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 ABSTRACT  

 

When plants are exposed to environmental stresses, such as drought and heat 

conditions, reactive oxygen species (ROS) are produced. ROS are also generated in 

plant cells mainly as byproducts of aerobic energy metabolism. Therefore, plants 

have developed diverse ROS-detoxifying machinery to cope with ROS 

accumulation. Under prolonged-stress conditions, ROS will exceed the capacity of 

scavenging machinery, causing oxidative damage to cellular components, including 

DNA, proteins, and lipids. However, it is largely unknown how ROS metabolism is 

linked with stress responses. 

 Accumulating evidence indicates that salicylic acid (SA), in addition to its 

role in mediating disease resistance responses, also plays an important role in 

developmental processes and abiotic stress responses, such as heat and high salinity. 

Here, I report that physiological concentrations of SA promote germination under 

high salinity by reducing reactive oxygen species (ROS) in Arabidopsis. 

Germination of the SA-deficient sid2 mutant seeds was hypersensitive to high 

salinity. The inhibitory effect of high salinity was significantly reduced in the 

presence of physiological concentrations (<50 M) of SA. Under high salinity, the 

endogenous contents of H2O2 were elevated in the wild-type and sid2 seeds but 

reduced to the original levels after treatments with 1 M SA. Together, my 
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observations indicate that although SA is not required for germination under 

normal growth conditions, it reduces ROS to promote germination under high 

salinity. 

 Responses to adverse environmental conditions are regulated by gene 

regulatory networks, in which transcription factors play a central role in plants. In 

this study, I show that a NAC transcription factor, NTL4/ANAC053, is required for 

ROS generation under drought stress in Arabidopsis. NTL4 gene is induced by 

abscisic acid (ABA), drought, and heat stress. NTL4 protein has transcriptional 

activity and binds directly to the promoters of genes encoding ROS biosynthetic 

enzymes under drought stress conditions, leading to the ROS production. Elevated 

ROS levels induce leaf senescence. Leaf senescence was accelerated in the 

35S:4C transgenic plants overexpressing an bioactive form of NTL4 under 

drought conditions. The transgenic plants were highly sensitive to drought stress, 

and ROS accumulated in the transgenic leaves. In contrast, ROS levels were 

reduced in the NTL4-deficient ntl4 knockout mutants that exhibited delayed leaf 

senescence and enhanced drought resistance. These observations indicate that 

NTL4 regulates leaf senescence under drought stress by modulating ROS 

generation. 

 ROS also cause plant growth retardation under heat stress by inducing 

oxidative damage to various cellular constituents. However, it remains unknown 
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how ROS metabolism and signaling is linked with thermotolerance response. Here, 

I demonstrate that the RNA-binding protein FCA, a key component of the 

flowering genetic pathways in Arabidopsis, is also required for the acquisition of 

thermotolerance. Whereas the transgenic plants overexpressing the FCA gene, 

35S:FCA, were resistant to heat stress, the fca-9 mutant lacking functional FCA 

was hypersensitive to heat stress. The ROS level was reduced in the 35S:FCA 

transgenic plants but elevated in the fca-9 mutant under heat stress. I found that the 

levels of antioxidants, such as ascorbate and anthocyanins, were significantly 

elevated in the 35S:FCA transgenic plants but reduced in the fca-9 mutant. These 

observations indicate that FCA contributes to the acquisition of thermotolerance by 

reducing ROS under heat stress. 

 

key words : Reactive oxygen species (ROS), abiotic stresses, Arabidopsis, 

phytohormones, NTL4, FCA  

Student Number : 2008-20330 

 

 

 

 

 



 

iv 

CONTENTS 

 

ABSTRACT.................................................................................................  i 

CONTENTS................................................................................................  iv 

LIST OF FIGURES................................................................................  ix 

LIST OF TABLE.....................................................................................  xii 

ABBREVIATIONS.................................................................................  xiii 

 

INTRODUCTION 

  1. Abiotic stress responses in plants...........................................................  1 

  2. Regulation of ROS metabolism under stress conditions......................  4 

 

MATERIALS AND METHODS 

1. Plant materials and growth conditions...................................................  9 

2. Seed germination assays...........................................................................  9 

3. Transcript level analysis.........................................................................  10 

4. Histochemical assays..............................................................................  11 

5. Determination of ROS levels.................................................................  12 

6. Detection of cell death...........................................................................  13 

7. Measurements of antioxidant contents.................................................  14 



 

v 

8. Measurements of chlorophyll contents.................................................  16 

9. Protein-protein interaction assays........................................................  17 

10. Protoplast transfection assays.............................................................  18 

11. Chromatin immunoprecipitation (ChIP) assays...............................  19 

12. Western blot analysis...........................................................................  20 

 

 

CHAPTER 1: Salicylic acid promotes seed germination 

under high salinity by modulating antioxidant activity in 

Arabidopsis 

 

RESULTS 

SA affects seed germination in a dosage-dependent manner....................  23 

SA reduces the inhibitory effects of high salinity on germination............  27 

Germination of the sid2 seeds is hypersensitive to high salinity...............  30 

SA is related with osmotic stress imposed by high salinity on germination 

.........................................................................................................................  33 

Catechol promotes germination under high salinity.................................  36 

Catechol acts as an antioxidant....................................................................  39 

SA modulates H2O2 levels in germination under high salinity.................  42 



 

vi 

 

DISCUSSION 

SA in seed germination.................................................................................  48 

SA regulation of H2O2 levels under osmotic stress.....................................  49 

 

 

CHAPTER 2: A NAC transcription factor NTL4 promotes 

reactive oxygen species production during drought-induced 

leaf senescence in Arabidopsis 

 

RESULTS 

NTL4 is a transcriptional activator.............................................................  53 

NTL4 gene is induced under drought and heat conditions.......................  54 

Seedling growth of ntl4-1 mutant is less sensitive to ABA........................  58 

ntl4 mutants exhibit enhanced drought resistance....................................  62 

Leaf senescence is delayed in ntl4 mutants under drought conditions....  63 

NTL4 regulates ROS accumulation............................................................  67 

NTL4 positively regulates Atrboh genes.....................................................  69 

NTL4 binds to Atrboh gene promoters.......................................................  69 

Cell viability is altered in 35S:4C transgenic plants and ntl4-1 mutant  



 

vii 

.........................................................................................................................  72 

NTL4 processing is influenced by drought.................................................  73 

 

DISCUSSION 

NTL4 activation of ROS production under drought conditions...............  80 

Physiological relevance of NTL4 function in drought-induced leaf senescence 

.........................................................................................................................  81 

 

 

CHAPTER 3: The Arabidopsis RNA-binding protein FCA 

regulates thermotolerance by modulating antioxidant 

accumulation 

 

RESULTS 

FCA mediates thermotolerance response in an ABA-dependent manner.  86 

Cell death is accelerated in the fca mutants under heat stress....................  89 

ROS accumulates in the fca mutants under heat stress...............................  91 

FCA modulates ROS detoxification...............................................................  95 

FCA modulates ABI5-mediated ABA signaling under heat stress.............  96 

FCA regulates ABA-mediated ROS metabolism under heat stress..........  105 



 

viii 

DISCUSSION 

FCA in the induction of thermotolerance....................................................  112 

Functional mechanism of FCA in antioxidant metabolism........................  114 

 

REFERENCES.......................................................................................  118 

 

PUBLICATION LIST.........................................................................  139 

 

ABSTRACT IN KOREAN................................................................  141 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

LIST OF FIGURES 

 

Figure 1. SA delays germination in a dosage-dependent manner...............  24 

Figure 2. Shoot growth of the Col-0, NahG, and sid2 plants.......................  25 

Figure 3. Effects of SA on germination of the Col-0, NahG, and sid2 seeds.. 26 

Figure 4. SA promotes germination under high salinity..............................  28 

Figure 5. Germination of the sid2 seeds is hypersensitive to high salinity..  31 

Figure 6. Low concentration of SA promotes seed germination under high 

salinity...............................................................................................................  32 

Figure 7. High salinity imposes osmotic stress on germination...................  34  

Figure 8. Catechol promotes germination under high salinity....................  37 

Figure 9. Catechol acts as an antioxidant......................................................  40 

Figure 10. Endogenous contents of hydrogen peroxide are reduced by SA.. 44 

Figure 11. Peroxidase activity is elevated in the germinating seeds of the sid2 

mutant................................................................................................................  47  

Figure 12. 35S:NTL4C transgenic plants exhibited abnormal phenotypes 

under normal conditions.................................................................................  55 

Figure 13. NTL4 is a transcriptional activator.............................................  56 

Figure 14. NTL4 gene is induced under drought and heat conditions........  59 

Figure 15. Effects of drought on the promoter activity of NTL4 gene........  61 



 

x 

Figure 16. Effects of ABA on root growth...................................................  64 

Figure 17. NTL4 gene mediates drought stress response...........................  65 

Figure 18. Seedling growth assays under osmotic stress............................  66  

Figure 19. Leaf senescence in 35S:4C transgenic plants and ntl4 mutants 

under drought conditions..............................................................................  68  

Figure 20. NTL4 promotes ROS production...............................................  70 

Figure 21. Expression of genes encoding ROS biosynthetic enzymes.......  71 

Figure 22. NTL4 binds to the promoters of Atrboh genes..........................  76 

Figure 23. Cell viability in 35S:4C and ntl4-1 leaves under drought 

conditions...........................................................................................................  77 

Figure 24. NTL4 mediates drought-induced leaf senescence by promoting 

ROS production................................................................................................  78 

Figure 25. FCA mediates thermotolerance response.....................................  87 

Figure 26. Effects of abiotic stresses and hormones on FCA expression....  88 

Figure 27. Measurements of chlorophyll contents after ABA treatments..  92  

Figure 28. Cell death is accelerated in fca mutants under heat stress........  93 

Figure 29. TTC reduction and TBARS assays..............................................  94 

Figure 30. FCA modulates ROS detoxification.............................................  97 

Figure 31. FCA interacts with ABI5...............................................................  100 

Figure 32. Expression of ABI5 target genes...................................................  101 



 

xi 

Figure 33. FCA facilitates the binding of ABI5 to DNA..............................  103 

Figure 34. FCA regulates ABA-mediated ROS metabolism under heat stress 

..........................................................................................................................  109 

Figure 35. Working scheme of FCA in thermotolerance response.............  111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

LIST OF TABLE 

 

Table 1. Primers used in qRT-PCR and ChIP assays...................................  21  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

ABBREVIATIONS 

 

ABA 

ABI5 

BiFC 

CaMV 

cDNA 

ChIP 

DAB 

GO 

GUS 

HR 

LD 

MS 

MTF 

NAC 

NTL 

PCR 

PEG 

PER1 

Abscisic acid 

ABA-INSENSITIVE 5 

Bimolecular fluorescence complementation  

Cauliflower mosaic virus 

Complementary DNA 

Chromatin immunoprecipitation  

3,3'-diaminobenzidine 

Gene ontology 

-glucuronidase 

Hypersensitive response 

Long day 

Murashige-Skoog 

Membrane-bound transcription factor 

NAM, ATAF1/2, CUC2 

NTM1-Like 

Polymerase chain reaction 

Polyethylene glycol 

1-cys peroxiredoxin 



 

xiv 

RBOH 

ROS 

RT 

SA 

SID2 

TBARS 

TM 

TTC 

 

RESPIRATORY BURST OXIDASE HOMOLOG 

Reactive oxygen species 

Reverse transcription 

Salicylic acid 

SA-INDUCTION DEFICIENT 2 

Thiobarbituric acid reactive substances 

Transmembrane 

2,3,5-triphenyl tetrazolium chloride 

 

 

 

 

 

 

 

 

 

 



 

1 

INTRODUCTION 

 

1. Abiotic stress responses in plants 

All through a life cycle, sessile plants have been under various stress conditions 

including biotic and abiotic stresses. Diverse plant developmental processes such 

as germination, root elongation, senescence and flowering time are affected by 

environmental changes, particularly cold, heat, drought and high salinity 

(Buchanan-Wollaston et al., 2005; Jiang et al., 2009; Park et al., 2009; Chung et al., 

2010). Previous studies show that plant adaptation to environmental stresses is 

modulated by complex gene regulatory networks, in which growth hormones play 

crucial roles through extensive signaling crosstalks (Seo et al., 2009; Divi et al., 

2010). However, it is largely unknown the molecular mechanisms underlying plant 

growth and development controls of environmental stress responses. 

 Abscisic acid (ABA) is a crucial plant hormone that mediates plant 

responses to abiotic stresses, including drought, cold, heat, and high salinity. ABA 

induces cellular and physiological acclimation responses to readjust developmental 

processes, such as remodeling of root growth, leaf senescence, and abscission, 

under abiotic stress conditions (Sharp and LeNoble, 2002; Yang et al., 2003). 

Recently, numerous genes and signaling molecules that mediate ABA responses 

have been identified through molecular genetic and physiological studies (Cutler et 
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al., 2010; Hauser et al., 2011). Of particular interest are reactive oxygen species 

(ROS). Accumulating molecular genetic, cell biological, and physiological 

evidence supports the role of ROS in ABA signaling networks (Pei et al., 2000; 

Jiang and Zhang, 2002). 

 Recent studies indicate that SA also regulates diverse aspects of plant 

responses to abiotic stresses through extensive signaling crosstalks with other 

growth hormones (Achard et al., 2006; Horvath et al.,2007; Spoel and Dong, 2008; 

Tuteja and Sopory, 2008; Vlot et al., 2009; Wolters & Jürgens, 2009). It has been 

shown that SA plays a role in plant adaptive responses to osmotic stress (Singh and 

Usha, 2003), chilling and drought (Senaratna et al., 2000), high temperatures 

(Clarke et al., 2004), and to high salinity (Khodary, 2004). 

 High salinity causes plant growth retardation, such as inhibition of seed 

germination (Borsani et al., 2001). It has been reported that SA is involved in seed 

germination under high salt conditions in maize (Guan & Scandalios, 1995), 

Arabidopsis (Nishimura et al., 2005), and in barley (Xie et al., 2007). A 

germination study using transgenic Arabidopsis plants that overexpress the NahG 

gene encoding a salicylate hydroxylase has shown that lack of SA promotes 

germination under high salinity and osmotic stress (Borsani et al., 2001), 

suggesting the inhibitory role of SA. In contrast, it has been observed that 

germination of the SA-deficient plants is more severely delayed compared to that 
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of wild-type seeds in the presence of high salt and that the delayed germination is 

recovered by exogenous application of SA (Rajjou et al., 2006). Recently, it has 

been found that seed germination of the sid2 mutant is more sensitive to salt stress 

(Alonso-Ramírez et al., 2009), supporting a promotive role of SA.  

When plants are exposed to drought conditions, ABA signals trigger ROS 

accumulation, and leaf senescence is induced (Bhattacharjee, 2005). Drought-

induced leaf senescence contributes to the maintenance of water balance in whole 

plant body and the remobilization of nutrients from senescing leaves to youngest 

leaves or sink organs (Munné-Bosch and Alegre, 2004). Accordingly, suppression 

of ROS production markedly delays leaf senescence and enhances drought 

resistance (Rivero et al., 2007). However, it is currently unclear how ROS 

metabolism is linked with ABA signaling in inducing leaf senescence. 

 Among abiotic stresses, heat stress leads to the disruption of cellular 

homeostasis and growth retardation in plants, which cause severe crop loss in 

agriculture (Wang et al., 2003). Therefore, plants are forced to spend valuable 

resources to adjust their growth and development and prevent heat stress-induced 

cellular and metabolic damage, a process referred as heat acclimation (Larkindale 

and Huang, 2005). The heat acclimation and adaptive response to heat stress is 

regulated through complex signaling networks that include heat-shock proteins 

(HSPs), heat stress transcription factors (HSFs), stress hormones, and signaling 



 

4 

molecules, such as Ca2+ and reactive oxygen species (ROS) (Larkindale et al., 

2005; Volkov et al., 2006). However, it is largely unknown how plants sense the 

changes in ambient temperature and cope with the cellular and physiological 

damage caused by heat stress. 

  

2. Regulation of ROS metabolism under stress conditions 

ROS are toxic chemicals that cause oxidative damage to DNA, proteins, 

and membrane lipids. However, they also function as essential signaling molecules 

in mediating stress adaptation responses to biotic and abiotic stresses (Apel and 

Hirt, 2004; Mittler et al., 2011). ROS are produced primarily as byproducts of 

normal metabolic processes, such as respiration and photosynthesis, in chloroplasts, 

mitochondria, and peroxisomes (Apel and Hirt, 2004). They are also generated in 

apoplasts by the activity of NADPH oxidases under stress conditions (Mittler et al., 

2004). A group of NADPH oxidases and respiratory burst oxidase homologs 

(Rbohs) has been identified in Arabidopsis (Sagi and Fluhr, 2006). The roles of 

Atrboh genes have been demonstrated in the ABA-mediated stomatal closing, 

defense responses, and plant developmental processes, such as root hair growth and 

seed germination (Torres et al., 2002; Kwak et al., 2003). In this work, I 

demonstrated that ROS production by a subset of Atrboh enzymes directly links 

osmotic stress response with leaf senescence. Under drought conditions, the NTL4 
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transcription factor activates the Atrboh genes, resulting in ROS accumulation that 

triggers leaf senescence. I propose that NTL4 regulation of ROS production 

underlies the leaf senescing process occurring under drought conditions.    

ABA is closely coupled with ROS metabolism in plants. It affects the 

expression of genes that constitute ROS regulatory networks, such as CAT1 

(catalase 1) and GR1 (glutathione reductase 1) in maize (Zhang et al., 2006) and 

APX1 (ascorbate peroxidise 1) and CAT1 in Arabidopsis (Davletova et al., 2005; 

Xing et al., 2008). In addition, molecular genetic studies on the Atrboh genes have 

shown that AtrbohD and AtrbohF genes are required for hypersensitive response 

(HR) and ABA regulation of stress responses (Torres et al., 2002; Kwak et al., 

2003). ROS are also involved in ABA regulation of stomatal aperture (Pei et al., 

2000), supporting the linkage between ABA and ROS signals.  

When plants are exposed to biotic and abiotic stresses, ROS levels are 

elevated not in whole plant body but in local plant parts (Torres et al., 2005; Duan 

et al., 2010). A well-known example of local ROS accumulation is provided by the 

HR occurring during plant disease response. Recent physiological insights and 

experimental evidence also support the notion that localized ROS accumulation in 

specific tissues or cells underlies plant adaptation responses to drought stress. It has 

been reported that ROS accumulate and programmed cell death is induced in the 

root tip area under drought conditions (Duan et al., 2010). It has also been shown 
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that drought-induced senescence in the affected leaves improves the chance of 

plant survival under drought conditions by preventing the spread of the damages to 

the rest of plant body through remobilization of nutrients and prevention of water 

loss (Munné-Bosch and Alegre, 2004), similar to what observed during the HR in 

infected plants (Alvarez et al., 1998; Apel and Hirt, 2004). 

Oxidative damages caused by increasing ROS levels under high salt 

conditions have been studied extensively in plants. Although ROS is generally 

perceived as toxic molecules, it has been shown that ROS also acts as signaling 

molecules when present at low concentrations (Mittler et al., 2004). Previous 

studies have demonstrated that SA is closely related with ROS under stress 

conditions. A representative example is hypersensitive response (Durrant and Dong, 

2004). When plants are infected by pathogens, SA stimulates ROS biosynthesis to 

induce cell death on the infected region. However, the functional relationship 

between SA and ROS is poorly understood in plant responses to abiotic stresses. In 

Arabidopsis, it has been suggested that SA is linked with ROS-mediated damages 

under abiotic stress conditions. It has been shown that SA increases ROS-mediated 

oxidative damage and induce H2O2 production (Harfouche et al., 2008). However, 

SA induces resistance to diverse abiotic stresses, suggesting that SA reduces ROS-

mediated oxidative damages (Singh and Usha, 2003; Vlot et al., 2009). 

Under heat stress, the intracellular levels of ROS, such as superoxide, 
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hydrogen peroxide, and hydroxyl radical, are significantly elevated in plants 

(Møller et al., 2007; Zhou et al., 2012). An oxidative burst occurs shortly after 

exposure to high temperatures, obviously owing to the NADPH oxidase activity 

(Miller et al., 2009). It has been recently found that pretreatments with H2O2 leads 

to the induction of thermotolerance, and NADPH oxidase-defective mutants, 

Arabidopsis respiratory burst oxidase homolog B (atrbohB) and atrbohD, are 

susceptible to heat stress (Larkindale and Huang, 2004; Larkindale et al., 2005).  

 Plants have developed an array of ROS scavenging/detoxifying enzymes 

and various antioxidants to deal with the accumulated ROS under stressful 

conditions. Superoxide dismutase (SOD) converts superoxide into hydrogen 

peroxide. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), and catalase 

(CAT) decompose hydrogen peroxide to water (Mittler, 2002). Ascorbate and 

glutathione (GSH) act as antioxidants. Arabidopsis mutants that are defective in 

antioxidant production, such as ascorbate peroxidase 1 (apx1), apx2, vitamin C 

defective 1 (vtc1), and vtc2, exhibit symptoms of increased oxidative damage when 

exposed to abiotic stresses (Larkindale et al., 2005; Suzuki et al., 2013). On the 

other hand, peroxiredoxins, which are thiol-based peroxidases, enhance plant 

tolerance against oxidative and heat stresses (Kim et al., 2010). In this work, I 

demonstrate that FCA, plant-specific RNA-binding protein, regulates 

thermotolerance by modulating antioxidant activity under heat stress conditions. 
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The contents of antioxidants, such as ascorbate and anthocyanins, were reduced in 

fca mutants but elevated in FCA-overexpressing plants. These observations 

indicate that FCA plays a role in the stimulation of thermotolerance by enhancing 

the antioxidant activity under heat stress conditions, providing a novel role of FCA 

in plant stress response. 
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MATERIALS AND METHODS 

 

1. Plant materials and growth conditions 

All Arabidopsis thaliana lines used were in Columbia (Col-0) background. Plants 

were grown in a controlled culture room at 23oC with relative humidity of 55% 

under long day conditions (16-h light and 8-h dark) with white light illumination 

(120 mol photons/s/m2) provided by fluorescent FLR40D/A tubes (Osram, Seoul, 

Korea). The sid2 mutant and the NahG transgenic plant have been described 

(Gaffney et al., 1993; Wildermuth et al., 2001). The 35S:NTL4 and 35S:4C 

transgenic plants have been described (Kim et al., 2010). Two T-DNA insertional 

NTL4-deficient mutants, ntl4-1 (SALK-009578C) and ntl4-2 (SALK-007900), 

were isolated from a mutant pool deposited in the ABRC at Ohio State University. 

The fca-9, fca-11, and abi5-3 mutants and 35S:FCA transgenic plants have been 

described previously (Bäurle et al., 2007; Piskurewicz et al., 2008; Jung et al., 

2012). 

 

2. Seed germination assays 

Routinely, Arabidopsis seeds air-dried for 2 weeks were used for germination 

assays. Seeds were imbibed on 1/2 X Murashige & Skoog (MS)-agar plates 

(hereafter referred to as MS-agar plates) at 4oC for 3 days in complete darkness and 
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allowed to germinate at 22oC under LDs. Emergence of visible radicles was used as 

a morphological marker for germination. Forty-fifty seeds were counted for each 

measurement and averaged. 

 To examine the effects of NaCl, KCl, and LiCl on germination, MS-agar 

plates supplemented with 100-200 mM NaCl, 150 mM KCl, or with 65 mM LiCl 

were used for cold imbibition and germination. To examine the effects of osmotic 

stress on germination, MS-agar plates supplemented with 300 mM mannitol or 300 

mM sorbitol were used.  

 To determine how SA affects seed germination under high salinity, MS-

agar plates supplemented with 150 mM NaCl and 0-5 mM SA were used for cold 

imbibition and germination. Catechol was used at a final concentration of 10 M. 

Ascorbic acid was included in the germination assays at a final concentration of 1 

mM. 

 

3. Transcript level analysis 

Transcript levels were examined by qRT-PCR. Total RNA samples were extracted 

from appropriate plant materials using the RNeasy plant total RNA isolation kit 

(Qiagen, Valencia, CA). Prior to qRT-PCR assays, total RNA samples were 

pretreated with an RNase-free DNaseI to remove any contaminating genomic DNA. 

The first-strand cDNA was synthesized from 1 to 2 g of total RNA in a 20 l 
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reaction volume using the Superscript II reverse transcriptase (Invitrogen, Carlsbad, 

CA). One l of the reaction mixture was used for each qRT-PCR run. 

qRT-PCR was performed in 96-well blocks with an Applied Biosystems 

7500 Real-Time PCR System (Foster City, CA) using the SYBR Green I master 

mix in a volume of 20 l. The PCR primers were designed using the Primer 

Express software installed in the system and listed in Table 1. The two-step thermal 

cycling profile and processing of qRT-PCR data were carried out as described 

previously (Seo et al., 2009). 

 

4. Histochemical assays 

The GUS-coding sequence was fused in-frame to the 3’ end of the NTL4 gene with its 

own promoter consisting of approximately 1 kb upstream of the transcription start site, 

and the fusion construct was transformed into Col-0 plants. For histochemical detection 

of GUS activities, 10-day-old transgenic plants grown on MS-agar plates were fixed in 

90% acetone for 20 min on ice and washed twice with rinsing solution [50 mM sodium 

phosphate, pH 7.2, 0.5 mM K3Fe(CN)6, and 0.5 mM K4Fe(CN)6]. The plant materials 

were subsequently incubated at 37oC for 20-24 h in fresh rinsing solution containing 

2 mM 5-bromo-4-chloro-3-indolyl--D-glucuronide (Duchefa, Harlem, The 

Netherlands). They were then dehydrated through a series of ethanol dilutions, 

ranging from 15 to 80%, mounted on slide glasses, and visualized using a DIMIS-
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M digital camera (JMTECH, Seoul, Korea). 

 

5. Determination of ROS levels 

Superoxide radical was detected by NBT staining, and hydrogen peroxide was 

detected by DAB staining, as described previously (Ramel et al., 2009) but with a 

few modifications. Plant samples were incubated incubated in the NBT staining 

solution (0.5 mg/ml) for 8 h or in the DAB staining solution (0.5 mg/ml) for 24 h at 

room temperature in darkness. The plant samples were destained by incubating the 

samples in 95% ethanol at 70oC for 15 min. Quantitation of the staining density 

was performed by the LabWorks software (UVP, Upland, CA). 

Endogenous contents of hydrogen peroxide were measured as described 

previously (Lee et al., 2010). The Amplex Red hydrogen peroxide assay kit 

according to the procedure provided by the manufacturer (Molecular Probes, 

Eugene, OR) were used for assays. Briefly, 100 mg of leaf samples was ground in 

liquid nitrogen, and 200 l of 20 mM sodium phosphate buffer (pH 6.5) was added 

and thoroughly mixed. The mixture was centrifuged at 9500 X g for 10 min at 4oC, 

and the supernatant was used for subsequent assays. The Amplex Red reagent (10-

acetyl-3,7-dihydroxyphenoxazine) reacts with H2O2 in a 1:1 stoichiometry, 

producing a red-fluorescent compound, resorufin. Since resorufin has absorption 

and fluorescence emission maxima at approximately 571 nm and 585 nm and its 
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extinction coefficient is high (54,000/cm/M), the assays can be performed through 

fluorometry and spectrophotometry. Fluorescence measurements were carried out 

using the Cary Eclipse fluorescence spectrophotometer (Varian Associates, Palo 

Alto, CA). 

 Thiobarbituric acid reactive substances (TBARS) assay was performed 

using the OXI-TEK TBARS assay kit (ZeptoMetrix, Buffalo, NY). Approximately 

50 mg of plant materials were ground in liquid nitrogen and then resuspended in 

500 l of 1X phosphate buffered saline (PBS) buffer, pH 7.4 (27 mM potassium 

chloride, 137 mM sodium chloride, and 1.76 mM potassium phosphate). The crude 

solution of 100 l was mixed with 2.5 ml of the reaction buffer containing 0.5% 

(w/v) thiobarbituric acid and 20% (v/v) trichloroacetic acid in 1X PBS buffer, pH 

7.4. The mixture was boiled for 1 h and then centrifuged for 30 min at 4000 X g. 

The supernatant was used for measuring absorbance at 532 nm. The TBARS 

contents were calculated by comparing the absorbance to the standard curve 

generated with 12.5-100 M malondialdehyde standards. 

 

6. Detection of cell death 

Dead cells in rosette leaves were visualized by trypan blue staining, as described 

previously (Koch and Slusarenko, 1990). Whole leaf mounts were stained with 

lactophenol-trypan blue (10 ml of lactic acid, 10 ml of glycerol, 10 g of phenol, 10 



 

14 

mg of trypan blue, dissolved in 10 ml of deionized water). The leaf samples were 

boiled for 1 min and left overnight in the staining solution at room temperature. 

The leaves were distained by incubating in the destaining solution (1:2, 

lactophenol:ethanol) for 30 min at room temperature. 

For electrolyte leakage assays, one-week-old plants grown on MS-agar 

plates were used. The aerial parts of 5 seedlings were floated on deionized water 

for 12 h in complete darkness before measuring the sample conductivity using the 

Orion 5-star conductivity meter (Thermo, Beverly, MA). Then, plant samples were 

boiled in the same solution for 5 min, and total conductivity of the solution was 

measured. Electrolyte leakage is represented by the relative conductivity that is 

calculated by dividing sample conductivity by total conductivity.  

 The root vitality was examined as described previously (Zhou et al., 2012). 

Ten-day-old heat-treated plants were incubated in 0.6% (w/v) triphenyltetrazolium 

chloride solution for 20 h at 23oC. The plant materials were washed with deionized 

water three times, and 1-cm tips of the primary roots of 20 plants were cut off and 

homogenized in 95% (v/v) ethanol. The homogenate was incubated in water bath 

for 10 min at 80oC to extract formazan and centrifuged at 4000 X g for 5 min, and 

the supernatant was used to measure the absorbance at 530 nm. 

 

7. Measurements of antioxidant contents 
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Ascorbate contents were measured as described previously (Gillespie et al., 2007). 

Heat-treated whole plants were ground in liquid nitrogen before adding 1 ml of 6% 

(w/v) trichloroacetic acid (TCA) per 40 mg of plant leaves. The crude extract was 

centrifuged at 4oC for 10 min at 16000 X g. The supernatant was taken and used for 

the measurements of ascorbate contents. The reaction mixture contained the 200 l 

of the supernatant, 100 l of 75 mM phosphate buffer, 500 l of 10% (w/v) TCA, 

400 l of 43% (v/v) H3PO4, 400 l of 4% (w/v) -'-bipyridyl, and 200 l of 3% 

(w/v) FeCl3. Prior to adding to the reaction mixture, the supernatant was mixed 

with 100 l of 10 mM dithiothreitol and incubated for 10 min, and 100 l of 0.5% 

(w/v) N-ethylmaleimide was added to the incubation mixture for the measurement 

of total ascorbates. The absorbance was measured at 525 nm after incubation for 1 

h. The ascorbate contents were calculated by comparing the absorbance to the 

standard curve generated with 0.15-10 mM ascorbate standards. 

For the measurements of glutathione contents, heat-treated whole plants 

were ground in liquid nitrogen before adding 1 ml of 6% (w/v) TCA per 40 mg 

whole plants. The crude extract was centrifuged at 4oC for 10 min at 16000 X g. 

The supernatants were subject to the measurements, as described previously 

(Queval et al., 2007). The reaction mixture contained 200 l of the supernatant, 

700 l of 0.3 mM NADPH, 100 l of 6 mM 5,5-dithiobis(2-nitrobenzoic acid) 

(DTNB), and 10 l of glutathione reductase enzyme stock in 125 mM phosphate 
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buffer (50 units/ml). For the measurements of glutathione disulfide (GSSG) 

contents, the supernatant was mixed with 20 l of 2-vinylpyridine and incubated at 

25oC for 60 min, prior to mixing with the reaction mixture. The absorbance at 412 

nm was monitored at appropriate time intervals until it exceeds 2.0. The 

glutathione contents were calculated by comparing the absorbance to the standard 

curve generated with 6.25-50 M glutathione standards.  

Anthocyanin contents were measured as described previously (Solfanelli 

et al., 2006). Heat-treated whole plants were ground in liquid nitrogen. 

Anthocyanins were extracted by incubation of the ground plants at 4oC for 16 h in 

1 ml of methanol containing 1% (v/v) HCl per 40 mg of plant materials. The 

mixture was centrifuged at 4oC for 10 min at 16000 X g. The absorbance of the 

supernatant was measured at 530 nm and 657 nm using a diode array 

spectrophotometer (WPA Biowave, Cambridge, UK). The anthocyanin contents 

were calculated by solving the equation A530 – 0.25 x A657. 

 

8. Measurements of chlorophyll contents 

Measurements of chlorophyll contents were carried out as described previously 

(Oh et al., 1997). Chlorophylls were extracted with N,N-dimethylformamide, and 

the extracted solution was incubated at 4oC for 2 h in complete darkness. 

Chlorophyll contents were assayed by measuring absorbance at 652nm, 665nm, 
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and 750nm using a diode array spectrophotometer (WPA Biowave, Cambridge, 

UK). 

 

9. Protein-protein interaction assays  

The BD Matchmaker system (Clontech, Mountain View, CA) was used for the 

yeast-two hybrid assays. The pGADT7 vector was used for GAL4 AD (activation 

domain), and the pGBKT7 vector was used for GAL4 BD (DNA binding domain). 

The yeast strain AH109 (Leu-, Trp-, Ade-, His-), which has chromosomally 

integrated reporter genes lacZ and HIS under the control of the GAL1 promoter, 

was used for transformation. Yeast transformants were cultured in liquid medium 

without Leu and Trp for 10 h, and the culture was dotted on the agar-medium 

without Leu, Trp, His and Ade after diluted to an OD600 of 0.1. 

 The nYFP-FCA and ABI5-cYFP vectors were used for bimolecular 

fluorescence complementation (BiFC) assays. The vectors cotransfected into 

Arabidopsis mesophyll protoplasts by the polyethylene glycol (PEG)-calcium 

transfection method (Yoo et al., 2007). The transfected protoplasts were incubated 

at 23oC for 15 h. The subcellular localization of FCA-ABI5 protein complexes 

were monitored using differential interference contrast microscopy and 

fluorescence microscopy. Reconstitution of YFP fluorescence was observed using a 

Zeiss LSM510 confocal microscope (Carl Zeiss, Yena, Germany) with the 
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following YFP filter set up: excitation 515 nm, 458/514 dichroic, and emission 

560- to 615-nm band-pass filter. 

 

10. Protoplast transfection assays  

For transcriptional activation activity assays, a series of reporter and effector 

vectors was constructed. In the reporter vector, 4 copies of the GAL4 upstream 

activation sequence (UAS) were fused to the -glucuronidase (GUS) gene. The 

ABI5 or NTL4C gene sequences were fused to the GAL4 DNA-binding domain-

coding sequence driven by the Cauliflower Mosaic Virus (CaMV) 35S promoter in 

the effector vector. The FCA gene was subcloned into the expression vector 

harboring the CaMV 35S promoter. The reporter, effector, and expression vectors 

were cotransfected into Arabidopsis mesophyll protoplasts by the PEG-calcium 

transfection method (Yoo et al., 2007). The CaMV 35S promoter-luciferase 

construct was also cotransfected as an internal control. GUS activity was measured 

by the fluorometric method as described previously (Lee et al., 2012), and 

luciferase assay was performed using the Luciferase Assay System kit (Promega, 

Madison, WI).   

 For the transient expression assays, the promoter sequence regions 

harboring the ABRE elements of EM6 and PER1 genes were subcloned into the 

reporter vector. The ABI5 or FCA gene sequence was subcloned into the effector 
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vector. The reporter and effector vectors were cotransfected into Arabidopsis 

mesophyll protoplasts. The luciferase expression construct was included as an 

internal control in the transfection. GUS and luciferase activity assays were 

performed after incubation for 16 h as described above. 

 

11. Chromatin immunoprecipitation (ChIP) assays  

ChIP assays were carried out as described previously (Lee et al., 2012) using one-

week-old plants grown on MS-agar plates. The whole plants were vacuum-

infiltrated with 1% (v/v) formaldehyde for cross-linking and ground in liquid 

nitrogen after quenching the cross-linking process. Chromatin preparations were 

sonicated into 0.4- to 0.7-kb fragments. An anti-MYC antibody (Millipore, 

Billerica, MA) was added to the chromatin solutions, which were precleared with 

salmon sperm DNA/ Protein A agarose beads (Roche, Indianapolis, IN). The 

precipitates were eluted from the beads. Cross-links were reversed, and residual 

proteins were removed by incubation with proteinase K. DNA was recovered using 

the QIA quick spin column (Qiagen, Valencia, CA). Quantitative PCR was used to 

determine the amounts of genomic DNA enriched in the chromatin preparations. 

The primers used are listed in Table 1. An eIF4A DNA fragment was used as an 

internal control for normalizing the amounts of the chromatin preparations used. 

 



 

20 

12. Western blot analysis  

A MYC-coding sequence was fused in-frame to the 5’ end of the NTL4 gene, and 

the fusion construct was transformed into Col-0 plants. The 35S:MYC-NTL4 

transgenic plants grown for 2 weeks on MS-agar plates were used to examine the 

effects of drought and ABA on NTL4 processing. Protein extraction and 

immunological assays were performed as described previously (Kim et al., 2006). 

Briefly, harvested plant materials were ground in liquid nitrogen, and total cellular 

extracts were suspended in SDS-PAGE sample loading buffer. The protein samples 

were then analyzed on 10% SDS-PAGE gels and blotted onto Hybond-P+ 

membranes (Amersham-Pharmacia, Amersham, UK). The blots were hybridized 

with an anti-MYC antibody (Santa Cruz Biotech, Santa Cruz, CA). 
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Table 1. Primers used in qRT-PCR and ChIP assays.  

F, forward primer; R, reverse primer. 

 

 

 

 

 

 

Primers                      Sequences                    Usage       

eIF4A-F 
eIF4A-R 
FCA-F 
FCA-R 
PER1-F 
PER1-R 
EM6-F 
EM6-R 
RD29B-F 
RD29B-R 
RAB18-F 
RAB18-R 
NIA1-F 
NIA1-R 
GolS4-F 
GolS4-R 
eIF4a-F 
eIF4a-R 
NTL4-F 
NTL4-R  
AtrbohA-F 
AtrbohA-R 
AtrbohC-F 
AtrbohC-R 
AtrbohE-F 
AtrbohE-R 
AtrbohC-A-F 
AtrbohC-A-R 
AtrbohC-B-F 
AtrbohC-B-R 
AtrbohC-C-F 
AtrbohC-C-R 
AtrbohE-D-F 
AtrbohE-D-R 
AtrbohE-E-F 
AtrbohE-E-R 
AtrbohE-F-F 
AtrbohE-F-R 

5’-TGACCACACAGTCTCTGCAA          
5’-ACCAGGGAGACTTGTTGGAC            
5’-GCTCTTGTCGCAGCAAACTC             
5’-GATCCAGCCCACTGTTGTTTAC           
5’-CGTGCCCTTCATATTGTTGG             
5’-GACGCCATCAACAACGAGTC             
5’-AGCCGAGGAGGGCAAACTCG             
5’-GGTCCTGAATTTGGATTCGT             
5’-AGGGGAAAGGACATGGTGAG            
5’-TACCACCGAGCCAAGAAGTG             
5’-GTTGCCAGGTCATCATGATC             
5’-CACCGGGAAGCTTTTCCTTG            
5’-ACCACCAGGAGAAACCGAAC             
5’-GAAAGACTCGTCCCAGGCTC  
5’-CACGTGGCCAGAAGATATGG             
5’-CCAAAGCATAGCCAAAACCA            
5’-TGACCACACAGTCTCTGCAA            
5’-ACCAGGGAGACTTGTTGGAC           
5’-AAGGAATTGGATGTGGGGTC              
5’-GAAACGCCTCACCAATCAAA            
5’-AGGGGTCGTTTGACTGGTTC             
5’-CTCGTAAACGCTGGTGCAGT            
5’-CGTGGACCTCACGGTAGATG            
5’-GACGGTTTCGTTTCAGCAAA             
5’-CACGAGAGGAAATAGCTGCG             
5’-AATCGTCTCGGGCGAGTAAT             
5’-TACCCAAATCGTCCTCATGC           
5’-TTTTGGCGTAAATAAAATTAGTAAA  
5’-TGGACAAACATAAGAATTACTATAACA     
5’-GCTGTGAATCTTTAGCAGCGA           
5’-CCAAGTCCGACCACGTCTCT             
5’-GGAGAATGAGAAAATGGATTCG           
5’-TCTTCTTCTTCTTAGCCAGCTCAT        
5’-GGAGGAGGAAGAGAGTGGGA            
5’-TTCTGTCATCTAAGTATCTACGTGGC      
5’-TGAATATGCAAAGGCAAGGG             
5’-AGAAAACAACTGTGAAAACCACG        
5’-CTTCTCAACCGATTGATACAAAAA        

qRT-PCR 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
 ChIP 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 
   “ 



 

22 

CHAPTER 1 

 

Salicylic acid promotes seed germination under high salinity 

by modulating antioxidant activity in Arabidopsis 
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RESULTS 

 

SA affects seed germination in a dosage-dependent manner 

I set up an extensive set of germination assays using different Arabidopsis 

genotypes to obtain as to how SA affects seed germination. I first examined the 

effects of different concentrations of SA (0-5 mM). Whereas SA of 0-10 M had 

no discernible effects, higher concentrations of SA inhibited germination in a 

dosage-dependent manner (Fig. 1). 

 I employed two SA-deficient Arabidopsis plants that are frequently used 

in the SA-related assays; the sid2 mutant and the NahG transgenic plant. The SID2 

(SA-induction deficient) gene encodes an isochorishmate synthase, and the sid2 

mutant is defective in SA biosynthesis (Nawrath & Métraux, 1999). The NahG 

transgenic plant overexpresses the NahG gene encoding a salicylate hydroxylase 

that catabolizes SA to catechol (Gaffney et al., 1993). The overall plant growth and 

development of the SA-deficient plants were indistinguishable from those of wild-

type plants (Col-0) (Fig. 2). Their germination phenotypes were also similar to that 

of wild-type plants when germinated on MS-agar plates (Fig. 3), indicating that SA 

is not essential for germination under normal growth conditions.  

 Notably, the SA-deficient plants exhibited distinct germination 

phenotypes when SA was included in the media. Seeds of the wild-type and SA-  
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Figure 1. SA delays germination in a dosage-dependent manner. 

For germination assays, seeds air-dried for 2 weeks were imbibed at 4oC on MS-

agar plates for 3 days in complete darkness and allowed to germinate at 22oC under 

long days. Appearance of visible radicles was used as a morphological marker for 

germination. Three measurements, each consisting of 40-50 seeds, were averaged 

and statistically treated using a student’s t-test. Bars indicate standard error of the 

mean. h, hours after cold-imbibition. To examine the effects of SA on germination, 

the seeds of the Col-0 plants were cold-imbibed and germinated on MS-agar plates 

supplemented with various concentrations of SA. Germination was significantly 

delayed at 24 h after cold-imbibition in a dosage-dependent manner in the presence 

of 100 M-5 mM SA (*P<0.01).  
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Figure 2. Shoot growth of the Col-0, NahG, and sid2 plants.  

Fresh weights of 30 shoots grown on MS-agar plates under normal growth 

conditions for up to 18 days after cold-imbibition were measured and averaged. 
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Figure 3. Effects of SA on germination of the Col-0, NahG, and sid2 seeds. 

Seeds were cold-imbibed and allowed to germinate in the presence of 1 M (upper 

panel), 100 M (middle panel), or 1 mM of SA (lower panel). In the presence of 1 

M SA, germination percentage of the NahG seeds was significantly higher than 

that without SA at 12 h after cold-imbibition (*P<0.01). Meanwhile, in the 

presence of 100 M or 1 mM SA, germination percentages of the Col-0, NahG, 

and sid2 seeds were significantly higher than those without SA at 24 h after cold-

imbibition (*P<0.01). 
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deficient plants germinated at a similar rate on MS-agar plates supplemented with 1

M SA. When higher than 100 M SA was added to the media, germination of 

wild-type seeds was delayed (Fig. 3). Germination of the sid2 seeds was also 

delayed to a degree similar to that of wild-type seeds, showing that high 

concentrations of SA have a negative effect on germination. Meanwhile, 

germination of the NahG seeds was less sensitive to SA. Since both the sid2 and 

NahG plants have defects in SA accumulation, the differential germination 

response of the NahG seeds to SA would be attributable to a SA degradation 

product, such as catechol. 

 

SA reduces the inhibitory effects of high salinity on germination 

SA affects seed germination under high salinity and osmotic stress (Borsani et al., 

2001; Rajjou et al., 2006; Alonso-Ramírez et al., 2009). I therefore decided to 

examine the effects of SA on germination under high salinity. 

 Germination of wild-type seeds was significantly delayed by NaCl, with 

more severe inhibition at higher concentrations (Fig. 4A), as previously reported 

(Saleki et al., 1993). I examined the effects of SA on germination in the presence of 

150 mM NaCl. The results showed that germination was further inhibited when SA 

of higher than 100 M was added in the media (Fig. 4B). In contrast, lower 

concentrations of SA (1-10 M) compromised the inhibitory effects of high salinity  
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Figure 4. SA promotes germination under high salinity.  

Germination assays were carried out as described in Figure 1. Statistical 

significance of the measurements was determined using a student’s t-test. Bars 

indicate standard error of the mean. h, hours after cold-imbibition.  

(A) Effects of NaCl on germination of the Col-0 seeds. Seeds were cold-imbibed 

and germinated on MS-agar plates supplemented with various concentrations of 

NaCl. All the concentrations of NaCl examined significantly delayed germination 
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at 36h after cold-imbibition (*P<0.01).  

(B) Effects of high concentrations of SA on germination of the Col-0 seeds under 

high salinity. Seeds were cold-imbibed and germinated on MS-agar plates 

supplemented with 150 mM NaCl (calculated water potential w of -0.83 MPa; 

Verlues et al., 2006) and various concentrations (100 M-1 mM) of SA.  

(C) Effects of low concentrations of SA on germination of the Col-0 seeds under 

high salinity. SA at the concentration of 1 M or 10 M significantly promoted 

germination (*P<0.01). 
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(Fig. 4C). These observations indicate that lower concentrations of SA, which are 

close to the estimated physiological concentrations of SA in Arabidopsis plants 

(Preston et al., 2009), eliminate the inhibitory effects of high salinity on 

germination.   

 

Germination of the sid2 seeds is hypersensitive to high salinity 

Our data indicate that SA plays a promotive role in germination under high salinity. 

However, this observation is in contrast to a previous germination study using the 

NahG seeds (Borsani et al., 2001). One possible reason for the discrepancy would 

be that the effects of SA on germination vary depending on Arabidopsis genotypes 

examined. 

 To examine the hypothesis, I carried out germination assays using seeds 

of the sid2 mutant and the NahG plant in the presence of 150 mM NaCl and 

varying concentrations of SA. Whereas germination of the NahG seeds was 

delayed by high salinity to a similar degree as that observed with wild-type seeds, 

that of the sid2 seeds was more significantly delayed (Fig. 5), showing that 

germination of the sid2 seeds is hypersensitive to high salinity. When 500 M SA 

was included in the assays, germination of the wild-type and sid2 seeds was further 

delayed (Fig. 6A). In contrast, germination of the NahG seeds was uninfluenced by 

SA, which is certainly due to SA degradation occurring in the NahG plant. 



 

31 

 

 

 

 

Figure 5. Germination of the sid2 seeds is hypersensitive to high salinity. 

Germination assays were carried out as described in Figure 1. Statistical 

significance of the measurements was determined using a student’s t-test. Bars 

indicate standard error of the mean. h, hours after cold-imbibition. Seeds were 

cold-imbibed and germinated on MS-agar plates supplemented with 150 mM NaCl. 

Germination was significantly delayed in the presence of NaCl (*P<0.01). The 

bottom panel shows very young seedlings right after germination. 
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Figure 6. Low concentration of SA promotes seed germination under high 

salinity. 

(A) Effects of 500 M SA on germination of the Col-0, sid2, and NahG seeds 

under high salinity.  

(B) Effects of low concentrations of SA on germination of the sid2 seeds under 

high salinity Germination was significantly promoted by 10 M or lower 

concentrations of SA (*P<0.01). 
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It is estimated that physiological concentrations of SA are far below 50 M in 

Arabidopsis plants (Preston et al., 2009). I therefore examined the effects of lower 

concentrations of SA on the germination of the sid2 seeds under high salinity. 

Interestingly, lower concentrations of SA, such as 0.1 M, 1 M, and 10 M, 

promoted the germination of the sid2 seeds (Fig. 6B). These observations indicate 

that SA, at its concentrations close to those in physiological conditions, promotes 

germination under high salinity.    

 

SA is related with osmotic stress imposed by high salinity on germination 

It has been reported that both high salinity and osmotic stress confer an inhibitory 

effect on seed germination (Zhu, 2000). I also observed that high salinity delays 

germination. However, the inhibitory effect is reduced by low concentrations of SA. 

To gain insight into how SA compromises the inhibitory effects of high 

salinity, I examined the biochemical nature of salt effects on germination. 

Germination of wild-type seeds and of the sid2 and NahG seeds was delayed by 

150 mM KCl (calculated water potential ψw of -0.83 Mpa; Verslues et al., 2006) to 

a similar degree as with 150 mM NaCl (Fig. 7A). Since high concentrations (>65 

mM) of Li+ are toxic to plant growth, the effects of LiCl were examined at 65 mM 

(calculated water potential ψw of -0.43 MPa). The effects of 65 mM LiCl were also 

similar to those of 150 mM NaCl (Fig. 7B).     
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Figure 7. High salinity imposes osmotic stress on germination.  

Germination assays were carried out as described in Figure 1. Statistical 
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significance of the measurements was determined using a student’s t-test. Bars 

indicate standard error of the mean. h, hours after cold-imbibition. Water potentials 

were calculated as previously described (Verlues et al., 2006).  

(A-D) Germination responses of the Col-0, sid2, and NahG seeds to 150 mM KCl 

(calculated water potential w of -0.83 MPa) (A), 65 mM LiCl (calculated water 

potential w of -0.43 MPa) (B), 300 mM mannitol (calculated water potential w of 

-0.83 MPa) (C), and 300 mM sorbitol (calculated water potential w of -0.83 MPa) 

(D). Germination was significantly delayed by LiCl and KCl at 24 h after cold-

imbibition or by mannitol and sorbitol 36 h after cold-imbibition (*P<0.01). 
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 I next examined the effects of 300 mM mannitol (calculated water 

potential ψw of -0.83 Mpa). Germination of wild-type seeds and of the sid2 and 

NahG seeds was delayed in a pattern similar to that observed in the presence of 150 

mM NaCl (Fig. 7C). Furthermore, similar inhibitory effects were observed when 

the media was supplemented with a nonionic osmolite, sorbitol (300 mM, 

calculated water potential ψw of -0.83 Mpa) (Fig. 7D). Together, these observations 

support that the role of SA in germination under high salinity is related with 

osmotic stress rather than ionic toxicity.  

 

Catechol promotes germination under high salinity 

Germination percentage of the sid2 seeds was significantly lower than those of the 

NahG seeds under high salinity (Fig. 8A). I hypothesized that the differential 

effects of high salinity on germination would be caused by catechol possessing an 

antioxidant activity (Rice-Evans et al., 1997). 

 To examine the hypothesis, we analyzed the effects of varying 

concentrations of catechol on germination. Treatments of wild-type seeds with 

catechol at concentrations of 1 M to 1 mM did not confer any visible effects on 

germination under normal growth conditions (Fig. 8B). We found that catechol at 

concentrations higher than 100 M affects seed viability, as evidenced by dark-

brown coloring and lack of germination. I therefore used 10 M catechol in the  
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Figure 8. Catechol promotes germination under high salinity.  

Germination assays were carried out as described in Figure 1. Statistical 

significance of the measurements was determined using a student’s t-test. Bars 

indicate standard error of the mean. h, hours after cold-imbibition.  

(A) Germination of the Col-0 seeds in the presence of various concentrations of 

catechol.  
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(B) Germination of the Col-0, sid2, and NahG seeds in the presence of 10 M 

catechol.  

(C) Germination of the Col-0, sid2, and NahG seeds in the presence of 150 mM 

NaCl with or without 10 M catechol. Germination of the Col-0, sid2, and NahG 

seeds was significantly promoted by 10 M catechol at 48 h after cold-imbibition 

under high salinity (*P<0.01). 
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subsequent assays. 

 I examined the effects of 10 M catechol on the germination of the sid2 

and NahG seeds. Again, there were no apparent effects of catechol on the 

germination of the SA-deficient seeds (Fig. 8C). Seedlings grown on MS-agar 

plates containing 10 M catechol for upto 2 weeks were also morphologically  

identical to wild-type seedlings, indicating that catechol does not affect seedling 

growth as well as germination under normal growth conditions.      

 Interestingly, 10 M catechol promoted the germination of both wild-type 

and SA-deficient seeds under high salinity (Fig. 8C). The germination percentage 

of the sid2 seeds on MS-agar plates containing 150 mM NaCl and 10 M catechol 

was close to those of the wild-type and NahG seeds on MS-agar plates 

supplemented with 150 mM NaCl alone. It was therefore evident that the 

germination response of the NahG seeds to high salinity is caused catechol.  

   

Catechol acts as an antioxidant 

The promotive effects of catechol on seed germination under high salinity 

suggested that it might act as an antioxidant that reduces the endogenous level of 

ROS produced under high salinity (Lekse et al., 2001). 

 I assayed the germination rates of wild-type and SA-deficient seeds in the 

presence of a representative ROS, hydrogen peroxide (H2O2). Germination of wild- 
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Figure 9. Catechol acts as an antioxidant.  

Germination assays were carried out as described in Figure 1. Statistical 

significance of the measurements was determined using a student’s t-test. Bars 

indicate standard error of the mean. h, hours after cold-imbibition.  

(A-C) Germination of the Col-0, sid2, and NahG seeds in the presence of 10 mM 
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hydrogen peroxide (A), 10 mM hydrogen peroxide with or without 10 M catechol 

(B), and 150 mM NaCl with or without 1 mM ascorbic acid (C). Germination of 

the Col-0, sid2, and NahG seeds was significantly delayed by 10 mM hydrogen 

peroxide but promoted by 10 M catechol at 24 h after cold-imbibition (*P<0.01). 

One mM ascorbic acid also significantly promoted germination under high salinity 

(*P<0.01). 
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type seeds was delayed in proportion to the concentrations of H2O2 (data not 

shown). I therefore used 10 mM H2O2 in the germination assays. I found that 

whereas germination of the NahG seeds was affected to a lesser degree by H2O2 

compared to its effect on the germination of wild-type seeds, germination of the 

sid2 seeds was more severely affected by H2O2 (Fig. 9A), suggesting that catechol 

acts as an antioxidant. It was also envisioned that SA promotes seed germination 

by reducing the endogenous level of ROS under high salinity.  

 I therefore included catechol into the germination assays. Germination of 

the wild-type and NahG seeds was significantly promoted by 10 M catechol in the 

presence of 10 mM H2O2 (Fig. 9B), supporting the role of catechol as an 

antioxidant. Germination of the sid2 seeds was also promoted by catechol but to a 

lesser degree, suggesting that SA plays a role in H2O2 metabolism. I subsequently 

examined the effects of ascorbic acid, a well-known, naturally occurring 

antioxidant, on germination under high salinity. Germination of the wild-type and 

NahG seeds was markedly promoted by 1 mM ascorbic acid (Fig. 9C). These 

observations demonstrate that catechol acts as an antioxidant by reducing H2O2 

levels in germination under high salinity. 

  

SA modulates H2O2 levels in germination under high salinity 

Germination of the sid2 seeds is hypersensitive to H2O2 (Fig. 9A). The inhibitory 
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effects of H2O2 are reduced by antioxidants, particularly ascorbic acid (Fig. 9C). In 

addition, germination of the sid2 seeds was promoted by catechol under high 

salinity. It was therefore hypothesized that the endogenous H2O2 level would be 

higher in the sid2 seeds than in wild-type seeds. 

 I measured the endogenous contents of H2O2 in the germinating seeds. As 

expected, the endogenous levels of H2O2 were gradually elevated in the 

germinating seeds of both the wild-type and sid2 plants but with overall higher 

levels in the sid2 seeds during the time course of upto 48 hours after cold-

imbibition (Fig. 10A). When the seeds were germinated on MS-agar plates 

containing 150 mM NaCl, the levels of H2O2 were further elevated by 

approximately 50% in both the wild-type and sid2 seeds throughout the time course 

(Fig. 10B). When wild-type seeds were germinated on MS-agar plates 

supplemented additionally with 1 M SA, the levels of H2O2 were reduced to the 

levels comparable to those measured in the germinating seeds on MS-agar plates 

(Fig. 10C). These observations strongly support that SA plays a role in reducing 

the H2O2 levels under high salinity. 

 It was unexpected that the endogenous level of H2O2 was higher in the 

germinating NahG seeds than in the germinating wild-type and sid2 seeds on MS-

agar plates (Fig. 10A) but was reduced in the presence of 150 mM NaCl unlike the 

elevations in the wild-type and sid2 seeds (Fig. 10B). In addition, the level was  
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Figure 10. Endogenous contents of hydrogen peroxide are reduced by SA. 

Hydrogen peroxide contents were measured as previously described (Shin & 

Schachtman, 2004). Approximately 100 mg of seeds was used for each assay. 

Three measurements were averaged and statistically treated using a student’s t-test 

(*P<0.01). Bars indicate standard error of the mean. To examine the effects of 

NaCl and SA on endogenous contents of hydrogen peroxide, seeds of the Col-0, 
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NahG, and sid2 plants were cold-imbibed and germinated on MS-agar plates 

supplemented with 150 mM NaCl and 1 M SA. h, hours after cold-imbibition.  

(A-C) Endogenous contents of hydrogen peroxide in the germinating seeds on MS-

agar plates (A), MS-agar plates supplemented with 150 mM NaCl (B), and MS-

agar plates supplemented with 150 mM NaCl and 1 M SA (C). 
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only slightly reduced in the SA-treated NahG seeds under high salinity (Fig. 10C). 

The high level of H2O2 in the germinating NahG seeds on MS-agar plates would be 

due to SA deficiency. Under high salinity, the SA content is elevated (Molina et al., 

2002; Xiong et al., 2002), which contributes to an increase of the endogenous 

content of catechol and reduces the H2O2 level.  

I next measured the peroxidase activity, which converts H2O2 to water, in 

germinating seeds in either the presence or absence of 150 mM NaCl. It was 

uninfluenced by salt stress in the germinating wild-type seeds (Fig. 11), indicating 

that H2O2 metabolism is not regulated by the peroxidase activity under high salinity. 

The peroxidase activity was higher in the germinating SA-deficient seeds on MS-

agar plates (Fig. 11A) but reduced to a level comparable to that observed in wild-

type seeds on MS-agar plates containing 150 mM NaCl (Fig. 11B), possibly 

because of feedback regulation by the altered levels of H2O2 in the SA-deficient 

seeds. Therefore, it seems that regulation of H2O2 by high salinity and SA is not 

directly linked with the peroxidase activity. 
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Figure 11. Peroxidase activity is elevated in the germinating seeds of the sid2 

mutant.  

Peroxidase activity assays on the germinating seeds were carries out as previously 

described (Shin and Schachtman, 2004). Three measurements of the activities were 

averaged. Bars indicate standard error of the mean (t-test, *P<0.01).  

(A and B) Peroxidase activity in the germinating seeds of the Col-0, NahG, and 

sid2 plants on MS-agar plates (A) and MS-agar plates supplemented with 150 mM 

NaCl (B). 
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DISCUSSION 

 

SA in seed germination 

To further define the roles of SA in seed germination, I carried out an extensive set 

of germination assays using two SA-deficient plants in addition to wild-type plants 

in the presence different combinations of SA, NaCl, catechol, ascorbic acid, and 

H2O2. We found that SA displays both the promotive and inhibitory effects on 

germination, depending on its concentrations applied and assay conditions. 

 Most previous assays on the role of SA on seed germination have been 

carried out using SA concentrations of higher than 100 M (Rajjou et al., 2006; Xie 

et al., 2007). It is known that a physiological concentration of SA in Arabidopsis is 

lower than 50 M (Alonso-Ramírez et al., 2009). Furthermore, high concentrations 

of SA impose toxic effects on plant growth and development, possibly by inducing 

ROS biosynthesis (Rao et al., 1997). It is therefore supposed that the effects of SA 

on germination should be carefully interpreted. The inhibitory effects of high 

concentrations of SA in the previous reports and my own observations may not be 

the physiological role of SA but may be caused by toxic effects. 

 The contrasting roles of SA on seed germination in the previous 

observations are also explained by the differential germination responses of sid2 and 

NahG seeds to high salinity. The sid2 and NahG plants are common in that both lack 
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endogenous SA. However, catechol accumulates to a high level in the NahG plants 

(Gaffney et al., 1993). I found that catechol significantly reduces the inhibitory 

effects of high salinity. It also promoted germination in the presence of H2O2. It was 

therefore concluded that the variable effects of high salinity on the germination of 

the sid2 and NahG seeds is due to catechol, which acts as an antioxidant removing 

H2O2 synthesized under salt stress.  

The minute differences of experimental conditions, such as methods for 

treatments of chemicals and how fresh seeds were used, can also cause contradictory 

results. In the previous experiments, the plants were submerged in liquid for the 

treatment of compounds or the seeds were not kept fresh and set for the same stage 

after harvest (Borsani et al., 2001; Rajjou et al., 2006). These differences brought 

unreliable results. Seed germination is very sensitive to experimental conditions. 

Therefore, the seed germination assay must be more carefully examined.  

 

SA regulation of H2O2 levels under osmotic stress 

ROS is intimately related with germination process. Several reports have shown that 

H2O2 promotes germination. In Zinnia elegans, seed germination is promoted by 

H2O2, which decompose germination inhibitor(s), such as ethanol-soluble 

compounds (Ogawa & Iwabuchi, 2001). The inhibitory effects of ABA on 

germination and seedling development are also overcome by H2O2 (Sarath et al., 
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2007). My measurements of endogenous H2O2 contents in germinating seeds support 

the previous observations. 

 However, it is evident that ROS, such as H2O2, affects germination process 

differentially under high salinity. ROS accumulated under abiotic stress conditions 

cause oxidative damage during plant development, including germination. I also 

observed that H2O2 accumulates to a higher level in the germinating seeds under 

high salinity, where germination is profoundly delayed. The inhibitory effects of 

high salinity were eliminated by antioxidants, such as catechol and ascorbic acid. 

Notably, SA lowers the level of H2O2 in the germinating seeds under high salinity. 

Altogether, my data strongly support that SA promotes germination by reducing 

osmotic damage. This view is also in good agreement with the role of SA in plant 

resistance responses to diverse abiotic stresses by reducing the oxidative damage 

forced by ROS (Yang et al., 2004; Tuteja and Sopory, 2008). 

 It is notable that ascorbic acid displayed a promotive role in germination 

under high salinity. However, the effect should be interpreted with care, since 

ascorbic acid has more functions than antioxidant, such as possible roles in cell 

expansion (Schopfer, 2001) and as an essential enzyme cofactor in various cellular 

reactions (Linster and Clarke, 2008). In addition, it needs to be synthesized during 

early stages of germination as there is very little in dry seeds (Badejo et al., 2009). It 

is therefore possible that ascorbic acid developmentally affects germination rather 
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than by acting as an antioxidant under high salinity.  

Considering the genetic and biochemical complexity of ROS metabolism, 

a plausible explanation is that multiple antioxidant metabolic enzymes as well as 

peroxidase activities are mediated by SA signals under high salinity. Germination 

assays on higher-order mutants and extensive measurements of ROS species and 

antioxidants would clarify the uncertainty.  
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CHAPTER 2 

 

A NAC transcription factor NTL4 promotes reactive oxygen 

species production during drought-induced leaf senescence  

in Arabidopsis 
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RESULTS 

 

NTL4 is a transcriptional activator 

The NTL4 protein (At3g10500) is structurally distinct from nuclear NAC transcription 

factors in that it has a strong -helical transmembrane (TM) motif in the C-terminal 

region (Kim et al., 2007). The 35S:NTL4 transgenic plants overexpressing a full-size 

NTL4 form were phenotypically indistinguishable from Col-0 plants (Fig. 12A). In 

contrast, the 35S:4C transgenic plants overexpressing a truncated NTL4 form that lacks 

the TM motif exhibited distinct phenotypes, such as slightly reduced growth and curled 

leaves with asymmetric leaf axis and serrated margin. These observations indicate 

that membrane release is essential for NTL4 function and the 4C polypeptide is 

closely related with a biologically active NTL4 form.  

I obtained two independent knockout mutants, ntl4-1 (SALK-009578C) and 

ntl4-2 (SALK-007900) that contain a single copy of T-DNA element in the 3rd exon of 

NTL4 gene (Fig. 12B). Gene expression assays by quantitative real-time RT-PCR 

(qRT-PCR) confirmed no detectable expression of the NTL4 gene in the ntl4 

mutants (Fig. 12C). They did not exhibit any visible phenotypes when grown under 

normal conditions. 

To examine whether the NTL4 protein possess transcriptional activity, the 

full-size NTL4 and truncated 4C sequences were fused in-frame to the GAL4 
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DNA binding domain-coding sequence, and the fusion constructs were transformed 

into yeast cells (Kim et al., 2006). The yeast cells expressing either the NTL4 or 

4C construct grew equally well on the His- Ade- selective media and showed 

elevated -galactosidase activity (Fig. 13A).  

I also employed a GAL4 transient expression assay using Arabidopsis 

protoplasts (Miura et al., 2007). The effector plasmid, the reporter plasmid 

containing the GUS (-glucuronidase) reporter gene, and the plasmid containing 

the Renilla luciferase gene (Yoo et al., 2007), which was used to normalize the 

measurements, were cotransformed into Arabidopsis protoplasts (Fig. 13B, left 

panel). The assays revealed that transient expressions of the NTL4 and 4C genes 

enhanced the GUS activity approximately 3-fold compared to vector control (Fig. 

13B, right panel), indicating that the NTL4 protein is a transcriptional activator.  

 

NTL4 gene is induced under drought and heat conditions 

To obtain insights into the role played by the NTL4 transcription factor, I examined 

the spatial and temporal expression patterns of the NTL4 gene. Expression levels of 

the NTL4 gene was induced rapidly in older plants that exhibit symptoms of 

senescing process (Fig. 14A). Gene expression studies revealed that the NTL4 gene 

is expressed to a relatively high level in the roots (Fig. 14B). 

 The phenotypes of 35S:4C transgenic plants, such as reduced growth and 
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Figure 12. 35S:NTL4C transgenic plants exhibited abnormal phenotypes 

under normal conditions. 

(A) Phenotypes of 35S:NTL4 and 35S:4C transgenic plants and ntl4 mutants. 

Plants were grown in soil at 23oC under long days for 4 weeks before taking 

photographs.  

(B) Mapping of T-DNA insertion sites in ntl4 mutants. kb, kilobase. 

(C) Levels of NTL4 gene transcripts. Transcript levels were determined by qRT-

PCR. Biological triplicates were averaged and statistically treated using a student t-

test (*P<0.01). Bars indicate standard deviation (SD).  
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Figure 13. NTL4 is a transcriptional activator. 

(A) Transcriptional regulation activity assays in yeast cells. Transcriptional 

regulation activities were examined by cell growth on selective media (left panel) 

and -Gal activity assays (right panel). -LW indicates Leu and Trp drop-out plates. 

-QD indicates Leu, Trp, His, and Ade drop-out plates. P, positive control (full-size 

GAL4); N, negative control (DNA-binding domain alone). Four measurements 

were averaged and statistically treated using a student t-test (*P<0.01). Bars 

indicate SD.  

(B) Transcriptional regulation activity assays in Arabidopsis protoplasts. The 

reporter and effector vectors used were diagrammed (left panel). The GAL4 

transient expression assays were carried out using Arabidopsis protoplasts (right 

panel). Vector control, the effector vector without gene inserts; ARF5M and 
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ARF1M, the effector vectors containing the ARF5M gene (activator control) and 

the ARF1M gene (repressor control), respectively (Tiwari et al., 2003). Four 

measurements were averaged and statistically treated using a student t-test 

(*P<0.01). Bars indicate SD. 
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altered leaf morphology, were similar to those observed in plants exposed to 

environmental stresses (Heil and Baldwin, 2002). I therefore examined the effects of 

abiotic stresses on the expression of NTL4 gene. The NTL4 gene was induced more 

than 2-fold by drought and heat treatments (Fig. 14C). I also examined whether the 

NTL4 gene is influenced by growth hormones. The NTL4 gene was induced 

approximately 3-fold by ABA (Fig. 14D). These observations suggest that the 

NTL4 gene plays a role in drought and heat stress responses that are perhaps 

mediated by ABA. 

To further examine the effects of drought on NTL4 gene expression, the 

GUS-coding sequence was fused in-frame to NTL4 gene promoter consisting of 

approximately 1-kb sequence region upstream, and the promoter-GUS fusion was 

transformed into Col-0 plants. GUS activity was detected mainly in the roots under 

normal conditions (Fig. 15). When the transgenic plants were exposed to drought 

stress, the GUS activity was significantly elevated in the aerial plant parts, 

primarily in the distal leaf area where leaf senescing process initiates under adverse 

growth conditions (Lim et al., 2007), suggesting that the NTL4 gene would be 

related with leaf senescence under drought conditions. 

 

Seedling growth of ntl4-1 mutant is less sensitive to ABA 

I found that NTL4 gene is induced by ABA. I therefore examined the response of  
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Figure 14. NTL4 gene is induced under drought and heat conditions. 

In (A)-(B), transcript levels were determined by qRT-PCR as described in Figure 

12C. Bars indicate SD (t-test, *P<0.01).  

(A) Growth stage-dependent expression of NTL4 gene. d, days after germination. 

(B) Tissue-specific expression of NTL4 gene. SA, shoot apical regions; FL, 

flowers; ST, stems; RL, rosette leaves; CL, cauline leaves; SI, siliques; RO, roots. 

(C) Effects of abiotic stresses on NTL4 gene expression. Two-week-old plants 
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grown on MS-agar plates were exposed to drought, heat (42oC), or 200 mM NaCl 

for the indicated time durations. h, hour. 

(D) Effects of growth hormones on NTL4 gene expression. Two-week-old plants 

grown on MS-agar plates were transferred to MS liquid cultures containing 

different growth hormones, such as ABA (20 M), IAA (20 M), GA (50 M), SA 

(100 M), mJA (20 M), and ACC (20 M), and incubated for up to 6 h.  
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Figure 15. Effects of drought on the promoter activity of NTL4 gene.  

Ten-day-old transgenic plants expressing the pNTL4-GUS fusion grown on MS-

agar plates were put on dry 3MM paper for 1 h and subject to GUS staining. 
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35S:4C transgenic plants and ntl4-1 mutants to ABA. Whereas the primary root 

growth of the 35S:4C transgenic plants was influenced more severely by ABA, 

that of the ntl4-1 mutant was less affected by ABA (Fig. 16). In the presence of 10 

M ABA, the primary root length was reduced by approximately 30% in Col-0 

plants. Notably, whereas it was reduced by 60% in the transgenic plants, that of the 

ntl4-1 mutant was reduced by approximately 24% under identical conditions. 

Lateral root growth was also influenced by ABA in a similar pattern. Whereas 

lateral root formation was more severely influenced by ABA in the 35S:4C 

transgenic plants, it was less influenced in the ntl4-1 mutant compared to that of 

Col-0 plants (Fig. 16, bottom panel). These observations support that the NTL4 

gene is involved in ABA-mediated abiotic stress responses. 

 

ntl4 mutants exhibit enhanced drought resistance 

I next carried out drought resistance assays. Plants were grown in soil for 2 weeks 

under normal watering conditions, and watering was halted until symptoms of 

wilting and necrosis are visible. The plants were then rewatered, and survived 

plants were counted. 

Whereas the 35S:4C transgenic plants were hypersensitive to drought, 

the ntl4 mutants were relatively resistant to drought (Fig. 17), supporting the role 

of NTL4 in drought stress response. 
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I also examined the effects of drought on seedling growth. Primary root 

growth of the transgenic plants was significantly inhibited in the presence PEG, but 

the inhibitory effects of PEG were greatly reduced in the mutants (Fig. 18). 

 

Leaf senescence is delayed in ntl4 mutants under drought conditions 

Recent increasing evidence indicates that delayed leaf senescence goes along with 

enhanced drought resistance (Rivero et al, 2007). I found that NTL4 gene is rapidly 

induced in senescing plants. It was therefore assumed that the NTL4 gene might be 

related with leaf senescence.  

 Leaf senescing processes of Col-0 plants, 35S:4C transgenic plants, and 

ntl4 mutants were not discernibly different when the plants were grown under 

normal conditions (Fig. 12A). In contrast, under drought conditions, whereas leaf 

senescence was accelerated in the 35S:4C transgenic plants, it was notably 

delayed in the ntl4 mutants (Fig. 19A). The NTL4 gene was induced more than 4-

fold under identical conditions (Fig. 19B). I also measured chlorophyll contents of 

the rosette leaves. Under drought conditions, whereas the chlorophyll contents 

decreased in the transgenic leaves, they were elevated slowly but steadily in the 

mutant leaves (Fig. 19C), indicating that the NTL4 gene is associated with leaf 

senescence under drought conditions. Together, these observations indicate that the 

NTL4 gene plays a role in leaf senescing process occurring under drought  
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Figure 16. Effects of ABA on root growth. 

Five-day-old plants grown on MS agar plates were transferred to vertical MS-agar 

plates containing various concentrations of ABA, and further grown for 1 week 

before taking photographs (upper panel, 5 M ABA). Primary root lengths (middle 

panel) and lateral root numbers (lower panel) of 24 seedlings were measured and 

averaged for each plant genotype. Statistical significance of the measurements was 

determined using a student t-test (*P<0.01). Bars indicate SD.  
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Figure 17. NTL4 gene mediates drought stress response. 

Drought resistance assays. Survival rates were calculated using 30 plants for each 

plant genotype and averaged. Statistical significance of the measurements was 

``determined using a student t-test (*P<0.01). Bars indicate SD. 
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Figure 18. Seedling growth assays under osmotic stress.  

Four-day-old plants grown on MS agar plates were transferred to vertical MS-agar 

plates having low w that was imposed by PEG and further grown for 2 weeks 

before taking photograph (upper panel). Primary root lengths were measured and 

averaged using 24 plants for each plant genotype (lower panel). Bars indicate SD 

(t-test, *P<0.01).  

 

 

 

 

 

 

 



 

67 

conditions. 

 

NTL4 regulates ROS accumulation  

ROS play a role in drought-induced leaf senescence (Munné-Bosch and Alegre, 

2004; Bhattacharjee, 2005). My data showed that NTL4 gene is induced in the 

distal leaf area under drought conditions. In addition, the 35S:4C transgenic 

plants were hypersensitive to drought stress. It was therefore hypothesized that 

ROS might be related with NTL4 function.  

 I examined the levels of endogenous H2O2 by 3,3’-diaminobenzidine 

(DAB) staining (Ramel et al., 2009). It was observed that the 35S:4C transgenic 

leaves were more strongly stained with DAB, but the staining density of the ntl4-1 

mutant leaves was lower than that of Col-0 leaves (Fig. 20, left panel). Under 

drought conditions, the densities of brown color were elevated in all plant 

genotypes examined. However, the relative density was higher in the 35S:4C 

leaves but lower in the ntl4-1 leaves compared to that in Col-0 leaves. I also 

measured the contents of H2O2 in the leaves. As inferred from the DAB staining 

assays, drought treatments induced rapid accumulation of H2O2 in the plants 

examined. However, the level was higher in the 35S:4C leaves but detectably 

lower in the ntl4-1 leaves (Fig. 20, right panel). The differential ROS levels are 

also consistent with the altered drought stress responses and leaf senescence in the  
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Figure 19. Leaf senescence in 35S:4C transgenic plants and ntl4 mutants 

under drought conditions.  

(A) Comparison of leaf senescence. The 4th rosette leaves of plants grown in soil 

under drought conditions were photographed. d, days after halting watering.  

(B) Kinetic expression pattern of NTL4 gene.  

(C) Measurements of chlorophyll contents. The 4th rosette leaves of 20 plants 

grown in soil were harvested at the indicated time points. Three measurements 

were averaged and statistically treated using a student t-test (*P<0.01). Bars 

indicate SD. d, days after halting watering. DR, drought. 
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35S:4C transgenic plants and ntl4 mutants.  

 

NTL4 positively regulates Atrboh genes  

My data showed that ROS accumulation is correlated with overexpression of an 

active NTL4 form. Therefore, a question was how NTL4 induces ROS 

accumulation. I first postulated that NTL4 promotes ROS production. ROS are 

produced via diverse biosynthetic pathways, among which the NADPH oxidase-

mediated pathway is the most prominent one (Apel and Hirt, 2004; Sagi and Fluhr, 

2006). qRT-PCR assays revealed that the transcript levels of AtrbohA, AtrbohC, 

and AtrbohE genes were higher more than 9-fold in the 35S:4C transgenic plants 

than in Col-0 plants under normal conditions (Fig. 21). Under drought conditions, 

expression of the Atrboh genes was further induced at least 2-fold in both Col-0 

plants and 35S:4C transgenic plants, showing that NTL4-mediated drought stress 

signals upregulate a subset of the Atrboh genes. Consequently, the inductive effects 

of drought on the Atrboh gene expression diminished in the ntl4-1 mutant.  

 

NTL4 binds to Atrboh gene promoters  

The next question was whether NTL4 regulates directly the Atrboh genes. Web-

based sequence analysis revealed that the Atrboh gene promoters contain conserved 

sequence motifs (Fig. 22A), which are similar to the known NAC-binding  
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Figure 20. NTL4 promotes ROS production.  

DAB staining. In the right panel, measurements of 5 representative rosette leaves 

were averaged for each plant genotype and statistically treated using a student t-test 

(*P<0.01). Bars indicate SD. Mo, Mock; DR, drought. 
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Figure 21. Expression of genes encoding ROS biosynthetic enzymes.  

Bars indicate SD (t-test, *P<0.01). Mo, mock; DR, drought. 
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sequence ([TA][TG][TAGC]CGT[GA]) (Olsen et al., 2005). The AtrbohC and 

AtrbohE gene promoters contained 9 and 4 putative NAC binding motifs, 

respectively, within the 1.5-kb sequence region from the transcriptional start site. I 

employed chromatin immunoprecipitation (ChIP) assays to investigate whether 

NTL4 binds to the sequence motifs using the 35S:MYC-4C transgenic plants. 

Quantitative ChIP-PCR assays using an anti-MYC antibody revealed that the 4C 

protein binds efficiently to the conserved sequence motifs existing in the Atrboh 

gene promoters (Fig. 22B). In addition, the 4C binding to the promoter elements 

was further elevated after exposure to drought conditions (Fig. 22C). These 

observations demonstrate that the NTL4 transcription factor regulates the Atrboh 

genes by binding directly to the gene promoters in planta. 

 

Cell viability is altered in 35S:4C transgenic plants and ntl4-1 mutant  

ROS cause oxidative damage to membrane lipids, resulting in fatal leakage of 

cellular ions (Apel and Hirt, 2004). I therefore anticipated that NTL4-induced ROS 

production might influence cell viability. 

Electrolyte leakage assays are commonly employed to estimate relative 

amounts of cell death in plant tissues (Coll et al., 2010). I analyzed the degrees of 

electrolyte leakage from the 35S:4C transgenic leaves and ntl4-1 mutant leaves. 

Under normal conditions, the degrees of electrolyte leakage were not significantly 
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different in the leaves examined (Fig. 23A). However, under drought conditions, 

the degrees of electrolyte leakage were higher in the 35S:4C transgenic leaves but 

lower in the ntl4-1 mutant leaves compared to those in Col-0 leaves.  

I also carried out lactophenol trypan blue staining assays, which 

selectively visualize dead cells (Koch and Slusarenko, 1990). Upon treatments with 

drought, whereas the 35S:4C transgenic leaves were densely stained as dark blue, 

the ntl4-1 mutant leaves were weakly stained, relative to the staining intensity in 

Col-0 leaves (Fig. 23B). These observations show that cell death increases in the 

35S:4C transgenic leaves but decreases in the ntl4-1 mutant leaves under drought 

conditions.  

 

NTL4 processing is influenced by drought 

I have recently reported that although the NTL4 protein having a TM motif is 

mainly associated with the plasma membranes, it is also detected in the nucleus 

(Kim et al., 2010). Therefore, a question was whether NTL4 activity is modulated 

at the protein processing step in addition to the gene transcriptional control under 

drought conditions. 

I next examined whether NTL4 processing is influenced under drought 

conditions. First, the 35S:MYC-NTL4 transgenic plants were treated with ABA. 

Overall, the NTL4 proteins were relatively unstable, and thus they were easily 
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degraded during the protein purification steps, as has been observed with other 

NTL proteins (Kim et al., 2006; Seo et al., 2008). Immunological assays revealed 

that the intensity of a protein band that has an estimated molecular mass close to 

that of the MYC-4C fusion (10.5 + 46.2 kDa) was significantly elevated in ABA-

treated plants (Fig. 24A). When the plants were treated with a potent proteasome 

MG132, both of the potentially full-size and processed NTL4 forms increased, 

suggesting that the ubiquitin-mediated degradation pathway is responsible for the 

observed rapid turnover of the NTL4 proteins. 

I also examined the patterns of NTL4 processing in drought-treated plants. 

The intensity of the processed NTL4 form was markedly elevated (Fig. 24B), 

which is similar to what observed in ABA-treated plants. These observations 

indicate that the NTL4 activity is also regulated at the protein processing step in 

response to ABA-mediated drought stress signals. 

Altogether, my data illustrate that ABA-mediated drought stress signals 

promote NTL4 activity at both the transcriptional and protein levels. The activated 

NTL4 transcription factor induces a subset of Atrboh genes, resulting in ROS 

accumulation. The elevated ROS production triggers leaf senescence (Fig. 24C), 

which is also intimately interrelated with drought resistance response. It is 

envisaged that when the imposed stress is expanded, the NTL4-mediated signals 

may cause the HR and leaf necrosis, as was observed in the 35S:4C transgenic 
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plants exposed to drought stress. 
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Figure 22. NTL4 binds to the promoters of Atrboh genes. 

(A) NAC binding motifs in AtrbohC and AtrbohE gene promoters. The putative 

NAC binding motifs were indicated by arrowheads. The sequence regions used for 

ChIP assays were marked (A – F).  

(B) ChIP assays. Three measurements were averaged for individual assays. Bars 

indicate SD (t-test, *P<0.01). The values in Col-0 plants were set to 1 after 

normalization against TUB2 for quantitative PCR analysis. 

(C) Effects of drought on 4C binding to Atrboh promoters. The ChIP assays were 

carried out as described in (B) using plants treated with drought by halting 

watering for 12 d and primer sets ‘B’ and ‘E’. 
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Figure 23. Cell viability in 35S:4C and ntl4-1 leaves under drought 

conditions. 

(A) Electrolyte leakage assays. Three-week-old plants grown in soil were subject 

to drought treatments. Five measurements were averaged and statistically treated 

using a student t-test (*P<0.01). Bars indicate SD. h, hour. 

(B) Trypan blue staining. Plant materials exposed to drought, as described in (A), 

were used for trypan blue staining. The 6th rosette leaves were photographed. 
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Figure 24. NTL4 mediates drought-induced leaf senescence by promoting 

ROS production. 

(A) Effects of ABA and MG132 on NTL4 processing. The 35S:MYC-NTL4 

transgenic plants were grown for 10 d on MS-agar plates and treated for 24 h with 

1% DMSO, 20 M ABA, or 50 M MG132. The full-size (arrow) and processed 

(arrowhead) NTL4 forms are indicated. Parts of Coomassie blue-stained gels are 

shown at the bottom as loading control. kDa, kilodalton. 

(B) Effect of drought on NTL4 processing. Two-week-old plants grown in soil 

were subject to drought treatments by halting watering for 12 d. The full-size 

(arrow) and processed (arrowhead) NTL4 forms are indicated. Parts of Coomassie 
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blue-stained gels are shown at the bottom as loading control. kDa, kilodalton. 

(C) Schematic model for NTL4 function. NTL4 promotes ROS production by 

binding directly to the promoters of Atrboh genes in response to ABA-mediated 

drought stress signals. The elevated ROS production triggers leaf senescence via 

programmed cell death. 
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DISCUSSION 

 

NTL4 activation of ROS production under drought conditions 

In this work, I demonstrated that NTL4 links ABA-mediated drought stress signals 

with ROS metabolism in inducing leaf senescence. The NTL4 transcription factor 

regulates the expression of Atrboh genes encoding ROS biosynthetic enzymes by 

directly binding to the gene promoters. 

Biochemical and physiological roles of the ROS-generating NADPH 

oxidases have been extensively studied (Foreman et al., 2003; Torres et al., 2005). 

The roles of Atrboh genes have been demonstrated in the ABA-mediated stomatal 

closing, defense responses, and plant developmental processes, such as root hair 

growth and seed germination (Torres et al., 2002; Kwak et al., 2003). I found that 

NTL4 promotes ROS biosynthesis by inducing several Atrboh genes, such as 

AtrbohA, AtrbohC, and AtrbohE, and induces leaf senescence under drought 

conditions. My data provide a molecular basis underlying drought-induced leaf 

senescence. 

NTL4 activity is regulated at both the gene transcriptional level and the 

protein processing step by ABA-mediated drought stress signals. I found that the 

NTL4 gene is transcriptionally induced in the leaves by drought in an ABA-

dependent manner. ABA-mediated drought stress signals also triggers the 
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membrane release of the NTL4 transcription factor, indicating that the NTL4 

activity is modulated through controlled membrane release and thus nuclear 

localization, as has been shown in the cold-induced processing of the NTL6 

transcription factor (Seo et al., 2010). 

Although NTL4 gene is induced in senescing leaves, leaf senescence is not 

discernibly affected in the 35S:4C transgenic plants and in the NTL4-deficient 

mutants under normal growth conditions, suggesting that the NTL4 gene does not 

mediate natural leaf senescence. Notably, the transgenic plants and mutant plants 

exhibit accelerated and delayed leaf senescence, respectively, under drought 

conditions. In addition, both NTL4 gene transcription and NTL4 protein processing 

are induced by drought stress. Therefore, it is likely that the NTL4 transcription 

factor plays a role in leaf senescence specifically under drought conditions. It has 

been known that controlled proteolytic processing of membrane-bound 

transcription factors ensures rapid adaptation responses to abrupt environmental 

changes in plants (Seo et al., 2008). Based on the previous and my own data, I 

believe that induction of NTL4 protein processing, rather than NTL4 gene 

induction, plays a major role in the drought-induced leaf senescence.  

 

Physiological relevance of NTL4 function in drought-induced leaf senescence  

The phenotypes of NTL4-deficient mutants, such as enhanced drought resistance 
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and delayed leaf senescence, and the reduction of ROS levels, are reliable with the 

correlationship between ROS accumulation and leaf senescence under drought 

conditions (Munné-Bosch and Alegre, 2004; Bhattacharjee, 2005; Rivero et al., 

2007). Yet, the NTL4 gene is highly expressed in senescing leaves. It is also 

induced mostly in the leaves under drought conditions, raising a question as to the 

physiological significance of NTL4 function. 

I found that whereas 35S:4C transgenic plants are susceptible to abiotic 

stresses, ntl4 mutants exhibit enhanced stress resistance. In contrast, transgenic 

plants overexpressing other membrane-bound NAC proteins, such as NTL6, NTL8, 

NTL9, and NTM1, exhibit enhanced stress resistance, but gene knockout mutants 

exhibit stress-susceptible phenotypes (Kim et al., 2006; Kim et al., 2008; Yoon et 

al., 2008; Seo et al., 2010). These seemingly contrasting phenotypes are explained 

by the unique role of NTL4 in ROS production. 

If ROS loads exceed over the capacity of metabolism and storage in plant 

cells, they cause cell death and necrosis in the affected area. When plants were 

infected with pathogens, the infected plants rapidly induce defense responses, 

including rapid accumulation of ROS at the site of infection (Alvarez et al., 1998; 

Apel and Hirt, 2004). The infected area eventually undergoes programmed cell 

death that blocks the spread of pathogens to other parts of plants (Alvarez et al., 

1998). Recent studies also showed that remodeling of the root system through 



 

83 

programmed cell death contributes to drought tolerance (Duan et al., 2010). 

I found that NTL4 gene is expressed at the basal level in the aerial plant 

parts during the vegetative growth stages. However, it is rapidly induced in the 

leaves under drought conditions. The drought induction of the NTL4 gene is more 

evident in the distal leaf area, where leaf senescence and cell death initiate upon 

exposure to drought stress (Lim et al., 2007). ROS accumulation and cell death also 

initiated in the distal area in senescing leaves under drought conditions. These 

observations strongly support that the localized induction of the NTL4 gene and 

ROS accumulation in the distal leaf area is critical for NTL4 function. In this view, 

it is likely that the widespread cell death in whole leaf area and drought-susceptible 

phenotype of the 35S:4C transgenic plants are due to ectopic expression of the 

NTL4 gene by the strong 35S promoter and do not reflect the physiological role of 

NTL4.  

Based on the previous and my own data, the most plausible explanation 

would be that the physiological role of the NTL4 transcription factor is to promote 

ROS production in the leaves, which triggers programmed cell death to induce leaf 

senescence under drought conditions. This response will help plants to remobilize 

nutrients and metabolites from the senescing leaves to the sink organs and newly 

formed leaves and minimize water loss from the leaves through transpiration. 

Under extreme drought conditions, the NTL4 expression and ROS accumulation 
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would be further expanded throughout the whole plant body, leading to whole-plant 

necrosis, as observed in the 35S:4C transgenic plants under drought conditions. 
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CHAPTER 3 

 

The Arabidopsis RNA-binding protein FCA regulates 

thermotolerance by modulating antioxidant accumulation 
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RESULTS 

 

FCA mediates thermotolerance response in an ABA-dependent manner 

FCA mediates the effects of ambient temperature on the onset of flowering through 

the thermosensory flowering pathway in Arabidopsis (Blázquez et al., 2003). 

Recently, it has been reported that FCA regulates miR172 processing in flowering 

time control in response to temperature changes (Jung et al., 2012). Notably, the 

FCA activity is regulated by ambient temperature at both the transcriptional and 

protein levels, suggesting that FCA plays a role in plant responses other than 

flowering under fluctuating temperatures. 

I first examined the effects of high temperatures on plant growth using the 

FCA-overexpressing transgenic plants (35S:FCA) and FCA-deficient mutants (fca-

11 and fca-9). Whereas the 35S:FCA transgenic plants exhibited enhanced 

resistance to heat treatments (45oC), the fca-11 and fca-9 mutants displayed 

reduced heat resistance (Fig. 25).  

 Gene expression analysis under various abiotic stress conditions showed 

that the FCA gene was induced more than 3-fold by heat treatments but suppressed 

by approximately 60% by cold treatments (4oC) (Fig. 26A). In contrast, it was not 

influenced to a discernible level by drought and high salt. I also examined the 

effects of ABA and SA on the FCA gene expression. The FCA was induced  
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Figure 25. FCA mediates thermotolerance response. 

(A and B) Measurements of survival rates. One-week-old plants grown on MS-agar 

plates were exposed to heat (45oC, 90 min) and allowed to recover at 23oC for 3 

days (A). Survival rates were calculated using 50 plants and averaged (B). 

statistical significance of the measurements was determined using Student t-test 

(*P<0.01). The bars indicate standard error of the mean. 
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Figure 26. Effects of abiotic stresses and hormones on FCA expression. 

In (A-C), statistical significance of the measurements was determined using 

Student t-test (*P<0.01). The bars indicate standard error of the mean. 

(A) Effects of abiotic stresses on FCA expression. Two-week-old plants grown on 

MS-agar plates were exposed to heat, drought (DR), 150 mM NaCl, or cold (4oC). 

Transcript levels were determined by qRT-PCR. Biological triplicates were 

averaged. 

(B) Effects of ABA on FCA expression. Two-week-old plants grown on MS-agar 

plates were transferred to MS liquid cultures containing ABA (20 M) or SA (100 

M) and incubated for 24 h.  

(C) Expression of FCA gene in aba3-1 mutant under heat stress. One-week-old 

plants grown on MS-agar plates were exposed to heat. 
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approximately 3-fold by ABA but was not influenced by SA (Fig. 26B). In addition, 

the effects of heat on the expression of the FCA gene disappeared in the ABA-

deficient aba3-1 mutant (Fig. 26C), showing that the heat induction of the FCA 

gene depends on ABA. 

It is known that exogenous application of ABA induces chlorophyll 

degradation (Nagira et al., 2006). I therefore examined the ABA responses of the 

fca mutants. Under normal growth conditions, the leaves of the fca mutants were 

green similar to the Col-0 leaves (Fig. 27, left panel). When grown in the presence 

of ABA, the fca mutant leaves were still green unlike the pale green leaves of Col-

0 plants. Measurements of the chlorophyll contents revealed that the chlorophyll 

contents were significantly reduced in the Col-0 leaves but only slightly reduced in 

the fca mutant leaves (Fig. 27, right panel). These observations indicate that ABA 

sensitivity is greatly reduced in the fca mutants. 

 

Cell death is accelerated in the fca mutants under heat stress 

Heat stress disrupts the integrity of cellular membranes and leads to the inevitable 

leakage of inorganic and organic solutes from the cell, causing cell death (Liu et al., 

2000). My data show that FCA mediates plant response to heat stress in an ABA-

dependent manner. 

 To further examine the involvement of FCA in the thermotolerance 
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response, I performed the electrolyte leakage assays using the 35S:FCA and fca-9 

leaves after heat treatments (45oC, 90 min). The degrees of electrolyte leakage 

were not detectably different in the Col-0, 35S:FCA, and fca-9 leaves under normal 

conditions (Fig. 28A). However, after exposure to heat, the degrees of electrolyte 

leakage were significantly lower in the 35S:FCA leaves but markedly higher in the 

fca-9 mutant leaves in comparison to those in the Col-0 leaves. I also visualized the 

cell death by lactophenol trypan blue staining, which selectively stains dead cells 

(Koch and Slusarenko, 1990). The fca-9 leaves were stained dark blue, but the 

35S:FCA leaves were stained light blue (Fig. 28B), indicating that cell death was 

reduced in the 35S:FCA leaves but elevated in the fca-9 leaves compared to that in 

the Col-0 leaves after heat treatments. 

I also performed a cell vitality assay by measuring 2,3,5-triphenyl 

tetrazolium chloride (TTC) reduction activity. TTC reflects the status of cellular 

respiration in living cells (Block and Brouwer, 2002). Under heat stress conditions, 

the TTC reduction activity was reduced by ~30% in the Col-0 roots (Fig. 29A). 

The TTC reduction activity was reduced by 54% in the fca-9 roots but by 18% in 

the 35S:FCA roots under the identical conditions, confirming that cell death is 

accelerated in the fca-9 roots but is lessened in the 35S:FCA roots under heat stress 

conditions. 
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ROS accumulates in the fca mutants under heat stress 

During the hypersensitive responses caused by pathogen infection, high light, and 

exposure to drought and heat, ROS rapidly accumulates in the plant cells 

(Breusegem and Dat, 2006; Mittler et al., 2004). Under heat stress conditions, the 

accumulated ROS cause oxidative damage, leading to cell death (Breusegem and 

Dat, 2006). Considering the hypersensitivity of the fca-9 mutants to heat and ABA, 

we hypothesized that ROS would accumulate to a higher level in the fca-9 mutants 

under heat stress conditions. 

To examine the oxidative damage caused by ROS after exposure to heat, 

we measured the degree of lipid peroxidation using thiobarbituric acid as reagent. 

Malondialdehyde (MDA) is formed from the oxidation of polyunsaturated lipids 

and frequently used as an indicator of the ROS-triggered oxidative damage (Zhang 

et al., 2009). MDA, which is one of the thiobarbituric acid reactive substances 

(TBARS), generates a red fluorescent derivative after condensation with 

thiobarbituric acids (Janero, 1990). Heat-treated plants (45oC, 90 min) were 

allowed to recover by growing at 23oC for 2 days. The contents of TBARS were 

lower in the 35S:FCA transgenic plants but higher in the fca-9 mutant compared to 

those in Col-0 plants (Fig. 29B), indicating that oxidative damage occurs to a high 

level, possibly because of high ROS accumulation, in the fca-9 mutant.  

 I next measured the levels of endogenous H2O2, a representative ROS by  
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Figure 27. Measurements of chlorophyll contents after ABA treatments.  

Three-day-old plants grown on MS-agar plates were transferred to MS-agar plates 

containing 10 M ABA and further grown for 2 weeks (left panel), and the aerial 

plant parts were harvested for the measurements of chlorophyll contents (right 

panel). Three measurements were averaged. 
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Figure 28. Cell death is accelerated in fca mutants under heat stress.  

In (A) and (C), statistical significance of the measurements was determined using 

Student t-test (*P<0.01). The bars indicate standard error of the mean. 

(A) Electrolyte leakage assays. One-week-old plants grown on MS-agar plates 

were exposed to heat (45oC, 90 min). The aerial parts of plants were used for the 

assays. Five measurements were averaged. 

(B) Trypan blue staining. The third rosette leaves of the heat-treated plants were 

used for trypan blue staining (B).  

(C and D) DAB staining. Two-week-old, heat-treated plants were subject to DAB 

staining (C). Quantitation of 15 representative rosette leaves were averaged (D). 
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Figure 29. TTC reduction and TBARS assays.  

(A) Ten-day-old plants grown on MS-agar plates were exposed to heat. The roots 

were used for the measurements of TTC reduction. Five measurements were 

averaged. 

(B) TBARS assays. One-week-old plants grown on MS-agar plates were exposed 

to heat and allowed to recover at 23oC for 2 days. Whole plants were used for the 

assays. Five measurements were averaged. 
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the 3,3’-diaminobenzidine (DAB) staining method (Torres et al., 2005). As 

expected, heat treatments rapidly induced H2O2 accumulation in Col-0 plants (Fig. 

28C and 28D). However, whereas H2O2  accumulation was more prominent in the 

fca-9 mutant, the level of H2O2 lower in the 35S:FCA plants. These observations 

indicate that FCA mediates ROS metabolism under heat stress conditions.  

 

FCA modulates ROS detoxification 

A question was whether FCA modulates ROS production or detoxification. To 

answer the question, I first examined the oxidative stress tolerance of the 35S:FCA 

transgenic plants and the fca-9 mutant by growing the plants in the presence of 

paraquat (N,N′-dimethyl-4,4′-bipyridinium dichloride), a chemical that is known to 

induce ROS production in the plant cells. The results showed that whereas the 

growth of the 35S:FCA seedlings was less sensitive to paraquat, that of the fca-9 

seedlings was more sensitive to paraquat in comparison to the paraquat sensitivity 

of Col-0 plants (Fig. 30A). These observations indicate that FCA is not related with 

the ROS production but mediates the ROS detoxification process. 

 Based on the role of FCA in the ROS detoxification process, I postulated 

that the antioxidant activity is altered in the 35S:FCA transgenic plants and fca-9 

mutant. Plants produce various antioxidants, such as ascorbate and glutathione, to 

cope with the oxidative stress caused by ROS (Mittler et al., 2004). Measurements 
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of the ascorbate levels revealed that the contents of both total and reduced 

ascorbates were higher in the 35S:FCA transgenic plants but lower in the fca-9 

mutant compared to those in Col-0 plants after heat treatments (Fig. 30B). 

Glutathione contents were also slightly higher in the 35S:FCA transgenic plants 

under heat stress conditions. Anthocyanins are also important antioxidants in plants 

(Gould et al., 2002). Whereas the endogenous levels of anthocyanins were 

significantly higher in the 35S:FCA transgenic plants but relatively lower in the 

fca-9 mutant under both normal and heat conditions (Fig. 30C). These observations 

support the notion that FCA regulates ROS accumulation by modulating the 

endogenous levels of various antioxidants.   

 

FCA modulates ABI5-mediated ABA signaling under heat stress 

My data showed that the 1-CYSTEINE PEROXIREDOXIN 1 (PER1) gene is 

induced under heat stress conditions in a FCA-dependent manner (Fig. 30D). Thus, 

the next question was how FCA regulates the PER1 gene induction. It has been 

suggested that the PER1 gene is a putative target of the ABI5 transcription factor 

(Haslekås et al., 2003). It was therefore anticipated that FCA would be involved in 

the ABI5-mediated ABA signaling under heat stress conditions. 

 I first examined whether FCA interacts with ABI3 and ABI5. Yeast two-

hybrid assays showed that FCA interacts with ABI5 but not with ABI3 (Fig. 31A).  
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Figure 30. FCA modulates ROS detoxification. 

In (B) and (D), one-week-old whole plants grown on MS-agar plates were used for 

the measurements or heat treatments. 

(A) Oxidative stress response of 35S:FCA transgenic plants and fca-9 mutant. 

Three-day-old plants grown on MS-agar plates were transferred to MS-agar plates 

containing various concentrations of paraquat and further grown for 2 weeks (left 

panel). The shoot fresh weights of 30 plants were averaged (right panel). The 

numbers in parentheses represent the ratio of the shoot fresh weights.  

(B) Measurements of ascorbate contents. Three measurements of ascorbate (ASC) 

and dehydroascorbate (DHA) contents after heat treatments (45oC, 90 min) were 

averaged.  

(C) Measurements of anthocyanin contents. One-week-old plants grown on MS-

agar plates were exposed to heat and allowed to recover at 23oC for 2 days. Three 
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measurements were averaged and statistically treated using Student’s t-test 

(*P<0.01). 

(D) Expression of PER1 gene. The transcript levels were determined by qRT-PCR.  
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I found that the FCA-ABI5 interaction occurs in the nucleus, as verified by 

bimolecular fluorescence complementation (BiFC) assays using Arabidopsis 

protoplasts (Fig. 31B). 

 To study how FCA is functionally linked with ABI5, I generated abi5-3 

35S:FCA plants and examined the expression patterns of the genes functioning 

downstream of ABI5. All the genes examined, such as EARLY METHIONINE-

LABELLED 6 (EM6), RESPONSIVE TO DESSICATION 29B (RD29B), 

RESPONSIVE TO ABA 18 (RAB18), and PER1, were induced by heat (Fig. 32). 

However, the heat induction of EM6, RD29D, and PER1 disappeared in both the 

fca-9 and abi5-3 mutants. These genes were highly expressed in the 35S:FCA 

transgenic plants under both normal and heat stress conditions, but the high-level 

expression was largely compromised in the abi5-3 35S:FCA plants. These 

observations support that the FCA-mediated heat response requires ABI5. 

 My data showed that FCA physically interacts with ABI5, a basic leucine 

zipper transcription factor that mediates ABA signaling. I performed transcriptional 

activation activity assays in Arabidopsis protoplasts to investigate whether FCA 

influences the transcriptional activation activity of ABI5. The ABI5 gene sequence 

was fused in-frame to the 3' end of the GAL4 DNA-binding domain-coding 

sequence and cotransformed into Arabidopsis protoplasts with the reporter plasmid 

containing the GUS (-glucuronidase) gene (Fig. 33A). The plasmid containing the  
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Figure 31. FCA interacts with ABI5. 

(A) Interaction of FCA with ABI5 in yeast cells. Yeast cell growth on selective 

media without Leu, Trp, His, and Ade (-LWHA) but with 14 mM 3-AT (3-amino-

1,2,4-triazole) represents positive interactions. P, positive control. 

(B) BiFC assays. Partial YFP constructs fused with FCA or ABI5 were transiently 

coexpressed in Arabidopsis protoplasts and visualized by differential interference 

contrast microscopy (DIC) and fluorescence microscopy. Scale bars, 10 m. 
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Figure 32. Expression of ABI5 target genes.  

One-week-old plants grown on MS-agar plates were exposed to heat before 

harvesting whole plant materials for the extraction of total RNA. Transcript levels 

were determined by qRT-PCR. Biological triplicates were averaged. Statistical 

significance of the measurements was determined using Student t-test (*P<0.01). 

The bars indicate standard error of the mean. 
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Renilla luciferase gene was also included in the assays to normalize the assays 

(Yoo et al., 2007). The transcriptional activation activities of ABI5 were similar in 

the Col-0 and fca-9 protoplasts (Fig. 33B and 33C). In addition, the coexpression 

of the FCA gene did not influenced the activity of ABI5 in both the genetic 

backgrounds, indicating that FCA does not affect the transcriptional activation 

activity of ABI5. 

 I next performed transient expression assays in Arabidopsis protoplasts to 

verify whether FCA affect the DNA-binding activity of ABI5. The ABI5-binding 

sequences (BS's) within the EM6 and PER1 gene promoters were used in assays. 

The potential core binding sequences (ACGT) were mutated, resulting in EM6-

mBS and PER1-mBS, to confirm the binding specificities (Fig. 33D). The BS and 

mBS were fused to the Cauliflower Mosaic Virus (CaMV) 35S minimal promoter 

(pMin35S), resulting in pEM6/PER1-P or pEM6/PER1-mP constructs (Fig. 33E). 

The reporter vectors and the effector vectors, such as p35S-ABI5 and p35S-FCA, 

were transiently coexpressed in Arabidopsis protoplasts. The coexpression of 

p35S-ABI5 with both the pEM6-P and pPER1-P reporters elevated the GUS 

activity by approximately 2-fold. In contrast, the coexpression of p35S-ABI5 with 

the pEM6-mP and PER1-mP reporters did not influence the reporter gene 

expression (Fig. 33F), consistent with the role of ABI5 as a transcriptional activator 

of the EM6 and PER1 genes (Lopez-Molina et al., 2002; Haslekås et al., 2003).  
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Figure 33. FCA facilitates the binding of ABI5 to DNA. 

In (B), (C), (F), and (G,) statistical significance of the measurements was 

determined using Student t-test (*P<0.01). The bars indicate standard error of the 

mean. 

(A to C) Transcriptional activation activity assays in Arabidopsis protoplasts. The 

reporter and effector vectors used were illustrated (A). The GAL4 transient 

expression assays were carried out using Col-0 protoplasts (B) and fca-9 

protoplasts (C). ARF5M, transformation with the effector vector containing the 

ARF5M gene (activator control) (Tiwari et al., 2003); Vector, transformation with 

the effector vector without gene inserts. Three measurements were averaged. 

(D) ABI5-binding sequences in the proximal promoter regions of EM6 and PER1 

genes. Putative core ABRE elements were underlined.  

(E) Expression constructs used. The promoter sequence elements shown in (D) 

were fused to minimal 35S promoter and used as reporters. In the effector vector, 

ABI5 and FCA genes were transcriptionally fused to the CaMV 35S promoter. NT, 
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Nos terminator. 

(F and G) Transient expression assays in Arabidopsis protoplasts. Col-0 protoplasts 

(F) and fca-9 protoplasts (G) were used for the assays. GUS activity was 

determined fluorimetrically. A luciferase vector was cotransformed in each assay 

for normalization of the transformation efficiency. Three measurements were 

averaged.  
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 Notably, the inductive effects of the coexpression of p35S-ABI5 with the 

pPER1-P reporter on the GUS expression disappeared in the fca-9 protoplasts but 

was recovered when p35S-FCA was coexpressed (Fig. 33G). In contrast, the 

coexpression of p35S-ABI5 with the pEM6-P reporter still activated the reporter 

gene expression in the fca-9 protoplasts. These observations demonstrate that FCA 

regulates the DNA-binding of ABI5 to the PER1 gene promoter, but does not affect 

the ABI5 binding to the EM6 gene promoter. 

 

FCA regulates ABA-mediated ROS metabolism under heat stress 

My data indicate that FCA induces thermotolerance by promoting antioxidant 

accumulation via the ABI5-mediated ABA signaling. One uncertainty was whether 

the FCA-ABI5 signaling module is the sole determinant of the thermotolerance 

response or not. I observed that both the fca-9 and abi5-3 mutants exhibited 

reduced thermotolerance. However, the fca-9 mutant is more sensitive to heat than 

the abi5-3 mutant. In addition, the contents of antocyanins were higher in the fca-9 

mutant than in the abi5-3 mutant. These observations promoted us to consider that 

there would be other pathways that mediate the FCA-mediated thermotolerance. 

 To clarify this uncertainty, I performed RNA-Seq analysis. By comparing 

the RNA-Seq reads of Col-0 plants versus heat-treated Col-0 plants and heat-

treated Col-0 plants versus heat-treated fca-9 mutant, I obtained 6062 genes and 
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1054 genes, respectively, after screening out with >two-fold changes and P<0.05 

parameters (Fig. 34A). Among the heat-regulated 6062 genes, 455 genes were also 

regulated by FCA, and the expression patterns of the 455 genes were shown by 

heatmap in Fig. 34B. Using the gene ontology (GO) annotation search tool in 

TAIR (http://www.arabidopsis.org), I categorized the 455 genes into two 

parameters: subcellular localization (Fig. 34C) and biological process (Fig. 34D). 

 The GO analysis in terms of subcellular localization revealed that the 

largest portion (14%) of the genes was predicted to be localized in mitochondria. 

Mitochondria are a major organelle for respiratory process (Hatle et al., 2013). 

Therefore, a large amount of ROS is produced in mitochondria, and eukaryotes 

have developed diverse ROS scavenging systems functioning in the mitochondria 

(Wu et al., 2009), suggesting that FCA may enhance thermotolerance by regulating 

ROS metabolism in the mitochondria. The GO analysis in terms of biological 

processes predicted that the highest percentage of the genes are involved in various 

metabolic processes (Fig. 34D), among which ROS metabolic process is most 

prominent (Fig. 34E), supporting the close relationship between FCA function and 

ROS metabolism. 

 I also analyzed the hormone responses of the 455 genes using the 

GENEVESTIGATOR tool (https://www.genevestigator.com/gv/). It was found that 

more than 12% of the genes were ABA-responsive (Fig. 34F). Interestingly, the 
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percentage of the SA-responsive genes were also high, suggesting that SA would 

also be involved in the FCA-mediated heat stress response.  

 Since most of the 455 genes have not been functionally characterized in 

terms of ABA signaling and ROS metabolism, I expanded the criteria to 1.5-fold 

and identified the NITRATE REDUCTASE 1 (NIA1) and GALACTINOL 

SYNTHASE 4 (GolS4) genes, which are known to regulate ROS metabolism. The 

NIA1 enzyme is involved in nitric oxide (NO) biogenesis and oxidative stress 

response (Neill et al., 2008). The GolS4 enzyme acts as a generator of galactinol 

that contributes to the promotion of oxidative stress tolerance (Nishizawa et al., 

2008). Gene expression analysis showed that the two genes are induced by heat 

(Fig. 34G). Whereas the inductive effects of heat on the NIA1 gene was 

compromised in the aba3-1 and abi5-3 mutants, the GolS4 gene was still induced 

by heat in the mutants. Meanwhile, the effects of heat on the NIA1 and GolS4 

genes were detectably reduced in the fca-9 mutant. These results suggest that the 

NIA1 gene is another target of the FCA-ABI5 module in heat stress response.  

 Altogether, I conclude that FCA induces thermotolerance by promoting 

antioxidant accumulation via the ABA-mediated heat stress signaling pathway. In 

this signaling scheme, FCA promotes the binding of ABI5 to the promoter of the 

PER1 gene that is involved in ROS scavenging (Fig. 35). My data provide a novel 

role of FCA, which otherwise plays a major role in flowering time control 
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(Macknight et al., 1997), in ABA-mediated thermotolerance response in plants. 
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Figure 34. FCA regulates ABA-mediated ROS metabolism under heat stress. 

(A) The Venn diagram of the overlap between heat-regulated genes and FCA-

regulated genes under heat stress identified by transcriptome sequencing.  

(B) Heatmap of 455 genes coregulated by heat and FCA. The scale bar indicates 

the fold changes in log-2 value. 



 

110 

(C and D) Gene ontology (GO) analyses. GO analyses were classified with 

subcellular localization (C) and metabolic processes (D) in the pie charts. MT, 

mitochondria; N, nucleus; EX, extracellular matrix; PM, plasma membrane; CP, 

chloroplast; CW, cell wall; PT, plastid; RS, ribosome; ER, endoplasmic reticulum; 

GA, golgi apparatus; C, cytoplasm. 

(E) GO analysis of the coregulated genes in different metabolic processes. 

(F) Hormone responses of the coregulated genes as analyzed by the 

GENEVESTIGATOR analysis tool (https://www.genevestigator.com/gv/). ACC, 1-

aminocyclopropane-1-carboxylic acid; GA, gibberellic acid. 

(G) qRT-PCR analysis of representative FCA-regulated genes. One-week-old 

plants were exposed to heat (45oC, 90 min). Transcript levels were determined by 

qRT-PCR. Biological triplicates were averaged and statistically treated (t-test, 

*P<0.01). 
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Figure 35. Working scheme of FCA in thermotolerance response. 

Under heat stress, FCA interacts with ABI5 that regulates the genes encoding ROS 

detoxifying enzymes, resulting in antioxidant accumulation. In this working 

scenario, FCA facilitates the DNA binding of ABI5. It is likely that FCA also 

modulates additional factors (factor X) in the induction of antioxidant 

accumulation. 
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DISCUSSION 

 

FCA in the induction of thermotolerance  

Controlled RNA metabolism and editing, which is mediated by a group of RNA-

binding proteins and a variety of riboregulators, constitutes a critical part of the 

gene regulatory networks that govern plant responses to developmental cues and 

environmental constraints. One of the most extensively studied is the roles of the 

plant-specific RNA-binding proteins FCA and FPA in the alternative cleavage and 

polyadenylation of the FLC RNAs in flowering time control (Hornyik et al., 2010; 

Liu et al, 2010; Sonmez et al., 2011), which also requires FY, a critical component 

of the RNA cleavage and polyadenylation complexes (Simpson et al., 2003). FCA 

also mediates chromatin silencing at the FLC locus in concert with the lysine-

specific demethylase FLD (Liu et al., 2007). 

 In this work, I report s novel role of FCA, which is otherwise a central 

component of the flowering genetic pathway, in the induction of thermotolerance 

in Arabidopsis. In this process, FCA does not function as regulators of RNA 

processing and chromatin silencing but potentially acts as a transcriptional 

coregulator of heat-responsive genes through direct interactions with the ABI5 

transcription factor, which is a key component of the ABA-mediated abiotic stress 

signaling pathways (Brocard et al., 2002; Fujita et al., 2011). 
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 Molecular genetic studies has shown that FCA belongs to the autonomous 

flowering pathway, in which it accelerates flowering by suppressing the floral 

repressor FLC (Michaels and Amasino, 2001; Liu et al., 2010). It has recently been 

reported that the FCA activity is regulated at both the gene transcriptional and 

protein levels by ambient temperature (Jung et al., 2012). I found that the FCA 

gene is induced by high temperatures through the ABA signaling pathway that 

mediates antioxidant metabolism. While the FCA-overexpressing plants exhibited 

enhanced resistance to heat, the fca mutants showed increased heat-susceptibility, 

indicating that FCA is a component of the ABA-mediated heat stress signaling 

pathway. The expression of the FCA gene is also influenced by cold temperatures, 

while it is not affected by drought and high salinity conditions. It is therefore 

postulated that FCA is a constituent of the signaling pathways that mediate plant 

adaptation responses to a physiological range of high temperatures and temperature 

extremes. Extensive examination of the effects of varying temperatures on the 

phenotypic analysis of the fca mutants and the FCA gene expression and protein 

stability will help elucidate the physiological relevance of FCA in temperature 

stress responses. 

 Ambient temperature changes differentially influence the timing of 

flowering in different plant species. Whereas Narcissus tazetta var. chinesis 

requires high ambient temperature for flowing initiation (Li et al., 2013), 
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Chrysanthemum morifolium exhibits delayed flowering at high ambient 

temperature (Nakano et al., 2013). In Arabidopsis, ambient temperature regulates 

flowering time via the thermosensory pathway that includes FCA (Blázquez et al. 

2003). Accordingly, the flowering time of the fca mutants are insensitive 

temperature changes (Blázquez et al. 2003; Balasubramanian et al., 2006; Lee et al., 

2007). It is currently unclear whether the role of FCA in the thermosensory 

flowering is related with the FCA function in the thermotolerance response. Heat 

survival tests on the flowering mutants, such as ft, flc, and fy mutants, would clarify 

the uncertainty. 

 

Functional mechanism of FCA in antioxidant metabolism 

My data show that FCA mediates ABA signaling that triggers antioxidant 

accumulation, resulting in the induction of thermotolerance under heat stress 

conditions. Consistent with the signaling scheme, the level of ROS is reduced in 

the 35S:FCA transgenic plants but elevated in the FCA-deficient mutants. Notably, 

FCA physically interacts with the ABI5 transcription factor that activates the 

expression of the PER1 gene encoding the antioxidant enzyme, peroxiredoxin. A 

critical question was how FCA modulates the activity of ABI5 in the regulation of 

downstream genes involved in antioxidant biosynthesis. 

 It is well-known that the RNA-binding protein FCA plays a role in RNA 
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metabolism and chromatin remodeling in Arabidopsis (Bäurle et al., 2007; Liu et 

al., 2010). FCA requires its interacting partner FY, a WD repeat-containing protein 

homologous to the human CPSF (cleavage and polyadenylation specificity factor) 

(Simpson et al., 2003), to promote the selection of the proximal polyadenylation 

site in the FCA primary transcripts (Quesada et al., 2003) and to control alternative 

polyadenylation of the antisense transcripts at the FLC locus (Liu et al., 2010; 

Simpson et al., 2003). Another RNA-binding protein FPA is also required for the 

full activity of FCA in the RNA processing. In addition, the silencing of the FLC 

chromatin by FCA depends on the lysine-specific demethylase FLD (Liu et al., 

2007). I found that FCA physically interacts with the ABI5 transcription factor to 

facilitate the binding of ABI5 to the PER1 gene promoter. The previous and my 

own data suggest that FCA acts as a chaperone for the action of a diverse class of 

enzymes and regulators in the transcriptional and posttranscriptional control of 

plant responses to developmental and environmental signals. This view is also 

consistent with recent findings that a variety of RNA-binding proteins function as 

RNA chaperones or coregulators by assisting action of transcription factors 

(Lorković, 2009; McKenna and O'Malley, 2002)   

 ABI5 binds to the PER1 gene promoter, and its promoter binding was 

significantly eliminated in the fca mutants, resulting in the downregulation of the 

PER1 expression in the mutants. Based on these observations, I propose that FCA 
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acts as a transcriptional coactivator of the ABI5 transcription factor. Recent 

accumulating evidence indicates that a variety of proteins functions as 

transcriptional coregulators. The NONEXPRESSER OF GENES 1 (NPR1) is an 

ankyrin repeat-containing protein that serves as a salicylic acid receptor (Wu et al., 

2012). It regulates the transcriptional activity of the TGA2 transcription factor 

through protein-protein interactions (Després et al., 2000). Similar to the role of 

FCA in the regulation of the ABI5 activity, NPR1 enhances the binding of TGA2 to 

the promoter of the PATHOGENESIS-RELATED GENE 1 (PR1) gene. In humans, 

the heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein CoAA is a 

RNA-binding protein containing two RRM's (Iwasaki et al., 2001). CoAA interacts 

with the transcriptional coactivator, thyroid hormone receptor-binding protein 

(TRBP) (Iwasaki et al., 2001). Through interaction with transcription factors and 

transcriptional coactivators, CoAA regulates gene transcription and RNA splicing 

(Auboeuf et al., 2004; Verreman et al., 2011). It has been found that CoAA 

negatively regulates the DNA binding of the transcriptional regulators (Li et al., 

2009). 

 My data show that the PER1 gene, which is one of the ABI5 targets 

(Haslekås et al., 2003), plays a key role in the FCA-mediated ABA signaling. 

However, it is likely that the FCA-mediated ABA signals are not soly mediated by 

ABI5. Although heat sensitivity was elevated in both the fca and abi5 mutants, the 
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fca mutants were more sensitive to heat stress compared to the abi5 mutants. In 

addition, the levels of antioxidants, such as ascorbates and anthocyanins, were 

significantly reduced in the fca mutants but not in the abi5 mutants, suggesting that 

FCA modulates the accumulation of these antioxidants via an ABI5-independent 

pathway. Furthermore, my RNA-Seq analysis showed that the transcript levels of 

the NIA1 and GolS4 genes, which are involved in ROS metabolism (Neill et al., 

2008; Nishizawa et al., 2008), were considerably lower in the fca-9 mutants. 

Notably, the suppressive effects of heat stress on the NIA1 gene disappeared in the 

in the aba3-1 and abi5-3 mutants as well as in the fca-9 mutants, suggesting that 

whereas the NIA1 gene is another target of the FCA-ABI5 module under heat stress, 

the GolS4 gene is regulated by an ABI5-independent FCA-mediated heat signaling. 

It is therefore supposed that the thermotolerant phenotype of the fca mutants would 

be a cumulative effect of antioxidant accumulation and altered ROS metabolism. 
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ABSTRACT IN KOREAN (국문 초록) 

 

고온, 가뭄 등과 같은 환경적인 스트레스는 활성 산소의 생성을 

유발시킨다. 또한 활성 산소는 평상시에도 식물의 세포 내에서 광합성과 

호흡에 의한 에너지 대사 작용의 부산물로써 필연적으로 생성되기도 

한다. 식물은 이러한 활성 산소의 축적으로부터 야기된 단백질, 핵산, 

지질 등에 가해지는 산화적 스트레스에 대항하기 위해 다양한 항산화적 

기작을 발달시켜 왔다. 그러나 환경 스트레스 하에서 활성 산소의 

생성과 그 조절 메커니즘에 대해서는 아직도 많은 부분이 의문으로 남아 

있다.  

 살리실산은 최근 들어서 병 저항 반응뿐만 아니라 식물의 각종 

생장 단계 및 고온, 염분 등과 같은 비생물학적 스트레스에 대한 반응에 

있어서도 중요한 역할을 한다고 보고되어져 왔다. 염지에서의 발아에 

있어 살리실산의 역할을 정확히 규명하기 위해 야생종인 Col-0와 

더불어 살리실산의 생합성이 결여된 sid2 돌연변이체로 실험을 수행한 

결과, 50 μM 이하의 생리적인 농도에서 활성 산소량의 감소를 통해 

고염분으로 인해 늦어진 발아가 어느 정도 회복된 것을 확인할 수 

있었다. 염분 스트레스는 활성 산소의 축적을 유발하는데 살리실산은 

항산화 기작 조절을 통해 활성 산소량을 낮춤으로써 발아를 

촉진시킨다는 결론을 내릴 수 있었다.  
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 식물의 환경 변화에 대한 반응은 전사인자들에 의해 

조절되어지는 다양한 신호 전달 경로를 통해 이루어진다. 식물 체내에서 

스트레스 반응을 매개하는 대표적인 NAC 전사인자 중 하나인 

AtNTL4는 가뭄 하에서 전사 단계뿐만 아니라 단백질 수준에서 

막으로부터의 분리가 증가하는 것을 관찰하였다. 막결합 부분이 제거 된 

NTL4C의 과량발현체는 가뭄 스트레스에 대해 민감하게 반응하였고, 

활성 산소량의 증가와 잎의 노화현상이 빨라져 있는 것을 확인하였다. 

이와는 대조적으로 NTL4 유전자의 기능이 저해된 ntl4 

돌연변이체에서는 가뭄에 대한 저항성이 강해져 있었고 잎의 노화 

현상이 지연되는 표현형을 관찰할 수 있었다. 가뭄 스트레스 하에서의 

잎의 노화는 전체적인 식물 체내의 수분 함량의 균형을 유지시켜주고, 

영양분에 있어 어린 잎이나 씨앗으로의 재분배를 유도하게 되어 가뭄 

하에서 생존율을 높여 번식을 유지할 수 있는 식물 고유의 전략 중 

하나로 해석되어 진다. 이러한 결과들을 토대로 본 연구에서는 NTL4가 

활성 산소량의 조절을 통해 가뭄 스트레스 하에서의 잎의 노화 현상에 

있어서 중요한 역할을 지님을 밝혀냈다.  

 고온 스트레스는 활성 산소량의 증가를 야기시켜 식물의 생장이 

지연되고, 세포 내에 산화적 스트레스가 발생한다. 그러나 활성 산소의 

생성이 어떻게 고온에 대한 식물의 반응과 연결되어 있는지에 대해선 

많은 부분이 아직 밝혀지지 않았다. 본 연구를 통해 식물의 개화시기를 
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조절하는 유전자로써 잘 알려진 애기장대의 RNA 결합 단백질인 FCA이 

활성 산소량의 조절을 통한 고온 스트레스 반응에 있어서도 관여되어져 

있음을 제시하였다. FCA 과량 발현체는 고온에 대해 높은 저항성을 

가지고 있는 반면, fca knockout 돌연변이체는 고온 하에서 야생종 

Col-0에 비해 훨씬 민감하게 반응하였다. 또한 FCA 과량 발현체에서는 

고온 하에서 비타민 C와 같은 항산화 물질의 함유량은 높고 활성 

산소량은 낮아져 있는 반면, fca 돌연변이체에서는 그와 반대로 항산화 

물질의 함유량은 낮고 활성 산소량은 높아져 있었다. 이러한 결과들을 

토대로 FCA는 고온 하에서 증가된 활성 산소량을 낮춤으로 해서 

저항성을 부여하는데 기여한다는 사실을 증명하였다. 

 

주요어 : 활성 산소, 비생물학적 스트레스, 애기장대, 식물 호르몬, 

NTL4, FCA 
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