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ABSTRACT 

 

Why do firms’ R&D units differ in their abilities to exploit technological 

diversity? We argue that the differences can arise from the heterogeneity 

in their internal social network structures. We examine how knowledge 

distribution shaped by the two global properties of internal network 

structure – clustering and connectivity, each measured by clustering 

coefficient and average path length – differently moderate the inverted 

U-shaped relationship between technological diversity and innovation. 

An investigation of a 20-year panel of 27 pharmaceutical R&D units 

reveals the curvilinear relationship between technological diversity and 

innovation and the negative moderating role of intra-unit network 

structure on this relationship. By questioning the assumption of a strong 

correspondence between network structure and knowledge diversity, this 

study contributes to knowledge diversity and innovation literature and 

further provides implications to managers in designing informal 

structure of their R&D units. 

 

Keywords: knowledge diversity, intra-unit networks, clustering, average 

path length, innovation. 
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I. INTRODUCTION 

 

How to manage a given set of diverse knowledge in an R&D unit is a 

critical issue for firms’ innovation (Cohen & Levinthal, 1990; Nahapiet 

& Ghoshal, 1998). In the strategic management literature, extensive 

research addresses how firms can obtain competitive advantages through 

exploiting, recombining and extending their diverse knowledge 

resources (Cohen & Levinthal, 1990; Grant, 1996; Kogut & Zander, 

1992). The particular capabilities of organizations for sharing and 

creating knowledge include the informal structuring through which 

individuals cooperate and expertise is communicated (Cohen & 

Levinthal, 1990; Hargadon & Sutton, 1997). How individuals are 

informally connected to each other affects the knowledge flow and 

distribution among unit members. Therefore, a surge of research points 

to the role of internal social network structure on innovative performance 

of an organization (Guler & Nerkar, 2012; Paruchuri, 2010; Singh, 2005). 

Central to the research on the informal structure of knowledge workers 

is the assumption of a strong correspondence between network structure 

and knowledge diversity. Although knowledge diversity and network 

structure are intertwined, they are theoretically and empirically 

distinctive (Rodan & Galunic, 2004; Sosa, 2011; Tortoriello, McEvily & 

Krackhardt, 2015). Consider a pharmaceutical research center in Boston, 
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Massachusetts that may have enjoyed knowledge spillover from 

collocated research institutes and have amassed affluent diverse 

knowledge, and a recently established research unit in Singapore that 

may have accumulated less diverse set of technological expertise. Given 

the level of technological diversity each laboratory has, the same social 

structure of their scientists may have different impacts on their 

innovative activities. To the degree that network structure is not strictly 

overlapping with knowledge diversity, there may be a variety of ways in 

which networks and knowledge are configured (Tortoriello, McEvily & 

Krackhardt, 2015). Building on this distinction, research on inter-

organizational alliances (Ahuja, 2000) and managers’ interpersonal 

networks (Rodan & Galunic, 2004) has shown that network structure and 

knowledge diversity are empirically disparate. Extending this line of 

research, we examine both independent and interactive effects of 

inventor collaborative network structure within R&D units and the level 

of technological diversity on innovation performance. 

This paper aims to answer the following questions: Why do firms’ 

R&D units differ in their abilities to exploit technological diversity? How 

does informal network structure facilitate their ability to make the most 

out of combination potential and how is it associated with the units’ 

innovation performance? We answer these questions by investigating the 

interplay between social structure and knowledge diversity in the 
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generation of innovation. Specifically, we examine the impact of two key 

large-scale network properties, clustering and connectivity, on the 

relationship between technological diversity and innovative outcome. 

The dense local clusters create common knowledge base and relational 

lock-ins (Burt, 2000), while high global connectivity (i.e., short average 

path length of intra-unit network) within a unit ensures rapid diffusion of 

information internally (Schilling & Phelps, 2007). Building on 

recombinatory innovation perspective and social network theory, we 

argue that these network compositions affect the level of knowledge 

distribution among members, moderating the members’ knowledge 

exchange and combining process to generate innovation. We propose 

that the structure of the intra-unit network is likely to be an important 

determinant of a unit’s diversity management capability, or its ability to 

generate novel and valuable recombination out of heterogeneous 

knowledge resources. 

To test these arguments, we created a dataset from United States Patent 

and Trade Office (USPTO) patent database on globally distributed R&D 

units of five big pharmaceutical companies and constructed internal 

social networks out of patent co-authorship from 1991 to 2010. We focus 

specifically on patent collaboration ties between individual scientists in 

a single R&D unit, as prior research has shown that co-patenting 

networks provide a suitable proxy for informal conduits of information 
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and resource exchange (e.g., Fleming, King & Juda, 2007; Guler & 

Nerkar, 2012; Paruchuri, 2010; Singh, 2005). We show that the 

relationship between technological diversity and innovative performance 

is curvilinear (i.e., inverted U-shaped) that the knowledge diversity 

boosts innovation only up to a point, and is moderated by internal social 

network structure that affects the curvature of the graph. 

This research offers several important contributions for understanding 

innovation in intra-unit networks. First, we find empirical support for our 

argument that the inventor networks with clustered structure and short 

average path length each reduce marginal benefits and eases the burden 

of technological diversity. We also ascertain that this locally clustered 

structure amplifies overall innovative performance of a unit. Dispersed 

R&D units serve important roles in a firm’s innovation, each assigned 

distinctive mission from its headquarter. Each unit has different 

technological expertise with the different level of knowledge 

accumulation, where some units are directed to broaden their technology 

portfolio by sourcing different local knowledge while others concentrate 

on a specific type of technological area. Depending on the breadth of 

their technological portfolio, units may design their informal network 

structure in order to reach full combination potential to boost innovation. 

Second, following recent studies in management literature that advanced 

a rigorous analytical formulation of network theory (e.g., Davis, Yoo & 
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Baker, 2003; Lee, Song & Yang, 2015; Schilling & Phelps, 2007), we 

further the current understanding of the role of internal network structure 

on organization innovation. Although recent studies have examined the 

structure of large-scale inter-firm networks and the consequences of 

these structures (Schilling & Phelps, 2007), little research has examined 

the large-scale intra-organizational networks. Moreover, while most 

studies of the intra-firm network structure have examined position of the 

members (Nerkar & Paruchuri, 2005; Paruchuri, 2010), our study focus 

on the whole network structure within an organizational boundary, which 

strengthens our understanding of intra-organizational network structure. 

 

 

II. THEORY AND HYPOTHESES 

 

2.1. Network Structure and Knowledge Creation 

 

Not only does the level of technological knowledge matter, but so does 

its structure within the organization (Argyres & Silverman, 2004). 

Networks and network structures influence the range of information that 

may be exchanged and that becomes available for innovative 

combination (Nahapiet & Ghoshal, 1998). Ties provide the channels for 
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information diffusion, and the overall configuration of these ties 

constitutes the pattern of resource flow and the level of knowledge 

distribution within a unit. Here, we consider the distribution of 

technological knowledge resources across the unit (the extent to which a 

certain knowledge is concentrated in a small number of members or 

distributed evenly among unit members) by taking intra-unit network 

into account. 

First, we consider the process of knowledge creation. Nahapiet and 

Ghoshal (1998) have suggested that the knowledge is created through 

two generic processes: namely, exchange and combination. When 

technological knowledge is held by disparate parties, exchange of 

different knowledge enhances combination potential of innovation by 

increasing availability of knowledge elements reside in an organization 

to each individual. A unit needs a good ‘shake’ to create a novel 

perspective on its existing knowledge when its knowledge base 

comprises diverse technological domains (Kanter, 1988; Zhou & Li, 

2012). Knowledge exchange provides such a shaking process, through 

which members can share and integrate broad knowledge across various 

fields in novel patterns to generate innovation (Zahra & George, 2002). 

When exchanges are made through connections, existing ideas are often 

combined with other ideas to appear new and creative as they change 

forms. Strategic management researchers have employed this notion to 
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define innovation and explored how the innovation is created by 

integrating knowledge within, outside, and across firm boundaries 

(Hargadon & Sutton, 1997; Katila, 2002; Nerkar, 2003). 

The structure of connections between members holding different 

knowledge elements affects them locating knowledge within a unit, 

sharing their knowledge, and responding to others' knowledge (Lewis, 

Lange & Gillis, 2005). Research has shown that intra-team shared task 

experiences and interactions are antecedents to the development of 

transactive memory systems (Austin, 2003; Lewis, 2003). Individual 

members who know “who knows what” tend to be inclined to share 

knowledge because they recognize its value to the whole task and know 

who can properly use it; however, if each team member is a deep 

specialist whose knowledge does not overlap with that of others, 

knowledge sharing is more likely to suffer (Cronin & Weingart, 2007).  
The network structure also influences members in choosing which 

information to share and pool by shaping familiarity and preference 

towards the source of information, and thereby willingness to dedicate 

time and effort to interact with members located in different parts of a 

research unit. Individuals have to devote effort communicating what they 

know to their counterparts (Reagans & McEvily, 2003), assimilating and 

transforming what they learn from other members. This type of 

cooperation is not likely to naturally occur among individuals in different 
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parts of an organization. The information-pooling approach examines 

information exchange during team interactions, revealing that team 

members' preferences are shaped more by more frequently 

communicated information and that teams favor shared information over 

unshared information (Stasser, Stella, Hanna, & Colella, 1984). Thus, the 

distribution of knowledge resources within units shaped by the overall 

network configuration affects their willingness to share and pool 

information from different members (Gardner, Gino & Staat, 2012). 

While some of prior work investigate both network structure and 

content, most of the empirical work is at ego level, examining the 

position of individuals or firms in their ego-networks (Mors, 2010; Sosa, 

2011). Moreover, these studies examine the benefits that accrue to the 

firm or individuals that hold positions in ego networks, rather than to the 

overall organization. In this study, we intend to focus on the properties 

of whole network structure within a unit and their impacts on its 

innovation performance. 

Recent studies advanced a rigorous analytical formulation of the 

whole network structure using two key attributes of the small-world 

effect: local clustering measured by clustering coefficient and global 

connectivity measured by average path length (Watts & Strogatz, 1998) 

(e.g., Davis et al., 2003, Rosenkopf & Schilling, 2007; Uzzi & Spiro, 

2005). Many of these studies, however, focus on small-world structures 
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within overall industries, regions, or fields, rather than on intra-

organizational networks. We argue that these two structural 

characteristics of the intra-unit network will significantly influence the 

knowledge exchange and recombination process. We first examine how 

the level of technological diversity affects units’ innovation performance, 

and then investigate how this effect is moderated by the two intra-unit 

network properties. 

 

FIGURE 1 

Conceptual framework 

 

 

2.2. Technological diversity and innovation performance 

 

Diverse technological knowledge that an R&D unit possesses is a 

critical input to the innovation process (Lahiri, 2010). Prior research has 



 

10 

shown that greater innovation occurs when firms search for broader 

knowledge in a variety of technological domains (Ahuja & Katila, 2004; 

Ahuja & Lampert, 2001), as technologically diverse units will benefit 

from a variety of perspectives and therefore be able to make better 

collective decisions and produce more creative work. Hargadon and 

Sutton (1997) suggest that firms that connect different industries can 

share and integrate knowledge from those industries and therefore be 

innovative. 

However, the knowledge diversity simultaneously raises impediments 

to successful knowledge exchange and recombination (Tushman, 1977). 

Integrating information is challenging particularly when individuals are 

exposed to too much heterogeneous information and knowledge (Bechky, 

2003; Mors, 2010). Existing research suggests that diverse team take 

longer and encounter frequent difficulties in integrating their different 

knowledge stores to reach a solution because individuals in different 

knowledge domain might struggle to find a common ground to facilitate 

knowledge interaction (Argote, 1999; Carlile, 2004; Dougherty, 1992). 

Interactions might suffer due to the differences in languages and 

perspectives, lack of shared understandings (Bechky, 2003), and 

coordination problems (Mors, 2010). Assimilating and integrating highly 

diverse knowledge components can lead to information overload, 
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confusion, and diseconomies of scale in innovation activities (Ahuja & 

Lampert, 2001; Phelps, 2010). 

Recognizing these trade-offs, several research has shown that as 

technological knowledge become more diverse, it enhances innovation 

performance only up to a point beyond which excessive diversity reduces 

the chance of recombination into useful innovations (Fleming & 

Sorenson, 2001; Huang & Chen, 2010). Following this line of research, 

we posit our baseline hypothesis as follows:  

 

Hypothesis 1. The level of technological diversity within a unit has 

an inverted U-shaped relationship with its innovation performance.  

 

2.3. Intra-unit Network Structures and Diversity Management 

  

2.3.1. Clustering 

   

Clustering in a network refers to the extent to which the network is 

consisted of cohesive relationships where collaborators of an actor are 

themselves connected as well. The emergence of interconnected 

subgroups, or network cliques, suggests that the network is being 

subdivided into distinct subnetworks or groups. Such networks provide 



 

12 

members with the enforceability, trust, and knowledge-sharing benefits 

(Coleman, 1988). Local cohesion makes it easier for members to 

mobilize around new ideas, due in part to similarities in perspectives and 

interests (Obstfeld, 2005). At the same time, closed network may create 

relational lock-in that increases rigidity and decrease openness to 

external information (Gargiulo & Benassi, 2000).  

We argue that the clustering may have a negative moderating effect on 

the relationship between technological diversity and innovative 

performance by reducing both benefits and costs from diverse 

knowledge base. Holding the level of global connectivity constant, the 

local clustering neighborhood may lead to a less pronounced positive 

relationship between technological diversity and innovativeness by 

lowering marginal benefits of knowledge diversity. 

Clustering will lower the marginal benefits of knowledge diversity, as 

individuals tend to economize in search for the source of information by 

selecting those with whom they have some familiarity and stability. It is 

because the information about availability, reliability, and technological 

profiles of peer inventors is not perfectly distributed (Ahuja, Soda & 

Zaheer, 2012; Shore, Bernstein & Lazer, 2015). This idea is in line with 

recent research that has shown clustering unproductively biases 

individuals away from the exploration of new solutions and toward the 

exploitation of existing ones (Mason & Watts, 2012; Lazer & Friedman, 
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2007). The effects of local clustering in suppressing exploration may be 

due to the fact that an individual who copies a neighbor’s solution is 

probably doing so because he or she expects the outcomes to be more 

“positive, proximate, and predictable” than the more “uncertain, distant, 

and often negative” returns of trying to solve the problem alone, or 

because the neighbor’s choice of that answer seemingly provides social 

proof of its value (March 1991: 85). As novel exploratory solutions are 

uncertain in nature, it can be safe to adopt a solution on which other 

people seem to have already reached a consensus. Thus, being embedded 

in clustered networks may reduce ‘openness to information and to 

alternative ways of doing things, producing forms of collective blindness’ 

(Nahapiet & Ghoshal, 1998). 

For the broader aggregate, such a configuration of connections may 

lead to isolation and strong identification with the focal clustered group 

may contribute to the fragmentation of broader whole (Adler & Kwon, 

2002). This may create a situation where internal solidarity is likely to 

be detrimental to the members’ integration into the broader whole, by 

splitting the organization into factions that seek their own special 

interests. 

On the other hand, however, the burden on excessive technological 

diversity may become more manageable with increasing propensity of 

local clustering. Individuals face significant challenges interpreting and 
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integrating too diverse information and knowledge. When the meaning 

of information is unclear or when exchanging parties differ in their prior 

knowledge, extensive interaction and relationship are crucial to 

innovation (Nahapiet & Ghoshal, 1998), implying the beneficial role of 

local clustering. There are several ways in which clustered networks may 

facilitate the assimilation and integration of diverse technological 

knowledge and, in turn, affect the individual’s ability to create new 

knowledge. 

First, cohesive or closed networks may promote extensive interactions 

and knowledge sharing among embedded colleagues who work in 

disparate areas of expertise (Coleman, 1988). Richer patterns of 

interaction with colleagues in different domains of knowledge increase 

the chances that an individual will become more accustomed to 

interpreting and transforming knowledge so that it can be understood and 

applied in new perspectives (Tortoriello, Reagans & McEvily, 2012). 

Second, closed network structure reduces absorptive capacity problems 

related to growing technological diversity by facilitating the 

development of shared languages, vocabulary, frames of thinking and 

common knowledge base (Carlie, 2004; Carlie & Rebentisch, 2003; 

Dougherty, 1992). Shared framework and common knowledge base 

foster effective assimilation among the members, since it is easier to 

absorb diverse knowledge and generate new ideas when knowledge 
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exchanging parties share some common knowledge base (Cohen & 

Levinthal, 1990). Third, if an individual has colleagues who are 

connected to each other with common technological knowledge and 

cognitive frame, those colleagues may help the partner translate and 

integrate diverse information (Mors, 2010). As heterogeneity of 

knowledge increases, members may benefit from having indirect 

contacts who will help them interpret the diverse knowledge that they 

are exposed through that connection. Thus, the extent to which members 

within a unit are densely interconnected mitigates marginal costs of 

increasing knowledge heterogeneity. 

In sum, local clustering in intra-unit network may both decrease 

benefits and costs arising from technological diversity within a unit, 

thereby flattening both the positive and negative slope of the inverted U-

shaped graph described in Hypothesis 1. Hence, we predict the 

moderation effect of local clustering in intra-unit networks as follows: 

 

Hypothesis 2. The degree of clustering within a unit moderates the 

relationship between technological diversity and innovation 

performance in a way that the inverted U-shaped relationship will 

be flatter in units with high degree of clustering. 
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2.3.2. Connectivity 

 

 Connectivity of a network is captured in the average path length 

connecting any two nodes within the network. Individuals in ‘brokerage’ 

roles (i.e., individuals who connect groups of individuals that would 

otherwise be disconnected) or hubs dramatically shorten the path length 

of a network. As the network becomes more “small-worldly,” 

information and knowledge can diffuse more quickly (Watts, 1999). An 

individual that is connected to a large number of other members by a 

short average path can reach more information. Alternatively, as the 

average path length between any two nodes of a network diminishes, it 

is possible that information can become more democratized, resulting in 

a reduction in the informational advantage of any single player. 

We argue that the connectivity of the whole network within a unit may 

have a negative moderating effect on the relationship between 

technological diversity and innovative performance by dampening both 

benefits and costs of increasing technological diversity. Holding the level 

of local clustering constant, intra-network with short average path length 

may lead to a less pronounced positive relationship between 

technological diversity and innovation by lowering marginal benefits of 

knowledge diversity.  
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Although it is easy to assume that the rapid diffusion of ideas will 

facilitate knowledge recombination by increasing the pool of ideas that 

individuals can access and utilize, this view does not take into 

consideration the heterogeneity of knowledge each individual possesses. 

In case of low technological diversity, decrease in the path length will 

lead to an increase in homogenization pressure. The knowledge 

landscape of direct contacts is rarely new to the inventors. Further, when 

ideas diffuse too quickly through a population, the result can be 

premature convergence around a popular set of ideas, deterring parallel 

problem solving within a unit. 

On the other hand, when each individual possesses highly 

heterogeneous knowledge set, short average path length will lower the 

marginal costs and enhance the marginal benefits of knowledge 

heterogeneity. There are several ways in which networks with short 

average path length may facilitate the efficient assimilation of diverse 

technological knowledge and, in turn, enhance the individual’s ability to 

create new knowledge. First, direct contact enables less distortion in 

understanding knowledge as inventors can reach others by short paths 

(Paruchuri & Awate, 2016). As information gets passed on across 

different individuals, there is likely to be some degree of imperfect 

transmission of the message about opportunities for knowledge use. 

When knowledge is passed on through long paths, it is likely to become 
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distorted (Bartlett 1932), as people who exchange such information tend 

to misunderstand each other, forget details, filter or deliberately withhold 

aspects of what they know (Gilovich, 1991). Second, good ideas can be 

widely communicated in unit, thereby increasing efficiency of 

innovation process. Given the uncertainty of knowing which ideas will 

create meaningful innovation, the rapid and widespread diffusion may 

encourage low performers to adopt good ideas that flow through the 

network. Third, short path length increases availability of knowledge 

elements residing in an organization to each individual, enabling 

exchange of different knowledge. Connections between members enable 

them to successfully locate knowledge within a unit, share their 

knowledge, and respond to others' knowledge (Lewis et al., 2005). When 

an individual possesses an awareness of what her/his colleagues do and 

do not know, members develop a more accurate and complete 

understanding of what their coworkers need to move forward on a task 

(Moreland & Myaskovsky, 2000). Therefore, as members’ social 

distance gets closer within the heterogeneous knowledge network, 

knowledge exchange is more likely to occur and availability and 

possibility for combination is also likely to increase. 

In sum, short average path length may decrease both benefits and costs 

arising from technological diversity within a unit, thereby flattening both 

the positive and negative slope of the inverted U-shaped graph described 
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in Hypothesis 1. Therefore, we predict the moderation effect of the level 

of connectivity in intra-unit networks as follows: 

 

Hypothesis 3. The degree of connectivity within a unit moderates the 

relationship between technological diversity and innovation 

performance in a way that the inverted U-shaped relationship will 

be flatter in units with high degree of connectivity. 

 

 

III. DATA AND METHODS 

 

3.1. Research Setting 

 

Our research examines the context of pharmaceutical industry, for it 

provides an attractive setting to test our hypotheses for the following 

reasons. First, the pharmaceutical industry is where technological 

capabilities and research and development activities are important 

drivers of the industry. Second, innovation performance of individual 

units can be captured through patents which is a key appropriability 

regime in protecting newly developed technologies. Third, we need to 

observe the intra-unit networks of informal interactions and compare the 
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multiple intra-unit network structures. Earlier work has suggested that 

we can infer the intra-organizational collaboration structure from the 

patterns of patent co-authorship among members within the same firm 

boundary. Patent co-authorship networks provide a suitable proxy for 

informal conduits of information and knowledge flow (Fleming, King & 

Juda, 2007; Guler & Nerkar, 2012; Singh, 2005). 

We collected the patent data from USPTO patent database for 27 R&D 

units of the five largest firms in global pharmaceutical industry, Pfizer, 

Merck & co., Novartis, Abbott Laboratories and Roche, which own and 

operate 5-6 geographically dispersed R&D laboratories between 1991 

and 2010. We selected only a limited number of firms to study because 

we investigated the intra-unit networks of each firm over a long 

observation period of 20 years. Further, given that the hypotheses are 

concerned about the impact of a unit’s inventor collaboration network 

structure, we selected firms and their R&D units that have a history of 

research. We selected main research facilities that have actively filed 

patents for use in the analysis. The main sources of R&D unit locations 

information include annual Securities and Exchange Commission (SEC) 

filings for publicly traded companies (particularly Item 2, “Properties,” 

found in 10-Ks) and company websites. For example, a 2000 Annual 

Report from Novartis states that “Our major research and development 

facilities are located in manufacturing/R&D complexes that we own 
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containing multiple buildings in Groton, Connecticut; Sandwich, 

England and Nagoya, Japan.” After identifying research locations for 

each firm, we used the addresses of patent authors to identify the actual 

R&D unit of patent invention (Jaffe & Trajtenberg, 2002). Patents that 

do not have at least one inventor located in the same state or country as 

the R&D units are excluded from calculating network variables. We took 

into consideration the selection of a limited number of firms and units by 

using firm and unit fixed effects in the analytical models, as explained in 

the model specification section. 

  We measure the patent collaboration structure of the organizations for 

each of the years between 1991 and 2010 for each of 27 R&D units using 

this patent co-authorship data. We started sample from 1986 because we 

needed information prior to the start of the sample period for calculating 

technological diversity and for constructing inventor collaboration 

networks. We used patent filed dates instead of grant dates, because 

application dates better represent the timing of interactions among 

scientists (e.g., Sorenson & Stuart, 2000). The data comprises total 412 

unit – year observations. 

 

3.2. Dependent Variable 
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Following earlier research, we used the number of patents filed to the 

USPTO by a unit in year t to represent innovative performance of the 

unit, weighted by the number of citations received from the date the 

patent is granted. Patenting frequency is a widely adopted proxy for 

innovation performance, particularly in the research of knowledge-

intensive industries (e.g., Ahuja & Katila, 2004). A firm with the higher 

number of patent application can be seen as the firm with more 

technological innovations. However, since patents can widely vary in 

their quality, simple patent counts may be an insufficient indicator of 

performance. To account for the heterogeneity in quality, we weighted 

each patent by the number of forward citations it received from future 

patents. Evidence shows that the number of forward citations of a patent 

is significantly associated with the social value of the underlying 

innovation (Trajtenberg, 1990).  

 

3.3. Independent Variables 

 

Technological diversity. Each patent provides information on the main 

three-digit technological domain to which the USPTO has assigned. We 

measured technological diversity of a unit by calculating the Herfindahl 

index of these primary technological classes of the unit’s patents and 
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subtracting the result from 1 so that units with diverse knowledge 

domains have higher values. A value of 0.05 indicates a low level of 

technological diversity (i.e., technological focus), and a value of 0.95 

indicates a high level of technological diversity. We used a five-year 

moving window. For example, when the dependent variable is measured 

in 2000, the year t, we considered all patents filed by the sample unit 

during 1996-1999, ending in year (t – 1).  

 Clustering. We measured the level of clustering in a unit’s inventor 

network by calculating clustering coefficient of each network. 

Considering patents and their inventors as an affiliation network, we 

constructed a single-mode network of inventor collaborations in 

UCINET 6 software (Borgatti, Everett & Freeman, 2002). Since we were 

interested in comparing the structural rather than the relational properties 

of the network, we only captured the presence of a tie among individuals 

rather than the strength of the tie. This network has inventors as nodes, 

and co-patenting activities as ties. We updated intra-unit network 

measures annually, as new ties are formed and old ties dissolve every 

year. Following prior work, we considered collaboration ties that are 

older than five years dissolved, employing a five-year moving window. 

For example, when the dependent variable is measured in 2000, year t, 

we considered all collaborative ties between inventors in each unit during 

1996-1999, ending in year (t – 1), to construct intra-unit network. For 
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each year between 1991 and 2010, we constructed a matrix of 

collaborative ties between scientists formed in the past five years. Using 

this martrices, we calculated clustering coefficient of the network 

following Watts and Strogatz (1998). Clustering coefficient is a measure 

of the level of clustering in the network, and when this measure is high, 

almost all actors in the network are embedded in closed local 

neighborhoods (Hanneman & Riddle, 2005). Specifically, we used the 

following formula to calculate clustering coefficient of the observed 

network for each unit i at time t in UCINET 6 software (Borgatti et al. 

2002):  

𝐶𝐶𝑖𝑡
𝑂 =

3𝑁∆

𝑁∨
=

3 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠)
 

where a triangle is a closed triad and a triple is an open triad. As Schilling 

and Phelps (2007: 1118) pointed, “While network density captures the 

density of the entire network, the clustering coefficient captures the 

degree to which the overall network contains localized pockets of dense 

connectivity. A network can be globally sparse and still have a high 

clustering coefficient.” 

Note that the inventors’ ties are derived from a single-mode projection 

of an affiliation network. As a result, some of the observed structure may 

be artificial as all inventors listed on the same patent automatically form 

ties to each other through the process of projection. To account for this 
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artificial clustering, we scaled the clustering coefficient in the observed 

network (𝐶𝐶𝑖𝑡
𝑂) by the clustering coefficient of a random network (𝐶𝐶𝑖𝑡

𝑅) 

with an identical degree distribution, following the approach suggested 

by Newman, Strogatz and Watts (2001). Random graph clustering 

coefficient is calculated by the following formula, 

𝐶𝐶𝑖𝑡
𝑅 =

𝑘

𝑁 − 1
 

where N is the size of the network and k is the average degree (Watts & 

Strogatz, 1998). Thus, clustering coefficient ratio, calculated by dividing 

the measures of observed networks (𝐶𝐶𝑖𝑡
𝑂)  by the random network 

clustering coefficient with the same degree distribution (𝐶𝐶𝑖𝑡
𝑅), is our 

clustering measure. 

Connectivity. We measured the level of connectivity as the reciprocal 

of ‘harmonic mean’ geodesic distance between all pairs in a network, i.e., 

the average of the reciprocal path lengths (Newman, 2003) at time t. 

Geodesic distance between two nodes is the length of the shortest path 

between them and the average path length is the average geodesic 

distance to go from one node to another. We calculated the average path 

length of each intra-unit collaboration network and took the reciprocal 

of it. Because paths across disconnected components are undefined, we 

set the distance to infinity in case of no reachability so that it becomes 

zero when inverted.  



 

26 

Because the single-mode projection can result in artificially short path 

lengths, we scaled this measure by the expected path length of a random 

network (Newman, Strogatz & Watts, 2001), and constructed average 

path length ratio of a network. The average shortest path of a random 

graph of the same degree distribution is the ratio between the logarithm 

of the number of nodes and the logarithm of the average number of ties 

that nodes have. Specifically,  

𝑃𝐿𝑖𝑡
𝑅 =

log⁡(𝑁)

log⁡(𝑘)
 

where N is the size of the network and k is the average degree. Note that 

in case of a network where average degree k is less than 1, this value 

becomes negative. The average path length ratio is thus calculated by 

dividing the measures of observed networks (𝑃𝐿𝑖𝑡
𝑂 )  by the random 

network average path length with the same degree distribution (𝑃𝐿𝑖𝑡
𝑅 ). 

Our final measure of connectivity is the reciprocal of the average path 

length ratio so that units with high level of global connectivity have 

higher values. 

 

3.4. Control Variables 

 

Network size. A large-sized unit tends to have less clustering while a 

small-sized unit is more likely to be clustered. Moreover, the number of 
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scientists in a unit is likely to be related to the unit’s innovation potential 

– the more inventors in R&D activities, the more likely the unit has 

increased chances for knowledge creation. To account for the differences 

among networks with the varying number of actors, we controlled for the 

log number of nodes, or inventors, in each unit’s network. 

Between-unit collaboration. To control for the effect of external 

knowledge sourcing, we measured the number of co-patenting activities 

with other R&D units in the same firm, applying the same five-year 

window that we used to measure our independent variables. Since there 

is no data available for external collaborations across firm boundary, we 

could only control for between-unit collaboration inside a firm. 

Unit age. We used unit age as a control for experience as an input into 

innovation. As a unit ages, it may have accumulated more diverse 

knowledge resources and experience, affecting subsequent innovative 

performance of the unit. 

California/Massachusetts. Firms perform a part of their R&D 

activities in the places where inventors are able to source knowledge 

from multiple locales (Lahiri, 2010). To account for the possibility that 

firms with dispersed R&D units are influenced differently by knowledge 

spillover from external sources in the region of their research units, we 

controlled for the places where extensive collocation of pharmaceutical 

companies has been formed – namely, California and Massachusetts. 
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California’s Silicon Valley and San Diego regions have been long known 

for their unique high-technology clusters (Saxenian, 1996). California 

has a volume of knowledge flow between firms, as it generally 

invalidates noncompete agreements. Further, the Boston area in 

Massachusetts is one of the largest concentrations of pharmaceutical and 

biotechnology firms in the world (Stuart & Sorenson, 2003). Boston has 

a rich population of public research organizations, including universities, 

independent research institutes and research hospitals. To account for the 

unique characteristics of these two states, we controlled for whether or 

not a firm’s R&D unit was located in California or Massachusetts at time 

t.  

The United States. It is likely that R&D centers located in other 

countries might file patents to their own countries’ patent offices, not in 

the United States Patent and Trade Office. Furthermore, the U.S. patents 

in the USPTO patent database identify inventor locations by city and 

state name while the non-U.S. patents display locations by city and 

country name. Thus, if an R&D unit is located in the U.S., we identified 

its location by the state and otherwise we identified by the country name. 

To control for the possible different effects stemming from this 

incongruity in the geographical classification in inventors’ addresses, we 

included U.S. dummy variables in our models. 
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Headquarter. We controlled for whether a unit is a global research 

headquarter of a firm. Multiunit firms’ headquarters are usually rich in 

knowledge resources as they can somehow force or motivate subsidiaries 

to transfer knowledge to headquarters (Foss & Pedersen, 2002). We 

controlled this distinctive characteristic of the headquarters by applying 

dummy variables to the unit that belongs to or serves as a research 

headquarter. 

Lagged dependent variable. To address the path-dependent nature of 

corporate innovation, we included lagged dependent variable.  

 

3.5. Model Specification 

 

We applied the Poisson quasi-maximum likelihood estimation to our 

regressions. The Poisson quasi-maximum likelihood estimators can be 

obtained by estimating an unconditional Poisson model with robust 

standard errors (Wooldridge, 1999; Cameron and Trivedi, 2005). Given 

that the dependent variable is in counts that have values of zero or above, 

we could fit the Poisson family distributions. The Poisson model 

assumes equidispersion, which is often violated in models of patent 

counts, leading academics to prefer the negative binomial model to deal 

with the overdispersion issue. However, the negative binomial model is 
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only consistent if the conditional variance has a gamma distribution, 

while Poisson models are consistent with only mean correctly specified, 

even if overdispersion is present. The standard errors in the Poisson 

model can be corrected by applying robust standard errors (Wooldridge, 

2002). Overall, the Poisson quasi-maximum likelihood model is more 

likely to result in lower significance levels than the negative binomial 

model. Thus, we regard the Poisson quasi-maximum likelihood model as 

preferable. However, we also run regressions using the negative binomial 

model as a robustness check. The results are qualitatively consistent with 

the Poisson quasi-maximum likelihood results.  

Such research models also control for unit heterogeneity by estimating 

effects using within variation. Since all units of the same firm are related 

to each other and the selection of firms was not random, the observations 

across units are also not independent. To account for these concerns, we 

employed unit-level fixed effect models. Therefore, the results indicate 

the change in the dependent variable by the change in the level of 

independent variables for the same unit, and the comparison is for 

different values within the same unit, not across units. Further, we 

controlled for the factors specific to a particular year that might affect 

the patenting behavior by including year dummy variables. By including 

year dummy variables, we could also control for the truncation issue of 

patent citation, as our dependent variable is weighted by the number of 
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forward citations. We also controlled for the effect of the parent firms on 

each unit by including firm dummy variables. 

 

 

IV. RESULTS 

 

The descriptive statistics and correlations for relevant variables are 

displayed in Table 1. Examining the correlation matrix, we note that 

correlations between the independent variables do not imply any overt 

concerns about multicollinearity, as we confirmed by the mean variance 

inflation factors of 2.37 excluding squared terms and interaction terms 

(Neter, Kutner, Nachtsheim & Wasserman, 1996). 

Table 2 present the models of the innovation performance of the R&D 

units. The controls are highly consistent in sign and significance across 

the models. Most coefficients are in the expected directions.  

Hypothesis 1 predicts that the technological diversity and innovative 

performance will have an inverted U-shaped relationship. Model 2 tests 

this hypothesis by introducing Technological diversity variable and its 

squared term. The results that the coefficient of the squared term 

(Technological Diversity)2 is negative and significant  (𝛽 =

−9.53, 𝑝 < 0.05) and the coefficient of the variable Technological 
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Diversity is positive and significant (𝛽 = 10.89, 𝑝 < 0.05)  indicate 

that the knowledge diversity boost innovative performance only up to a 

point, beyond which excessive diversity deters recombination into useful 

innovations. These findings support Hypothesis 1. 

 

TABLE 1 

Descriptive Statistics and Correlations 

Variables  1  2  3  4  5  6  7  8  9  10   11 

1.Innovation 

performance 
 1.00                     

2.Technological 

diversity 
 0.18  1.00                   

3. Clustering  0.48  0.45  1.00                 

4. Connectivity - 0.10 - 0.39 - 0.53  1.00               

5. Network size  0.38  0.18  0.76 - 0.36  1.00             

6. Between-unit  

collaboration 
 0.26  0.23  0.69 - 0.42  0.82  1.00           

7. Unit age  0.03  0.13  0.27  0.07  0.42  0.32  1.00         

8. Headquarter  0.31  0.18  0.43 - 0.12  0.45  0.48  0.18  1.00       

9. Location – CA  - 0.08  0.14 - 0.09 - 0.16 - 0.13 - 0.04  0.02 - 0.21  1.00     

10. Location – MA  - 0.09 - 0.23 - 0.14  0.04 - 0.19 - 0.00 - 0.45  0.19 - 0.08  1.00   

11. Location – U.S.  0.18  0.31  0.10 - 0.15  0.08  0.15 - 0.01  0.06  0.39  0.14  1.00 

Mean 145.70  0.64 19.94  0.45  4.65 3.62  3.12  0.16  0.18  0.03  0.60 

Std. dev. 259.49  0.19 16.42  0.20  1.00  1.18  0.41  0.37  0.39  0.16  0.49 

Min.  0.00  0.23  1.69 - 0.55  2.30  0.00  0.69  0.00  0.00  0.00  0.00 

Max 2122  0.93 85.90  1.14  6.68 5.84  3.74  1.00  1.00  1.00  1.00 
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TABLE 2 

Unconditional Fixed Effects Poisson Regression, 1991-2010 

Robust standard errors are in parentheses. * p < 0.1  ** p < 0.05 

Variables  Model 1  Model 2  Model 3 

Network size   0.59 **   0.58 **   0.72 ** 

  ( 0.24 )  ( 0.22 )  ( 0.23 ) 

Prior between-unit collaboration  - 0.02    0.01   - 0.02  

  ( 0.13 )  ( 0.13 )  ( 0.13 ) 

Unit age  - 0.75   - 0.67   - 0.99  

  ( 1.23 )  ( 1.15 )  ( 1.28 ) 

Location – California   2.36 **   2.55 **   2.55 ** 

  ( 0.46 )  ( 0.43 )  ( 0.43 ) 

Location – Massachusetts   0.01    0.36    0.86  

  ( 0.66 )  ( 0.69 )  ( 0.74 ) 

Location – U.S.   0.36    0.43    0.32  

  ( 0.47 )  ( 0.49 )  ( 0.54 ) 

Headquarter  - 0.28   - 0.18   - 0.21  

    ( 0.31 )  ( 0.34 )  ( 0.34 ) 

Lagged dependent variable   0.00 **   0.00 **   0.00 ** 

  ( 0.00 )  ( 0.00 )  ( 0.00 ) 

Clustering   0.01 *   0.01 **   0.16 ** 

  ( 0.01 )  ( 0.01 )  ( 0.07 ) 

Connectivity   0.25   - 0.02    9.90 ** 

  ( 0.28 )  ( 0.28 )  ( 4.15 ) 

Technological diversity      10.89 **  31.1 ** 

      ( 2.85 )  (10.2 ) 

(Technological diversity)2      - 9.53 **  -23.4 ** 

      ( 2.39 )  ( 7.76 ) 

Clustering⁡ ×⁡ Technological diversity          - 0.42 ** 

            ( 0.21 ) 

Clustering⁡ ×⁡ (Technological diversity)2           0.28 * 

           ( 0.15 ) 

Connectivity⁡ ×⁡ Technological diversity          - 29.4 ** 

            ( 13.0 ) 

Connectivity⁡ ×⁡ (Technological diversity)2           20.5 ** 

           ( 9.70 ) 

Constant  - 1.26   - 2.06   - 8.53 * 

  ( 2.33 )  ( 2.53 )  ( 4.44 ) 

Unit fixed effects   Yes    Yes    Yes  

Firm fixed effects   Yes    Yes    Yes  

Year fixed effects   Yes    Yes    Yes  

Log Likelihood -6775.8  -6452.76  -6296.26  

N   412    412    412  
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The next hypotheses address the interdependent effects of the intra-

unit inventor network structure and the technological diversity on 

innovation. Hypothesis 2 predicts a negative moderation effect of 

clustered network structure on the relationship between the technological 

diversity and innovation. The statistical findings in Model 3 show that 

the coefficient for Clustering⁡ ×⁡ Technological diversity is negative and 

significant ⁡ (𝛽 = −0.42, 𝑝 < 0.05) , while the coefficient for 

Clustering ⁡ ×⁡  (Technological diversity)2 is positive and 

significant⁡ (𝛽 = 0.28, 𝑝 < 0.1). This indicates to how greater the level 

of clustering within an internal network dampens both the positive and 

the negative effects of technological diversity to innovation, implying 

the flattening of the inverted U-shaped relationship by the clustered 

structure. The plot displayed in Figure 2 offers illustration of the 

interdependent effect of the intra-unit network clustering and the 

technological diversity on innovation over the range of one standard 

deviation above and below the mean value of clustering, all other things 

equal. At the same time, it shows the escalation of overall innovative 

performance with the greater clustering coefficient, suggesting the 

beneficial role of clustered network. 

Hypothesis 3 predicts a negative moderation effect of the network 

connectivity on the relationship between the technological diversity and  
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FIGURE 2 

Moderation Effect Clustering 

 

 

 

 

 

 

 

 

 

 

 

innovation. Model 3 shows the estimation results of the moderation 

effects of the intra-unit network connectivity. The statistical findings in 

Model 3 supports Hypothesis 3 by showing that the coefficient for 

Connectivity ×  Technological diversity is negative and 

significant ⁡ (𝛽 = −29.4, 𝑝 < 0.05) , while the coefficient for 

Connectivity ⁡ ×⁡  (Technological diversity)2 is positive and 

significant ⁡ (𝛽 = 20.5, 𝑝 < 0.05) . This indicates to how shorter the 

average path length within an internal network decreases both the 

positive and negative effects of technological diversity to innovation, 

implying the flattening of the inverted U-shaped relationship by efficient 

network structure. The plot displayed in Figure 3 offers illustration of the 
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interdependent effect of the network path length and the technological 

diversity on innovation over the range of one standard deviation above 

and below the mean value of clustering, all other things equal. 

 

FIGURE 3 

Moderation effect of Connectivity 

 

 

 

 

 

 

 

 

 

 

V. DISCUSSION AND CONCLUSION 

 

5.1. Contributions to Literature 

 



 

37 

In this paper, we intend to dichotomize the effects of technological 

diversity and network structure on the unit’s innovation performance. We 

examined the curvilinear relationship between the technological 

diversity and innovation. Based on the baseline hypothesis, we tested the 

effects of our two main moderators – the clustering and the connectivity 

of intra-unit networks. The results statistically validate that in the case of 

low to moderate level of technological diversity, networks with high 

clustering and short average path length each decrease marginal 

increasing rate. However, when the level of technological diversity 

becomes excessive, both structures decrease marginal costs of managing 

diverse knowledge domains within a unit. Our findings support our 

central claim that the network structure influences the diversity 

managing capability, which in turn affects innovation process.  

This study has important contributions for research. First, our study 

adds richness to the existent management literature by suggesting the 

role of informal social network structure in managing technological 

diversity. Prior studies in the literature suggest two possible alternatives 

of firm’s technological diversity strategy, specialization and 

diversification. Recognizing that both specialization and diversification 

can be firms’ strategic choices (Porter, 1980), we suggest that shaping 

informal social network structure can be one way to achieve their 

strategic objectives, especially innovation. 
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Second, this study addresses important limitations of research on intra-

organizational networks and innovation. The literature has largely 

ignored the potential influence of different network contents, particularly 

the technological diversity that actors within the network hold. By 

considering the degree of technological diversity and knowledge 

distribution among actors, we examined the influence of the composition 

and structure of a unit’s internal network on innovation, filling the void 

in intra-organizational network literature. The empirical results suggest 

that the distinction between the two is critical to understand the process 

of innovation. 

Depending on the content and level of technological diversity that the 

network structure contains, a group with closed and exclusive social 

structure may become insular and blinded, or alternatively, may utilize 

its internal social capital to help its members assimilate heterogeneous 

knowledge and enhance innovative outcomes. Thus, our theoretical 

approach offers a more comprehensive understanding on the role of 

informal structure to the current stream of innovation literature. 

Third, this study contributes to the application of social network 

theory to management literature. Building on network theory, we 

employed the two analytically rigorous measures for the network’s 

global properties – clustering coefficient and average path length – and 

the concept of ‘small-worldliness’ to understand the structural effects of 
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technological knowledge and knowledge distribution on innovative 

performance. In contrast to recent research that has analyzed small-world 

systems at a macro-social level (e.g., Davis et al. 2003; Rosenkopf & 

Schilling, 2007; Schilling & Phelps, 2007), our study focused on intra-

unit networks adopting micro-level analysis.  

 

5.2. Implications to Managers 

 

We believe that our theoretical framework and empirical results have 

important practical implications for managers as well. Firms are likely to 

be divergent in their numbers, locations and designated roles of their 

R&D units. Lahiri (2010) points out that firms with increasing 

technological diversity are likely to limit different technological domains 

of expertise to individual R&D units, thereby decreasing the intra-unit 

diversity. This is because firms incur higher costs in duplicating every 

element of their diverse technological resources at all of their dispersed 

R&D locations. In managerial perspective, the question for the dispersed 

R&D units is whether they can benefit more from having their 

technologically diverse knowledge concentrated in each small number of 

their members, or if widely distributed diverse knowledge (holding 

constant the amount of diversity) is more beneficial for maximizing 

knowledge integration and innovation. We answered to this question by 
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suggesting the role of intra-unit network structure, which amplifies the 

benefit of diversity and lightens the burden of coordinating and 

integrating excessive technological diversity. Our research suggests to 

managers that strategically shaping informal structure within a unit and 

aiming for a moderate level of knowledge diversity may be the most 

desirable approach to attaining knowledge creation. 

 

5.3. Limitations and Suggestions to Future Research 

 

Several limitations of this work should be noted. The first concerns 

the use of patent data to measure the informal interactions among 

members and subsequent innovative performance. Although patents are 

reasonably good indicators of innovative performance and co-patenting 

activities are widely employed as a proxy for the communication and 

interactions among inventors in the management literature, they may not 

be a perfect measurement of the informal structure and innovation. A 

more thorough solution may be possible with supplementary data, such 

as qualitative in-depth interviews or surveys to capture the causal 

processes and mechanisms that we hypothesized. 

Another limitation of this study lies in the fact that although we 

emphasized the benefits of clustered and small-world networks, we did 

not consider their long-term costs. Research suggests that clustered and 
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connected networks reduces the diversity of information available in a 

network over time (Lazer & Friedman, 2007). Dense links provide 

redundant paths to the same knowledge sources and small-world 

networks enhance rapid diffusion of information. Soon everyone in the 

network comes to have the same knowledge (Burt, 1992). However, we 

did not take into account this direct effect of network structures on 

knowledge diversity. 

Finally, the restriction of the sample to only pharmaceutical industry 

cast some limitations to generalizing the results of our study, suggesting 

the need for conducting the study in other industries. Additionally, the 

relevance and utility of the patent-based measures of innovation and 

network variables are likely to be limited to the industries in which 

patents are meaningful to firms’ businesses. In addition to the industry 

sector examined in this study, further studies could be conducted on the 

other knowledge-intensive industries, including high-tech industries or 

professional service industries. 

Our study, which highlights the importance and relevance of 

distinguishing the role of knowledge diversity and network structure, 

builds groundwork for the development of future research. We suggest 

that future studies may examine the effects of intra-organizational 

networks in relation to the formal structure and how they can jointly or 

differently affect diversity managing capabilities. Formal organizational 
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structure as well as informal communication pattern are the two crucial 

mechanisms that reinforce interactions and activities within the 

organization. By examining these effects, such research may have 

implications for both organization literature and managers. 

We also suggest that it may be important to investigate the evolution 

of intra-unit network structure in conjunction with the changes in 

knowledge diversity. One suggestion for future research is to examine 

the diverging role of intra-organizational network structure to diversity 

management depending on the age of an organization. Understanding the 

dynamics of small-world structures can offer valuable insight into the 

different opportunities and constraints these structures offer at variable 

levels of their evolutionary progression.  

Another future extension can be made by studying network structural 

effects in relation to the impact of the influx of information and 

knowledge from external sources. For example, by adopting multilevel 

approach, one can examine the impact of both intra-organizational 

network structures and inter-organizational network structures such as 

alliance networks on innovative performance. 

 

 

 

 



 

43 

REFERENCES 

 

Adler, P. S., & Kwon, S. W. 2002. Social capital: Prospects for a new 

concept. Academy of Management Review, 27(1): 17-40. 

Ahuja, G. 2000. Collaboration networks, structural holes, and innovation: 

A longitudinal study. Administrative Science Quarterly, 45(3): 425-

455. 

Ahuja, G., & Katila, R. 2004. Where do resources come from? The role 

of idiosyncratic situations. Strategic Management Journal, 25(8-9): 

887-907. 

Ahuja, G., & Lampert, C. M. 2001. Entrepreneurship in the large 

corporation: A longitudinal study of how established firms create 

breakthrough inventions. Strategic Management Journal, 22(6-7): 

521-543. 

Ahuja, G., Soda, G., & Zaheer, A. 2012. The genesis and dynamics of 

organizational networks. Organization Science, 23(2): 434-448. 

Argote, L. 1999. Organizational learning: creating, retaining and 

transferring knowledge. Kluwer Academic Publisher, Norwell, MA.  

Austin, J. R. 2003. Transactive memory in organizational groups: the 

effects of content, consensus, specialization, and accuracy on group 

performance. Journal of Applied Psychology, 88(5): 866. 



 

44 

Bartlett, F. C. 1932. Remembering: An experimental and social study. 

Cambridge: Cambridge University. 

Bechky, B. A. 2003. Sharing meaning across occupational communities: 

The transformation of understanding on a production 

floor. Organization Science, 14(3), 312-330. 

Borgatti, S. P., Everett, M. G., & Freeman, L. C. 2002. Ucinet for 

Windows: Software for social network analysis. Harvard, MA: 

Analytic Technologies. 

Burt, R. S. 1992. Structural holes. Cambridge, MA: Harvard University 

Press. 

Burt, R. S. 2000. The network structure of social capital. Research in 

Organizational Behavior, 22: 345-423. 

Cameron, A. C., & Trivedi, P. K. 2005. Microeconometrics: methods and 

applications. Cambridge university press, Cambridge, England. 

Carlile, P. R. 2004. Transferring, translating, and transforming: An 

integrative framework for managing knowledge across 

boundaries. Organization Science, 15(5): 555-568. 

Carlile, P. R., & Rebentisch, E. S. 2003. Into the black box: The 

knowledge transformation cycle. Management Science, 49(9): 

1180-1195. 



 

45 

Cohen, W. M., & Levinthal, D. A. 1990. Absorptive capacity: a new 

perspective on learning and innovation. Administrative Science 

Quarterly, 35(1): 128-152. 

Coleman, J. S. 1988. Social capital in the creation of human capital. 

American Journal of Sociology, 94: S95-S120. 

Cronin, M. A., & Weingart, L. R. 2007. Representational gaps, 

information processing, and conflict in functionally diverse 

teams. Academy of Management Review, 32(3): 761-773. 

Davis, G. F., Yoo, M., & Baker, W. E. 2003. The small world of the 

American corporate elite, 1982-2001. Strategic Organization, 1(3): 

301-326. 

Dougherty, D. 1992. Interpretive barriers to successful product 

innovation in large firms. Organization Science, 3(2): 179-202. 

Fleming, L., & Sorenson, O. 2001. Technology as a complex adaptive 

system: evidence from patent data. Research Policy, 30(7): 1019-

1039. 

Fleming, L., King III, C., & Juda, A. I. 2007. Small worlds and regional 

innovation. Organization Science, 18(6): 938-954. 

Foss, N. J., & Pedersen, T. 2002. Transferring knowledge in MNCs: The 

role of sources of subsidiary knowledge and organizational 

context. Journal of International Management, 8(1): 49-67. 



 

46 

Gardner, H. K., Gino, F., & Staats, B. R. 2012. Dynamically integrating 

knowledge in teams: Transforming resources into 

performance. Academy of Management Journal, 55(4): 998-1022. 

Gargiulo, M., & Benassi, M. 2000. Trapped in your own net? Network 

cohesion, structural holes, and the adaptation of social 

capital. Organization Science, 11(2): 183-196. 

Gilovich, T. 1991. How we know what isn’t so: The Fallibility of Human 

Reason in Everyday Life. New York. The Free Press. 

Grant, R. M. 1996. Toward a knowledge‐based theory of the 

firm. Strategic Management Journal, 17(S2): 109-122. 

Guler, I., & Nerkar, A. 2012. The impact of global and local cohesion on 

innovation in the pharmaceutical industry. Strategic Management 

Journal, 33(5): 535-549. 

Hanneman, R.A., & Riddle, M. 2005. Introduction to social network 

methods: University of California Riverside, CA (published in 

digital form at http://faculty.ucr.edu/~hanneman/). 

Hargadon, A., & Sutton, R. I. 1997. Technology brokering and 

innovation in a product development firm. Administrative science 

quarterly, 42(4): 716-749. 

Huang, Y. F., & Chen, C. J. 2010. The impact of technological diversity 

and organizational slack on innovation. Technovation, 30(7): 420-

428. 



 

47 

Jaffe, A. B., & Trajtenberg, M. 2002. Patents, citations, and innovations: 

A window on the knowledge economy. MIT press. 

Kanter, R. M. 1988. Three tiers for innovation research. Communication 

Research, 15(5): 509-523. 

Katila, R. 2002. New product search over time: past ideas in their prime? 

Academy of Management Journal, 45(5): 995-1010. 

Kogut, B., & Zander, U. 1992. Knowledge of the firm, combinative 

capabilities, and the replication of technology. Organization 

Science, 3(3): 383-397. 

Lahiri, N. 2010. Geographic distribution of R&D activity: how does it 

affect innovation quality? Academy of Management Journal, 53(5): 

1194-1209. 

Lazer, D., & Friedman, A. 2007. The network structure of exploration 

and exploitation. Administrative Science Quarterly, 52(4): 667-694. 

Lee, J., Song, J., & Yang, J. S. 2015. Network structure effects on 

incumbency advantage. Strategic Management Journal, Early 

view, doi: 10.1002/smj.2405 

Lewis, K. 2003. Measuring transactive memory systems in the field: 

scale development and validation. Journal of Applied 

Psychology, 88(4): 587-604. 



 

48 

Lewis, K., Lange, D., & Gillis, L. 2005. Transactive memory systems, 

learning, and learning transfer. Organization Science, 16(6): 581-

598. 

March, J. G. 1991. Exploration and exploitation in organizational 

learning. Organization Science, 2(1), 71-87. 

Mason, W., & Watts, D. J. 2012. Collaborative learning in networks. 

Proceedings of the National Academy of Sciences, 109(3): 764-769. 

Moreland, R. L., & Myaskovsky, L. 2000. Exploring the performance 

benefits of group training: Transactive memory or improved 

communication? Organizational Behavior and Human Decision 

Processes, 82(1): 117-133. 

Mors, M. L. 2010. Innovation in a global consulting firm: When the 

problem is too much diversity. Strategic Management 

Journal, 31(8): 841-872. 

Nahapiet, J., & Ghoshal, S. 1998. Social capital, intellectual capital, and 

the organizational advantage. Academy of Management Review, 

23(2): 242-266. 

Nerkar, A. 2003. Old is gold? The value of temporal exploration in the 

creation of new knowledge. Management Science, 49(2): 211-229. 

Nerkar, A., & Paruchuri, S. 2005. Evolution of R&D capabilities: The 

role of knowledge networks within a firm. Management 

Science, 51(5): 771-785. 



 

49 

Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. 

1996. Applied linear statistical models (Vol. 4). Chicago: Irwin. 

Newman, M. E. 2003. The structure and function of complex 

networks. SIAM review, 45(2): 167-256. 

Newman, M. E., Strogatz, S. H., & Watts, D. J. 2001. Random graphs 

with arbitrary degree distributions and their applications. Physical 

review E, 64(2), 026118-026134. 

Obstfeld, D. 2005. Social networks, the tertius iungens orientation, and 

involvement in innovation. Administrative Science 

Quarterly, 50(1): 100-130. 

Paruchuri, S. 2010. Intraorganizational networks, interorganizational 

networks, and the impact of central inventors: A longitudinal study 

of pharmaceutical firms. Organization Science, 21(1): 63-80. 

Paruchuri, S., & Awate, S. 2016. Organizational knowledge networks 

and local search: The role of intra‐organizational inventor networks. 

Strategic Management Journal, Early view, doi: 10.1002/smj.2516. 

Phelps, C. C. 2010. A longitudinal study of the influence of alliance 

network structure and composition on firm exploratory 

innovation. Academy of Management Journal, 53(4): 890-913. 

Porter, M. E. 1980. Competitive Strategy: Techniques for Analyzing 

Industries and Competitors. New York: Free Press. (Republished 

with a new introduction, 1998.) 



 

50 

Reagans, R., & McEvily, B. 2003. Network structure and knowledge 

transfer: The effects of cohesion and range. Administrative Science 

Quarterly, 48(2): 240-267. 

Rodan, S., & Galunic, D. C. 2004. More than network structure: how 

knowledge heterogeneity influences managerial performance and 

innovativeness. Strategic Management Journal, 25: 541-556. 

Rosenkopf, L., & Schilling, M. A. 2007. Comparing alliance network 

structure across industries: observations and explanations. Strategic 

Entrepreneurship Journal, 1(3‐4): 191-209. 

Saxenian, A. 1996. Beyond boundaries: Open labor markets and learning 

in Silicon Valley. In M. B. Arthur and D. M. Rousseau (eds), The 

Boundaryless Career: A New Employment Principle for a New 

Organizational Era. New York: Oxford University Press, pp. 23-39. 

Schilling, M. A., & Phelps, C. C. 2007. Interfirm collaboration networks: 

The impact of large-scale network structure on firm 

innovation. Management Science, 53(7): 1113-1126. 

Shore, J., Bernstein, E., & Lazer, D. 2015. Facts and Figuring: An 

Experimental Investigation of Network Structure and Performance 

in Information and Solution Spaces. Organization Science. 

Advance online publication. doi:10.1287/orsc.2015.0980 

Singh, J. 2005. Collaborative networks as determinants of knowledge 

diffusion patterns. Management Science, 51(5): 756-770. 



 

51 

Sorensen, J. B., & Stuart, T. E. 2000. Aging, obsolescence, and 

organizational innovation. Administrative Science Quarterly, 45(1): 

81-112. 

Sosa, M. E. 2011. Where do creative interactions come from? The role 

of tie content and social networks. Organization Science, 22(1): 1-

21. 

Stasser, G., Stella, N., Hanna, C., & Colella, A. 1984. The majority effect 

in jury deliberations: Number of supporters versus number of 

supporting arguments. Law & Psychology Review, 8: 115-127. 

Stuart, T. E., & Sorenson, O. 2003. Liquidity events and the geographic 

distribution of entrepreneurial activity. Administrative Science 

Quarterly, 48(2): 175-201. 

Trajtenberg, M. 1990. A penny for your quotes: patent citations and the 

value of innovations. The Rand Journal of Economics, 21(1): 172-

187. 

Tortoriello, M., McEvily, B., & Krackhardt, D. 2015. Being a catalyst of 

innovation: The role of knowledge diversity and network closure. 

Organization Science, 26(2): 423-438. 

Tortoriello, M., Reagans, R., & McEvily, B. 2012. Bridging the 

knowledge gap: The influence of strong ties, network cohesion, and 

network range on the transfer of knowledge between organizational 

units. Organization Science, 23(4): 1024-1039. 



 

52 

Tushman, M. L. 1977. Special boundary roles in the innovation process. 

Administrative Science Quarterly, 22: 587-605. 

Uzzi, B., & Spiro, J. 2005. Collaboration and creativity: The small world 

problem. American Journal of Sociology, 111(2): 447-504. 

Watts, D. J. 1999. Small worlds: the dynamics of networks between order 

and randomness. Princeton university press. 

Watts, D. J., & Strogatz, S. H. 1998. Collective dynamics of ‘small-world’ 

networks. Nature, 393(6684): 440-442. 

Wooldridge, J. M. 1999. Distribution-free estimation of some nonlinear 

panel data models. Journal of Econometrics, 90(1): 77-97. 

Wooldridge, J. M. 2002. Econometric analysis of cross section and panel 

data. Massachusetts Institute of Technology, Cambridge, MA. 

Zahra, S. A., & George, G. 2002. Absorptive capacity: A review, 

reconceptualization, and extension. Academy of Management 

Review, 27(2): 185-203. 

Zhou, K. Z., & Li, C. B. 2012. How knowledge affects radical innovation: 

Knowledge base, market knowledge acquisition, and internal 

knowledge sharing. Strategic Management Journal, 33(9): 1090-

1102. 

 

 

 



 

53 

국문초록 

기술적 다양성의 활용에 관한 연구 
: 조직 내 네트워크 구조가  

혁신에 미치는 영향 
  

 

임 나 정 

경영학과 경영학전공 

서울대학교 대학원 

 

왜 기업의 R&D 조직마다 기술적 다양성의 활용 역량에 차이가 

발생하는가? 본 연구는 이 차이가 조직 내 기술자들이 형성하고 

있는 네트워크 구조에 기인한 것이라 주장한다. 네트워크 구조의 두 

가지 속성 – 집단화 계수와 경로 거리 – 에 의해 달라지는 조직 내 

지식 자원의 분포가 기술적 다양성과 혁신 간의 역 U자형 관계를 

어떻게 조절하는지 살펴본다. 5개 글로벌 제약기업의 27개 R&D 

연구센터를 대상으로 1991년부터 2010년까지 20년 간의 패널 

자료를 분석함으로써 본 연구는 기술적 다양성과 혁신 간의 역 

U자형 관계가 있음을 밝히고, 기술자 네트워크가 집단화된 조직, 

경로 거리가 짧은 조직일수록 이 관계가 완만해짐을 밝힌다. 기존의 

연구들이 가정하고 있는 네트워크 구조와 지식 다양성 간의 

상관관계에 강한 의문을 제기함으로써, 본 연구는 지식 다양성과 

혁신에 관한 연구에 이론적으로 기여할 뿐만 아니라 기업 내 R&D 

연구소의 조직 구조 디자인에 실천적인 시사점을 제공할 것으로 

기대한다. 

 

주요어: 지식 다양성, 조직 내부 네트워크, 집단화 계수, 경로 거리, 

혁신 
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