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Abstract 
 
A viscoelastic efficient higher-order 

plate theory for composite laminates 

Ngoc, Nguyen Sy 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 
 

An efficient higher-order plate theory for viscoelastic materials is 

developed to obtain the accurate and efficient time-dependent mechanical 

behaviors of composite laminates. In-plane displacement fields are constructed 

by superimposing a cubic varying displacement field on a linear zigzag varying 

field. Time-dependent relaxation modulus has the form of Prony series which 

can be determined by the master curve based on experimental data. The 

constitutive equation which has the form of Boltzmann superposition integral 

for linear viscoelastic materials is simplified by convolution theorem in the 

Laplace transformed domain to avoid direct integration as well as to improve 

both computational accuracy and efficiency. Moreover, by using linear elastic 

stress-strain relationship in the corresponding Laplace domain, the transverse 

shear stress free conditions at the top and bottom surfaces and the transverse 

shear stress continuity conditions at the interface between layers can be satisfied 

conveniently to reduce the number of primary unknown variables. To validate 
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the present theory, the viscoelastic responses in the real time domain are 

obtained through various numerical inverse Laplace transforms. The numerical 

results for graphite/epoxy GY70/339 material are obtained and compared with 

the solutions of elastic composite laminated plates. 

 

Keywords: Viscoelastic, Composite laminate, Efficient Higher-Order Plate 

Theory, Laplace transform. 
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Nomenclasture 

h = total thickness of the laminate 

Jijkl = compliances modulus  

Qijkl = relaxation modulus  

uߙ, w  = displacement along the xߙ or z 

axis 

 ij = stress tensor componentsߪ

εkl = strain tensor components 

t = time 

t’ = dummy variable of time for 

integration 

φijkl = time-dependent function of 

relaxation modulus 

bijkl = viscoelastic coefficient in the 

generalized coordinates 

τ ijkl = viscoelastic characteristic time 

s = variable in Laplace domain 

n = number of layers of the 

laminates 

θk = the angle of k-th layer 

0 ,, , , , ku wS        = primary unknown variables in 

time domain 

H(z-zk) = Heaviside unit step function 
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*0 *1 *2 *3 * *, , , , ,ku u u u u w      = primary unknown variables in 

Laplace domain 

2 3 1 2, , , , , , , , ,k k kN M R R Q V V N M Q           = resultants of internal forces and 

moments in time domain 

2 3 1 2, , , , , , , , ,k k kN M R R Q V V N M Q           = resultants of internal forces and 

moments in Laplace domain 

2 3
0, , , , ,fN M R R N W   

       = resultants of inertia forces in 

Laplace domain 

**0 **1 **2 **3 ** **, , , , ,ku u u u u w      = acceleration variables in 

Laplace domain 

, k
c cI I  = integrations of density through 

the thickness 

,q qk
ijkl ijklA A  = components of laminate 

stiffness matrix 

,p p  = function of transverse 

distributed force intensity in 

time and Laplace domains 

L = side length of plate 

K = stiffness matrix 

M = mass matrix 

S = the length-to-height ratio 

  = mass density  
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Chapter 1. Introduction 

 

 

Recently, multilayered composite structures have been increasingly used in 

various engineering fields such as automotive, marine, and aerospace industry 

which require high stiffness and strength to weight ratio. Due to these 

advantages, laminated composites have been applied and expanded their 

application continuously to high engineering structural areas for last three 

decades.  

 These applications require accurate prediction of the mechanical and 

thermo-mechanical behaviors of composite laminates for the analysis and 

design of structural composites. Thus, a lot of computational models [1-5] have 

been developed to overcome lack of accuracy of the classical laminated plate 

theory (CLPT) which underestimates the deflections and overestimates natural 

frequencies and buckling loads. These inaccuracies are the consequence of 

neglecting the effects of transverse shear deformation (TSD). To improve this 

situation, various refined theories considering the effects of TSD have been 

developed. For example, first-order shear deformation theory (FSDT) considers 

TSD of the plate requiring the shear correction factor [5, 6]. Even though the 

FSDT is more reliable than CLPT, it still cannot predict the detailed through the 

thickness mechanical behaviors accurately. Hence, third-order shear 

deformation theory (TSDT) using a cubic polynomial for the in-plane 

displacement fields is proposed to improve accuracy as well as avoid using 
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shear correction factors [7]. Nevertheless, TSDT is only adequate in the 

prediction of global responses such as deflection, natural frequency and 

buckling load. It fails to describe the local responses such as in-plane 

displacement and stress distributions of laminates in each layer. In order to 

predict both global and local behavior in thick multilayered plates accurately, 

Cho and Parmerter [8-11] have developed efficient higher-order plate theory 

(EHOPT) by combining a linear zigzag and a cubic varying in-plane 

displacement field. Moreover, the number of unknown variables of EHOPT is 

the same as that of FSDT and does not depend upon the number of layers. Thus, 

EHOPT is very efficient for analyzing laminated composite plates with a large 

number of layers and gives reliable results compared to the exact elasticity 

solution. With these advantages, EHOPT has been extended to various 

applications: post process method, strain energy transformation, thermo-

electro-mechanical problem, multiple-delamination and vibration analysis [12-

17]. 

However, in all these studies using EHOPT, the materials considered in the 

analysis have been limited to linear elastic ones with the assumption that the 

relaxation modulus is independent of time. Actually, the laminated composite 

consists of elastic fibers and viscoelastic matrix. Therefore, in high temperature 

environment, the mechanical behaviors of laminated composites lead to creep 

and relaxation responses because of the time-dependent properties of 

viscoelastic matrix [18]. For instance, Crossman has determined relaxation 

modulus as the function of time in the form of Prony series for graphite/epoxy 

T300/934, T300/5209, and GY70/339 composite materials [19].  
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On the other hand, to study the time-dependent behavior of laminated 

composites, several researches have analyzed the dynamic response of the 

composite laminates considering the viscoelastic effect. However, the previous 

works have some limitations:  

Firstly, the Boltzmann superposition principle as the constitutive equation 

for viscoelastic materials in integral form has been utilized to be solved by 

numerical procedures based on Taylor method [20-23] or trapezoidal method 

[24]. The computational accuracy depends on a time step ∆t. To achieve the 

solution at the time t, it needs enormous computational resources for many 

repetitive solutions for each time step. Especially, such error significantly 

increases for long-term problems. Thus, this approach is not effective in the 

analysis of viscoelastic behaviors because of extensive computational storage 

requirements. 

To avoid the above-mentioned limitation, some researchers [25-28] have 

introduced the Laplace or Fourier transforms. The results in real time domain 

are obtained by inverse Laplace transforms based on numerical calculations. 

Therefore, these methods seem to be effective for long-term problems of 

viscoelastic analysis. However, the accuracy of previous works is limited for 

multilayered plate because of employing FSDT or TSDT. 

Lastly, many researches [23, 25-28] have assumed viscoelastic behavior as 

simple of analog models constructed from linear springs and dashpots such as 

Maxwell model, Kelvin model or simple Prony series with low number of terms. 

However, relaxation modulus of real composite materials is much more 

complicated. Indeed, the properties of some real composite materials such as 
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GY70/339, T300/5209 and T300/934 have been experimentally characterized 

[19]. It is necessary to express the time-dependent relaxation moduli of these 

composites as many-term Prony series obtained by mastering curves 

experimental data. 

In the present study, the mechanical behaviors of viscoelastic composite 

laminates are investigated by applying Laplace transforms based on the 

accurate and efficient method (EHOPT) for the real composite material 

GY70/339 at the room temperature and moisture (T=75oF, M=0.1%). By 

applying Laplace transformation instead of direct time integrations of 

Boltzmann superposition equation and inversing in the time domain, the 

computational accuracy increases significantly [29-33]. Because of EHOPT’s 

advantages, both global and local time-dependent mechanical behaviors such 

as deflections, in-plane displacement, in-plane normal stress and transverse 

shear stress can be analyzed adequately. In addition, by employing Laplace 

transform, the top and bottom transverse shear stress free conditions as well as 

continuity conditions at interface layers are conveniently applied, which makes 

the degrees of freedom of the proposed method be much smaller than those of 

the layerwise one. The properties of real material graphite/epoxy GY70/339 

with the time-dependent relaxation modulus in many-term Prony series form 

are employed. Numerical results are demonstrated to prove accuracy and 

efficiency of the present model. 
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Chapter 2. Mathematical Formulation 

 

2.1. Governing Equations for Linear Viscoelastic Material 

As the constitutive equation of viscoelastic materials, the Boltzmann’s 

superposition principle for linear viscoelastic materials is employed as follows: 
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where t denotes time, t’ is a dummy variable for integration, σij(t) and εkl(t) are 

the time-dependent stress and strain, respectively. Jijkl
0(t) is a compliance and 

Qijkl
0(t) is a relaxation modulus which can be represented by a series of decaying 

exponentials, as in a Prony series: 
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where the initial relaxation modulus Qijkl can be determined by the elastic 

properties; the viscoelastic coefficients   bijkl
p
 and the characteristic time ߬ijkl

p 

can be obtained by experimental relaxation curves.  

     It is assumed that Q1111 is independent of time (φ1111=1) since the property 

in the longitudinal direction shows fiber dominant characteristics. Other moduli 

have the same time-dependent function (φijkl= φ(t)) with each other because of 
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matrix dominant characteristic. Therefore, for 3-D orthotropic materials, the 

constitutive equations for orthotropic layers in the principal axes system of the 

materials can be expressed as follows: 
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 By taking the Laplace transform with respect to the time, the Boltzmann 

superposition integral equation in Laplace domain can be derived as follows: 
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where ( )* are parameters in the Laplace domain. It is well recognized that the 

form of Boltzmann superposition integral equation in the Laplace domain for 

viscoelastic material reduces to linear elastic Hook’s law. Hence, it is possible 

to analyze the viscoelastic laminated composite plates in the Laplace domain 

as the same elastic counterpart. 
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2.2. Efficient Higher-Order Plate Theory for Viscoelastic 

Material 

 

 Unidirectional composite laminates with rectangular geometry is shown in 

Fig. 1a, with the n layers and the thickness h. The mid-plane of laminated plate 

is considered as reference plane. The fibers of the kth lamina are oriented at an 

angle θk to the x1-axis. Considering the material anisotropies of the composite 

laminates, the in-plane displacement fields can be assumed as the one of the 

original EHOPT [8, 9], which superimposes linear zigzag displacements, with 

different slope in each layer, on an overall cubic varying field. The plane stress 

assumption is applied and the transverse displacement field is assumed to be 

constant along the thickness direction. Therefore, the deflection w is only a 

function of the in-plane coordinates.  The displacement fields are assumed as 

follows: 

 

Figure 1a.  Geometry and coordinates of rectangular laminated plates 
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where uα
0 and w are displacements defined at the mid-plane of the laminated 

plates. n is the number of layers, and H(z-zk) is the Heaviside unit step function. 

A schematic of the layup configuration and in-plane displacement field is 

shown in Fig. 1b. It is worth to note that all of relaxation moduli and slopes 

depend on the time for viscoelastic laminates.   

 Following EHOPT, to reduce number of unknown primary variables in the 

in-plane displacement fields, the requirements that the transverse stress should 

 

Figure 2b.  In-plane displacement field configuration of laminated 
composite plates. 
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be vanished on the top and bottom surface of the plate, and be continuous at 

interface between layers are imposed. There are unknown variables Sαk in the 

displacement fields depending on the number of layers. Thus, traction free 

boundary conditions for the top and bottom surface of the plate σα3|z=±h/2=0 are 

utilized to reduce unknown variables in Laplace domain, as follows: 
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 Moreover, the transverse shear stress continuity conditions at the interfaces 

between the layers should be imposed to reduce the layer-dependent variables 

Sγk* in Laplace domain Sγk*=bαγkϕγ*. Hence, the displacement fields in Laplace 

domain are written as follows: 
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where bαγk and cαγ denote the matrices in the Laplace transformed domain which 

depend on both the material properties and the thickness of each ply. The 



10 
 

procedure determining bαγk and cαγ is shown in Appendix 1. It is well recognized 

that all of uα*0, ϕγ*, bαγk and cαγ are functions of s in Laplace domain. The number 

of primary variables in Laplace domain is the same as that of FSDT, and they 

are independent of the number of layers. 

By using the Hamilton’s principle and integrating by parts, the following 

equilibrium equations are obtained as follows: 
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where the stress resultants are defined as follows: 
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

     (12c)

 
 

/ 2 / 2

3 3
/ 2 k

h h
k

k
h z

Q H z z dz dz   


     (12d) 
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 
 

2 3 1 2

2 3 1 2

, , , , , , , , ,

, , , , , , , , ,

k k k

k k k

N M R R Q V V N M Q

N M R R Q V V N M Q

         

         
 (13) 

1
**0 **1 **2 **3 **

0 1 2 3 1 0
1

**
0

( )
n

k k k
k

k
N I u I u I u I u u I z I

W I w

     





     







 (14)

 

where 

 

           
           
           

**0 *0 2 0 0 **1 *1 2 1 1

**2 *2 2 2 2 **3 *3 2 3 3

** * 2 ** * 2

0 0 0 0

0 0 0 0

0 0 0 0k k k k

u s u s su u u s u s su u

u s u s su u u s u s su u

u s u s su u w s w s sw w

       

       

   

     

     

     

   

   

   

 (15) 

and 

 

/ 2 /2

/2 k

h h
c k c

c c
h z

I z dz I z dz 


    (16)
 

2 3
0, , , fM R R N  

    and fM

 have the similar forms with N

 . These resultants in 

Laplace domain can be expressed as follows: 

 
 

1
0* *0 1* * * 2* *

, , , ,
1

1
3* * 1 * 0 * *

, ,
1

1
2

n
k

k

n
k k k

k
k

N A u A c w A b
h

A A z A b

            

       

 

 









   

      




 (17a) 

 1 1
0* * 1* * 2* * 0 * *
3 3 3 3 3 3 3 3

1 1

1 1 3 1
2 2 2 2

n n
k k k

k k

Q A c A b A A b
h                  

 

 

 
    
 

   (17b) 

where Aijkl
q* and Aijkl

qk* are defined as follows: 
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 

1/ 2 1
* * *

0/ 2

1
* 1 1

1
0

( ) ( ) ( )

1 ( )
1

m

m

zh n
q q m q
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n
m q q
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m

A s Q s z dz Q s z dz

Q s z z
q






 




     
  

 


 


 (18a)

 

 

 

1/ 2 1
* * *

1
* 1 1

1

( ) ( ) ( )

1 ( )
1

m

k m

zh n
qk q m q
ijkl ijkl ijkl

m kz z

n
m q q
ijkl m m

m k

A s Q s z dz Q s z dz

Q s z z
q






 




     
  

 


 


 (18b)

 

2 3, , , kM R R N    and kM have the similar forms with N ; 1 2,V V   and kQ  have 

the similar forms with Q . 
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Chapter 3.   Numerical results for cylindrical 

bending of laminated plates 

 

 

 

 For the both static and harmonic loadings, the cylindrical bending of 

laminated plate is analyzed as numerical examples. Thus, all of equilibrium 

equations are reduced to one-dimensional form. The displacement variables are 

assumed as trigonometric functions to satisfy the simply supported boundary 

conditions. In the real time domain, the displacement and transverse load can 

be chosen to be the following forms: 

     

     

     

     

0 0
( )

1

( )
1

( )
1

( )
1

, cos

, cos

, sin

, sin

n
n

n
n

n
n

n
n

u x t U t n x

x t t n x

w x t W t n x

p x t p t n x

 

 



 























 













 (19a) 

Hence, the displacement and applied load in Laplace domain can be expressed 

as follows: 
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     

     

     

     
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(19b)
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 (19c) 

where p(n)(t) is the external load and α=π/L. By substituting Eqs. (19b) and (19c) 

into the resultants given in Eqs. (14), (17a) and (17b), one can express the 

resultants in terms of the displacement variables. Successively, substituting the 

resultants obtained into the equilibrium equations given in Eq. (11), the 

algebraic relations between the primary variables and the external force in the 

Laplace domain are obtained as follows: 

*0* * * * * * * * * *111 12 13 14 15 11 12 13 14 15
*0* * * * * * * * * *
221 22 23 24 25 21 22 23 24 25
** * * * * * *
131 32 33 34 35 31 32

* * * * * *
41 42 43 44 45 2
* * * * * *
51 52 53 54 55

UK K K K K M M M M M
UK K K K K M M M M M

K K K K K M M M
K K K K K
K K K K K W

  
  
       

    
    

**0
1
**0
2

*** * *
133 34 35

* * * * * **
41 42 43 44 45 2
* * * * * **
51 52 53 54 55

0
0
0
0

U

U

M M
M M M M M

pM M M M M W

                     
        
       

 (20) 
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where K*(s) is the global stiffness matrix, and M*(s) is global mass matrix in 

Laplace domain with the detail expressions which are shown in the Appendix 

2 and 3. It is well recognized that all of the primary variables and the applied 

force depends on the Laplace variable s in Laplace domain. Differing from the 

elastic analysis, the basic viscoelastic effects consist of creep and relaxation. 

The creep process consists of the time-dependent strain resulting from the 

induced steady stress. The function of applied force is already given in Eq. (19a). 

Therefore, by solving the Eq. (20), the primary variables can be obtained. In 

contrast, the relaxation process consists of time-dependent stress resulting from 

the induced steady strain. Therefore, in the plate bending problem, the applied 

deflection is given as a constant.  

 The solutions of Eqs. (20) in Laplace domain need to be inversed to the real 

time domain. However, it is not possible to invert the above equations directly. 

We employ a numerical inverse Laplace transform technique. There are a 

number of numerical Laplace transform and numerical Laplace inversion 

transform techniques developed by Stehfest, Zakian, Cost and Becker, 

Schapery, Durbin or Fourier series method [29-33]. Narayanan and Beskos [32], 

Hassan Hassanzadeh and Mehran Pooladi-Darvish [29] have listed and 

compared the numerical algorithms with each other for Laplace transform 

inversions. In general, Fourier series method provide accurate results for both 

non-oscillatory and oscillatory functions. Thus, in this study, the Fourier series 

algorithm is employed to obtain the numerical results.  
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 To verify the present analysis with the other theories reported previously, 

the [0/90/0], [0/90/0/90] and [0/90/0/90/0]s laminated composite plates are 

chosen as illustrative numerical examples for static bending analysis by setting 

the time derivative terms to be zero. The material properties as well as time-

dependent relaxation modulus of graphite/epoxy GY70/399 at the room 

temperature (T=75oF) and low moisture (M=0.1%) are employed: 

5 3
11 22

3 3
12 13 23

12

2.89 10 6.063 10

4.134 10 2.067 10
0.31

E MPa E MPa
G G MPa G MPa


   

    


 (21a) 

And the other properties of laminated plate are assumed as follows: 

3

4

1480 /

S

kg m




 (21b) 

where S is length-to-height ratio, ρ is a mass density. The time-dependent 

function φ(t) for GY70/399 is shown in Table.1 by mastering curve Crossman’s 

experimental data [19].  

 The function of applied force is assumed as p(t)=1.0 for creep process, and 

the static applied deflection is consider as w(t)=1.0 for relaxation process. The 

displacement and stress are normalized by the following nondimensional values: 

      

1
1 3 4

0 0

100 100T TE u E w
U W

p hS p hS
   (22) 

where S represents the length to thickness ratio, which is defined by S=L/h. 



17 
 

 The Fig. 2 shows the time-dependent nondimensional deflection W of the 

symmetric laminate [0/90/0] (I), antisymmetric [0/90/0/90] (II) and symmetric 

with many layers [0/90/0/90/0]s (III) for creep process. At the initial time, both 

elastic and viscoelastic solution have the same value (WeI=1.7214, WeII=2.4728 

and WeIII=1.8376). After that, the elastic solution keeps the deflection value as 

a constant because of time-independent characteristics. The viscoelastic 

solutions of three cases have a good agreement for the deflection behavior. The 

values of nondimensional deflections begin at We and increase as time goes. 
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p bp ૌp 
0 0.669825e-1 ∞ 
1 0.813977e-2 5.516602214e+02 
2 0.484272e-1 1.494783951e+04 
3 0.710360e-1 5.288067476e+05 
4 0.114155e+0 1.846670914e+07 
5 0.102892e+0 5.253922053e+08 
6 0.146757e+0 1.799163029e+10 
7 0.148508e+0 4.761315266e+11 
8 0.150514e+0 1.477467149e+13 
9 0.696426e-1 4.976486103e+14 
10 0.729459e-1 8.174141919e+15 

 

Table 1:  The time-dependent function of relaxation modulus of GY 70/339 

composite material. 

Time [0/90/0] [0/90/0/90] [0/90/0/90/0]s 
t=0 (Elastic 

case) 
1.7214 2.4728 1.8376 

t=101s 1.7215 2.4730 1.8378 
t=102s 1.7230 2.4752 1.8394 
t=103s 1.7318 2.4878 1.8493 
t=104s 1.7604 2.5292 1.8816 
t=105s 1.8085 2.5991 1.9363 
t=106s 1.8850 2.7108 2.0241 
t=107s 1.9707 2.8374 2.1240 
t=108s 2.1228 3.0655 2.3052 
t=109s 2.2932 3.3256 2.5136 
t=1010s 2.4794 3.6173 2.7500 

 

Table 2:   The value of time-dependent nondimensional deflection W  
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Fig. 2  The time-dependent nondimensional deflection W. 

 

Fig. 3a  The time-dependent nondimensional in-plane displacement U1 of 
laminate I. 
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Fig. 3b  The time-dependent nondimensional in-plane displacement U1 of 
laminate II. 

 

Fig. 3c  The time-dependent nondimensional in-plane displacement U1 of 
laminate III. 
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 The distributions through the thickness of in-plane displacement variation 

U1 are shown in Fig. 3a (I), Fig. 3b (II) and Fig. 3c (III). The in-plane 

displacement shows an accurate prediction for the elastic analysis [2]. For the 

viscoelastic analysis based on the EHOPT have a good agreement with the 

elastic one. The viscoelastic response has the same solution with the elastic one 

at the initial time. After that, it changes with respect to time but still keep the 

zigzag pattern through the thickness of laminates. From the distribution shown 

in the figure, there are some points at which the value of U1 is constant or time-

independent. For the symmetric laminate (I, III) cases, the midpoint is always 

the one of time-independent points. These time-independent points are belong 

to a straight line which shown as dot-dashed line in the figures. The difference 

     1 , ,t U z t D z t    between the in-plane displacement and the time-

independent line increase with respect to the time. 

 The Fig. 4a, 4b and 4c show the in-plane normal stress variation through the 

thickness of laminate I, II and III respectively for relaxation process. The elastic 

responses of EHOPT show good agreements with the exact solution [2]. From 

the figure, we can see that: (1) at some layers whose value of normal stress is 0 

at the initial time, the stress keeps the value as 0 as time proceeds. (2) We can 

observe a slight variation of in-plane normal stress which is dominated by the 

fiber direction. For instance, like the elastic solution, the viscoelastic behavior 
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of the normal stress σ11 for symmetric I and III still keep the symmetric 

properties. 

 The transverse shear stress variations through the thickness are shown in Fig. 

5a, Fig. 5b and Fig. 5c for the relaxation process. The elastic solutions of 

EHOPT have good agreements with those of exact elasticity [2]. From the Fig. 

5, we can see that: (1) at the initial time, the viscoelastic solution have same 

value with that of elastic problem; (2) then, the amplitude of transverse stress 

decreases with respect to time, but still keeps the through-the-thickness shape. 

Especially for the symmetric laminates, the symmetric distribution properties 

of transverse shear stress are conserved.  
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Fig. 4a  The in-plane normal tress σ11 variation through the thickness of 
laminate I. 

 

Fig. 4b  The in-plane normal tress σ11 variation through the thickness of 
laminate II. 
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Fig. 4c  The in-plane normal tress σ11 variation through the thickness of 
laminate III. 

 

Fig. 5a  The transverse stress σ13 variation through the thickness of laminate I. 
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Fig. 5b  The transverse stress σ13 variation through the thickness of laminate 
II. 

 

Fig. 5c  The transverse stress σ13 variation through the thickness of laminate 
III. 
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Chapter 6. Conclusion 

 

The mechanical behaviors of linear viscoelastic laminates based on EHOPT 

have been efficiently analyzed by employing the Laplace transform without any 

integral transformation or any time step scheme. The computational accuracy 

and efficiency of the analysis are retained since the viscoelastic EHOPT 

formulation was made in the elastic equivalence in the Laplace transformed 

domain. The numerical results for graphite/epoxy GY70/339 composite 

material adequately show the change of time-dependent mechanical behaviors 

such as the deflection, the in-plane displacement for creep process as well as 

the normal and transverse shear stress for relaxation process. The transverse 

stress continuity condition at the interfaces between layers can be successfully 

satisfied to reduce the number of unknown variables. It promises for applying 

viscoelastic behavior of composite laminates to various higher order models 

including [7, 11-12, 14, 16, 20]. Since the present analysis extended the 

applications of the higher order plate theories to the viscoelastic materials, it is 

certain that the present viscoelastic approach can provide the theoretical basis 

with high accuracy and efficiency for the various mechanical behavior of 

laminated composites. 
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Appendix 1: Calculation of Terms in Equation (9) 

 

The transverse stress continuity conditions are: 

3 3m mz z z z    
   (23) 

where 1,2,..., 1m n    

 The transverse stress continuity conditions at the interfaces of viscoelastic 

composite laminates can be expressed by the following matrix equation in the Laplace 

transformed domain: 

 
       

1* 1*2*
3 33 3

2* 2*2* 3*
3 33 3 3 3

3* 3* 4* * *
3 3 3 3 3 3 ,

1 * 1 * * 1 * 1 *
3 3 3 3 3 3 3 3

0 0 . 0
0 . 0

. . . .
. . . . 0 . .

. .n n n n n

S QQ
S QQ Q

Q Q Q w

Q Q Q S Q

   

     

       

        



   

              
              
    
             

   

1* 1* 2
3 3 1 3 3 1

2* 2* 2
3 3 2 3 3 2

* *

1 * 1 * 2
3 3 1 3 3 1

2 3

2 3

. .

. .

2 3n n
n n

Q z Q z

Q z Q z

Q z Q z

   

   

 

   
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 
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 (24) 

where  

       1 ** *
3 3 3 3 3 3

mm mQ s Q s Q s     
    

 Eq. (24) can be written as following symbolic form: 

           
     

* * * * *
3 3 3 3 ,1 1 1 1 1 1

* * * *
3 3 3 31 1 1 1

n n n n

n n

A S B w

C D

      
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
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      

   

    

 
 (25) 
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 Substituting Eq. (7) derived from traction free boundary conditions for top and 

bottom surfaces into Eq. (25): 

        
2 1 1

* * * * * * * * *
3 3 3 3 3 3 3 3

1 1

3 1 1
4 2 2

n n
k k

k k

hA S B S C S D
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 

 

 
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 
 

 

(26) 
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21

* * * * * * * *
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1

1 1 3
2 2 4

n
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
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(27) 

  * * * *
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(28) 

   1* * * *
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kS A B     

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(29) 

 From the above equation, unknown shear angle changes Sαk can be expressed 

simply, 

 * *k kS b    (30) 

 By substituting Eq. (30) into the second equation in Eq. (7), one can express the 

displacement variable χα in terms of ϕα and w: 
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(33) 
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(34) 

Therefore 

 * * *
,c w       (35) 
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Appendix2: Components of the stiffness matrix K* 

 

 The components of stiffness matrix K* in Eq. (20) are obtained by substituting Eqs. 

(17a) and (17b) into the equilibrium equations given in Eq. (11). 

 
* * 2 0* 2 0*
11 12 1111 1121
* * 2 0* 2 0*
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where 
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Appendix 3: Components of the mass matrix M* 

 

 The components of mass matrix M in Eq. (20) are obtained by substituting Eq. (14) 

into the equilibrium equations given in Eq. (11). 
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초    록 

본 논문에서는 시간에 따른 복합재료 적층 평판의 점탄성 거동을 보다 

정확하고 효율적으로 해석하기 위해서 라플라스 변환을 이용한 효율적 

고차이론을 제안하였다. 적층 평판의 면내 변위장은 두께 방향으로 

연속적인 3 차 다항식과 선형 지그재그 함수를 중첩한 형태로 

가정하였으며, 점탄성 재료의 시간에 따른 물성치는 실험 데이터로부터 

결정되는 Prony series 형태를 이용하였다.  

시간 적분을 포함하는 점탄성 물질의 구성 방정식은 라플라스 변환을 

이용하여 대수 방정식으로 나타낼 수 있으며, 이를 통해서 점탄성 복합재 

적층 평판의 횡방향 전단 응력 연속 조건을 선형 탄성 복합재의 전단응력 

연속 조건과 매우 유사한 과정으로 부과할 수 있다. 라플라스 영역에서 

계산된 복합재 적층 평판의 거동은 라플라스 역변환 과정을 통해서 시간 

영역에서의 거동으로 나타낸다. 따라서 보다 효율적으로 복합재 적층 

평판의 점탄성 거동에 대한 해석을 수행할 수 있다.  

제안된 이론의 정확성 및 효율성을 검토하기 위하여, GY70/339 의 점탄성 

복합재로 구성된 적층 평판의 시간에 대한 거동 해석을 수행하였다. 수치 

계산 결과의 점탄성 특성은 선형 탄성 해석 결과와의 비교를 통해서 

검증하였다.  

 


	Abstract
	Table of
	Nomenclature
	List of
	List of
	Chapter 1.
	Chapter 2. Mathematical
	2.1. Governing Equations for Linear Viscoelastic
	2.2. Efficient Higher-Order Plate Theory for Viscoelastic

	Chapter 3. Numerical Results for cylindrical bending of laminated
	Chapter 4.
	Appendix 1: Calculation of Terms in Equation
	Appendix 2: Components of the stiffness matrix
	Appendix 3: Components of the mass matrix
	Bibliography
	Abstract


<startpage>10
Abstract
Table of contents
Nomenclature
List of figures
List of tables
Chapter 1. Introduction
Chapter 2. Mathematical Formulation
 2.1. Governing Equations for Linear Viscoelastic Material
 2.2. Efficient Higher-Order Plate Theory for Viscoelastic Material
Chapter 3. Numerical Results for cylindrical bending of laminated plates
Chapter 4. Conclusion
Appendix 1: Calculation of Terms in Equation (9)
Appendix 2: Components of the stiffness matrix K
Appendix 3: Components of the mass matrix M
Bibliography
Abstract (Korean)
</body>

