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ABSTRACT

Prediction of Protein Interactions by Bioinformatics

and Physical Chemistry Approaches

Hasup Lee
Department of Chemistry

The Graduate School

Seoul National University

Proteins play key roles in many biological systems through protein interactions.
Research of protein interactions can help to understand protein functions and
develop new drugs. Protein interactions can be classified into homo-oligomer
interactions, protein-peptide interactions, and protein-protein interactions. Protein
interactions can be studied based on co-crystallized complex structure determined
by X-ray crystallography or Nucleic Magnetic Resonance method, but
experimentally determined structures cover only small part of the known protein-
protein interactions. Therefore, there are many interests to develop computational
methods for predicting protein interactions. Predicting protein interactions can be
classified into methods based on bioinformatics and physical chemistry approaches.
According to bioinformatics approaches, proteins with high sequence similarity

convey similar interfaces and similar interactions. According to physical chemistry



approaches, the funnel-like energy landscape is a general feature of protein
interactions and protein interactions can be predicted by a global optimization
method. In this thesis, I show bioinformatics and physical chemistry approaches for
predicting homo-oligomer interactions, protein-peptide interactions, and protein-
protein interactions. Both bioinformatics approaches and physical chemistry
approaches played important roles to achieve improvement in predicting protein

interactions.

Keywords: homo-oligomer interactions, protein-peptide interactions, protein-

protein interactions, bioinformatics, physical chemistry, global optimization

Student Number: 2010-20290
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1. Introduction

Protein interactions play key roles in many biological systems. There are
many interests to study protein interactions in biological system for controlling
protein functions and developing new drugs (Ritchie 2008). Protein interactions
can be classified into three categories: homo-oligomer interactions, protein-peptide

interactions, and protein-protein interactions.

Homo-oligomer interactions are very important in many biological
systems, because many proteins self-assemble into oligomers in order to perform
their biological functions. For example, dimer interfaces of certain enzymes form
as substrate-binding pockets. Also, antibodies form oligomers to create additional
binding sites, increasing effective binding affinity via a “multivalent effect”. Many
membrane proteins perform signal transduction by forming protein oligomers.
There are many diseases related to mis-assembly of homo-oligomers (Levy et al.,

2008; Poupon and Janin 2010).

Protein-peptide interactions play important role in a broad range of
biological processes, such as signaling pathways, immune system, apoptotic system,
and post-translational modifications. The importance of such interactions is evident
because of their involvement in critical human diseases, such as cancer and
infections. Normally, protein-peptide interactions are mediated to small size of
interface area. Because of the small sizes of protein-peptide interfaces, there have
been many attempts to modulating protein-peptide interactions by small chemicals

and synthetic peptides (London et al., 2013; Petsalaki and Russell 2008).

Protein-protein interactions play key roles in various biological processes,

such as cellular regulation, biosynthetic pathways, signal transduction, and DNA



replication. Also, protein-protein interactions are related to immune response,
oligomer formation, and multi-molecular associations. To understand protein
functions, it is essential to precisely describe protein-protein interactions in atomic

details. (Keskin et al., 2005; Perkins et al., 2010)

Protein interactions can be studied by experimentally determined co-
crystallized structure. However, despite the continuous increase in the number of
deposited protein structures in the Protein Data Bank (PDB), the number of co-
crystallized protein structures is still not sufficient to offer in-depth understanding
of a majority of important biological processes. Furthermore, they cover less than
10% of the known protein-protein interactions in human. The large gap between
the number of experimentally resolved structures for protein monomers and that for
protein complexes in the PDB highlights the need to computational methods for
predicting protein interactions that provide atomic structures using much less

resources than experimental methods (Park ez al., 2015).

Computational methods for predicting protein interactions can be
classified into two categories: bioinformatics approaches and physical chemistry
approaches. For the bioinformatics approaches, sequence homologues convey
similar interfaces and similar interactions. Some hotspot residues in interface
regions guide to protein interactions. Theses residues are very conserved and called
“interolog”. Therefore, searching good interolog is key to the success of predicting
protein interactions by bioinformatics approach (Alsop and Mitchell 2015). For the
physical chemistry approaches, funnel-like energy landscape is general feature of
protein interactions, so native protein-peptide complexes and protein-protein
complexes are the lowest free energy state. It is important to find global minimum

in conformational space of energy landscape of protein-peptide complexes and



protein-protein complexes. In other words, study of predicting protein interactions

can be classified as one of the global optimization problems (Lee et al., 2005).

In this thesis, I will describe three computational methods: GalaxyGemini
for predicting homo-oligomer interaction, GalaxyPepDock for predicting protein-
peptide interactions, and GalaxyPPDock for predicting protein-protein interactions.
GalaxyGemini generates oligomer models from input protein tertiary structure
based on template information. First, GalaxyGemini searches homologues of query
tertiary structure by sequence alignment method. Then, it predicts homo-oligomer
interactions from database based on tertiary/quaternary structure similarity.
Sequence similarity score, secondary structure similarity score, and alignment
coverage of query sequence and template sequence are used to calculate tertiary
structure similarity, and interface alignment score are used to calculate quaternary
structure similarity. If oligomer template is found, the oligomer models are
generated by superimposing query tertiary structure onto each subunits of selected
oligomer template. The overall GalaxyGemini method is described in chapter 2.
GalaxyPepDock generates protein-peptide complex models from input protein
structure and peptide sequence. First, it searches co-crystallized protein-peptide
template structures based on structural similarity of input protein structure and
interaction similarity of input protein and peptide. Second, it performs energy-
based optimization to generate more accurate models. The overall GalaxyPepDock
method is described in chapter 3. GalaxyPPDock predicts protein-protein
interactions based on physical chemistry approaches. It uses Cluster-Guided
Conformational Space Annealing (CG-CSA), one of the most effective global
optimization methods. The clusters are generated from initial structures and they
evolved by communicating each other and changes number of members of each

clusters. Instead of searching whole spaces of energy landscape, CG-CSA



concentrates on the nearby cluster regions. Effective sampling of CG-CSA can help
to find global minimum and near-native structures. The overall GalaxyPPDock

method is described in chapter 4.



2. GalaxyGemini: a program for protein homo-
oligomer structure prediction based on
similarity

2.1. Introduction

Many proteins self-assemble into oligomers in order to perform their
biological functions (Poupon and Janin 2010). For example, certain enzymes form
substrate-binding pockets at their dimer interfaces (Snijder et al., 1999), whereas
antibodies form oligomers to create additional binding sites, increasing effective
binding affinity via a “multivalent effect” (Pluckthun and Pack 1997). Many
membrane proteins also form oligomers for effective signal transduction (Heldin
1995). Knowledge of the protein oligomeric state is therefore crucial for

understanding protein function at the molecular level.

In the case of experimental protein structures deposited in the Protein
Data Bank (PDB), oligomeric states may be annotated by the authors or can be
assigned from crystallographic information through the Protein Interfaces, Surfaces
and Assembly (PISA) database (Krissinel and Henrick 2007). When such
information is not available, e.g., for protein model structures, prediction of the
oligomeric state is required. Recent studies have suggested that homology-based
homo-oligomer prediction methods can be more powerful than ab initio methods

(Morita et al., 2012).

Methods for prediction of protein oligomeric structures were assessed in a

blind fashion for the first time in the 9th Critical Assessment of Protein Structure



Prediction (CASP9) (Mariani et al., 2011). In this experiment, participants were
asked to predict homo-oligomer structures from amino acid sequences. Surprisingly,
no method performed better than naive predictors that take the top-ranking protein
by HHsearch (Soding 2005) as a template, implying that the current methods for
prediction of oligomeric structures are ineffective, with substantial room for

improvement.

We developed a program named GalaxyGemini for predicting protein
homo-oligomer structure, which shows clear improvement over other programs and

naive predictors tested on CASP9.



2.2. Methods

2.2.1. Overall procedure of GalaxyGemini

GalaxyGemini generates oligomer models from input protein tertiary
structure based on template information. First, GalaxyGemini searches homologues
of query tertiary structure using HHsearch (Soding 2005). Then, it determines
whether query protein is monomer or oligomer using scoring function derived from
HHsearch sequence score, HHsearch secondary structure score, alignment
coverage of query sequence and template sequence, and interface alignment score.
If query protein is determined as monomer, GalaxyGemini returns monomer. If
query protein is determined as oligomer, clustering for oligomer templates is
performed. Then, GalaxyGemini searches oligomer template based on scoring
function and cluster sizes of oligomer templates, and subunit number prediction
and contact prediction are performed based on selected oligomer template. Finally,
the oligomer model is generated by superimposing query tertiary structure onto
each subunits of selected oligomer template using TM-align (Zhang and Skolnick

2005) (Figure 2.1).
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Figure 2.1. Flowchart of GalaxyGemini
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2.2.2. Oligomer database and test sets

We constructed a database of known homo-oligomer structures containing
22,233 proteins with mutual sequence identity < 70% from all the structures
deposited in the PDB (Apr 10, 2010). Oligomer templates are selected from this
database. For each crystal structure, the oligomeric state was assigned as the
biological unit determined by authors if “REMARK 350” in PDB was available
and assigned by PISA otherwise. When PISA predicted multiple oligomeric states,
the top oligomeric state was used, instead of being removed from the database, to
increase the coverage of the database. According to the previous benchmark results,
PISA assignments can be regarded reliable with a success rate of 80~90%. For
protein structures solved by NMR, the oligomeric states were defined as the

assembled chain structures in the PDB entry.

The database was generated before CASP9 experiment, so the current test
results on the CASP9 set (96 proteins containing 43 monomers; Mariani et al.,
2011) can be fairly compared with CASP9 predictors including Naive predictors.
For parameter training on the PISA benchmark set (195 proteins containing 55
monomers; Ponstingl et al., 2003), target proteins were removed from the oligomer

template lists.

2.2.3. Oligomer structure prediction

For a given input protein, HHsearch is first run on the oligomer database.
Whether the query protein is oligomeric or not is then predicted by a scoring
function S1. If the top-ranking protein is monomeric, the query protein is predicted

to be monomeric. Otherwise, an oligomer template is selected by ranking with a



second function S2. Prediction of the oligomeric state corresponding to each
template is obtained by superimposing the input monomer structure onto the
subunits of the oligomer template using the structure alignment tool TM-align
(Zhang and Skolnick 2005). Finally, rigid-body energy minimization is performed
to remove steric clashes at the oligomer interface as explained in Supplementary

Information.

The 2 scoring functions S1 and S2 are expressed as the weighted sums of
Z-scores of 5 components. The first 4 components are derived from HHsearch: (i)
HHsearch sequence score, (i) HHsearch secondary structure score, (iii) ratio of
aligned residues to the query sequence length and (iv) ratio of aligned residues to
the sequence length of template candidate in the HHsearch alignment. These
components account for sequence similarity to the query protein. The fifth
component, called interface alignment score, accounts for tertiary and quaternary
structure similarity by adding BLOSUMG62 matrix scores (Henikoff and Henikoff
1992) between the interface residues of template candidate and the residues of the
query protein aligned to them. Addition of this component is important because
interface residues are more conserved than other surface residues (Caffrey et al,
2004). The weight parameters for the 2 scoring functions were determined by

training on the PISA benchmark set with a grid search.

2.2.4. Scoring function for predicting oligomer state

The function S1 used for scoring candidate proteins is expressed as a

weighted sum of the five components described in the main text as follows:

- 10 -



_ [10Zseq + 15Zss +15(Zcov1 + Zcovz) + 0 Zinters  if monomer ratio > 0.6 21
1710 Zseq + 10 Zss + 15(Zeovt + Zcovz) + 2 Zingert otherwise 2.1)
where Zseq, Zss, Zcovi, Zcovz and Zyerr stand for the Z-scores of HHsearch sequence
score, HHsearch secondary structure score, ratio of the aligned residues to the
query sequence length, ratio of the aligned residues to the candidate sequence

length and the interface alignment score defined as

Interface alignment score = ¥ s(i; , ),

s(ipj) = {BLOSUI\(/)I62 (aa;, aa)) i()ft]}'uisl:“i/\rllitse;rface residue 2.2)
where j is the residue index of the candidate protein, N is the total number of
residues in the candidate protein, i, is the residue index of the query protein aligned
to the jth residue of the candidate protein, aa; and aa; are amino acid types of
residues 1; and j, respectively. The Z-score for each component is calculated for a

background pool of top 2000 proteins ranked by HHsearch sequence score.

The weight parameters of S1 depend on the ‘monomer ratio’ defined as

. Y. Zseq(monomer)
monomer ratio = ><d . (2.3)
2 Zseq(monomer)+ ¥, Zgeq (oligomer)

where XZg., (monomer) and XZg., (oligomer) are the sums of the Z-scores of
HHsearch sequence scores for monomeric candidates and oligomeric candidates,
respectively, with HHsearch probability > 90%. If there is no protein with
HHsearch probability > 90%, the top ranking protein is selected as the oligomer

template.

-11 -



2.2.5. Scoring function for predicting homo-oligomer interactions

The second scoring function is used to select the oligomer template,
which is used to predict the number and orientations of the subunits of oligomer. It

has the same functional form as S1, but the weights are different as follows:

10 Zseq + 10 Zss + 3(Zcovi + Zcovz) + 7 Zinters  if (0.4 < CLC < 0.7) 2.4)

10 Zgeq + 10 Zss + 3(Zcovi + Zcovz) + 4 Zinters  if (CLC > 0.7)
Sz =
10 Zgeq + 15Zss + 3(Zcovi + Zcovz) + 10 Zineers if (CLC < 0.4)

The weight factors for the second and the last terms vary depending on the
target difficulty estimated by a parameter CLC (convergence of the largest cluster)

defined as

anndidates in the largest cluster ZSe
CLC = g : (2.5)

Zall candidates ZSeq

which estimates the degree of convergence of the largest cluster of the template
candidates. The summation is over proteins with HHsearch probability > 90%.
Clustering is carried out by a greedy algorithm with similarity criterion (contact
similarity) > 0.5. Contact similarity between two protein structures A and B are

calculated as

N(Contacts in A N Contacts in B)
N(Contactsin A)

Contact similarity = (2.6)

where N( ) is the number of inter-subunit residue contacts (Cp distance < 12 A).

The weight factors of scoring function S2 were determined by performing
three-fold cross-validation. The sets for cross-validation was generated by
randomly dividing the PISA benchmark set into three subsets maintaining
approximate proportions of different oligomers, as reported in Table 2.1. Fixing the

parameters for sequence score at 10, the number of trained parameters was three

-12 -



for each of 3 difficulty ranges, as can be seen from Eq. 2.4. The parameters trained
on the subsets were pretty robust, although variations in the third component,
interface alignment score, were found. The final parameter set corresponds to that
of the first fold, which shows the same average contact agreement score Sgrec for

both training and test sets.

- 13 -



Table 2.1. Weight factors for scoring function S2 determined by three-fold cross-

validation
Number of proteins Average Sagree Parameters
Training Test Training Test (SS, Cov, Interf)

rmer 0 2 (10,3,4)

Foldl 3-mer 16 8 0.63 0.63 (10,3,7)
pani r; i (15,3,10)

Ymer % 2 (10,3,4)

Fold2 i-mer ég 181 0.64 0.61 (10,3,7)

6:22 7 3 (1553’6)

Ymer % 2’ (10,3,2)

Fold3 3-mer 16 8 0.62 0.64 (10,3,7)
SR (153,10)

Yomer 75 (10,3.4)

All 3-mer 24 - 0.63 - (10,3,7)
o-mer 0 (15,3,10)
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2.2.6. Energy minimization

An oligomer structure generated by superimposition onto the template
structure may have steric clashes at the oligomer interface because the input
monomer structure at the interface may be different from that of template. To
remove such steric clashes, rigid-body energy minimization by a Monte Carlo
method is performed fixing the internal structure of monomer subunits. The
objective energy function is a sum of physicochemical energy implemented in the
GALAXY (Park and Seok 2012) and harmonic restraints for the distances between

C, atoms at the interface (C, distance < 14 A) of the oligomer template.

2.2.7. Assessment measures

Identification of the correct number of subunits in an oligomer was
evaluated by measuring the “relative accuracy” (Accre). For more precise
evaluation of the predicted structure, the “contact agreement score” (Sugree) Was
measured, which reflects the fraction of correctly modeled interface contacts in the

complex.

“Relative accuracy” (Accre) is an accuracy measure for the number of subunits

defined as

Number of targets with correctly predicted number of subunits

Accgel = X 100 (%) (2.7)

Number of targets

Contact agreement score (S,gee) 1S a measure for interface contact
similarity between the native and predicted oligomer structures defined as

_ X f (xi¥if)

T X9y (2.8)

Sagree
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|xij— i)l

if max(x;;,v;) >0

f(xij'Yij) = ~ max(xi;,yi)) (2.9)
0 lf max(xij,yij) =0
1 lf max(xij,yl-j) >0
) = 2.10
g(xu yl}) {0 if maX(xij,yij) -0 (2.10)

where x; and y; are the numbers of contacts (Cy distance < 12A) between residue i
and residue j that belong to different protein subunits for the native and the
predicted oligomer structures, respectively. The number of residue i is same as the
number of subunits. Sy ranges from 0 to 1. S,eee = 1 corresponds to the exactly
same contacts between the native and model structures, and Syeee = 0 to no match

between contacts in the native and model structures.
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2.3. Results and Discussion

2.3.1. Performance of GalaxyGemini on training set and test set

We tested on GalaxyGemini on PISA benchmark set and CASP9 oligomer
set. GalaxyGemini increased relative accuracy from 75.4% (for the naive predictor
NaiveSeqScore that takes the HHsearch top ranker by sequence score) to 79.5% for
the training set (PISA benchmark set) and from 69.8% to 77.1% for the test set
(CASP9 set). The sum of S, Over the targets increased from 74.7 to 88.0 for the
training set and from 13.6 to 17.6 for the test set when “experimental” monomer
structures were used as input (Figure 2.2). When tertiary structures predicted by
GalaxyTBM (Ko et al., 2012) were used as input for the CASP9 set, the sum of
Sagree increased from 9.4 to 12.1. Sum of S,4c 0f NaiveCoverage is 9.8, the largest
value among CASP9 predictors, but sum of Sy 0f GalaxyGemini is also larger
than that of NaiveCoverage (Figure 2.3). GalaxyGemini outperforms all other
CASP9 predictors and naive predictors by the two measures, Accre and Sygree,
implying that GalaxyGemini may be successfully applied to “sequence-based”

oligomeric structure prediction (Figure 2.4).

A successful example of CASP9 target T0576 (3na2) highlights the
strength of GalaxyGemini (Figure 2.5). This protein forms a dimer through an
inter-chain B-sheet. The best template determined by the NaiveSeqScore (2grg) is
monomeric, but GalaxyGemini successfully found a dimer template (3fm2), which
has an oligomer structure similar to the native structure, resulting in a high S,grec Of
0.742. A tetramer target T0632 (3nwz) is also successful case. The best template
selected by NaiveSeqScore (1vh9) is dimer, but the best template selected by
GalaxyGemini (3f50) is tetramer similar to the native structure, resulting in high

Sagree 0f 0.708 (Figure 2.6). GalaxyGemini predicted inter-chain interactions of f-
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strand of tetramer target T0632 based on selected template. These results showed
that GalaxyGemini searches better templates than NaiveSeqScore on both dimer

and tetramer targets.
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Figure 2.2. Target-based comparison of the performance of GalaxyGemini with
that of a naive predictors NaiveSeqScore as measured by S,... for the (a) PISA
benchmark set, (b) CASP9 set using the experimental monomer structure as input.
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Figure 2.5. A successful dimer example (T0576, 3na2) of GalaxyGemini. Subunits
of the native structure are shown in black and gray and those of the predicted
structure in pink and purple.
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Figure 2.6. A successful tetramer examples (T0632, 3nwz) of GalaxyGemini.
Subunits of the native structure are shown in black and gray and those of the
predicted structure in pink and purple.
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2.3.2. Contribution of score components

Among the five components of the GalaxyGemini scores S1 and S2,
HHsearch sequence score contributes the most to the performance in terms of both
relative accuracy and sum of contact agreement score. Contributions of the
additional components were analyzed by successively adding more components to
the sequence score, as shown in Table 2.2. Although improvement by adding three
additional terms on the training set (PISA set) is rather small for the relative
accuracy of subunit numbers (improved by 5.4%) which is already high (75%) with
the sequence score alone, improvement is more significant for the contact
agreement score (improved by 18%). Among the additional components, the
interface alignment score contributes the most to the improved performance on the
training set (PISA set). Interestingly, secondary structure score turned out to be
important in increasing the relative accuracy for the test set (CASP9 set). This
seems to be related to the fact that better templates for template-based modeling
were obtained by including secondary structure score for more difficult targets in a
previous study (Ko ef al., 2012). Overall, the weighted sum of all five energy

components can maximize the performance for both training set and test set.
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Table 2.2. Contribution of components of the GalaxyGemini scores

Accrel Sum of Sagree
Components
PISA Set CASP9 Set PISA Set CASP9 Set
Seq 75.4% 69.8% 74.7 13.6
Seq + SS 72.8% 76.0% 72.4 15.1
Seq + Cov 76.4% 71.9% 78.8 15.4
Seq + Interf 78.5% 72.9% 86.9 14.9
Seq + SS + Cov 75.9% 74.0% 74.7 15.6
Seq + SS + Interf 76.9% 76.0% 87.3 17.7
Seq + Cov + Interf 78.5% 74.0% 87.5 16.7
Seq + SS + Cov + Interf 79.5% 77.1% 88.0 17.6
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2.3.3. Oligomer states for improvement cases on CASP9 targets

We followed the assignments of oligomeric states made by the CASP9
assessors, as ex explained in Supplementary Table S1 of the CASP9 assessment
paper (Mariani et al., 2011). In Table 2.3, assignments for the CASP9 targets were
showed for improved predictions of GalaxyGemini compared to NaiveSeqScore.
All but one target had no ambiguities in the oligomer state assignment. The target
T0632 for which both authors and PISA assigned two states was assigned to be a
tetramer by CASP assessors after closer examination of PISA scores and structural
details. Improvements are mostly on dimers for the CASP9 set (8 out of 12), but
this fraction (67%) is smaller than that of dimers (78%) in CASP9 set, implying
that GalaxyGemini may not be necessarily biased to dimers and GalaxyGemini

also generate good models on tertiary or tetramer targets.
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Table 2.3. Oligomeric state assignment of the CASP9 targets for which
GalaxyGemini showed improved predictions over the naive predictor
NaiveSeqScore

Assignment
PDB

TARGET ID Author PISA CASP Comment

T0523 3mqo  2-mer 2-mer 2-mer
T0536 3mxq  4-mer 4-mer 4-mer
T0542 3n05 2-mer 2-mer 2-mer
T0565 3npf 2-mer 2-mer 2-mer
T0576 3na2 2-mer 2-mer 2-mer

T0584 3nf2 2-mer 2-mer 2-mer

T0586 3neu 2-mer 2-mer 2-mer
T0592 3nhv 3-mer 3-mer 3-mer
TO611 3nnr 2-mer 2-mer 2-mer
Authors assigned different states, but the
T0632 3nwz  2,4-mer 24-mer 4-mer tetramer is confirmed as most stable
complex.
T0635 3nlu 4-mer 4-mer 4-mer

T0636 3plt 2-mer 2-mer 2-mer

- 27 -



2.4. Conclusions

We developed GalaxyGemini to predict homo-oligomeric structure from
query protein tertiary structure. GalaxyGemini was successfully tested on both
PISA benchmark set and CASP9 oligomer set. The performance of GalaxyGemini
was better than other oligomer prediction methods tested in CASP9, implying

wider applicability to oligomer state prediction from sequence.
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3. GalaxyPepDock: a protein-peptide docking
tool based on interaction similarity and
energy optimization

3.1. Introduction

Protein-protein interactions that are mediated by short linear peptides of
interacting partners are critical in a broad range of biological processes, such as
signaling pathways, protein cellular localization and post-translational
modifications (Miller et al., 2008; Petsalaki and Russell 2008; Scott and Pawson
2009; Wen et al., 1995). The importance of such interactions is evident because of
their involvement in critical human diseases, such as cancer and infections
(Maclaine and Hupp 2011). Because of the small sizes of protein-peptide interfaces,
such interactions can be modulated by small chemicals or synthetic peptides
(Vlieghe et al, 2010; Yang et al., 2005). Therefore, effective computational
modeling of protein-peptide interactions can provide useful information for
understanding complex biological processes in molecular detail and for modulating

protein-protein interactions for disease treatment.

As in other areas of molecular modeling, it is very difficult to obtain
reliable predictions by computational protein-peptide docking when prior
knowledge of the interactions is not available. When there is no information on the
binding site, putative binding sites must be searched for on the entire surface of the
target protein. Such global docking methods show limited accuracy for predicting
high-resolution complex structures, but successful predictions of at least part of the

binding residues have been reported (Lavi et al., 2013; Petsalaki et al., 2009; Yan
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and Zou 2015). When experimental or predicted data on binding site residues are
available, such information can be used to constrain the docking to local regions of
the protein surface (Trellet et al, 2013). These local docking methods usually
require a model protein-peptide complex structure as input, whereas global docking
methods require only a protein structure and a peptide sequence. Among the
various protein-peptide docking methods developed so far, only a small number of
methods are available, such as PepSite (Trabuco et al., 2012), PEP-SiteFinder
(Saladin ef al., 2014), and CABS-dock (Kurcinski et al., 2015) for global docking
and Rosetta FlexPepDock (London et al., 2011; Raveh et al., 2010; Raveh et al,
2011) and PepCrawler (Donsky and Wolfson 2011) for local docking.

As increasing number of protein-peptide complex structures are being
deposited in the PDB, the probability of finding protein-peptide complexes similar
to a given target complex in the structure database increases. For example, 87% of
the non-redundant protein-peptide complexes in the PeptiDB set (London et al.,
2010) have similar proteins, with a protein TM-score > 0.6, among the
experimentally resolved structures that were published prior to the given complex.
Because protein-peptide interactions are usually stabilized through hot spot
interactions (London et al., 2010; London et al., 2013), the observed hot spot
interactions in known protein-peptide complex structures can be useful for
predicting interactions that involve a range of new variations in target proteins and

peptides.

The GalaxyPepDock utilizes information on protein-peptide interactions
of similar proteins in the database of experimentally determined structures to
generate high-resolution complex structures when reasonable template protein-

peptide complex structures can be found. A further refinement by GALAXY
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energy-based optimization (Heo et al., 2013; Park et al., 2011; Park and Seok 2012;
Park et al., 2014) enables the modeling of structural differences between the
template and target complex structures by sampling the backbone and side chain
flexibilities of both protein and peptide. GalaxyPepDock were successfully test on
PeptiDB benchmark set, and showed good performance compared to other popular
protein-peptide docking programs: PEP-SiteFinder, CABS-dock, and PepSite. Also,
when tested on the CAPRI target 67, predictions of medium accuracy were made;
this accuracy is among the best predictions made by human groups and superior to
the best server predictions submitted during the CAPRI blind prediction
experiment. For this target, the conformational change of the protein by peptide

binding was also correctly predicted.
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3.2. Methods

3.2.1. Overall procedure of GalaxyPepDock

GalaxyPepDock consists of two steps for protein-peptide docking. First,
GalaxyPepDock searches crystallized protein-peptide template based on structural
similarity of protein structure and interaction similarity of protein and peptide.
Second step is energy-based optimization step. Protein-peptide models are
generated based on molecular dynamics-based method using GalaxyTBM and
GalaxyRefine. The energy function for energy-based optimization is summation of
physics-based energy function used in GalaxyRefine and C, restraints derived from

selected template (Figure 3.1).
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Figure 3.1. Flowchart of the GalaxyPepDock.
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3.2.2. Template selection

Templates for protein-peptide complex structure prediction are selected
from the PepBind (Das et al., 2013) database with the following score for each

complex structure in the database

Scomplex = Ztm + Zinter (3.1

where Zry measures the protein structure similarity by the Z-score of the TM-score
of a database protein structure when aligned to the target protein structure by TM-
align (Zhang and Skolnick 2005) and Z,. measures the interaction similarity of a
database complex and the target complex when aligned to the former by the Z-
score of the interaction similarity score Sy, defined below. Up to 10 complexes
with Seomplex > 90% of the maximum value are selected as templates and used in the

model-building procedure described in the next subsection.

To measure the interaction similarity of a database complex and the target
complex, the target complex is first aligned to the database complex by protein
structure alignment and peptide sequence alignment. Peptide alignment is
performed by gapless sequence alignment with a modified BLOSUM®62 (Henikoff
and Henikoff 1992) matrix score, by multiplying the weight of (1 + the number of
hydrophobic or ionic protein residues contacting the given peptide residue in the
template complex structure) to the BLOSUM62 matrix components with scores > 0.
Hydrophobic (or ionic) protein-peptide residue pairs with at least one heavy atom
pair within 5.0 A (or 6.0 A) are considered to be contacting following the PepBind
criterion (Das et al., 2013). In this way, more emphasis is put on the peptide
residues contributing to hot spot interactions than on other residues during peptide

alignment. An example case of peptide alignment is provided in Figure 3.2. The
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interaction similarity score Sy 1S then calculated by summing the interaction pair
similarity score S;;for all of the protein-peptide residue pairs (i-j) in contact in the
template complex, as illustrated in Figure 3.3 for the example case. S;; is measured
by the similarities in the amino acids of the contacting pair (i-j) in the template
complex and of the corresponding pair (i’-j’) in the target complex aligned to the
template and is defined as Si; = Max[ B(i,i")*B(j,j ), B(i,j )*+B(ji’) ] , where B(i,i’)
is the BLOSUMG62 matrix component for the amino acid of residue i and that of

residue 7’.
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j’= 1 2 3 4 5 6 7 8
Query peptide = P P P A L P P K K

Template peptide A F A P P L P R R =

j= 1 2 3 4 5 6 7 8
Scores
B(j, it -8 -4 -1 7 -2 4 7 -2 2 -8
N eer(i) 2 0 1 2 2 1 4 3 0 1 —

Modified B(j , j') 3 -8 4 -1 21 -2 20 28 -2 4 -8

1B(j, j’) = BLOSUM®G2[amino acid (j), amino acid (j’)]

N, 1er(i) = Number of interacting hydrophobicor ionic protein residues
for peptide residue j in the template complex structure

*Modified B(j , J') = [1+N;ne, (1) X ©{B(}, ')} x B(j , J')

©(B)=0ifB<0, 1ifB>0

Figure 3.2. Peptide alignment of GalaxyPepDock performed with a modified
BLOSUMS62 matrix
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Figure 3.3. Calculation of interaction similarity score S, of GalaxyPepDock.
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3.2.3. Model-building

For each template, 50 model complex structures are first generated with
the model-building tool of GalaxyTBM (Ko et al., 2012), using protein structure
alignment and peptide sequence alignment. For the model-building optimization,
restraints on the distances between interacting protein-peptide pairs are added to
the GALAXY energy, with weights dependent on the interaction pair similarity
score S;j (Figure 3.4). Interaction pairs with higher similarities to the template tend
to be conserved by stronger template-derived restraints, whereas the sampling of
other parts of the structure is driven more by the physics-based energy than by
template-derived information. Of the model structures generated by GalaxyTBM,
10 structures are selected by choosing the structures with the best energy values for
each template and are further refined following the GalaxyRefine (Heo ez al., 2013)
protocol. This refinement step allows for the adjustment of the backbone and side
chain structures by repetitive molecular dynamics relaxations after side chain

repacking.
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Figure 3.4. GalaxyPepDock energy function for protein-peptide model building.
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3.2.4. Evaluation measure

To evaluate the performance of GalaxyPepDock, four measures were used:
LRMSD (peptide RMSD), IRMSD (interface RMSD), f,,; (fraction of native
contact), and fy. (fraction of native binding site). For the definitions of
acceptable/medium accuracy predictions, the following CAPRI criterion was used:
acceptable prediction if (LRMSD < 4 A or IRMSD < 2 A) and f,,, > 0.2 and
medium prediction if (LRMSD <2 A or IRMSD < 1 A) and f,,, > 0.5 (Lensink and
Wodak 2013). The values of LRMSD, IRMSD, and f,,, were used to compare
GalaxyPepDock to PEP-SiteFinder and CABS-dock, and the value of f,. was used

to compare to PepSite.
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3.3. Results and Discussion

3.3.1. Performance compared to other protein-peptide docking programs

The performance of GalaxyPepDock was compared with those of three
available protein-peptide docking programs, PEP-SiteFinder, CABS-dock, and
PepSite, which perform global protein-peptide docking and thus do not require the
protein-peptide structure as input. Because PEP-SiteFinder, CABS-dock, and
PepSite are ab initio methods that do not rely on template information, the
comparison of the results presented here demonstrate the extent to which a
similarity-based method such as GalaxyPepDock can be useful compared with the
ab initio methods for the benchmarking set. For a fair comparison, the complexes
in the PepBind database that were released after each target complex were
excluded during template search in GalaxyPepDock prediction. The accuracy of the

best model of the 10 generated models was evaluated for each method.

The non-redundant set of PeptiDB (London et al., 2010) was first
employed for comparison. Peptide docking to unbound protein structures was
performed on 57 of the 103 PeptiDB complexes for which unbound protein
structures are available in the structure database because re-docking peptides to
bound protein structures is only of theoretical interest. For the 40 PeptiDB targets
that have < 10 residue-long peptides that are accepted by PepSite, GalaxyPepDock
identified 75.4% of the binding site residues on average, compared with the 66.2%,
64.1%, and 40.9% identified by PEP-SiteFinder, CABS-dock, and PepSite,
respectively (Table 3.1). In terms of complex structure prediction, GalaxyPepDock
generated structures with better than medium quality when measured by the
CAPRI criterion (Lensink and Wodak 2013) for 27 of the 57 PeptiDB targets,

compared with the 4 targets returned by PEP-SiteFinder and 0 targets returned by
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CABS-dock. Also, GalaxyPepDock generated structures with better than
acceptable quality for 37 of the 57 PeptiDB targets, compared with 9 targets
returned by PEP-SiteFinder and 11 targets returned by CABS-dock (Table 3.2).
These results showed that the performance of GalaxyPepDock is better than that of
other ab-initio protein-peptide docking methods and template-based docking is

very effective for many protein-peptide docking problems.
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Table 3.1. Fraction of binding site residues correctly predicted by GalaxyPepDock,
PEP-SiteFinder, CABS-dock, and PepSite on the 40 targets of the PeptiDB set that
have available unbound protein structures and have < 10 residue-long peptides.

PDB ID Galaxy PEP-Site CABS-

Bound Unbound PepDock Finder dock PepSite
1ER8_E:I 10EW_A 0.969 0.813 0.719 0.313
1ICKA A:B 2DVJ A 0.800 0.867 0.933 0.733
1AWR C:I 2ALF A 1.000 0.813 0.813 0.750
1CZY _C:E 1CZZ C 1.000 0.000 0.318 0.000
1DDV_A:B 1I2H A 0.900 0.500 0.900 0.000
1H6W_A:B 10CY_A 0.742 0.742 0.613 0.677
1IKL3 C:G 2RTM_A 1.000 0.647 0.706 0.000
1GYB_B:E 1GY7 B 0.125 0.250 0.250 0.250
ILVM_A:E ILVB B 0.000 0.385 0.308 0.000
IMFG_A:B 2H3L A 1.000 0.941 0.882 0.647
IN7F _B:D IN7E_A 0.938 0.875 0.563 0.000
10AI_A:B 1GO5_A 0.200 0.933 0.800 0.333
INVR_A:B 2QHN A 0.000 1.000 0.667 1.000
10U8 B:D 10U9_A 0.000 0.810 0.667 0.000
1UJ0_A:B 1X2Q A 0.933 0.733 0.867 0.933
1T4F M:P 1Z1IM_A 0.824 0.647 0.765 0.353
IT7R_A:B 2AM9 A 0.938 0.875 0.813 0.000
1VZQ H: LUWT_A 1.000 0.231 0.615 0.000
ITP5_A:B 1PDR A 1.000 0.722 0.278 0.944
IWI9E A:T IR6J A 0.875 1.000 0.750 0.000
IYWO_A:P 1IYOM_A 1.000 1.000 0.923 1.000
1X2R _A:B 1X2J A 0.818 0.727 0.909 0.773
2AKS5 B:D 2G6F X 1.000 0.833 0.750 1.000
2B1Z B:D 3ERT A 0.692 0.000 0.231 0.000
2C31_B:A 2J21 B 0.905 0.952 0.429 0.000
2FGR_A:B 2FGQ X 0.900 0.300 0.300 0.000
2FOJ_A:B 2F1W_A 0.867 0.800 0.667 0.667
2FV]_A:B 2HWQ_A 1.000 0.933 0.933 0.400
2H9M _C:D 2H14 A 0.900 0.800 0.650 0.800
2DS8 B:P 2DS7 A 0.538 0.077 0.538 0.385
2HO2 A:B 2E45 A 0.875 1.000 0.750 1.000
2HPL A:B 2HPJ A 0.000 0.929 0.667 0.500
209V_A:B 2098 A 1.000 0.750 0.833 0.833
2P1T _A:B ILBD A 0.588 0.647 0.471 0.118
2PUY_B:E 2YQL A 1.000 0.889 0.556 0.500
2R7G _C:D 1AD6 A 0.895 0.789 0.895 0.211
2VJ0_A:P 1B9K A 0.643 0.143 0.500 0.643
27JD A:B 1V49 A 0.750 0.500 0.792 0.000
3DIE AP 3DIG_A 0.818 0.500 0.500 0.545
3D9T B:D 1QBH A 0.714 0.143 0.143 0.071
Average 0.754 0.662 0.641 0.409
Median 0.885 0.770 0.667 0.369
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Table 3.2. Performance of GalaxyPepDock compared to other docking programs

on 57 peptiDB targets.

Galaxy PEP-Site CABS-

PepDock Finder dock
Medium
. 47.3% 7.0% 0.0%
Quality
Acceptable 4 oy 15.8% 19.3%
Quality
<LRMSD> 7.5 11.0 9.2
<IRMSD> 34 4.7 4.2
<Frac> 0.545 0.256 0.227
<Fgie> 0.763 0.625 0.640
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3.3.2. Template search of GalaxyPepDock

GalaxyPepDock searches protein-peptide templates based on Z-score
summation of TM-score and interaction similarity score. We compared template
search method to naive method which only uses TM-score for template search. The
average and median LRMSD of templates searched by GalaxyPepDock are 8.25 A
and 0.99 A, those of templates searched by naive method are 8.52 A and 1.44 A.
The fraction of targets with less than 1.0 A, less than 2.0 A, and less than 4.0 A of
GalaxyPepDock are 50.9%, 59.6%, and 63.2%, those of naive method are 42.1%,
56.1%, and 59.6%. These results showed that TM-score contributes the most to the
performance of template searching and adding interaction similarity score can help

search better templates.
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Table 3.3. LRMSD of template selected by highest TM-score and Z-score
summation of TM-score and interaction similarity score on 57 PeptiDB targets

ID LRMSD LRMSD
(Query) (TM-score) (ZTM+ZIn_m)
1ER8_E:I 0.72 0.56
1CKA_A:B 4.49 1.64
1AWR _C:1 1.75 0.26
ISFI_A:1 0.11 0.25
1CZY C:E 23.72 0.34
1DDV_A:B 8.35 8.35
1EG4_A:P 25.51 40.60
1JBU_H:X 17.34 25.76
1H6W_A:B 30.90 6.82
1KL3 C:G 0.56 0.56
1GYB_B:E 14.65 26.49
ILVM_A:E 32.17 29.47
IMFG_A:B 0.78 0.78
IN7F _B:D 0.94 0.94
10AI_A:B 19.72 19.99
INVR _A:B 29.00 29.00
INX1 _A:C 30.36 30.36
10U8 _B:D 23.55 26.20
1UJ0_A:B 0.96 5.74
IRXZ A:B 0.34 0.34
1SSH_A:B 2.90 0.47
IT4F _M:P 0.94 0.94
IT7R_A:B 1.18 1.18
1VZQ _H:I 0.28 0.27
1TPS_A:B 0.29 0.29
IWI9E_A:T 9.33 0.34
1YUC _A:C 0.74 0.74
1IYWO _A:P 0.99 0.99
1X2R A:B 2143 7.29
2A31 A:B 1.95 0.52
2AKS B:D 1.24 5.47
2B1Z B:D 25.62 25.62
2C31_B:A 0.19 0.19
2B9H _A:C 34.37 2.39
2FGR_A:B 0.19 0.19
2FMF_A:B 0.70 0.70
2FOJ A:B 3.80 3.80
2CCH_D:F 0.49 0.41
2FV]_A:B 0.26 0.45
2H9M_C:D 0.17 0.17
2DS8 B:P 13.99 13.99
2HO2 A:B 8.35 5.54
2HPL A:B 22.88 66.81
2002 _A:P 8.13 0.39
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204]_A:C 0.17 0.17
209V_A:B 1.13 1.13
2P1K_A:C 0.59 0.59
2PIT AB 0.37 0.12
2P54 A:B 0.29 0.48
2PUY B:E 1.39 1.39
2Q0S_C:A 432 4.32
2R7G_C:D 1.53 5.20
2VI0_A:P 39.69 52.35
3BU3_A:B 1.44 1.73
27ZJD_A:B 7.98 7.98
3DIE_A:P 0.31 0.31
3D9T B:D 0.27 0.66
Average 8.52 8.25
Median 1.44 0.99
Ratio (LRMSD<1.0A) 42.1% 50.9%
Ratio (LRMSD<2.0A) 56.1% 59.6%
Ratio (LRMSD<4.0A) 59.6% 63.2%
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3.3.3. Energy-based optimization of GalaxyPepDock

Flexible-structure ~ energy-based = model-building  procedure  of
GalaxyPepDock improved the predictions beyond that of a simple method that
superimpose the target onto the template structure. The improvement in prediction
accuracy achieved by additional energy optimization compared with the template
superimposition method can be observed from the increased number of high-
accuracy/medium-accuracy/acceptable predictions from 5/22/36 to 6/27/37 and the
improved average ligand-RMSD/interface-RMSD/(fraction of native contact)
values from 8.6 A/4.0 A/0.485 to 7.6 A/3.4 A/0.545. These results showed that
molecular dynamics-based optimization method with physicochemical energy
functions can generated more accurate protein-peptide models compared to

superimposition method (Table 3.4).
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Table 3.4. Similarity of the query and the template protein structures measured by
TM-score and ligand RMSD of the starting model and final model on the 57

PeptiDB targets.
1D ID TM- Initial  Final
(Query) (Template) Score RMSD RMSD
IER8_E:I  3APR Ei 0917 157  0.84
ICKA A:B 1PRM_C:A 0.750 1.94 2.80
IAWR C:I 1FGL A:B 0.989 1.44 1.37
ISFI_A:1 2BTC E:I 0.996 2.13 2.81
ICZY C:E 1QSC _A:D 0.926 3.28 1.04
IDDV_A:B 1QC6 _A:C 0.751 8.16 7.23
1EG4 A:P IBT6_A:C 0.617 51.13 42.96
1JBU H:X 8GCH G:C 0.875 31.12 26.03
IH6W_A:B 1FCH_A:C 0.150 16.88 13.92
IKL3 C:G IRST B:P 0.911 2.14 3.69
IGYB B:E IKL5 A:E 0434 28.16 27.02
ILVM_A:E 1FN8 A:B 0.634 2520 26.44
IMFG_A:B 2PDZ A:B 0.796 6.04 2.68
IN7F B:D IBE9 A:B 0.683 3.08 1.23
10AI_A:B  1H27 B:E 0.176 2697 23.36
INVR_ A:B 1QMZ AE 0.737 29.04 28.90
INXI_A:C INPQ A:B 0621 1970  19.25
10U8 B:D 3SEM _A:C 0.539 26.01 25.47
1UJ0_A:B 10EB _B:C 0.850 0.88 1.00
IRXZ A:B 1ISQ A:B 0.907 2.99 1.71
ISSH A: B 3GBQ _A:B 0.823 2.16 1.38
IT4F _M:P 1YCR_A:B 0.801 1.14 1.30
IT7R_A:B 1T5Z A:B 0.992 1.18 1.13
1VZQ HiI IGHW_H:I 0.995 0.53 1.37
ITP5_A:B IBE9_A:B 0.792 1.29 0.97
IW9E A:T 10BY_A:P 0.963 0.41 0.79
IYUC A:C 1IYOW_A:B 0.947 2.37 2.03
IYWO _A:P 1SSH A:B 0.811 3.75 3.54
I1X2R_ A:B  1P22 A:C 0.493 11.27 8.18
2A31_A:B 1IKV6_A:C 0.926 2.98 3.91
2AK5 B:-D 2SEM_A:C 0856 149  1.19
2B1Z B:D 1X7E_A:C 0.894 0.40 4.78
2C31 B:A 2BZK B:A 0.970 1.00 0.80
2B9H_A:C I1UKH A:B 0.854 5.56 4.79
2FGR_A:B 1E54 AB 0.990 0.99 1.49
2FMF_A:B 2FLW_A:B 0.968 0.33 1.31
2FOJ A:-B 1YY6 A:B 0949 474 454
2CCH_D:F 10KW B:E 0.989 2.86 1.46
2FV]_A:B 1ZGY_A:B 0.736 0.90 0.96
2HOM C:D 2GY9A A:B 0.967 0.63 0.94
2DS8 B:P 2FSA_A:P 0.186 14.89 14.16
2HO2 A:B  1K9Q A:B 0.565 14.05 16.73
2HPL A:B 2AKA A:L 0.095 6946 41.79
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2002_A:P  2C23 A:P 0.659 7.85 2.06
204] A:C IRKG A:C 0.817 0.67 0.91
209V_A:B  3GBQ_A:B 0.868 1.97 1.16
2P1K A:C  1CMI_A:C 0.814 2.11 3.31
2P1T_A:B IXIU_A:E 0.741 0.76 1.32
2P54 A:B IK7L _A:B 0.754 1.78 1.98
2PUY B:E 2G6Q _A:B 0.633 4.48 3.08
2Q0S_C:A  1VWR B:P  0.587 6.52 6.20
2R7G_C:D IN4M_A:C 0.497 3.64 3.49
2VIJ0_A:P IKY6_A:P 0949 11.72 10.88
3BU3 A:B 2Z8C A:B 0.371 3.54 4.44
27ZJD_A:B  2ASQ_A:B 0.735 9.68 8.32
3DIE_ A:P 10K7 B:C 0.989 1.79 1.58
3D9T B:D 1XBl A:G 0.604 1.70 3.70

Average 8.60 7.57

Median 2.98 2.81
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3.3.4. Performance of GalaxyPepDock on CAPRI target

GalaxyPepDock was also tested on the CAPRI target 67 (PDB ID: 4N7H),
and a medium-accuracy prediction was made. Compared with template-
superimposed models, the quality of the model was improved by energy
optimization from acceptable to medium accuracy, with improvements in ligand-
RMSD/interface-RMSD/(fraction of native contact) values from 2.9 A/1.5 A/0.500
to 1.8 A/1.0 A/0.688. Also, GalaxyPepDock predicted hydrophobic interaction of
Leucine and polar interaction of Tryptophan and Histidine. In the CAPRI blind
prediction experiment, 6 of the 44 registered groups submitted medium-accuracy
models. The best server predictions were only of acceptable quality (Table 3.5;

Figure 3.5).
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Table 3.5. Prediction made by GalaxyPepDock on the CAPRI target 67 compared
with those submitted by top 3 servers and top 6 human groups in the CAPRI blind
prediction experiment.

LRMSD IRMSD for  Quality”

GalaxyPepDock 1.80 1.01 0.688 ko
Server Predictors
SwarmDocK 2.92 1.37 0.625
HADDOCK 3.18 1.94 0.500
ClusPro 4.18 1.49 0.688

Human Predictors

Bates 1.12 0.80 0.688 koK
Furman 1.27 0.93 0.938 ok
Zhou 1.40 1.11 0.688 *k
Niv 1.43 0.99 0.688 *ok
Zacharias 1.62 0.80 0.875 ok
Vajda 1.69 1.23 1.000 *ok

1) Model quality defined as CAPRI criterion (Medium quality (**),
Acceptable quality (*)).
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Figure 3.5. (a) Native structure and (b) GalaxyPepDock model on CAPRI target 67.
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3.3.5. Limits of template-based docking

GalaxyPepDock is a template-based protein-peptide docking, so it means
that the performace of GalaxyPepDock is influenced by the quality of template
structure (Table 3.6). The success ratio of GalaxyPepDock was 64.9%, but the
value was increased on targets having high structural similar templates.
GalaxyPepDock failed to predict protein-peptide interactions on targets having low
similar templates (TM-score < 0.6). These results showed that template-based
protein-peptide docking is only effective on targets having high similar templates,
and it is need to develop ab initio docking which performs well on targets having

low similarity templates.
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Table 3.6. Performance of GalaxyPepDock dependent on template quality

TM-score cut Number of Number of Success ratio
Success targets targets
TM-score > 0.0 37 57 64.9%
TM-score > 0.6 37 51 72.5%
TM-score > 0.7 35 44 79.5%
TM-score > 0.8 33 40 82.5%
TM-score > 0.9 25 29 86.2%
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3.4. Conclusions

GalaxyPepDock is a similarity-based protein-peptide docking program that
performs additional flexible-structure energy-based optimization. The effective
combination of database search and physics-based optimization allows for a
superior performance compared with the existing protein-peptide docking methods

when complexes involving similar proteins can be found in the database.
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4. GalaxyPPDock: a protein-protein docking
program based on cluster-guided
conformational space annealing

4.1. Introduction

Proteins play key roles in various biological processes, such as enzyme
catalysis (Negri et al, 2010) and signal transduction (Pawson and Nash 2000),
through interactions with other proteins (Ozbabacan et al., 2011; Perkins et al,
2010). In order to understand protein functions, it is essential to precisely describe
protein-protein interactions in atomic detail, which is the ultimate goal of protein-
protein docking studies. For decades, many protein-protein docking programs have
been developed to deliver atomic models of protein-protein interactions with
various types of sampling approaches. There are many FFT-based docking program,
including FTDock (Gabb et al, 1997), ZDOCK (Chen et al, 2003), PIPER
(Kozakov et al., 2006), DOT (Mandell et al., 2001), and GRAMM (Vakser 1997).
There are also methods using geometric hash, PatchDock (Schneidman-Duhovny et
al., 2005) and LZerD (Venkatraman et al, 2009), Monte Carlo simulation,
RosettaDock (Gray et al., 2003), FireDock (Andrusier ef al., 2007), and FiberDock
(Mashiach et al., 2010), and molecular dynamics simulation, HADDOCK
(Dominguez et al., 2003). Despite their efforts, however, conformation sampling
still remains as one of the most challenging problems in protein-protein docking
study (Gray 2006; Huang 2014). Even with such diverse sampling approaches
attempted to date, still searching conformation space in protein-protein docking

problem - spanned by relative orientation and internal flexibility of the interacting
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partners - is formidable (Bonvin 2006). A powerful global optimization method can

therefore be indispensable to tackle this challenge.

Conformational Space Annealing (CSA) (Lee ef al., 1998) is regarded as
one of the powerful global optimization methods that have been applied to general
biological modeling studies. The key idea of CSA is to run a broad sampling in
early stage and then to gradually focus on low-energy conformations. Sampling
space is diverse in early stage and becomes gradually narrowed down. CSA has
been successfully applied to many biological problems, such as protein structure
prediction (Joo et al., 2009; Ko et al., 2012; Park et al., 2011; Park and Seok 2012;
Park et al., 2014) and protein-ligand docking (Lee et al., 2005; Shin et al., 2011;
Shin and Seok 2012; Shin et al., 2013). Previously, Lee et al applied CSA to
protein-protein docking study (Lee et al.,, 2005) which was tested on round 5 of
Critical Assessment of Prediction of Interactions (CAPRI), a community-wide
experiment for evaluating the performance of protein-protein docking programs.
However, at the moment the method was premature and only one of four targets
have got acceptable result in CAPRI criteria. This suggests that applying CSA
algorithm to protein-protein docking problem is not straightforward, but requires
additional developments in order to take into account of specific features that the

problem may possess.

Then what is particular aspect of protein-protein docking problem by
understanding which we can systematically enhance the sampling performance?
The main idea we took advantage of in this study is that conformational space in
protein-protein docking problem can be dramatically reduced into a set of smaller
sub-spaces with highest feasibilities. Feasibility of a model complex is strongly

related to geometric or electrostatic complementarity between proteins unless
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either protein undergoes huge conformational change upon binding. Moreover,
those feasible spaces are not uniformly distributed but are found as discrete
“patches” in whole space (Caffrey et al., 2004; Jones and Thornton 1997; Malod-
Dognin et al., 2012). Therefore, based on this assumption, we can be reformulated
the problem as more tractable one: to run global optimization on a limited

conformational space described above.

In this work, we developed a protein-protein docking program named
GalaxyPPDock using cluster-guided CSA (CG-CSA) sampling method for protein-
protein docking. CG-CSA makes clusters from initially sampled structures and
evolves them each cycle. Instead of annealing whole conformational space as in
regular CSA, CG-CSA more focuses on annealing conformation space of each
cluster. During the evolving step, these clusters communicate each other and
changes number of members to gradually more concentrates on low-energy clusters.
This idea makes high-energy clusters to survive and enables to search on multiple
local minima efficiently at the same time. If energy function is relatively accurate,
focusing on low-energy clusters can generate near-native predicted models. If
energy function is inaccurate and global minimum is far from near-native still local
minimum is close from near-native, high-energy clusters can find near-native
structures. Accordingly, GalaxyPPDock can tolerate incorrectness of energy
function to deliver correct solution as one of the clusters. Therefore, CG-CSA
implemented in GalaxyPPDock can generate near-native protein complex models
in cases that both energy functions is relatively accurate and energy function is

relatively inaccurate.
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4.2. Methods

4.2.1. Overall procedure of GalaxyPPDock

GalaxyPPDock consists of two steps for protein-protein docking. The first
step is initial docking for find putative binding sites. In the initial docking step,
rigid-body docking performed using ZDOCK. Then, complexes generated by
ZDOCK are rescored by Z-score summation of ZDOCK score (Mintseris et al.,
2007), DFIRE score (Zhou and Zhou 2002), and electrostatic potential (MacKerell
et al., 1998). Then, 50 complexes are selected by clustering method by
NMRCLUST (Kelley et al., 1996) and are used to initial bank for next step. The
second step is global optimization step for generate more accurate protein complex
structure. In the second step, GalaxyPPDock uses CG-CSA sampling method for
protein-protein docking. CG-CSA makes clusters from initially sampled structures
and evolves them each cycle to find global minimum of energy land scape of
protein-protein interaction. The energy used in GalaxyPPDock is hybrid energy of
physics-based energy function and knowledge-based scoring function. After global
optimization, 10 protein complex models are selected by their energy value and

clustering method (Figure 4.1).
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4.2.2. Sets of protein complexes used for method development

A set of 121 unbound/unbound complexes (rigid-body targets, classified
by ZDOCK criterion) from ZDOCK benchmark set 4.0 (Hwang et al., 2010) and
20 complexes (unbound/unbound and unbound/bound targets) from CAPRI round
1~19 (Janin et al, 2003; Janin 2005; Janin 2007; Janin 2010) was used as a
benchmark set to evaluate performance of GalaxyPPDock. Total 141 complexes
were randomly divided into a training set of 35 complexes and a benchmark test set
of 106 complexes. Conformational decoy sets for the 35 training set complexes
generated by RosettaDock (500 decoy conformations for each complex) and
another set of 80 complexes (Su ef al., 2009) with known structures and binding
affinities were used to train energy parameters. The test set of 106 complexes was
used to validate the performance of GalaxyPPDock by comparing with ZDOCK
(Mintseris et al., 2007), RosettaDock (Gray et al., 2003), FireDock (Andrusier et
al., 2007), and FiberDock (Mashiach et al, 2010). GalaxyPPDock was also
compared with the previous CSA method by Lee et al. on four CAPRI targets (Lee
et al., 2005) and with other CAPRI predictors on 7 targets from the latest CAPRI

rounds 22~27 (Janin 2013).

4.2.3. Training of energy parameters

GalaxyPPDock employs a hybrid energy function that combines physics-

based energy Enysics and knowledge-based energy Einowledge s follows:

EGalaxyPPDock = Ephysics + Eknowledge (4~1)

Ephysics = WL]EL] + WeoulEcou + WsaEsa 4.2)
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Eknowledge = WpriREEDFIRE T WHbond EHbond T WeonsEcons + WrotEror  (4.3)

where Ey; and Ec,, are the Lennard-Jones energy and the Coulomb electrostatic
potential energy, respectively, with the CHARMM?22 force field parameters
(MacKerell et al., 1998), Esas is the implicit solvation free energy described by
solvent-accessible surface area with atomic solvation parameters (Zhou and Zhou
2002), Eprre 1s the distance-dependent statistical pair potential DFIRE (Zhou and
Zhou 2002), Eypona 1s the knowledge-based orientation-dependent hydrogen bond
energy (Kortemme et al., 2003), E..s is the sequence conservation propensity score
derived from the PSI-BLAST profile (Liang ef al., 2009), and E, is the statistical
side chain rotamer energy derived from the backbone-dependent rotamer library
(Eswar et al., 2006). The energy parameters (Wrj, Weoul, Wsa, WDFIREs WHbonds Weonss

Wwior) = (1.0, 0.15, 4.5, 8.0, 6.0, 3.0, 3.0) were determined as explained below.

The six out of seven energy weight parameters (Wij, Weou, Wsa, WDFIREs
Whbonds Weons) Were determined first, and the rotamer energy was added afterwards
during our participation in the CAPRI experiments (after round 20) to improve the
accuracy of local side chain structures. The six weights were searched for on
parameter grids to maximize the product of (i) the Pearson correlation coefficient
between the experimental binding free energy and the GalaxyPPDock energy for
the binding affinity set of 80 complexes (Su et al, 2009), (ii) the Pearson
correlation coefficient for the energy-RMSD distribution of the 500 decoys
averaged over the 35 training set complexes, and (iii) the absolute value of the Z-
score of the average energy of the 20 decoy conformations closest to the
experimental structure in the energy-RMSD distribution of the 500 decoys
averaged over the 35 training set complexes (Table 4.2). 500 decoys were

generated by RosettaDock starting from initial complex which unbound tertiary
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structure superpose onto native complex. Fixing the six weights, the rotamer
energy weight w,,, was finally determined to improve local side-chain accuracy of

CG-CSA.
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Table 4.1. Weight factors of GalaxyPPDock energy function

EitEprire

ELJ EDFIRE Econs ESA Eelec EHbond +Econs +ESA EGalaxyPPDock
BA set 0.663 0.685 0.526 0.606 0.003 0.104 0.726 0.724
Rosetta 0.551 0.610 0.504 0.486 0.232 0.193 0.603 0.603
set (-1.422)  (-1.371)  (-1.005) (-1.312) (-0.768) (-0.626)  (-1.369) (-1.381)

The values of the first row are Pearson correlation between RMSD and each energy
component on 80 targets of Binding affinity set. The values out of bracket in the
second row are Pearson correlation between RMSD and each energy component of
500 conformations generated by RosettaDock on training set. The values out of
bracket in the second row are Z-score of the average energy of the 20
conformations closest to the native structures from 500 conformations generated by
RosettaDock on training set.
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4.2.4. Overview of the conformational space annealing

It is worthwhile to briefly go through the overall procedure of the general
conformational space annealing (CSA) global optimization algorithm first before
we describe the cluster-guided conformational space annealing (CG-CSA)
algorithm in in detail the next subsection. Performance of the regular CSA (R-CSA)

method is also compared with the CG-CSA method in a benchmark test.

In CSA, a fixed number of local minimum conformations called “bank” is
evolved by gradually focusing on low-energy regions in the conformational space.
Each bank member can be roughly considered as a representative low-energy
conformation covering a conformational hyper-space of radius D, where D, is a
parameter used to control broadness of conformational search. Initial bank is
desired to be composed of diverse conformations and may often be generated by
random sampling. At each CSA step, new trial conformations are generated by
crossovers and mutations of bank conformations, and the bank is updated by
comparing each trial conformation with current bank members. If a trial
conformation is < D, from any bank conformation, it replaces the bank
conformation if it has lower energy and is discarded otherwise. If a trial
conformation is > D, from all bank conformations, it replaces the highest-energy
bank conformation. If D, is large, low-energy trial conformations tend to replace
close-by bank conformations, leaving high-energy conformations at large distances.
If D, is small, they tend to replace high-energy bank conformations leaving low-
energy conformations at relatively close distances. By starting with a large value of
D.y, diverse high energy regions are allowed to be explored at the early stage, and
low energy regions are searched more heavily as CSA iteration proceeds with

gradually decreasing D.,. The CSA iteration is considered converged if all bank
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conformations have been used as seeds and are not further replaced by new

conformations.

For CSA, a distance measure for comparing conformations thus has to be
defined. In the current work, the distance between two docking conformations i and

j 1s defined as
Dij = |T; — Tj| + wrot|R; — Ry (4.4)

Where T is the values for the three translational degrees of freedom
expressed as the center of C, coordinates of the ligand protein (the smaller protein)
when the center of the receptor protein (the larger one) is fixed at the origin, R is
the values for the three rotational degrees of freedom expressed as the rotational
angles of the current ligand pose relative to the reference pose about the x-, y-, and
z-axis, and the weight w, is defined as the ratio between the average translational

distance to the average rotational distance for the initial bank conformations

(IT: =) / (|R: = Ry]).

4.2.5. Cluster-guided conformational space annealing

In the current CG-CSA, clusters are defined from the initial bank
generation stage. 200 complex conformations are selected from the 3,600
complexes generated by ZDOCK based on the Z-score summation of ZDOCK
score, DFIRE potential, and Coulomb potential and are clustered by NMRCLUST
(Kelley et al., 1996), and 50 initial bank conformations are chosen by picking
conformations from each cluster in proportion to the cluster size. In this work, the

number of clusters ranged from 2 to 10.
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At each CSA iteration step, 200 trial conformations are generated from 20
“seed” conformations selected from the clusters proportional to the cluster sizes.
Seeds are selected to have large mutual distances to produce diverse conformations.
For each seed conformation, (i) 5 trial conformations are generated by cross-over
of T and R of the seed with those of 5 randomly selected partner conformations, (ii)
3 trial conformations by perturbation of T or R 3 times, and (iii) 3 trial
conformations by cross-over of interface side-chain y angles of the seed with 2
randomly selected partners. Partners are selected randomly from the current bank
independent of cluster for generation of diverse low-energy conformations. After (i)
and (ii), side-chain conformations are adjusted by removing clashes in the rotamer
space (Dunbrack and Cohen 1997). All trial conformations are then energy
minimized by gradient-based local minimization (Fuhrmann et al., 2009) in the
space of rigid-body translation/rotation and flexible interface side-chain y angles.
Rigid-body rotation is described by exponential mapping of quaternion (Fuhrmann
et al., 2009). Flexible interface residues are selected from the most common
interface residues of the initial bank conformations (receptor and ligand residues
with C, distances < 10 A), and the number of flexible residues is set to the average

number of the interfaces residues in the initial bank.

With the new trial conformations generated as described above, the CG-
CSA bank is updated within cluster (intra-cluster update) at each iteration, and
inter-cluster update is allowed at every other iteration. Each trial conformation is
assigned to the cluster that the closest bank member belongs to. In the intra-cluster
update, the same update rule of general CSA is applied within each cluster, i.e., the
closest bank conformation and the highest-energy conformation are selected within
the cluster. In the inter-cluster update, a trial conformation that do not replace any

bank conformation in the same cluster gets a chance to be compared with the
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highest-energy conformation in other clusters. If the trial conformation has lower
energy, it becomes a new bank member, increasing the size of the cluster by one,
and decreasing the size of the other cluster. Changes in cluster sizes are limited to
the maximum of 1 change at each iteration for slow change. In this way, the size of
the low-energy cluster can become larger as CG-CSA proceeds except that the
sizes of clusters > 20 or < 5 members are not allowed to change to keep sub-

optimal clusters.

Finally, 10 structures are selected by clustering the structures of CSA final
bank using greedy algorithm with ligand RMSD 5A cutoff. The cluster having
lowest energy complex structure is selected at first, then, other nine clusters are
selected by cluster size. Finally, the lowest energy representatives from each cluster

are selected.

4.2.6. Assessment measure

To evaluate the performance of GalaxyPPDock, three measures were used:
LRMSD (peptide RMSD), IRMSD (interface RMSD), and f,,; (fraction of native
contact). For the definitions of acceptable/medium/high accuracy predictions, the
following CAPRI criterion was used: acceptable accuracy if (LRMSD < 10 A or
IRMSD < 4 A) and f,,, > 0.1, medium accuracy if (LRMSD <5 A or IRMSD <2 A)
and f,, > 0.3, and high accuracy if (LRMSD <1 A or IRMSD < 1 A) and f,,, > 0.5
(Lensink and Wodak 2013).
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4.3. Results and Discussion

4.3.1. Performance of cluster-guided conformational space annealing

We first compare performances of CG-CSA with those of R-CSA on the
35 targets of training set and 106 targets of test set. Performances are compared in
terms of the percentage of targets for which at least one docking conformation out
of top 10 conformations are predicted with better than acceptable (or medium)

quality.

According to Table 4.2, CG-CSA generated models with better than
acceptable quality for 42.9%, compared to 25.7% for R-CSA on the training set.
The average (LRMSD/IRMSD/f,,) of CG-CSA is (18.0/6.6/0.30) and it is better
than that of R-CSA (23.0/8.5/0.26) and initial bank (19.4/7.9/0.26). According to
Table 4.3, CG-CSA generated models with better than acceptable quality for
43.4%, compared to 38.7% for R-CSA, and generated models with better than
medium quality for 27.4% on the test set. The average (LRMSD/IRMSD/f,,,) of
CG-CSA is (18.0 A /6.6 A /0.30) and it is better than that of R-CSA (23.0 A /8.5 A
/0.26) and initial bank (19.4 A /7.9 A /0.26). These results showed that CG-CSA
improved model quality from models of initial bank and improvement of CG-CSA
is better than that of R-CSA. In Figure 4.2 energy landscapes are shown for four
representative examples for which CG-CSA was able to bring better predictions
than R-CSA. For two targets, lay7 (Figure 4.2(a)) and 110r (Figure 4.2(b)), when
the energy function relative accurate and low-energy structure is near-native
structure, the lowest LRMSDs of 10 output complexes are 3.5 A and 5.0 A by CG-
CSA, compared to 7.9 A and 13.8 A by R-CSA. CG-CSA showed better
performance when energy function is relative accurate and low-energy structure is

nearby native structure. Because region of low-energy cluster called main-optimal
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cluster is nearby native structure and CG-CSA more focuses on main-optimal
cluster increasing the number of main-cluster members, RMSD between native
structure and predicted structure generated by CG-CSA is smaller than RMSD

between native structure and predicted structure generated by R-CSA.

For the opposite cases when energy function is relatively inaccurate, CG-
CSA also shows improved performances. For two targets, 1iqd (Figure 4.2 (¢)) and
1rOr (Figure 4.2 (d)), when energy function is relatively inaccurate and global
minimum is far from near-native structure, the lowest LRMSDs of 10 output
complexes are 2.1 A and 7.1 A by CG-CSA, compared to 48.2 A and 20.9 A by R-
CSA. R-CSA showed problems of converging into these false global minima.
However, such a converged structural pool may not be the optimal as long as the
correctness of energy function is not guaranteed. Instead of focusing on a single
global minimum, CG-CSA also focuses on multiple sub-optimal conformational
spaces at very distinct translational/rotational positions from global minimum. One
may expect that even with incorrect energy function near-native conformation can

be at one of the sub-optimal clusters.

We also compared CG-CSA to the first application of CSA to protein-
protein docking by Lee et al. (Table 4.4). We call this previous approach as “CSA-
Lee” here. The comparison is done on 4 targets in CAPRI round 5 for which
“CSA-Lee” was tested. “CSA-Lee” succeeded to bring acceptable quality on only
one target (target 15). In contrast, R-CSA predicted three targets to acceptable or
better quality, and CG-CSA did four targets to acceptable or better. We also notice
that the test set is not enough to derive statistically meaningful statement among
different methods, as well as there can be other factors contributing to the

difference such as energy function. However, these results showed that the
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performance of CG-CSA is enough good compared to R-CSA and “CSA-Lee”.
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Table 4.2. Ligand-RMSD (LRMSD), interface-RMSD (IRMSD), and fraction of
native contact (f,,;) of initial bank results and final bank results of regular CSA (R-
CSA) and cluster-guided CSA (CG-CSA) on 35 training set targets

T Initial Bank Final Bank (R-CSA) Final Bank (CG-CSA)
arget LRMSD IRMSD frat LRMSD IRMSD frat LRMSD IRMSD frat

lavx 6.7 1.6 0.71 7.1 1.6 0.74 10.2 3.8 0.51
1buh 23.5 13.8 0.04 32.3 13.4 0.00 13.8 3.5 0.30
Iclv 4.6 2.2 0.35 3.7 1.8 0.43 3.6 1.8 0.50
leaw 9.9 32 0.39 9.7 5.1 0.04 2.1 0.7 0.90
1fc2 322 11.6 0.00 28.5 14.0 0.00 28.2 14.1 0.00
Ighq 58.3 18.4 0.00 57.9 15.1 0.00 56.3 13.5 0.00
lgxd 38.1 12.5 0.02 39.8 12.7 0.02 39.7 12.7 0.02
1h9d 20.9 10.4 0.05 10.9 33 0.35 13.9 5.6 0.08
152] 9.2 33 0.33 5.0 2.0 0.64 6.6 3.1 0.58
1jps 393 18.6 0.00 40.6 17.7 0.00 32.6 14.4 0.00
1jwh 29.2 16.0 0.00 9.9 2.3 0.56 12.3 2.6 0.47
1k4c 31.6 9.3 0.00 63.8 18.2 0.00 35.2 10.6 0.00
1kxq 0.5 0.8 0.90 15.3 5.8 0.18 15.2 5.8 0.18
Imah 14.0 8.0 0.12 1.7 0.7 0.76 1.3 0.8 0.79
Imlc 20.4 11.0 0.00 52.2 20.5 0.00 16.5 8.7 0.00
locO 15.6 7.7 0.17 14.6 6.7 0.02 14.7 6.7 0.02
loph 62.0 14.3 0.00 64.0 14.3 0.00 63.5 16.5 0.00
Islq 26.8 9.4 0.05 26.8 94 0.05 26.9 9.4 0.05
1t6b 17.1 8.8 0.08 65.2 22.0 0.00 16.5 9.7 0.00
lus7 23.1 11.4 0.00 17.4 10.0 0.00 17.7 10.2 0.00
2ayo 33 2.0 0.41 3.5 1.9 0.58 35 1.9 0.58
2b4j 13.9 7.7 0.25 20.8 10.1 0.00 20.2 10.2 0.00
208v 29.3 14.7 0.00 25.6 10.1 0.00 18.2 8.9 0.14
2sni 16.0 7.5 0.01 9.8 2.5 0.56 9.5 2.4 0.58
2vdb 1.8 0.9 0.87 38.9 16.9 0.00 379 12.9 0.00
4cpa 3.0 1.2 0.74 5.9 2.7 0.40 5.6 2.3 0.45
9qfw 37.5 9.4 0.00 36.6 11.0 0.00 30.7 10.7 0.00
TAO1 12.7 6.6 0.04 12.3 6.5 0.12 11.9 6.5 0.16
TAO06 0.8 0.5 0.86 16.2 9.7 0.10 0.8 0.5 0.86
TAO7 42.4 16.0 0.00 47.6 20.5 0.00 39.7 12.3 0.00
TA12 0.5 0.4 0.91 1.3 0.5 0.93 1.1 0.5 0.91
TA1S 11.3 5.5 0.00 3.6 1.3 0.80 2.2 1.0 0.77
TA25 2.3 1.1 0.83 3.6 1.5 0.77 3.8 1.5 0.75
TA26 19.9 10.3 0.00 11.7 5.6 0.03 16.8 5.5 0.24
TA40 1.4 0.5 0.86 1.7 0.5 0.84 1.7 0.5 0.84
Average 19.4 7.9 0.26 23.0 8.5 0.26 18.0 6.6 0.30
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Table 4.3. Ligand-RMSD (LRMSD), interface-RMSD (IRMSD), and fraction of

native contact (f,,;) of initial bank results and final bank results of regular CSA (R-
CSA) and cluster-guided CSA (CG-CSA) on 106 test set targets

Initial Bank Final Bank (R-CSA) Final Bank (CG-CSA)

Target

LRMSD IRMSD fra LRMSD IRMSD £ LRMSD IRMSD foa
la2k 9.7 2.6 0.68 13.3 44 0.50 10.5 2.9 0.75
lahw 27.6 9.3 0.00 323 15.5 0.00 334 10.5 0.00
lak4 20.7 9.2 0.02 21.3 9.7 0.07 21.1 92 0.02
lakj 27.9 15.3 0.00 35.8 16.3 0.00 29.4 14.4 0.00
lay7 11.2 35 0.40 7.9 1.8 0.62 35 1.5 0.80
lazs 63.3 10.4 0.00 43.1 16.9 0.00 61.3 14.9 0.00
1b6e 8.3 3.1 0.57 9.0 2.7 0.71 8.9 2.7 0.77
1bjl1 22.6 11.4 0.00 20.9 10.2 0.00 7.1 1.0 0.86
1bvk 12.0 53 0.19 11.6 4.8 0.12 12.7 4.7 0.15
1bvn 2.8 1.4 0.70 2.5 1.4 0.55 1.9 1.1 0.68
legi 4.1 2.8 0.39 4.0 2.2 0.58 3.8 2.2 0.58
1d6r 11.6 5.1 0.03 18.3 7.8 0.02 18.3 7.8 0.02
1dfj 2.7 14 0.68 6.1 2.5 0.64 6.1 2.5 0.66
1dqj 20.5 11.5 0.00 11.3 5.8 0.27 19.0 11.4 0.00
lebe 3.0 14 0.79 5.2 1.9 0.83 1.9 1.2 0.88
1e6j 12.7 4.9 0.16 12.7 4.9 0.16 12.9 5.7 0.10
1e96 30.5 6.6 0.05 28.9 12.0 0.00 253 13.2 0.00
lefn 324 9.5 0.00 28.9 10.8 0.00 27.6 8.4 0.03
lewy 5.6 3.4 0.20 13.3 7.5 0.00 13.2 7.5 0.04
lezu 37.8 21.4 0.00 37.9 21.2 0.00 37.9 17.1 0.00
1134 433 16.1 0.00 40.9 16.3 0.06 33.1 18.9 0.03
151 33 1.7 0.55 4.1 23 0.63 4.1 2.3 0.63
Ifce 35.7 14.6 0.00 353 14.5 0.00 352 14.5 0.00
1ffw 9.3 5.1 0.42 7.4 3.6 0.50 8.6 33 0.50
1fle 22.0 10.0 0.01 22.5 10.1 0.01 223 10.0 0.01
1fqj 35.1 16.4 0.00 354 16.5 0.00 31.7 16.6 0.00
1fsk 24 0.9 091 2.1 0.9 0.89 2.2 0.9 0.86
lgeq 18.0 8.8 0.00 2.1 1.1 0.87 15.1 52 0.13
1gll 29 1.5 0.69 7.0 3.0 0.70 2.6 1.4 0.56
lgla 52.9 20.7 0.00 52.0 19.5 0.00 52.3 19.5 0.00
lgpw 2.1 1.3 0.62 34 1.6 0.69 34 1.6 0.65
lhef 22.5 8.0 0.07 242 10.0 0.07 24.4 10.0 0.04
lhel 7.0 3.8 0.19 2.9 1.7 0.76 2.8 1.7 0.73
lhia 9.6 4.1 0.11 8.6 35 0.22 9.9 4.6 0.13
li4d 354 14.7 0.02 34.7 14.4 0.04 33.5 14.9 0.07
119r 9.9 4.9 0.09 12.9 9.0 0.00 12.8 9.0 0.00
ligd 24.5 10.2 0.04 48.2 153 0.00 2.0 0.8 0.71
ljtg 3.6 1.1 0.63 6.0 23 0.40 6.2 2.5 0.41
1k74 3.5 1.3 0.73 6.7 1.9 0.54 6.1 2.0 0.63
lkac 33.9 12.5 0.00 32.1 9.9 0.00 36.8 12.6 0.00
1klu 41.5 13.5 0.00 333 11.6 0.00 334 11.7 0.00
1ktz 37.8 10.8 0.00 37.8 10.8 0.03 33.7 11.0 0.10
1kxp 6.3 1.9 0.44 7.0 1.9 0.50 33 1.6 0.53
Iml0 24 1.2 0.78 23 1.3 0.81 23 1.3 0.81
In8o0 9.8 1.0 0.78 10.6 14 0.71 10.0 1.1 0.82
Inca 26.5 18.3 0.00 25.7 17.0 0.00 26.4 17.9 0.00
Insn 17.4 10.6 0.00 55.1 15.7 0.00 17.6 10.5 0.00
lofu 15.7 6.6 0.00 36.5 18.9 0.00 26.0 15.7 0.00
loyv 34 1.3 0.61 4.2 1.4 0.57 43 1.4 0.57
Ippe 0.9 0.6 0.85 33 1.2 0.80 2.8 1.0 0.86
Ipvh 27.9 10.7 0.13 31.6 14.3 0.00 28.9 10.5 0.13
1qa9 46.2 16.5 0.00 46.4 16.5 0.00 46.5 16.7 0.00
1r0r 12.9 3.6 0.27 13.8 6.5 0.00 5.0 1.6 0.49
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11lb 12.2 2.3 0.63 18.0 9.0 0.00 18.1 9.1 0.00
Irvé 1.9 1.4 0.68 8.8 3.7 0.32 8.1 35 0.36
1sbb 54.9 14.1 0.00 56.6 13.9 0.00 55.2 14.6 0.00
Itmq 20.7 11.5 0.00 1.8 1.0 0.69 1.8 1.0 0.73
ludi 23.1 15.1 0.03 4.0 2.3 0.45 4.9 2.7 0.44
1vib 21.3 7.5 0.00 8.0 4.1 0.19 7.3 3.7 0.23
Iwdw 3.6 1.9 0.55 3.6 2.0 0.54 3.6 1.9 0.57
lwej 2.9 1.4 0.81 2.8 1.4 0.74 33 1.3 0.72
1xd3 6.9 4.0 0.23 7.4 2.8 0.35 7.4 24 0.40
Ixul 17.4 7.4 0.08 12.8 5.5 0.00 9.8 4.5 0.07
lyvb 5.3 1.6 0.52 9.4 1.7 0.74 9.9 1.8 0.76
120k 7.1 2.8 0.50 10.3 42 0.47 10.3 4.1 0.39
1z5y 26.7 10.5 0.02 29.1 10.1 0.04 16.7 5.0 0.36
1zhh 60.5 21.9 0.00 13.3 7.7 0.00 13.4 7.7 0.00
1zhi 34.1 14.4 0.00 323 13.6 0.00 36.0 8.7 0.02
2a5t 17.8 7.4 0.00 13.3 7.6 0.00 7.4 33 0.36
2a%k 37.7 15.8 0.00 233 11.3 0.00 325 12.9 0.00
2abz 16.3 7.3 0.00 14.5 7.4 0.03 11.5 59 0.07
2ajf 24.9 11.0 0.00 27.5 12.0 0.00 26.2 14.0 0.00
2b42 34 1.2 0.83 3.6 1.2 0.87 3.6 1.2 0.88
2btf 22.5 15.5 0.00 22.4 13.8 0.00 21.6 13.5 0.00
2fd6 13.0 3.5 0.28 13.1 3.8 0.26 13.0 3.9 0.23
2fju 83.1 0.6 0.00 82.5 0.6 0.00 82.3 0.6 0.00
2g77 17.0 7.6 0.07 16.0 9.5 0.00 22.2 11.3 0.00
2hle 14.3 4.4 0.26 42 2.3 0.44 42 2.2 0.43
2hgs 20.5 10.4 0.01 23.7 11.8 0.00 16.7 5.9 0.06
2i25 253 8.8 0.00 214 9.3 0.00 20.1 5.0 0.02
2j0t 20.3 9.4 0.03 214 8.0 0.02 16.8 5.6 0.05
2jel 5.8 1.4 0.68 16.1 9.3 0.00 8.1 32 0.29
2mta 12.7 42 0.26 8.3 35 0.28 13.2 7.4 0.00
200b 29.6 7.6 0.04 29.1 7.6 0.11 29.1 7.6 0.11
200r 16.7 7.0 0.22 21.6 12.9 0.07 22.9 14.5 0.04
2oul 2.0 0.8 0.83 3.7 1.0 0.81 3.7 1.1 0.82
2pce 7.2 4.0 0.31 6.3 33 0.34 10.2 4.9 0.34
2sic 6.1 1.3 0.80 6.3 1.4 0.77 6.4 1.4 0.77
2uuy 17.7 7.0 0.00 16.3 6.7 0.00 16.0 6.7 0.00
2vis 35.7 18.0 0.00 358 14.4 0.00 31.9 17.0 0.00
3bp8 16.2 8.5 0.00 16.9 10.3 0.08 9.0 33 0.27
3d5s 3.5 1.3 0.56 53 24 0.54 5.4 24 0.52
3sgq 115 4.8 0.02 12.4 6.3 0.00 13.0 54 0.13
Tcei 19.6 10.5 0.02 4.7 1.6 0.77 42 1.2 0.96
TA04 41.0 13.1 0.00 38.8 14.2 0.00 35.8 13.3 0.00
TAOS 28.0 11.6 0.00 24.5 12.4 0.00 30.2 12.8 0.00
TAO8 11.1 33 0.50 12.3 2.4 0.59 12.5 35 0.55
TAI13 21.2 1.1 0.73 22.5 1.3 0.64 22.2 1.3 0.70
TA18 6.6 22 0.81 5.0 1.8 0.71 72 24 0.69
TA21 40.0 9.6 0.00 323 13.6 0.00 36.7 20.2 0.00
TA22 48.1 154 0.00 48.1 15.3 0.00 46.5 14.3 0.00
TA27 28.9 12.9 0.00 28.5 13.8 0.00 28.9 12.3 0.00
TA30 473 17.9 0.00 49.0 18.4 0.00 49.0 18.4 0.00
TA32 233 9.2 0.00 233 9.2 0.00 29.2 12.5 0.08
TA39 21.2 13.3 0.00 21.9 11.2 0.00 21.9 11.2 0.00
TA41 15.9 6.0 0.19 28.1 13.2 0.07 7.9 2.4 0.56
Average 20.0 7.6 0.24 19.7 7.8 0.25 18.2 7.1 0.29
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Table 4.4. Performance of CG-CSA compared to R-CSA and “CSA-Lee” on
CAPRI round 5 targets.

LRMSD / IRMSD / Fnat / Quality"

Targets CSA-Lee R-CSA CG-CSA

TAl4 s44 201 000 - |507 133 001 - |37 22 030 *
TAIL5 88 33 018 * |36 13 080 ** |22 10 077 **=
TAILS 324 152 000 - |50 18 071 ** |72 24 069 *
TA19 2.1 146 000 - |99 33 040 * |98 34 035 *

1) Ligand RMSD, interface RMSD, fraction of native contacts, and model
quality by CAPRI criterion (High quality(***), Medium quality(**),
Acceptable quality(*)).
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Figure 4.2. Ligand RMSD (LRMSD) versus energy plots for initial structures (+),
final structures of R-CSA (X), and final structures of CG-CSA (m) on (a) lay7, (b)
110r, (¢) ligd, and (d) 1bj1. Initial bank conformations brought from ZDOCK runs,
shared by both CSA runs, are plotted as well in gray dots. X-axis is LRMSD
between ligand protein of native complex and that of predicted complexes. Y-axis
is energy value of predicted complexes.
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4.3.2. Comparison to other protein-protein docking methods

For comparison with other protein-protein docking tools, we tested CG-
CSA to ZDOCK (Mintseris et al., 2007) which is one of most popular rigid-body
docking programs and popular refinement docking programs such as RosettaDock
(Gray et al., 2003), FireDock (Andrusier et al., 2007), and FiberDock (Mashiach et
al., 2010) (Table 4.5). To describe how the results were collected, ZDOCK result is
collected by picking the best structure in 10 top-scoring structures ranked by
ZDOCK score. Selected 10 structures were further refined by other refinement
docking programs such as RosettaDock, FireDock, and FiberDock. RosettaDock
generated 500 refined models for each selected structures and generated 5000
refined models totally. Then, lowest energy structures from 500 refined models for
each of the 10 structures were selected (Pierce and Weng 2008). FireDock and
FiberDock generated 10 refined structures from each 10 initial structures. The
fraction of targets within “acceptable” quality in CAPRI measure for CG-CSA is
43.4% on test set, compared to 37.7% for ZDOCK, 32.1% for RosettaDock, 37.7%
for FireDock, and 39.6% for FiberDock. The fraction of targets within “medium”
quality in CAPRI measure for CG-CSA is 27.4% on test set, compared to 25.5%
for ZDOCK, 17.9% for RosettaDock, 23.6% for FireDock, and 25.5% for
FiberDock. CG-CSA also showed the best performance in terms of the predictions
better than “acceptable” and “medium” accuracy. In case of top5 selection cases,
the fraction of targets with better than “acceptable” quality for CG-CSA is 36.8%
of the test targets, compared to 28.3% for ZDOCK, 25.5% for RosettaDock, 28.3%
for FireDock, and 30.2% for FiberDock, and the fraction of targets with better than
“medium” quality is 23.6% for CG-CSA, compared to 21.7% for ZDOCK, 15.1%
for RosettaDock, 17.9% for FireDock, and 20.8% for FiberDock. CG-CSA also

showed best performance at top5 selection cases.
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According to the comparison above, we claim that regular CSA combined
with current energy function is already good enough to be comparable to other
methods, but adopting cluster-guided approach further improves it. We attribute
success to both energy function and the sampling method. Using all-atom energy
function combined with physics-based energy function and knowledge-based
energy function can make better performance of CG-CSA. And success ratio of
CG-CSA is higher than that of RosettaDock, FireDock, and FiberDock, because
CG-CSA wuses main concept of genetic algorithm rather than RosettaDock,
FireDock, and FiberDock use Monte Carlo-based method. Crossover of
translational and rotational degree of freedom can generate large perturbed
conformations and search diverse local minima efficiently than mutation of
translational and rotational degree of freedom. It makes sampling space of CG-
CSA get broader and find global minimum efficiently. For example, the minimum
LRMSD of initial bank on target ludi is larger than 20 A, but the minimum
LRMSD of final bank of R-CSA and CG-CSA is smaller than 5 A (Figure 4.3).
CSA could generate better models by perturbing ligand proteins more than 15 A.
This result shows that large perturbation based on crossover of translational and
rotational degree of freedom can generate successful models although structures of

initial bank is so far from native structures.
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Table 4.5. Performance comparison of CG-CSA, ZDOCK, RosettaDock, FireDock,

and FiberDock on 106 benchmark test targets in terms of the percentage of targets

predicted with better than acceptable/medium accuracy

Top10 CG-CSA  ZDOCK Rgzitlza FireDock  FiberDock
> acceptable 43.4% 37.7% 32.1% 37.7% 39.6%
> medium 27.4% 25.5% 17.9% 23.6% 25.5%
Top5 CG-CSA  ZDOCK Rgzitlza FireDock  FiberDock
> acceptable 36.8% 283% 25.5% 28.3% 302%
> medium 23.6% 21.7% 15.1% 17.9% 20.8%
Topl CG-CSA  ZDOCK R];’f)‘ztlza FireDock  FiberDock
> acceptable 12.3% 16.0% 14.2% 14.2% 15.1%
> medium 8.5% 11.3% 8.4% 10.4% 11.3%
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Figure 4.3. Ligand RMSD (LRMSD) versus energy plots for initial structures (+),
final structures of R-CSA (x), and final structures of CG-CSA (m) on ludi. Initial
bank conformations brought from ZDOCK runs, shared by both CSA runs, are
plotted as well in gray dots. X-axis is LRMSD between ligand protein of native
complex and that of predicted complexes. Y-axis is energy value of predicted
complexes.
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4.3.3. Performance of GalaxyPPDock on recent CAPRI targets

We tested CG-CSA on 7 targets from recent CAPRI round. We compared
the performance of CG-CSA to CAPRI predictors (Bonvin, Bates, Vakser) who did
best on CAPRI from round 22 to round 27. This comparison will not only show the
status of CG-CSA compared to state-of-the-art methods in the community, but also
will show progress in the method during recent CAPRI rounds. CG-CSA predicted
structures better than acceptable for all 7 targets and among them, models for target
53 and 58 showed medium quality. This overall result is better than any of top3

predictors’ results.

CAPRI target 53 and target 58 are successful example of GalaxyPPDock
(Figure 4.3). Especially the performance of GalaxyPPDock is better than other
top3 CAPRI predictors. Target 53 (PDB ID: 4JW2) is designed Rep4/Rep2 a-
repeat complexes and network of hydrophobic and aromatic residues is a key
interaction of target 53. GalaxyPPDock predicted this target about 5.0A and
hydrophobic network of this target. Target 58 (PDB ID: 4G9S) is PilG/SalG
lysozyme complex. Coulomb interaction of Aspartic acid, Glutamic acid and
Arginine is key interaction of target 58. GalaxyPPDock predicted well about 3.0 A

and coulomb interaction of this target.
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Table 4.6. Performance of CG-CSA compared to other top3 predictors on targets

of CAPRI round 22-27.

Targets

LRMSD / IRMSD / Fnat / Quality"

CG-CSA (72**) | Bonvin (6/2%*)? Bates (5/1%*)? Vakser (5)?
TA46 | 82 4.1 024 *| 78 34 041 *[13.0 47 0.15 -|348 13.8 0.00
TA48 |82 27 043 *| 91 34 023 *|74 46 0.19 *[97 4.6 0.14
TA49 |[13.0 32 023 *|140 3.6 026 *|72 39 0.10 *[97 4.1 0.14
TAS0 | 7.7 22 045 *| 55 19 047 **¥ 54 27 029 *|[54 22 035
TA53 |51 19 069 *¥| 45 22 046 **[ 94 42 035 *[167 7.6 0.12
TAS4 |56 3.0 057 *|186 7.7 002 -|101 52 0.14 -|59 3.6 0.14
TAS8 |33 1.1 065 *f 69 26 029 *|37 16 0.56 **¥ 89 32 043

1) Ligand RMSD, interface RMSD, fraction of native contacts, and model
quality by CAPRI criterion (High quality(***), Medium quality(**),

Acceptable quality(*)).

2) Top 3 predictors in CARPI round 22-27.

- 83 -



Figure 4.4. Successful examples of GalaxyPPDock on CAPRI target 53 ((a) to (c),
designed Rep4/Rep2 a-repeat complex, PDB ID: 4JW2) and CAPRI target 58 ((d)
to (), PilG/SalG lysozyme complex, PDB ID: 4G9S). Structures colored in yellow
and sky blue (panel (b) and (e)) are receptor and ligand proteins of the native
structures, and plum and light green (panel (¢) and (f)) are receptor and ligand
proteins of predicted complex generated by GalaxyPPDock. There are hydrophobic
interactions of (b) native structure and (¢) GalaxyPPDock model on CAPRI target
53 and polar interactions of (e) native structure and (f) GalaxyPPDock model of
CAPRI target 58.
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4.3.4. Protein-protein docking with side-chain flexibility

Side-chain flexibility has an effect on interaction of receptor and ligand
protein. We calculated fraction of native contact (f,,) of GalaxyPPDock models
and “unbound model” generated by superposing unbound subunit structure to
GalaxyPPDock models. Fraction of native contact (f,,) of GalaxyPPDock is
slightly better than that of “unbound model” (Table 4.7). The different of each
value is small, but chi-angle changes of key residues have a great effect on
interactions of receptor proteins and ligand proteins. In target 53, side-chain
flexibility of phenylalanine residue of receptor protein can generate hydrophobic
interaction. In target 58, side-chain flexibility of arginine residue of ligand protein
can generate coulomb interaction (Figure 4.4). These results show that protein-
protein docking with side-chain flexibility more accurately predicts interaction of

protein complexes and it derives generate more accurate protein complex models.
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Table 4.7. Fraction of native contact (f,,) for CG-CSA models and unbound
complexes made by superimposing unbound structures on CG-CSA models. Better

cases (37 targets on 106 targets). Worse cases (30 targets on 106 targets). Same

cases (30 targets on 106 targets).

Superposed

Target Unbound CG-CSA
model
structure
la2k 0.7045 0.7500
lahw 0.0000 0.0000
lak4 0.0227 0.0227
lakj 0.0000 0.0000
lay7 0.8750 0.8000
lazs 0.0000 0.0000
1b6e 0.7321 0.7679
1bj1 0.8429 0.8571
1bvk 0.1458 0.1458
1bvn 0.7260 0.6849
legi 0.4941 0.5765
1dé6r 0.0172 0.0172
1dfj 0.6301 0.6575
1dqj 0.0000 0.0000
lebe 0.8462 0.8846
le6j 0.0980 0.0980
1€96 0.0000 0.0000
lefn 0.0000 0.0294
lewy 0.0222 0.0444
lezu 0.0000 0.0000
134 0.0345 0.0345
151 0.5968 0.6290
1fce 0.0000 0.0000
1ffw 0.4444 0.5000
1fle 0.0282 0.0141
1fqj 0.0000 0.0000
1fsk 0.8939 0.8636
lgeq 0.1111 0.1333
1gll 0.6406 0.5625
Igla 0.0000 0.0000
lgpw 0.6618 0.6471
1hef 0.1111 0.0444
1hel 0.7460 0.7302
lhia 0.1587 0.1270
lidd 0.0545 0.0727
1i9r 0.0000 0.0000
liqd 0.6933 0.7067
1jtg 0.3978 0.4086
1k74 0.6269 0.6269
lkac 0.0000 0.0000
1klu 0.0000 0.0000
1ktz 0.0333 0.1000
1kxp 0.5283 0.5283
1ml0 0.7534 0.8082
1n8o 0.8052 0.8182
Inca 0.0000 0.0000
Insn 0.0000 0.0000
lofu 0.0000 0.0000
loyv 0.5543 0.5652
1ppe 0.7887 0.8591
1pvh 0.1333 0.1333
1qa9 0.0000 0.0000
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110r 0.4930 0.4930
1rlb 0.0000 0.0000
1rv6 0.4255 0.3617
1sbb 0.0000 0.0000
Itmq 0.7200 0.7333
ludi 0.4267 0.4400
1vfb 0.2083 0.2292
lwdw 0.5487 0.5664
Iwej 0.8372 0.7209
1xd3 0.3750 0.4000
Ixul 0.0678 0.0678
lyvb 0.7000 0.7600
1z0k 0.3947 0.3947
125y 0.3774 0.3585
1zhh 0.0000 0.0000
1zhi 0.0244 0.0244
2a5t 0.3390 0.3559
2a9k 0.0000 0.0000
2abz 0.1017 0.0678
2ajf 0.0000 0.0000
2b42 0.8427 0.8764
2btf 0.0000 0.0000
2fd6 0.2128 0.2340
2fju 0.0000 0.0000
2g77 0.0000 0.0000
2hle 0.4268 0.4268
2hgs 0.0645 0.0645
2i25 0.0185 0.0185
2j0t 0.0517 0.0517
2jel 0.3036 0.2857
2mta 0.0000 0.0000
200b 0.0370 0.1111
200r 0.0435 0.0435
2oul 0.8333 0.8205
2pcc 0.3793 0.3448
2sic 0.7606 0.7746
2uuy 0.0000 0.0000
2vis 0.0000 0.0000
3bp8 0.2653 0.2653
3d5s 0.5000 0.5200
3sgq 0.1273 0.1273
Tcei 0.8462 0.9615
TA04 0.0000 0.0000
TAO5 0.0000 0.0000
TAO08 0.5758 0.5454
TAI13 0.7143 0.7000
TA18 0.7206 0.6912
TA21 0.0000 0.0000
TA22 0.0000 0.0000
TA27 0.0000 0.0000
TA30 0.0000 0.0000
TA32 0.0814 0.0814
TA39 0.0000 0.0000
TA41 0.6610 0.5593
Average 0.2873 0.2899
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Figure 4.5. Interaction of models generated by GalaxyPPDock on CAPRI target 53
(a) and on CAPRI target 58 (b). Residue colored in gray is side-chain of unbound
structure.
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4.3.5. Contribution of GalaxyPPDock energy components

We analyzed the performance and contribution of GalaxyPPDock energy
components on ZDOCK benchmark set and CAPRI targets (Total 141 targets). We
defined the success target when minimum LRMSD of selected 10 models ranked
by each energy components among 50 final structures. The contribution of each
energy components was calculated by average of standard deviation of final bank
energy. Coulomb electrostatic interaction and hydrogen bond showed good
performance for selecting near-native structures among structures of final bank, but
their contribution smaller than other energy components (Table 4.8). These results
imply that many proteins interact with other proteins through polar interactions.
Therefore, it is need to consider electrostatic interaction and hydrogen interactions
more importantly to generate more accurate energy function, and increasing
weights of electrostatic interaction and hydrogen bond can be one of the methods

to generate better protein-protein docking energy function.
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Table 4.8. Performance and contribution of each energy components

Number of

Success targets Success ratio Contribution
Eprire 32 22.7% 26.9%
Eygw 39 27.7% 9.9%
Eciec 49 34.8% 5.4%
Esa 36 25.5% 18.5%
Enpond 46 32.6% 5.0%
Econs 34 24.1% 17.5%
E otamer 25 17.7% 16.8%
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4.4. Conclusions

In this study, we introduced GalaxyPPDock which uses a new variant of
CSA algorithm for protein-protein docking study. GalaxyPPDock focuses on
regions on low-energy clusters, but keeps high-energy clusters and it helps to
generate near-native predicted complexes not only energy function is relative
accurate but also energy function is inaccurate. GalaxyPPDock generated more
successful predicted complex than original CSA and other docking program
ZDOCK and RosettaDock on benchmark set. Moreover, GalaxyPPDock shows
good performance on recent CAPRI targets. Based on these results, it is concluded
that GalaxyPPDock is good protein-protein docking program and efficient
sampling of conformation space in protein-protein docking is very important. In
spite of these achievements, developing accurate protein-protein docking program
is still challengeable problem. Considering backbone flexibility can improve the
performance of GalaxyPPDock by combining loop modeling using GalaxyLoop
(Ko et al., 2011; Lee et al., 2010) or MD-based backbone refinement using
GalaxyRefine (Heo et al., 2013). Also, performance of GalaxyPPDock can be
improved using experimental data such as small-angle X-ray scattering (SAXS) by
selecting from initial structures generates to make better initial bank (Lensink and

Wodak 2013).
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5. Conclusions

We developed programs for predicting protein interactions based on
bioinformatics and physicochemical approaches. For developing GalaxyGemini for
predicting homo-oligomer structures and GalaxyPepDock for predicting protein-
peptide interactions, we used bioinformatics approaches. GalaxyGemini searches
good oligomer templates compared to other methods including naive method using
HHsearch, because GalaxyGemini uses both tertiary structure similarity and
quaternary structure similarity by interface alignment score. GalaxyPepDock
searches protein-peptide template based on protein structure similarity and protein-
peptide interaction similarity. Picking oligomer-oriented bioinformatics feature can
find good template and the great reason for success of GalaxyGemini and
GalaxyPepDock. For developing GalaxyPPDock for predicting protein-protein
interactions, we used physical chemistry approach. Both approaches are effective
for generating good models. GalaxyPPDock uses Cluster-Guided Conformational
Space Annealing, one of global optimization methods to finding global minimum
effectively. Developing effective global optimization method is main reason of
success of GalaxyPPDock. These results show that both bioinformatics method and

physical chemistry method can be used to predict protein interaction.

Although, GalaxyGemini and GalaxyPepDock used bioinformatics
approaches, and GalaxyPPDock wused physical chemistry approaches, both
bioinformatics approaches and physical chemistry approaches can be used for
predicting homo-oligomer interactions, protein-peptide interactions, and protein-
protein interactions. Hydrophobic interactions are key interactions of homo-
oligomers, so native homo-oligomer is global minimum of energy landscape of

homo-oligomer (Inbar et al., 2005). Also, symmetry is very key point of sampling
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homo-oligomer structure. Therefore, developing global optimization methods
considering symmetric constraints can predict homo-oligomer interactions more
accurately. For protein-peptide interactions, GalaxyPepDock used Molecular
Dynamics-based refinement method, and it helps to improve the quality of protein-
peptide complex models. For a few decades, ab initio methods were the majority of
protein-protein docking methods, because of the database of protein-protein
complexes were small. However, the number of experimentally resolved protein
complex structures has been increasing, so data-driven protein-protein docking
methods attract a lot of attention. HADDOCK, one of data-driven protein-protein
docking method showed a good performance on the latest CAPRI experiments

(Lensink and Wodak 2013).

In this research, I showed that bioinformatics approaches can help predict
homo-oligomer interactions and protein-peptide interactions and physical
chemistry approaches can help predict protein-protein interactions. Also, there are
many studies that protein interactions can be predicted by both bioinformatics
approaches and physical chemistry approaches. Therefore, combining
bioinformatics approaches and physical chemistry approaches will help improve
the performance of programs for predicting homo-oligomer interactions, protein-

peptide interactions, and protein-protein interactions.

-03 -



BIBLIOGRAPHY

Alsop, J. D., and Mitchell, J. C. (2015). "Interolog interfaces in protein-protein
docking." Proteins 83, 1940-1946.

Andrusier, N., Nussinov, R., and Wolfson, H. J. (2007). "FireDock: fast interaction

refinement in molecular docking." Proteins 69, 139-159.

Bonvin, A. M. (2006). "Flexible protein-protein docking." Curr Opin Struct Biol 16,
194-200.

Caffrey, D. R., Somaroo, S., Hughes, J. D., Mintseris, J., and Huang, E. S. (2004).
"Are protein-protein interfaces more conserved in sequence than the rest of the

protein surface?" Protein Sci 13, 190-202.

Chen, R., Li, L., and Weng, Z. (2003). "ZDOCK: an initial-stage protein-docking
algorithm." Proteins 52, 80-87.

Das, A. A., Sharma, O. P., Kumar, M. S., Krishna, R., and Mathur, P. P. (2013).
"PepBind: a comprehensive database and computational tool for analysis of

protein-peptide interactions." Genomics Proteomics Bioinformatics 11, 241-246.

Dominguez, C., Boelens, R., and Bonvin, A. M. (2003). "HADDOCK: a protein-
protein docking approach based on biochemical or biophysical information." J] Am

Chem Soc 125, 1731-1737.

Donsky, E., and Wolfson, H. J. (2011). "PepCrawler: a fast RRT-based algorithm
for high-resolution refinement and binding affinity estimation of peptide

inhibitors." Bioinformatics 27, 2836-2842.

Dunbrack, R. L., Jr., and Cohen, F. E. (1997). "Bayesian statistical analysis of

protein side-chain rotamer preferences." Protein Sci 6, 1661-1681.

Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D.,

94 -



Shen, M. Y., Pieper, U., and Sali, A. (2006). "Comparative protein structure
modeling using Modeller." Curr Protoc Bioinformatics Chapter 5, Unit 5 6.

Fuhrmann, J., Rurainski, A., Lenhof, H. P., and Neumann, D. (2009). "A new
method for the gradient-based optimization of molecular complexes." J Comput
Chem 30, 1371-1378.

Gabb, H. H., Jackson, R. M., and Sternberg, M. J. E. (1997). "Modelling Protein
Docking wusing Shape Complementarity, Electrostatics and Biochemical

Information." J Mol Biol 272, 106-120.

Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A,
and Baker, D. (2003). "Protein-protein docking with simultaneous optimization of

rigid-body displacement and side-chain conformations." J Mol Biol 331, 281-299.

Gray, J. J. (2006). "High-resolution protein-protein docking." Curr Opin Struct Biol
16, 183-193.

Heldin, C. H. (1995). "Dimerization of cell surface receptors in signal

transduction.” Cell 80, 213-223.

Henikoff, S., and Henikoff, J. G. (1992). "Amino acid substitution matrices from
protein blocks." Proc Natl Acad Sci U S A 89, 10915-10919.

Heo, L., Park, H.,, and Seok, C. (2013). "GalaxyRefine: Protein structure
refinement driven by side-chain repacking." Nucleic Acids Res 41, W384-388.

Huang, S. Y. (2014). "Search strategies and evaluation in protein-protein docking:

principles, advances and challenges." Drug Discov Today 19, 1081-1096.

Hwang, H., Vreven, T., Janin, J., and Weng, Z. (2010). "Protein-protein docking
benchmark version 4.0." Proteins 78, 3111-3114.

Inbar, Y., Benyamini, H., Nussinov, R., and Wolfson, H. J. (2005). "Prediction of
multimolecular assemblies by multiple docking." J Mol Biol 349, 435-447.

-905 -



Janin, J., Henrick, K., Moult, J., Eyck, L. T., Sternberg, M. J., Vajda, S., Vakser, I.,
Wodak, S. J., and Critical Assessment of, P. I. (2003). "CAPRI: a Critical

Assessment of PRedicted Interactions." Proteins 52, 2-9.

Janin, J. (2005). "The targets of CAPRI rounds 3-5." Proteins 60, 170-175.
Janin, J. (2007). "The targets of CAPRI rounds 6-12." Proteins 69, 699-703.
Janin, J. (2010). "The targets of CAPRI Rounds 13-19." Proteins 78, 3067-3072.
Janin, J. (2013). "The targets of CAPRI rounds 20-27." Proteins 81, 2075-2081.

Jones, S., and Thornton, J. M. (1997). "Analysis of protein-protein interaction sites

using surface patches." J Mol Biol 272, 121-132.

Joo, K., Lee, J., Seo, J. H., Lee, K., Kim, B. G., and Lee, J. (2009). "All-atom
chain-building by optimizing MODELLER energy function using conformational
space annealing." Proteins 75, 1010-1023.

Kelley, L. A., Gardner, S. P., and Sutcliffe, M. J. (1996). "An automated approach
for clustering an ensemble of NMR-derived protein structures into

conformationally related subfamilies." Protein Eng 9, 1063-1065.

Keskin, O., Ma, B., Rogale, K., Gunasekaran, K., and Nussinov, R. (2005).
"Protein-protein interactions: organization, cooperativity and mapping in a bottom-

up Systems Biology approach." Phys Biol 2, S24-35.

Ko, J., Lee, D., Park, H., Coutsias, E. A., Lee, J., and Seok, C. (2011). "The FALC-
Loop web server for protein loop modeling." Nucleic Acids Res 39, W210-214.

Ko, J., Park, H., and Seok, C. (2012). "GalaxyTBM: template-based modeling by
building a reliable core and refining unreliable local regions." BMC Bioinformatics

13, 198.

Kortemme, T., Morozov, A. V., and Baker, D. (2003). "An orientation-dependent

hydrogen bonding potential improves prediction of specificity and structure for

- 906 -



proteins and protein-protein complexes." J Mol Biol 326, 1239-1259.

Kozakov, D., Brenke, R., Comeau, S. R., and Vajda, S. (2006). "PIPER: an FFT-

based protein docking program with pairwise potentials." Proteins 65, 392-406.

Krissinel, E., and Henrick, K. (2007). "Inference of macromolecular assemblies

from crystalline state." J Mol Biol 372, 774-797.

Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., and Kmiecik, S. (2015).
"CABS-dock web server for the flexible docking of peptides to proteins without
prior knowledge of the binding site." Nucleic Acids Res 43, W419-424.

Lavi, A., Ngan, C. H., Movshovitz-Attias, D., Bohnuud, T., Yueh, C., Beglov, D.,
Schueler-Furman, O., and Kozakov, D. (2013). "Detection of peptide-binding sites
on protein surfaces: the first step toward the modeling and targeting of peptide-

mediated interactions.”" Proteins 81, 2096-2105.

Lee, J., Scheraga, H. A., and Rackovsky, S. (1998). "Conformational analysis of the
20-residue membrane-bound portion of melittin by conformational space

annealing." Biopolymers 46, 103-116.

Lee, J., Lee, D., Park, H., Coutsias, E. A., and Seok, C. (2010). "Protein loop
modeling by using fragment assembly and analytical loop closure." Proteins 78,

3428-3436.

Lee, K., Czaplewski, C., Kim, S. Y., and Lee, J. (2005). "An efficient molecular

docking using conformational space annealing." J Comput Chem 26, 78-87.

Lee, K., Sim, J., and Lee, J. (2005). "Study of protein-protein interaction using

conformational space annealing." Proteins 60, 257-262.

Lensink, M. F., and Wodak, S. J. (2013). "Docking, scoring, and affinity prediction
in CAPRI." Proteins 81, 2082-2095.

Levy, E. D., Boeri Erba, E., Robinson, C. V., and Teichmann, S. A. (2008).

-97 -



"Assembly reflects evolution of protein complexes." Nature 453, 1262-1265.

Liang, S., Meroueh, S. O., Wang, G., Qiu, C., and Zhou, Y. (2009). "Consensus
scoring for enriching near-native structures from protein-protein docking decoys."

Proteins 75, 397-403.

London, N., Movshovitz-Attias, D., and Schueler-Furman, O. (2010). "The
structural basis of peptide-protein binding strategies." Structure 18, 188-199.

London, N., Raveh, B., Cohen, E., Fathi, G., and Schueler-Furman, O. (2011).
"Rosetta FlexPepDock web server--high resolution modeling of peptide-protein

interactions." Nucleic Acids Res 39, W249-253.

London, N., Raveh, B., and Schueler-Furman, O. (2013). "Peptide docking and
structure-based characterization of peptide binding: from knowledge to know-

how." Curr Opin Struct Biol 23, 894-902.

MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D.,
Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., et al. (1998). "All-atom empirical
potential for molecular modeling and dynamics studies of proteins." J Phys Chem

B 102, 3586-3616.

Maclaine, N. J., and Hupp, T. R. (2011). "How phosphorylation controls p53." Cell
Cycle 10, 916-921.

Malod-Dognin, N., Bansal, A., and Cazals, F. (2012). "Characterizing the
morphology of protein binding patches." Proteins 80, 2652-2665.

Mandell, J. G., Roberts, V. A., Pique, M. E., Kotlovyi, V., Mitchell, J. C., Nelson,
E., Tsigelny, 1., and Ten Eyck, L. F. (2001). "Protein docking using continuum
electrostatics and geometric fit." Protein Eng 14, 105-113.

Mariani, V., Kiefer, F., Schmidt, T., Haas, J., and Schwede, T. (2011). "Assessment
of template based protein structure predictions in CASP9." Proteins 79 Suppl 10,
37-58.

- 08 -



Mashiach, E., Nussinov, R., and Wolfson, H. J. (2010). "FiberDock: Flexible

induced-fit backbone refinement in molecular docking." Proteins 78, 1503-1519.

Miller, M. L., Jensen, L. J., Diella, F., Jorgensen, C., Tinti, M., Li, L., Hsiung, M.,
Parker, S. A., Bordeaux, J., Sicheritz-Ponten, T., et al. (2008). "Linear motif atlas

for phosphorylation-dependent signaling." Sci Signal 1, ra2.

Mintseris, J., Pierce, B., Wiehe, K., Anderson, R., Chen, R., and Weng, Z. (2007).
"Integrating statistical pair potentials into protein complex prediction." Proteins 69,

511-520.

Negri, A., Rodriguez-Larrea, D., Marco, E., Jimenez-Ruiz, A., Sanchez-Ruiz, J. M.,
and Gago, F. (2010). "Protein-protein interactions at an enzyme-substrate interface:
characterization of transient reaction intermediates throughout a full catalytic cycle

of Escherichia coli thioredoxin reductase.” Proteins 78, 36-51.

Morita, M., Kakuta, M., Shimizu, K., and Nakamura, S. (2012). “Blind prediction
of quaternary structures of homo-oligomeric proteins from amino acid sequences

based on template.” J Proteome Sci Comput Biol 1, 1.

Ozbabacan, S. E., Engin, H. B., Gursoy, A., and Keskin, O. (2011). "Transient
protein-protein interactions." Protein Eng Des Sel 24, 635-648.

Park, H., Ko, J., Joo, K., Lee, J., Seok, C., and Lee, J. (2011). "Refinement of
protein termini in template-based modeling using conformational space annealing."

Proteins 79, 2725-2734.

Park, H., and Seok, C. (2012). "Refinement of unreliable local regions in template-

based protein models." Proteins 80, 1974-1986.

Park, H., Lee, G. R., Heo, L., and Seok, C. (2014). "Protein loop modeling using a
new hybrid energy function and its application to modeling in inaccurate structural

environments." PLoS One 9, e113811.

Park, H., Lee, H., and Seok, C. (2015). "High-resolution protein-protein docking

- 99 -



by global optimization: recent advances and future challenges." Curr Opin Struct

Biol 35, 24-31.

Pawson, T., and Nash, P. (2000). "Protein-protein interactions define specificity in

signal transduction." Genes Dev 14, 1027-1047.

Perkins, J. R., Diboun, I., Dessailly, B. H., Lees, J. G., and Orengo, C. (2010).
"Transient protein-protein interactions: structural, functional, and network

properties." Structure 18, 1233-1243.

Petsalaki, E., and Russell, R. B. (2008). "Peptide-mediated interactions in
biological systems: new discoveries and applications." Curr Opin Biotechnol 19,

344-350.

Petsalaki, E., Stark, A., Garcia-Urdiales, E., and Russell, R. B. (2009). "Accurate
prediction of peptide binding sites on protein surfaces." PLoS Comput Biol 5,

€1000335.

Pierce, B., and Weng, Z. (2008). "A combination of rescoring and refinement

significantly improves protein docking performance." Proteins 72, 270-279.

Pluckthun, A., and Pack, P. (1997). "New protein engineering approaches to

multivalent and bispecific antibody fragments." Immunotechnology 3, 83-105.

Postingl, H., Kabir, T., and Thornton, J. M. (2003). “Automatic inference of protein
quaternary structure from crystals.” J Appl Cryst 36, 1116-1112.

Poupon, A., and Janin, J. (2010). "Analysis and prediction of protein quaternary
structure." Methods Mol Biol 609, 349-364.

Raveh, B., London, N., and Schueler-Furman, O. (2010). "Sub-angstrom modeling
of complexes between flexible peptides and globular proteins." Proteins 78, 2029-

2040.

Raveh, B., London, N., Zimmerman, L., and Schueler-Furman, O. (2011). "Rosetta

- 100 -



FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides

onto their receptors." PLoS One 6, €18934.

Ritchie, D. W. (2008). "Recent progress and future directions in protein-protein

docking." Curr Protein Pept Sci 9, 1-15.

Saladin, A., Rey, J., Thevenet, P., Zacharias, M., Moroy, G., and Tuffery, P. (2014).
"PEP-SiteFinder: a tool for the blind identification of peptide binding sites on
protein surfaces." Nucleic Acids Res 42, W221-226.

Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H. J. (2005).
"PatchDock and SymmDock: servers for rigid and symmetric docking." Nucleic

Acids Res 33, W363-367.

Scott, J. D., and Pawson, T. (2009). "Cell signaling in space and time: where
proteins come together and when they're apart." Science 326, 1220-1224.

Shin, W. H., Heo, L., Lee, J., Ko, J., Seok, C., and Lee, J. (2011). "LigDockCSA:
protein-ligand docking using conformational space annealing." J Comput Chem 32,

3226-3232.

Shin, W. H., and Seok, C. (2012). "GalaxyDock: protein-ligand docking with
flexible protein side-chains." J Chem Inf Model 52, 3225-3232.

Shin, W. H., Kim, J. K., Kim, D. S., and Seok, C. (2013). "GalaxyDock2: protein-
ligand docking using beta-complex and global optimization." J Comput Chem 34,

2647-2656.

Snijder, H. J., Ubarretxena-Belandia, 1., Blaauw, M., Kalk, K. H., Verheij, H. M.,
Egmond, M. R., Dekker, N., and Dijkstra, B. W. (1999). "Structural evidence for
dimerization-regulated activation of an integral membrane phospholipase." Nature

401, 717-721.

Soding, J. (2005). "Protein homology detection by HMM-HMM comparison."
Bioinformatics 21, 951-960.

- 101 -



Su, Y., Zhou, A., Xia, X., Li, W., and Sun, Z. (2009). "Quantitative prediction of
protein-protein binding affinity with a potential of mean force considering volume

correction." Protein Sci 18, 2550-2558.

Trabuco, L. G., Lise, S., Petsalaki, E., and Russell, R. B. (2012). "PepSite:
prediction of peptide-binding sites from protein surfaces." Nucleic Acids Res 40,

W423-427.

Trellet, M., Melquiond, A. S., and Bonvin, A. M. (2013). "A unified
conformational selection and induced fit approach to protein-peptide docking."

PLoS One 8§, ¢58769.

Vakser, 1. A. (1997). "Evaluation of GRAMM low-resolution docking methodology
on the hemagglutinin-antibody complex." Proteins Suppl 1, 226-230.

Venkatraman, V., Yang, Y. D., Sael, L., and Kihara, D. (2009). "Protein-protein
docking using region-based 3D Zernike descriptors." BMC Bioinformatics 10, 407.

Vlieghe, P., Lisowski, V., Martinez, J., and Khrestchatisky, M. (2010). "Synthetic
therapeutic peptides: science and market." Drug Discov Today 15, 40-56.

Wen, W., Meinkoth, J. L., Tsien, R. Y., and Taylor, S. S. (1995). "Identification of a
signal for rapid export of proteins from the nucleus." Cell 82, 463-473.

Yan, C., and Zou, X. (2015). "Predicting peptide binding sites on protein surfaces

by clustering chemical interactions." J Comput Chem 36, 49-61.

Yang, Y., Ludwig, R. L., Jensen, J. P,, Pierre, S. A., Medaglia, M. V., Davydov, I. V.,
Safiran, Y. J., Oberoi, P., Kenten, J. H., Phillips, A. C., et al. (2005). "Small
molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in

cells." Cancer Cell 7, 547-559.

Zhang, Y., and Skolnick, J. (2005). "TM-align: a protein structure alignment
algorithm based on the TM-score." Nucleic Acids Res 33, 2302-2309.

- 102 -



Zhou, H., and Zhou, Y. (2002). "Distance-scaled, finite ideal-gas reference state
improves structure-derived potentials of mean force for structure selection and

stability prediction." Protein Sci 11, 2714-2726.

Zhou, H., and Zhou, Y. (2002). "Stability scale and atomic solvation parameters

extracted from 1023 mutation experiments." Proteins 49, 483-492.

- 103 -



- 104 -

2 A &t et

SECHUL MATIONAL |INNVERSITY



i

®ol

—

e

¢

&

o

—_
o

7]

}az

)

914

=Rk

el

- 105 -



3 ¥H:2010—-20290

- 106 -



	1. INTRODUCTION
	2. GalaxyGemini: a program for protein homo-oligomer structure prediction based on similarity
	2.1. Introduction
	2.2. Methods
	2.2.1. Overall procedure of GalaxyGemini
	2.2.2. Oligomer database and test sets
	2.2.3. Oligomer structure prediction
	2.2.4. Scoring function for predicting oligomer state
	2.2.5. Scoring function for predicting oligomer interactions
	2.2.6. Energy minimization
	2.2.7. Assessment measures

	2.3. Results and Discussion
	2.3.1. Performance of GalaxyGemini on training set and test set
	2.3.2. Contribution of score components
	2.3.3. Oligomer states for improvement cases on CASP9 targets

	2.4. Conclusions

	3. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization
	3.1. Introduction
	3.2. Methods
	3.2.1. Overall procedure of GalaxyPepDock
	3.2.2. Template selection
	3.2.3. Model-building
	3.2.4. Evaluation measure

	3.3. Results and Discussion
	3.3.1. Performance compared to other protein-peptide docking programs
	3.3.2. Template search of GalaxyPepDock
	3.3.3. Energy-based optimization of GalaxyPepDock
	3.3.4. Performance of GalaxyPepDock on CAPRI target
	3.3.5. Limits of template-based docking

	3.4. Conclusions

	4. GalaxyPPDock: a protein-protein docking program based on cluster-guided conformational space annealing
	4.1. Introduction
	4.2. Methods
	4.2.1. Overall procedure of GalaxyPPDock
	4.2.2. Sets of protein complexes used for method development
	4.2.3. Training of energy parameters
	4.2.4. Overview of the conformational space annealing
	4.2.5. Cluster-guided conformational space annealing
	4.2.6. Assessment measure

	4.3. Results and Discussion
	4.3.1. Performance of cluster-guided conformational space annealing
	4.3.2. Comparison to other protein-protein docking methods
	4.3.3. Performance of GalaxyPPDock on recent CAPRI targets
	4.3.4. Protein-protein docking with side-chain flexibility
	4.3.5. Contribution of GalaxyPPDock energy components

	4.4. Conclusions

	5. Conclusions
	BIBLIOGRAPHY
	국문초록


<startpage>16
1. INTRODUCTION 1
2. GalaxyGemini: a program for protein homo-oligomer structure prediction based on similarity 5
 2.1. Introduction 5
 2.2. Methods 7
  2.2.1. Overall procedure of GalaxyGemini 7
  2.2.2. Oligomer database and test sets 9
  2.2.3. Oligomer structure prediction 9
  2.2.4. Scoring function for predicting oligomer state 10
  2.2.5. Scoring function for predicting oligomer interactions 12
  2.2.6. Energy minimization 15
  2.2.7. Assessment measures 15
 2.3. Results and Discussion 17
  2.3.1. Performance of GalaxyGemini on training set and test set 17
  2.3.2. Contribution of score components 24
  2.3.3. Oligomer states for improvement cases on CASP9 targets 26
 2.4. Conclusions 28
3. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization 29
 3.1. Introduction 29
 3.2. Methods 32
  3.2.1. Overall procedure of GalaxyPepDock 32
  3.2.2. Template selection 34
  3.2.3. Model-building 38
  3.2.4. Evaluation measure 40
 3.3. Results and Discussion 41
  3.3.1. Performance compared to other protein-peptide docking programs 41
  3.3.2. Template search of GalaxyPepDock 45
  3.3.3. Energy-based optimization of GalaxyPepDock 48
  3.3.4. Performance of GalaxyPepDock on CAPRI target 51
  3.3.5. Limits of template-based docking 54
 3.4. Conclusions 56
4. GalaxyPPDock: a protein-protein docking program based on cluster-guided conformational space annealing 57
 4.1. Introduction 57
 4.2. Methods 60
  4.2.1. Overall procedure of GalaxyPPDock 60
  4.2.2. Sets of protein complexes used for method development 62
  4.2.3. Training of energy parameters 62
  4.2.4. Overview of the conformational space annealing 66
  4.2.5. Cluster-guided conformational space annealing 67
  4.2.6. Assessment measure 69
 4.3. Results and Discussion 70
  4.3.1. Performance of cluster-guided conformational space annealing 70
  4.3.2. Comparison to other protein-protein docking methods 78
  4.3.3. Performance of GalaxyPPDock on recent CAPRI targets 82
  4.3.4. Protein-protein docking with side-chain flexibility 85
  4.3.5. Contribution of GalaxyPPDock energy components 89
 4.4. Conclusions 91
5. Conclusions 92
BIBLIOGRAPHY 94
±¹¹®ÃÊ·Ï 105
</body>

