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ABSTRACT 
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tooth and tumorigenesis 
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The odontogenic ameloblast-associated protein (ODAM) is known to play important 

roles in ameloblast differentiation, enamel mineralization, periodontal regeneration, and 

tumorigenesis. However, the underlying mechanism of ODAM function in various tissues 

remains largely unknown.  

The expression pattern and subcellular localization of ODAM was highly variable and 

dependent on cell types and their differentiation states, and that functional correlations 

exist in tooth and various cancer cells. During amelogenesis, Odam was localized in the 
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nucleus, cytoplasm, and extracellular matrix (ECM) of ameloblasts. Runt-related 

transcription factor 2 (Runx2) regulated the expression of Odam and nuclear Odam 

served an important regulatory function in the mineralization of enamel through the 

regulation of matrix metalloproteinase-20 (MMP-20).  

ODAM was expressed in normal junctional epithelium (JE) of healthy tooth but was 

absent in pathologic pocket epithelium of diseased periodontium. In periodontitis and 

peri-implantitis, ODAM was extruded from JE following onset with JE attachment loss 

and detected in gingival crevicular fluid. Odam-mediated RhoA signaling resulted in 

actin filament rearrangement by interacting with Rho guanine nucleotide exchange factor 

5 (Arhgef5). These results suggest that ODAM expression in JE reflects healthy 

periodontium, and that JE adhesion to the tooth surface is regulated via 

fibronectin/laminin-integrin-Odam-Arhgef5-RhoA signaling. 

Furthermore, ODAM has roles in inducing cancer cell adhesion, in part through 

binding, a positive regulator of Rho GTPases. ODAM-mediated RhoA signaling resulted 

in actin filament rearrangement by activating phosphatase and tensin homolog (PTEN) 

and inhibiting the phosphorylation of AKT. ODAM overexpression decreased motility, 

increased adhesion, and inhibited the metastasis of breast cancer cell line MCF7 cells.  

These results suggest that ODAM regulates MMP-20 in the nucleus, ODAM mediated 

cell adhesion by activating RhoA signaling in the cytoplasm, and the cytoplasmic ODAM 

was released in ECM after inflammation. 

 

 



  iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: ODAM ‧ ARHGEF5 ‧ RhoA ‧ Junctional epithlium ‧ Cancer ‧ cell 

adhesion 

Student Number: 2011-31199 

 



  iv 

 

CONTENTS 

ABSTRACT ........................................................................................................................ i 

CONTENTS ...................................................................................................................... iv 

LIST OF TABLES AND FIGURES ................................................................................ xi 

 

CHAPTER I. GENERAL INTRODUCTION .............................................................. １ 

1. Discovery .................................................................................................................. １ 

2. Genomic localization, organization, and protein characteristics ........................ ２ 

3. Roles in enamel formation ...................................................................................... ２ 

4. Roles in the junctional epithelium .......................................................................... ３ 

5. Roles in tumors ........................................................................................................ ３ 

6. Rationale and outline of the thesis experiments ................................................... ４ 

 

CHAPTER II. Expression pattern, subcellular localization, and functional 

implications of ODAM in ameloblasts, odontoblasts, osteoblasts, and various cancer 

cells ................................................................................................................................... ５ 

I. ABSTRACT .............................................................................................................. ６ 

II. INTRODUCTION .................................................................................................. ７ 



  v 

 

III. MATERIALS AND METHODS .......................................................................... ９ 

1. Tissue preparation and immunohistochemistry ................................................ ９ 

2. Cell culture ........................................................................................................... ９ 

3. Plasmid construction ......................................................................................... １０ 

4. Immunofluorescence .......................................................................................... １０ 

5. Preparation of cytoplasmic and nuclear protein extracts .............................. １１ 

6. Western blot analysis ......................................................................................... １２ 

IV. RESULTS ............................................................................................................. １３ 

1. Expression of Odam in ameloblasts, odontoblasts, and osteoblasts of 

developing mice teeth............................................................................................. １３ 

2. In vitro subcellular localization of Odam protein in ameloblastic ALC and 

LS8, odontoblastic MDPC-23, and osteoblastic MG-63 cells ............................. １７ 

3. Correlative expression of Odam and Mmp-20 proteins in ameloblastic ALC 

and LS8, odontoblastic MDPC-23, and osteoblastic MG-63 cells in vitro ........ １９ 

4. Correlative expression of ODAM and MMP-20 proteins in various cancer 

cells in vitro............................................................................................................. ２１ 

V. DISCUSSION ........................................................................................................ ２５ 

 

CHAPTER III. Odam cooperates with Runx2 and modulates enamel mineralization 

via regulation of Mmp-20 ............................................................................................. ２９ 



  vi 

 

I. ABSTRACT ............................................................................................................ ３０ 

II. INTRODUCTION ................................................................................................ ３２ 

III. MATERIALS AND METHODS .................................................................... ３５ 

1. Tissue preparation and Immunohistochemistry ............................................. ３５ 

2. Cell culture ......................................................................................................... ３５ 

3. Reverse transcription-PCR (RT-PCR) analysis .............................................. ３６ 

4. Plasmids, Cloning, and Recombinant Odam (rOdam) ................................... ３８ 

5. Fluorescence microscopy ................................................................................... ３８ 

6. Preparation of cytoplasmic and nuclear protein extracts .............................. ３９ 

7. Western blot analysis ......................................................................................... ３９ 

8. Luciferase assay ................................................................................................. ４０ 

9. Chromatin immunoprecipitation (ChIP) assay ............................................... ４０ 

10. Analysis of Mmp-20 by zymography .............................................................. ４２ 

11. Alizarin red S staining ..................................................................................... ４２ 

12. Statistical Analyses ........................................................................................... ４２ 

IV. RESULTS ............................................................................................................. ４４ 

1. Expression of Odam mRNA and protein during amelogenesis ..................... ４４ 

3. Effect of Runx2 and Odam on the transcriptional activity of Mmp-20 ........ ５０ 

4. ODAM cooperates with Runx2 to regulate Mmp-20 ...................................... ５０ 



  vii 

 

5. Runx2 attenuates Odam-mediated Mmp-20 transcriptional activation ....... ５３ 

6. Recruitment of Odam to the Mmp-20 promoter............................................. ５６ 

7. Role of Odam during amelogenesis in vitro..................................................... ６０ 

V. DISCUSSION ........................................................................................................ ６４ 

 

CHAPTER IV. Odam mediates junctional epithelium attachment to tooth via 

Integrin-Odam-Arhgef5-RhoA Signaling ................................................................... ６７ 

I. ABSTRACT ............................................................................................................ ６８ 

II. INTRODUCTION ................................................................................................ ６９ 

III. MATERIALS AND METHODS ........................................................................ ７２ 

1. Reagents and Antibodies ................................................................................... ７２ 

2. Plasmids, Cloning, and Recombinant Odam (rOdam) ................................... ７２ 

3. Experimental periodontitis ............................................................................... ７３ 

4. Tissue preparation and Immunohistochemistry ............................................. ７３ 

5. Gene expression profiling .................................................................................. ７４ 

6. Study subjects and Clinical examinations ....................................................... ７４ 

7. Cell Culture and Transient Transfection ......................................................... ７５ 

8. Immunoprecipitation assay and His pull-down assay .................................... ７６ 

9. Preparation of cytoplasmic and nuclear protein extracts .............................. ７７ 



  viii 

 

10. Western blot analysis ....................................................................................... ７７ 

11. Fluorescence microscopy ................................................................................. ７７ 

12. RhoA activity assay .......................................................................................... ７８ 

13. Cell adhesion assay .......................................................................................... ７８ 

14. Periodontal challenge procedures................................................................... ７９ 

15. Statistical Analyses ........................................................................................... ７９ 

IV. RESULTS ............................................................................................................. ８０ 

1. ODAM expression was reduced after inflammation or chemical damage in JE

 ................................................................................................................................. ８０ 

2. ODAM was detected in the gingival crevicular fluid (GCF) from periodontitis 

and peri-implantitis patients ................................................................................. ８４ 

3. Odam interacted with Arhgef5 in ameloblasts ................................................ ８６ 

4. Odam mediated RhoA signaling in ameloblasts and JE ................................. ８９ 

5. Odam-mediated RhoA signaling resulted in cytoskeleton reorganization in 

ameloblasts ............................................................................................................. ９２ 

6. Integrin-mediated Odam expression induced RhoA signaling ...................... ９６ 

7. Fibronectin and laminin activated integrin-mediated Odam signaling ...... １００ 

8. Odam was re-expressed in regenerating JE after gingivectomy in vivo or 

mechanical scratch in vitro ................................................................................. １０４ 

V. DISCUSSION ...................................................................................................... １０７ 



  ix 

 

 

CHAPTER V. ODAM inhibits breast cancer invasion and metastasis through 

activation of RhoA signaling ...................................................................................... １１１ 

I. ABSTRACT .......................................................................................................... １１２ 

II. INTRODUCTION .............................................................................................. １１３ 

III. MATERIALS AND METHODS ...................................................................... １１６ 

1. Plasmids, reagents, and antibodies ................................................................. １１６ 

2. Tissue preparation and immunohistochemistry ............................................ １１６ 

3. Cell culture and transfection........................................................................... １１７ 

4. Western blotting ............................................................................................... １１８ 

5. RhoA activity assay .......................................................................................... １１８ 

6. Fluorescence microscopy ................................................................................. １１８ 

7. Adhesion assay.................................................................................................. １１９ 

8. Wound healing assay........................................................................................ １１９ 

9. Invasion assay ................................................................................................... １２０ 

10. Gene expression profiling .............................................................................. １２０ 

11. In vivo transfection of ODAM and histologic analysis ............................... １２１ 

12. Statistical analyses ......................................................................................... １２１ 

IV. RESULTS ........................................................................................................... １２２ 



  x 

 

1. ODAM expression is decreased after tumorigenesis in normal tissues ....... １２２ 

2. ODAM interacts with ARHGEF5 and induces RhoA signaling in breast 

cancer cells ............................................................................................................ １２６ 

3. ODAM regulates PTEN and AKT signaling pathway via RhoA ................. １３０ 

4. ODAM-induced RhoA signaling results in cytoskeletal rearrangement and 

cellular conformational changes ......................................................................... １３３ 

5. ODAM reduces tumor formation, growth, cellular migration, and invasion in 

breast and stomach cancer cells .......................................................................... １３６ 

V. DISCUSSION ...................................................................................................... １４０ 

 

CHAPTER VI. CONCLUDING REMARKS ........................................................... １４３ 

REFERENCES ............................................................................................................ 1 4 5  

CHAPTER VII. ABSTRACT IN KOREAN ............................................................. 1 6 3  

 

 

 

 

 

 



  xi 

 

LIST OF TABLES AND FIGURES 

 

Table 1. The list for RT-PCR primer .......................................................................... ３７ 

Table 2. The list for ChIP assay primer ...................................................................... ４１ 

 

Figure 1. Localization of Odam protein in the developing mandibular molars of mice 

by immunohistochemistry. ........................................................................................... １５ 

Figure 2. Subcellular localization of Odam protein in ameloblastic ALC and LS8, 

odontoblastic MDPC-23, and osteoblastic MG-63 cells in vitro by 

immunofluorescence. .................................................................................................... １８ 

Figure 3. Intracellular and extracellular localization of Odam and Mmp-20 in 

ameloblastic ALC and LS8, odontoblastic MDPC-23, and osteoblastic MG-63 cells 

as measured by western blot. ....................................................................................... ２０ 

Figure 4. Intracellular and extracellular localization of ODAM and MMP-20 

expression in cancer cells, as measured by western blot. .......................................... ２３ 

Figure 5. Immunohistochemical analysis of Odam expression during ameloblast 

differentiation in the mandibular incisor of a 16-day-old mouse. ............................ ４５ 

Figure 6. Odam and Mmp-20 protein and mRNA expression during ameloblast 



  xii 

 

differentiation in vitro. ................................................................................................. ４６ 

Figure 7. Subcellular and extracellular localization of Odam. ................................. ４９ 

Figure 8. Regulation of Mmp-20 by Runx2 and Odam. ............................................ ５１ 

Figure 9. Mmp-20 promoter activity is induced by the cooperation of Runx2 and 

Odam. ............................................................................................................................. ５４ 

Figure 10. Recruitment of Odam to chromatin. ......................................................... ５８ 

Figure 11. Increased expression of Odam enhances mineralization in ALC. .......... ６２ 

Figure 12. ODAM was expressed in normal JE but reduced after inflammation or 

damage. .......................................................................................................................... ８２ 

Figure 13. ODAM was detected in GCF from periodontitis and peri-implantitis 

patients. .......................................................................................................................... ８５ 

Figure 14. Odam interacted with Arhgef5 in ameloblasts. ........................................ ８７ 

Figure 15. Odam induced RhoA signaling pathway in ameloblasts. ........................ ９０ 

Figure 16. Odam induced actin rearrangement in ameloblasts via RhoA signaling.... .

......................................................................................................................................... ９４ 

Figure 17. Integrin b3 depletion diminishes Odam, Arhgef5, and RhoA expression in 



  xiii 

 

ameloblasts and JE........................................................................................................ ９８ 

Figure 18. Fibronectin and laminin activated integrin-Odam signaling. ............... １０２ 

Figure 19. Odam was re-expressed in regenerating JE after gingivectomy. ......... １０５ 

Figure 20. ODAM was expressed in normal and cancer tissues. ............................ １２４ 

Figure 21. ODAM interacted with ARHGEF5 and induced RhoA signaling in breast 

cancer cells. .................................................................................................................. １２８ 

Figure 22. ODAM controlled PTEN and AKT signaling via the RhoA pathway.. １３２ 

Figure 23. ODAM expression resulted in actin rearrangement in breast cancer and 

stomach cancer cells via RhoA signaling. ................................................................. １３４ 

Figure 24. ODAM influenced the morphology, adhesion, migration, and invasion of 

breast and stomach cancer cells. ................................................................................ １３８ 



  １ 

 

CHAPTER I. GENERAL INTRODUCTION 

 

Enamel is a great bioceramic designed to bear mechanical forces for decades while 

being subjected to continuous changes in pH, temperature, and microbial challenges, all 

that without the ability to regenerate. ability [1]. The enamel mineral builds up at the 

organic matrix during the maturation stage. Although some important progresses have 

been made toward identifying essential mechanisms and molecules in these processes [2-

4], the developmental continuum of ameloblasts at the maturation stage has been reported 

on a only histological level [5, 6]. With teeth eruption, the reduced enamel epithelium 

fuses with the oral epithelium and then is transformed into junctional epithelium (JE). 

The JE eventually offers the adhesion around teeth. Therefore, it is of crucial significance 

to obstruct invasion of oral microbes. However, the molecular composition for  

attachment of the JE and the mineralized tooth remains undefined [7]. In this paper, I 

focused on the odontogenic ameloblast-associated protein (ODAM) and briefly 

summarized its role in enamel and the JE. 

 

1. Discovery 

ODAM is initially identified as the protein in potentially specific odontoblasts by 

suppression subtractive hybridization and is named OD-314 [8]. Also, ODAM is 

identified as the important protein related with the amyloid deposits of calcifying 

epithelial odontogenic tumors and is called APin (for Amyloid in Pindborg tumors) [9]. 
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In addition, It is discovered by the signal trap screening approach using rat incisor enamel 

is named EO-009 [10]. It has been renamed ODAM because of its considerable 

expression in enamel-associated epithelial cells [11, 12].  

 

2. Genomic localization, organization, and protein characteristics 

The genomic location of ODAM contains in chromosome 5 that clusters for genes 

involved in enamel, saliva, bone, and milk (small integrin-binding ligand N-linked 

glycoproteins, SIBLING family) [13]. ODAM gene sequence is conserved in mammalian 

genomes [12]. ODAM is composed of 12 exons and has the predicted protein mass of 

28.3kD. However, its presence is revealed by western blot analysis, albeit at a higher than 

predicted molecular mass due to post-translation. ODAM proteins contain an N-terminal 

signal peptide and are secreted [12, 14]. ODAM have the rich glutamine and proline and 

the positions of glutamine and proline are predicted to be phosphorylated at a large 

number of serine and threonine residues and O-glycosylated at various positions. ODAM 

expression is striking in secretory-stage ameloblasts, maturation-stage ameloblasts, and 

JE, but present in other tissues including mammary gland, nasal gland, and salivary gland 

[12], indicating diverse biological roles. 

 

3. Roles in enamel formation 

ODAM is expressed in from secretory- to maturation-stage ameloblasts during enamel 

formation [14]. The first report shows that ODAM involves the enamel formation and 

highly expresses during amelogenesis [11]. ODAM proteins are localized in the 
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ameloblast-enamel interface with closer to the cell surface [15]. The data related with 

ODAM knockout mice has not been reported. Further studies on the regulatory molecular 

mechanism of enamel mineralization by ODAM have indicated that intracellular ODAM 

proteins are phosphorylated by the bone morphogenetic protein receptor type IB (BMPR-

IB)-mediated action by BMP-2 and then regulates the signaling pathways related with 

ameloblast differentiation [16]. Interestingly, after injury, recombinant ODAM proteins 

show the induction of odontoblast differentiation and dentin mineralization using in vitro 

cell culture system and in vivo dental pulp capping experiments [17]. 

 

4. Roles in the junctional epithelium 

ODAM is localized in the pericellular of JE [11]. ODAM is not expressed in the JE 

after gingivectomy or orthodontic tooth movement and gets back its normal expression 

condition after the regeneration of gingival tissue [18, 19]. Remarkably, the expression of 

ODAM is induced in epithelial rests of Malassez (ERM) after gingivectomy or 

orthodontic tooth movement and ODAM is reexpressed during regeneration [19, 20], 

indicating that ODAM may function effectively in periodontal regeneration. However, 

functional studies have not been published. Recently, the in vitro model system for 

junctional, sulcular and gingival epithelium formation has identified ODAM expression 

to describe the JE’s feature [21].  

 

5. Roles in tumors 

In addition to the potential roles in enamel formation and the JE regeneration, some 
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papers have studied the ODAM expression and function in cancers as it is initially found 

in Pindborg tumors [9, 22]. ODAM has also been discovered in tumors of epithelial 

origin such as breast, gastric, and lung. It has been suggested as a prognostic marker for 

breast tumor [23, 24]. In addition, the expression of ODAM has confirmed in certain 

odontogenic tumors [25, 26]. ODAM expression has also been reported in odontoblasts, 

osteoblasts and diverse cancer cells [27]. The first report, which shows the functional role 

of ODAM in tumors, has shown that it hinder tumorigenic characteristics in MDA-

MB231 and the mice transplantating ODAM-expressing tumor cells cause significantly 

reduced tumor growth and their metastasis inability to metastasize [23]. Further 

molecular study shows that ODAM function by inducing the tumor suppressor 

phosphatase and tensin homolog (PTEN) and inhibiting the apoptosis-blocking PI3 

kinase/AKT pathway [28].  

 

6. Rationale and outline of the thesis experiments 

A key purpose of this thesis is to investigate the mechanisms of ODAM function in 

enamel formation, JE attachment, and tumor metastasis. To achieve this goal, I performed 

the study of 1) the localization and expression of ODAM, 2) roles of ODAM during 

amelogenesis 3) the mechanism of JE attachment to the tooth surface for the formation of 

an epithelial barrier against periodontal pathogens in healthy and inflamed periodontal 

tissues, and 4) the roles of ODAM in the migration and invasion of cancer cells in vitro 

and in vivo. 
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CHAPTER II.  

 

Expression pattern, subcellular localization, 

and functional implications of ODAM in 

ameloblasts, odontoblasts, osteoblasts, and 

various cancer cells 

 

 

 

 

 

 

 

 

* This Chapter has been largely reproduced from an article published by Lee HK. and 

Park JC. (2012). Gene Expr Patterns., 12(3-4):102-108. 
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I. ABSTRACT 

During tooth development and tumorigenesis, the odontogenic ameloblast-associated 

protein (ODAM) is involved in cellular differentiation and matrix protein production. 

However, the precise function of ODAM remains largely unknown. To suggest new 

functional roles of ODAM, it was investigated the cellular expression and subcellular 

localization of ODAM in tooth and cancer cells. Odam was expressed in ameloblasts, 

odontoblasts, and osteoblasts in vivo and in vitro. Furthermore, Odam was localized in both 

the nucleus and cytoplasm of Mmp-20 expressing ameloblasts and odontoblasts, but only 

in the cytoplasm of non-Mmp-20 expressing osteoblasts. The extracellular secretion of 

Odam was not observed in odontoblasts and osteoblasts, but was seen in ameloblasts. In 

addition, ODAM was discovered in the nucleus, cytoplasm, and extracellular matrix of 

various cancer cells. These results suggest that the expression pattern and subcellular 

localization of ODAM is highly variable and dependent on cell types and their 

differentiation states, and that functional correlations exist between ODAM and MMP-20. 

This study provides the first evidence for ODAM in multiple cellular compartments of 

differentiating odontogenic and cancer cell lines with important functional implications. 
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II. INTRODUCTION 

The odontogenic ameloblast-associated protein (ODAM, FLJ20512) was originally 

cloned from the human KATO III cell line [29] and has been detected in calcifying 

epithelial odontogenic tumor-associated amyloids [9]. ODAM is expressed in ameloblasts, 

odontoblasts, lactating mammary glands, nasal and salivary glands, tongue, gingival 

tissue, the reducing enamel organ, junctional epithelia, and epithelial cell rests of 

Malassez [8, 12, 20]. ODAM has been implicated in diverse functions such as ameloblast 

differentiation, enamel maturation, junctional epithelia formation and regeneration, and 

tumor growth and metastasis [12, 14, 23]. However, the precise function of ODAM 

remains largely unknown. 

In ameloblasts, nuclear Odam serves an important regulatory function in the 

mineralization of enamel through the regulation of matrix metalloproteinase-20 (Mmp-20) 

[14]. The cytoplasmic expression of Odam in junctional epithelia and epithelial cell rests 

of Malassez suggests that this protein may be involved in periodontal healing and 

regeneration at early time-points following the disruption of periodontal integrity [18, 20]. 

Nevertheless, the subcellular localization of Odam and its functional implications has not 

yet been clarified. 

MMP-20 expression has been detected in ameloblasts, odontoblasts, and pathological 

tissues, including the ghost cells of calcifying odontogenic cysts, odontogenic tumors, 

and human breast carcinomas [30-33]. MMP-20, which plays an important role in the 

degradation of amelogenin, is synthesized and secreted by ameloblasts. Enamel formation 

is severely defective in Mmp-20-deficient mice because Mmp-20-mediated amelogenin 
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degradation is believed to be essential for the axial growth of enamel crystals [33, 34]. 

MMP-20 may also be involved in breast carcinogenesis, as MMP-20 is expressed at 

diverse stages even though it is much greater levels in late stages of cancer than in the 

early stages [32]. MMP-20 is able to fragment the primary structural proteins of the 

basement membrane and extracellular matrix as well as certain host defense proteins 

encircling the tumor, but not native fibrillar collagens. Therefore, MMP-20 may 

participate in the basement membrane and extracellular matrix modeling required for oral 

carcinoma cell invasion and metastasis formation [35]. I have recently shown that Mmp-

20 transcription is induced by recruitment of Odam on the Mmp-20 promoter in 

ameloblasts [14]. However, besides ameloblasts, very little is known about cells 

coexpressing ODAM and MMP-20 and the functional correlations between ODAM and 

MMP-20 in various normal and cancer cells.  

In the present study, I investigated the cellular expression and subcellular localization 

of ODAM in ameloblasts, odontoblasts, osteoblasts, and various cancer cells to determine 

correlations between ODAM and MMP-20 and define new functional roles of ODAM. 
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III. MATERIALS AND METHODS 

1. Tissue preparation and immunohistochemistry 

All mouse experiments were approved by the Seoul National University Institutional 

Animal Care and Use Committee. Mandibles and maxillae from 10-day-old mice were 

decalcified in a 10% EDTA (pH 7.4) solution at 4°C and processed for 

immunohistochemistry for immunohistochemistry. Deparaffinized sections were 

immersed in 0.6% H2O2 in methanol for 20 min to quench endogenous peroxidase activity. 

They were then pre-incubated with 1% bovine serum albumin in phosphate buffered 

saline (PBS) for 30 min and incubated overnight at 4°C with a rabbit polyclonal ODAM 

(1:50) antibody. Affinity-purified rabbit polyclonal anti-ODAM antibody using its target 

antigen was newly generated against amino acids residues 102-114 of ODAM. The 

following day, the sections were incubated for 3 h at room temperature with the 

secondary antibody and reacted with avidin-biotin-peroxidase complex (Vector) in PBS 

for 30 min. After color development with 0.05% 3, 3'-diaminobenzidine 

tetrahydrochloride (Vector), the samples were counterstained with hematoxylin. 

 

2. Cell culture 

Immortalized ameloblast-lineage cells (ALC) were kindly provided by Dr. T. 

Sugiyama (Akita University School of Medicine, Akita, Japan). ALCs were cultured in 

Minimum essential medium supplemented with 5% heat inactivated fetal bovine serum, 

10 ng/ml of the recombinant human epithelial growth factor (Sigma-Aldrich), and 

antibiotic-antimycotic (Invitrogen) in a 5% CO2 atmosphere at 37°C. Another ameloblast 
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cell line, LS8, was kindly provided by Dr. ML Snead (University of Southern California, 

LosAngeles, CA). MDPC-23 odontoblast-like cells (Dr. JE nör, University of Michigan, 

Ann Arbor, MI), MG-63 human osteoblast-like cells (ATCC), H1299 human metastatic 

lung cancer cells (ATCC), AGS human stomach cancer cells (ATCC), and HeLa human 

uterine cervix cancer cells (ATCC) were cultured in Dulbecco’s modified eagle’s medium 

supplemented with 10% fetal bovine serum. MCF-7 non-invasive human breast cancer 

cells (ATCC), SK-BR-3 non-invasive human breast cancer cells (ATCC), and MDA-MB-

231 invasive human breast cancer cells (ATCC) were cultured in RPMI 1640. MCF-10A 

normal human breast cells (ATCC) were cultured in a 1:1 mixture of Dulbecco’s 

modified Eagle’s medium and F12 medium supplemented with 5% horse serum (Gibco), 

hydrocortisone (0.5 mg/ml; Sigma-Aldrich), insulin (10 mg/ml; Sigma–Aldrich), 

epidermal growth factor (20 ng/ml; Sigma-Aldrich), and penicillin-streptomycin (100 

mg/ml each; Gibco). 

 

3. Plasmid construction  

Odam cDNA was constructed and verified as described previously [14]. The green 

fluorescent protein (GFP)-tagged Odam gene was placed into pEGFP-C3 (BD 

Biosciences). 

 

4. Immunofluorescence 

To locate endogenous Odam, ALC, MDPC-23, MG-63, or LS8 cells were seeded in 

chambered cover glasses at a density of 1×105 cells per well. The cells were transiently 
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transfected with the GFP-tagged Odam expression construct. The cells were then washed 

with PBS, fixed with 4% paraformaldehyde in PBS for 10 min at room temperature, and 

permeabilized for 4 min in PBS containing 0.5% Triton X-100. After washing, cells were 

incubated with anti-Odam antibody (1:200 dilution) in blocking buffer (2% BSA in PBS) 

for 2 h and then incubated with FITC-conjugated anti-rabbit IgG (1:200 dilution; 

Amersham Pharmacia). After the washing step, the cells were visualized under a 

fluorescence microscope (AX70; Olympus, Japan). Chromosomal DNA in the nucleus 

was stained using DAPI. 

 

5. Preparation of cytoplasmic and nuclear protein extracts 

The cells were collected by centrifugation at 3000 rpm for 5 min at 4°C. Cell lysis was 

performed in ice-cold hypotonic lysis buffer [10 mM HEPES (pH 7.9), 10 mM KCl, 0.1% 

Nonidet P-40 (NP-40)], supplemented with protease inhibitors (Roche) for 15 min. The 

nuclear and cytoplasmic fractions were separated by centrifugation at 3000 rpm for 5 min 

at 4°C. The resulting supernatant (the cytoplasmic fraction) was stored at 4°C until 

further analysis. The membrane pellet was resuspended in ice-cold hypertonic lysis buffer 

[10 mM HEPES (pH 7.9), 150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 10% 

glycerol], supplemented with protease inhibitors and incubated for 15 min at 4°C. The 

soluble fraction was isolated by centrifugation at 3000 rpm for 5 min at 4°C. The 

resulting supernatant (the nuclear fraction) was stored at 4oC until further analysis. 
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6. Western blot analysis 

Proteins were extracted from cell lysates after lysis in NP-40 lysis buffer (50 mM Tris-

Cl, pH 7.4; 150 mM NaCl; 1% NP-40; 2 mM EDTA, pH 7.4; and protease inhibitor). The 

samples were separated on denaturing 10–12% Tris-HCl polyacrylamide gels and 

transferred to nitrocellulose membranes. The membranes were blocked for 1 h with 5% 

non-fat dry milk in PBS containing 0.1% Tween 20 (PBS-T), washed with PBS-T, and 

incubated overnight with primary antibodies diluted in PBS-T (1:1000) at 4°C. 

Commercially available primary antibodies used were goat polyclonal anti-MMP-20 (sc-

26926; Santa Cruz), goat polyclonal lamin B antibody (sc-6216; Santa Cruz), and rabbit 

anti-GAPDH IgG (sc-25778; Santa Cruz). After washing, the membranes were incubated 

with goat anti-rabbit-IgG (sc-2004; Santa Cruz) and rabbit anti-goat-IgG (sc-2768; Santa 

Cruz) conjugated with horseradish peroxidase for 1h. The labeled protein bands were 

detected using an enhanced chemiluminescence system (Dogene, MA), and the bands 

were measured using densitometric analysis of the autoradiograph films. 
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IV. RESULTS 

1. Expression of Odam in ameloblasts, odontoblasts, and osteoblasts of 

developing mice teeth 

In our first series of experiments, I aimed to determine the expression pattern of Odam 

protein during ameloblast, odontoblast, and osteoblast differentiation in developing mice 

molars by immunohistochemistry. At postnatal day 0, Odam was observed in neither the 

enamel organ nor dental papilla at the early bell stage of tooth development (Fig. 1A), but 

it detected in osteoblasts of developing alveolar bone (Fig. 1B). At postnatal days 3, inner 

enamel epithelial cells differentiated into secretory ameloblasts at cusp tip and secreted 

enamel matrix. Differentiated odontoblasts also secreted unmineralized pre-dentin and 

formed mineralized dentin matrix. Odam protein was clearly observed in both the nucleus 

and cytoplasm of secretory-stage ameloblasts and the interface between ameloblasts and 

enamel layer (Fig. 1C and D). It was also detected in enamel, dentin matrix, pre-dentin, 

and underlying odontoblasts (Fig. 1C and D). At postnatal days 10, the ameloblasts 

showed strong immunoreactivity against Odam in the cytoplasm, the interface between 

ameloblasts and enamel layer, and enamel matrix (Fig. 1E and F). In addition, Odam was 

localized in odontoblast processes (Fig. 1F). At postnatal days 14, enamel matrix 

formation was almost completed and enamel surface was covered with maturation-stage 

ameloblasts. Odam immunostaining was observed in the cytoplasm of ameloblasts and 

the interface between ameloblasts and mineralized enamel layer (Fig. 1G and H). 

However, in predentin and odontoblast processes, the expression levels of Odam 

decreased compared to those of postnatal days 3 (Fig. 1G and H). These results showed 
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that the localization of Odam was stage-specific during ameloblast and odontoblast 

differentiation in vivo. 
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Figure 1. Localization of Odam protein in the developing mandibular molars of mice 

by immunohistochemistry.  

(A) Odam was not observed in a developing tooth bud at early bell stage. (B) Odam 

expression in osteoblasts (arrows) at postnatal day 0. Closed boxes showed the 

enlargement of small boxes in A and B, respectively. (C, D) Panel D, the enlargement of 

box in C, showed Odam expression in the nucleus (arrows) and cytoplasm (arrowheads) 

of secretory-stage ameloblasts, the interface between ameloblasts and enamel layer, and 

predentin at postnatal days 3. (E, F) Panel F, the enlargement of box in E, Odam was 

clearly detected in the interface between ameloblasts and enamel layer, enamel matrix, 

and odontoblast processes (arrows) at postnatal days 10. (G, H) Panel H, the enlargement 

of box in G, showed Odam expression in the cytoplasm (arrowheads) of maturation-stage 

ameloblasts and the interface between ameloblasts and enamel layer at postnatal days 14. 

EO, enamel organ; DP, dental papilla; DF, dental follicle; OB, osteoblast; AB, alveolar 

bone; SA, secretory-stage ameloblast; E, enamel; D, dentin; PD, pre-dentin; MA, 
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maturation-stage ameloblast.  
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2. In vitro subcellular localization of Odam protein in ameloblastic ALC and 

LS8, odontoblastic MDPC-23, and osteoblastic MG-63 cells 

The subcellular localization of the Odam protein was further investigated in cultured 

ALC, LS8, MDPC-23, and MG-63 cells using indirect immunofluorescence. Odam 

immunostaining revealed a strong mesh-like pattern in the nucleus and cytoplasm of ALC, 

LS8, and MDPC-23 cells. However, in MG-63 cells, Odam was expressed only in the 

cytoplasm (Fig. 2A). To exclude non-specific antibody binding and confirm the 

subcellular localization of Odam, a GFP-tagged rat Odam construct was transfected into 

ALC, MDPC-23, and MG-63 cells. Similar to the endogenous Odam, the exogenous 

GFP-tagged Odam protein was observed in the nucleus and cytoplasm with a similar 

mesh-like pattern in ALC and MDPC-23 cells (Fig. 2B). In contrast to free GFP 

distributed throughout the cytoplasm, GFP-Odam protein appeared as punctuate bodies in 

the cytoplasm of MG-63, but the precise nuclear localization could not be determined 

(Fig. 2B).  
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Figure 2. Subcellular localization of Odam protein in ameloblastic ALC and LS8, 

odontoblastic MDPC-23, and osteoblastic MG-63 cells in vitro by 

immunofluorescence.  

(A) Endogenous Odam was detected with anti-Odam antibodies in ALC, MDPC-23, MG-

63, and LS-8 cells. Endogenous Odam was located in the nucleus and cytoplasm of ALC, 

MDPC-23, and LS-8 cells. In MG-63 cells, Odam was primarily localized to the 

cytoplasm. (B) Exogenous Odam in ALC, MDPC-23, and MG-63 cells was detected by 

immunofluorescence after transfection of the GFP-tagged Odam construct into the cells. 

Exogenous Odam was also expressed in the nucleus and cytoplasm of ALC and MDPC-

23 cells. Nuclei were stained with DAPI. 
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3. Correlative expression of Odam and Mmp-20 proteins in ameloblastic 

ALC and LS8, odontoblastic MDPC-23, and osteoblastic MG-63 cells in vitro 

To confirm the expression of Odam in tooth-specific cell lines, I analyzed the 

expression of Odam and Mmp-20 in ALC, LS8, MDPC-23, and MG-63 cells by western 

blot. ALC, MDPC-23, and LS8 cells expressed both Odam and Mmp-20 protein, while 

MG-63 expressed Odam protein but not Mmp-20 protein (Fig. 3A). Next, I investigated 

the subcellular localization of Odam in these cells. Odam protein found in both the 

nucleus and cytoplasm of ALC, MDPC-23, and LS8 cells, but only in the cytoplasm of 

MG-63 cells (Fig. 3B). In our previous study, Odam was detected in ameloblasts culture 

media and I determined that the Odam signal peptide played an important role in Odam 

protein secretion [14]. Here, I investigated whether odontoblasts and osteoblasts also 

secrete Odam protein. Endogenous Odam protein was localized in intracellular 

compartments of ALC, MDPC-23, MG-63, and LS8 cells in the presence or absence of 

brefeldin A, an inhibitor of protein secretion. In contrast, secreted Odam was not detected 

in odontoblastic MDPC-23 and osteoblastic MG-63 cells, but was found in ameloblastic 

ALC and LS8 cells. In addition, Odam secretion was inhibited by brefeldin A in ALC and 

LS8 cells (Fig. 3C). 
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Figure 3. Intracellular and extracellular localization of Odam and Mmp-20 in 

ameloblastic ALC and LS8, odontoblastic MDPC-23, and osteoblastic MG-63 cells 

as measured by western blot.  

(A) The cell lysates from ALC, MDPC-23, MG-63, and LS8 cells were analyzed by 

western blot using antibodies against Odam and Mmp-20. Endogenous Odam was 

expressed in these cell lines, but Mmp-20 proteins were detected in ALC, MDPC-23, and 

LS8 cells. (B) The cell lysates were separated to nuclear and cytoplasmic fractions and 

were analyzed for Odam proteins by western blot. Odam was expressed in the nucleus 

and cytoplasm of ALC, MDPC-23, and LS8 cells, but it was only found in the cytoplasm 

of MG-63 cells. The nuclear and cytoplasmic fractions blotted with antibodies to Gapdh 

as a cytoplasmic marker and lamin B1 as a nuclear marker. (C) The Odam protein in cell 

lysates and conditioned media (CM) were analyzed by western blot. A strong Odam 

signal was observed in the cell lysates and CM of ALC and LS8 cells. However, Odam 

was detected in cell lysates of MDPC-23 and MG-63 cells, but not in the CM from these 

cells. C, cytoplasm; N, nucleus; E, cell extract; B, brefeldin A. 
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4. Correlative expression of ODAM and MMP-20 proteins in various cancer 

cells in vitro 

ODAM was strongly expressed in the nucleus and cytoplasm of benign structures 

including ducts, vessels, adenosis, and epithelial hyperplasia. In contrast, ODAM showed 

uniformly weak cytoplasmic staining in the malignant cells [23]. To infer the function of 

ODAM in various cancer cells, it was examined the expression levels and patterns of 

ODAM and MMP-20 by western blot. Although the expression of ODAM protein was 

relatively low in H1299 cells, it was strongly expressed in AGS, HeLa, MCF-7, and SK-

BR-3 cancer cells and MCF-10A human breast epithelial cells. However, ODAM protein 

was not detected in MDA-MB231 invasive breast cancer cells (Fig. 4A). MMP-20 

expression was observed in HeLa, MCF-10A, SK-BR-3, and MDA-MB231 cells (Fig. 

4A). 

To examine the subcellular localization of ODAM in various cancer cell lines, it was 

analyzed ODAM expression by western blot after subcellular fractionation. ODAM was 

found to be expressed in both the nucleus and cytoplasm of HeLa, and MCF-10A cells, 

but only in the cytoplasmic compartment of H1299, AGS, MCF-7, and SK-BR-3 cells 

(Fig. 4B). Although, nuclear localization of ODAM did not completely coincide with 

MMP-20 expression in these cell types, the similar expression patterns observed between 

ODAM and MMP-20 may suggest correlative functional roles for these proteins. 

I also assessed the extracellular secretion of ODAM in H1299, AGS, HeLa, MCF-10A, 

MCF-7, SK-BR-3, and MDA-MB231 cells by western blot. Endogenous ODAM protein 

was expressed in the intracellular compartments of H1299, AGS, HeLa, MCF-10A, 
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MCF-7, and SK-BR-3 cells in the presence or absence of brefeldin A. The extracellular 

secretion of ODAM was also observed in these cells. However, in MDA-MB231 cells, 

ODAM was only detected in the conditioned media, but not in the cell lysates (Fig. 4C).  
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Figure 4. Intracellular and extracellular localization of ODAM and MMP-20 

expression in cancer cells, as measured by western blot.  

(A) The indicated cell lysates were analyzed by western blot using antibodies against 

ODAM and MMP-20. ODAM was expressed in all but the MDA-MB231 cells, but 

MMP-20 proteins were only detected in HeLa, MCF-10A, SK-BR-3, and MDA-MB231 
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cells. (B) The cell lysates were separated into nuclear and cytoplasmic fractions and were 

analyzed for ODAM protein by western blot. ODAM was strongly expressed in the 

nucleus and cytoplasm of HeLa, and MCF-10A cells, but it was found only in the 

cytoplasm of H1299, AGS, MCF-7, and SK-BR-3 cells. The nuclear and cytoplasmic 

fractions blotted with antibodies to GAPDH (cytoplasmic marker) and lamin B1 (nuclear 

marker). (C) The ODAM protein in cell lysates and CM were analyzed by western blot. A 

strong ODAM signal was observed in both the cell lysates and CM of H1299, AGS, 

HeLa, MCF-10A, MCF-7, and SK-BR-3 cells; however, ODAM was detected in the 

MDA-MB231 cell lysates, but not in the CM from these cells. C, cytosol; N, nucleus; E, 

cell extract; B, brefeldin A. 
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V. DISCUSSION 

Generally, amelogenesis is subdivided into three main functional stages, including the 

presecretory, secretory, and maturation. Each stage is also subdivided into early, mid, and 

late phases. A previous controversy concerned whether Odam is expressed in secretory-

stage ameloblasts. In our previous studies, it was determined that Odam is expressed in 

secretory-stage ameloblasts and is localized to the nucleus and cytoplasm both in vivo and 

in vitro [11, 14]. However, it has been reported that Odam is expressed exclusively in 

maturation-stage ameloblasts during amelogenesis [12]. Recently, in early to mid-

maturation stage of amelogenesis, the expression of Odam was observed in the cytoplasm 

of ameloblasts and the interface between ameloblasts and mineralized enamel layer [36]. 

This discrepancy might result from difficulties in clearly delineating the subdivision of 

the stages during the continuous amelogenesis process. Part of the secretory stage by our 

classification might correspond to the early maturation stage classified by other 

researchers. In the present study, I showed Odam protein in the nuclei and cytoplasm of 

secretory-stage ameloblasts using a new antibody, unlikely previous antibody [11]. These 

findings suggest the nuclear localization of Odam in tooth and cancer cells and its 

functional implications during tooth and cancer development. 

Dentin matrix protein 1 (Dmp1) is an acidic phosphoprotein that plays an important 

role in mineralized tissue formation through the initiation of nucleation and modulation of 

mineral phase morphology [37-39]. It is expressed in all developing dental structures 

including the dental lamina, enamel organ, dental papilla, ameloblasts odontoblasts, and 

dentinal tubules [40]. Similar to Odam, Dmp1 is present in the nucleus and cytoplasm of 
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certain cell types and can also be found in the extracellular matrix. For example, Dmp1 

resides in the nucleus, cytoplasm, and extracellular matrix of osteoblasts depending on 

their differentiation state suggesting a bifunctional role for this protein, as a 

transcriptional regulator of specific genes that control osteoblast differentiation before it 

is exported into the extracellular matrix [41]. Dmp1 was found in the cytoplasm and 

plasma membrane in the mineralized extracellular matrix of tooth and bone [41]. Thus, it 

has been postulated to play an important role in mineralized tissue formation by initiating 

and modulating deposition during the mineral phase [37]. Therefore, the variable 

localization of Odam indicates that it has various cellular activities in tooth and cancer 

development that are similar to Dmp1. 

Secreted Odam was localized to junctional epithelium-tooth interfaces. Based on these 

expression patterns, it was suggested that secreted Odam might mediate the adhesion of 

junctional epithelial cells to the tooth surface, indicating multiple potential regulatory 

functions [12]. Odam, like a number of other cell-adhesion molecules such as the 

cadherins [42] and claudin [43], has been shown to reside in the cytoplasm, 

nuclear/perinuclear regions, and at the cell surface [44]. Furthermore, Odam contains six 

PDZ-binding motifs, which are found in several tight junction (TJ) proteins, including 

claudin-4 and ZO, which have been implicated in malignant transformation, cell signaling, 

and breast tumor cell invasion [24]. Certain TJ proteins, such as ZO-1, are to be 

coexpressed in the nucleus and extracellular matrix, and some TJ proteins also serve 

prominent roles in signal transduction [45]. In the present study, ODAM was expressed in 

the cytoplasm and extracellular matrix of cancer cells and tissues. Furthermore, despite 
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the absence of intracellular ODAM expression, MDA-MB231 invasive breast cells 

secreted ODAM protein. These results suggest important roles for extracellular ODAM in 

neoplastic transformation and tumor cell invasion similar to TJ proteins. Together with 

the biochemical fractionation, our results also indicate that ODAM is a cytoplasmic, 

nuclear, and extracellular matrix protein in cancer cells, which is consistent with the 

predicted role of Odam in tooth development. 

MMPs are a family of zinc-dependent endopeptidases that play important roles in tooth 

development, tumor invasion, and metastasis. Many reports on MMP2, MMP9, and 

MMP-20 have demonstrated that the production and activation of these proteins is 

dramatically increased in tooth development and breast cancer, and their expression may 

also be related to the tooth development and metastasis of cancer cells [32, 34]. MMP-20 

plays an important role in the progression of tumor invasion [33] . Consistent with a 

previous report [14], the expression of MMP-20 correlated with nuclear ODAM 

expression in most of the investigated cells excluding SK-BR-3 cancer cells in this study. 

These finding suggest that nuclear ODAM and MMP-20 together may have important 

roles in transcriptional regulation not only during tooth development but also 

tumorigenesis and metastasis. 

In the present study, intracellular and extracellular expression pattern of ODAM was 

investigated in tooth and cancer cells in vivo and in vitro. Odam was present in 

developing ameloblasts, odontoblasts, osteoblasts, and various cancer cells including 

human lung, stomach, uterine cervix, and breast cancer cells. Interestingly, in 

odontogenic ameloblasts and odontoblasts, the nuclear localization of Odam correlated 
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with Mmp-20 expression. The extracellular secretion and expression of ODAM protein 

was observed in most cancer cells and tissues which were investigated in this study. 

These findings suggest that ODAM may be implicated in tumorigenesis. It can be also 

used as novel clues for understanding the function of ODAM in other various cells. Based 

on the observation presented here, I propose that ODAM has diverse functions that vary 

with protein location in various cell lines: nuclear ODAM appears to be associated with 

MMP-20 regulation and tumorigenesis, and additional functions may take place in the 

cytoplasm and extracellular matrix. 
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CHAPTER III.  

 

Odam cooperates with Runx2 and modulates 

enamel mineralization via regulation of Mmp-

20 

 

 

 

 

 

 

 

 

 

* This Chapter has been largely reproduced from an article published by Lee HK. and 

Park JC. (2010). J Cell Biochem., 111(3):755-767. 
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I. ABSTRACT 

I have previously reported that the odontogenic ameloblast-associated protein (Odam) 

plays important roles in enamel mineralization through the regulation of matrix 

metalloproteinase-20 (Mmp-20). However, the precise function of Odam in Mmp-20 

regulation remains largely unknown. The aim of the present study was to uncover the 

molecular mechanisms responsible for Mmp-20 regulation. The subcellular localization 

of Odam varies in a stage-specific fashion during ameloblast differentiation. During the 

secretory stage of amelogenesis, Odam was localized to both the nucleus and cytoplasm 

of ameloblasts. However, during the maturation stage of amelogenesis, Odam was 

observed in the cytoplasm and at the interface between ameloblasts and the enamel layer, 

but not in the nucleus. Secreted Odam was detected in the conditioned medium of 

ameloblast-lineage cell line (ALC) from days 14-21, which coincided with the maturation 

stage of amelogenesis. Interestingly, the expression of Runx2 and nuclear Odam 

correlated with Mmp-20 expression in ALC. I therefore examined whether Odam 

cooperates with Runx2 to regulate Mmp-20 and modulate enamel mineralization. 

Increased expression of Odam and Runx2 augmented Mmp-20 expression, and Runx2 

expression enhanced expression of Odam, although overexpression of Odam did not 

influence Runx2 expression. Conversely, loss of Runx2 in ALC decreased ODAM 

expression, resulting in down-regulation of Mmp-20 expression. Increased Mmp-20 

expression accelerated amelogenin processing during enamel mineralization. Our data 

suggest that Runx2 regulates the expression of Odam and that nuclear Odam serves an 

important regulatory function in the mineralization of enamel through the regulation of 
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Mmp-20 apart from a different, currently unidentified, function of extracellular Odam. 
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II. INTRODUCTION 

Dental enamel formation is divided into secretory, transition, and maturation stages 

[46]. During the secretory stage, tall columnar ameloblasts secrete specialized proteins, 

including amelogenin [47], ameloblastin [48], and enamelin [47] into the enamel matrix. 

Two novel molecules, odontogenic ameloblast-associated protein (Odam) and amelotin 

(Amtn) have recently been described as members of the secretory calcium-binding 

phosphoprotein (SCPP) gene cluster [13, 49, 50]. 

The cDNA transcript of ODAM (FLJ20512) was originally cloned from the human 

KATO III cell line [29] and has been detected in calcifying epithelial odontogenic tumor 

(CEOT)-associated amyloids designated as Apin [9]. ODAM has also been reported to be 

a gastric and breast cancer-specific gene based on the analysis of gene expression data 

[51]. Rat Odam protein was identified from the secretome profile of rat enamel organ 

cells using the signal trap method [10]. Odam contains a cleavable signal peptide and an 

abundance of glutamine and proline residues and is expressed in ameloblasts during the 

secretory and maturation stage of enamel development [10, 11]. The association of high 

Odam expression with enamel maturation suggests a possible role for this protein in the 

final phases of enamel formation [12]. In addition to ameloblasts, Odam is also expressed 

in odontoblasts, lactating mammary glands, nasal and salivary glands, tongue, and 

gingival tissue [8, 12]. Taken together, these data suggest a broad physiological role for 

Odam; however, the precise function of Odam remains largely unknown. 

Matrix metalloproteinase-20 (Mmp-20, also known as enamelysin) and Kallikrein-4 

(Klk4) have also been shown to function in enamel formation. Mmp-20, which plays an 
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important role in the degradation of amelogenin, is synthesized and secreted by 

ameloblasts. The amelogenin degradation induced by Mmp-20 is believed to be essential 

for the axial growth of enamel crystals. During the maturation stage, low columnar 

ameloblasts synthesize and secrete less enamel matrix protein, but instead synthesize and 

secrete Klk-4, which degrades enamel proteins to promote enamel crystal thickening. 

During this stage, ameloblasts develop either a ruffle-end or a smooth-end, which plays 

an important role in the mineralization and maturation of enamel by removing water and 

enamel matrix degradation products, as well as transporting calcium [34, 52]. Although 

there have been advances in our understanding of enamel formation, further studies are 

required to understand the precise mechanism underlying enamel mineralization. 

In ameloblasts and other types of cells, the expression of Mmp-20 correlates with 

Odam expression. Mmp-20 is primarily expressed in ameloblasts, although transient 

expression has been detected in odontoblasts [52]. Mmp-20 expression has also been 

detected in pathological tissues, including the ghost cells of calcifying odontogenic cysts 

[30], odontogenic tumors [31], and human breast carcinomas [32]. 

Runx2, which is stimulated by BMP-2 or TGF-b, controls downstream factors that act 

on the development of the enamel organ epithelium [53]. The importance of Runx2 in 

amelogenesis is evidenced by the lack of enamel in the incisor tooth germs of Runx2-

deficient mice. Runx2 is also present in late secretory- and maturation-stage ameloblasts 

[54]. The promoter of the gene encoding ameloblastin, an extracellular matrix protein that 

may play a role in enamel crystal formation in the developing dentition, contains two 

Runx2-binding sites [55]. The Odam promoter also contains Runx2-binding sites [56], 
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suggesting that Runx2 may be involved in the early stages of enamel organ formation as 

well as tooth  morphogenesis, and might also play a direct role in the formation of tooth 

enamel. 

Recently, I reported that Odam is primarily involved in mineralization of enamel that is 

mediated by up-regulating expression of Mmp-20 [11]. The aim of the present study was 

to determine whether Runx2 and Odam co-operate to regulate the expression of Mmp-20, 

thereby modulating enamel mineralization. 
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III. MATERIALS AND METHODS 

1. Tissue preparation and Immunohistochemistry 

All experiments involving animal were performed according to the Dental Research 

Institute guidelines of the Seoul National University. Mandibles and maxillae of 16-day-

old mice were decalcified in 10% EDTA (pH 7.4) at 48C and processed for 

immunohistochemistry. ODAM expression was detected using an ABC kit (Vector Lab) 

with rabbit anti-rat ODAM antibody (0.2mg/ml) as the primary antibody and a biotin-

labeled goat anti-rabbit IgG (1:200) as the secondary antibody. ODAM-specific 

antibodies were obtained by affinity purification of the ODAM antisera that had been 

produced by immunizing rabbits with a synthetic peptide (STSPKPDTGNF or 

QGGQAGQPDFSQQ; Peptron, Seoul, Korea), corresponding to the sequence of 241 

through to 251 or 102 through to 114 of the 278-residue rat ODAM as previously 

described [Park et al., 2007]. 

 

2. Cell culture 

Ameloblast lineage cells (ALCs) were cultured on collagen-coated dishes in MEM 

supplemented with 5% FBS, 10 ng/ml recombinant human epithelial growth factor (EGF; 

Sigma-Aldrich), and an antibiotic-antimycotic agent (Invitrogen) in a 5% CO2 at 37°C. 

MDPC-23 odontoblast-like cells (Dr. JE nör, University of Michigan, Ann Arbor, MI) 

and C2C12 mouse myoblast cells (ATCC) were cultured in DMEM with 10% fetal bovine 

serum.  
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3. Reverse transcription-PCR (RT-PCR) analysis 

Total RNA was extracted from MDPC-23 cells as well as pulp tissue using TRIzol® 

reagent according to the manufacturer’s instructions (Invitrogen). Total RNA (2 mg) was 

reverse transcribed for 1 h at 50°C with 0.5 mg Oligo dT and 1 ml (50 IU) Superscript III 

enzyme (Invitrogen) in a 20 ml reaction. One microliter of the RT product was PCR 

amplified using the primer pairs. RT products were amplified by PCR using the primer 

pairs (Table. 1). The following PCR conditions were used: 94°C for 30 sec; 55°C for 30 

sec; and 72°C for 1 min for 30 cycles. The PCR products were electrophoresed in a 1% 

agarose gel, stained with ethidium bromide, and visualized under ultraviolet light. 
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Table 1. The list for RT-PCR primer 
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4. Plasmids, Cloning, and Recombinant Odam (rOdam) 

All cDNAs were constructed using standard methods and verified by sequencing. 

Constructs encoding Flag (2×)- or HA-tagged full-length Odam were inserted into 

pcDNA3 (Invitrogen, Carlsbad, CA, USA). Based on the 19-nucleotide Odam siRNA 

sequence (5’-AAGTGCCTCAAGATCAAAC-3’) selected using the siRNA Target 

Finder and design Tool (Ambion, Austin, TX, USA), plasmid expressing Odam siRNA 

was prepared using the pSilencer 1.0-U6 siRNA expression vector (Ambion) according to 

the manufacturer’s instructions. mMmp-20 was inserted into pGL3-basic vector 

(Invitrogen).  

The coding region of Odam was amplified by PCR using the following primers: 5’-

caggctgctagcatgtcctatgtggttcc-3’ and 5’-gtaaactgcagcttatggttctcttaggctatc-3’. The PCR 

product was cloned into the Nhe I and Pst I sites of pRSET-A (Invitrogen) to generate 

pRSET-Odam. The E. coli strain, BL21 (DE3) pLysS, was transformed with pRSET- 

Odam and cultured at 37°C in Luria-Bertani (LB) broth. The protein was extracted and 

purified from the cell lysates (Elpis-Biotech). Fractions were analyzed using SDS-PAGE 

and Western blotting. 

 

5. Fluorescence microscopy 

Cells in Laboratory-Tek chambered cover glasses (Nunc, Rochester, NY) were washed 

with PBS, fixed with 4% paraformaldehyde in PBS for 10 min at room temperature, and 

then permeabilized for 4 min in PBS containing 0.5% Triton X-100. After washing, the 

cells were incubated with anti-Odam antibody (1:200 dilution) in blocking buffer (PBS 
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and 1% BSA) for 1 h and then with FITC-conjugated anti-rabbit IgG (1:200 dilution; 

Amersham Pharmacia Biotech). After washing, the cells were visualized using a 

fluorescence microscope (AX70; Olympus Optical Co, Tokyo, Japan). Chromosomal 

DNA in the nucleus was stained using propidium iodide. 

 

6. Preparation of cytoplasmic and nuclear protein extracts 

Cells were collected by centrifugation. Cells were lysed in ice cold hypotonic lysis 

buffer [10 mM HEPES (pH 7.9), 10 mM KCl, 0.1% NP-40] supplemented with protease 

inhibitors (Roche Molecular Biochemicals, Mannheim, Germany). Nuclear and 

cytoplasmic fractions were separated by centrifugation. The membrane pellet was 

resuspended in ice-cold hypertonic lysis buffer [10 mM HEPES (pH 7.9), 150 mM NaCl, 

1% NP-40, 0.25% sodium deoxycholate, 10% glycerol]. The soluble fraction was isolated 

by centrifugation.  

 

7. Western blot analysis 

Proteins (30 µg) from the cells were separated by 10% SDS-PAGE and transferred to 

nitrocellulose membranes. Membranes were blocked for 1 h with 5% nonfat dry milk in 

PBS containing 0.1% Tween 20 (PBS-T), and incubated overnight at 4°C with the 

primary antibody diluted in PBS-T buffer (1:1000). After washing, membranes were 

incubated for 1 h with secondary antibodies. Labeled protein bands were detected using 

an enhanced chemiluminescence system (Dogen, Cambridge, MA). 
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8. Luciferase assay 

Cells were seeded in 12-well culture plates at a density of 1.5×105 cells per well. Cells 

were transiently transfected with the reporter constructs and a SV40-driven b-

galactosidase expression vector as an internal control. After 48h, following the addition 

of 50 μl Luciferin to 50 μl cell lysate, luciferase activity was determined using an 

Analytical Luminescence Luminometer according to the manufacturer’s instructions 

(Promega, Madison, WI). b-galactosidase activity was determined in 96-well plates that 

were read at 405 nm using an ELISA reader. The luciferase activity was normalized to b-

galactosidase activity.  

 

9. Chromatin immunoprecipitation (ChIP) assay 

Cells were treated with the cross linking reagent formaldehyde (1% final concentration) 

for 10 min at 37°C, rinsed twice with cold PBS, and swollen on ice in SDS lysis buffer (1% 

SDS, 10 mM EDTA, 50 mM Tris–HCl, pH 8.1) for 10 min. Nuclei were collected and 

sonicated on ice. Supernatants were obtained by centrifugation for 10 min and were 

diluted 10-fold in ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 

16.7 mM Tris–HCl, pH 8.1, 167 mM NaCl). The fragmented chromatin mixture was 

incubated with 2 ml antibodies on a rotator at 4°C for 4 h, then 20 ml protein A/G PLUS-

agarose (Santa Cruz) was added and incubated for 1 h at 4°C with rotation to collect the 

antibody/chromatin complex. The final DNA pellets were recovered and analyzed by 

PCR using primers that encompass the promoter region (Table. 2). 
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Table 2. The list for ChIP assay primer 
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10. Analysis of Mmp-20 by zymography 

The activity of Mmp-20 was assayed by casein zymography. Briefly, Conditioned 

medium was collected from cells following culture without serum for 24 h. Samples were 

mixed with loading buffer and electrophoresed on 12% SDS-polyacrylamide gels 

containing 2% casein (Invitrogen) at 140 and 110 V for 3 h. The gels were then washed 

twice in zymography washing buffer (2.5% Triton X-100 in double-distilled H2O) at 

room temperature to remove SDS, followed by incubation at 37°C for 12–16 h in 

zymography reaction buffer (40 mM Tris-HCl [pH 8.0], 10 mM CaCl2 and 0.02% NaN3). 

Gels were stained with Coomassie blue R-250 (0.125% Coomassie blue R-250, 0.1% 

amino black, 50% methanol and 10% acetic acid) for 1 h, then de-stained with de-staining 

solution (20% methanol and 10% acetic acid in 70% double-distilled H2O). Non-staining 

bands representing the level of the latent form of Mmp-20 were quantified by 

densitometry using a digital imaging analysis system. 

 

11. Alizarin red S staining 

Cells were fixed with 70% ethanol for 20 min and stained with 1% alizarin red S 

(Sigma-Aldrich) in 0.1% NH4OH at pH 4.2-4.4. Mineralization assays were performed by 

treatment of ALC with or without recombinant Odam (rOdam) and staining with alizarin 

red S solution. The cells were evaluated at 0, 4, 7, 10, and 14 days. 

 

12. Statistical Analyses 

All quantitative data are presented as the mean ± standard deviation (SD). Statistical 
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differences were analyzed using Student’s t-tests (*, p<0.05). 
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IV. RESULTS 

1. Expression of Odam mRNA and protein during amelogenesis 

In the first series of experiments, i determined the protein expression level of Odam 

during different stages of ameloblast differentiation and the subcellular localization of 

Odam protein during ameloblast differentiation by immunohistochemistry. Interestingly, 

the subcellular localization of Odam varied in a stage-specific fashion during ameloblast 

differentiation (Fig. 5A). Odam protein was not observed in presecretory phase that 

precedes the secretory and maturation stages. However, distinct expression was detected 

in secretory-stage ameloblasts (Fig. 5B). Strong staining was also observed in transition- 

and maturation stage ameloblasts (Fig. 5C). In secretory-stage ameloblasts, Odam 

staining was observed in the nucleus and cytoplasm, and the apex of ameloblasts stained 

strongly (Fig. 5D). However, in maturation-stage ameloblasts, Odam was strongly 

detected in the supranuclear region (Golgi complexes) as well as the interface between 

ameloblasts and the enamel layer, but not in the nucleus (Fig. 5E). 

Selective and time-dependent induction of enamel matrix proteins and enzymes was 

observed during ALC differentiation. The level of protein and mRNA expression was 

assessed using Western blots and RT-PCR respectively. Similar to a previous report [11], 

expression of Odam and Klk-4 gradually increased with time during culture (Fig. 6A and 

B). In contrast, transcription of amelogenin and enamelin mRNA gradually decreased 

with cell differentiation (Fig. 6B). Runx2 was steadily expressed during ALC 

differentiation (Fig. 6A and B). Expression of Mmp-20 mRNA and protein increased 

slightly from the first day of culture until day 7 and decreased thereafter (Fig. 6A and B).  
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Figure 5. Immunohistochemical analysis of Odam expression during ameloblast 

differentiation in the mandibular incisor of a 16-day-old mouse.  

(A, B) Presecretory ameloblasts lack Odam protein expression. (C) Transition-stage 

ameloblasts express Odam protein in the supranuclear region of the cytoplasm. (D) 

Secretory-stage ameloblasts express Odam in their nucleus (arrowheads) and cytoplasm. 

(E) Maturation-stage ameloblasts do not express Odam protein in their nucleus (arrows). 

PreS, pre-secretory; Se, secretory; Tr, transition; Ma, maturation.  
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Figure 6. Odam and Mmp-20 protein and mRNA expression during ameloblast 

differentiation in vitro.  

(A) Western blot analysis of the expression of Runx2, Odam, and Mmp-20 during 

differentiation of ALC in vitro. Odam expression was detected at the beginning of 

differentiation and increased at subsequent time-points. Expression of Mmp-20 increased 

slightly from days 0 to 7 and decreased thereafter. (B) RT-PCR analysis of mRNA 

expression of enamel matrix proteins and enzymes during differentiation of ALC in vitro. 

Expression of Mmp-20 was strongest at 4–7 days (equivalent to the secretory stage). 

Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Klk-4, kallikrein-4; Mmp-20, matrix 

metalloproteinase-20. 
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2. Cellular and extracellular localization of Odam 

The full-length rat Odam cDNA encodes a 279-amino acid protein with 15-amino acid 

signal peptide at the N-terminus that includes a cleavage point for signal peptidase [10]. 

Exogenous Odam protein was expressed in C2C12 cells, which do not normally express 

Odam, and was readily detected in intracellular compartments and the CM collected from 

serum-free cultures (Fig. 7A). To evaluate whether the signal peptide affected the 

localization of ODAM, it was transfected ALC that expressed a reduced level of Odam 

with an Odam construct containing a mutant signal peptide. This mutant Odam was 

expressed in the cytoplasm and nucleus, but not in the CM (Fig. 7B), indicating that the 

Odam signal peptide plays an important role in Odam protein secretion.  

To examine the time-line of Odam protein expression, I performed Western blot 

analysis of differentiating ALC. Odam protein was detected in the nucleus from days 0-

10 of ALC differentiation in vitro, but was observed in the extracellular matrix after 10 

days. The amount of Odam protein in the cytoplasm increased after the initiation of ALC 

differentiation, and the secreted Odam protein was smaller than intracellular protein (Fig. 

7C). These data suggest that the subcellular localization of Odam varies in a stage-

specific fashion during ameloblast differentiation. 

To compare the subcellular localization of endogenous and exogenous Odam, rOdam 

was treated into ALC cells. In control ALC, faint Odam staining was seen in the nucleus 

and cytoplasm of ALC (Fig. 7D). After treatment with exogenous rOdam for 4 h, Odam 

protein was clearly visible in the nucleus and cytoplasm. Under the same conditions, 

some cells showed a punctuate pattern of fluorescence throughout the cytoplasm, 
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probably corresponding to rOdam internalized in endosomal compartments (Fig. 7D). 
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Figure 7. Subcellular and extracellular localization of Odam.  

(A) C2C12 cells were transfected with an Odam-expression plasmid and the cell lysates 

and conditioned medium (CM) were analyzed for the presence of Odam protein by 

Western blot. A strong Odam signal was observed in both the cell lysates and CM. (B) 

ALC stably expressing low levels of Odam protein were transfected with an expression 

construct encoding an Odam signal peptide mutant and analyzed by Western blot. The 

cell lysates exhibited a strong Odam signal, whereas the CM did not show a strong signal 

for the Odam protein. (C) Western blot analysis of the expression pattern of Odam in 

different cellular compartments during in vitro differentiation of ALC. Note the gradual 

increase in expression of Odam in the cytoplasm throughout differentiation. Odam was 

detected in the nucleus from days 0 to 10. The presence of Odam in the CM was strongly 

detected after 10 days. (D) Subconfluent ALC was cultured in the absence or presence of 

10 mg rOdam. Odam localization was detected by immunostaining. Bars: 20 μm. 
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3. Effect of Runx2 and Odam on the transcriptional activity of Mmp-20 

I next determined the effect of Runx2 and Odam on Mmp-20 expression. 

Overexpression of Runx2 or Odam in ALC increased the expression of Mmp-20 protein 

(Fig. 8A). In contrast, siRNA-mediated silencing of Runx2 or Odam decreased Mmp-20 

expression (Fig. 8B). Odam expression was higher in cells overexpressing Runx2 than in 

normal ALC (Fig. 8A). These studies suggest that Runx2 regulates Odam expression, 

which in turn regulates Mmp-20 expression.  

 

4. ODAM cooperates with Runx2 to regulate Mmp-20 

To correlate the role of Runx2 and Odam in Mmp-20 transcriptional activation with 

their function in vivo, ALC was transfected with a HA-tagged Runx2 expression construct, 

a Flag-tagged Odam expression construct, and/or specific siRNA constructs. Runx2 

specifically induced Odam and Mmp-20 protein expression, and overexpression of Odam 

augmented Mmp-20 expression (Fig. 8C). However, Odam expression did not affect the 

expression of Runx2 (Fig. 8C).  
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Figure 8. Regulation of Mmp-20 by Runx2 and Odam.  

(A) ALC was transfected with Runx2- or Odam-expression plasmids and cell lysates were 

analyzed by Western blot with antibodies against Runx2, Odam, Mmp-20, or Gapdh (as a 

control). Overexpression of Runx2 or Odam induced an increase in the Mmp-20 

expression level. (B) ALC was transfected with either a control siRNA (100 pM) or 

siRNA specific for Odam or Runx2 (100 pM). After 2 days, the expression level of Runx2, 
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Odam, and Mmp-20 was determined by Western blot with the indicated antibodies. 

Mmp-20 expression was decreased following the expression of each siRNA. Gapdh was 

used as a loading control. (C) ALC was transfected with constructs expressing Runx2, 

Odam, Runx2 specific siRNA, Odam specific siRNA, or control siRNA, alone and in 

various combinations. Protein levels were analyzed by Western blotting with antibodies 

against Runx2, Odam, Mmp-20, and Gapdh. The data show that Runx2 regulated Odam 

expression and Odam induced Mmp-20 expression. 
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5. Runx2 attenuates Odam-mediated Mmp-20 transcriptional activation 

To investigate the functional consequences of Runx2- or Odam-induced Mmp-20 

expression, I determined the effect of Runx2 on Odam-mediated transcriptional activation. 

Increasing concentrations of Odam or Runx2 significantly increased the expression of a 

luciferase reporter gene under the control of the mouse Mmp-20 promoter (Fig. 9A). As 

expected, depletion of Odam or Runx2 using specific siRNA suppressed the promoter 

activity of the Mmp-20 reporter construct (Fig. 9B). Next, I investigated whether Runx2, 

acting as an upstream regulator of Odam, is required for Odam-mediated Mmp-20 

transcriptional regulation using the mouse Mmp-20-luciferase construct in ALC, which 

expressed a quantifiable level of Odam. As expected, overexpression of Runx2 or Odam 

significantly induced Mmp-20 transcriptional activity in ALC cells. Overexpression of 

Runx2 and Odam showed a synergistic effect on Mmp-20 transcriptional activity (Fig. 

9C). On the other hand, when endogenous Runx2 or Odam was suppressed using siRNA, 

the positive effect of Runx2 or Odam on the activity of the Mmp-20 promoter was 

disrupted (Fig. 9C). Moreover, Odam increased the activity of the Mmp-20 promoter 2.5-

fold in Runx2-deficient cells, whereas following the knockdown of Odam expression in 

ALC cells, Runx2 only weakly induced the activity of the Mmp-20 promoter (Fig. 9C). 

These results confirm the data presented in Figure 8 with respect to the role of the Runx2-

Odam cascade in promoter activity. 
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Figure 9. Mmp-20 promoter activity is induced by the cooperation of Runx2 and 
Odam.  

(A) The transcriptional activity of the Mmp-20 promoter was altered by expression of 

Runx2 and Odam in ALC. ALC was transfected with increasing amounts of plasmid 

expressing Runx2 or Odam (0.1, 0.5, 1.0, or 2.0 mg). The Mmp-20 promoter activity 

increased in a dose-dependent manner in response to increased concentration of Runx2 or 

Odam. (B) Runx2 or Odam knockdown abolished Mmp-20 transcriptional activity. ALC 

was transfected with 40, 80, or 160 pmol of Runx2 specific siRNA or 0.1, 0.5, or 1.0 μg 
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of Odam specific siRNA expression plasmid. The Mmp-20 promoter activity decreased in 

a dose-dependent manner with reduced levels of Runx2 or ODAM. (C) ALC cells were 

transfected with luciferase reporter under control of the Mmp-20 promoter (0.1 μg), and 

with various combinations of Runx2 or Odam DNA (1 μg DNA) or Runx2 or Odam 

specific siRNA (100 pmol). Cells extracts from the transfected cells were analyzed by 

luciferase assay. The data are presented as the meanstandard deviation for triplicate 

experiments. An asterisk denotes values significantly different from the control (P <0.05). 
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6. Recruitment of Odam to the Mmp-20 promoter 

To test whether Odam-mediated activation of the Mmp-20 promoter occurs through 

recruitment of Odam to the endogenous Mmp-20 promoter, I performed chromatin 

immunoprecipitation (ChIP) assay. ALC was transfected with the Flag-tagged Odam 

expression construct. Chromatin DNA fragments were precipitated with the indicated 

antibodies, and the DNA was amplified using primers selective for the Odam-response 

element in the Mmp-20 promoter. As shown in Fig. 10A, the Mmp-20 promoter could be 

precipitated using an Odam-specific antibody but not with the negative control antibody 

(pre-immune serum) or a Runx2-specific antibody. In addition, the result, that the Odam 

promoter could be precipitated using a Runx2-specific antibody, showed that Runx2 was 

recruited to the Odam promoter, but not the Mmp-20 promoter (Fig. 10A). 

It was confirmed the interaction of Runx2 or Odam with DNA of Odam or Mmp-20 

promoters by ChIP assay. ALC was transfected with the Flag-tagged Odam or HA-tagged 

Runx2 expression construct. ChIP assays using a primer set for Odam or Mmp-20 

indicated that Runx2 was not recruited to the Mmp-20 promoter, but Odam promoter. 

Furthermore, Flag-tagged Odam was also recruited to the Mmp-20 promoter following 

expression of Odam (Fig. 10B). The interaction of Runx2 or Odam protein and their 

specific antibody was not likely to interact non-specific binding.  

It was then performed ChIP assays to examine whether overexpressed or silenced 

Runx2 or Odam influenced Odam or Mmp-20 promoters using ALC transfected with the 

HA-tagged Runx2, Flag-tagged Odam, Odam siRNA expression construct, or Runx2 

siRNA oligo. Before the ChIP assay, it was performed immunoprecipitation of Runx2 and 
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Odam to determine whether Runx2 was recruited with Odam to the Mmp-20 promoter. 

Runx2 did not interact with Odam in ALC (data not shown). ChIP assays using a primer 

set for Mmp-20 indicated that inducing Odam was recruited to the Mmp-20 promoter 

following expression of either Odam or Runx2, which increases expression of Odam. In 

addition, increasing Runx2 bound the Odam promoter but not Mmp-20 promoter (Fig. 

10C). Together, these results suggest that Runx2 interacted with the Odam promoter in 

vivo, and Odam was specifically recruited to the Mmp-20 promoter, where it induced 

Mmp-20 transcription. 
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Figure 10. Recruitment of Odam to chromatin.  
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(A) Cross-linked chromatin was prepared and immunoprecipitated with pre-immune 

serum or Odam specific antibody. The precipitated DNA was analyzed by PCR with 

primer pairs spanning the mouse Mmp-20 promoter. The control represents PCR product 

obtained before precipitation. (B) ALC was transfected with expression vectors for Flag- 

Odam or HA-Runx2. ChIP was performed as in (A). Over-expressed Odam was recruited 

to the Mmp-20 promoter and overexpressed Runx2 was recruited to the Odam promoter. 

(C) ALC was transfected with expression vectors for Flag-Odam or HA-Runx2 or with 

Odam- or Runx2-specific siRNAs. PCR was performed with primer pairs spanning the 

mouse Odam or Mmp-20 promoter. 
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7. Role of Odam during amelogenesis in vitro 

Amelogenin is digested by Mmp-20 during amelogenesis [33, 57]. To directly 

demonstrate that Mmp-20 cleaves amelogenin in vivo, amelogenins were extracted from 

ALC that had been differentiated for 4 days and the digestion was analyzed by Western 

blot with amelogenin specific antibodies. Mmp-20 cleaved intact amelogenin, generating 

a lower molecular weight fragment of approximately 17 kDa. Markedly different patterns 

of amelogenin degradation were observed in ALC in which Runx2 or Odam were 

overexpressed or silenced. One amelogenin band less than 24 kDa in size was not present 

in the enamel from cells in which Odam was silenced, whereas the cleavage product in 

the controls and cells overexpressing Odam or Runx2 had a lower molecular mass (Fig. 

11A). Therefore, in vivo Mmp-20 activity resulted in different amelogenin isoforms that 

are present in naturally maturing dental enamel. The pattern of amelogenin cleavage 

products generated through in vitro digestion was similar to that observed in Western blot 

analyses of amelogenin cleavage products in porcine secretory stage enamel extracts [57]. 

To confirm the expression and function of Mmp-20, I performed Western blot analysis 

and casein zymography. Secretion of Mmp-20 into the extracellular matrix was induced 

by Odam (Fig. 11B). Since the crude protein extract containing the Mmp-20 enamel 

enzyme was used in the zymography assay, alterations in enzyme activity would probably 

go unnoticed. Therefore, to observe whether alterations in the activity of Mmp-20 were 

present, it was prepared zymograms containing casein as the substrate. The zymograms 

revealed no band in the negative control; however, as seen in Fig. 11B, in addition to the 

expected Mmp-20 fragment, a fragment at 78 kDa could be detected with expression of 
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Odam or Runx2. Mmp-20, induced by Runx2 or Odam, was identified in the crude extract 

used in this study. The main lysis band was not observed with extracts from cells treated 

with Runx2- or Odam-specific siRNAs (Fig. 11B). 

Finally, I determined the effect of altered Odam expression on enamel mineralization. 

In normal ALC mineralized nodules, visualized by staining with alizarin red S, appeared 

after 14 days of culture (Fig. 11C-a). In ALC that overexpressed Odam or were treated 

with rOdam mineralized nodule formation was initially observed on day 7 (Fig. 11C-b, C-

c). Inactivation of Odam resulted in cells that failed to mineralize even after prolonged 

culture (Fig. 11C-d). 
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Figure 11. Increased expression of Odam enhances mineralization in ALC.  

(A) ALC that were exposed to differentiation media for 4 days and then transfected with 

the appropriate constructs were used to examine amelogenin cleavage by endogenous 

Mmp-20 by Western blot analysis. Increasing Mmp-20 levels induced increased cleavage 

of amelogenin. (B) The kinetics of Mmp-20 expression of in ALC. Casein zymogram 

showing the relative proteolytic activity in equal volumes of transfected ALC samples; 10 
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ml of sample solution prepared from serum-free media was applied to each well (Top). 

Western blot analysis of 60 μg protein of extract using an anti-Mmp-20 antibody 

(Bottom). Induction of Mmp-20 resulted in increased protease activity. (C) Alizarin red S 

staining over a 14-day time course in differentiation and mineralization media for normal 

ALC (a), ALC treated with rOdam (3 μg/ml, b), Odam overexpressing cells (c), and 

Odam specific siRNA-expressing cells (d). The cells were evaluated at 0, 4, 7, 10, and 14 

days. 
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V. DISCUSSION 

The secretory stage precedes the maturation stage during amelogenesis [46]. If Odam is 

primarily expressed during the maturation stage of enamel development, it could not 

positively regulate Mmp-20 expression because Mmp-20 primarily detected during the 

secretory stage. The data supporting the expression of Odam in secretory ameloblasts are 

controversial. Although our laboratory has previously shown that Odam is expressed in 

secretory ameloblasts [11], other reports have indicated that Odam is not expressed 

during the secretory stage of amelogenesis [10, 12]. Therefore, one aim of the present 

study was to clarify the expression pattern of Odam during early amelogenesis. In the 

present study, Odam protein was localized to the nucleus and cytoplasm of the secretory 

ameloblasts in vivo. In addition, when ALC was cultured in differentiation media, 

expression of nuclear Odam was induced immediately and continued until day 10, which 

coincided with the secretory stage of amelogenesis. Interestingly, secreted Odam was 

detected in the CM of ALC from days 14 to 21, which coincided with the maturation 

stage of amelogenesis. I also showed that Mmp-20 was expressed during the same stage 

of amelogenesis as the expression of nuclear Odam. These results suggest that nuclear 

Odam may influence Mmp-20 expression during the secretory stage of amelogenesis. 

To elucidate stage-specific role of Odam during amelogenesis, I used the ALC line as a 

study model. ALC is an ameloblastic cell line derived from neonate molar tooth organs 

[58]. ALC maintained the expression of several ameloblast specific genes (amelogenin, 

enamelin, Mmp-20, and Klk4) and also formed calcified nodules in long-term culture. It 

has been reported that ALC seems to maintain its original property as secretory 
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ameloblasts [59]. In the present study, the increase of Klk4 with time during the culture 

also implies the maturation of ALC. Collectively, these findings suggest that ALC 

expressing a typical ameloblast phenotype might be used for studying the stage-specific 

localization of Odam and further the mechanisms of Mmp-20 regulation mediated by 

Odam. 

Mmp-20 cleaves amelogenin to produce fragments commonly observed in vivo, and is 

thought to regulate enamel mineralization [34]. Using the broad-spectrum Mmp inhibitor 

marimastat, inhibition of mineralization was found to be associated with the inhibition of 

Mmp-20 activation during amelogenesis [57]. Enamel formation in Mmp-20-deficient 

mice is severely defective, with enamel mineral content reduced by 50% and hardness 

decreased by 37% [33]. In the present study, stable cell lines in which Odam had been 

knocked down failed to initiate mineralized nodule formation. Notably, treatment of ALC 

that stably overexpress Odam or rOdam caused formation of an increased number of 

mineralized nodules and induced nodule formation earlier than in normal cells. These 

results suggest that increasing level of Odam, as the result of overexpression or treatment 

with rOdam, enhanced the onset of mineralization whereas Odam inactivation inhibited 

mineralization by inhibiting Mmp-20 activation. 

Several secretory proteins that contain the signal sequence for targeting to the 

endoplasmic reticulum (ER), for example angiotensin converting enzyme, have been 

reported to localize to the nucleus [60, 61]. Interestingly, Odam contains the newly 

identified nuclear localization signal (NLS) motif that responds to extracellular stimuli 

and requires phosphorylation for transfer to the nucleus [62], in addition to several 
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potential consensus nuclear export sequence (NES) motifs [63]. This is similar to the 

secreted form of phospholipid transfer protein (PLTP), which contains an abnormal NLS 

and a consensus NES [64]. Therefore, nuclear import of the Odam fragment could be 

accomplished by a piggyback mechanism, involving binding to a NLS-containing partner. 

The predicted NES could play a role in the exit of intact Odam or Odam fragments from 

the nucleus. Odam showed strong positive nuclear and cytoplasmic expression in human 

breast tissue [24]. Because Odam is expressed in different cellular locations during the 

various stages of differentiation, it is likely to perform different functions intracellularly 

and extracelluarly. However, the functionality of these sequence motifs remains to be 

established. 
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CHAPTER IV.  

 

Odam mediates junctional epithelium 

attachment to tooth via Integrin-Odam-

Arhgef5-RhoA Signaling 

 

 

 

 

 

 

 

 

 

 

* This Chapter has been largely reproduced from an article published by Lee HK. and 

Park JC. (2015). J Biol Chem., 290(23):14740-53. 
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I. ABSTRACT 

Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for 

maintaining periodontal health. Although odontogenic ameloblast-associated protein 

(Odam) is expressed in JE, its molecular functions remain unknown. I investigated Odam 

function during JE development and regeneration, as well as its functional significance in 

the initiation and progression of periodontitis and peri-implantitis. Odam was expressed 

in normal JE of healthy tooth but was absent in pathologic pocket epithelium of diseased 

periodontium. In periodontitis and peri-implantitis, ODAM was extruded from JE 

following onset with JE attachment loss and detected in gingival crevicular fluid. Odam 

induced RhoA activity and the expression of downstream factors, including Rock, by 

interacting with Rho guanine nucleotide exchange factor 5 (Arhgef5). Odam-mediated 

RhoA signaling resulted in actin filament rearrangement. Reduced Odam and RhoA 

expression in integrin b3- and b6-knockout mice revealed cytoskeleton reorganization in 

JE occurred via integrin-Odam-Arhgef5-RhoA signaling. Fibronectin and laminin 

activated RhoA signaling via the integrin-Odam pathway. Finally, Odam was re-

expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest 

that ODAM expression in JE reflects healthy periodontium, and that JE adhesion to the 

tooth surface is regulated via fibronectin/laminin-integrin-Odam-Arhgef5-RhoA signaling. 

I also propose that ODAM could be used as a biomarker of periodontitis and peri-

implantitis. 
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II. INTRODUCTION 

The junctional epithelium (JE) is a specialized epithelial structure that attaches the 

gingival soft tissue to the tooth surface [6]. In periodontal disease, oral microbes and the 

host response induce JE to migrate apically and invade the gingival connective tissue 

during its transformation to pocket epithelium. Inflammation around the pocket 

epithelium leads to the resorption of alveolar bone around the tooth, and thus to the loss 

of the periodontal ligament attachment, which is normally responsible for suspending the 

tooth within the bone [65]. Thus, JE represents the first line of defense against prevalent 

periodontal diseases [5, 66]. Breakdown of the JE attachment to the tooth surface in the 

development of periodontal disease has significant consequences for oral health. 

The JE is derived from reduced enamel epithelium. After the tip of the tooth 

approaches the oral mucosa during tooth eruption, the reduced enamel epithelium and the 

oral epithelium meet, fuse, and form dentogingival junction [67]. However, reduced 

enamel epithelium is not essential for JE regeneration because it is completely restored 

from the adjacent sulcular or oral epithelium after pocket instrumentation or surgery. 

Newly regenerated JE exhibits the same structural and functional features as the original 

JE [18]. However, the molecular mechanisms responsible for inducing the formation of 

JE during regeneration remain unclear. 

The odontogenic ameloblast-associated protein (Odam) has been implicated in diverse 

activities such as ameloblast differentiation, enamel maturation, and tumor growth [12, 14, 

23, 68]. Odam is expressed during the developmental continuum from maturation stage 

ameloblasts to normal JE but is reduced after JE damage [7, 15, 18, 20, 69]. Odam is re-
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expressed in regenerated JE after orthodontic tooth movement and surgical excision [19, 

20]. However, the functional role of Odam in regenerating JE has not yet been established. 

Epithelial integrins also participate in the regulation of periodontal inflammation [70]. 

Integrins are cell adhesion receptors that link the extracellular matrix (ECM) to the 

cellular cytoskeleton including fibronectin and collagens [71]. Integrin αvβ3 is crucial for 

bone resorbing function in periodontal disease [72]. Integrin αvβ6 is constitutively 

expressed in human and murine JE and integrin b6
-/- mice develop all of the classic 

hallmarks of chronic periodontal disease as the initial signs of periodontal disease [73]. 

During amelogenesis, ameloblasts undergo dramatic cytoskeletal changes, and RhoA 

protein levels are up-regulated [74]. Rho guanine nucleotide exchange factor 5 

(Arhgef5/TIM) belongs to the Rho-GEF family and has GDP-GTP exchange activity for 

RhoA [75]. Arhgef5 can strongly activate RhoA and RhoB and stimulate Arhgef5-

mediated activation of RhoA in dendritic cell chemotaxis [76]. However, although RhoA 

and Arhgef5 are expressed in ameloblasts and JE, the RhoA-Arhgef5 pathway in 

amelogenesis and JE formation remains unclear. 

The objectives of the present study were to investigate the mechanism of JE attachment 

to the tooth surface for the formation of an epithelial barrier against periodontal 

pathogens in healthy and inflamed periodontal tissues. I also identified epithelial 

attachment loss using objective measures such as biomarkers in the gingival crevicular 

fluid (GCF) after destruction and apical migration of JE. I tested the hypothesis that 

certain ECM molecules induce Odam expression in JE via integrin receptors, and Odam 

subsequently triggers cytoskeletal changes of JE via Arhgef5-RhoA signaling during 
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dentogingival junction development and regeneration. In addition, I evaluated ODAM 

protein levels in GCF from periodontitis and peri-implantitis patients for early diagnosis 

and progress monitoring of periodontal disease. 
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III. MATERIALS AND METHODS 

1. Reagents and Antibodies 

The anti-Odam antibody was generated in rabbits by immunization with Odam 

peptides [16]. Anti-RhoA, F-actin, Gapdh, HA, Rock, His, lamin B, integrin b1, integrin 

b3, integrin b6, horseradish peroxidase (HRP)-conjugated goat anti-mouse, HRP-

conjugated goat anti-rabbit-IgG, and HRP-conjugated rabbit anti-goat-IgG antibodies as 

well as integrin b1 and integrin b6 siRNA were purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA). Anti-RhoA, E-cadherin, p-myosin, p-paxillin, paxillin, Rock, E-

cadherin, and b-catenin antibodies were obtained from Cell Signaling (Beverly, MA, 

USA). The anti-GTP-RhoA antibody was purchased from Biosource. Anti-Arhgef5 was 

obtained from Proteintech Group (Chicago, IL, USA). Anti-Flag antibody, fibronectin, 

laminin, and collagen were from Sigma-Aldrich (St. Louis, MO). The Alexa Fluor® 488 

Phalloidin (rhodamine-phalloidin) antibody was obtained from Invitrogen (Carlsbad, CA). 

Anti-fluorescein isothiocyanate (FITC) or Cy3-conjugated anti-mouse, rabbit, or goat IgG 

antibodies were purchased from Life Technologies (Grand Island, NY, USA). Y-27632 

for Rock inhibition was obtained from Tocris Cookson (Avonmouth, UK). 

 

2. Plasmids, Cloning, and Recombinant Odam (rOdam) 

cDNAs of full-length Odam or its deletion mutants and siRNA targeting Odam were 

constructed and verified as described previously [16]. His-fused Odam proteins were 

extracted and purified as described previously [14]. The GFP-tagged RhoAQ63L 
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(constitutively-active RhoA) construct was provided by Dr. Hyun-Man Kim (Seoul 

National University, Seoul, Korea). Full-length Flag-tagged Arhgef5, ∆PH (amino acids 

1341–1488), and Arhgef5 ∆DH (amino acids 1064–1340) were provided by Dr. Masato 

Okada (Osaka University, Osaka, Japan). The pOTB7-Arhgef5 construct was purchased 

from the Korea Human Gene Bank. Flag-tagged Arhgef5 ∆SH and SH (amino acids 

1489-1581) were subcloned into Flag-tagged pcDNA3 (Invitrogen, Carlsbad, CA).  

 

3. Experimental periodontitis 

Experimental periodontitis in mice was induced by Porphyromonas gingivalis (PG) 

inoculation and dextran sulfate sodium (DSS) treatment. Mice were randomly divided 

into three groups: sham, DSS, and PG. The DSS group received daily application of 5% 

DSS (MP Biomedicals, Irvine, CA, USA). The PG group received oral inoculation of 109 

cells of PG cells in 100 μl of 2% carboxymethylcellulose on days 4, 6, and 8. The sham 

group received vehicles instead of DSS and PG. All mice were euthanized on day 50. 

 

4. Tissue preparation and Immunohistochemistry 

All animal experiments were performed according to the Dental Research Institute 

guidelines of Seoul National University. Teeth blocks from WT and integrin b3
-/- mice 

were provided by Dr. Toshiyuki Yoshida and Teruo Okano (Tokyo Women’s Medical 

University, Tokyo, Japan). Extracted human teeth and associated gingival tissue were 

obtained from Seoul National University Dental Hospital. These studies were approved 
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by the Institutional Review Board for Human Subjects of the Seoul National University 

(IRB No. S-D20140007). Rat and mice teeth were decalcified in 10% EDTA (pH 7.4), 

embedded in paraffin, and processed for immunohistochemistry. Sections were incubated 

overnight at 4°C with primary antibodies (dilutions of 1:100–1:200). Secondary anti-

rabbit or -mouse IgG antibodies were added to the sections for 30 min at room 

temperature, followed by reaction with the avidin-biotin-peroxidase complex (Vector 

Laboratories, Burlingame, CA). Signals were converted using a diaminobenzidine kit 

(Vector Laboratories). Nuclei were stained with hematoxylin. 

 

5. Gene expression profiling 

Gene expression profile data (GSE2429) was obtained from the National Center for 

Biotechnology Information Gene Expression Omnibus (NCBI GEO) database (accession 

number GSE10526 to PG SerB mutant infection effect on immortalized gingival 

epithelial cells, GSE4250 to HGF, and GSE2255 to integrin b6 deficiency model of 

emphysema). 

 

6. Study subjects and Clinical examinations 

After informed consent, 14 unrelated, systemically healthy adults were included in the 

study. This study protocol was approved by the Institutional Review Board for Human 

Subjects of the Korea University Anam Hospital (IRB No. ED13162). Periodontal 

examination included the assessment of plaque score, probing pocket depth, loss of 

attachment, and bleeding on probing. For peri-implantitis evaluation, two patients with 
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peri-implantitis were included in the study and two healthy implants served as control. 

This protocol was approved by the Institutional Review Board for Human Subjects of 

Seoul National University Bundang Hospital (IRB No. B-1410-271-003).GCF Collection 

and ELISA—Samples were obtained from teeth of one quadrant on the jaw that contained 

the teeth showing the deepest probing depth and the contralateral quadrant of the opposite 

jaw; therefore, a total of 222 samples were collected from 12 to 16 teeth of each subject. 

Each tooth site was gently dried for 10 s with compressed air and isolated from saliva 

with a cotton roll. GCF samples were obtained from 4 sites of one tooth using absorbing 

paper strips (Oraflow Inc., Plainview, NY, USA). Paper strips were placed in a single, 

labeled tube containing 100 μl PBS. The total levels of ODAM in GCF samples were 

assayed using an ODAM ELISA kit according to the manufacturer’s instructions 

(Cusabio Biotech, Wuhan, China). Associations between probing depths and ODAM 

concentrations in GCF were analyzed using Kruskal-Wallis test and SPSS.  

 

7. Cell Culture and Transient Transfection 

Ameloblast lineage cells (ALCs) were cultured on collagen-coated dishes in MEM 

supplemented with 5% FBS, 10 ng/ml recombinant human epithelial growth factor (EGF; 

Sigma-Aldrich), and an antibiotic-antimycotic agent (Invitrogen) in a 5% CO2 at 37°C. 

HAT7 cells, a dental epithelial cell line originating from a cervical loop epithelium of a 

rat incisor (a generous gift from Dr. Harada H, Department of Oral Anatomy II, Iwate 

Medical College School of Dentistry, Morioka, Japan), were grown and maintained in 

DMEM/ F12 (Gibco BRL, Carlsbad, NY). RAW264.7 cells, a macrophage-like cell line 
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derived from Balb/c mice, were grown and maintained in DMEM. To induce 

differentiation, 80%-90% confluent cells were cultured in MEM supplemented with 5% 

FBS, ascorbic acid (50 mg/ml), and b-glycerophosphate (10 mM) for up to 2 weeks. ALC 

or HAT7 cells were seeded in culture plates. Cells were transiently transfected with 

reporter constructs using Metafectene PRO reagent (Biontex, Planegg, Martinsried, 

Germany). In addition, cells were transiently transfected with siRNA (Santa Cruz) using 

Lipofectamine RNAi MAX reagent (Invitrogen). 

 

8. Immunoprecipitation assay and His pull-down assay 

Cell lysates were prepared by adding 1ml of RIPA buffer [50 mM Tris–Cl (pH 7.5), 

150 mM NaCl, 1% Nonidet P-40, 1 mM EDTA, 1 mM PMSF, 1 mM Na3VO4, and 1 mM 

NaF] supplemented with protease inhibitors (Roche). Lysates were incubated at 4°C for 2 

h with a 1:200 dilution of the indicated antibody. After incubation for 2 h at 4°C with 

A/G agarose beads (Santa Cruz), the beads were washed three times with RIPA buffer. 

Immune complexes were released from the beads by boiling. Following electrophoresis 

on 10% SDS-polyacrylamide gels, immunoprecipitates were analyzed by western blot 

using the indicated antibodies. 

For His pull-down assays, twenty-four hours after transfection, cells were lysed in 

RIPA buffer. Lysates were incubated for 1 h at 30°C with His-ODAM C-terminal protein, 

followed by incubation for 2 h at 4°C with a 1:200 dilution of the anti-His antibody. After 

incubation for 2 h at 4°C with A/G agarose beads (Santa Cruz), beads were washed three 

times with RIPA buffer, and immune complexes were released from the beads by boiling. 
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Following electrophoresis on 10% SDS-polyacrylamide gels, immunoprecipitates were 

analyzed by western blot using the indicated antibodies. 

 

9. Preparation of cytoplasmic and nuclear protein extracts 

Cells were collected by centrifugation. Cells were lysed in ice cold hypotonic lysis 

buffer [10 mM HEPES (pH 7.9), 10 mM KCl, 0.1% NP-40] supplemented with protease 

inhibitors (Roche Molecular Biochemicals, Mannheim, Germany). Nuclear and 

cytoplasmic fractions were separated by centrifugation. The membrane pellet was 

resuspended in ice-cold hypertonic lysis buffer [10 mM HEPES (pH 7.9), 150 mM NaCl, 

1% NP-40, 0.25% sodium deoxycholate, 10% glycerol]. The soluble fraction was isolated 

by centrifugation.  

 

10. Western blot analysis 

Proteins (30 µg) from the cells were separated by 10% SDS-PAGE and transferred to 

nitrocellulose membranes. Membranes were blocked for 1 h with 5% nonfat dry milk in 

PBS containing 0.1% Tween 20 (PBS-T), and incubated overnight at 4°C with the 

primary antibody diluted in PBS-T buffer (1:1000). After washing, membranes were 

incubated for 1 h with secondary antibodies. Labeled protein bands were detected using 

an enhanced chemiluminescence system (Dogen, Cambridge, MA). 

 

11. Fluorescence microscopy 

Cells in Laboratory-Tek chambered cover glasses (Nunc, Rochester, NY) were washed 
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with PBS, fixed with 4% paraformaldehyde in PBS for 10 min at room temperature, and 

then permeabilized for 4 min in PBS containing 0.5% Triton X-100. After washing, the 

cells were incubated with anti-ODAM antibody (1:200 dilution) in blocking buffer (PBS 

and 1% BSA) for 1 h and then with FITC-conjugated anti-rabbit IgG (1:200 dilution; 

Amersham Pharmacia Biotech). After washing, the cells were visualized using a 

fluorescence microscope (AX70; Olympus Optical Co, Tokyo, Japan). Chromosomal 

DNA in the nucleus was stained using propidium iodide. 

 

12. RhoA activity assay 

GTP-loaded RhoA levels were determined using the G-LISA RhoA activation assay kit 

(Cytoskeleton, Denver, CO) according to the manufacturer’s instructions. Equal amounts 

of proteins from each experimental group were used in G-LISA RhoA activation assays 

to obtain values for RhoA activity per cell. 

 

13. Cell adhesion assay 

ALC cells were seeded on slides coated with recombinant Odam protein (rOdam) or 

collagen, and incubated for 4 h. Stable cells expressing Odam or Odam shRNA were 

seeded in 96-well plates and incubated for 4 hours. At the indicated times, plates were 

washed twice with PBS. Cells were fixed with 4% paraformaldehyde for 30 minutes, 

stained with crystal violet for 10 minutes, followed by the addition of Tween 20 for 30 

minutes. Finally, we measured the OD at 595 nm. 
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14. Periodontal challenge procedures 

Thirty healthy upper first molars from 24 eight-week-old Sprague-Dawley male rats 

were used for gingivectomy. Surgical areas were cleaned with 0.5% chlorhexidine. 

Removal of the gingiva and the JE along the maxillary molars (gingivectomy) was 

accomplished by scraping or ligature the tooth surface and extending 2 mm along the 

palate. 

 

15. Statistical Analyses 

All quantitative data are presented as the mean ± standard deviation (SD). Statistical 

differences were analyzed using Student’s t-tests (*, p<0.05). 
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IV. RESULTS 

1. ODAM expression was reduced after inflammation or chemical damage in 

JE 

Odam was expressed in differentiating ameloblasts as well as in normal and 

regenerating JE [11, 18]. First, I investigated Odam protein expression during 

amelogenesis and JE formation by immunohistochemistry. Odam was clearly observed in 

reduced enamel epithelium, maturation-stage ameloblasts, and JE during rat tooth 

development (Fig. 12A). Odam expression was reduced in JE after damage by chemical 

drugs, DSS and PG compared to sham group (Fig. 12B). To investigate whether 

periodontitis affects ODAM expression in human JE, I immunohistochemically evaluated 

ODAM protein expression in a human tooth extracted because of severe periodontitis. In 

the extracted tooth, JE transforms to the invasive pocket epithelium. In the pocket 

epithelium, ODAM was no longer detected (Fig. 12C). ODAM expression significantly 

decreased in damaged gingival epithelial cells modulated with the oral pathogenic PG 

compared to normal epithelial cells (Fig. 12D). To confirm the alteration of ODAM 

expression after inflammation in JE, I analyzed microarray data from the NCBI Gene 

Expression Omnibus (GEO) data set. Hereditary gingival fibromatosis (HGF) associated 

with aggressive periodontitis typically results in severe, rapid destruction of the tooth 

supporting apparatus [77]. GEO data showed ODAM expression significantly decreased 

in gingival tissues with HGF compared to those of normal patients (Fig. 12E). These 

results suggest that ODAM was expressed in normal JE of healthy tooth but decreased 

after inflammation or chemical damage, and consequently disappeared in the pathologic 
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pocket epithelium of diseased periodontium. 
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Figure 12. ODAM was expressed in normal JE but reduced after inflammation or 

damage.  

(A) Immunohistochemistry indicates Odam was expressed in reduced enamel epithelium 

(left panels), maturation-stage ameloblasts (central panels), and JE (right panels) during 

rat tooth development on postnatal days 16 (P16) and P26. Scale bar: 200 mm. (B) Odam 

expression was reduced after inflammation by DSS treatment and PG inoculation in JE of 

6-week-old mice (3 mice per treatment group). Scale bar: 200 mm. (C) Gingival sections 

from periodontitis patients did not express ODAM (n = 4). Scale bar: 100 mm. OE: oral 
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epithelium, RE: reduced epithelium, E: enamel, D: dentin, JE: junctional epithelium, Od: 

odontoblast, GE: gingival epithelium, SE: sulcular epithelium. (D) Expression of ODAM 

mRNA was analyzed from gene expression dataset GSE10526 deposited in GEO (n =4). 

(E) Expression of ODAM mRNA was analyzed from gene expression dataset GSE4250 

deposited in GEO (n = 2). 
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2. ODAM was detected in the gingival crevicular fluid (GCF) from 

periodontitis and peri-implantitis patients 

ODAM protein was detected in sera from late stage breast cancer patients [50]. I found 

that ODAM was expressed in normal JE. However, its expression was disappeared in 

pathologic pocket epithelium from periodontitis patients. Based on these findings, I 

investigated the expression of ODAM in GCF from periodontitis and peri-implantitis 

patients by ELISA analysis. As expected, the level of ODAM protein was significantly 

increased in GCF from periodontitis patients compared to healthy teeth without 

inflammation (Fig. 13A). Furthermore, the level of ODAM protein in GCF correlated 

with probing depth in periodontitis patients (Fig. 13B). Similar to periodontitis, ODAM 

protein level was also significantly increased in GCF from peri-implantitis patients 

compared to healthy teeth (Fig. 13C) and healthy implants (Fig. 13D). These results 

demonstrate that ODAM expression in JE reflects healthy periodontium. However, after 

JE attachment loss caused by periodontitis or peri-implantitis, ODAM is extruded from 

JE and detected in GCF. 
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Figure 13. ODAM was detected in GCF from periodontitis and peri-implantitis 

patients.  

(A) ODAM protein levels in GCF from healthy teeth (normal) and periodontitis patients 

were measured by ELISA. Summary results from 10 patients are shown. (B) The 

association between probing depths and ODAM concentration in the GCF by ELISA was 

analyzed using Kruskal-Wallis test (n = 4). (C) ODAM protein in GCF from healthy teeth 

(normal) and peri-implantitis patients was measured by ELISA (n = 2 per group). (D) 

ODAM protein in GCF from control and peri-implantitis patients was measured by 

ELISA. Healthy implants served as controls (n = 2). Data are the mean ± SD of triplicate 

experiments. *denotes values significantly different from control (p<0.05). 
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3. Odam interacted with Arhgef5 in ameloblasts 

In our previous study, Arhgef5 was identified as an Odam-interacting protein by 

protoarray analysis [16]. In immunoprecipitation (IP) assay, Odam also showed 

endogenous interaction with Arhgef5 in ALCs (Fig. 14A). To confirm whether Odam 

could interact with Arhgef5, ALCs were cotransfected with Arhgef5 and HA-tagged 

Odam constructs for IP assay. The results demonstrated the interaction of Odam with 

Arhgef5 (Fig. 14B). IP with the Flag antibody followed by blotting with the Arhgef5 

antibody indicated that amino acids 127-279 of Odam affected the interaction between 

Odam and Arhgef5 (Fig. 14C). Pull-down assays also showed a direct interaction 

between these two proteins (Fig. 14D). Immunofluorescence microscopy revealed that the 

majority of GFP-tagged Odam and Flag-tagged Arhgef5 proteins co-localized to the 

periphery of ALCs (Fig. 14E). Overall, these data suggest the interaction between the C-

terminus of Odam and the SH domain of Arhgef5 occurs in the cell periphery of 

ameloblasts. 
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Figure 14. Odam interacted with Arhgef5 in ameloblasts.  

(A) IP was performed using anti-Odam antibody in ALCs. Precipitated proteins were 
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visualized by western blot using anti-Arhgef5 antibody. (B) ALCs were co-transfected 

with HA-Odam and Arhgef5 constructs. IP was performed using anti-HA or Arhgef5 

antibodies. Precipitated proteins were visualized by western blotting using anti- Arhgef5 

or HA antibodies. (C) Mapping of the Odam domain required for interaction with 

Arhgef5. Flag-Odam mutants were expressed in ALCs transfected with Arhgef5. The 

interaction was evaluated by IP using the anti-Flag antibody, followed by western blot 

using the anti-Arhgef5 antibody. (D) ALCs were transfected with the Flag-Arhgef5 

mutant containing only SH domain (amino acids 1489-1581). His pull-down assays were 

performed with cells expressing the Arhgef5 SH domain. The Arhgef5 interaction was 

determined by pull-down using the His-Odam C-terminal mutant. Interactions were 

detected by western blotting using an antibody specific for the Flag tag expressed by the 

Arhgef5 mutant. (E) GFP-tagged Odam and Flag-tagged Arhgef5 constructs were 

transfected into ALCs. Exogenous Arhgef5 was immunostained using the anti-Flag 

antibody and GFP-Odam was detected by immunofluorescence. Scale bar: 20 mm. 
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4. Odam mediated RhoA signaling in ameloblasts and JE 

GEFs-activated RhoA regulates downstream effectors, including Rho-associated kinase 

(Rock) and myosin [78]. To investigate the effects of Odam on RhoA signaling during 

amelogenesis, I examined the expression levels of RhoA downstream factors, including 

Rock, p-myosin, p-paxillin, and E-cadherin. Odam overexpression increased the 

phosphorylation activity of RhoA, myosin, and paxillin, as well as the expression of Rock 

and E-cadherin, whereas siRNA-mediated Odam inactivation decreased their activity and 

expression (Fig. 15A). However, the total expression of RhoA and paxillin were 

unaffected by Odam overexpression or inactivation. RhoA signaling was robust in Odam-, 

Arhgef5-, and active RhoA-expressing ALCs, but inhibited after siRNA-mediated Odam 

inactivation (Fig. 15B). To map the Odam functional domain that was required for RhoA 

activation with Arhgef5, I performed RhoA activity assay using Odam deletion constructs. 

RhoA activation demonstrated that deletion of the C-terminal region of Odam (amino 

acids 127–279) affected RhoA activation with Arhgef5 (Fig. 15C). This result suggests 

that the C-terminal domain containing the amino acids 127–279 region of Odam is 

necessary for activation of RhoA signaling with Arhgef5. Confocal microscopy showed 

that Flag-tagged Odam and GFP-tagged RhoA proteins primarily co-localized to the cell 

periphery of ALCs (Fig. 15D). These data suggest that Arhgef5-Odam mediates 

activation of RhoA signaling in ameloblasts and JE. 
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Figure 15. Odam induced RhoA signaling pathway in ameloblasts.  
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(A) ALCs were transfected with Odam or Odam-siRNA constructs. RhoA signaling 

components expression was analyzed by western blot. (B) ALCs were transfected with 

Odam, Odam-siRNA, Arhgef5, or active RhoA constructs. Equal amounts of cell lysates 

were used for G-LISA RhoA activation assays. (C) Mapping the Odam domain required 

for RhoA activation with Arhgef5. Flag-Odam mutants were expressed in ALCs 

transfected with the Arhgef5 construct. RhoA activity was determined by G-LISA RhoA 

activation assays. Data are the mean ± SD of triplicate experiments. *denotes values 

significantly different from the control (p<0.05). (D) Flag-tagged Odam and GFP-tagged 

RhoA constructs were transfected into ALCs. Exogenous Odam was immunostained using 

the anti-Flag antibody and GFP-RhoA was detected by immunofluorescence. Nuclei were 

stained with DAPI. Scale bar: 20 mm. 
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5. Odam-mediated RhoA signaling resulted in cytoskeleton reorganization in 

ameloblasts 

As the cell reorganizes from a short epithelial cell to a secretory ameloblast, to a 

shorter cell able to alter its apical surface, and finally to a protective ameloblast, the actin 

cytoskeleton must continuously reorganize [79, 80]. To investigate whether Odam could 

affect F-actin distribution, I cultured ALCs for 24h on rOdam- or collagen-coated slides 

and examined ODAM and F-actin expression. Cells cultured on rOdam protein showed a 

greater density of F-actin filaments at the cell periphery compared to cells cultured on 

collagen (Fig. 16A). To confirm the effects of Odam on RhoA activation, I examined the 

activation levels of RhoA using G-LISA RhoA activation assay after rOdam treatment. 

RhoA signaling was powerful in rOdam-treated and active RhoA-expressing ALCs 

compared to control (Fig. 16B).  

Next, I evaluated subcellular alterations in F-actin after exogenous Odam expression in 

ameloblasts. Confocal microscopy showed specific localization of GFP-tagged Odam in 

the nucleus and cytoplasm of ALCs and F-actin accumulated at the cell edge compared 

with control (Fig. 16C). To determine which functional domain of Odam is responsible 

for actin rearrangement and cell shape, several Odam deletion mutants were generated, 

and cells were examined using immunofluorescence analyses. Odam and RhoA 

overexpression resulted in a greater density of F-actin filaments at the cell periphery 

compared to cells transfected with Odam siRNA construct or treated with Rock inhibitor 

(Y-27632) (Fig. 16D). I also investigated whether Odam could affect the adhesion of 

ameloblasts to the substrate by adhesion assay. Odam- and Collagen-coated ALCs 
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exhibited significantly increased cell adhesion compared to control (Fig. 16E). These 

results suggest that Odam-mediated RhoA signaling resulted in actin filament 

rearrangement at the cell periphery of ameloblasts with promotion of cell adhesion. 
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Figure 16. Odam induced actin rearrangement in ameloblasts via RhoA signaling.  

(A) Cells were cultured on rOdam- or collagen-coated slides for 24 h. Fixed cells were 

treated with rhodamine-phalloidin to examine actin filaments rearrangement using 

confocal laser microscopy (red). Odam localization was investigated by 
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immunofluorescence. Scale bar: 10 mm. (B) ALCs were treated with rOdam or 

transfected with active RhoA constructs. Equal amounts of cell lysates were used for G-

LISA RhoA activation assay. (C) ALCs were transfected with Odam, and rhodamine-

phalloidin was used to examine the arrangement of actin filaments (red). Scale bar: 10 

mm. (D) Odam, Odam-siRNA, or active RhoA constructs were transfected into ALCs. 

Rock inhibitor (Y-27632) was treated into ALCs. Rhodamine-phalloidin was used to 

examine the arrangement of actin filaments (red). Odam localization was investigated by 

immunofluorescence. Scale bar: 20 mm. (E) Adhesion of ALCs to rOdam- or Collagen-

coated slides. Binding values are based on the absorbance of adherent cells. Data are 

presented as the mean ± SD of triplicate experiments. *denotes values significantly 

different from control (p<0.05). 
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6. Integrin-mediated Odam expression induced RhoA signaling 

Integrin b3 is requires for proper growth of the cervical loop, the promotion of the 

proliferation of preameloblastic cells, and iron transportation during enamel formation 

[81, 82]. Integrin b3
-/ - mice exhibited shorter lower incisor, similar with integrin b6

 -/- 

mice have severe attrition and an abnormal enamel surface [82, 83]. To examine whether 

integrin could affect Odam and RhoA expression in ameloblasts, I 

immunohistochemically analyzed integrin b3
-/-mice. In the incisor, Odam was strongly 

expressed in maturation-stage ameloblasts of wild type (WT) mice but its expression was 

reduced in integrin b3
-/- mice (Fig. 17A). Interestingly, WT JE was strongly 

immunolabeled with the Odam antibody but was hardly expressed in JE of integrin b3
-/- 

mice (Fig. 17B). In order to investigate whether integrin b 3 disruption also affects the 

expression of GTP-RhoA in ameloblasts, I performed immunostaining in the molar tooth 

of WT or integrin b3
-/- mice. In integrin b3

-/- mice, ameloblasts showed little 

immunoreactivity with the GTP-RhoA antibody. In contrast, WT ameloblasts showed 

strong GTP-RhoA expression (Fig. 17C).  

Integrin avb6 is expressed in ameloblasts and it plays a crucial role regulating 

amelogenin deposition and/or turnover and subsequent enamel biomineralization [83]. I 

analyzed GEO data using alveolar macrophages in integrin b6
-/- mice. Odam and RhoA 

expression were significantly decreased in alveolar macrophages of integrin b6
-/- mice 

compared with WT mice (Fig. 17D).  

When RhoA is activated, Rock increases actin stress-fiber formation [84]. I examined 
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the effects of integrin b3 disruption on actin arrangement in ameloblasts from 9-week-old 

WT and integrin b3
-/- mice incisors. In WT incisors, F-actin was distributed throughout 

the cytoplasm of ameloblasts and was concentrated at both the apical and basal ends. 

However, in integrin b3
-/- incisors, F-actin was weakly and diffusely detected in 

ameloblasts without polarity (Fig. 17E). Overall, these data indicated that integrin b3 and 

b6 expression is important for cytoskeleton reorganization via integrin-Odam-Arhgef5-

RhoA signaling in ameloblasts and JE.  
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Figure 17. Integrin b3 depletion diminishes Odam, Arhgef5, and RhoA expression in 

ameloblasts and JE.  

Tooth sections from integrin b3
-/- mice were evaluated. (A-C) Odam (panels A, B) and 

GTP-RhoA (panel C) protein expression was detected in ameloblasts and JE from WT 

and integrin b3
-/- mice aged 9 weeks by immunohistochemistry (n = 3 per group). Scale 



  ９９ 

 

bar: 500, 200, 100, or 50 mm. E: enamel, Am: ameloblast, D: dentin, Od: odontoblast, JE: 

junctional epithelium. (D) Odam and RhoA mRNA expression was analyzed from gene 

expression dataset GSE2255 deposited in GEO (n = 5). (E) F-actin expression was 

detected by immunofluorescence in teeth and JE of WT and integrin b3
-/- mice aged 9 

weeks. Scale bar: 20 mm. 
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7. Fibronectin and laminin activated integrin-mediated Odam signaling 

Fibronectin and laminin, which are components of the basement membrane, participate 

in the proliferation, differentiation, and attachment of preameloblasts and JE [85-88]. In 

addition, integrins associated with the cytoskeletal proteins, fibronectin and laminin, 

regulate cellular processes such as cell adhesion and differentiation [89]. To examine 

whether fibronectin and laminin could induce Odam-RhoA signaling via integrin, I 

investigated Odam and RhoA expression in ameloblastic HAT7 cells after fibronectin or 

laminin treatment by western blot. The expression levels of Odam, RhoA, and active 

RhoA were increased in HAT7 cells treated with fibronectin and laminin compared to 

control (Fig. 18A). To investigate whether fibronectin or laminin could induce the 

localization and expression of Odam and F-actin, I cultured HAT7 cells with fibronectin 

or laminin and then evaluated Odam and F-actin expression by western blot and 

immunofluorescence. Cytoplasmic Odam expression in HAT7 cells was significantly 

increased by fibronectin and laminin treatment, but nuclear Odam was slightly decreased 

(Fig. 18B). Cytoplasmic Odam expression was more intensive in fibronectin- or laminin-

treated HAT7 cells than in control cells. Fibronectin- or laminin-treated cells showed a 

nearly complete disappearance of central actin stress fibers with a transition to 

circumferential actin cables (Fig. 18C).  

The lack of integrin β6 and b1 could contribute to the periodontal phenotype [72]. I 

examined the effects of integrin β6 and b1 disruption in JE. In ameloblasts, increased 

ODAM expression by fibronectin or laminin was reversible by the addition of integrin β6 

or b1 siRNA (Fig. 18D). To confirm RhoA activation in these conditions, I investigated 
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RhoA activity in ameloblasts. Surprisingly, RhoA signaling was robust in fibronectin- or 

laminin-treated ameloblasts similar with Odam-expressing cells, but inhibited by siRNA-

mediated integrin inactivation (Fig. 18E). To confirm whether Odam could be regulated 

by fibronectin or laminin-integrin signaling, I investigated RhoA activity after fibronectin 

or laminin treatment and then Odam siRNA transfection. Odam, GTP-RhoA, and ROCK 

expression were increased by fibronectin and were reversible by the addition of Odam 

siRNA (Fig. 18F). In addition, RhoA activity was enhanced by fibronectin or laminin, but 

inhibited by siRNA-mediated Odam inactivation (Fig. 18G). These results indicate that 

fibronectin and laminin activated RhoA signaling, resulting in actin reorganization via 

integrin-mediated Odam signaling. 
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Figure 18. Fibronectin and laminin activated integrin-Odam signaling.  

(A) Odam and GTP-RhoA protein expression were evaluated in ameloblastic HAT7 cells 
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after fibronectin or laminin treatment by western blot. (B) Effect of fibronectin and 

laminin on Odam expression and localization in HAT7 cells by western blot. (C) 

Immunofluorescence staining of Odam (green) and F-actin (red) in HAT7 cells after 

fibronectin or laminin treatment. Scale bar: 20 mm. (D) Odam expression levels were 

evaluated in ALCs by western blot transfected with integrin b6- or  b1-siRNA for 48 

hours after fibronectin or laminin treatment. (E) ALCs were treated with fibronectin or 

laminin and then transfected with integrin b6- or  b1-siRNA. Equal amounts of cell lysates 

were used for the G-LISA RhoA activation assay. (F) Odam, GTP-RhoA, and Rock 

expression levels were evaluated in ALCs by western blot transfected with Odam siRNA 

for 48 hours after fibronectin treatment. (G) ALCs were treated with fibronectin or 

laminin and then transfected with Odam siRNA. Equal amounts of cell lysates were used 

for the G-LISA RhoA activation assay. 
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8. Odam was re-expressed in regenerating JE after gingivectomy in vivo or 

mechanical scratch in vitro 

Odam expression decreased and subsequently disappeared at damaged JE and 

epithelial cell rests of Malassez (ERM) after gingival excision [18, 20, 69]. Consistent 

with these results, during JE regeneration at day 5 after gingivectomy, Odam was re-

expressed in cells at the leading wound edge of the oral epithelium. Immunoreactive cell 

clusters were also found in the subjacent connective tissue. On day7, Odam was present 

in the regenerating JE at the tooth interface (Fig. 19A). GTP-RhoA showed a similar 

expression pattern in regenerating JE after gingivectomy (Fig. 19B). In addition, damaged 

cells by scratch secreted Odam immediately to the extracellular matrix. However, when 

the scratch wound healed, Odam was apparently localized to the cell as well as the 

extracellular matrix (Fig. 19C). These results suggest that intracellular Odam expression 

is important for the maintenance of JE attachment to tooth. 

 

 

 

 

 

 

 

 

 



  １０５ 

 

 

 

Figure 19. Odam was re-expressed in regenerating JE after gingivectomy.  

(A, B) Odam (A, arrows) and GTP-RhoA (B, arrows) expression on days 1, 5, and 7 after 

gingivectomy in regenerating mouse JE by immunohistochemistry (n = 2 per group). 

Scale bar: 200 mm. E: enamel, JE: junctional epithelium, D: dentin. (C) Odam expression 



  １０６ 

 

was evaluated by western blot in cultured ALCs after scratch wounds. 
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V. DISCUSSION 

Periodontal diseases are chronic inflammatory processes that affect more than one-

third of the adult population and can lead to tooth loss and financial burden [90]. Of 

utmost importance for maintaining gingival and periodontal health are their defense 

mechanisms, particularly at the dentoepithelial level. JE, a critical tissue barrier, plays an 

important role in the formation of epithelial attachment, adhesion of gingiva to the tooth 

enamel surface, consisting of an internal basal lamina (BL) and hemidesmosomes [5, 6]. 

Peri-implantitis is a key factor responsible for implant failure [91]. The attachment of 

peri-implant epithelium to the titanium surface is similar to the mechanism by which JE 

cells connect to the natural tooth [92]. Peri-implant epithelium is attached to the implant 

via the internal BL and hemidesmosomes in the lower region of the peri-implant 

epithelium–implant interface. New findings presented in our paper demonstrate that 

ODAM function during JE development and regeneration, as well as its functional 

significance in the initiation and progression of periodontitis and peri-implantitis. 

The BL of the JE and peri-implant epithelium is atypical because it constitutively 

expresses laminin, which contributes to epithelial cell adhesion [93, 94]. It is well known 

that the regenerative JE after gingivectomy is derived from the oral epithelium and JE 

maturation is induced by epithelial cell attachment to the tooth surface [95]. Immediately 

after gingivectomy, laminin expression transiently disappeared in the residual tissues [96, 

97]. However, when the newly-formed JE had attached to the enamel surface, laminin 2 

expression was apparent at the internal BL close to the cementoenamel junction, whereas 

its expression in connective tissue was reduced [98]. In the present study, laminin 
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activated RhoA signaling, resulting in actin reorganization via integrin-mediated Odam 

signaling. After gingivectomy, Odam expression transiently disappeared but re-expressed 

upon JE regeneration. Taken together, I suggest that laminin mediates the attachment of 

JE cells to the internal BL in normal dentogingival junctions and implant-tooth interface 

but not in those of inflammatory conditions such as periodontitis and peri-implantitis. 

Fibronectin is important for cell adhesion, migration, and differentiation, and functions 

during wound healing by attracting macrophages and other immune cells to the injured 

area [99]. In tooth morphogenesis, fibronectin is synthesized in the dental papilla [100]. 

Fibronectin is associated with the basement membrane separating differentiating 

ameloblasts and odontoblasts and further data indicate that this protein is predominantly 

associated with the filaments of its lamina fibroreticularis [101]. In addition, fibronectin 

is found in the extracellular matrix of periodontium, cartilage, plasma, fibroblasts, as well 

as epithelial and endothelial cells, and plays a fundamental role in the early stages of 

healing, promoting cellular migration, and tissue regeneration after periodontal treatment 

[102, 103]. Compared to specific laminin expression in internal BL, fibronectin was 

constitutively expressed in the external BL adjacent to connective tissue [104, 105]. In the 

present study, fibronectin activated integrin-Odam-Arhgef5-mediated RhoA signaling, 

which resulted in cytoskeleton reorganization. These results suggest that fibronectin 

mediates the attachment of JE cells to the external BL in direct contact with the 

subepithelial connective tissue.  

A significant increase in fibronectin and laminin, and vitronectin expression was found 

in human PDL from teeth treated with orthodontic force for 3 weeks. This result suggests 
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that over expression of fibronectin and laminin caused Odam re-expression in 

regenerating JE after orthodontic tooth movement [106]. Apical migration of JE often 

occurs in association with periodontal inflammation. Laminin was not detected at the 

migrating tip of JE [104]. However, fibronectin was demonstrated at the migrating tip of 

epithelial cells in inflammatory periodontium. Therefore, it was suggested that fibronectin 

in the subepithelial connective tissue at the apical tip of migrating epithelium could act as 

the trigger of cellular migration [105]. In the present study, in inflammatory periodontium, 

ODAM disappeared in pathologic pocket epithelium but was detected in GCF. These 

results suggest that fibronectin in the subepithelial connective tissue induced integrin-

mediated Odam production from migrating epithelial cells. However, although migrating 

epithelial cells secrete ODAM, the protein was not detected in epithelial cells but in GCF 

because migrating epithelial cells cannot attach properly to the tooth surface. In addition, 

the ODAM protein was expressed in GCF from periodontitis and peri-implantitis patients 

and correlated with probing depth in periodontitis patients. Therefore, I propose ODAM 

in GCF could be used as a protein biomarker for periodontitis and peri-implantitis 

diagnosis. 

Integrins play key roles in tooth development because several integrins, including a6, 

av, b1, b3, b4, b5, and b6 integrin subunits, are expressed in the dental epithelium [107, 

108]. Integrin αvβ6 is part of the attachment apparatus in the JE that mediates adhesion of 

the gingival soft tissue to laminin-332 at the enamel interphase of the tooth [70]. In the 

present study, Odam was not expressed in JE of integrin b3
-/- mice. There was 

significantly reduced expression of Arhgef5, RhoA, and activated RhoA in integrin b3
-/- 
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and b6
-/- mice. Our results suggest that integrin αvb3 and αvβ6 are targets of the Odam-

Arhgef5-RhoA signaling pathway and plays a significant role in tooth-cell adhesion and 

actin rearrangement during amelogenesis and JE formation.  

In summary, I provided experimental evidence for the developmental mechanism of 

oral epithelial cells such as ameloblasts and JE that attach to the tooth, the mechanism of 

new attachment occurring after periodontal surgery, and the formation of peri-implant 

tissue healing in the clinic. Identifying the precise role of ODAM expression in 

regenerating JE should help clinicians provide better periodontal care for patients. 
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CHAPTER V.  

 

ODAM inhibits breast cancer invasion and 

metastasis through activation of RhoA 

signaling 

 

 

 

 

 

 

 

 

 

 

 

 

* This Chapter has been largely reproduced from an article published by Lee HK. and 

Park JC. (2015). Cell biochemistry & function, in press. 
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I. ABSTRACT 

Odontogenic ameloblast-associated protein (ODAM) contributes to cell adhesion. In 

human cancer, ODAM is down-regulated and results in a favorable prognosis; however, 

the molecular mechanisms underlying ODAM-mediated inhibition of cancer invasion and 

metastasis remain unclear. Here, we identify a critical role for ODAM in inducing cancer 

cell adhesion. ODAM induced RhoA activity and the expression of downstream factors, 

including Rho-associated kinase (ROCK). ODAM-mediated RhoA signaling resulted in 

actin filament rearrangement by activating PTEN and inhibiting the phosphorylation of 

AKT. When ODAM is overexpressed in MCF7 breast cancer cells and AGS gastric 

cancer cells that activate RhoA at high levels, it decreases motility, increases adhesion, 

and inhibits the metastasis of MCF7 cells. Conversely, depletion of ODAM in cancer 

cells inhibits Rho GTPase activation, resulting in increased cancer migration and invasion. 

These results suggest that ODAM expression in cells maintains their adhesion, resulting 

in the prevention of their metastasis via the regulation of RhoA signaling in breast cancer 

cells. 
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II. INTRODUCTION 

Breast cancer represents the first most frequent cancer, and the ratio of mortality to 

incidence is about 29% in women [109]. Metastasis at distant sites is the principal cause 

of death among breast cancer patients, being responsible for approximately 26% of deaths 

from this malignant disease [110, 111].  

Odontogenic ameloblast-associated protein (ODAM), the protein product of a gene 

involved in tooth development is expressed in certain human epithelial neoplasms, 

including breast cancer [11, 12]. Notably, this molecule appeared to serve as a novel, 

favorable prognostic biomarker of malignancy, as demonstrated by the finding of a 

statistically significant correlation between the presence of ODAM and an improved 5-

year survival of patients [24]. ODAM overexpression in MDA-MB-231breast cancer cells 

resulted in the inhibition of neoplastic and metastatic properties [23]. Additionally, a 

significant correlation was found between ODAM expression/nuclear localization and 

sentinel lymph node metastases indicative of poorer prognosis in melanoma [28]. These 

findings suggest that ODAM has a potentially significant role in regulating tumorigenesis 

and metastasis in breast cancer with possible clinical implications. However, the 

molecular mechanisms underlying ODAM-mediated inhibition of cancer metastasis and 

promotion of a favorable prognosis remain unclear. 

Odam has been implicated in diverse activities such as enamel maturation, 

formation and regeneration of the junctional epithelium (JE), and tumorigenesis 

[12, 14, 23, 68]. Odam is expressed in maturation stage ameloblasts and normal 
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JE but is reduced after JE damage [7, 15, 18, 20, 69]. ODAM plays roles in 

enamel formation and mineralization during amelogenesis [11, 14, 16]. In our 

previous paper, we found that Odam induces RhoA activity and the expression of 

downstream factors by interacting with Arhgef5. Odam-mediated RhoA signaling 

results in actin filament rearrangement and enhancement of cell adhesion [112]. 

Although RhoA signaling pathway plays a role in the invasion of MDA-MB231 

cells [113], which was not expressed ODAM in cell compartment [27], it has been 

also known that the inhibition of RhoA signaling pathway could induced the 

invasion of less-invasive breast cancer cells (MCF7), which was expressed 

ODAM [114]. However, the cancer inhibition by ODAM and RhoA in breast 

cancer cells has not yet been established. Therefore, it was evaluated the function 

of ODAM by interacting with RhoA in MCF7 cells because ODAM and RhoA 

were expressed in MCF7 and SK-BR-3 cells unlike MDA-MB231 cells and they 

induced cell adhesion in ameloblasts. 

Cell motility, which is essential for metastasis, is a complex, multistep process that 

integrates multiple intracellular signaling and regulatory pathways [115]. Almost all 

aspects of tumor cell proliferation, motility, and invasion, including cellular polarity, 

cytoskeletal re-organization, and signal transduction pathways, are controlled through the 

interplay between the Rho-GTPases [116, 117]. The variations in the levels of Rho 

proteins directly correlate with the advancement of breast cancer [118, 119]. Our previous 

report demonstrated that Odam regulates RhoA signaling in oral epithelial cells [120]. 



  １１５ 

 

However, the precise functions of ODAM-RhoA signaling, a key regulator of cell 

adhesion and motility in cancer cells, remain unclear. In this study, I further investigated 

the roles of ODAM in the migration and invasion of cancer cells in vitro and in vivo. 
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III. MATERIALS AND METHODS 

1. Plasmids, reagents, and antibodies 

Expression vectors encoding DDK (Flag)-tagged human ODAM and ODAM short 

hairpin RNA (shRNA) were purchased from Origene. Anti-ODAM antibody was 

generated in rabbits by immunization with ODAM peptides [16]. Anti-RhoA, F-actin, 

GAPDH, ROCK, horseradish peroxidase (HRP)-conjugated goat anti-mouse, HRP-

conjugated goat anti-rabbit-IgG, and HRP-conjugated rabbit anti-goat-IgG antibodies 

were purchased from Santa Cruz Biotechnology. Anti-RhoA, ROCK, p-AKT, AKT, p-

PTEN, PTEN, E-cadherin, and b-catenin antibodies were obtained from Cell Signaling. 

Anti-GTP-RhoA antibody was purchased from Biosource. Anti-Arhgef5 was obtained 

from Proteintech Group. Anti-Flag antibody was from Sigma-Aldrich. Alexa Fluor® 488 

Phalloidin (Rhodaminephalloidin) antibody was obtained from Invitrogen. Anti-

fluorescein isothiocyanate (FITC) or Cy3-conjugated anti-mouse, -rabbit, or -goat IgG 

antibody was purchased from Life Technologies. 

 

2. Tissue preparation and immunohistochemistry 

All experiments involving human cell lines were performed according to the Dental 

Research Institute guidelines and Institutional Animal Care and Use Committees of Seoul 

National University (SNU-111013-3). The experimental protocol was also approved by 

the Seoul National University’s Institutional Review Board (S-D2011001). Malignant 

human tissue blocks were obtained retrospectively from the Seoul National University 

Hospital archive (Seoul, Korea) and Seoul National University Dental Hospital archive 



  １１７ 

 

(Seoul, Korea). Mouse bone blocks from metastatic breast cancer were provided by Dr. 

Zang Hee Lee (Seoul National University, Seoul, Korea). Sections were incubated 

overnight at 4°C with anti-ODAM or GTP-RhoA antibody as the primary antibody 

(dilutions of 1:100–1:200). Secondary anti-rabbit or mouse antibody was added to the 

sections for 30 minutes at room temperature, and then the sections were reacted with the 

avidin-biotin-peroxidase complex (Vector Laboratories). Signals were converted using a 

diaminobenzidine kit (Vector Laboratories). Nuclei were stained with hematoxylin. 

 

3. Cell culture and transfection 

MCF7, SK-BR-3, and MDA-MB231 cells (breast adenocarcinoma cells; ATCC) were 

grown and maintained in RPMI (Gibco BRL) supplemented with 10% FBS and 

antibiotics in a 5% CO2 atmosphere at 37°C. The immortalized human mammary 

epithelial cell line MCF10A (ATCC) was cultured in complete MCF10A growth media, 

composed of DMEM/nutrient mixture F12 (DMEM/F12; Gibco BRL) supplemented with 

5% fetal calf serum, 20 ng/ml EGF, 10 mg/ml insulin, 0.5 mg/ml hydrocortisone, and 100 

ng/ml cholera toxin (Sigma-Aldrich). AGS cells (gastric adenocarcinoma, non-invasive 

cancer cells; ATCC) were grown and maintained in DMEM supplemented with 10% FBS 

and antibiotics. 

MCF-10A, MCF7, SK-BR-3, MDA-MB231, or AGS cells were seeded in culture 

plates. Cells were transiently transfected with plasmid DNA using Metafectene PRO 

reagent (Biontex).  
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4. Western blotting 

To prepare whole cell extracts, cells were washed three times with PBS, scraped into 

1.5-ml tubes, and pelleted by centrifugation at 12,000 rpm for 2 minutes at 4°C. After the 

removal of the supernatant, pellets were suspended in lysis buffer [50 mM Tris-Cl (pH 

7.4), 150 mM NaCl, 1% NP-40, 2 mM EDTA (pH 7.4)] and incubated for 15 minutes on 

ice. Cell debris was removed by centrifugation. Proteins (30 µg) were separated by 10% 

SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes 

(Schleicher & Schuell BioScience, Dassel, Germany). Membranes were blocked for 1 

hour with 5% nonfat dry milk in PBS containing 0.1% Tween 20 (PBS-T), and incubated 

overnight at 4°C with the primary antibody diluted in PBS-T buffer (1:1000). After 

washing, membranes were incubated for 1 hour with secondary antibodies. Labeled 

protein bands were detected using an enhanced chemiluminescence system (Dogen). 

 

5. RhoA activity assay 

  The level of GTP-loaded RhoA was determined using the G-LISA RhoA activation 

assay kit (Cytoskeleton) according to the manufacturer’s instructions. Because the 

expression level of RhoA varied depending on the type of substrate, equal amounts of 

proteins from each experimental group were used in the G-LISA RhoA activation assay 

to obtain values for the total amount of RhoA activity per cell. 

 

6. Fluorescence microscopy 

Cells on Laboratory-Tek chamber slides (Nunc) were washed with PBS, fixed for 10 
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minutes at room temperature with 4% paraformaldehyde in PBS, and permeabilized for 5 

minutes in PBS containing 0.5% Triton X-100. After washing and blocking, cells were 

incubated for 1 hour with anti-ODAM (1:200) and Alexa Fluor® 488 Phalloidin 

antibodies in blocking buffer (PBS and 1% bovine serum albumin), followed by the 

addition of anti-FITC or Cy3-conjugated anti-rabbit IgG antibodies (1:200). After 

washing, cells were visualized using fluorescence microscopy (AX70; Olympus Optical 

Co). Chromosomal DNA in the nucleus was stained using DAPI. 

 

7. Adhesion assay 

Stable cells expressing ODAM or ODAM shRNA were seeded in 96-well plates and 

incubated for 4 hours. At the indicated times, plates were washed twice with PBS. Cells 

were fixed with 4% paraformaldehyde for 30 minutes, stained with crystal violet for 10 

minutes, followed by the addition of Tween 20 for 30 minutes. Finally, we measured the 

OD at 595 nm. 

 

8. Wound healing assay 

After 24 hours of ODAM or ODAM shRNA transfection, cells were harvested, seeded 

in 6-well plates, and cultured until confluent. We used 200-µl pipette tips to make a 

straight scratch, simulating a wound. Cells were rinsed gently with PBS and cultured in 

fresh complete media. Cells were imaged using a 10× objective on a Leica DMLB 

microscope and acquired using QCapture Software (QImaging Software). 
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9. Invasion assay 

Cell migration was analyzed using Transwell assays (Corning Inc., Corning, NY) with 

polycarbonate filters (pore size, 8 µm). Cells transfected with ODAM or ODAM shRNA 

were seeded in the upper chamber at a density of 1×105 cells/chamber in 100 µl of media. 

The lower chamber was filled with 600 µl of DMEM. Plates were incubated for 24 hours 

at 37°C, and cells in the upper chamber were carefully removed using a cotton swab. 

Migrated cells were fixed with 4% paraformaldehyde and stained with Hoechst 

trihydrochloride (1:5000; Invitrogen) for 10 minutes. The number of invading cells was 

counted using fluorescent microscopy. Four fields were randomly chosen, and the number 

of penetrated cells was counted. 

 

10. Gene expression profiling 

Gene expression profile data (GSE2429) were obtained from the National Center for 

Biotechnology Information Gene Expression Omnibus (NCBI GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/). Publicly available gene expression datasets were 

downloaded from gene expression omnibus (GEO) (accession number GSE14938 to 

multiple normal tissues, GSE9574 and GSE20437 to breast cancer: histologically normal 

breast epithelium, GSE1299 to breast cancer cell expression profiles (HG-U133A), 

GSE35809 to an Australian patient cohort: gastric adenocarcinoma, GSE43346 to small 

cell lung cancers, and GSE3268 to squamous lung cancer), and ODAM and RhoA mRNA 

expression was analyzed using GEO data. 
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11. In vivo transfection of ODAM and histologic analysis 

MCF7 cells and MDA-MB231 cells transfected with the ODAM construct and 

suspended in PBS containing 50% Matrigel were established and then were injected 

subcutaneously immunocompromised mice (BALB/c female mice). Four weeks later, the 

animals were euthanized, and the tumors were removed, fixed in formalin, embedded in 

paraffin blocks, and histologically examined.  

 

12. Statistical analyses 

All quantitative data are presented as the mean ± SD. Statistical differences were 

analyzed using Student’s t-test (*, p<0.05). 
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IV. RESULTS 

1. ODAM expression is decreased after tumorigenesis in normal tissues  

ODAM was immunostained in dental epithelial cells of unerupted human tooth 

follicles and ameloblasts, tracheal gland, salivary gland, stomach, fetal lung, and 

bronchus [50]. To examine ODAM expression in human normal tissues, I analyzed 

microarray data from the NCBI GEO dataset. ODAM was expressed in the human 

adrenal gland, brain, cerebral cortex, colon, epididymis, kidney, lung, mammary gland, 

prostate, salivary gland, duodenum, ileum, stomach, thyroid, and trachea. Additionally, 

the expression levels of ODAM were stronger in the lung, mammary gland, prostate, 

salivary gland, stomach, thyroid, and trachea than in other tissues (Fig. 20A). Similarly, a 

search using the human protein atlas site 

(http://www.proteinatlas.org/ENSG00000109205-ODAM/tissue) showed a ubiquitous 

expression pattern of ODAM mRNAs in various human tissues (data not shown). To 

investigate the alteration of ODAM expression in breast, stomach, and lung cancer, I 

analyzed microarray data from the NCBI GEO dataset. ODAM mRNA expression was 

significantly decreased in breast cancer tissues and cell lines compared with normal 

breast epithelia (Fig. 20B). In addition, ODAM mRNA expression decreased in invasive 

gastric adenocarcinoma compared with that in metabolic gastric adenocarcinoma (Fig. 

20C). Another GEO dataset showed that ODAM expression was significantly decreased 

in small cell lung cancer and squamous lung cancer tissues compared with that in normal 

tissues (Fig. 20D and E). However, ODAM expression remained in these cancer cells and 

was not completely eliminated. Immunohistochemistry data showed that ODAM 
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expression was detected overall in the normal mammary gland, stomach, and lung tissues 

of mice. However, compared with the overall expression in normal tissues, ODAM 

showed expression patterns at specific regions of benign but not malignant breast, 

stomach, and lung tumor tissues (Fig. 20F). 

ODAM protein was detected in sera from late-stage breast cancer patients [50]. To 

assess whether the presence of ODAM in breast tumors has any physiologic relevance, I 

examined intracellular and extracellular ODAM protein expression in normal human 

breast epithelial cells (MCF10A), non-invasive breast cancer cells (MCF7 and SK-BR-3), 

and invasive breast cancer cells (MDA-MB231) by western blotting. Intracellular ODAM 

protein was expressed in normal and non-invasive cancer cells but was found to be 

expressed in the descending order of MCF10A, MCF7, and SK-BR-3 cells. However, 

ODAM expression was not detected in invasive MDA-MB231 cancer cells. On the other 

hand, extracellular ODAM protein was not observed in normal cells but was observed in 

MCF7, SK-BR-3, and MDA-MB231 cancer cells (Fig. 21A). These results suggest that 

intracellular ODAM reflects the invasiveness degree of breast cancer cells, while 

extracellular ODAM expression reflects their malignancy.  
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Figure 20. ODAM was expressed in normal and cancer tissues.  

(A) Expression of ODAM mRNA is analyzed from the gene expression dataset 

GSE14938 (multiple normal tissues) deposited in GEO. (B-E) Expression of ODAM 
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mRNA is analyzed from gene expression datasets of breast cancer (GSE9574 and 

GSE20437), gastric cancer (GSE35809), and lung cancer (GSE43346 and GSE3268). (F) 

Immunohistochemistry indicates that ODAM is expressed in normal (upper panels) and 

cancer tissues (middle and bottom panels). Scale bar: 200 mm. * denotes values 

significantly different from the control (P<0.05). 
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2. ODAM interacts with ARHGEF5 and induces RhoA signaling in breast 

cancer cells 

ODAM was expressed in normal or non-invasive cancer cells (Fig. 4), and related with 

cell adhesion (Fig. 16). Although RhoA signaling pathway plays a role in the invasion of 

MDA-MB231 cells [113], which do not express ODAM in cell compartment, the 

inhibition of RhoA signaling pathway could induced the invasion of non-invasive breast 

cancer cells (MCF7), which expressed ODAM [114]. The cellular ODAM, ARHGEF5, 

and RhoA were expressed in MCF7 and SK-BR-3 (Fig. 21A). Therefore, it was evaluated 

the function of ODAM by interacting with RhoA in MCF7 cells. 

As expected, the expression of RhoA, and GTP-RhoA protein was similar to 

extracellular ODAM expression in MCF7, SK-BR-3, and MDA-MB231 cancer cells (Fig. 

21A). In the previous paper, ODAM mediated RhoA signaling, resulting in cytoskeleton 

reorganization via the interaction with ARHGEF5 in ameloblasts [120]. 

 To investigate the expression levels of RhoA and downstream factors by ODAM, it 

was examined the expression levels of RhoA and ROCK as a RhoA downstream factor. 

ODAM overexpression increased the expression of GTP-RhoA and ROCK, whereas 

ODAM inactivation by shRNA decreased their activity and expression (Fig. 21B). To 

examine the induction of RhoA activity by ODAM, it was performed RhoA activity assay 

experiments using ODAM and ODAM shRNA constructs. RhoA signaling was robust in 

ODAM-expressing MCF7 cells, but was inhibited after shRNA-mediated ODAM 

inactivation (Fig. 21C). 

To confirm the alteration of RhoA expression in breast and lung cancer, it was analyzed 
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microarray data from the NCBI GEO dataset. RhoA expression was slightly decreased in 

breast cancer tissues compared with normal breast epithelium (Fig. 21D). Another GEO 

dataset showed that RhoA expression was significantly decreased in gastric cancer and 

lung cancer tissues compared with that in normal patients (Fig. 21E-F). I further 

investigated ODAM and GTP-RhoA expression in human breast cancer tissues by 

immunohistochemistry. ODAM and GTP-RhoA protein showed similar expression 

patterns in duct regions of benign breast cancer tissues (Fig. 21H). These data suggest 

that ODAM regulates RhoA signaling in breast cancer cells. 
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Figure 21. ODAM interacted with ARHGEF5 and induced RhoA signaling in breast 

cancer cells.  
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(A) The indicated cell lysates were analyzed by western blotting using antibodies against 

ODAM, ARHGEF5, RhoA, and GTP-RhoA in human MCF10A mammary epithelial 

cells, non-invasive MCF7 and SK-BR-3 breast cancer cells, and invasive MDA-

MB231breast cancer cells. (B) MCF7 cells were transfected with ODAM or ODAM 

shRNA constructs. Expression of RhoA signaling components was analyzed by western 

blotting. (C) MCF7 cells were transfected with ODAM or ODAM shRNA constructs. 

Equal amounts of cell lysates were used for G-LISA RhoA activation assays. (D-G) 

RhoA expression was analyzed using gene expression data collected from breast cancer 

and normal breast epithelium in the GEO database GSE9574, breast cancer in the GEO 

databases GSE9574, GSE20437, and GSE1299, stomach cancer in the GEO database 

GSE35809, and lung cancer in the GEO databases GSE43346 and GSE3268. (H) ODAM 

(upper panels) and GTP-RhoA (lower panels) proteins in breast cancer tissues were 

analyzed by immunohistochemistry. Right panels are higher magnifications of boxed left 

panels, respectively. Scale bars: 200 mm. * denotes values significantly different from the 

control (P<0.05). 
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3. ODAM regulates PTEN and AKT signaling pathway via RhoA 

ROCK is markedly activated to hinder cell proliferation and migration when adhesion 

signaling is weak. ROCK suppression promotes cell proliferation via PTEN and up-

regulation of AKT phosphorylation or induces cell migration [121]. ODAM inhibited 

AKT phosphorylation but enhanced the expression of PTEN, a tumor suppressor gene, in 

melanoma cells [28]. Western blot analysis of breast cell lysates with phospho-specific 

antibodies revealed a marked decrease in AKT activation in ODAM-expressing cells 

evident as decreased phosphorylation at both the Ser 473 and Thr 308 residues associated 

with AKT activation; however, the overall levels of AKT protein were unaffected (Fig. 

22A). Activation of AKT is antagonized by the PTEN tumor suppressor gene product 

through its PIP3-phosphatase activity [122]. To test whether the elevation of PTEN 

expression is specific to ODAM-expressing non-invasive breast cancer cells, it was 

examined PTEN expression in MCF7 cells. Significantly, the levels of PTEN protein and 

PTEN phosphorylation were elevated in ODAM-expressing MCF7 cells relative to 

controls (Fig. 22B). 

Epithelial cells bind together through the binding of E-cadherins and the formation of 

an intracellular molecular complex with several molecules, including b-catenin and actin 

filaments [123, 124]. Thus, the gain of E-cadherin and b-catenin from the cell membrane 

was examined upon cell adhesion through ROCK activation using western blotting. 

ODAM overexpression clearly resulted in the gain of E-cadherin and b-catenin expression 

(Fig. 22C). However, MCF7 cells expressing ODAM shRNA induced the loss of ROCK, 

p-PTEN, PTEN, E-cadherin and b-catenin and the gain of AKT phosphorylation (Fig. 
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22A, B, and C). The gain of ROCK, p-PTEN, PTEM, E-cadherin and b-catenin was 

further confirmed through the constitutive overexpression of active RhoA (Fig. 22D). 

These results suggest that the construction of cell junctions upon RhoA signal activation 

by ODAM might be associated with the gain of adhesion signaling and intracellular 

molecular complexes such as E-cadherin and b-catenin 
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Figure 22. ODAM controlled PTEN and AKT signaling via the RhoA pathway.  

(A) MCF7 cells were transfected with ODAM or ODAM shRNA constructs. AKT 

expression was analyzed by western blotting. (B) PTEN expression was analyzed by 

western blotting. (C) E-cadherin and b-catenin expression was analyzed by western 

blotting. (D) MCF7 cells were transfected with active RhoA constructs. Expression of 

RhoA and AKT/PTEN signaling components was analyzed by western blotting. 

 



  １３３ 

 

4. ODAM-induced RhoA signaling results in cytoskeletal rearrangement and 

cellular conformational changes 

Actin rearrangement induces cell shape, adhesion, motility, and differentiation [125]. 

The actin cytoskeleton is continuously reorganized through the RhoA signaling pathway 

during tumorigenesis [84, 126]. To investigate whether ODAM-RhoA signaling changes 

actin filaments, it was evaluated subcellular alterations in F-actin after exogenous ODAM 

expression in MCF7 and AGS cells. Confocal microscopy showed specific localization of 

ODAM in the nucleus and cytoplasm of MCF7 and AGS cells, and F-actin accumulated 

at the cell periphery compared with control, but not in shRNA-mediated ODAM-

inactivated cells (Fig. 23A, B). Next, to investigate whether ODAM could affect F-actin 

distribution and cell shape, MCF7 and AGS cells were cultured for 24 hours on rODAM- 

or collagen-coated slides and examined ODAM and F-actin expression. Cells cultured on 

rODAM protein showed a greater density of F-actin filaments at the cell periphery than 

cells cultured on collagen and retained their cell shape (Fig. 23C, D). I also investigated 

whether ODAM-induced RhoA activity and subsequent actin reorganization affect the 

adhesion of MCF7 and AGS cells to the substrates using adhesion assays. ODAM- and 

collagen-coated MCF7 and AGS cells exhibited significantly increased cell adhesion 

compared with control cells (Fig. 23E). These results suggest that ODAM-mediated 

RhoA signaling resulted in actin filament rearrangement at the cell periphery of MCF7 

and AGS cells with the promotion of cell adhesion. 
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Figure 23. ODAM expression resulted in actin rearrangement in breast cancer and 

stomach cancer cells via RhoA signaling.  

(A and B) MCF7 (A) and AGS (B) cells were transfected with ODAM or ODAM shRNA 
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constructs, and rhodamine-phalloidin was used to examine the arrangement of actin 

filaments (red). (C and D) MCF7 (C) and AGS (D) cells were cultured on ODAM- or 

collagen-coated slides for 24 h. Fixed cells were treated with rhodamine-phalloidin to 

examine ODAM and F-actin expression by confocal laser microscopy (red). (E) Adhesion 

of MCF7 and AGS cells to ODAM- or collagen-coated slides. Binding values are based 

on the absorbance of adherent cells. Data are presented as the mean ± SD of triplicate 

experiments. * denotes values significantly different from the control (P<0.05). 
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5. ODAM reduces tumor formation, growth, cellular migration, and invasion 

in breast and stomach cancer cells 

Next, I asked whether ODAM controlled the migration and invasion of breast cancer 

cells. In wound healing assays, ODAM reduced the migration of MCF7 non-invasive 

breast cancer cells and AGS non-invasive stomach cancer cells. Conversely, ectopic 

ODAM shRNA enhanced MCF7 and AGS cell motility (Fig. 24A). Furthermore, transwell 

invasion assays demonstrated a significantly increased number of MCF7 and AGS cells 

when transfected with ODAM shRNA-expressing constructs compared with control cells 

(Fig. 24B). Conversely, the ectopic ODAM construct reduced MDA-MB231 cell motility 

(Fig. 24C). These results indicated that ODAM is crucial for the inhibition of breast and 

lung cancer cell migration and invasion in vitro. There is a strong correlation between the 

expression level of ODAM and invasiveness of cancer cells (Fig. 24A, B). To determine 

whether ODAM expression would affect the aggressive tumor-forming and metastatic 

properties of MCF7 and MDA-MB231 breast cancer cells in vivo, ODAM-expressing or 

control cancer cells were implanted subcutaneously into BALB/c mice. After 4 weeks of 

implantation, the tumors had grown in control and ODAM-expressing cells. Although 

tumor suppression by ODAM was relatively evident in MDA-MB231 cells, the tumors 

were smaller in the ODAM-expressing group than in the control group (Fig. 24D).  

Breast cancer frequently metastasizes to the bone [127]. ODAM was also observed in 

osteoblast and osteoclast cell lines [27]. To investigate the role of ODAM in osteolytic 

bone metastasis, it was examined the expression of ODAM in normal tibia and tibia with 

breast cancer burden induced by the left cardiac ventricle injection of MDA-MB231 



  １３７ 

 

breast cancer cells [128]. Histomorphometric analysis revealed that bone tumor burden 

was clearly induced in mice-bearing MDA-MB231 cells compared with the bone of 

normal mice (Fig. 24E). ODAM was strongly expressed in normal tibia, but its 

expression was reduced in tibia with breast cancer burden (Fig. 24E). These results 

suggest that bone metastasis of breast cancer resulted the reduction of ODAM expression 

in the bone. 
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Figure 24. ODAM influenced the morphology, adhesion, migration, and invasion of 

breast and stomach cancer cells.  

(A) Migration was analyzed by wound healing assays in MCF7 cells transfected with 

ODAM or ODAM shRNA constructs (Magnification: 200×). (B and C) The invasion 

capacity of MCF7, AGS, or MDA-MB231 cells, which were transfected with ODAM or 

ODAM shRNA constructs, was determined by matrigel-coated transwell assays. The 

average cell counts from representative fields for each condition are given as mean ± S.D. 
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* denotes values significantly different from the control (P<0.05). (D) Tumor formation 

was analyzed in BALB/c mice 4 weeks after subcutaneous implantation of MCF7 or 

MDA-MB231 cells (control) or ODAM-expressing MCF7 or MDA-MB231 cells 

(ODAM). (E) ODAM expression was observed in normal tibia and tibia with breast 

cancer burden by immunohistochemistry. Right panels are higher magnifications of 

boxed left panels, respectively. T: tumor. Scale bar: 200 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  １４０ 

 

V. DISCUSSION 

ODAM was first identified as the protein constituent of calcifying epithelial 

odontogenic/Pindborg tumor (CEOT) and revealed high expression in ameloblasts and 

junctional epithelium [9, 11, 12, 22]. Further analysis showed that ODAM was expressed 

in epithelial malignancies including those of colon, breast, lung, stomach, and melanoma 

[27, 50, 51]. Intracellular ODAM showed a significant correlation with improved survival 

when analyzed between and across tumor stages [24]. Rho GTPases can influence the 

formation and progression of human tumors by the regulation of several neoplastic 

processes; an important future issue is the determination of the activity of these proteins 

in different tumors [129]. The importance of RhoA in this process has been demonstrated 

by in vitro studies in that low levels of activated RhoA were associated with cultured cells 

with a high migration phenotype [130, 131]; however, high RhoA activity has been linked 

to poor migration ability by high substrate adhesion [132-134]. This study demonstrated 

that ODAM induces RhoA activation and maintenance of MCF7 dormant breast cancer 

cells to assimilate through the integration of cell junctions concomitant with inhibited 

migration and invasion. The induced expression of E-cadherin, b-catenin, and actin 

filament bundles at the cell membrane, which maintains cell junctions, might explain the 

molecular basis underlying the assembly of MCF7 cell junctions through ODAM. Thus, 

these results indicate a good potential to inhibit MCF7 cells to metastasize to neighboring 

tissues or organs through ODAM. Thus, ODAM activation therapy should be cautiously 

administered, as there is a new potential for the inhibition of cancer cells. 

ROCK, a downstream mediator of RhoA signaling, suppresses cell proliferation 
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through the up-regulation of PTEN and down-regulation of AKT phosphorylation, and 

accelerates cell migration [121, 135, 136]. The inhibition of ROCK activates the cell 

proliferation, migration and invasion of dormant MCF7 breast cancer cells, of which 

ROCK activity is dependent on the adhesion strength [114]. ODAM inhibits growth and 

migration through the elevation of the PTEN tumor suppressor and inactivation of 

PI3K/AKT signaling in melanoma and breast cancer cell lines [28]. MCF7 cell 

dissipation upon ROCK inhibition might be further peculiar because AKT activity might 

be involved in this process. The up-regulated AKT phosphorylation is associated with 

EMT. The active AKT induces EMT in squamous cell carcinoma cells [137]. The 

activation of AKT through leptin is associated with EMT in MCF7 cells [138]. In the 

present study, the integration of cell junctions through ROCK activation is directly 

associated with down-regulated AKT phosphorylation upon ROCK activation. In addition, 

cell migration and invasion were also up-regulated through RhoA, which was previously 

shown in MCF7 cells and strocytoma cells [126, 139]. The inhibition of cells in migration 

and invasion might substantially promote the association of dissociated MCF7 cells. 

ODAM is localized in the nucleus, cytoplasm, and extracellular matrix of 

differentiating ameloblasts, JE, and diverse cancer cells [14, 27]. Although the presence 

of cytoplasmic ODAM and several interacting proteins in various cells and tissues imply 

multiple regulatory functions, the function of cytoplasmic ODAM in various cancer cell 

types has not yet been determined. In many cell types, cytoskeletal changes are regulated 

by low-molecular-weight GTP-binding proteins that belong to the Rho family [118, 140]. 

ROCK contributes to the polarity, proliferation, and differentiation of these cells by 
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regulating the organization of the actin cytoskeleton and cell-cell adhesion [141]. In the 

present study, I show for the first time that ODAM-mediated RhoA signaling resulted in 

cytoskeleton reorganization of non-invasive breast cancer cells. ODAM activates RhoA 

signaling, resulting in actin cytoskeleton reorganization and promotion of cell adhesion in 

MCF7 cells. Additionally, when the scratch wound in cultured breast cancer cells was 

healed, intracellular ODAM was apparently increased compared with extracellular 

ODAM, suggesting the adhesion function of cellular ODAM rather than migration 

function of extracellular ODAM. Taken together, the results suggest that 

intracellular/extracellular ODAM has a potentially significant role together with RhoA 

signaling in regulating the tumorigenesis and metastasis of various cancers with possible 

clinical implications. 

In summary, the results of the present study suggest that the cell adhesion of MCF7 

breast cancer cells might be up-regulated upon ODAM-RhoA signaling. Increased RhoA 

activity by ODAM might also inhibit cell migration/invasion. Thus, MCF7 cells upon 

ODAM-RhoA activation might hinder the metastasis into the surrounding tissues or 

organs. Moreover, these pathways are critical determinants of the motile and invasive 

phenotype of cancer cells in that ODAM regulates actin stress fibers, cell motility, and 

morphology in a RhoA-dependent manner. 
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CHAPTER VI. CONCLUDING REMARKS 
 

In the study, intracellular and extracellular expression pattern of ODAM was 

investigated in odontogenic and cancer cells in vivo and in vitro. ODAM was present in 

developing ameloblasts, odontoblasts, osteoblasts, and various cancer cells including 

human lung, stomach, uterine cervix, and breast cancer cells. In these cells, ODAM 

protein was localized in the nucleus, cytoplasm, and extracellular matrix. Based on the 

observation presented here, it was proposed that ODAM has diverse functions that vary 

with protein location in various cell lines. 

The nuclear ODAM was recruited to the MMP-20 promoter in secretory ameloblasts. 

Runx2 regulated expression of ODAM protein level, which in turn regulated MMP-20 

promoter activity, thus suggesting that nucleus ODAM played a key role in efficient 

amelogenesis in higher eukaryotic cells.  

Adhesion of the JE to the tooth surface is crucial for maintaining periodontal health. 

The cytoplasmic ODAM induced RhoA activity and the expression of downstream factors 

by interacting with ARHGEF5. ODAM-mediated RhoA signaling resulted in actin 

filament rearrangement and enhancement of cell adhesion. JE adhesion to the tooth 

surface was regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA 

signaling. ODAM was expressed in normal JE of healthy tooth but was absent in 

pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-

implantitis, ODAM was extruded from JE following onset with JE attachment loss and 

detected in gingival crevicular fluid. These results suggest that ODAM expression in JE 
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reflects healthy periodontium. Identifying the precise role of ODAM expression in 

regenerating JE should help clinicians provide better periodontal care for patients. It was 

also proposed that ODAM could be used as a biomarker of periodontitis and peri-

implantitis. 

Furthermore, I identified a critical role for ODAM in inducing cancer cell adhesion, in 

part through binding, a positive regulator of Rho GTPases. ODAM induced RhoA activity 

and the expression of downstream factors, including ROCK. ODAM-mediated RhoA 

signaling resulted in actin filament rearrangement by activating PTEN and inhibiting the 

phosphorylation of AKT. When ODAM was overexpressed in MCF7 breast cancer cells 

and AGS gastric cancer cells that activated RhoA at high levels, it decreased motility, 

increased adhesion, and inhibited the metastasis of MCF7 cells. Conversely, depletion of 

ODAM in cancer cells or ECM ODAM inhibited Rho GTPase activation, resulting in 

increased cancer migration and invasion. These results suggest that ODAM expression in 

cells maintains their adhesion, resulting in the prevention of their metastasis via the 

regulation of RhoA signaling in breast cancer cells. 

These studies provided the first evidence for ODAM function in multiple cellular 

compartments of differentiating odontogenic and cancer cell lines with important 

functional implications. 
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CHAPTER VII. ABSTRACT IN KOREAN 

 

치아치은 접합과 암 발생 과정에서 ODAM의 기능적 특성 

 

ODAM은 법랑모세포 분화, 법랑질 석회화, 치주 재생, 암 발생에 관여하는 인자이나 

그 작용기전에 관해서는 잘 알려져 있지 않다. 치아치은 접합은 치주의 건강을 유지하는

데 있어서 중요한 요소이다. ODAM은 치아치은 접합상피에서 발현되지만, ODAM의 분자 

기능에 대해서는 보고된 바가 없다. 또한, 암세포의 세포부착 특성은 암세포의 이동과 

전이에 중요한 역할을 미친다. ODAM의 발현과 유방암 발생단계 사이의 상관관계는 확

인되었으나, 그 메커니즘에 대해서는 연구된 바가 없다. 본 논문에서는 치아치은 접합상

피 발생 및 재생과 암 발생 과정 동안의 ODAM의 기능을 조사하고, 치주염과 임플란트 

주위염 초기에서 ODAM의 기능을 연구하였다. 

ODAM은 세포의 종류와 분화 정도에 따라 발현 패턴과 발현 위치가 다양하였다. 

ODAM의 다양한 발현 양상은 치아세포와 암세포에서 ODAM의 기능과 상관관계가 있는 

것으로 보인다. 법랑질 생성 과정동안 ODAM은 핵, 세포질, 세포외 기질에서 관찰되었다. 

핵에서 ODAM은 Runx2의 조절을 받아 발현되었고, 증가된 ODAM은 MMP-20의 발현

을 조절하여 법랑질 석회화 과정을 조절하였다.  

ODAM은 건강한 치아의 정상 치아치은 접합상피에서 발현되나, 질병에 걸린 치주조
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직의 주머니 상피에서는 발현되지 않았다. 치주염과 임플란트 주위염에서, ODAM은 치아

치은 접합상피의 부착상실 부위를 따라 외부로 방출되어 치은열구액에 존재함을 확인하

였다. ODAM은 Rho GTPases의 활성 유도인자인 ARHGEF5와 결합하여, RhoA 활성 및 

ROCK 같은 하위인자의 발현을 유도하였다. ODAM을 매개로한 RhoA 신호는 actin 

filament의 재배열을 유도하였다. 치아치은 접합상피에서 ODAM의 발현은 치주조직의 

건강 상태를 보여주고, 치아 표면에 부착된 접합 상피는 fibronectin/laminin-integrin-

ODAM-ARHGEF5-RhoA signaling을 통해서 조절됨을 보여준다. 또한, ODAM이 치주염

과 임플란트 주위염의 바이오 마커로서 사용될 수 있음을 나타낸다.  

ODAM은 암세포에서도 RhoA의 신호를 활성화시켜 세포 부착을 증가시켰다. 

ODAM을 매개로한 RhoA 신호는 PTEN을 활성화하고 AKT의 인산화를 억제 

시킴으로서 actin filament의 재배열을 유도하였다. MCF7 유방암세포와 AGS 

위암세포에 ODAM을 과발현 했을 때, RhoA의 활성도가 증가하였고, 세포의 부착이 

증가하여 이동과 전이가 감소하였다.  

이 결과들은 ODAM이 핵 내에서는 MMP-20를 조절하고, 세포질에서는 RhoA 신호 

전달 체계를 활성화 시킴으로서 세포 부착을 증가시키고, 염증성 치주에서는 세포외 

기질로 방출됨을 보여준다. 

                                                                                            

주요어 : ODAM ‧ ARHGEF5 ‧ RhoA ‧ 치아치은 접합상피 ‧ 암세포 ‧ 세포부착 
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