be expressed as follows:

N, = {Pﬁ;mu;% + Ao (cya¢;,§ _W*"/é') /MZ of. (17a)
+ Ao, s +Z[ b ~ 2P ]b:a‘/) }
k=1

N ATDLYRE LR st (17b)

where Aij™ and A" are defined as follows:

11 ”
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) h/2 n-1 | Zms
¥(9)= | Q; (s)z“dz=2{ Q?-“*(s)z“dz}
ijkl ;[ ijkl ~ Z_[ ijkl (18b)
1 & .
= a1 Z&Qﬁ?« (5)(25‘1111 - Zr?1+l)

M.,.R%, R, N¥, and ¥ have the similar forms with N ; v,V and Q have

the similar forms with q .
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Chapter 3. Numerical results for cylindrical

bending of laminated plates

For the both static and harmonic loadings, the cylindrical bending of
laminated plate is analyzed as numerical examples. Thus, all of equilibrium
equations are reduced to one-dimensional form. The displacement variables are
assumed as trigonometric functions to satisfy the simply supported boundary
conditions. In the real time domain, the displacement and transverse load can

be chosen to be the following forms:

uy (x,t)=> U7, (t)cos(nax)

M 2D

g, (x1) = 2 @,y (t)cos(nax) (19a)

>
]
N

I
M

w(xt) W, (t)sin(nax)

>
]
N

M

P(Xt) =D Py (t)sin(nax)

]
N

n

Hence, the displacement and applied load in Laplace domain can be expressed

as follows:

13



iuy tn (5)cos(nax)

¢;(x,s)zg@;m(s)cos(mx) (19b)
" (x:5) = 2 (s)sin (ncx)
P(x:5) =3 i (s)sin(nax)
7 (08) = S[SUS (8)-sU (1-0) U (£=0) Jeos(nax)
= 2052 ()05 o)
87 (105) = 2[5} (5) 5,1 (1 =0) b, (1= 0) oos (ncx) (19)
= 37 (s)cos(nax)
W (x:5) = 2[5 (5) - sWoy (€ =0) Vi (1 =0)Jsin(necx)
= 3 W (s)sin (narx)

Il
i

n

where p()(t) is the external load and a=x/L. By substituting Egs. (19b) and (19c)
into the resultants given in Egs. (14), (17a) and (17b), one can express the
resultants in terms of the displacement variables. Successively, substituting the
resultants obtained into the equilibrium equations given in Eg. (11), the
algebraic relations between the primary variables and the external force in the

Laplace domain are obtained as follows:

K, K, K, K, Ki1[Y7| My m;, m; m; wm][ur
11 12 13 14 15 1 M 11 M 12 M 13 M 14 M 15 1 0
K K, Ky Ko K ||UR ] IMs My My mg ML [[U] o ”
K K, Ky Ko K [0 bl My M, My ME ML (o) (=10 (20)
K K, Ko Ko Kil|oy | [Mo M, My my ML [jer | o
le sz K*s K;x K*s w” Mxl sz M*a M;x M*s W™ p

14



where K*(s) is the global stiffness matrix, and M*(s) is global mass matrix in
Laplace domain with the detail expressions which are shown in the Appendix
2 and 3. It is well recognized that all of the primary variables and the applied
force depends on the Laplace variable s in Laplace domain. Differing from the
elastic analysis, the basic viscoelastic effects consist of creep and relaxation.
The creep process consists of the time-dependent strain resulting from the
induced steady stress. The function of applied force is already given in Eq. (19a).
Therefore, by solving the Eq. (20), the primary variables can be obtained. In
contrast, the relaxation process consists of time-dependent stress resulting from
the induced steady strain. Therefore, in the plate bending problem, the applied
deflection is given as a constant.

The solutions of Egs. (20) in Laplace domain need to be inversed to the real
time domain. However, it is not possible to invert the above equations directly.
We employ a numerical inverse Laplace transform technique. There are a
number of numerical Laplace transform and numerical Laplace inversion
transform techniques developed by Stehfest, Zakian, Cost and Becker,
Schapery, Durbin or Fourier series method [29-33]. Narayanan and Beskos [32],
Hassan Hassanzadeh and Mehran Pooladi-Darvish [29] have listed and
compared the numerical algorithms with each other for Laplace transform
inversions. In general, Fourier series method provide accurate results for both
non-oscillatory and oscillatory functions. Thus, in this study, the Fourier series

algorithm is employed to obtain the numerical results.

15



To verify the present analysis with the other theories reported previously,
the [0/90/0], [0/90/0/90] and [0/90/0/90/0]s laminated composite plates are
chosen as illustrative numerical examples for static bending analysis by setting
the time derivative terms to be zero. The material properties as well as time-
dependent relaxation modulus of graphite/epoxy GY70/399 at the room

temperature (T=75°F) and low moisture (M=0.1%) are employed:

E,, =2.89x10°MPa E,, = 6.063x10°MPa
G, =Gy, = 4.134x10°MPa G,; = 2.067 x10°MPa (21a)
v, =0.31

And the other properties of laminated plate are assumed as follows:

S=4
p=1480 kg/m®

(21b)
where S is length-to-height ratio, p is a mass density. The time-dependent
function ¢(t) for GY70/399 is shown in Table.1 by mastering curve Crossman’s
experimental data [19].

The function of applied force is assumed as p(t)=1.0 for creep process, and
the static applied deflection is consider as w(t)=1.0 for relaxation process. The
displacement and stress are normalized by the following nondimensional values:

u, - 100:15;;11 W= 100 ET‘:N
Po pohS

(22)

where S represents the length to thickness ratio, which is defined by S=L/h.

16



The Fig. 2 shows the time-dependent nondimensional deflection W of the
symmetric laminate [0/90/0] (1), antisymmetric [0/90/0/90] (I1) and symmetric
with many layers [0/90/0/90/0]s (111) for creep process. At the initial time, both
elastic and viscoelastic solution have the same value (We=1.7214, We;=2.4728
and We;;=1.8376). After that, the elastic solution keeps the deflection value as
a constant because of time-independent characteristics. The viscoelastic
solutions of three cases have a good agreement for the deflection behavior. The

values of nondimensional deflections begin at We and increase as time goes.

17



p by B

0 0.669825e-1 ©

1 0.813977e-2 5.516602214e+02
2 0.484272e-1 1.494783951e+04
3 0.710360e-1 5.288067476e+05
4 0.114155e+0 1.846670914e+07
5 0.102892e+0 5.253922053e+08
6 0.146757e+0 1.799163029¢e+10
7 0.148508e+0 4.761315266e+11
8 0.150514e+0 1.477467149e+13
9 0.696426e-1 4.976486103e+14
10 0.729459%-1 8.174141919e+15

Table 1: The time-dependent function of relaxation modulus of GY 70/339

composite material.

Time [0/90/0] [0/90/0/90] [0/90/0/90/0]s
t=0 (Elastic 1.7214 2.4728 1.8376
case)
t=10's 1.7215 2.4730 1.8378
t=10% 1.7230 2.4752 1.8394
t=10% 1.7318 2.4878 1.8493
t=10% 1.7604 2.5292 1.8816
t=10s 1.8085 2.5991 1.9363
t=10% 1.8850 2.7108 2.0241
t=10"s 1.9707 2.8374 2.1240
t=10% 2.1228 3.0655 2.3052
t=10% 2.2932 3.3256 2.5136
t=10"s 2.4794 3.6173 2.7500

Table 2:  The value of time-dependent nondimensional deflection W

18
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Fig. 2 The time-dependent nondimensional deflection W.
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The distributions through the thickness of in-plane displacement variation
U; are shown in Fig. 3a (1), Fig. 3b (II) and Fig. 3c (lll). The in-plane
displacement shows an accurate prediction for the elastic analysis [2]. For the
viscoelastic analysis based on the EHOPT have a good agreement with the
elastic one. The viscoelastic response has the same solution with the elastic one
at the initial time. After that, it changes with respect to time but still keep the
zigzag pattern through the thickness of laminates. From the distribution shown
in the figure, there are some points at which the value of U, is constant or time-
independent. For the symmetric laminate (1, 111) cases, the midpoint is always
the one of time-independent points. These time-independent points are belong

to a straight line which shown as dot-dashed line in the figures. The difference
A(t)=|U,(z,t)-D(z1t)| between the in-plane displacement and the time-

independent line increase with respect to the time.

The Fig. 4a, 4b and 4c show the in-plane normal stress variation through the
thickness of laminate I, 11 and 111 respectively for relaxation process. The elastic
responses of EHOPT show good agreements with the exact solution [2]. From
the figure, we can see that: (1) at some layers whose value of normal stress is 0
at the initial time, the stress keeps the value as 0 as time proceeds. (2) We can
observe a slight variation of in-plane normal stress which is dominated by the

fiber direction. For instance, like the elastic solution, the viscoelastic behavior
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of the normal stress o11 for symmetric | and Il still keep the symmetric

properties.

The transverse shear stress variations through the thickness are shown in Fig.
5a, Fig. 5b and Fig. 5c¢ for the relaxation process. The elastic solutions of
EHOPT have good agreements with those of exact elasticity [2]. From the Fig.
5, we can see that: (1) at the initial time, the viscoelastic solution have same
value with that of elastic problem; (2) then, the amplitude of transverse stress
decreases with respect to time, but still keeps the through-the-thickness shape.
Especially for the symmetric laminates, the symmetric distribution properties

of transverse shear stress are conserved.
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Chapter 6. Conclusion

The mechanical behaviors of linear viscoelastic laminates based on EHOPT
have been efficiently analyzed by employing the Laplace transform without any
integral transformation or any time step scheme. The computational accuracy
and efficiency of the analysis are retained since the viscoelastic EHOPT
formulation was made in the elastic equivalence in the Laplace transformed
domain. The numerical results for graphite/epoxy GY70/339 composite
material adequately show the change of time-dependent mechanical behaviors
such as the deflection, the in-plane displacement for creep process as well as
the normal and transverse shear stress for relaxation process. The transverse
stress continuity condition at the interfaces between layers can be successfully
satisfied to reduce the number of unknown variables. It promises for applying
viscoelastic behavior of composite laminates to various higher order models
including [7, 11-12, 14, 16, 20]. Since the present analysis extended the
applications of the higher order plate theories to the viscoelastic materials, it is
certain that the present viscoelastic approach can provide the theoretical basis
with high accuracy and efficiency for the various mechanical behavior of

laminated composites.
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Appendix 1: Calculation of Terms in Equation (9)

The transverse stress continuity conditions are:

T30l = Taaliesy (23)
where m=1,2,..,n-1

The transverse stress continuity conditions at the interfaces of viscoelastic

composite laminates can be expressed by the following matrix equation in the Laplace

transformed domain:

QZ,, 0 o . oS ~AQxs,
AQSaSy QSaSy 0 " 0 Sf* AQ3(137
AQSaSy AQSaSy QSaSy . . . =1- |:Z: + W*y:|
. . 0 .
AQ AQuy” Qi s (—aQly” 24)
ZAQSaSV 3AQ3(137
ZAQSaSV 3AQ3(137 2
+. &+ ¢,
—28Q43)z,, | (38000 27,
where
Qi ()= Qs:;yl (s)- Qs (9)
Eq. (24) can be written as following symbolic form:
[AM’ J(nfl)x(nfl) {S’ }(n,l)xl - {83"” }(n—l)XI (}CY * WW) (25)

* *

+ {C3a37 }(nfl)xl 5; + {D;a3y }(n—l)X1 ¢7
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Substituting Eq. (7) derived from traction free boundary conditions for top and

bottom surfaces into Eq. (25):

2 n-1 n-1
[A;as,]{s:}?{e;sy}[?’z¢;+izs:*]—;]{cgw}zs:w{n;sy}qs; (26)
k=1 k=1

n-1 2
[ )1 [ s i [ B - Be, ol i @

k=1
[ A, 1{S)}=[ Bius, |8 (28)
{S}lf*} [A;Gy:l |: 3a3y:|¢* (29)
From the above equation, unknown shear angle changes S.,* can be expressed
simply,
S. =by¢, (30)

By substituting Eqg. (30) into the second equation in Eq. (7), one can express the

displacement variable y, in terms of ¢, and w:

2 n-1
Xo=-— (3h ¢, + W, +1ZSK*J (31)
. 3 . . 1 e
=== +W,1+_Zslk j
4 24
3h2 B (32)
l; == T *2 kz J
. 3h2 ~ .
X == 4 Z( 1¢1 b1k2¢2)J
2 (33)
. 3he o AT
Xo=—| ——+W,+— (b;1¢1 +b 2¢2)
4 24
28 : :
= -1



=

. 3 1 N
_( +_Zb1k1j¢1 __Zblk2¢2 _W,l
4 2 2ia

(34)
. 18, .« (18, 3n) . .
X2 = __Zb21¢1 - _szz +—— | —W,
2i3 2i3 4
Therefore
Lo =Colh — W, (35)

’ A-=disw



Appendix2: Components of the stiffness matrix K

The components of stiffness matrix K™ in Eq. (20) are obtained by substituting Egs.

(17a) and (17b) into the equilibrium equations given in Eq. (11).

Kfs} _ |:—a3A11I11}
| K _0‘3A;111

LYY Kyu Ky
=M 9)
K K|
K;5:| _ {_OﬁGﬁu}
| Kss _0‘3G11121

_K* _T
K;l K;z = 1*5
I ] pd

_K* _T
Ke Kal=| 7
I ] |
K5*5=0‘4 21*11

where
30 %
l.l_. 7

| K;l K;Z | |: K13 K; :|

_ * * 2 0* 2 0*
K K12i| _ |:a A @ 121}
x x 2 p0* 2 A0

Ky Ky O Py A Poy
_ * * 2 0* 2 0*
Kis K14:| _ |:a Gy @ G1121:|
* * 2 0% 2 0%
LK Ky a'Gyy Gy



n-1
* 1 2% 3* k 1k* Ok*
H (cyaGylwl h yaGylwl + Galwl + Zby (lewl Gylwl)j
o (37)
0 1* 2% k ~O0k*
(cyaGVSwS h eyaGy3(4)3 + 3Ga3103 ZbyaG;/B(uBJ
k

y3a3 { wa Ay3w3 ewa AyIStulB + 3A/I34;23 + Z wa A;kB*wB} (38)

. « 1 . .
Ok* _ 0k 1k 2k
GyBaB { wa’ Y303 T Fe(ua 3103 3a3 + waa A/SwS (39)

31



Appendix 3: Components of the mass matrix M”

The components of mass matrix M in Eq. (20) are obtained by substituting Eq. (14)

into the equilibrium equations given in Eq. (11).

_M;1 M,, My My,
_M;C% M;4_ ==|:L;l+ IG L;l i| (40)
M,z My, L, L, +1s
_M;S _ -al, _0“]11I
_MZS _0“]11;
_M* _T
M;l Mgz = 1*5
I vl
_M* _T
M;3 M; = 35
I v
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L. =c,l,+c Jl*——l e |l ——1 e J2
wo fol ] ra ¥ yo 2h wo "5 2h ya ¥ yo

n-1 n-1
3* f f f f 1f* of*
+32 42 b (1 =z )+ 3 bl (32 =2,307)
f=1 f=1

- n-1
Jz‘zw = Cawli+1 _%eawlﬂz + zbsw(lilil - Zklik) (42)
k=1
if * f 1 R SV i 43
Jaw :CawliJrl_%eawIHZ +zbaw(|i+l_zk|i ) ( )
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