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ABSTRACT 

Prediction of Protein Interactions by Bioinformatics 

and Physical Chemistry Approaches 

 

Hasup Lee 

Department of Chemistry 

The Graduate School 

Seoul National University 

 

Proteins play key roles in many biological systems through protein interactions. 

Research of protein interactions can help to understand protein functions and 

develop new drugs. Protein interactions can be classified into homo-oligomer 

interactions, protein-peptide interactions, and protein-protein interactions. Protein 

interactions can be studied based on co-crystallized complex structure determined 

by X-ray crystallography or Nucleic Magnetic Resonance method, but 

experimentally determined structures cover only small part of the known protein-

protein interactions. Therefore, there are many interests to develop computational 

methods for predicting protein interactions. Predicting protein interactions can be 

classified into methods based on bioinformatics and physical chemistry approaches. 

According to bioinformatics approaches, proteins with high sequence similarity 

convey similar interfaces and similar interactions. According to physical chemistry 
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approaches, the funnel-like energy landscape is a general feature of protein 

interactions and protein interactions can be predicted by a global optimization 

method. In this thesis, I show bioinformatics and physical chemistry approaches for 

predicting homo-oligomer interactions, protein-peptide interactions, and protein-

protein interactions. Both bioinformatics approaches and physical chemistry 

approaches played important roles to achieve improvement in predicting protein 

interactions. 

 

Keywords: homo-oligomer interactions, protein-peptide interactions, protein-

protein interactions, bioinformatics, physical chemistry, global optimization 

Student Number: 2010-20290 
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1. Introduction 

Protein interactions play key roles in many biological systems. There are 

many interests to study protein interactions in biological system for controlling 

protein functions and developing new drugs (Ritchie 2008). Protein interactions 

can be classified into three categories: homo-oligomer interactions, protein-peptide 

interactions, and protein-protein interactions. 

Homo-oligomer interactions are very important in many biological 

systems, because many proteins self-assemble into oligomers in order to perform 

their biological functions. For example, dimer interfaces of certain enzymes form 

as substrate-binding pockets. Also, antibodies form oligomers to create additional 

binding sites, increasing effective binding affinity via a “multivalent effect”. Many 

membrane proteins perform signal transduction by forming protein oligomers. 

There are many diseases related to mis-assembly of homo-oligomers (Levy et al., 

2008; Poupon and Janin 2010). 

Protein-peptide interactions play important role in a broad range of 

biological processes, such as signaling pathways, immune system, apoptotic system, 

and post-translational modifications. The importance of such interactions is evident 

because of their involvement in critical human diseases, such as cancer and 

infections. Normally, protein-peptide interactions are mediated to small size of 

interface area. Because of the small sizes of protein-peptide interfaces, there have 

been many attempts to modulating protein-peptide interactions by small chemicals 

and synthetic peptides (London et al., 2013; Petsalaki and Russell 2008). 

Protein-protein interactions play key roles in various biological processes, 

such as cellular regulation, biosynthetic pathways, signal transduction, and DNA 
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replication. Also, protein-protein interactions are related to immune response, 

oligomer formation, and multi-molecular associations. To understand protein 

functions, it is essential to precisely describe protein-protein interactions in atomic 

details. (Keskin et al., 2005; Perkins et al., 2010) 

Protein interactions can be studied by experimentally determined co-

crystallized structure. However, despite the continuous increase in the number of 

deposited protein structures in the Protein Data Bank (PDB), the number of co-

crystallized protein structures is still not sufficient to offer in-depth understanding 

of a majority of important biological processes. Furthermore, they cover less than 

10% of the known protein-protein interactions in human. The large gap between 

the number of experimentally resolved structures for protein monomers and that for 

protein complexes in the PDB highlights the need to computational methods for 

predicting protein interactions that provide atomic structures using much less 

resources than experimental methods (Park et al., 2015). 

Computational methods for predicting protein interactions can be 

classified into two categories: bioinformatics approaches and physical chemistry 

approaches. For the bioinformatics approaches, sequence homologues convey 

similar interfaces and similar interactions. Some hotspot residues in interface 

regions guide to protein interactions. Theses residues are very conserved and called 

“interolog”. Therefore, searching good interolog is key to the success of predicting 

protein interactions by bioinformatics approach (Alsop and Mitchell 2015). For the 

physical chemistry approaches, funnel-like energy landscape is general feature of 

protein interactions, so native protein-peptide complexes and protein-protein 

complexes are the lowest free energy state. It is important to find global minimum 

in conformational space of energy landscape of protein-peptide complexes and 
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protein-protein complexes. In other words, study of predicting protein interactions 

can be classified as one of the global optimization problems (Lee et al., 2005). 

In this thesis, I will describe three computational methods: GalaxyGemini 

for predicting homo-oligomer interaction, GalaxyPepDock for predicting protein-

peptide interactions, and GalaxyPPDock for predicting protein-protein interactions. 

GalaxyGemini generates oligomer models from input protein tertiary structure 

based on template information. First, GalaxyGemini searches homologues of query 

tertiary structure by sequence alignment method. Then, it predicts homo-oligomer 

interactions from database based on tertiary/quaternary structure similarity. 

Sequence similarity score, secondary structure similarity score, and alignment 

coverage of query sequence and template sequence are used to calculate tertiary 

structure similarity, and interface alignment score are used to calculate quaternary 

structure similarity. If oligomer template is found, the oligomer models are 

generated by superimposing query tertiary structure onto each subunits of selected 

oligomer template. The overall GalaxyGemini method is described in chapter 2. 

GalaxyPepDock generates protein-peptide complex models from input protein 

structure and peptide sequence. First, it searches co-crystallized protein-peptide 

template structures based on structural similarity of input protein structure and 

interaction similarity of input protein and peptide. Second, it performs energy-

based optimization to generate more accurate models. The overall GalaxyPepDock 

method is described in chapter 3. GalaxyPPDock predicts protein-protein 

interactions based on physical chemistry approaches. It uses Cluster-Guided 

Conformational Space Annealing (CG-CSA), one of the most effective global 

optimization methods. The clusters are generated from initial structures and they 

evolved by communicating each other and changes number of members of each 

clusters. Instead of searching whole spaces of energy landscape, CG-CSA 
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concentrates on the nearby cluster regions. Effective sampling of CG-CSA can help 

to find global minimum and near-native structures. The overall GalaxyPPDock 

method is described in chapter 4. 
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2. GalaxyGemini: a program for protein homo-
oligomer structure prediction based on 
similarity 

 

2.1. Introduction 

Many proteins self-assemble into oligomers in order to perform their 

biological functions (Poupon and Janin 2010). For example, certain enzymes form 

substrate-binding pockets at their dimer interfaces (Snijder et al., 1999), whereas 

antibodies form oligomers to create additional binding sites, increasing effective 

binding affinity via a “multivalent effect” (Pluckthun and Pack 1997). Many 

membrane proteins also form oligomers for effective signal transduction (Heldin 

1995). Knowledge of the protein oligomeric state is therefore crucial for 

understanding protein function at the molecular level. 

In the case of experimental protein structures deposited in the Protein 

Data Bank (PDB), oligomeric states may be annotated by the authors or can be 

assigned from crystallographic information through the Protein Interfaces, Surfaces 

and Assembly (PISA) database (Krissinel and Henrick 2007). When such 

information is not available, e.g., for protein model structures, prediction of the 

oligomeric state is required. Recent studies have suggested that homology-based 

homo-oligomer prediction methods can be more powerful than ab initio methods 

(Morita et al., 2012). 

Methods for prediction of protein oligomeric structures were assessed in a 

blind fashion for the first time in the 9th Critical Assessment of Protein Structure 
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Prediction (CASP9) (Mariani et al., 2011). In this experiment, participants were 

asked to predict homo-oligomer structures from amino acid sequences. Surprisingly, 

no method performed better than naïve predictors that take the top-ranking protein 

by HHsearch (Soding 2005) as a template, implying that the current methods for 

prediction of oligomeric structures are ineffective, with substantial room for 

improvement. 

We developed a program named GalaxyGemini for predicting protein 

homo-oligomer structure, which shows clear improvement over other programs and 

naïve predictors tested on CASP9. 
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2.2. Methods 

2.2.1. Overall procedure of GalaxyGemini 

GalaxyGemini generates oligomer models from input protein tertiary 

structure based on template information. First, GalaxyGemini searches homologues 

of query tertiary structure using HHsearch (Soding 2005). Then, it determines 

whether query protein is monomer or oligomer using scoring function derived from 

HHsearch sequence score, HHsearch secondary structure score, alignment 

coverage of query sequence and template sequence, and interface alignment score. 

If query protein is determined as monomer, GalaxyGemini returns monomer. If 

query protein is determined as oligomer, clustering for oligomer templates is 

performed. Then, GalaxyGemini searches oligomer template based on scoring 

function and cluster sizes of oligomer templates, and subunit number prediction 

and contact prediction are performed based on selected oligomer template. Finally, 

the oligomer model is generated by superimposing query tertiary structure onto 

each subunits of selected oligomer template using TM-align (Zhang and Skolnick 

2005) (Figure 2.1). 

  



- 8 - 

 

 

Figure 2.1. Flowchart of GalaxyGemini 
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2.2.2. Oligomer database and test sets 

We constructed a database of known homo-oligomer structures containing 

22,233 proteins with mutual sequence identity < 70% from all the structures 

deposited in the PDB (Apr 10, 2010). Oligomer templates are selected from this 

database. For each crystal structure, the oligomeric state was assigned as the 

biological unit determined by authors if “REMARK 350” in PDB was available 

and assigned by PISA otherwise. When PISA predicted multiple oligomeric states, 

the top oligomeric state was used, instead of being removed from the database, to 

increase the coverage of the database. According to the previous benchmark results, 

PISA assignments can be regarded reliable with a success rate of 80~90%. For 

protein structures solved by NMR, the oligomeric states were defined as the 

assembled chain structures in the PDB entry. 

The database was generated before CASP9 experiment, so the current test 

results on the CASP9 set (96 proteins containing 43 monomers; Mariani et al., 

2011) can be fairly compared with CASP9 predictors including Naïve predictors. 

For parameter training on the PISA benchmark set (195 proteins containing 55 

monomers; Ponstingl et al., 2003), target proteins were removed from the oligomer 

template lists. 

 

2.2.3. Oligomer structure prediction 

For a given input protein, HHsearch is first run on the oligomer database. 

Whether the query protein is oligomeric or not is then predicted by a scoring 

function S1. If the top-ranking protein is monomeric, the query protein is predicted 

to be monomeric. Otherwise, an oligomer template is selected by ranking with a 
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second function S2. Prediction of the oligomeric state corresponding to each 

template is obtained by superimposing the input monomer structure onto the 

subunits of the oligomer template using the structure alignment tool TM-align 

(Zhang and Skolnick 2005). Finally, rigid-body energy minimization is performed 

to remove steric clashes at the oligomer interface as explained in Supplementary 

Information. 

The 2 scoring functions S1 and S2 are expressed as the weighted sums of 

Z-scores of 5 components. The first 4 components are derived from HHsearch: (i) 

HHsearch sequence score, (ii) HHsearch secondary structure score, (iii) ratio of 

aligned residues to the query sequence length and (iv) ratio of aligned residues to 

the sequence length of template candidate in the HHsearch alignment. These 

components account for sequence similarity to the query protein. The fifth 

component, called interface alignment score, accounts for tertiary and quaternary 

structure similarity by adding BLOSUM62 matrix scores (Henikoff and Henikoff 

1992) between the interface residues of template candidate and the residues of the 

query protein aligned to them. Addition of this component is important because 

interface residues are more conserved than other surface residues (Caffrey et al., 

2004). The weight parameters for the 2 scoring functions were determined by 

training on the PISA benchmark set with a grid search. 

 

2.2.4. Scoring function for predicting oligomer state 

The function S1 used for scoring candidate proteins is expressed as a 

weighted sum of the five components described in the main text as follows: 
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𝑆1 =  �10 𝑍Seq  +  15 𝑍SS  + 15(𝑍Cov1 + 𝑍Cov2) +  0 𝑍Interf     if monomer ratio >  0.6 
10 𝑍Seq  +  10 𝑍SS  + 15(𝑍Cov1 +  𝑍Cov2) +  2 𝑍Interf           otherwise                        (2.1) 

where ZSeq, ZSS, ZCov1, ZCov2 and ZInterf stand for the Z-scores of HHsearch sequence 

score, HHsearch secondary structure score, ratio of the aligned residues to the 

query sequence length, ratio of the aligned residues to the candidate sequence 

length and the interface alignment score defined as 

Interface alignment score = ∑ 𝑠(𝑖𝑗𝑁
𝑗  , 𝑗), 

𝑠�𝑖𝑗 , 𝑗� =  �𝐵𝐵𝐵𝑆𝐵𝐵62 �𝑎𝑎𝑖,𝑎𝑎𝑗�         if 𝑗  𝑖s interface residue
               0                                  otherwise                                   (2.2) 

where j is the residue index of the candidate protein, N is the total number of 

residues in the candidate protein, ij is the residue index of the query protein aligned 

to the jth residue of the candidate protein, aai and aaj are amino acid types of 

residues ij and j, respectively. The Z-score for each component is calculated for a 

background pool of top 2000 proteins ranked by HHsearch sequence score. 

The weight parameters of S1 depend on the ‘monomer ratio’ defined as 

monomer ratio =  ∑𝑍Seq(monomer)
∑𝑍Seq(monomer)+ ∑𝑍Seq(oligomer)                   (2.3) 

where ΣZSeq (monomer) and ΣZSeq (oligomer) are the sums of the Z-scores of 

HHsearch sequence scores for monomeric candidates and oligomeric candidates, 

respectively, with HHsearch probability > 90%. If there is no protein with 

HHsearch probability > 90%, the top ranking protein is selected as the oligomer 

template. 
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2.2.5. Scoring function for predicting homo-oligomer interactions 

 The second scoring function is used to select the oligomer template, 

which is used to predict the number and orientations of the subunits of oligomer. It 

has the same functional form as S1, but the weights are different as follows: 

𝑆2 =  �
10 𝑍Seq  +  10 𝑍SS  +  3(𝑍Cov1 + 𝑍Cov2) +  4 𝑍Interf      𝑖𝑖 (𝐶𝐵𝐶 >  0.7)           

  10 𝑍Seq  +  10 𝑍SS  +  3(𝑍Cov1 + 𝑍Cov2) +  7 𝑍Interf      𝑖𝑖 (0.4 < 𝐶𝐵𝐶 ≤  0.7)
  10 𝑍Seq  +  15 𝑍SS  +  3(𝑍Cov1 +  𝑍Cov2) +  10 𝑍Interf    𝑖𝑖 (𝐶𝐵𝐶 ≤  0.4)             

    (2.4) 

The weight factors for the second and the last terms vary depending on the 

target difficulty estimated by a parameter CLC (convergence of the largest cluster) 

defined as 

 𝐶𝐵𝐶 =  ∑ 𝑍Seqcandidates in the largest cluster
∑ 𝑍Seqall candidates

                             (2.5) 

which estimates the degree of convergence of the largest cluster of the template 

candidates. The summation is over proteins with HHsearch probability > 90%. 

Clustering is carried out by a greedy algorithm with similarity criterion (contact 

similarity) > 0.5.  Contact similarity between two protein structures A and B are 

calculated as 

Contact similarity =  𝑁(Contacts  in 𝐴 ∩ Contacts in 𝐵)
𝑁(Contacts in 𝐴)                     (2.6) 

where N( ) is the number of inter-subunit residue contacts (Cβ distance < 12 Å).  

The weight factors of scoring function S2 were determined by performing 

three-fold cross-validation. The sets for cross-validation was generated by 

randomly dividing the PISA benchmark set into three subsets maintaining 

approximate proportions of different oligomers, as reported in Table 2.1. Fixing the 

parameters for sequence score at 10, the number of trained parameters was three 
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for each of 3 difficulty ranges, as can be seen from Eq. 2.4. The parameters trained 

on the subsets were pretty robust, although variations in the third component, 

interface alignment score, were found. The final parameter set corresponds to that 

of the first fold, which shows the same average contact agreement score Sagree for 

both training and test sets. 
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Table 2.1. Weight factors for scoring function S2 determined by three-fold cross-
validation 

  

Number of proteins Average Sagree Parameters 

(SS, Cov, Interf) Training Test Training Test 

Fold1 

1-mer                         
2-mer                          
3-mer                                     
4-mer                                     
6-mer 

37                                                      
50                                               
16                                             
21                                 
6 

18                                                       
25                                               
8                                        

10                            
4 

0.63 0.63 
(10,3,4)        
(10,3,7)              

(15,3,10) 

Fold2 

1-mer                         
2-mer                          
3-mer                                     
4-mer                                     
6-mer 

37                                                      
50                                               
16                                             
20                                 
7 

18                                                       
25                                               
8                                        

11                            
3 

0.64 0.61 
(10,3,4)         
(10,3,7)                   
(15,3,6) 

Fold3 

1-mer                         
2-mer                          
3-mer                                     
4-mer                                     
6-mer 

36                                                      
50                                               
16                                             
21                                 
7 

19                                                       
25                                               
8                                        

10                            
3 

0.62 0.64 
(10,3,2)            
(10,3,7)                        

(15,3,10) 

All 

1-mer                         
2-mer                          
3-mer                                     
4-mer                                     
6-mer 

55                                                       
75                                               
24                                             
31                                 
10 

- 0.63 - 
(10,3,4)            
(10,3,7)            

(15,3,10) 
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2.2.6. Energy minimization 

An oligomer structure generated by superimposition onto the template 

structure may have steric clashes at the oligomer interface because the input 

monomer structure at the interface may be different from that of template. To 

remove such steric clashes, rigid-body energy minimization by a Monte Carlo 

method is performed fixing the internal structure of monomer subunits. The 

objective energy function is a sum of physicochemical energy implemented in the 

GALAXY (Park and Seok 2012) and harmonic restraints for the distances between 

Cα atoms at the interface (Cα distance < 14 Å) of the oligomer template. 

 

2.2.7. Assessment measures 

Identification of the correct number of subunits in an oligomer was 

evaluated by measuring the “relative accuracy” (AccRel). For more precise 

evaluation of the predicted structure, the “contact agreement score” (Sagree) was 

measured, which reflects the fraction of correctly modeled interface contacts in the 

complex.  

“Relative accuracy” (AccRel) is an accuracy measure for the number of subunits 

defined as 

𝐴𝐴𝐴𝑅el  =  Number of targets with correctly predicted  number of subunits
Number of targets  ×  100 (%)       (2.7) 

Contact agreement score (Sagree) is a measure for interface contact 

similarity between the native and predicted oligomer structures defined as 

𝑆agree  = ∑𝑓 (𝑥𝑖𝑖,𝑦𝑖𝑖)
∑𝑔(𝑥𝑖𝑖,𝑦𝑖𝑖)                                               (2.8) 
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𝑖�𝑥𝑖𝑗 ,𝑦𝑖𝑗�    =  � 1 − �𝑥𝑖𝑖− 𝑦𝑖𝑖�
max�𝑥𝑖𝑖,𝑦𝑖𝑖�

  𝑖𝑖 max�𝑥𝑖𝑗 ,𝑦𝑖𝑗� > 0
                 0              𝑖𝑖 max�𝑥𝑖𝑗,𝑦𝑖𝑗� = 0

                 (2.9) 

𝑔�𝑥𝑖𝑗, 𝑦𝑖𝑗� =  �1   𝑖𝑖 max�𝑥𝑖𝑗,𝑦𝑖𝑗� > 0
0   𝑖𝑖 max�𝑥𝑖𝑗,𝑦𝑖𝑗� = 0                            (2.10) 

where xij and yij are the numbers of contacts (Cβ distance < 12Å) between residue i 

and residue j that belong to different protein subunits for the native and the 

predicted oligomer structures, respectively. The number of residue i is same as the 

number of subunits. Sagree ranges from 0 to 1. Sagree = 1 corresponds to the exactly 

same contacts between the native and model structures, and Sagree = 0 to no match 

between contacts in the native and model structures. 
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2.3. Results and Discussion 

2.3.1. Performance of GalaxyGemini on training set and test set 

We tested on GalaxyGemini on PISA benchmark set and CASP9 oligomer 

set. GalaxyGemini increased relative accuracy from 75.4% (for the naïve predictor 

NaïveSeqScore that takes the HHsearch top ranker by sequence score) to 79.5% for 

the training set (PISA benchmark set) and from 69.8% to 77.1% for the test set 

(CASP9 set). The sum of Sagree over the targets increased from 74.7 to 88.0 for the 

training set and from 13.6 to 17.6 for the test set when “experimental” monomer 

structures were used as input (Figure 2.2). When tertiary structures predicted by 

GalaxyTBM (Ko et al., 2012) were used as input for the CASP9 set, the sum of 

Sagree increased from 9.4 to 12.1. Sum of Sagree of NaïveCoverage is 9.8, the largest 

value among CASP9 predictors, but sum of Sagree of GalaxyGemini is also larger 

than that of NaïveCoverage (Figure 2.3). GalaxyGemini outperforms all other 

CASP9 predictors and naïve predictors by the two measures, AccRel and Sagree, 

implying that GalaxyGemini may be successfully applied to “sequence-based” 

oligomeric structure prediction (Figure 2.4). 

A successful example of CASP9 target T0576 (3na2) highlights the 

strength of GalaxyGemini (Figure 2.5). This protein forms a dimer through an 

inter-chain β-sheet. The best template determined by the NaïveSeqScore (2grg) is 

monomeric, but GalaxyGemini successfully found a dimer template (3fm2), which 

has an oligomer structure similar to the native structure, resulting in a high Sagree of 

0.742. A tetramer target T0632 (3nwz) is also successful case. The best template 

selected by NaïveSeqScore (1vh9) is dimer, but the best template selected by 

GalaxyGemini (3f5o) is tetramer similar to the native structure, resulting in high 

Sagree of 0.708 (Figure 2.6). GalaxyGemini predicted inter-chain interactions of β-
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strand of tetramer target T0632 based on selected template. These results showed 

that GalaxyGemini searches better templates than NaïveSeqScore on both dimer 

and tetramer targets. 
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Figure 2.2. Target-based comparison of the performance of GalaxyGemini with 
that of a naïve predictors NaïveSeqScore as measured by Sagree for the (a) PISA 
benchmark set, (b) CASP9 set using the experimental monomer structure as input. 
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Figure 2.3. Target-based comparison of the performance of GalaxyGemini with 
that of a naïve predictors (c) NaïveSeqScore and (d) NaïveCoverage as measured 
by Sagree for the CASP9 set using the model structure as input. 
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Figure 2.4. Comparison of the performance of GalaxyGemini as measured by (a) 
relative accuracy and (b) sum of Sagree for the CASP9 set with those of CASP9 
predictors and 3 naïve methods which take the HHsearch top ranker by sequence 
score (NaïveSeqScore), sequence identity (NaïveSeqID), and coverage 
(NaïveCoverage). 
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Figure 2.5. A successful dimer example (T0576, 3na2) of GalaxyGemini. Subunits 
of the native structure are shown in black and gray and those of the predicted 
structure in pink and purple. 
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Figure 2.6. A successful tetramer examples (T0632, 3nwz) of GalaxyGemini. 
Subunits of the native structure are shown in black and gray and those of the 
predicted structure in pink and purple. 
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2.3.2. Contribution of score components 

Among the five components of the GalaxyGemini scores S1 and S2, 

HHsearch sequence score contributes the most to the performance in terms of both 

relative accuracy and sum of contact agreement score. Contributions of the 

additional components were analyzed by successively adding more components to 

the sequence score, as shown in Table 2.2. Although improvement by adding three 

additional terms on the training set (PISA set) is rather small for the relative 

accuracy of subunit numbers (improved by 5.4%) which is already high (75%) with 

the sequence score alone, improvement is more significant for the contact 

agreement score (improved by 18%). Among the additional components, the 

interface alignment score contributes the most to the improved performance on the 

training set (PISA set). Interestingly, secondary structure score turned out to be 

important in increasing the relative accuracy for the test set (CASP9 set). This 

seems to be related to the fact that better templates for template-based modeling 

were obtained by including secondary structure score for more difficult targets in a 

previous study (Ko et al., 2012). Overall, the weighted sum of all five energy 

components can maximize the performance for both training set and test set. 
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Table 2.2. Contribution of components of the GalaxyGemini scores 

Components 
AccRel Sum of Sagree 

PISA Set CASP9 Set PISA Set CASP9 Set 

Seq 75.4% 69.8% 74.7 13.6 

Seq + SS 72.8% 76.0% 72.4 15.1 

Seq + Cov 76.4% 71.9% 78.8 15.4 

Seq + Interf 78.5% 72.9% 86.9 14.9 

Seq + SS + Cov 75.9% 74.0% 74.7 15.6 

Seq + SS + Interf 76.9% 76.0% 87.3 17.7 

Seq + Cov + Interf 78.5% 74.0% 87.5 16.7 

Seq + SS + Cov + Interf 79.5% 77.1% 88.0 17.6 
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2.3.3. Oligomer states for improvement cases on CASP9 targets 

 We followed the assignments of oligomeric states made by the CASP9 

assessors, as ex explained in Supplementary Table S1 of the CASP9 assessment 

paper (Mariani et al., 2011). In Table 2.3, assignments for the CASP9 targets were 

showed for improved predictions of GalaxyGemini compared to NaïveSeqScore. 

All but one target had no ambiguities in the oligomer state assignment. The target 

T0632 for which both authors and PISA assigned two states was assigned to be a 

tetramer by CASP assessors after closer examination of PISA scores and structural 

details. Improvements are mostly on dimers for the CASP9 set (8 out of 12), but 

this fraction (67%) is smaller than that of dimers (78%) in CASP9 set, implying 

that GalaxyGemini may not be necessarily biased to dimers and GalaxyGemini 

also generate good models on tertiary or tetramer targets. 
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Table 2.3. Oligomeric state assignment of the CASP9 targets for which 
GalaxyGemini showed improved predictions over the naïve predictor 
NaïveSeqScore 

TARGET 
PDB 
ID 

Assignment 

Comment Author PISA CASP 

T0523 3mqo 2-mer 2-mer 2-mer 
 

T0536 3mxq 4-mer 4-mer 4-mer 
 

T0542 3n05 2-mer 2-mer 2-mer 
 

T0565 3npf 2-mer 2-mer 2-mer 
 

T0576 3na2 2-mer 2-mer 2-mer 
 

T0584 3nf2 2-mer 2-mer 2-mer 
 

T0586 3neu 2-mer 2-mer 2-mer 
 

T0592 3nhv 3-mer 3-mer 3-mer 
 

T0611 3nnr 2-mer 2-mer 2-mer 
 

T0632 3nwz 2,4-mer 2,4-mer 4-mer 
Authors assigned different states, but the 
tetramer is confirmed as most stable 
complex. 

T0635 3n1u 4-mer 4-mer 4-mer 
 

T0636 3p1t 2-mer 2-mer 2-mer 
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2.4. Conclusions 

We developed GalaxyGemini to predict homo-oligomeric structure from 

query protein tertiary structure. GalaxyGemini was successfully tested on both 

PISA benchmark set and CASP9 oligomer set. The performance of GalaxyGemini 

was better than other oligomer prediction methods tested in CASP9, implying 

wider applicability to oligomer state prediction from sequence. 
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3. GalaxyPepDock: a protein-peptide docking 
tool based on interaction similarity and 
energy optimization 

 

3.1. Introduction 

Protein-protein interactions that are mediated by short linear peptides of 

interacting partners are critical in a broad range of biological processes, such as 

signaling pathways, protein cellular localization and post-translational 

modifications (Miller et al., 2008; Petsalaki and Russell 2008; Scott and Pawson 

2009; Wen et al., 1995). The importance of such interactions is evident because of 

their involvement in critical human diseases, such as cancer and infections 

(Maclaine and Hupp 2011). Because of the small sizes of protein-peptide interfaces, 

such interactions can be modulated by small chemicals or synthetic peptides 

(Vlieghe et al., 2010; Yang et al., 2005). Therefore, effective computational 

modeling of protein-peptide interactions can provide useful information for 

understanding complex biological processes in molecular detail and for modulating 

protein-protein interactions for disease treatment. 

As in other areas of molecular modeling, it is very difficult to obtain 

reliable predictions by computational protein-peptide docking when prior 

knowledge of the interactions is not available. When there is no information on the 

binding site, putative binding sites must be searched for on the entire surface of the 

target protein. Such global docking methods show limited accuracy for predicting 

high-resolution complex structures, but successful predictions of at least part of the 

binding residues have been reported (Lavi et al., 2013; Petsalaki et al., 2009; Yan 
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and Zou 2015). When experimental or predicted data on binding site residues are 

available, such information can be used to constrain the docking to local regions of 

the protein surface (Trellet et al., 2013). These local docking methods usually 

require a model protein-peptide complex structure as input, whereas global docking 

methods require only a protein structure and a peptide sequence. Among the 

various protein-peptide docking methods developed so far, only a small number of 

methods are available, such as PepSite (Trabuco et al., 2012), PEP-SiteFinder 

(Saladin et al., 2014), and CABS-dock (Kurcinski et al., 2015) for global docking 

and Rosetta FlexPepDock (London et al., 2011; Raveh et al., 2010; Raveh et al., 

2011) and PepCrawler (Donsky and Wolfson 2011) for local docking. 

As increasing number of protein-peptide complex structures are being 

deposited in the PDB, the probability of finding protein-peptide complexes similar 

to a given target complex in the structure database increases. For example, 87% of 

the non-redundant protein-peptide complexes in the PeptiDB set (London et al., 

2010) have similar proteins, with a protein TM-score > 0.6, among the 

experimentally resolved structures that were published prior to the given complex. 

Because protein-peptide interactions are usually stabilized through hot spot 

interactions (London et al., 2010; London et al., 2013), the observed hot spot 

interactions in known protein-peptide complex structures can be useful for 

predicting interactions that involve a range of new variations in target proteins and 

peptides. 

The GalaxyPepDock utilizes information on protein-peptide interactions 

of similar proteins in the database of experimentally determined structures to 

generate high-resolution complex structures when reasonable template protein-

peptide complex structures can be found. A further refinement by GALAXY 
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energy-based optimization (Heo et al., 2013; Park et al., 2011; Park and Seok 2012; 

Park et al., 2014) enables the modeling of structural differences between the 

template and target complex structures by sampling the backbone and side chain 

flexibilities of both protein and peptide. GalaxyPepDock were successfully test on 

PeptiDB benchmark set, and showed good performance compared to other popular 

protein-peptide docking programs: PEP-SiteFinder, CABS-dock, and PepSite. Also, 

when tested on the CAPRI target 67, predictions of medium accuracy were made; 

this accuracy is among the best predictions made by human groups and superior to 

the best server predictions submitted during the CAPRI blind prediction 

experiment. For this target, the conformational change of the protein by peptide 

binding was also correctly predicted. 
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3.2. Methods 

3.2.1. Overall procedure of GalaxyPepDock 

GalaxyPepDock consists of two steps for protein-peptide docking. First, 

GalaxyPepDock searches crystallized protein-peptide template based on structural 

similarity of protein structure and interaction similarity of protein and peptide. 

Second step is energy-based optimization step. Protein-peptide models are 

generated based on molecular dynamics-based method using GalaxyTBM and 

GalaxyRefine. The energy function for energy-based optimization is summation of 

physics-based energy function used in GalaxyRefine and Cα restraints derived from 

selected template (Figure 3.1). 
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Figure 3.1. Flowchart of the GalaxyPepDock. 
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3.2.2. Template selection 

Templates for protein-peptide complex structure prediction are selected 

from the PepBind (Das et al., 2013) database with the following score for each 

complex structure in the database 

𝑆complex =  𝑍TM +  𝑍Inter                                        (3.1) 

where ZTM measures the protein structure similarity by the Z-score of the TM-score 

of a database protein structure when aligned to the target protein structure by TM-

align (Zhang and Skolnick 2005) and ZInter measures the interaction similarity of a 

database complex and the target complex when aligned to the former by the Z-

score of the interaction similarity score SInter defined below. Up to 10 complexes 

with Scomplex > 90% of the maximum value are selected as templates and used in the 

model-building procedure described in the next subsection. 

To measure the interaction similarity of a database complex and the target 

complex, the target complex is first aligned to the database complex by protein 

structure alignment and peptide sequence alignment. Peptide alignment is 

performed by gapless sequence alignment with a modified BLOSUM62 (Henikoff 

and Henikoff 1992) matrix score, by multiplying the weight of (1 + the number of 

hydrophobic or ionic protein residues contacting the given peptide residue in the 

template complex structure) to the BLOSUM62 matrix components with scores > 0. 

Hydrophobic (or ionic) protein-peptide residue pairs with at least one heavy atom 

pair within 5.0 Å (or 6.0 Å) are considered to be contacting following the PepBind 

criterion (Das et al., 2013). In this way, more emphasis is put on the peptide 

residues contributing to hot spot interactions than on other residues during peptide 

alignment. An example case of peptide alignment is provided in Figure 3.2. The 
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interaction similarity score SInter is then calculated by summing the interaction pair 

similarity score Si-j for all of the protein-peptide residue pairs (i-j) in contact in the 

template complex, as illustrated in Figure 3.3 for the example case. Si-j is measured 

by the similarities in the amino acids of the contacting pair (i-j) in the template 

complex and of the corresponding pair (i’-j’)  in the target complex aligned to the 

template and is defined as Si-j = Max[ B(i,i’)+B(j,j’), B(i,j’)+B(j,i’) ] , where B(i,i’) 

is the BLOSUM62 matrix component for the amino acid of residue i and that of 

residue i’. 
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Figure 3.2. Peptide alignment of GalaxyPepDock performed with a modified 
BLOSUM62 matrix 
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Figure 3.3. Calculation of interaction similarity score Sinter of GalaxyPepDock. 
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3.2.3. Model-building 

For each template, 50 model complex structures are first generated with 

the model-building tool of GalaxyTBM (Ko et al., 2012), using protein structure 

alignment and peptide sequence alignment. For the model-building optimization, 

restraints on the distances between interacting protein-peptide pairs are added to 

the GALAXY energy, with weights dependent on the interaction pair similarity 

score Si-j (Figure 3.4). Interaction pairs with higher similarities to the template tend 

to be conserved by stronger template-derived restraints, whereas the sampling of 

other parts of the structure is driven more by the physics-based energy than by 

template-derived information. Of the model structures generated by GalaxyTBM, 

10 structures are selected by choosing the structures with the best energy values for 

each template and are further refined following the GalaxyRefine (Heo et al., 2013) 

protocol. This refinement step allows for the adjustment of the backbone and side 

chain structures by repetitive molecular dynamics relaxations after side chain 

repacking. 
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Figure 3.4. GalaxyPepDock energy function for protein-peptide model building. 
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3.2.4. Evaluation measure 

To evaluate the performance of GalaxyPepDock, four measures were used: 

LRMSD (peptide RMSD), IRMSD (interface RMSD), fnat (fraction of native 

contact), and fsite (fraction of native binding site). For the definitions of 

acceptable/medium accuracy predictions, the following CAPRI criterion was used: 

acceptable prediction if (LRMSD < 4 Å or IRMSD < 2 Å) and fnat > 0.2 and 

medium prediction if (LRMSD < 2 Å or IRMSD < 1 Å) and fnat > 0.5 (Lensink and 

Wodak 2013). The values of LRMSD, IRMSD, and fnat were used to compare 

GalaxyPepDock to PEP-SiteFinder and CABS-dock, and the value of fsite was used 

to compare to PepSite. 
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3.3. Results and Discussion 

3.3.1. Performance compared to other protein-peptide docking programs 

The performance of GalaxyPepDock was compared with those of three 

available protein-peptide docking programs, PEP-SiteFinder, CABS-dock, and 

PepSite, which perform global protein-peptide docking and thus do not require the 

protein-peptide structure as input. Because PEP-SiteFinder, CABS-dock, and 

PepSite are ab initio methods that do not rely on template information, the 

comparison of the results presented here demonstrate the extent to which a 

similarity-based method such as GalaxyPepDock can be useful compared with the 

ab initio methods for the benchmarking set. For a fair comparison, the complexes 

in the PepBind database that were released after each target complex were 

excluded during template search in GalaxyPepDock prediction. The accuracy of the 

best model of the 10 generated models was evaluated for each method. 

The non-redundant set of PeptiDB (London et al., 2010) was first 

employed for comparison. Peptide docking to unbound protein structures was 

performed on 57 of the 103 PeptiDB complexes for which unbound protein 

structures are available in the structure database because re-docking peptides to 

bound protein structures is only of theoretical interest. For the 40 PeptiDB targets 

that have ≤ 10 residue-long peptides that are accepted by PepSite, GalaxyPepDock 

identified 75.4% of the binding site residues on average, compared with the 66.2%, 

64.1%, and 40.9% identified by PEP-SiteFinder, CABS-dock, and PepSite, 

respectively (Table 3.1). In terms of complex structure prediction, GalaxyPepDock 

generated structures with better than medium quality when measured by the 

CAPRI criterion (Lensink and Wodak 2013) for 27 of the 57 PeptiDB targets, 

compared with the 4 targets returned by PEP-SiteFinder and 0 targets returned by 
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CABS-dock. Also, GalaxyPepDock generated structures with better than 

acceptable quality for 37 of the 57 PeptiDB targets, compared with 9 targets 

returned by PEP-SiteFinder and 11 targets returned by CABS-dock (Table 3.2).  

These results showed that the performance of GalaxyPepDock is better than that of 

other ab-initio protein-peptide docking methods and template-based docking is 

very effective for many protein-peptide docking problems. 
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Table 3.1. Fraction of binding site residues correctly predicted by GalaxyPepDock, 
PEP-SiteFinder, CABS-dock, and PepSite on the 40 targets of the PeptiDB set that 
have available unbound protein structures and have ≤ 10 residue-long peptides. 

PDB ID Galaxy    
PepDock 

PEP-Site               
Finder 

CABS- PepSite Bound Unbound dock 
1ER8_E:I 1OEW_A 0.969 0.813 0.719 0.313 
1CKA_A:B 2DVJ_A 0.800 0.867 0.933 0.733 
1AWR_C:I 2ALF_A 1.000 0.813 0.813 0.750 
1CZY_C:E 1CZZ_C 1.000 0.000 0.318 0.000 
1DDV_A:B 1I2H_A 0.900 0.500 0.900 0.000 
1H6W_A:B 1OCY_A 0.742 0.742 0.613 0.677 
1KL3_C:G 2RTM_A 1.000 0.647 0.706 0.000 
1GYB_B:E 1GY7_B 0.125 0.250 0.250 0.250 
1LVM_A:E 1LVB_B 0.000 0.385 0.308 0.000 
1MFG_A:B 2H3L_A 1.000 0.941 0.882 0.647 
1N7F_B:D 1N7E_A 0.938 0.875 0.563 0.000 
1OAI_A:B 1GO5_A 0.200 0.933 0.800 0.333 
1NVR_A:B 2QHN_A 0.000 1.000 0.667 1.000 
1OU8_B:D 1OU9_A 0.000 0.810 0.667 0.000 
1UJ0_A:B 1X2Q_A 0.933 0.733 0.867 0.933 
1T4F_M:P 1Z1M_A 0.824 0.647 0.765 0.353 
1T7R_A:B 2AM9_A 0.938 0.875 0.813 0.000 
1VZQ_H:I 1JWT_A 1.000 0.231 0.615 0.000 
1TP5_A:B 1PDR_A 1.000 0.722 0.278 0.944 
1W9E_A:T 1R6J_A 0.875 1.000 0.750 0.000 
1YWO_A:P 1Y0M_A 1.000 1.000 0.923 1.000 
1X2R_A:B 1X2J_A 0.818 0.727 0.909 0.773 
2AK5_B:D 2G6F_X 1.000 0.833 0.750 1.000 
2B1Z_B:D 3ERT_A 0.692 0.000 0.231 0.000 
2C3I_B:A 2J2I_B 0.905 0.952 0.429 0.000 
2FGR_A:B 2FGQ_X 0.900 0.300 0.300 0.000 
2FOJ_A:B 2F1W_A 0.867 0.800 0.667 0.667 
2FVJ_A:B 2HWQ_A 1.000 0.933 0.933 0.400 
2H9M_C:D 2H14_A 0.900 0.800 0.650 0.800 
2DS8_B:P 2DS7_A 0.538 0.077 0.538 0.385 
2HO2_A:B 2E45_A 0.875 1.000 0.750 1.000 
2HPL_A:B 2HPJ_A 0.000 0.929 0.667 0.500 
2O9V_A:B 2O9S_A 1.000 0.750 0.833 0.833 
2P1T_A:B 1LBD_A 0.588 0.647 0.471 0.118 
2PUY_B:E 2YQL_A 1.000 0.889 0.556 0.500 
2R7G_C:D 1AD6_A 0.895 0.789 0.895 0.211 
2VJ0_A:P 1B9K_A 0.643 0.143 0.500 0.643 
2ZJD_A:B 1V49_A 0.750 0.500 0.792 0.000 
3D1E_A:P 3D1G_A 0.818 0.500 0.500 0.545 
3D9T_B:D 1QBH_A 0.714 0.143 0.143 0.071 

Average 0.754 0.662 0.641 0.409 
Median 0.885 0.770 0.667 0.369 
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Table 3.2. Performance of GalaxyPepDock compared to other docking programs 
on 57 peptiDB targets. 

  Galaxy PEP-Site CABS-
dock PepDock Finder 

Medium 
47.3% 7.0% 0.0% 

Quality 
Acceptable 

Quality 64.9% 15.8% 19.3% 

<LRMSD> 7.5 11.0 9.2 

<IRMSD> 3.4 4.7 4.2 

<Fnat> 0.545 0.256 0.227 

<Fsite> 0.763 0.625 0.640 
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3.3.2. Template search of GalaxyPepDock 

GalaxyPepDock searches protein-peptide templates based on Z-score 

summation of TM-score and interaction similarity score. We compared template 

search method to naïve method which only uses TM-score for template search. The 

average and median LRMSD of templates searched by GalaxyPepDock are 8.25 Å 

and 0.99 Å, those of templates searched by naïve method are 8.52 Å and 1.44 Å. 

The fraction of targets with less than 1.0 Å, less than 2.0 Å, and less than 4.0 Å of 

GalaxyPepDock are 50.9%, 59.6%, and 63.2%, those of naïve method are 42.1%, 

56.1%, and 59.6%. These results showed that TM-score contributes the most to the 

performance of template searching and adding interaction similarity score can help 

search better templates. 
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Table 3.3. LRMSD of template selected by highest TM-score and Z-score 
summation of TM-score and interaction similarity score on 57 PeptiDB targets 

ID 
(Query) 

LRMSD 
(TM-score) 

LRMSD 
(ZTM+ZInter) 

1ER8_E:I 0.72 0.56 
1CKA_A:B 4.49 1.64 
1AWR_C:I 1.75 0.26 
1SFI_A:I 0.11 0.25 
1CZY_C:E 23.72 0.34 
1DDV_A:B 8.35 8.35 
1EG4_A:P 25.51 40.60 
1JBU_H:X 17.34 25.76 
1H6W_A:B 30.90 6.82 
1KL3_C:G 0.56 0.56 
1GYB_B:E 14.65 26.49 
1LVM_A:E 32.17 29.47 
1MFG_A:B 0.78 0.78 
1N7F_B:D 0.94 0.94 
1OAI_A:B 19.72 19.99 
1NVR_A:B 29.00 29.00 
1NX1_A:C 30.36 30.36 
1OU8_B:D 23.55 26.20 
1UJ0_A:B 0.96 5.74 
1RXZ_A:B 0.34 0.34 
1SSH_A:B 2.90 0.47 
1T4F_M:P 0.94 0.94 
1T7R_A:B 1.18 1.18 
1VZQ_H:I 0.28 0.27 
1TP5_A:B 0.29 0.29 
1W9E_A:T 9.33 0.34 
1YUC_A:C 0.74 0.74 
1YWO_A:P 0.99 0.99 
1X2R_A:B 21.43 7.29 
2A3I_A:B 1.95 0.52 
2AK5_B:D 1.24 5.47 
2B1Z_B:D 25.62 25.62 
2C3I_B:A 0.19 0.19 
2B9H_A:C 34.37 2.39 
2FGR_A:B 0.19 0.19 
2FMF_A:B 0.70 0.70 
2FOJ_A:B 3.80 3.80 
2CCH_D:F 0.49 0.41 
2FVJ_A:B 0.26 0.45 
2H9M_C:D 0.17 0.17 
2DS8_B:P 13.99 13.99 
2HO2_A:B 8.35 5.54 
2HPL_A:B 22.88 66.81 
2O02_A:P 8.13 0.39 
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2O4J_A:C 0.17 0.17 
2O9V_A:B 1.13 1.13 
2P1K_A:C 0.59 0.59 
2P1T_A:B 0.37 0.12 
2P54_A:B 0.29 0.48 
2PUY_B:E 1.39 1.39 
2QOS_C:A 4.32 4.32 
2R7G_C:D 1.53 5.20 
2VJ0_A:P 39.69 52.35 
3BU3_A:B 1.44 1.73 
2ZJD_A:B 7.98 7.98 
3D1E_A:P 0.31 0.31 
3D9T_B:D 0.27 0.66 
Average 8.52 8.25 
Median 1.44 0.99 
Ratio (LRMSD<1.0Å) 42.1% 50.9% 
Ratio (LRMSD<2.0Å) 56.1% 59.6% 
Ratio (LRMSD<4.0Å) 59.6% 63.2% 
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3.3.3. Energy-based optimization of GalaxyPepDock 

Flexible-structure energy-based model-building procedure of 

GalaxyPepDock improved the predictions beyond that of a simple method that 

superimpose the target onto the template structure. The improvement in prediction 

accuracy achieved by additional energy optimization compared with the template 

superimposition method can be observed from the increased number of high-

accuracy/medium-accuracy/acceptable predictions from 5/22/36 to 6/27/37 and the 

improved average ligand-RMSD/interface-RMSD/(fraction of native contact) 

values from 8.6 Å/4.0 Å/0.485 to 7.6 Å/3.4 Å/0.545. These results showed that 

molecular dynamics-based optimization method with physicochemical energy 

functions can generated more accurate protein-peptide models compared to 

superimposition method (Table 3.4). 
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Table 3.4. Similarity of the query and the template protein structures measured by 
TM-score and ligand RMSD of the starting model and final model on the 57 
PeptiDB targets. 

ID 
(Query) 

ID 
(Template) 

TM-
Score 

Initial 
RMSD 

Final 
RMSD 

1ER8_E:I 3APR_E:I 0.917 1.57 0.84 
1CKA_A:B 1PRM_C:A 0.750 1.94 2.80 
1AWR_C:I 1FGL_A:B 0.989 1.44 1.37 
1SFI_A:I 2BTC_E:I 0.996 2.13 2.81 
1CZY_C:E 1QSC_A:D 0.926 3.28 1.04 
1DDV_A:B 1QC6_A:C 0.751 8.16 7.23 
1EG4_A:P 1BT6_A:C 0.617 51.13 42.96 
1JBU_H:X 8GCH_G:C 0.875 31.12 26.03 
1H6W_A:B 1FCH_A:C 0.150 16.88 13.92 
1KL3_C:G 1RST_B:P 0.911 2.14 3.69 
1GYB_B:E 1KL5_A:E 0.434 28.16 27.02 
1LVM_A:E 1FN8_A:B 0.634 25.20 26.44 
1MFG_A:B 2PDZ_A:B 0.796 6.04 2.68 
1N7F_B:D 1BE9_A:B 0.683 3.08 1.23 
1OAI_A:B 1H27_B:E 0.176 26.97 23.36 
1NVR_A:B 1QMZ_A:E 0.737 29.04 28.90 
1NX1_A:C 1NPQ_A:B 0.621 19.70 19.25 
1OU8_B:D 3SEM_A:C 0.539 26.01 25.47 
1UJ0_A:B 1OEB_B:C 0.850 0.88 1.00 
1RXZ_A:B 1ISQ_A:B 0.907 2.99 1.71 
1SSH_A:B 3GBQ_A:B 0.823 2.16 1.38 
1T4F_M:P 1YCR_A:B 0.801 1.14 1.30 
1T7R_A:B 1T5Z_A:B 0.992 1.18 1.13 
1VZQ_H:I 1GHW_H:I 0.995 0.53 1.37 
1TP5_A:B 1BE9_A:B 0.792 1.29 0.97 
1W9E_A:T 1OBY_A:P 0.963 0.41 0.79 
1YUC_A:C 1YOW_A:B 0.947 2.37 2.03 
1YWO_A:P 1SSH_A:B 0.811 3.75 3.54 
1X2R_A:B 1P22_A:C 0.493 11.27 8.18 
2A3I_A:B 1KV6_A:C 0.926 2.98 3.91 
2AK5_B:D 2SEM_A:C 0.856 1.49 1.19 
2B1Z_B:D 1X7E_A:C 0.894 0.40 4.78 
2C3I_B:A 2BZK_B:A 0.970 1.00 0.80 
2B9H_A:C 1UKH_A:B 0.854 5.56 4.79 
2FGR_A:B 1E54_A:B 0.990 0.99 1.49 
2FMF_A:B 2FLW_A:B 0.968 0.33 1.31 
2FOJ_A:B 1YY6_A:B 0.949 4.74 4.54 
2CCH_D:F 1OKW_B:E 0.989 2.86 1.46 
2FVJ_A:B 1ZGY_A:B 0.736 0.90 0.96 
2H9M_C:D 2G9A_A:B 0.967 0.63 0.94 
2DS8_B:P 2FSA_A:P 0.186 14.89 14.16 
2HO2_A:B 1K9Q_A:B 0.565 14.05 16.73 
2HPL_A:B 2AKA_A:L 0.095 69.46 41.79 
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2O02_A:P 2C23_A:P 0.659 7.85 2.06 
2O4J_A:C 1RKG_A:C 0.817 0.67 0.91 
2O9V_A:B 3GBQ_A:B 0.868 1.97 1.16 
2P1K_A:C 1CMI_A:C 0.814 2.11 3.31 
2P1T_A:B 1XIU_A:E 0.741 0.76 1.32 
2P54_A:B 1K7L_A:B 0.754 1.78 1.98 
2PUY_B:E 2G6Q_A:B 0.633 4.48 3.08 
2QOS_C:A 1VWR_B:P 0.587 6.52 6.20 
2R7G_C:D 1N4M_A:C 0.497 3.64 3.49 
2VJ0_A:P 1KY6_A:P 0.949 11.72 10.88 
3BU3_A:B 2Z8C_A:B 0.371 3.54 4.44 
2ZJD_A:B 2ASQ_A:B 0.735 9.68 8.32 
3D1E_A:P 1OK7_B:C 0.989 1.79 1.58 
3D9T_B:D 1XB1_A:G 0.604 1.70 3.70 

Average  8.60 7.57 
Median  2.98 2.81 
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3.3.4. Performance of GalaxyPepDock on CAPRI target 

GalaxyPepDock was also tested on the CAPRI target 67 (PDB ID: 4N7H), 

and a medium-accuracy prediction was made. Compared with template-

superimposed models, the quality of the model was improved by energy 

optimization from acceptable to medium accuracy, with improvements in ligand-

RMSD/interface-RMSD/(fraction of native contact) values from 2.9 Å/1.5 Å/0.500 

to 1.8 Å/1.0 Å/0.688. Also, GalaxyPepDock predicted hydrophobic interaction of 

Leucine and polar interaction of Tryptophan and Histidine. In the CAPRI blind 

prediction experiment, 6 of the 44 registered groups submitted medium-accuracy 

models. The best server predictions were only of acceptable quality (Table 3.5; 

Figure 3.5). 
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Table 3.5. Prediction made by GalaxyPepDock on the CAPRI target 67 compared 
with those submitted by top 3 servers and top 6 human groups in the CAPRI blind 
prediction experiment. 

 LRMSD IRMSD fnat Quality1) 
GalaxyPepDock 1.80 1.01 0.688 ** 

 
Server Predictors     

SwarmDocK 2.92 1.37 0.625 * 
HADDOCK 3.18 1.94 0.500 * 

ClusPro 4.18 1.49 0.688 * 
 

Human Predictors     
Bates 1.12 0.80 0.688 ** 

Furman 1.27 0.93 0.938 ** 
Zhou 1.40 1.11 0.688 ** 
Niv 1.43 0.99 0.688 ** 

Zacharias 1.62 0.80 0.875 ** 
Vajda 1.69 1.23 1.000 ** 

1) Model quality defined as CAPRI criterion (Medium quality (**), 
Acceptable quality (*)). 
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Figure 3.5. (a) Native structure and (b) GalaxyPepDock model on CAPRI target 67. 
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3.3.5. Limits of template-based docking 

GalaxyPepDock is a template-based protein-peptide docking, so it means 

that the performace of GalaxyPepDock is influenced by the quality of template 

structure (Table 3.6). The success ratio of GalaxyPepDock was 64.9%, but the 

value was increased on targets having high structural similar templates. 

GalaxyPepDock failed to predict protein-peptide interactions on targets having low 

similar templates (TM-score < 0.6). These results showed that template-based 

protein-peptide docking is only effective on targets having high similar templates, 

and it is need to develop ab initio docking which performs well on targets having 

low similarity templates. 
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Table 3.6. Performance of GalaxyPepDock dependent on template quality 

TM-score cut Number of 
Success targets 

Number of 
targets Success ratio 

TM-score > 0.0 37 57 64.9% 
TM-score > 0.6 37 51 72.5% 
TM-score > 0.7 35 44 79.5% 
TM-score > 0.8 33 40 82.5% 
TM-score > 0.9 25 29 86.2% 
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3.4. Conclusions 

GalaxyPepDock is a similarity-based protein-peptide docking program that 

performs additional flexible-structure energy-based optimization. The effective 

combination of database search and physics-based optimization allows for a 

superior performance compared with the existing protein-peptide docking methods 

when complexes involving similar proteins can be found in the database. 
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4. GalaxyPPDock: a protein-protein docking 
program based on cluster-guided 
conformational space annealing 

 

4.1. Introduction 

Proteins play key roles in various biological processes, such as enzyme 

catalysis (Negri et al., 2010) and signal transduction (Pawson and Nash 2000), 

through interactions with other proteins (Ozbabacan et al., 2011; Perkins et al., 

2010). In order to understand protein functions, it is essential to precisely describe 

protein-protein interactions in atomic detail, which is the ultimate goal of protein-

protein docking studies. For decades, many protein-protein docking programs have 

been developed to deliver atomic models of protein-protein interactions with 

various types of sampling approaches. There are many FFT-based docking program, 

including FTDock (Gabb et al., 1997), ZDOCK (Chen et al., 2003), PIPER 

(Kozakov et al., 2006), DOT (Mandell et al., 2001), and GRAMM (Vakser 1997). 

There are also methods using geometric hash, PatchDock (Schneidman-Duhovny et 

al., 2005) and LZerD (Venkatraman et al., 2009), Monte Carlo simulation, 

RosettaDock (Gray et al., 2003), FireDock (Andrusier et al., 2007), and FiberDock 

(Mashiach et al., 2010), and molecular dynamics simulation, HADDOCK 

(Dominguez et al., 2003). Despite their efforts, however, conformation sampling 

still remains as one of the most challenging problems in protein-protein docking 

study (Gray 2006; Huang 2014). Even with such diverse sampling approaches 

attempted to date, still searching conformation space in protein-protein docking 

problem - spanned by relative orientation and internal flexibility of the interacting 
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partners - is formidable (Bonvin 2006). A powerful global optimization method can 

therefore be indispensable to tackle this challenge. 

Conformational Space Annealing (CSA) (Lee et al., 1998) is regarded as 

one of the powerful global optimization methods that have been applied to general 

biological modeling studies. The key idea of CSA is to run a broad sampling in 

early stage and then to gradually focus on low-energy conformations. Sampling 

space is diverse in early stage and becomes gradually narrowed down. CSA has 

been successfully applied to many biological problems, such as protein structure 

prediction (Joo et al., 2009; Ko et al., 2012; Park et al., 2011; Park and Seok 2012; 

Park et al., 2014) and protein-ligand docking (Lee et al., 2005; Shin et al., 2011; 

Shin and Seok 2012; Shin et al., 2013). Previously, Lee et al applied CSA to 

protein-protein docking study (Lee et al., 2005) which was tested on round 5 of 

Critical Assessment of Prediction of Interactions (CAPRI), a community-wide 

experiment for evaluating the performance of protein-protein docking programs. 

However, at the moment the method was premature and only one of four targets 

have got acceptable result in CAPRI criteria. This suggests that applying CSA 

algorithm to protein-protein docking problem is not straightforward, but requires 

additional developments in order to take into account of specific features that the 

problem may possess. 

Then what is particular aspect of protein-protein docking problem by 

understanding which we can systematically enhance the sampling performance? 

The main idea we took advantage of in this study is that conformational space in 

protein-protein docking problem can be dramatically reduced into a set of smaller 

sub-spaces with highest feasibilities. Feasibility of a model complex is strongly 

related to geometric or electrostatic complementarity between proteins unless 
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either protein undergoes huge conformational change upon binding. Moreover, 

those feasible spaces are not uniformly distributed but are found as discrete 

“patches” in whole space (Caffrey et al., 2004; Jones and Thornton 1997; Malod-

Dognin et al., 2012). Therefore, based on this assumption, we can be reformulated 

the problem as more tractable one: to run global optimization on a limited 

conformational space described above. 

In this work, we developed a protein-protein docking program named 

GalaxyPPDock using cluster-guided CSA (CG-CSA) sampling method for protein-

protein docking. CG-CSA makes clusters from initially sampled structures and 

evolves them each cycle. Instead of annealing whole conformational space as in 

regular CSA, CG-CSA more focuses on annealing conformation space of each 

cluster. During the evolving step, these clusters communicate each other and 

changes number of members to gradually more concentrates on low-energy clusters. 

This idea makes high-energy clusters to survive and enables to search on multiple 

local minima efficiently at the same time. If energy function is relatively accurate, 

focusing on low-energy clusters can generate near-native predicted models. If 

energy function is inaccurate and global minimum is far from near-native still local 

minimum is close from near-native, high-energy clusters can find near-native 

structures. Accordingly, GalaxyPPDock can tolerate incorrectness of energy 

function to deliver correct solution as one of the clusters. Therefore, CG-CSA 

implemented in GalaxyPPDock can generate near-native protein complex models 

in cases that both energy functions is relatively accurate and energy function is 

relatively inaccurate.  
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4.2. Methods 

4.2.1. Overall procedure of GalaxyPPDock 

GalaxyPPDock consists of two steps for protein-protein docking. The first 

step is initial docking for find putative binding sites. In the initial docking step, 

rigid-body docking performed using ZDOCK. Then, complexes generated by 

ZDOCK are rescored by Z-score summation of ZDOCK score (Mintseris et al., 

2007), DFIRE score (Zhou and Zhou 2002), and electrostatic potential (MacKerell 

et al., 1998). Then, 50 complexes are selected by clustering method by 

NMRCLUST (Kelley et al., 1996) and are used to initial bank for next step. The 

second step is global optimization step for generate more accurate protein complex 

structure. In the second step, GalaxyPPDock uses CG-CSA sampling method for 

protein-protein docking. CG-CSA makes clusters from initially sampled structures 

and evolves them each cycle to find global minimum of energy land scape of 

protein-protein interaction. The energy used in GalaxyPPDock is hybrid energy of 

physics-based energy function and knowledge-based scoring function. After global 

optimization, 10 protein complex models are selected by their energy value and 

clustering method (Figure 4.1). 
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Figure 4.1. Flowchart of GalaxyPPDock 
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4.2.2. Sets of protein complexes used for method development 

A set of 121 unbound/unbound complexes (rigid-body targets, classified 

by ZDOCK criterion) from ZDOCK benchmark set 4.0 (Hwang et al., 2010) and 

20 complexes (unbound/unbound and unbound/bound targets) from CAPRI round 

1~19 (Janin et al., 2003; Janin 2005; Janin 2007; Janin 2010) was used as a 

benchmark set to evaluate performance of GalaxyPPDock. Total 141 complexes 

were randomly divided into a training set of 35 complexes and a benchmark test set 

of 106 complexes. Conformational decoy sets for the 35 training set complexes 

generated by RosettaDock (500 decoy conformations for each complex) and 

another set of 80 complexes (Su et al., 2009) with known structures and binding 

affinities were used to train energy parameters. The test set of 106 complexes was 

used to validate the performance of GalaxyPPDock by comparing with ZDOCK 

(Mintseris et al., 2007), RosettaDock (Gray et al., 2003), FireDock (Andrusier et 

al., 2007), and FiberDock (Mashiach et al., 2010). GalaxyPPDock was also 

compared with the previous CSA method by Lee et al. on four CAPRI targets (Lee 

et al., 2005) and with other CAPRI predictors on 7 targets from the latest CAPRI 

rounds 22~27 (Janin 2013). 

 

4.2.3. Training of energy parameters 

GalaxyPPDock employs a hybrid energy function that combines physics-

based energy Ephysics and knowledge-based energy Eknowledge as follows: 

𝐸GalaxyPPDock =  𝐸physics + 𝐸knowledge                             (4.1) 

𝐸physics =  𝑤LJ𝐸LJ + 𝑤Coul𝐸Coul + 𝑤SA𝐸SA                           (4.2) 
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𝐸knowledge =  𝑤DFIRE𝐸DFIRE +  𝑤Hbond𝐸Hbond + 𝑤cons𝐸cons +  𝑤rot𝐸rot  (4.3) 

where ELJ and ECoul are the Lennard-Jones energy and the Coulomb electrostatic 

potential energy, respectively, with the CHARMM22 force field parameters 

(MacKerell et al., 1998), ESA is the implicit solvation free energy described by 

solvent-accessible surface area with atomic solvation parameters (Zhou and Zhou 

2002), EDFIRE is the distance-dependent statistical pair potential DFIRE (Zhou and 

Zhou 2002), EHbond is the knowledge-based orientation-dependent hydrogen bond 

energy (Kortemme et al., 2003), Econs is the sequence conservation propensity score 

derived from the PSI-BLAST profile (Liang et al., 2009), and Erot is the statistical 

side chain rotamer energy derived from the backbone-dependent rotamer library 

(Eswar et al., 2006). The energy parameters (wLJ, wcoul, wSA, wDFIRE, wHbond, wcons, 

wrot) = (1.0, 0.15, 4.5, 8.0, 6.0, 3.0, 3.0) were determined as explained below. 

 The six out of seven energy weight parameters (wLJ, wcoul, wSA, wDFIRE, 

wHbond, wcons) were determined first, and the rotamer energy was added afterwards 

during our participation in the CAPRI experiments (after round 20) to improve the 

accuracy of local side chain structures. The six weights were searched for on 

parameter grids to maximize the product of (i) the Pearson correlation coefficient 

between the experimental binding free energy and the GalaxyPPDock energy for 

the binding affinity set of 80 complexes (Su et al., 2009), (ii) the Pearson 

correlation coefficient for the energy-RMSD distribution of the 500 decoys 

averaged over the 35 training set complexes, and (iii) the absolute value of the Z-

score of the average energy of the 20 decoy conformations closest to the 

experimental structure in the energy-RMSD distribution of the 500 decoys 

averaged over the 35 training set complexes (Table 4.2). 500 decoys were 

generated by RosettaDock starting from initial complex which unbound tertiary 
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structure superpose onto native complex. Fixing the six weights, the rotamer 

energy weight wrot was finally determined to improve local side-chain accuracy of 

CG-CSA. 
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Table 4.1. Weight factors of GalaxyPPDock energy function 

  ELJ EDFIRE Econs ESA Eelec EHbond 
ELJ+EDFIRE 
+Econs+ESA EGalaxyPPDock 

BA set 0.663 0.685 0.526 0.606 0.003 0.104 0.726 0.724 

Rosetta 
set 

0.551                    
(-1.422) 

0.610              
(-1.371) 

0.504            
(-1.005) 

0.486                
(-1.312) 

0.232               
(-0.768) 

0.193                    
(-0.626) 

0.603                   
(-1.369) 

0.603                           
(-1.381) 

The values of the first row are Pearson correlation between RMSD and each energy 
component on 80 targets of Binding affinity set. The values out of bracket in the 
second row are Pearson correlation between RMSD and each energy component of 
500 conformations generated by RosettaDock on training set. The values out of 
bracket in the second row are Z-score of the average energy of the 20 
conformations closest to the native structures from 500 conformations generated by 
RosettaDock on training set. 

  



- 66 - 

 

4.2.4. Overview of the conformational space annealing 

It is worthwhile to briefly go through the overall procedure of the general 

conformational space annealing (CSA) global optimization algorithm first before 

we describe the cluster-guided conformational space annealing (CG-CSA) 

algorithm in in detail the next subsection. Performance of the regular CSA (R-CSA) 

method is also compared with the CG-CSA method in a benchmark test. 

In CSA, a fixed number of local minimum conformations called “bank” is 

evolved by gradually focusing on low-energy regions in the conformational space. 

Each bank member can be roughly considered as a representative low-energy 

conformation covering a conformational hyper-space of radius Dcut, where Dcut is a 

parameter used to control broadness of conformational search. Initial bank is 

desired to be composed of diverse conformations and may often be generated by 

random sampling. At each CSA step, new trial conformations are generated by 

crossovers and mutations of bank conformations, and the bank is updated by 

comparing each trial conformation with current bank members. If a trial 

conformation is < Dcut from any bank conformation, it replaces the bank 

conformation if it has lower energy and is discarded otherwise. If a trial 

conformation is > Dcut from all bank conformations, it replaces the highest-energy 

bank conformation. If Dcut is large, low-energy trial conformations tend to replace 

close-by bank conformations, leaving high-energy conformations at large distances. 

If Dcut is small, they tend to replace high-energy bank conformations leaving low-

energy conformations at relatively close distances. By starting with a large value of 

Dcut, diverse high energy regions are allowed to be explored at the early stage, and 

low energy regions are searched more heavily as CSA iteration proceeds with 

gradually decreasing Dcut. The CSA iteration is considered converged if all bank 
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conformations have been used as seeds and are not further replaced by new 

conformations. 

For CSA, a distance measure for comparing conformations thus has to be 

defined. In the current work, the distance between two docking conformations i and 

j is defined as 

𝐷𝑖𝑗 =  �𝐓𝑖 − 𝐓𝑗� +  𝑤rot�𝐑𝑖 − 𝐑𝑗�                                  (4.4) 

Where T is the values for the three translational degrees of freedom 

expressed as the center of Cα coordinates of the ligand protein (the smaller protein) 

when the center of the receptor protein (the larger one) is fixed at the origin, R is 

the values for the three rotational degrees of freedom expressed as the rotational 

angles of the current ligand pose relative to the reference pose about the x-, y-, and 

z-axis, and the weight wrot is defined as the ratio between the average translational 

distance to the average rotational distance for the initial bank conformations 

〈�𝐓𝑖 − 𝐓𝑗�〉    〈�𝐑𝑖 − 𝐑𝑗�〉� . 

 

4.2.5. Cluster-guided conformational space annealing 

In the current CG-CSA, clusters are defined from the initial bank 

generation stage. 200 complex conformations are selected from the 3,600 

complexes generated by ZDOCK based on the Z-score summation of ZDOCK 

score, DFIRE potential, and Coulomb potential and are clustered by NMRCLUST 

(Kelley et al., 1996), and 50 initial bank conformations are chosen by picking 

conformations from each cluster in proportion to the cluster size. In this work, the 

number of clusters ranged from 2 to 10. 
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 At each CSA iteration step, 200 trial conformations are generated from 20 

“seed” conformations selected from the clusters proportional to the cluster sizes. 

Seeds are selected to have large mutual distances to produce diverse conformations. 

For each seed conformation, (i) 5 trial conformations are generated by cross-over 

of T and R of the seed with those of 5 randomly selected partner conformations, (ii) 

3 trial conformations by perturbation of T or R 3 times, and (iii) 3 trial 

conformations by cross-over of interface side-chain χ angles of the seed with 2 

randomly selected partners. Partners are selected randomly from the current bank 

independent of cluster for generation of diverse low-energy conformations. After (i) 

and (ii), side-chain conformations are adjusted by removing clashes in the rotamer 

space (Dunbrack and Cohen 1997). All trial conformations are then energy 

minimized by gradient-based local minimization (Fuhrmann et al., 2009) in the 

space of rigid-body translation/rotation and flexible interface side-chain χ angles. 

Rigid-body rotation is described by exponential mapping of quaternion (Fuhrmann 

et al., 2009). Flexible interface residues are selected from the most common 

interface residues of the initial bank conformations (receptor and ligand residues 

with Cα distances < 10 Å), and the number of flexible residues is set to the average 

number of the interfaces residues in the initial bank. 

With the new trial conformations generated as described above, the CG-

CSA bank is updated within cluster (intra-cluster update) at each iteration, and 

inter-cluster update is allowed at every other iteration. Each trial conformation is 

assigned to the cluster that the closest bank member belongs to. In the intra-cluster 

update, the same update rule of general CSA is applied within each cluster, i.e., the 

closest bank conformation and the highest-energy conformation are selected within 

the cluster. In the inter-cluster update, a trial conformation that do not replace any 

bank conformation in the same cluster gets a chance to be compared with the 
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highest-energy conformation in other clusters. If the trial conformation has lower 

energy, it becomes a new bank member, increasing the size of the cluster by one, 

and decreasing the size of the other cluster. Changes in cluster sizes are limited to 

the maximum of 1 change at each iteration for slow change. In this way, the size of 

the low-energy cluster can become larger as CG-CSA proceeds except that the 

sizes of clusters > 20 or < 5 members are not allowed to change to keep sub-

optimal clusters. 

Finally, 10 structures are selected by clustering the structures of CSA final 

bank using greedy algorithm with ligand RMSD 5Å cutoff. The cluster having 

lowest energy complex structure is selected at first, then, other nine clusters are 

selected by cluster size. Finally, the lowest energy representatives from each cluster 

are selected. 

 

4.2.6. Assessment measure 

To evaluate the performance of GalaxyPPDock, three measures were used: 

LRMSD (peptide RMSD), IRMSD (interface RMSD), and fnat (fraction of native 

contact). For the definitions of acceptable/medium/high accuracy predictions, the 

following CAPRI criterion was used: acceptable accuracy if (LRMSD < 10 Å or 

IRMSD < 4 Å) and fnat > 0.1, medium accuracy if (LRMSD < 5 Å or IRMSD < 2 Å) 

and fnat > 0.3, and high accuracy if (LRMSD < 1 Å or IRMSD < 1 Å) and fnat > 0.5 

(Lensink and Wodak 2013). 
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4.3. Results and Discussion 

4.3.1. Performance of cluster-guided conformational space annealing 

We first compare performances of CG-CSA with those of R-CSA on the 

35 targets of training set and 106 targets of test set. Performances are compared in 

terms of the percentage of targets for which at least one docking conformation out 

of top 10 conformations are predicted with better than acceptable (or medium) 

quality. 

According to Table 4.2, CG-CSA generated models with better than 

acceptable quality for 42.9%, compared to 25.7% for R-CSA on the training set. 

The average (LRMSD/IRMSD/fnat) of CG-CSA is (18.0/6.6/0.30) and it is better 

than that of R-CSA (23.0/8.5/0.26) and initial bank (19.4/7.9/0.26). According to 

Table 4.3, CG-CSA generated models with better than acceptable quality for 

43.4%, compared to 38.7% for R-CSA, and generated models with better than 

medium quality for 27.4% on the test set. The average (LRMSD/IRMSD/fnat) of 

CG-CSA is (18.0 Å /6.6 Å /0.30) and it is better than that of R-CSA (23.0 Å /8.5 Å 

/0.26) and initial bank (19.4 Å /7.9 Å /0.26). These results showed that CG-CSA 

improved model quality from models of initial bank and improvement of CG-CSA 

is better than that of R-CSA. In Figure 4.2 energy landscapes are shown for four 

representative examples for which CG-CSA was able to bring better predictions 

than R-CSA. For two targets, 1ay7 (Figure 4.2(a)) and 1r0r (Figure 4.2(b)), when 

the energy function relative accurate and low-energy structure is near-native 

structure, the lowest LRMSDs of 10 output complexes are 3.5 Å and 5.0 Å by CG-

CSA, compared to 7.9 Å and 13.8 Å by R-CSA. CG-CSA showed better 

performance when energy function is relative accurate and low-energy structure is 

nearby native structure. Because region of low-energy cluster called main-optimal 
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cluster is nearby native structure and CG-CSA more focuses on main-optimal 

cluster increasing the number of main-cluster members, RMSD between native 

structure and predicted structure generated by CG-CSA is smaller than RMSD 

between native structure and predicted structure generated by R-CSA. 

For the opposite cases when energy function is relatively inaccurate, CG-

CSA also shows improved performances. For two targets, 1iqd (Figure 4.2 (c)) and 

1r0r (Figure 4.2 (d)), when energy function is relatively inaccurate and global 

minimum is far from near-native structure, the lowest LRMSDs of 10 output 

complexes are 2.1 Å and 7.1 Å by CG-CSA, compared to 48.2 Å and 20.9 Å by R-

CSA. R-CSA showed problems of converging into these false global minima. 

However, such a converged structural pool may not be the optimal as long as the 

correctness of energy function is not guaranteed. Instead of focusing on a single 

global minimum, CG-CSA also focuses on multiple sub-optimal conformational 

spaces at very distinct translational/rotational positions from global minimum. One 

may expect that even with incorrect energy function near-native conformation can 

be at one of the sub-optimal clusters. 

We also compared CG-CSA to the first application of CSA to protein-

protein docking by Lee et al. (Table 4.4). We call this previous approach as “CSA-

Lee” here. The comparison is done on 4 targets in CAPRI round 5 for which 

“CSA-Lee” was tested. “CSA-Lee” succeeded to bring acceptable quality on only 

one target (target 15). In contrast, R-CSA predicted three targets to acceptable or 

better quality, and CG-CSA did four targets to acceptable or better. We also notice 

that the test set is not enough to derive statistically meaningful statement among 

different methods, as well as there can be other factors contributing to the 

difference such as energy function. However, these results showed that the 
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performance of CG-CSA is enough good compared to R-CSA and “CSA-Lee”. 
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Table 4.2. Ligand-RMSD (LRMSD), interface-RMSD (IRMSD), and fraction of 
native contact (fnat) of initial bank results and final bank results of regular CSA (R-
CSA) and cluster-guided CSA (CG-CSA) on 35 training set targets 

Target 
Initial Bank Final Bank (R-CSA) Final Bank (CG-CSA) 

LRMSD IRMSD fnat LRMSD IRMSD fnat LRMSD IRMSD fnat 

1avx 6.7 1.6 0.71 7.1 1.6 0.74 10.2 3.8 0.51 
1buh 23.5 13.8 0.04 32.3 13.4 0.00 13.8 3.5 0.30 
1clv 4.6 2.2 0.35 3.7 1.8 0.43 3.6 1.8 0.50 
1eaw 9.9 3.2 0.39 9.7 5.1 0.04 2.1 0.7 0.90 
1fc2 32.2 11.6 0.00 28.5 14.0 0.00 28.2 14.1 0.00 
1ghq 58.3 18.4 0.00 57.9 15.1 0.00 56.3 13.5 0.00 
1gxd 38.1 12.5 0.02 39.8 12.7 0.02 39.7 12.7 0.02 
1h9d 20.9 10.4 0.05 10.9 3.3 0.35 13.9 5.6 0.08 
1j2j 9.2 3.3 0.33 5.0 2.0 0.64 6.6 3.1 0.58 
1jps 39.3 18.6 0.00 40.6 17.7 0.00 32.6 14.4 0.00 
1jwh 29.2 16.0 0.00 9.9 2.3 0.56 12.3 2.6 0.47 
1k4c 31.6 9.3 0.00 63.8 18.2 0.00 35.2 10.6 0.00 
1kxq 0.5 0.8 0.90 15.3 5.8 0.18 15.2 5.8 0.18 
1mah 14.0 8.0 0.12 1.7 0.7 0.76 1.3 0.8 0.79 
1mlc 20.4 11.0 0.00 52.2 20.5 0.00 16.5 8.7 0.00 
1oc0 15.6 7.7 0.17 14.6 6.7 0.02 14.7 6.7 0.02 
1oph 62.0 14.3 0.00 64.0 14.3 0.00 63.5 16.5 0.00 
1s1q 26.8 9.4 0.05 26.8 9.4 0.05 26.9 9.4 0.05 
1t6b 17.1 8.8 0.08 65.2 22.0 0.00 16.5 9.7 0.00 
1us7 23.1 11.4 0.00 17.4 10.0 0.00 17.7 10.2 0.00 
2ayo 3.3 2.0 0.41 3.5 1.9 0.58 3.5 1.9 0.58 
2b4j 13.9 7.7 0.25 20.8 10.1 0.00 20.2 10.2 0.00 
2o8v 29.3 14.7 0.00 25.6 10.1 0.00 18.2 8.9 0.14 
2sni 16.0 7.5 0.01 9.8 2.5 0.56 9.5 2.4 0.58 
2vdb 1.8 0.9 0.87 38.9 16.9 0.00 37.9 12.9 0.00 
4cpa 3.0 1.2 0.74 5.9 2.7 0.40 5.6 2.3 0.45 
9qfw 37.5 9.4 0.00 36.6 11.0 0.00 30.7 10.7 0.00 
TA01 12.7 6.6 0.04 12.3 6.5 0.12 11.9 6.5 0.16 
TA06 0.8 0.5 0.86 16.2 9.7 0.10 0.8 0.5 0.86 
TA07 42.4 16.0 0.00 47.6 20.5 0.00 39.7 12.3 0.00 
TA12 0.5 0.4 0.91 1.3 0.5 0.93 1.1 0.5 0.91 
TA15 11.3 5.5 0.00 3.6 1.3 0.80 2.2 1.0 0.77 
TA25 2.3 1.1 0.83 3.6 1.5 0.77 3.8 1.5 0.75 
TA26 19.9 10.3 0.00 11.7 5.6 0.03 16.8 5.5 0.24 
TA40 1.4 0.5 0.86 1.7 0.5 0.84 1.7 0.5 0.84 
Average 19.4 7.9 0.26 23.0 8.5 0.26 18.0 6.6 0.30 
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Table 4.3. Ligand-RMSD (LRMSD), interface-RMSD (IRMSD), and fraction of 
native contact (fnat) of initial bank results and final bank results of regular CSA (R-
CSA) and cluster-guided CSA (CG-CSA) on 106 test set targets 

Target 
Initial Bank Final Bank (R-CSA) Final Bank (CG-CSA) 

LRMSD IRMSD fnat LRMSD IRMSD fnat LRMSD IRMSD fnat 
1a2k 9.7 2.6 0.68 13.3 4.4 0.50 10.5 2.9 0.75 
1ahw 27.6 9.3 0.00 32.3 15.5 0.00 33.4 10.5 0.00 
1ak4 20.7 9.2 0.02 21.3 9.7 0.07 21.1 9.2 0.02 
1akj 27.9 15.3 0.00 35.8 16.3 0.00 29.4 14.4 0.00 
1ay7 11.2 3.5 0.40 7.9 1.8 0.62 3.5 1.5 0.80 
1azs 63.3 10.4 0.00 43.1 16.9 0.00 61.3 14.9 0.00 
1b6c 8.3 3.1 0.57 9.0 2.7 0.71 8.9 2.7 0.77 
1bj1 22.6 11.4 0.00 20.9 10.2 0.00 7.1 1.0 0.86 
1bvk 12.0 5.3 0.19 11.6 4.8 0.12 12.7 4.7 0.15 
1bvn 2.8 1.4 0.70 2.5 1.4 0.55 1.9 1.1 0.68 
1cgi 4.1 2.8 0.39 4.0 2.2 0.58 3.8 2.2 0.58 
1d6r 11.6 5.1 0.03 18.3 7.8 0.02 18.3 7.8 0.02 
1dfj 2.7 1.4 0.68 6.1 2.5 0.64 6.1 2.5 0.66 
1dqj 20.5 11.5 0.00 11.3 5.8 0.27 19.0 11.4 0.00 
1e6e 3.0 1.4 0.79 5.2 1.9 0.83 1.9 1.2 0.88 
1e6j 12.7 4.9 0.16 12.7 4.9 0.16 12.9 5.7 0.10 
1e96 30.5 6.6 0.05 28.9 12.0 0.00 25.3 13.2 0.00 
1efn 32.4 9.5 0.00 28.9 10.8 0.00 27.6 8.4 0.03 
1ewy 5.6 3.4 0.20 13.3 7.5 0.00 13.2 7.5 0.04 
1ezu 37.8 21.4 0.00 37.9 21.2 0.00 37.9 17.1 0.00 
1f34 43.3 16.1 0.00 40.9 16.3 0.06 33.1 18.9 0.03 
1f51 3.3 1.7 0.55 4.1 2.3 0.63 4.1 2.3 0.63 
1fcc 35.7 14.6 0.00 35.3 14.5 0.00 35.2 14.5 0.00 
1ffw 9.3 5.1 0.42 7.4 3.6 0.50 8.6 3.3 0.50 
1fle 22.0 10.0 0.01 22.5 10.1 0.01 22.3 10.0 0.01 
1fqj 35.1 16.4 0.00 35.4 16.5 0.00 31.7 16.6 0.00 
1fsk 2.4 0.9 0.91 2.1 0.9 0.89 2.2 0.9 0.86 
1gcq 18.0 8.8 0.00 2.1 1.1 0.87 15.1 5.2 0.13 
1gl1 2.9 1.5 0.69 7.0 3.0 0.70 2.6 1.4 0.56 
1gla 52.9 20.7 0.00 52.0 19.5 0.00 52.3 19.5 0.00 
1gpw 2.1 1.3 0.62 3.4 1.6 0.69 3.4 1.6 0.65 
1hcf 22.5 8.0 0.07 24.2 10.0 0.07 24.4 10.0 0.04 
1he1 7.0 3.8 0.19 2.9 1.7 0.76 2.8 1.7 0.73 
1hia 9.6 4.1 0.11 8.6 3.5 0.22 9.9 4.6 0.13 
1i4d 35.4 14.7 0.02 34.7 14.4 0.04 33.5 14.9 0.07 
1i9r 9.9 4.9 0.09 12.9 9.0 0.00 12.8 9.0 0.00 
1iqd 24.5 10.2 0.04 48.2 15.3 0.00 2.0 0.8 0.71 
1jtg 3.6 1.1 0.63 6.0 2.3 0.40 6.2 2.5 0.41 
1k74 3.5 1.3 0.73 6.7 1.9 0.54 6.1 2.0 0.63 
1kac 33.9 12.5 0.00 32.1 9.9 0.00 36.8 12.6 0.00 
1klu 41.5 13.5 0.00 33.3 11.6 0.00 33.4 11.7 0.00 
1ktz 37.8 10.8 0.00 37.8 10.8 0.03 33.7 11.0 0.10 
1kxp 6.3 1.9 0.44 7.0 1.9 0.50 3.3 1.6 0.53 
1ml0 2.4 1.2 0.78 2.3 1.3 0.81 2.3 1.3 0.81 
1n8o 9.8 1.0 0.78 10.6 1.4 0.71 10.0 1.1 0.82 
1nca 26.5 18.3 0.00 25.7 17.0 0.00 26.4 17.9 0.00 
1nsn 17.4 10.6 0.00 55.1 15.7 0.00 17.6 10.5 0.00 
1ofu 15.7 6.6 0.00 36.5 18.9 0.00 26.0 15.7 0.00 
1oyv 3.4 1.3 0.61 4.2 1.4 0.57 4.3 1.4 0.57 
1ppe 0.9 0.6 0.85 3.3 1.2 0.80 2.8 1.0 0.86 
1pvh 27.9 10.7 0.13 31.6 14.3 0.00 28.9 10.5 0.13 
1qa9 46.2 16.5 0.00 46.4 16.5 0.00 46.5 16.7 0.00 
1r0r 12.9 3.6 0.27 13.8 6.5 0.00 5.0 1.6 0.49 
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1rlb 12.2 2.3 0.63 18.0 9.0 0.00 18.1 9.1 0.00 
1rv6 1.9 1.4 0.68 8.8 3.7 0.32 8.1 3.5 0.36 
1sbb 54.9 14.1 0.00 56.6 13.9 0.00 55.2 14.6 0.00 
1tmq 20.7 11.5 0.00 1.8 1.0 0.69 1.8 1.0 0.73 
1udi 23.1 15.1 0.03 4.0 2.3 0.45 4.9 2.7 0.44 
1vfb 21.3 7.5 0.00 8.0 4.1 0.19 7.3 3.7 0.23 
1wdw 3.6 1.9 0.55 3.6 2.0 0.54 3.6 1.9 0.57 
1wej 2.9 1.4 0.81 2.8 1.4 0.74 3.3 1.3 0.72 
1xd3 6.9 4.0 0.23 7.4 2.8 0.35 7.4 2.4 0.40 
1xu1 17.4 7.4 0.08 12.8 5.5 0.00 9.8 4.5 0.07 
1yvb 5.3 1.6 0.52 9.4 1.7 0.74 9.9 1.8 0.76 
1z0k 7.1 2.8 0.50 10.3 4.2 0.47 10.3 4.1 0.39 
1z5y 26.7 10.5 0.02 29.1 10.1 0.04 16.7 5.0 0.36 
1zhh 60.5 21.9 0.00 13.3 7.7 0.00 13.4 7.7 0.00 
1zhi 34.1 14.4 0.00 32.3 13.6 0.00 36.0 8.7 0.02 
2a5t 17.8 7.4 0.00 13.3 7.6 0.00 7.4 3.3 0.36 
2a9k 37.7 15.8 0.00 23.3 11.3 0.00 32.5 12.9 0.00 
2abz 16.3 7.3 0.00 14.5 7.4 0.03 11.5 5.9 0.07 
2ajf 24.9 11.0 0.00 27.5 12.0 0.00 26.2 14.0 0.00 
2b42 3.4 1.2 0.83 3.6 1.2 0.87 3.6 1.2 0.88 
2btf 22.5 15.5 0.00 22.4 13.8 0.00 21.6 13.5 0.00 
2fd6 13.0 3.5 0.28 13.1 3.8 0.26 13.0 3.9 0.23 
2fju 83.1 0.6 0.00 82.5 0.6 0.00 82.3 0.6 0.00 
2g77 17.0 7.6 0.07 16.0 9.5 0.00 22.2 11.3 0.00 
2hle 14.3 4.4 0.26 4.2 2.3 0.44 4.2 2.2 0.43 
2hqs 20.5 10.4 0.01 23.7 11.8 0.00 16.7 5.9 0.06 
2i25 25.3 8.8 0.00 21.4 9.3 0.00 20.1 5.0 0.02 
2j0t 20.3 9.4 0.03 21.4 8.0 0.02 16.8 5.6 0.05 
2jel 5.8 1.4 0.68 16.1 9.3 0.00 8.1 3.2 0.29 
2mta 12.7 4.2 0.26 8.3 3.5 0.28 13.2 7.4 0.00 
2oob 29.6 7.6 0.04 29.1 7.6 0.11 29.1 7.6 0.11 
2oor 16.7 7.0 0.22 21.6 12.9 0.07 22.9 14.5 0.04 
2oul 2.0 0.8 0.83 3.7 1.0 0.81 3.7 1.1 0.82 
2pcc 7.2 4.0 0.31 6.3 3.3 0.34 10.2 4.9 0.34 
2sic 6.1 1.3 0.80 6.3 1.4 0.77 6.4 1.4 0.77 
2uuy 17.7 7.0 0.00 16.3 6.7 0.00 16.0 6.7 0.00 
2vis 35.7 18.0 0.00 35.8 14.4 0.00 31.9 17.0 0.00 
3bp8 16.2 8.5 0.00 16.9 10.3 0.08 9.0 3.3 0.27 
3d5s 3.5 1.3 0.56 5.3 2.4 0.54 5.4 2.4 0.52 
3sgq 11.5 4.8 0.02 12.4 6.3 0.00 13.0 5.4 0.13 
7cei 19.6 10.5 0.02 4.7 1.6 0.77 4.2 1.2 0.96 
TA04 41.0 13.1 0.00 38.8 14.2 0.00 35.8 13.3 0.00 
TA05 28.0 11.6 0.00 24.5 12.4 0.00 30.2 12.8 0.00 
TA08 11.1 3.3 0.50 12.3 2.4 0.59 12.5 3.5 0.55 
TA13 21.2 1.1 0.73 22.5 1.3 0.64 22.2 1.3 0.70 
TA18 6.6 2.2 0.81 5.0 1.8 0.71 7.2 2.4 0.69 
TA21 40.0 9.6 0.00 32.3 13.6 0.00 36.7 20.2 0.00 
TA22 48.1 15.4 0.00 48.1 15.3 0.00 46.5 14.3 0.00 
TA27 28.9 12.9 0.00 28.5 13.8 0.00 28.9 12.3 0.00 
TA30 47.3 17.9 0.00 49.0 18.4 0.00 49.0 18.4 0.00 
TA32 23.3 9.2 0.00 23.3 9.2 0.00 29.2 12.5 0.08 
TA39 21.2 13.3 0.00 21.9 11.2 0.00 21.9 11.2 0.00 
TA41 15.9 6.0 0.19 28.1 13.2 0.07 7.9 2.4 0.56 
Average 20.0 7.6 0.24 19.7 7.8 0.25 18.2 7.1 0.29 
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Table 4.4. Performance of CG-CSA compared to R-CSA and “CSA-Lee” on 
CAPRI round 5 targets. 

Targets LRMSD / IRMSD / Fnat / Quality1) 
CSA-Lee R-CSA CG-CSA 

TA14 54.4 20.1 0.00 - 50.7 13.3 0.01 - 3.7 2.2 0.30 * 
TA15 8.8 3.3 0.18 * 3.6 1.3 0.80 ** 2.2 1.0 0.77 *** 
TA18 32.4 15.2 0.00 - 5.0 1.8 0.71 ** 7.2 2.4 0.69 * 
TA19 26.1 14.6 0.00 - 9.9 3.3 0.40 * 9.8 3.4 0.35 * 

1) Ligand RMSD, interface RMSD, fraction of native contacts, and model 
quality by CAPRI criterion (High quality(***), Medium quality(**), 
Acceptable quality(*)). 
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Figure 4.2. Ligand RMSD (LRMSD) versus energy plots for initial structures (+), 
final structures of R-CSA (×), and final structures of CG-CSA (■) on (a) 1ay7, (b) 
1r0r, (c) 1iqd, and (d) 1bj1. Initial bank conformations brought from ZDOCK runs, 
shared by both CSA runs, are plotted as well in gray dots. X-axis is LRMSD 
between ligand protein of native complex and that of predicted complexes. Y-axis 
is energy value of predicted complexes. 
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4.3.2. Comparison to other protein-protein docking methods 

For comparison with other protein-protein docking tools, we tested CG-

CSA to ZDOCK (Mintseris et al., 2007) which is one of most popular rigid-body 

docking programs and popular refinement docking programs such as RosettaDock 

(Gray et al., 2003), FireDock (Andrusier et al., 2007), and FiberDock (Mashiach et 

al., 2010) (Table 4.5). To describe how the results were collected, ZDOCK result is 

collected by picking the best structure in 10 top-scoring structures ranked by 

ZDOCK score. Selected 10 structures were further refined by other refinement 

docking programs such as RosettaDock, FireDock, and FiberDock. RosettaDock 

generated 500 refined models for each selected structures and generated 5000 

refined models totally. Then, lowest energy structures from 500 refined models for 

each of the 10 structures were selected (Pierce and Weng 2008). FireDock and 

FiberDock generated 10 refined structures from each 10 initial structures. The 

fraction of targets within “acceptable” quality in CAPRI measure for CG-CSA is 

43.4% on test set, compared to 37.7% for ZDOCK, 32.1% for RosettaDock, 37.7% 

for FireDock, and 39.6% for FiberDock. The fraction of targets within “medium” 

quality in CAPRI measure for CG-CSA is 27.4% on test set, compared to 25.5% 

for ZDOCK, 17.9% for RosettaDock, 23.6% for FireDock, and 25.5% for 

FiberDock. CG-CSA also showed the best performance in terms of the predictions 

better than “acceptable” and “medium” accuracy. In case of top5 selection cases, 

the fraction of targets with better than “acceptable” quality for CG-CSA is 36.8% 

of the test targets, compared to 28.3% for ZDOCK, 25.5% for RosettaDock, 28.3% 

for FireDock, and 30.2% for FiberDock, and the fraction of targets with better than 

“medium” quality is 23.6% for CG-CSA, compared to 21.7% for ZDOCK, 15.1% 

for RosettaDock, 17.9% for FireDock, and 20.8% for FiberDock. CG-CSA also 

showed best performance at top5 selection cases. 
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According to the comparison above, we claim that regular CSA combined 

with current energy function is already good enough to be comparable to other 

methods, but adopting cluster-guided approach further improves it. We attribute 

success to both energy function and the sampling method. Using all-atom energy 

function combined with physics-based energy function and knowledge-based 

energy function can make better performance of CG-CSA. And success ratio of 

CG-CSA is higher than that of RosettaDock, FireDock, and FiberDock, because 

CG-CSA uses main concept of genetic algorithm rather than RosettaDock, 

FireDock, and FiberDock use Monte Carlo-based method. Crossover of 

translational and rotational degree of freedom can generate large perturbed 

conformations and search diverse local minima efficiently than mutation of 

translational and rotational degree of freedom. It makes sampling space of CG-

CSA get broader and find global minimum efficiently. For example, the minimum 

LRMSD of initial bank on target 1udi is larger than 20 Å, but the minimum 

LRMSD of final bank of R-CSA and CG-CSA is smaller than 5 Å (Figure 4.3). 

CSA could generate better models by perturbing ligand proteins more than 15 Å. 

This result shows that large perturbation based on crossover of translational and 

rotational degree of freedom can generate successful models although structures of 

initial bank is so far from native structures. 
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Table 4.5. Performance comparison of CG-CSA, ZDOCK, RosettaDock, FireDock, 

and FiberDock on 106 benchmark test targets in terms of the percentage of targets 

predicted with better than acceptable/medium accuracy 

Top10 CG-CSA ZDOCK Rosetta 
Dock FireDock FiberDock 

> acceptable 43.4% 37.7% 32.1% 37.7% 39.6% 
> medium 27.4% 25.5% 17.9% 23.6% 25.5% 

Top5 CG-CSA ZDOCK Rosetta 
Dock FireDock FiberDock 

> acceptable 36.8% 28.3% 25.5% 28.3% 30.2% 
> medium 23.6% 21.7% 15.1% 17.9% 20.8% 

Top1 CG-CSA ZDOCK Rosetta 
Dock FireDock FiberDock 

> acceptable 12.3% 16.0% 14.2% 14.2% 15.1% 
> medium 8.5% 11.3% 8.4% 10.4% 11.3% 
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Figure 4.3. Ligand RMSD (LRMSD) versus energy plots for initial structures (+), 
final structures of R-CSA (×), and final structures of CG-CSA (■) on 1udi. Initial 
bank conformations brought from ZDOCK runs, shared by both CSA runs, are 
plotted as well in gray dots. X-axis is LRMSD between ligand protein of native 
complex and that of predicted complexes. Y-axis is energy value of predicted 
complexes. 
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4.3.3. Performance of GalaxyPPDock on recent CAPRI targets 

We tested CG-CSA on 7 targets from recent CAPRI round. We compared 

the performance of CG-CSA to CAPRI predictors (Bonvin, Bates, Vakser) who did 

best on CAPRI from round 22 to round 27. This comparison will not only show the 

status of CG-CSA compared to state-of-the-art methods in the community, but also 

will show progress in the method during recent CAPRI rounds. CG-CSA predicted 

structures better than acceptable for all 7 targets and among them, models for target 

53 and 58 showed medium quality. This overall result is better than any of top3 

predictors’ results.  

CAPRI target 53 and target 58 are successful example of GalaxyPPDock 

(Figure 4.3). Especially the performance of GalaxyPPDock is better than other 

top3 CAPRI predictors. Target 53 (PDB ID: 4JW2) is designed Rep4/Rep2 α-

repeat complexes and network of hydrophobic and aromatic residues is a key 

interaction of target 53. GalaxyPPDock predicted this target about 5.0Ǻ and 

hydrophobic network of this target. Target 58 (PDB ID: 4G9S) is PilG/SalG 

lysozyme complex. Coulomb interaction of Aspartic acid, Glutamic acid and 

Arginine is key interaction of target 58. GalaxyPPDock predicted well about 3.0 Ǻ 

and coulomb interaction of this target. 
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Table 4.6. Performance of CG-CSA compared to other top3 predictors on targets 
of CAPRI round 22-27. 

Targets LRMSD / IRMSD / Fnat / Quality1) 
CG-CSA (7/2**) Bonvin (6/2**)2) Bates (5/1**)2) Vakser (5)2) 

TA46 8.2 4.1 0.24 * 7.8 3.4 0.41 * 13.0 4.7 0.15 - 34.8 13.8 0.00 - 
TA48 8.2 2.7 0.43 * 9.1 3.4 0.23 * 7.4 4.6 0.19 * 9.7 4.6 0.14 * 
TA49 13.0 3.2 0.23 * 14.0 3.6 0.26 * 7.2 3.9 0.10 * 9.7 4.1 0.14 * 
TA50 7.7 2.2 0.45 * 5.5 1.9 0.47 ** 5.4 2.7 0.29 * 5.4 2.2 0.35 * 
TA53 5.1 1.9 0.69 ** 4.5 2.2 0.46 ** 9.4 4.2 0.35 * 16.7 7.6 0.12 - 
TA54 5.6 3.0 0.57 * 18.6 7.7 0.02 - 10.1 5.2 0.14 - 5.9 3.6 0.14 * 
TA58 3.3 1.1 0.65 ** 6.9 2.6 0.29 * 3.7 1.6 0.56 ** 8.9 3.2 0.43 * 

1)  Ligand RMSD, interface RMSD, fraction of native contacts, and model 
quality by CAPRI criterion (High quality(***), Medium quality(**), 
Acceptable quality(*)). 

2) Top 3 predictors in CARPI round 22-27. 
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Figure 4.4. Successful examples of GalaxyPPDock on CAPRI target 53 ((a) to (c), 
designed Rep4/Rep2 α-repeat complex, PDB ID: 4JW2) and CAPRI target 58 ((d) 
to (f), PilG/SalG lysozyme complex, PDB ID: 4G9S). Structures colored in yellow 
and sky blue (panel (b) and (e)) are receptor and ligand proteins of the native 
structures, and plum and light green (panel (c) and (f)) are receptor and ligand 
proteins of predicted complex generated by GalaxyPPDock. There are hydrophobic 
interactions of (b) native structure and (c) GalaxyPPDock model on CAPRI target 
53 and polar interactions of (e) native structure and (f) GalaxyPPDock model of 
CAPRI target 58. 
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4.3.4. Protein-protein docking with side-chain flexibility 

Side-chain flexibility has an effect on interaction of receptor and ligand 

protein. We calculated fraction of native contact (fnat) of GalaxyPPDock models 

and “unbound model” generated by superposing unbound subunit structure to 

GalaxyPPDock models. Fraction of native contact (fnat) of GalaxyPPDock is 

slightly better than that of “unbound model” (Table 4.7). The different of each 

value is small, but chi-angle changes of key residues have a great effect on 

interactions of receptor proteins and ligand proteins. In target 53, side-chain 

flexibility of phenylalanine residue of receptor protein can generate hydrophobic 

interaction. In target 58, side-chain flexibility of arginine residue of ligand protein 

can generate coulomb interaction (Figure 4.4). These results show that protein-

protein docking with side-chain flexibility more accurately predicts interaction of 

protein complexes and it derives generate more accurate protein complex models. 
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Table 4.7. Fraction of native contact (fnat) for CG-CSA models and unbound 
complexes made by superimposing unbound structures on CG-CSA models. Better 
cases (37 targets on 106 targets). Worse cases (30 targets on 106 targets). Same 
cases (30 targets on 106 targets). 

Target 
Superposed 
Unbound 
structure 

CG-CSA 
model 

1a2k 0.7045 0.7500 
1ahw 0.0000 0.0000 
1ak4 0.0227 0.0227 
1akj 0.0000 0.0000 
1ay7 0.8750 0.8000 
1azs 0.0000 0.0000 
1b6c 0.7321 0.7679 
1bj1 0.8429 0.8571 
1bvk 0.1458 0.1458 
1bvn 0.7260 0.6849 
1cgi 0.4941 0.5765 
1d6r 0.0172 0.0172 
1dfj 0.6301 0.6575 
1dqj 0.0000 0.0000 
1e6e 0.8462 0.8846 
1e6j 0.0980 0.0980 
1e96 0.0000 0.0000 
1efn 0.0000 0.0294 
1ewy 0.0222 0.0444 
1ezu 0.0000 0.0000 
1f34 0.0345 0.0345 
1f51 0.5968 0.6290 
1fcc 0.0000 0.0000 
1ffw 0.4444 0.5000 
1fle 0.0282 0.0141 
1fqj 0.0000 0.0000 
1fsk 0.8939 0.8636 
1gcq 0.1111 0.1333 
1gl1 0.6406 0.5625 
1gla 0.0000 0.0000 
1gpw 0.6618 0.6471 
1hcf 0.1111 0.0444 
1he1 0.7460 0.7302 
1hia 0.1587 0.1270 
1i4d 0.0545 0.0727 
1i9r 0.0000 0.0000 
1iqd 0.6933 0.7067 
1jtg 0.3978 0.4086 
1k74 0.6269 0.6269 
1kac 0.0000 0.0000 
1klu 0.0000 0.0000 
1ktz 0.0333 0.1000 
1kxp 0.5283 0.5283 
1ml0 0.7534 0.8082 
1n8o 0.8052 0.8182 
1nca 0.0000 0.0000 
1nsn 0.0000 0.0000 
1ofu 0.0000 0.0000 
1oyv 0.5543 0.5652 
1ppe 0.7887 0.8591 
1pvh 0.1333 0.1333 
1qa9 0.0000 0.0000 
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1r0r 0.4930 0.4930 
1rlb 0.0000 0.0000 
1rv6 0.4255 0.3617 
1sbb 0.0000 0.0000 
1tmq 0.7200 0.7333 
1udi 0.4267 0.4400 
1vfb 0.2083 0.2292 
1wdw 0.5487 0.5664 
1wej 0.8372 0.7209 
1xd3 0.3750 0.4000 
1xu1 0.0678 0.0678 
1yvb 0.7000 0.7600 
1z0k 0.3947 0.3947 
1z5y 0.3774 0.3585 
1zhh 0.0000 0.0000 
1zhi 0.0244 0.0244 
2a5t 0.3390 0.3559 
2a9k 0.0000 0.0000 
2abz 0.1017 0.0678 
2ajf 0.0000 0.0000 
2b42 0.8427 0.8764 
2btf 0.0000 0.0000 
2fd6 0.2128 0.2340 
2fju 0.0000 0.0000 
2g77 0.0000 0.0000 
2hle 0.4268 0.4268 
2hqs 0.0645 0.0645 
2i25 0.0185 0.0185 
2j0t 0.0517 0.0517 
2jel 0.3036 0.2857 
2mta 0.0000 0.0000 
2oob 0.0370 0.1111 
2oor 0.0435 0.0435 
2oul 0.8333 0.8205 
2pcc 0.3793 0.3448 
2sic 0.7606 0.7746 
2uuy 0.0000 0.0000 
2vis 0.0000 0.0000 
3bp8 0.2653 0.2653 
3d5s 0.5000 0.5200 
3sgq 0.1273 0.1273 
7cei 0.8462 0.9615 
TA04 0.0000 0.0000 
TA05 0.0000 0.0000 
TA08 0.5758 0.5454 
TA13 0.7143 0.7000 
TA18 0.7206 0.6912 
TA21 0.0000 0.0000 
TA22 0.0000 0.0000 
TA27 0.0000 0.0000 
TA30 0.0000 0.0000 
TA32 0.0814 0.0814 
TA39 0.0000 0.0000 
TA41 0.6610 0.5593 
Average 0.2873 0.2899 
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Figure 4.5. Interaction of models generated by GalaxyPPDock on CAPRI target 53 
(a) and on CAPRI target 58 (b). Residue colored in gray is side-chain of unbound 
structure. 
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4.3.5. Contribution of GalaxyPPDock energy components 

We analyzed the performance and contribution of GalaxyPPDock energy 

components on ZDOCK benchmark set and CAPRI targets (Total 141 targets). We 

defined the success target when minimum LRMSD of selected 10 models ranked 

by each energy components among 50 final structures. The contribution of each 

energy components was calculated by average of standard deviation of final bank 

energy. Coulomb electrostatic interaction and hydrogen bond showed good 

performance for selecting near-native structures among structures of final bank, but 

their contribution smaller than other energy components (Table 4.8). These results 

imply that many proteins interact with other proteins through polar interactions. 

Therefore, it is need to consider electrostatic interaction and hydrogen interactions 

more importantly to generate more accurate energy function, and increasing 

weights of electrostatic interaction and hydrogen bond can be one of the methods 

to generate better protein-protein docking energy function. 
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Table 4.8. Performance and contribution of each energy components 

 
Number of 

Success targets Success ratio Contribution 

EDFIRE 32 22.7% 26.9% 
Evdw 39 27.7% 9.9% 
Eelec 49 34.8% 5.4% 
ESA 36 25.5% 18.5% 
EHBond 46 32.6% 5.0% 
Econs 34 24.1% 17.5% 
Erotamer 25 17.7% 16.8% 
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4.4. Conclusions 

In this study, we introduced GalaxyPPDock which uses a new variant of 

CSA algorithm for protein-protein docking study. GalaxyPPDock focuses on 

regions on low-energy clusters, but keeps high-energy clusters and it helps to 

generate near-native predicted complexes not only energy function is relative 

accurate but also energy function is inaccurate. GalaxyPPDock generated more 

successful predicted complex than original CSA and other docking program 

ZDOCK and RosettaDock on benchmark set. Moreover, GalaxyPPDock shows 

good performance on recent CAPRI targets. Based on these results, it is concluded 

that GalaxyPPDock is good protein-protein docking program and efficient 

sampling of conformation space in protein-protein docking is very important. In 

spite of these achievements, developing accurate protein-protein docking program 

is still challengeable problem. Considering backbone flexibility can improve the 

performance of GalaxyPPDock by combining loop modeling using GalaxyLoop 

(Ko et al., 2011; Lee et al., 2010) or MD-based backbone refinement using 

GalaxyRefine (Heo et al., 2013). Also, performance of GalaxyPPDock can be 

improved using experimental data such as small-angle X-ray scattering (SAXS) by 

selecting from initial structures generates to make better initial bank (Lensink and 

Wodak 2013). 
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5. Conclusions 

We developed programs for predicting protein interactions based on 

bioinformatics and physicochemical approaches. For developing GalaxyGemini for 

predicting homo-oligomer structures and GalaxyPepDock for predicting protein-

peptide interactions, we used bioinformatics approaches. GalaxyGemini searches 

good oligomer templates compared to other methods including naïve method using 

HHsearch, because GalaxyGemini uses both tertiary structure similarity and 

quaternary structure similarity by interface alignment score. GalaxyPepDock 

searches protein-peptide template based on protein structure similarity and protein-

peptide interaction similarity. Picking oligomer-oriented bioinformatics feature can 

find good template and the great reason for success of GalaxyGemini and 

GalaxyPepDock. For developing GalaxyPPDock for predicting protein-protein 

interactions, we used physical chemistry approach. Both approaches are effective 

for generating good models. GalaxyPPDock uses Cluster-Guided Conformational 

Space Annealing, one of global optimization methods to finding global minimum 

effectively. Developing effective global optimization method is main reason of 

success of GalaxyPPDock. These results show that both bioinformatics method and 

physical chemistry method can be used to predict protein interaction. 

Although, GalaxyGemini and GalaxyPepDock used bioinformatics 

approaches, and GalaxyPPDock used physical chemistry approaches, both 

bioinformatics approaches and physical chemistry approaches can be used for 

predicting homo-oligomer interactions, protein-peptide interactions, and protein-

protein interactions. Hydrophobic interactions are key interactions of homo-

oligomers, so native homo-oligomer is global minimum of energy landscape of 

homo-oligomer (Inbar et al., 2005). Also, symmetry is very key point of sampling 
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homo-oligomer structure. Therefore, developing global optimization methods 

considering symmetric constraints can predict homo-oligomer interactions more 

accurately. For protein-peptide interactions, GalaxyPepDock used Molecular 

Dynamics-based refinement method, and it helps to improve the quality of protein-

peptide complex models. For a few decades, ab initio methods were the majority of 

protein-protein docking methods, because of the database of protein-protein 

complexes were small. However, the number of experimentally resolved protein 

complex structures has been increasing, so data-driven protein-protein docking 

methods attract a lot of attention. HADDOCK, one of data-driven protein-protein 

docking method showed a good performance on the latest CAPRI experiments 

(Lensink and Wodak 2013). 

In this research, I showed that bioinformatics approaches can help predict 

homo-oligomer interactions and protein-peptide interactions and physical 

chemistry approaches can help predict protein-protein interactions. Also, there are 

many studies that protein interactions can be predicted by both bioinformatics 

approaches and physical chemistry approaches. Therefore, combining 

bioinformatics approaches and physical chemistry approaches will help improve 

the performance of programs for predicting homo-oligomer interactions, protein-

peptide interactions, and protein-protein interactions. 
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국문초록 

단백질은 생명체 내에서 서로 상호작용함으로써 기능을 

수행한다. 단백질의 상호작용 연구를 통해 단백질의 기능을 보다 

정확히 이해하는 것은 신약개발에 있어서 매우 중요하다. 단백질 

상호작용은 호모-올리고머 상호작용, 단백질-펩타이드 상호작용, 

단백질-단백질 상호작용으로 구분된다. 단백질 상호작용을 X-선 

결정법이나 핵자기공명과 같은 실험적인 방법으로 알 수도 있으나, 

현재까지 실험적으로 밝혀진 상호작용 수는 전체 단백질의 

상호작용을 나타내기에는 많이 부족하기 때문에, 계산과학적인 

방법을 통한 단백질 상호작용 예측 프로그램 개발에 큰 관심을 

보이고 있다. 단백질 상호작용 예측은 크게 생물정보학적인 

접근방법과 물리화학적 접근 방법을 통한 방법으로 구분할 수 

있다. 생물정보학적인 접근방법에 따르면, 유사한 서열의 단백질은 

유사한 상호작용 패턴을 지니고 있다. 물리화학적 접근방법에 

따르면, 자연계에 존재하는 단백질 복합체는 에너지적으로 안정한 

광역 최저점에 위치하고 있기 때문에, 광역최적화 방법을 통해 

단백질 상호작용을 예측할 수 있다. 이 논문에서는 생물정보학 

접근방법과 물리화학적 접근방법을 통해 새롭게 개발된 호모-

올리고머 상호작용, 단백질-펩타이드 상호작용, 단백질-단백질 

상호작용을 예측하는 방법에 대해 소개하고 있다. 생물정보학적인 

접근방법과 물리화학적 접근방법 모두 단백질 상호작용 예측을 

정확히 하는데 있어서 매우 큰 기여를 하였다.  
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주요어: 호모-올리고머 상호작용, 단백질-펩타이드 상호작용, 
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