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Abstract

Analysis strategy and method to
improve accuracy of imputation on
rare variants

Young Jin Kim
Interdisciplinary Program in Bioinformatics
College of Natural Science

Seoul National University

Rare variants have gathered much attention as an alternative source of
missing heritability. Rapid development in high throughput sequencing
technology has enabled us to discover a large number of rare variants. Although
next-generation sequencing technology is becoming a powerful tool in
genomics, it is not yet feasible to perform a large-scale population based
genome study due to its high cost and required high computing power.
Alternatively, two approaches, imputation and customized chips such as exome
array and Metabochip, have been widely used in large scale genome studies.
Imputation is a cost-effective approach that imputes rare variants into existing
genotype data. Generally imputation analysis requires two panels as input:
reference panel is the template for predicting untyped markers and genotype
panel is the target for imputation analysis. After imputation analysis, the
information of genotype panel contains previously experimentally genotyped

information and predicted genotypes based on reference panel information.



However, imputing rare variants is very challenging due to low accuracy of
imputed rare variants. Moreover, low accuracy of imputed rare variants would
mislead the results of region-based association tests. Customized chips are
designed to contain rare variants yet those chips are designed only for the
specific targets. Therefore, new analysis strategy and method for obtaining rare
variants are urgently in need.

In this study, we developed two novel rare variant imputation
approaches, combined approach and pre-collapsing imputation approach. We
also applied two approaches to real data analysis. Imputation based association
study was performed on liver enzyme traits.

First, we proposed combined approach that imputes genotype panel
consists of combined data of GWAS chip and exome array. The effectiveness
and performance of combined approach were demonstrated using reference
panel comprising exome sequencing, exome array, and GWAS chip of 848
identical samples and 5,349 samples of genotype panel consisting of exome
array and GWAS chip. As a result, the combined approach increased about 11%
in imputation accuracy and enhanced about two times of genomic coverage for
rare variants (MAF < 1%) compared to imputation results of genotype panel
with GWAS chip alone. Regardless of samples size of reference panel,
combined approach showed better imputation performance. Also combined
approach outperformed previously reported two-step imputation approach.

Second, we developed new method, pre-collapsing based imputation
approach (PreCimp), to increase imputation accuracy in forms of collapsed
variables. Unlike with previously introduced imputation approaches, PreCimp
only requires computational cost. PreCimp consists of two steps. In the first step,

collapsed variables are generated using rare variants in the reference panel and



new reference panel is constructed by inserting pre-collapsed variables (PCVs)
into the reference panel. Next, typical imputation analysis with the new
reference provides the imputed genotypes of collapsed variables. We
demonstrated the performance of PreCimp on 5,349 genotyped samples using a
Korean population specific reference panel including 848 samples of exome
sequencing, Affymetrix 5.0, and exome chip. PreCimp outperformed a
traditional post-collapsing method that collapses imputed variants after single
rare variant imputation analysis. Although PreCimp poorly performed for genes
sized larger than 200kb (about 3% of all genes), PreCimp approach by split
large-sized genes into small sub-regions could control the poor performance
issues. PreCimp approach was shown to increase imputation accuracy about 3.4
~ 6.3% (dosage 17 0.6 ~ 0.8), 10.9 ~ 16.1% (dosage 1* 0.4 ~ 0.6), and 21.4 ~
129.4% (dosage 1* below 0.4) compared with the results of post-collapsing
method.

Two imputation approaches were applied to real data analysis. We
performed imputation based association analysis on liver enzymes. Using
whole-exome reference panel, imputation analysis was performed on 8,529
samples of combined data consisting of GWAS chip and exome chip.
Subsequent association analysis on about half million imputed and genotyped
variants revealed 20 associated loci responsible for the variation of liver
enzymes (P < 5x10°). Among them, 7 novel loci including two missense
variants were discovered.

Taken together, two novel rare variant imputation approach were
developed and applied to real data analysis. Imputation based association
analysis on liver enzyme discovered several novel findings. This study proposed

efficient analysis approaches for enhancing imputation accuracy of rare variants.
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Additionally, in application to real data analysis, discovered variants will be
valuable resource for understanding rare variants and its association to various
phenotypes.
Keywords: SNP, imputation, rare variant, genome-wide association study,
association
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Chapter 1. Introduction

1.1 Background and Motivation

1.1.1 Genome-wide association study

The ultimate goal of human genetics is to discover associated variants for
common complex diseases (Hirschhorn and Daly 2005; Bush and Moore 2012). At
the end of human genome project, various genetic variants were discovered
including single nucleotide polymorphism (SNP). Most of SNPs are biallelic and
most abundant type of variant in the human genome. In dbSNP b141 (21/05/2014),
there are 62,387,983 reference SNP ids (rsID) available. One property of SNP is
linkage disequilibrium (LD) that is non-random association of alleles at different loci
(Bush and Moore 2012). Using LD structure, SNPs can be used as an indirect marker
that is in high LD with causal SNP or as direct association marker that has functional
effect on diseases (Bush and Moore 2012). These characteristics of SNPs enabled us
to conduct association mapping for diseases and traits (Figure 1.1). There are two
commonly used approaches for association mapping. The first approach is candidate
gene study. This approach is hypothesis based study that genes are selected for
association mapping based on other evidence of affecting disease risk (Hirschhorn
and Daly 2005). Genome-Wide Association Study (GWAS) is the second approach.
GWAS is hypothesis free approach that there is no assumption about genomic
location or genes affecting disease risk (Hirschhorn and Daly 2005). GWAS scans
disease associations across whole genome (Hirschhorn and Daly 2005).

In 2005, GWAS successfully identified various genetic loci associated with
age-related macular degeneration (Edwards et al. 2005; Haines et al. 2005; Klein et

al. 2005). During the last decade, GWAS has become efficient tool for human



genomics for identifying genetic variants responsible for diseases and traits. As of
November 2014, there are 2,051 publications and 14836 SNPs (GWAS catalogue:
http://www.genome.gov/gwastudies/) (Hindorff et al. 2009). These increasing
amount of information would lead us to an understanding of genetics underlying

diseases.
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1.1.2 Genotype imputation

Genotype imputation predicts untyped markers of genotyping chip using
reference haplotypes with dense set of markers such as International HapMap project
or 1,000 genomes project (Marchini and Howie 2010) (Figure 1.2). Imputation
analysis has been widely used in GWAS to perform in silico fine mapping and
genome-wide meta-analysis (Marchini and Howie 2010).

In GWAS, common SNP genotyping platform is SNP microarray. The chip,
SNP microarray, contains more than hundreds of thousands of SNPs in a single chip.
One of most widely used commercial chip contains approximately 1 million SNPs.
SNP microarray contains only limited number of SNP markers that locate across
human genome. Therefore, researchers would select associated regions of interests
and perform fine mapping on the regions by resequencing or high density genotyping
of SNPs in the region. These post-GWAS process requires high cost, time, and
additional DNA samples of participants. By genotype imputation, researchers can
perform in silico fine mapping with computational cost only. Example of in silico
fine mapping is shown in Figure 1.3. High density imputed genotypes enhance
association mapping power for the discovery of associated variants(Marchini and
Howie 2010).

For further identification of disease associations and increasing statistical
power, genome-wide meta-analysis has been widely used (Thompson et al. 2011).
However, large discrepancy in contents of commercial arrays used for GWAS is the
major problem in genome-wide meta-analysis. For example, 1M chips of Affymetrix

and Illumina only shares about 30% of their contents (http://www.affymetrix.com,

http://www.illumina.com). The main reason of the difference is from the difference

in design of chips. Affymetrix SNP genotyping 6.0 (1M chip) contains markers that

evenly spaced across genomes and tagging SNPs. [llumina 1M chip contains most


http://www.affymetrix.com/
http://www.illumina.com/

of markers as tagging SNPs. This problem also can be solved via genotype
imputation. Since imputation estimates every SNPs of the reference panel, all study
genotypes after imputation have the same contents for meta-analysis. Example of

imputation application in genome-wide meta-analysis is shown in Figure 1.4.



cgagAtctcccgAcctcAtgg
cgaaGctcrtttCrttcAtgg

Reference haplotypes

CCCCCCCCCCCAATTTTTTTT
CCACATCTCCCCACCTCATCG
CCAAGCTCTTTTCTTCTGTGC
CCAACCTCTTTTCTTCTGTGC
CCAGACTCTCCCACCTTATCC
TCCCATCTCCCCACCTCATCG
CCGACATCTCCCCACCTTCTCC
CCAGACTCTTTTCTTTTGTAC
CCACACTCTCCCACCTCCTGCC
CCAAGCTCTTTTCTTCTCTGC

a Study sample b studysample

cl.lA lllllll AQ.'QA llllll A lllllll A.I-.AIC.
IIIIG lllllll CII.IA lllllll c lllll s-Ca---A-ac
Reference haplotypes = ——> Reference haplotypes
CCAGATCTCCTTCTTCTGTCC CCAGATCTCCTTCTTCTGTGC
CCACATCTCCCCACCTCATCG CCACATCTCCCCACCTCATGG
CCAACCTCTTTTCTTCTCTGC CCAACCTCTTTTCTTCTGTGC
CCGAACCTCTTTTCTTCTCTCC CCAACCTCTTTTCTTCTCTGC
CCAGACTCTCCCACCTTATGC CCAGACTCTCCCACCTTATGC
TCCCGATCTCCCCACCTCATGG TCGCGATCTCCCCACCTCATGG
CCAGATCTCCCCACCTTCTCC CCACATCTCCCCACCTTCTCC
CCAGACTCTTTTCTTTTCTAC CCAGACTCTTTTCTTTTCGTAC
CCAGACTCTCCCACCTCCTGC CCACACTCTCCCACCTCGTGC
CCAAGCTCTTTTCTTCTCGTGCC CCAAGCTCTTTTCTTCTCTCC
Study sample

Figure 1.2 Schematic flow of imputation analysis (Li et al., Annu. Rev. Genomics

Hum. Genet. 2009)



HAPMAP, 4M SNP =~ 0.75kb
AFFY SNP 5.0, 0.5M SNP = 6kb
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Figure 1.3 Example of in silico fine mapping
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1.1.3 Missing heritability

Despite the success of GWAS, discovered variants from GWAS have only
explained small proportion of phenotypic variance (Manolio et al. 2009). For
example, previous height GWAS on 180,000 samples discovered 180 loci and those
loci only explain about 12% of heritability (Lango Allen et al. 2010; Lander 2011).
Since estimated heritability from siblings was about 80% (Visscher et al. 2006),
several questions on “missing heritability” after GWASs on tens of thousands of
samples only explain small phenotypic variance. One of questions is the source of
missing heritability. GWAS has primarily focused on common variants (minor allele
frequency; MAF > 5%). Therefore, alternative source of missing heritability would
be as follows (Manolio et al. 2009; Zuk et al. 2014): 1) much large number of
common variants with small effect, 2) rare variants (MAF < 1%), 3) structural
variants, 4) Gene-Gene interaction, and 5) inadequate accounting for shared

environment among relatives.

1.1.4 Rare variant imputation

By the advent of Next Generation Sequencing (NGS) technology, rare variants
have increasing attention among alternative source of missing heritability (Bansal et
al. 2010; Zuk et al. 2014). However, NGS requires high cost and compute intensive
process. Therefore, NGS is not yet applicable to a large scale population based
genomic study such as GWAS.

Alternatively, imputation analysis has been used for studying less common or
rare variants (Auer et al. 2012). Imputation analysis is efficient way to obtain rare
variants since it only requires computational cost. However, imputation has major

limitation in imputing rare variants. Li et al. reported that extremely rare variants are



unlikely to impute even with thousands of reference samples (Li et al. 2011).

To enhance imputation accuracy of rare variants, previous studies have reported
various approaches (Joshi et al. 2013; Kreiner-Moller et al. 2014; Li et al. 2011; Duan
etal. 2013; Deelen et al. 2014). Previous strategies can be categorized into four types:
1) construct the reference panel with sequenced samples (Duan et al. 2013; Deelen
et al. 2014), 2) increase samples size of reference panel (Li et al. 2011), 3) use
complementary information retrieved from local sequencing (Joshi et al. 2013), and
4) local ultra-high-density genotyping arrays (Kreiner-Moller et al. 2014). However,
previous studies have mainly focused on utilization of reference panel. Therefore,
different aspects of imputation strategy and methodological approach are warranted

to more efficiently improve imputation accuracy of rare variants.

1.2 Objective of the research

Previous studies on improving imputation accuracy of rare variants suggested
strategies based on construction or complementing information of reference panels
(Joshi et al. ; Kreiner-Moller et al. ; Li et al. ; Duan et al. 2013; Deelen et al.). Since
sequencing thousands of samples for constructing reference panel is not feasible and
genotyping or sequencing a subset of samples require additional round of
experiments, different aspect of rare imputation strategy and methodological
approach is urgently in need. In this context, the primary purpose of this study is to
develop rare variant imputation methods. First, combined approach was proposed.
Combined approach uses combined data comprising GWAS chip and exome array
for constructing genotype panel and following imputation analysis enhanced
imputation accuracy and genomic coverage of rare variants. Second, a novel rare

variant imputation method, pre-collapsing imputation approach, was proposed. Pre-

10



collapsing imputation approach was developed to increase imputation accuracy of
rare variants in terms of collapsed variables. In addition, we applied two approaches
to real data analysis. Imputation based association analysis was performed on liver
enzyme traits.

The dissertation is organized as follows: Chapter 1 introduces the background
of this study. Chapter 2 contains the study of analysis strategy of combined approach
to enhance imputation accuracy of rare variants. In Chapter 3, pre-collapsing
imputation approach was developed to increase imputation accuracy of rare variants
in terms of collapsed variables. In following Chapter 4, developed approaches of
previous chapters were used in imputation based association analysis on liver

enzyme traits. Finally, Chapter 5 summarizes the paper and conclusion.
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Chapter 2. Imputation approach using combined data

2.1 Introduction

Genome-wide association studies (GWAS) have revealed unprecedented
amount of disease associated loci (Zuk et al. 2014; Hindorff et al. 2009). However,
previously reported loci only explained small proportion of heritability (Zuk et al.
2014; Gorlov et al. 2008; Bansal et al. 2010). Since previous GWAS mainly focused
on common variants (minor allele frequency (MAF) > 5%), rare variants have
gathered an increasing attention as an alternative source of missing heritability (Zuk
et al. 2014; Gorlov et al. 2008; Bansal et al. 2010). By the advent of recent
advancement in high-throughput sequencing technology, genome-wide assessment
of rare variants has become possible (Zuk et al. 2014). For a large scale population
based genome studies, however, sequencing technology is not yet feasible because
of high cost and its computing intensive analysis process (Magi et al. 2012; Auer et
al. 2012). Alternatively, two cost effective approaches have been widely used for
studying rare variants. One approach is the genotype imputation analysis that
estimates untyped rare markers using thousands of sequenced samples as a reference
panel such as 1,000 genomes project data (Howie et al. 2012; Marchini and Howie
2010). The second approach is using genotyping chips such as Metabochip and
exome array that are customized to contain rare variants (Huyghe et al. 2013 ; Lango
Allen et al. 2010). These chips can genotype at less cost than commercial genome-
wide single nucleotide polymorphism (SNP) arrays, and contain about quarter
millions of variants optimized for specific targets. For example, Metabochip includes
SNPs for replication and fine mapping aiming to study metabolic, cardiovascular,

and anthropometric traits (Lango Allen et al. 2010). Exome array contains mainly

12



functional coding variants selected from ~ 12,000 sequenced samples (Huyghe et al.
2013).

Indeed, the two approaches have been cost effective methods to access rare
variants. Recent imputation based association studies have discovered numerous less
common or rare variants associated with coronary artery disease, blood cell traits,
serum creatinine, chronic kidney disease, and adult body height (Du et al. 2014;
Sveinbjornsson et al. 2014; Auer et al. 2012). Customized chips designed to contain
rare variants have successfully identified novel associations for hematological traits,
blood lipid traits, coronary heart disease, and glycemic traits (Auer et al. 2012;
Holmen et al. 2014; Peloso et al. 2014; Scott et al. 2012).

Despite noticeable successes, the two approaches have limitations. Imputing
rare variants has been challenging due to low accuracy of imputed genotypes of rare
variants (Li et al. 2011; Auer et al. 2012). Poorly imputed rare variants would result
in misleading results in the following association study. Generally, imputation
estimates untyped markers using haplotype patterns of common markers between
reference panel and genotype panel (Howie et al. 2012; Marchini and Howie 2010).
Therefore, the main reason for poor performance would be due to low correlation
between rare variants and common tagging markers genotyped by GWAS chips.
Accuracy of imputed rare variants would be improved if a chip used for genotype
panel is designed to contain rare variants or markers tagging nearby rare variants
(Joshi et al. 2013; Li et al. 2011). Customized chips are limited in that they are
designed for specific purposes. Those chips do not contain markers for genome-wide
scan. However, it can be a source of rare variants as a part of genotype panel for
imputation analysis. In this context, the combined approach taking advantages of
two approaches would be more powerful to obtain the genotypes of rare variants. If

custom arrays can be genotyped on identical samples that were previously genotyped

13



with genome-wide scan arrays, the combined approach would enhance imputation
performance and association mapping power. Although general analysis strategy of
imputation and custom arrays have been introduced (Howie et al. 2012; Marchini
and Howie 2010; Lango Allen et al. 2010; Duan et al. 2013), analysis strategy and
its effectiveness of combined approach have not been reported.

In this study, we describe the analysis strategy and its effectiveness of combined
approach that performs imputation analysis on merged data including exome array
and existing GWAS chip data. To demonstrate the effectiveness of our established
strategy, we built a reference panel from 848 samples who have exome sequencing
data, GWAS chip data, and exome chip data and then performed imputation analysis
on genotype panels with 5,349 identical samples of an exome chip, a GWAS chip
only, and merged data comprising a GWAS chip and an exome chip. Additionally,
we studied sample size effect of reference panel on imputation performance of
GWAS chip only and combined data. Also previously suggest two-step approach
was compared with imputation results of GWAS chip only and combined data. To
compare performance of results, we accessed imputation quality score and genomic

coverage.

2.2 Materials and Methods

2.2.1 Overview of combined approach

The overview of strategy of combined approach is described in Figure 2.1.
Dataset used for constructing panels is summarized in Table 2.1. For reference panel,
we built an initial reference panel and a final reference panel without non-imputable
extremely rare variants that possibly mislead in interpreting imputation quality score,

estimated 1*. For a genotype panel, testing genotype panel consists of a GWAS chip

14



only of 5,349 samples and final genotype panel comprised of merged data of an
exome chip and a GWAS chip of 5,349 identical samples. To set a threshold for
excluding non-imputable variants, initial reference panel was constructed by
merging exome sequencing, exome chip, and GWAS chip data of 848 identical
samples. Testing genotype panel was imputed using initial reference panel and
imputation results were compared with true genotypes. Lower bound MAF showing
concordance between dosage r* and estimated r* was used as a MAF threshold for
excluding non-imputable variants. Finally, the final reference panel removing non-

imputable variants were used to impute final genotype panel.
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The strategy of Combined approach

Construction of Reference panel

Construction of Genotype panel

1. Get QCed data

2. Match strand to reference genome

3. Merge data

4. Phasing to obtain reference haplotypes

( Preparing initial reference panel

Preparing data

1. Get QCed data

2. Match strand to reference genome
3. Merge data

( Filtering scheme

2. Go back to merged data

- Phasing filtered reference panel

)_‘ ( Preparing Genotype panel )_

1. Perform imputation on testing genotype panel |
- Compare the imputed results with exome chipfi
- Compare true dosage r2 with estimated r? \
- Set MAF threshold for imputable variants

{

{
1. Testing genotype panel

| - a GWAS chip only
- Phasing to obtain genotype panel

2. Final genotype panel
- Merged data (GWAS, exome chip)
- Phasing to obtain genotype panel

v

)

Final reference panel

Final Genotype panel

Figure 2.1 Overview of combined approach
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Table 2.1 Datasets used in this study

Category Exome Exome
Type GWAS chip
(# of samples) sequencing chip
# of variants 500,821 344,366 66,196
Reference Initial reference panel O O o
panel
Final reference panel o O o
(848)
Exome chip genotype
X X o
Genotype panel
panel Testing genotype
X 0O X
(5,349) panel
Final genotype panel X O o
For imputed variants
True data
using testing genotype X X o
(5,349)

panel
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2.2.2 Exome sequencing

By the Type 2 Diabetes Genetic Exploration by Next-generation Sequencing in
Ethnic Samples (T2D-GENES) Consortium  at the Broad Sequencing Center, about
10,000 exomes from five ethnic groups have been sequenced using Agilent Human
Exon v2 capture (~18,000 genes). Among them, part of samples from Korea
Association REsource (KARE) project (Cho et al. 2009), including 538 samples
from type 2 diabetes cases and 579 samples from controls, were included and 1,087
samples were used for further analysis after quality control on samples. The
reference genome hg19 was used for alignment and variant calling process that was
performed using the Genome Analysis Toolkit v2 (McKenna et al. 2010). As a result,
500,821 autosomal variants from 848 Korean samples were used for constructing
reference panels. Accuracy of called variants was calculated by comparing
genotypes from sequencing data with genotypes of genotyping chip data. Overall
concordance was 99.76% and 99.96% for Affymetrix 5.0 and exome array,

respectively.

2.2.3 GWAS and exome chip genotyping

Previously, 8,842 samples were genotyped using the Affymetrix Genome-Wide
Human SNP Array 5.0 (Affymetrix Inc., San Diego, CA, USA) (Cho et al. 2009).
Among them, 6,197 identical samples were genotyped using the Illumina
HumanExome BeadChip v1.1 (Illumina, Inc., San Diego, CA, USA) exome array.
For the two platform, standard quality control on samples were conducted excluding
samples with a high missing rate (>4%), gender discrepancy, excessive
heterozygosity, or cryptic first degree relatives. Exclusion criteria for SNPs of

Affymetrix GWAS chip was as follows: Hardy-Weinberg equilibrium p-values < 10°
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6, genotype call rates < 95%, and MAF < 0.01. All chromosomal position of SNPs
were updated to hgl9 using the Affymetrix annotation file. Quality control on
variants of exome array were similar to those of GWAS chip except threshold for
filtering out variants with low allele frequency. Only monomorphic markers were
excluded for further analysis. From quality controlled data, we used 6,197 samples
that were common between sets of samples of Affymetrix GWAS chip and exome
array. Variants included in the analysis were 344,366 and 66,196 for GWAS chip and
exome array, respectively. Among 6,197 samples, 848 samples were used for
constructing reference panel and remaining 5,349 samples were used for genotype

panels.

2.2.4 Building reference panel

We constructed the reference panel by merging exome sequencing, exome array,
and GWAS chip of 848 identical samples. The description of each data is
summarized in Table 2.1. Prior to merging process, overlapped variants between
sequencing data and chip data were removed from chip datasets. For overlapped
variants between GWAS chip exome array, variants from exome array were used and
overlapped variants were removed from GWAS chip. Number of overlapped and
unique variants are shown as a Venn diagram in Figure 2.2. After merging all data,
initial reference panel contained 856,690 variants and phased using the ShapelT v2
program (Delaneau et al. 2012). Initial reference panel was used to impute testing
genotype panel for selecting MAF threshold to exclude non-imputable variants.
After extremely rare non-imputable variants (MAF < 0.3%) were excluded, the final
reference panel contained 487,381 variants and phased using the ShapelT v2

program.
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GWAS chip Exome array

Total: 856,690

Exome Seq

Figure 2.2 A Venn diagram of variants of three platforms used in the reference
panel
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2.2.5 Building genotype panel

Among 6,197 samples, 5,349 samples were remained after excluding 848
samples used for constructing reference panel. Genotype panel consists of exome
array of 5,349 samples were phased using the ShapelT v2 progam. As the testing
genotype panel, GWAS chip data of 5,349 samples were phased using the ShapelT
v2 program. For the final genotype panel, GWAS chip and exome array of 5,349

identical samples were merged and phased using the ShapelT v2 program.

2.2.6 Two-step imputation approach

Recently, Kreiner-Moller et al. reported a two-step imputation approach for
improving imputation accuracy of rare variants (Kreiner-Moller et al. 2014). Two-
step imputation approach uses local reference panel constructed using ultra high
density SNP array with many low frequency markers. This approach is implemented
as follows: 1) Construct local reference panel by genotyping only a subset of samples
using an array with many low frequency markers 2) Impute study genotype panel
using local reference panel 3) Impute the study genotype panel imputed in 2) by
using 1,000 genomes project reference panel. To compare two-step imputation
approach with combined approach, we modified the strategy of two-step imputation
approach to our dataset as follows: 1) construct local reference panel using only a
subset of samples of combined GWAS chip and exome chip data 2) impute study
genotype panel (GWAS chip only) using local reference panel 3) imputed genotype

panel is then imputed using exome reference panel.
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2.2.7 Statistical analysis

In this study, we performed typical pre-phasing based imputation analysis on
genotype panels (Howie et al. 2012). For imputation analysis, we used minimac
software, a low memory and computationally efficient implementation of the MaCH
algorithm (Li et al. 2011). To select MAF threshold for imputable variants, we
compared dosage 1* and estimated 1* of imputed variants by observing scatter plots
of each MAF bins. Dosage r* was accessed by calculating squared Pearson
correlation (dosage 1) between imputed dosages and true genotypes from exome
array. For comparison analysis of imputation performance of genotype panels, we
used estimated r? provided by minimac as an imputation quality measure. To test the
difference between estimated 1* values of imputation results of genotype panels, the
Wilcoxon signed-rank test was performed. Statistical analyses and visualization of

the results were performed using the R program.

2.3 Results

2.3.1 Selecting MAF threshold for non-imputable variants

In this study, we excluded non-imputable variants to construct the final
reference panel. Previously, Li et al. reported that estimated r* would not be a good
estimator for extremely rare variants (MAF<0.5%) (Li et al. 2011). Here, we defined
non-imputable variants as ones having a large difference between estimated r* and
dosage 1*. If estimated r* would not reflect true accuracy, one cannot filter out low
quality imputed variants based on estimated r* and comparison analysis of
imputation performance using estimated r* would be misleading. In this context, we
compared estimated r* with dosage 1* for several MAF bins. We first performed

imputation analysis on testing genotype panel, containing GWAS chip only, by using
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unfiltered initial reference panel. Among imputed variants, 45,802 imputed variants
from 5,349 samples were compared to the corresponding variants obtained from an
exome array constructed using identical samples. Figure 2.3 shows the imputation
results of variants by MAF bins. As Li et al. reported, the estimated r* did not reflect
their true value, dosage 1%, for extremely rare variants (MAF < 0.3%, Figure 2.3D).
However, the estimated r* worked well for variants with MAF > 0.3% (Figure 2.3A-
C). Therefore, variants with MAF > 0.3% were regarded as imputable in the current

study.
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Figure 2.3 Scatter plot of estimated r* against dosage r* by MAF bins
Estimated r* was plotted against dosage > by MAF bins (A) MAF > 5%, (B) MAF
=1-5%,(C) MAF =0.3 - 1%, and (D) MAF < 0.3%. The red dotted line represents

the diagonal.
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2.3.2 Comparison of imputation accuracy among genotype panels

Using the final reference panel without non-imputable variants, we performed
imputation analysis on genotype panels including exome array only, GWAS chip
only, and merged data of two platforms. For comparison analysis, we used imputed
108,682 variants in overlap among three genotype panels and estimated r* was a
measure for imputation accuracy. Number of variants were 35,443 (32.6%), 21,191
(19.5%), 19,527 (18.0%), and 32,547 (29.9%) for variant with MAF > 5%, 1-5%,
0.5-1%, and < 0.5%, respectively. Figure 2.4 shows the comparison results. As
previously reported, the genotype panel of exome array alone showed the worst
performance (Martin et al. 2014). The mean estimated r* was 0.332, 0.616, and 0.661
for genotype panels of exome array, GWAS chip, and combined approach,
respectively. Combined genotype panel showed the best performance compared to
other genotype panels (P < 2.2x107'°, about 7.3% increase in mean estimated r’
compared to those of GWAS chip only). In Figure 2.5, most of imputed variants using
combined approach showed better performance than that using genotype panel of
GWAS chip alone. The increment in imputation accuracy was the largest when allele
frequencies of imputed variants were below than 1%. The increment in estimated >
of combined genotype panel was about 10-11% for rare variants (MAF 0.5 — 1%)
and extremely rare variants (MAF 0.3 — 0.5%) compared to the genotype panel with
GWAS chip only. Mean estimated r* of GWAS and combined approach was 0.870
and 0.906 for MAF > 5%, 0.653 and 0.706 for MAF 1 — 5%, 0.465 and 0.515 for
MAF 0.5% - 1%, and 0.406 and 0.452 for MAF 0.3 — 0.5%.
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2.3.3 Comparison of genomic coverage among genotype panels

Major advantage of imputation analysis is in obtaining dense set of imputed
variants with relatively small number of markers of genotype panel. By using dense
set of imputed markers, association mapping power can be increased via enhanced
genomic coverage. This property has enabled us to perform in silico fine mapping in
imputation based association studies. Recently, Nelson et al. reported imputation
based genomic coverage of widely used genotyping arrays (Nelson et al. 2013).
Imputation based genomic coverage is calculated as the number of imputed variants
above imputation quality score threshold divided by total number of variants in the
reference panel. In this study, we compared imputation based genomic coverage of
genotype panels of GWAS chip only and combined approach. For genomic coverage,
we selected 143,022 exonic variants including imputed and genotyped by exome
array. Since we used exome sequencing data in constructing reference panel, 143,022
variants were regarded as virtual exome in this study. Number of variants were
56,326 (39.4%), 28,072 (19.6%), 22,931 (16.0%), and 35,693 (25.0%) for variant
with MAF > 5%, 1-5%, 0.5-1%, and < 0.5%, respectively. Table 2.2 summarized the
results. We selected stringent cut-off as estimated r* of 0.8 and less stringent cut-off
as estimated r* of 0.4. By using stringent cut-off, overall genomic coverage was
0.435 and 0.560 for GWAS chip only and combined approach. In overall,
approximately 29% increase in genomic coverage was observed if combined
approach used (r? threshold > 0.8). For rare variants (MAF < 1%), however, genomic
coverage of combined approach was about two times of those of genotype panel with

GWAS chip only (r* threshold > 0.8).
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Table 2.2 Genomic coverage of genotype panels of GWAS chip only and combined

approach
r2>0.38 r2>04
MAF bin
GWAS chip Combined GWAS chip Combined
ALL 0.435 0.560 0.749 0.818
>5% 0.794 0.901 0.953 0.983
1-5% 0.403 0.588 0.799 0.881
05-1% 0.146 0.290 0.585 0.686
03-0.5% 0.079 0.172 0.491 0.591
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2.3.4 Sample size effect of reference panel and comparison analysis

Previously, numerous efforts have been reported to enhance imputation
performance of rare variants (Joshi et al. 2013; Kreiner-Moller et al. 2014; Li et al.
2011; Duan et al. 2013; Deelen et al. 2014). Basically, there were three types of
approaches. The first approach is to increase number of samples of the reference
panel up to thousands of samples (Li et al. 2011). The second type of approach uses
a study specific reference panel instead of public reference panel such as 1,000
genomes project reference panel (Duan et al. 2013; Deelen et al. 2012). Last strategy
uses local reference panel consisting a subset of samples with an array containing
many low frequency markers or local sequencing (Joshi et al. 2013; Kreiner-Moller
et al. 2014). Local reference panel was used as complementary to public reference
panel.

In this study, we studied sample size effect of reference panel on imputation
performance of GWAS chip only and combined data. Additionally, we compared
imputation performance of GWAS chip only, combined data, and previously reported
two-step imputation approach that utilizes local reference panel (Kreiner-Moller et
al. 2014). In this analysis, we used only chromosome 1 of the data. We used only
imputed variants across all results. Number of imputed variants used for sample size
effect analysis and comparison analysis were 10,624 and 10,912, respectively.

For studying sample size effect of reference panel, we performed imputation on
GWAS chip and combined data with a subset of samples of original reference panel.
Figure 2.6 shows mean estimated r* of GWAS chip only and combined data by MAF
bins. Regardless of sample size of reference panel, combined data showed better
imputation performance than GWAS chip only data. Combined data with 500
samples of reference panel showed enhanced imputation accuracy than GWAS chip

only data with 500-848 samples of reference panel.
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Next, we compared imputation performance of GWAS chip only, combined
data, and a two-step approach. In this study, we modified the strategy of a two-step
approach that a subset of samples of combined data was used as local reference panel.
Table 2.3 and Table 2.4 summarized imputation results and genomic coverage of rare
variants, respectively. In overall, combined data outperformed other approaches.
Considering genotyping cost of samples, however, two-step imputation approach can
be effective strategy since only additionally genotyped 1,000-2,000 samples can
increase approximately 5% of mean estimated r* and achieve similar genomic

coverage to those of combined data.
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Table 2.3 Mean estimated r* of two-step imputation approach

Sample size of local

03-0.5% 05-1% 1-5% >5%
reference panel
0
0.423 0.498 0.668 0.882
(GWAS chip only)
500 0.431 0.514 0.696 0.904
1,000 0.440 0.520 0.700 0.905
2,000 0.444 0.525 0.704 0.907
3,000 0.444 0.527 0.706 0.907
4,000 0.438 0.525 0.706 0.908
Combined 0.463 0.542 0.720 0.920
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Table 2.4 Genomic coverage of two-step imputation approach (1> > 0.8)

Sample size of local
03-0.5% 05-1%
reference panel
0

0.070 0.158

(GWAS chip only)
500 0.086 0.188
1,000 0.090 0.193
2,000 0.095 0.195
3,000 0.093 0.195
4,000 0.096 0.198
Combined 0.092 0.195
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2.4 Discussion

In this study, we described the analysis strategy of combined approach that
utilizes merged data of GWAS chip and exome array and following imputation
analysis. We showed effectiveness of combined approach by analyzing imputation
results using reference panel consisting of exome sequencing, exome array, and
GWAS chip and genotype panel consisting of exome array and GWAS chip. As a
result, the combined approach showed improved imputation accuracy and enhanced
genomic coverage, especially for rare variants (MAF < 1%). Combined approach
effectively increased imputation accuracy up to 11% and about two times of genomic
coverage for rare variants.

Recently, various studies have been reported to increase imputation accuracy
of rare variants (Joshi et al. 2013; Kreiner-Moller et al. 2014; Li et al. 2011; Duan et
al. 2013; Deelen et al. 2012). Previous studies have mainly focused on utilization of
reference panel by constructing the reference panel with sequenced samples (Duan
et al. 2013; Deelen et al. 2012) or by increasing samples size of reference panel (Li
etal. 2011) or by using complementary information retrieved from local sequencing
(Joshi et al. 2013) or local ultra-high-density genotyping arrays (Kreiner-Moller et
al. 2014). In a different aspect, our study suggests to use customized chips to increase
imputation accuracy of rare variants. If customized chips are available for samples
with previously genotyped using GWAS chips, the combined approach would be a
possible cost-effective strategy for studying rare variants with increased accuracy
and genomic coverage. Moreover, modified strategy adopting previously suggested
approaches such as two-step approach can be used to efficiently design imputation

based rare variant association study within a limited budget.
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Rare variant contents of exome array used in this study have mainly designed
based on data from sequenced samples with FEuropean ancestry

(http://genome.sph.umich.edu/wiki/Exome Chip Design). Since we studied

samples with East Asian ancestry, exome array may not be the best complementary
source of rare variants in this study. Well-designed customized chip based on
sequencing data of a specific population would possibly show more increase in
imputation accuracy and genomic coverage.

In the present study, we excluded non-imputable variants from the initial
reference panel. The main reason for exclusion was to prevent misleading imputation
results of extremely rare variants. As Li et al. reported, estimated r* of extremely rare
variants was not likely to reflect their true value. Instead of excluding non-imputable
variants from the initial reference panel, one would filter out those extremely rare
variants after imputation analysis. However, there are two possible concerns in using
reference panel with non-imputable variants. First, rare variants are computationally
difficult to phase due to its few frequency in a haplotype context (Browning and
Browning). In this study, we excluded extremely non-imputable rare variants with
MAF below 0.3%. Those non-imputable rare variants were about 370K and 74% of
exome sequencing data. Therefore, non-imputable variants would introduce possible
phasing errors to the reference panel. In addition to possible errors, a large number
of variants in the reference panel may require more computational time in imputation
analysis.

As a reference panel, we only used study specific sequenced 848 samples.
Imputation accuracy can be increased using large reference panels such as reference
haplotypes from 1,000 genomes project data. However, Duan et al. reported
previously that the reference panel consisting of study specific sequenced samples

showed better imputation performance than using reference panel of 1,000 genomes
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project (Duan et al. 2013). Only modest gain of imputation accuracy (1.5 —2.3%)
was observed when combined reference panel of study specific reference panel and
1,000 genomes project data. Since rare variants are tend to be population specific,
relatively small number of samples per a specific ancestry would be limitation of
1,000 genomes project data in imputing rare variants. Upcoming phase 3 of 1,000
genomes project data will provide approximately 2,500 multi-ethnic sequenced
samples and may provide more samples with a specific population ancestry.
Although Next Generation Sequencing (NGS) is not efficient approach for a
large scale genome study, NGS will become an essential tool in genomics as the cost
is decreasing rapidly. Meanwhile, imputation based research strategy would be
efficient approach to identify associations between diseases and variants including

less common and rare variants.
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Chapter 3. Pre-Collapsing Imputation approach

3.1 Introduction

Over the last decade, genome-wide association studies (GWASs) have been
successful in unveiling the genetics of human diseases (Bush and Moore 2012).
Certainly, GWAS have revealed unprecedented numbers of disease associated
genetic variants (Hindorff et al. 2009). As of March 2014, 12,599 single nucleotide
polymorphisms (SNPs) from 1,827 published GWASs are included in the National
Human Genome Research Institute GWAS catalogue, a curated resource of SNP-
trait associations (Hindorff et al. 2009; Welter et al. 2014). However, despite
previous efforts to discover the genetic sources of diseases, variants identified by
GWASs have been shown to explain only a small proportion of the phenotypic
variance observed (Manolio et al. 2009; Lander 2011). Since previous GWASs were
largely based on common variants, other possible sources of missing heritability
would be rare variants (minor allele frequency [MAF] < 1-5%), structural variants,
gene-gene interactions, and gene-environment interactions (Manolio et al. 2009).

With the recent advances in massively parallel sequencing, rare variants are
gaining increasing attention in GWASs (Zuk et al. 2014). Indeed, recent sequencing
based association studies discovered previously unknown less common (MAF = 1-
5%) and rare variants (MAF < 1%) associated with various phenotypes such as high-
density lipoprotein cholesterol, low-density lipoprotein cholesterol, schizophrenia,
Alzheimer's disease, and nephropathy (Morrison et al. 2013; Cooke Bailey et al.
2014; Cruchaga et al. 2014; Lange et al. 2014; Purcell et al. 2014). Two approaches
are commonly used in association studies utilizing rare variants (Lee et al. 2012; Zuk

et al. 2014). One approach is the individual variant test that is typically used in
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GWAS. Although it is the simplest to use, this strategy is underpowered because of
the low allelic frequencies and abundance of rare variants (Bansal et al. 2010; Zuk
et al. 2014). The second approach, which is more powerful, is the region-based
association tests, which collapses sets of rare variants and then tests for an
association between multiple variants and a phenotype (Bansal et al. 2010; Lee et al.
2012; Zuk et al. 2014).

Given the relatively high cost of the current high-throughput sequencing
technology as well as the amount of computing power required, it is not yet feasible
to use next-generation sequencing to analyze the number of samples required to
identify associations between rare variants and phenotypes (Auer et al. 2012; Magi
et al. 2012). Recently, imputation has been widely used as another approach to
comprehensively and cost effectively search for rare variants in large-scale cohorts
(Auer et al. 2012; Pasaniuc et al. 2012). Imputation estimates untyped markers that
are not directly genotyped in the SNP chip (Marchini and Howie 2010). Typically,
imputation analysis requires a reference panel with a dense set of markers. The
thousands of sequenced samples obtained from the 1,000 Genomes Project are
commonly used as an external reference (Howie et al. 2011; Huang et al. 2012; Sung
et al. 2012). Study-specific reference panels (Auer et al. 2012; Pasaniuc et al. 2012)
are also a powerful resource, especially for rare variants, since rare variants tend to
be population specific (Bodmer and Bonilla 2008). For example, by imputation-
based association analysis using the 1,000 Genomes Project, Magi et al. identified
previously unknown variants associated with coronary artery disease from 17,000
Wellcome Trust Case Control Consortium study samples that had already been
extensively analyzed (Magi et al. 2012). Another previous study also performed
imputation based association analysis on blood cell traits by using study-specific

reference panel containing whole exome sequenced samples (Auer et al. 2012). The
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other study reported that association analysis followed by imputation analysis using
extremely low-coverage sequencing data increased power for GWAS (Pasaniuc et
al. 2012).

Despite its cost effectiveness and efficiency, the use of imputation on rare
variants has a substantial disadvantage because of the inaccuracy of imputed
genotypes (Li et al. 2011; Auer et al. 2012). Auer et al. reported that only 7.3% of
imputed rare variants (MAF = 0.1%-0.5%) were available after stringent imputation
quality control (estimated r* threshold = 0.9) (Auer et al. 2012). The use of inaccurate
imputed rare variants could distort the results of region-based association tests,
which have become the standard method of analysis for rare variants. Moreover,
estimated 1%, one of the quality metrics for imputation, is not a good estimator for
extremely rare variants (MAF < 0.5%) (Li et al. 2011). Two solutions for enhancing
the accuracy of the imputation of rare variants have been proposed: (1) increasing
the reference sample size by thousands of samples (Li et al. 2011), or (2) using chips
designed to tag rare variants and population-specific variants (Li et al. 2011; Joshi et
al. 2013). However, these solutions cannot be immediately applied to existing
genotype data since additional experiments would be required. Therefore, a new
method for increasing the accuracy of the imputation of rare variants is necessary.

In this study, we propose a pre-collapsing imputation (PreCimp) method to
improve the imputation accuracy of rare variants in terms of collapsed variables
(Figure 3.1 and Figure 3.2). The proposed method uses variants from a phased
reference panel to make collapsed variables and then inserts these pre-collapsed
variables (PCVs) into the original reference panel to make a new reference panel.
Typical imputation with the new reference panel can impute PCVs into the genotypes
from study samples at only a computational cost. To evaluate our method, we built a

reference panel from 848 samples with data from exome sequencing, a GWAS chip,
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and an exome chip. PreCimp was then performed on 5,349 samples obtained from

the Korea Association REsource (KARE) project (Table 3.1) (Cho et al. 2009).
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Figure 3.2 Schematic representations of the post-collapsing and pre-collapsing
methods used in this study
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Table 3.1 Datasets used in this study

Category GWAS chip
Exome sequencing .
(# of samples) AFFY 5.0 Exome chip
# of variants 500,821 344,366 66,196
Reference panel
(848) 0 0 0
Genotype panel
(5,349) X 0 X
True data
(5,349) X X 0
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3.2 Materials and Methods

3.2.1 Subjects

Study subjects from the KARE project were recruited from two prospective
population-based cohorts as a part of the Korean Genome Epidemiologic Study
project. A total of 10,038 participants aging from 40 to 69 years old were registered
from both cohorts at the baseline study for two years starting from 2001. A detailed
description of KARE has been given in a previous paper (Cho et al. 2009). The study
using KARE samples was approved by two independent institutional review boards
at Seoul National University and the National Institute of Health, Korea. Liver
enzyme, aspartate aminotransferase (AST), was obtained in the morning before the
first meal of the day. Participants were removed from subsequent analysis if taking

any medication likely to influence on the liver enzyme trait (Kim et al. 2011)

3.2.2 Exome sequencing

Approximately 10,000 exomes (~18,000 genes) from five ethnic groups have
been sequenced by the The Type 2 Diabetes Genetic Exploration by Next-generation
Sequencing in Ethnic Samples Consortium at the Broad Sequencing Center using
Agilent Human Exon v2 capture. Some of the KARE samples, including 538
samples from type 2 diabetes cases and 579 samples from controls, were included in
this dataset. After quality control on DNA and sequenced samples, 1,087 samples
were retained for further analysis. Alignment and variant calling process were
performed based on the reference genome hgl19. The Genome Analysis Toolkit v2

was used to call the variants (McKenna et al. 2010). In this study, we used 500,821
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autosomal variants of 848 Korean samples to build population specific reference

panel.

3.2.3 GWAS and exome chip genotyping

KARE study subjects were genotyped with two genotyping platforms: the
Affymetrix Genome-Wide Human SNP Array 5.0 (Affymetrix Inc., San Diego, CA,
USA) and the Illumina HumanExome BeadChip v1.1 (Illumina, Inc., San Diego, CA,
USA) exome array. Genotyping using the Affymetrix SNP Array 5.0 and quality
control procedures have been described in detail previously (Cho et al. 2009). Briefly,
samples with a high missing rate (>4%), gender discrepancy, excessive
heterozygosity, or cryptic first degree relatives were removed. Then, those SNPs
with Hardy-Weinberg equilibrium p-values < 10, genotype call rates < 95%, and
MAF < 0.01 were also removed from the set. After the remaining SNPs were
annotated using the Affymetrix annotation file (see Web Resources) without
positional information were eliminated from further analysis. Finally, 8,842 samples
with 344,366 autosomal SNPs remained, which were used for the imputation
analysis. Of these previously genotyped samples, 6,197 samples were genotyped
using exome array. All these samples passed the following exclusion criteria: call
rate < 99%, excessive heterozygosity, and gender inconsistency. Then, variants with
call rate < 0.95, Hardy-Weinberg equilibrium p-values < 10, duplicated markers,
and monomorphic markers were removed, so that 66,196 of the initial 242,901
variants were taken forward for further analysis. Among 6,197 samples, 848 samples
used for constructing reference panel and remaining GWAS chip and exome chip of

5,349 samples were used as genotype panel and true dataset, respectively (Table 3.1).
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3.2.4 Building the population specific exome reference panel

We then constructed a population-specific exome reference panel by merging
data obtained from 848 identical samples via exome sequencing, exome array, and
GWAS chip. Initially, there were 344,366, 66,196, and 500,821 variants obtained
from Affymetrix 5.0, exome chip, and exome sequencing data, respectively. Prior to
merging these variants, we excluded variants in that overlapped among the three
platforms. The inclusion priority was in the following order: exome sequencing data,
exome chip data, and Affymetrix 5.0 data. The number of unique variants obtained
from the Affymetrix 5.0, exome chip, and exome sequencing data were 337,058,
18,811, and 500,821, respectively. The merged panel initially contained 856,690
variants. After extremely rare variants with MAF < 0.3% were excluded (Li et al.
2011), the merged panel contained 487,381 variants and phased using the ShapelT
v2 program to build the phased reference panel for imputation analysis (Delaneau et

al. 2012).

3.2.5 Pre-collapsing and post-collapsing based imputation

The collapsing method is an approach that collapses rare variants within a
region (Li and Leal 2008). For imputed rare variants, we defined post-collapsing
(PostC) and pre-collapsing imputation (PreCimp) methods as follows (see Figure 3.1
for pre-collapsing method of PreCimp, see Figure 3.2 for schematic representations
of the PostC and PreCimp methods). PostC method is an approach that is typically
used in region-based association studies. A collapsed variable X of imputed rare
variants for the /™ individual is defined as

i

Lif the number of rare alleles > 1
X =
0 otherwise
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The PreCimp method is an approach that collapses rare variants in a reference
panel and generates a new reference panel by inserting these PCVs into the original
reference panel. For this method, variants for each haplotype in the reference panel
are collapsed. A collapsed variable X for the /™ haplotype of the i individual in the

reference panel is defined as

X

Lif the number of rare alleles > 1
0 otherwise

In this study, pre-phasing-based imputation was performed for rare variants
imputation (Howie et al. 2012). Then the PostC method was applied to imputed rare
variants after imputing single rare variants. Prior to PostC, genotypes with maximum
posterior probabilities were assigned for imputed genotypes. The PreCimp method
consists of two steps. First, a new reference panel containing PCV's was constructed
using the PreCimp method. Since PCVs are artificially generated, these new markers
need to be assigned to specific chromosomal positions in order to be incorporated
into the reference panel. Here, if rare variants were only available in the reference
panel, we used the mean positional value of rare variants as the positional value for
the PCVs. If one or more rare variants were available in both the reference and
genotype panels, we used five different positions: a position one base ahead of the
position of the first rare variant (PreCimp-1), the position of the last rare variant
(PreCimp-L), the position of the variant with the highest LD r* (PreCimp-R2), the
mean position of variants used for PreC (PreCimp-M), and the weighted mean
position of variants used for PreC (PreCimp-WM). For pre-collapsed variable with

m rare variants (k = 1,2,...,m), weighted mean position was defined as

Weighted mean position = ZMAFkPositionk / ZMAFk
k k
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Next, typical pre-phasing based imputation with the new reference panel was
performed. Imputation analysis was performed using minimac software (Howie et

al. 2012).

3.2.6 Comparison of imputation performance

For gene-based collapsing, rare variants were selected for further analysis if
they were available in the true dataset, the exome chip data. Rare variants of true
data set were also collapsed using collapsing and collapsing based on haplotypes for
PostC and PreCimp, respectively. To measure imputation accuracy, we used dosage

1* that is squared Pearson correlation between imputed dosages and true genotypes.

3.2.7 Statistical analysis

Prior to association analysis, AST values were transformed with the reciprocal
to follow the normal distribution. Region-based association tests were performed by
linear regression adjusting age, gender, and recruitment area. Collapsed variables of
imputed rare variants using post-collapsing method and dosage values of imputed
pre-collapsed variables from pre-collapsing method were used as the independent
variable for post-collapsing method and pre-collapsing based imputation method,
respectively. To test the difference between dosage r* values between imputation
results, the Wilcoxon signed-rank test was performed. Statistical analyses were

performed using the R program.
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3.3 Results
3.3.1 PostC vs. PreCimp methods

We performed a comparison analysis of the imputation performances of the
PostC and PreCimp methods. Two sets of collapsed variants were used, MAF1
(collapsing variants with MAF = 0.3 - 1%) and MAF5 (collapsing variants with MAF
=0.3% - 5%). In total, 1,597 genes for MAF1 and 3,830 genes for MAFS5 sets were
available if a region was defined as a gene region with two or more rare variants.
The results from the two sets are compared in Figure 3.3. Figure 3.3A shows that
imputation performance was enhanced by the PreCimp method. The proposed
approach increased imputation accuracy about 3.4 ~ 6.3% (dosage r* 0.6 ~ 0.8), 10.9
~ 16.1% (dosage 1* 0.4 ~ 0.6), and 21.4 ~ 129.4% (dosage r* below 0.4) compared
with the results of post-collapsing method [Table 3.2]. A Wilcoxon signed-rank test
was performed to test the statistical significance of difference in imputation
performance and showed that the PreCimp method significantly outperformed the
PostC method (p-value < 2.2x107'%).

The difference in dosage r* using the PreCimp and PostC methods are shown in
Figure 3.3B (MAF5 set). Although the PreCimp method showed increased
imputation performance, some collapsed variables with poor performance were also
observed. Since the PreCimp method utilizes rare variants in the reference panel
based on haplotype information, two factors that could affect the performance would
be gene length and the number of rare variants used for PreCimp. Figure 3.4 shows
the scatter plot of the number of variants used for PreCimp and gene length in the
MAFS5 set. Red circles indicate poor performance when PreCimp was used, and the
size of circle reflects the magnitude of difference in dosage r* between PreCimp and

PostC. Genes < 200kb are shown in Figure 3.4A, and genes > 200kb are shown in
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Figure 3.4B.

Gene length was a major factor affecting the imputation performance of the
PreCimp method. For large genes (about >200kb, about 3% of genes in MAFS5 set),
the PreCimp method may not be good for improving the imputation accuracy of
collapsed variables. However, the performance of PreCimp can be improved by
splitting large genes into several small-sized regions. For example, ASTN2 in the
MAFS5 set is 803kb in size and has six variants. The values obtained by PostC and
PreCimp for dosage r* were 0.65 and 0.24, respectively. However, splitting ASTN2
into two sub-regions for PreCimp increased the value of the mean dosage r* for the
two regions to 0.68. The increment in dosage r* were 0.03 and 0.44, as compared to
the values obtained by PostC and PreCimp without splitting, respectively.

We next compared dosage 1* values of PreCimp and PostC method using
haplotype block information. Generally, imputation methods perform better in
genomic regions with strong LD than regions with weak LD (Pei et al. 2008; Hao et
al. 2009). To obtain haplotype block information, we used LD-based haplotype block
recognition software MIG++ implemented in LDexplorer (Taliun et al. 2014). In this
analysis, haplotype blocks were obtained using chromosome 1 of the reference panel.
There were 42,454 variants in chromosome 1 and 5,970 blocks were detected using
default option of MIG++. Median number of variants in haplotype blocks was four.
Minimum and Maximum number of variants in haplotype blocks were 2 and 76,
respectively. Regions used for collapsing were divided into two groups based on
following criteria: regions in haplotype block if all variants used for collapsing were
in a single haplotype block, and regions not in haplotype block otherwise. 107
regions were in haplotype blocks and 301 regions were located outside of haplotype
blocks. As previously reported (Pei et al. 2008; Hao et al. 2009), PostC and PreCimp

both performed better if regions were located in haplotype blocks than regions
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outside of the haplotype blocks (Figure 3.5). However, difference in dosage r’
(PreCimp — PostC) was greater for regions in haplotype blocks than regions outside
of haplotype blocks. Mean difference in dosage 1* for regions in haplotype blocks

and outside of blocks was 0.059 and 0.047, respectively.
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Figure 3.3A Comparison of imputation performance of post-collapsing, and pre-
collapsing methods
(A) Comparison of mean dosage 1 of methods by dosage r* bin of PostC method. B
shows histogram of difference in dosage 1* values for the pre- and post-collapsing
imputation methods. The red dotted vertical line indicates no difference in dosage r°.
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Figure 3.3B Comparison of imputation performance of post-collapsing, and pre-
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(A) Comparison of mean dosage 1 of methods by dosage r* bin of PostC method. B
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imputation methods. The red dotted vertical line indicates no difference in dosage r°.

55 ;ﬁ'! _CI:I I 1_-_1

| &1



Table 3.2 Enhanced imputation accuracy by the PreCimp method

Mean increased in dosage r?

Increased in dosage r?

(%)

(PreCimp — PostC) /

Dosage r? PostC
bin of | All genes
PostC (3,830 <(32(;(il;b > 200kb
genes) Génes) (113 Genes) <200kb All genes
(# of (# of genes)
(# of genes)
genes)
0.060 0.060 - o 0
0~0.1 (236) (236) 0) 129.4% 129.4%
0.087 0.088 -0.072 o o
0.1~0.2 (230) (228) ) 58.8% 57.9%
0.085 0.086 0.039 o o
02~03 (282) (275) 7 34.1% 36.2%
0.075 0.078 -0.055 o o
03~04 (357) (351) ©) 22.0% 21.4%
0.073 0.076 -0.036 o o
04~05 (435) (423) (12) 16.8% 16.1%
0.060 0.064 -0.028 0 o
0.5~0.6 (485) (464) 21 11.6% 10.9%
0.040 0.048 -0.149 o 0
0.6 ~0.7 (506) (487) (19) 7.4% 6.3%
0.025 0.035 -0.206 o 0
0.7~0.8 (469) (450) (19) 4.7% 3.4%
0.008 0.018 -0.196 o 0
0.8~09 (422) (401) 21 2.1% 0.8%
0.001 0.003 -0.147 o 0
09~1.0 (408) (402) ©) 0.3% 0.1%
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Figure 3.4A Difference in dosage 1* values by gene size and length

(A) Scatter plot of the number of variants used for pre-collapsing vs. gene length for
genes in the MAFS5 set with size < 200kb (B) Scatter plot of the number of variants
used for pre-collapsing vs. gene length for genes in the MAFS5 set with size > 200kb.
Circle size represents the magnitude of difference in dosage 1. Blue color indicates
that the pre-collapsing method performs better than the post-collapsing method. Red
color indicates that the pre-collapsing performs worse than the post-collapsing
method.
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Figure 3.4B Difference in dosage 1* values by gene size and length

(A) Scatter plot of the number of variants used for pre-collapsing vs. gene length for
genes in the MAFS5 set with size < 200kb (B) Scatter plot of the number of variants
used for pre-collapsing vs. gene length for genes in the MAF5 set with size > 200kb.
Circle size represents the magnitude of difference in dosage 1. Blue color indicates
that the pre-collapsing method performs better than the post-collapsing method. Red
color indicates that the pre-collapsing performs worse than the post-collapsing
method.
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Figure 3.5 Boxplot of dosage r* values of PreCimp and PostC. First two boxplot was
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3.3.2 PreCimp with additional information

The PreCimp method greatly enhances imputation accuracy if additional
information is used. Since rare variants used for PreCimp are more likely to correlate
with PCVs, PreCimp would perform better if one or more rare variants used for
PreCimp were available in both the reference and genotype panels. For example,
low-cost customized chips containing rare variants, such as exome chip and metabo
chip, can be powerful sources of rare variants with additional information (Figure
3.6). Therefore, we analyzed the effect of additional information on the imputation
performance of the PreCimp method by adding a variant used for PreCimp into the
genotype panel. To maximize the performance, a rare variant with the highest LD r?
with PCV was selected. Figure 3.7A shows the mean dosage 1 values obtained by
PreCimp without additional information, and PostC (PostC-ADD) and PreCimp
(PreCimp-ADD) when additional information was used for imputation (MAFS5 set).

The results show that the imputation performance of PreCimp and PostC was
greatly improved when an additional variant was added. Furthermore, PreCimp also
outperformed PostC. Overall, the mean difference in dosage r* values was 0.338
when PreCimp was used either with or without additional information. While dosage
> was greatly improved overall, large genes showed relatively small increases in
dosage r* (Figure 3.7B). For example, in the MAFS5 set, there are 2,976 genes with <
3 variant (77.7%) and 854 genes with > 3 variants (22.3%). The mean differences of
dosage r* were 0.233 and 0.368 for genes with < 3 variants and those genes with > 3
variants, respectively. For genes > 200kb with > 3 variants (60 genes, 1.6%), the

increment of dosage 1> was dropped to 0.142.
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Figure 3.7A Effect of additional information on imputation performance

(A) Comparison of mean dosage r* values obtained by the PreCimp without
additional information, PostC with additional information (PostC-ADD), and
PreCimp with additional information (PreCimp-ADD) are plotted by dosage r* bin
of PostC method with additional information. (B) The linkage disequilibrium r?
between pre-collapsed variables and added variants is shown on the x-axis, and the
difference between dosage r* values obtained using pre-collapsing with additional
information and those obtained using the pre-collapsing method without additional
information is shown on the y-axis. Circle size represents number of variants used

for collapsing.
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Figure 3.7B Effect of additional information on imputation performance

(A) Comparison of mean dosage r* values obtained by the PreCimp without
additional information, PostC with additional information (PostC-ADD), and
PreCimp with additional information (PreCimp-ADD) are plotted by dosage r* bin
of PostC method with additional information. (B) The linkage disequilibrium 1
between pre-collapsed variables and added variants is shown on the x-axis, and the
difference between dosage r* values obtained using pre-collapsing with additional
information and those obtained using the pre-collapsing method without additional
information is shown on the y-axis. Circle size represents number of variants used
for collapsing.
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3.3.3 Effect of PCYV position on imputation performance

PCV is an artificial value and has no specific genomic position. Thus, the
position of PCVs should be assigned arbitrarily. Since the imputation method
predicts untyped markers based on haplotype patterns consisting of sets of correlated
variants, the position of PCVs could affect imputation performance, especially if
additional variants are used for PreCimp. For the comparison analysis, we used five
different positions: a position one base ahead of the position of the first rare variant
(PreCimp-1), the position of the last rare variant (PreCimp-L), the position of the
variant with the highest LD r* (PreCimp-R2), the mean position of variants used for
PreC (PreCimp-M), and the weighted mean position of variants used for PreC
(PreCimp-WM). In this analysis, we only used chromosome 1. Figure 3.8 shows
mean dosage r* values obtained using the different PreCimp methods (MAFS5 set).

PreCimp-R2 showed an improved performance over other PreCimp methods.
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Figure 3.8 The effect of pre-collapsed variable position on imputation performance
Comparison of mean dosage r* values obtained by the pre-collapsed imputation
(PreCimp) method using various pre-collapsed variable positions including mean
position of rare variants (PreCimp-M), weighted mean position of rare variants
(PreCimp-WM), a position one base ahead of the position of the first rare variant
(PreCimp-1), the position of the last rare variant (PreCimp-L), and the position of
the variant with the highest LD r* (PreCimp-R2)
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3.3.4 Example of PreCimp and PostC in association study

We next compared association analysis results of PreCimp and PostC method
with those of true dataset. A liver enzyme trait, aspartate aminotransferase (AST),
was tested with multiple linear regression analysis on collapsed variables after
adjusting recruitment area, gender, and age. For comparison analysis, we used only
variants available in the true dataset. Figure 3.9 shows scatter plots using —log10(p-
value) of true data, PreCimp, and PostC method. In Figure 3.9B, PostC method
showed two false positives that were not significant in the results of true data (p-
value > 0.05). Two false results were summarized in Table 3.3. Collapsing of best
guessed genotypes from low imputation quality variants caused misleading results.
For example, dosage 1 values of two variants used for PostC was 0.157 and 0.173.
However, dosage r* of collapsed variable by PostC was 0.022 while dosage r2 of

imputed pre-collapsed variable by PreCimp was 0.148.
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Figure 3.9 Scatter plot of —log10(p-value) (A) True dataset vs. PreCimp
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Figure 3.9 Scatter plot of —log10(p-value) (B) True dataset vs. PostC.
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Table 3.3 False results by PostC method

Dosage r? P-value
Gene :
Smgle PostC PreCimp PostC PreCimp | True data
variant
0.157 4 2 -1
CNOT3 0.173 0.022 0.148 5.3x10 6.8x10 7.2x10
GASe6- 0.165 4 2 1
AS1 0271 0.062 0.160 6.0x10 2.7x10 8.3x10
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3.4 Discussion

In this study, we proposed a PreCimp method to improve the accuracy of
imputation of rare variants by using collapsed variables. Using exome sequencing
and chip data, we demonstrated that the proposed PreCimp method enhances the
imputation performance of collapsed variables. For example, the imputation
accuracy of genes with low dosage r* (< 0.6) was improved by approximately 10.9 —
129.4% (Table 3.2). Moreover, the performance was greatly enhanced if the variants
used for PreCimp were also used in the imputation analysis. If available, customized
chips such as exome chip and metabo chip can provide additional rare variants to the
genotype panel so that the imputation accuracy of collapsed variables would be
greatly increased. In addition, we investigated the effect of PCV position on
imputation performance. Our results show that, if additional variants are available,
imputation performance is increased by placing PCVs next to the added variants with
the highest LD.

The major advantages of the proposed approach are feasibility and flexibility in
implementation. The PreCimp method simply builds a new reference panel and then
performs standard imputation analysis with the new reference, which can impute
collapsed variables more accurately. Since PreCimp uses the information of phased
reference haplotypes, construction of new reference panel using PreCimp is
computationally feasible and doesn’t require a compute intensive process such as
haplotype estimation of reference panel. In addition, a coding scheme utilizing the
PreCimp method would make it possible to identify disease-associated rare variants
on the basis of haplotype. During PreCimp, rare variants are collapsed by each
haplotype, and PCVs can be coded as 0, 1,or 2 depending on the number of

haplotypes with rare variants.
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Despite these advantages, however, the proposed PreCimp method has three
main limitations. First, PreCimp showed poor performance with large genes
(>200kb, Table 3.1). Generally, the distance between two variants is negatively
correlated with LD, and there is weak correlation between rare variants due to their
low allelic frequency. Therefore, collapsing multiple rare variants within large-sized
region would result in a low correlation with common markers in the reference panel.
It might be that the performance of PreCimp can be improved by splitting large genes
into several small sub-regions. Since genes larger than 200kb are likely to show poor
performance, we recommend that split large-sized genes into chunks smaller than
200kb. Second, we used imputation via a pre-phasing method based on haplotype
information using a bi-allelic coding scheme. Thus, the imputed collapsed variable
can only be used as a variable indicating the presence or absence of rare variants. If
another imputation strategy is used, a coding scheme based on counting can be used
in the PreCimp method. Lastly, the imputed collapsed variables can only be used for
burden type association tests. Non-burden type tests such as the weighting method
and the sequence kernel association test (Wu et al. 2011) are difficult to use for the
imputed collapsed variables. Thus, the proposed method will have to be extended in
order to consider various aspects of rare variants in association analyses.

Larger reference panel such as 1,000 genomes project data would enhance
imputation accuracy, especially for rare variants. However, rare variants are likely
to be population specific (Bodmer and Bonilla 2008). Considering ancestry, 1,000
genomes would not be a good source of rare variants compared to study specific
sequencing data. For example, there are only 286 samples with East Asian ancestry
in 1,000 genomes project phase 1 dataset. 286 samples are much lower than 848
samples used in this study. Duan et al. reported that imputation performance using

study specific reference panel showed better imputation quality than using the
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reference panel of 1,000 genomes data (Duan et al. 2013). Also concatenation of
study specific reference panel and 1,000 genomes reference panel showed only
modest gains over study specific reference panel in imputation quality (1.5 ~2.3%).
Therefore, PreCimp would perform best if population specific reference panel is
available. However, PreCimp also can be applied to public reference panel such as
1,000 genomes project data. 1,000 genomes project data provides ancestry
information of samples. One can select samples with similar ancestry of study
population and apply PreCimp on subset of the reference panel. It is expected that
there will be more than 500 samples with a specific ancestry in reference panel of
1,000 genomes project phase 3.

In conclusion, next-generation sequencing technology is becoming an essential
research tool in genomics. Although next-generation sequencing is not yet applicable
to large-scale population based genome studies, the cost for sequencing is rapidly
decreasing. In the meantime, genotype imputation of rare variants is a cost-efficient
way to comprehensively search for rare variants. Thus, our PreCimp method is
valuable for increasing imputation performance of collapsed variables because it has

the ability to enhance the imputation performance of rare variants.
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Chapter 4. Imputation based association analysis on

liver enzyme traits

4.1 Introduction

Elevated level of y-glutamyl transferase (GGT), alanine aminotransferase
(ALT), and aspartate aminotransferase (AST), plasma liver enzymes, are well known
indicator of increased risk of liver diseases (van Beek et al. 2013). Liver enzymes
have been reported to be an index of liver injury (Pratt and Kaplan 2000) and a
marker of fatty liver (Schindhelm et al. 2006; Targher et al. 2009; Vernon et al. 2011)
and oxidative stress (Lee et al. 2008). Therefore, finding factors influencing liver
enzyme levels is very important to understand individual difference and also
underlying mechanism of liver related diseases.

Heritability of liver enzymes was 32-69%, 22-64%, and 21-61% for GGT, ALT,
and AST, respectively (Whitfield and Martin 1985; Bathum et al. 2001; Whitfield et
al. 2002; Pilia et al. 2006; Lin et al. 2009; Makkonen et al. 2009; Nilsson et al. 2009;
Rahmioglu et al. 2009; Loomba et al. 2010; Sung et al. 2010). As genetic factors
have substantial influence on the variation of liver enzymes, numerous GWASs have
been conducted to identify associated variants (Yuan et al. 2008; Chambers et al.
2011; Kim et al. 2011). However, reported loci failed to fully explain phenotypic

variance. Since previous GWASs mainly focused on common variations (MAF >
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5%), identification of less common (MAF 1-5%) and rare variants (MAF < 1%) is
warranted.

In this context, we performed exome-wide association analysis by whole-
exome imputation on 8,749 samples of combined data comprising of GWAS chip
and exome array. Whole-exome imputation and genotyped data using exome array
enabled us to examine functional variants among previously known regions and less

common or rare variants associated with liver enzyme levels.

4.2 Materials and Methods

4.2.1 Subjects

Korea Association REsource (KARE) project is initiated in 2007. Two
prospective cohorts as a part of Korean Genome Epidemiologic Study (KoGES)
were participated in this project. There were 10,038 participants aging from 40 to 69
years old. In these prospective cohorts, participants were examined clinical records,
anthropometric, and biochemical traits for every two year. A detailed description of
KARE has been reported previously(Cho et al. 2009).

The HEXA cohort is one of the KoGES population-based cohorts which were
initiated in 2001 aiming to identify risk factors of life-style related complex diseases
such as type 2 diabetes, hypertension, and dyslipidemia. Approximately 3,700 of
1,200,000 subjects aged 40-69 from the HEXA cohort were randomly selected as a
shared control group for the Korean cancer and coronary artery disease (CAD) GWA
studies. Genotyping was conducted with the Affymetrix Genome-Wide Human SNP

array 6.0 in 2008.
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4.2.2 GWAS and exome chip genotyping

Initially, KARE and HEXA samples were genotyped using three different
platforms. The Affymetrix Genome-Wide Human SNP Array 5.0 and SNP Array 6.0
(Affymetrix Inc., San Diego, CA, USA) was used for genotyping samples of KARE
and HEXA, respectively. And the Illumina HumanExome BeadChip v1.1 (Illumina,
Inc., San Diego, CA, USA) exome array was used for genotyping a subset of KARE
and HEXA samples that were previously genotyped using GWAS chips. A quality
control procedure of GWAS chips of both cohorts are described in detail previously
(Cho et al. 2009; Kim et al. 2011). Briefly, samples with a high missing rate (>4%),
gender discrepancy, excessive heterozygosity, or cryptic first degree relatives were
removed. Then, those SNPs with Hardy-Weinberg equilibrium p-values < 107,
genotype call rates < 95%, and MAF < 0.01 were also removed from the set. After
the remaining SNPs were annotated using the Affymetrix annotation file (see Web
Resources) without positional information were eliminated from further analysis.
Finally, 8,842 samples with about 344K autosomal SNPs and 3,703 samples with
650K autosomal SNPs were remained for KARE and HEXA, respectively. Amog
these previously genotyped samples, 6,197 KARE and 3,400 HEXA samples were
genotyped using exome array. All these samples passed the following exclusion
criteria: call rate < 99%, excessive heterozygosity, and gender inconsistency. Then,
variants with call rate < 0.95, Hardy-Weinberg equilibrium p-values < 107,
duplicated markers, and monomorphic markers were removed, so that 66,196 of the
initial 242,901 variants were taken forward for further analysis. Among 6,197 KARE
samples, 848 samples used for constructing reference panel and remaining GWAS

chip and exome chip of KARE and HEXA samples were used as genotype panel
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4.2.3 Building the population specific exome reference panel

Type 2 Diabetes Genetic Exploration by Next-generation Sequencing in Ethnic
Samples (T2D-GENES) consortium was initiated to identify functional variants
associated with type 2 diabetes and its related risk factors. From five ethnic groups,
about 10,000 exomes were sequenced at the Broad Sequencing Center using Agilent
Human Exon v2 capture (capturing ~18,000 genes). Among ten thousands of
samples, 538 type 2 diabetes and 579 control samples from KARE project were
included. 1,087 samples were remained for further analysis after quality control on
DNA and sequenced samples. For reference genome, hgl19 was used for alignment
and variant calling process. During the variant calling process, the Genome Analysis
Toolkit v2 was used (McKenna et al. 2010). For 1,087 samples, we used 500,821
autosomal variants of 848 Korean samples to construct whole-exome reference panel.

We then constructed a population-specific whole-exome reference panel by
merging data of exome sequencing, exome array, and GWAS chip of 848 identical
KARE samples. The detailed description is reported in a separate paper (Kim et al.
submitted). After merging process, initial reference panel contained 856,690 variants.
After excluding non-imputable variants (extremely rare variants with MAF < 0.3%)
(Kim et al. submitted), final whole-exome reference panel included 487,381 variants
and phased using the ShapelT v2 program to build the phased reference panel for

imputation analysis (Delaneau et al. 2012).

4.2 4 Statistical analysis

For imputation analysis, we used typical pre-phasing based imputation analysis
on combined genotype panels consisting of GWAS chip and exome chip (Howie et

al. 2012). We used minimac software, a low memory and computationally efficient
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implementation of the MaCH algorithm (Li et al. 2010). The association of imputed
and genotypes SNPs with liver enzymes was tested by linear regression adjusting
age, gender, and recruitment area (in case of KARE) using EPACTS

(http://genome.sph.umich.eduw/wiki/EPACTS). Prior to analysis, all imputed

genotypes were assigned as best-guessed genotypes based on posterior probabilities.
The meta-analysis was performed using a weighted average method assuming fixed
effects with inverse variance using metal software (Willer et al. 2010). Statistical

analyses and visualization of the results were performed using the R program.

4.3 Results

We performed whole-exome imputation on combined data consisting of GWAS
chip and exome array from KARE and HEXA samples. Since we constructed whole-
exome reference panel using Affymetrix SNP 5.0, only a subset of GWAS data of
HEXA cohort (Affymetrix SNP 6.0) matched with reference panel was used for
imputation analysis. As a result, a total of 8,529 samples were imputed and 487,381
imputed variants were generated. For association analysis, KARE and HEXA
samples were analyzed separately. After association analysis, meta-analysis was
conducted merging KARE and HEXA association results.

Figure 4.1 is manhattan plot of AST association results of KARE samples.
Quantile-quantile plot of AST association results of KARE is shown in Figure 4.2.
As displayed in Figure 4.1 and 4.2, spurious signals with very strong statistical

significance were observed from imputed variants with low imputation quality score
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(rsq < 0.4). Therefore, we excluded imputed variants with low imputation quality

score (rsq < 0.4) and 461,295 variants were remained.

78

_H *~._ 1_'_]'| gl

1



All variants 487,381 O low imputation quality

10
A. ] O
1

B 6 o
© i H
L i

3

2 H

|

0

| 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 1819202122 X
Chromosomal Coordinates

Variants r2 = 0.4: 461,295
B 8

7

6

«

-log;o(P)

w

&
KX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819202122 X
Chromosomal Coordinates

Figure 4.1 manhattan plot of AST association results of KARE samples. (A) initial

association results (B) association results after excluding low quality imputed
variants
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After quality control on imputed variants, there was no false positives by low quality
imputed variants (Figure 4.3 and Figure 4.4). We performed meta-analysis with
quality controlled association results of KARE and HEXA samples. As a result, we
discovered 20 loci with p-value < 5x10. Although most of loci were previously
reported, we discovered 7 novel loci among them after excluding 2 possible false
positives with statistically significant p-value (P < 0.05) from heterogeneity test.
However, no novel loci reached at the genome-wide significance level (P = 5x107%).
Top signals from ALT, AST, and GGT are shown in Table 4.1, 4.2, and 4.3,

respectively.
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Table 4.1 Top signals from ALT association results

. P-value P-value P-value P-value
CHR Function MAF KARE CITY META Het Known

Intron: 3.02E-

2 LHCGR|STO | 0.224 2.43E-03 2.69E-04 3.66E-06 '01 X

NI1-GTF2A1L

. 6.64E-

8 Intergenic 0.285 4.82E-04 1.54E-03 2.64E-06 01 (6]
Missense: 1.61E-

10 AI1CF 0.001 1.37E-08 2.51E-01 1.31E-07 '02 X

[Lys -> Gln]

Intron 3.96E-

12 ALDH? 0.159 1.35E-05 3.27E-02 1.79E-06 01 (6]
Synonymous: 7.05E-

22 PNPLA3 0.419 7.29E-06 7.85E-05 2.37E-09 01 (0]
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Table 4.2 Top signals from AST association results

. P-value P-value P-value P-value
CHR Function MAF KARE CITY META Het Known
1 Intron&OBSC 0.001 | 542E-06 | 4.23E-02 | 1.53E-06 1'%61]3' X
Missense:RET 1.82E-
10 Arg > His 0.009 6.87E-06 6.14E-02 2.74E-06 01 X
Missense: 1.39E-
10 AI1CF 0.001 1.40E-07 4.11E-01 2.19E-06 ’ X
02
Lys->Gln
10 Intergenic 0'2226 2.74E-04 3.25E-03 2.84E-06 9%11]5_ X
Missense: 9 20E-
10 GOT1 0.014 3.59E-07 8.98E-05 1.28E-10 '01 (0]
GIn->Glu
Missense: 5 60F
12 ALDH2 0.159 2.69E-08 6.73E-04 7.99E-11 ol (0]
01
Glu->Lys
Intron: 1.19E-
13 COLAA1 0.002 5.77E-02 1.22E-06 2.98E-06 0 X
Synonymous: 4.43E-
22 PNPLA2 0.419 2.39E-03 7.97E-07 5.19E-08 02 (0]
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Table 4.3 Top signals from GGT association results

. P-value P-value P-value P-value
CHR Function MAF KARE CITY META Het Known
7 Im“’“:EALXIP 0.10 | 4.02E-06 | 1.34E-01 | 2.89E-06 1'%71]3' 0
Intron:AC135 3 71E
8 352.1[KIAA1 | 021 | 1.23E-04 | 8.64E-03 | 3.26E-06 ol X
456

missense:AL 6.04E-

12 DH2 0.16 | 3.40E-29 | 1.95E-04 | 6.12E-31 03 0

Glu -> Lys

12 I““"“AHNFI 048 | 7.30E-09 | 1.22E-02 | 4.83E-10 2’%9115' 0
. 7.58E-

13 Intergenic 046 | 2.62E-06 | 9.60E-01 | 1.07E-03 3 X
4.03E-

22 Intron:GGTI | 025 | 129E-07 | 1.55E-05 | 1.16E-11 o1 0
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Intronic and missense variants were newly associated with ALT trait. Nearby
genomic region of variants at intron of LHCGR-STONI-GTF2AIL have been
previously associated with obesity, endometrial cancer, and bipolar disorder.
Missense variant at A/CF changes amino acid Lys to Gln. AICF (APOBECI
complementation factor) is a protein-coding gene. AICF was previously associated
with anisometropia, and hydrocele. A/ CF was previously reported to modulate liver
regeneration via post-transcriptional regulation (Blanc et al. 2010). Regional

association plot of missense variant at AICF gene is shown in Figure 4.5.
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For AST trait, 4 newly associations were discovered. 4 loci were located at
intron of OBSCN, exon of RET, intergenic region, and intron of COL4AI. OBSCN
(obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF) is a protein-coding
gene. Diseases associated with OBSCN include leiomyosarcoma, and
gastrointestinal stromal tumor. RET (ret proto-oncogene) is a protein-coding gene.
RET has been reported to be associated with diseases such as thyroid cancer,
childhood, and sipple syndrome. Also p.G533C mutation of RET was reported to
confer predisposition to multiple endocrine neoplasia Type 2A (Oliveira et al. 2011).
Regional association plot of variants at OBSCN and RET is displayed in Figure 4.6

and 4.7, respectively.
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Figure 4.6 regional association plot of missense variant at OBSCN gene
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4.4 Discussion

In this study, we performed whole-exome imputation on 8,529 samples and
subsequent imputation based association study. Meta-analysis of two cohort samples
revealed 7 novel associations including two missense functional variants.
Interestingly, one missense variant was discovered at A/CF. The gene was
previously reported to modulate liver regeneration via post-transcriptional regulation
(Blanc et al. 2010). Our study would shed light on understanding underlying genetics
of liver enzyme related functional variants and its effect on phenotypes.

Although the newly discovered variants in the present study are valuable, those
novel variants didn’t take forward to replication study in an independent cohort. We
reduced the possible chance of discovering false positives by performing meta-
analysis on two cohorts and discarding spurious signals with statistically significant
from heterogeneity test. However, it would be necessary to perform replication study
to further confirm the associations in an independent cohort.

One limitation of our study is the construction of whole-exome reference panel
and following imputation. Since extremely rare variants (MAF < 0.3%) were
excluded from the original reference panel, we only performed association analysis
with limited number of rare variants. Our study will be more powerful by increasing
the number of samples in the reference panel or using additional information such as
phase 3 reference panel from 1,000 genomes project.

In summary, our study reported 7 novel associations responsible for liver
enzymes. Although those associations were not confirmed through replication study,
by finding two functional variants, it would be valuable to understand the genetics

of liver enzymes.

92



Chapter 5. Summary and Conclusion

Rare variants have gathered increasing attention as a possible alternative source
of missing heritability. Since next generation sequencing technology is not yet
efficient in a large scale genomic study, two approaches, imputation and customized
chips such as exome array and Metabochip, have been widely used in large scale
genome studies. Two approaches have successfully identified numerous less
common or rare variants associated with various phenotypes. However, this
imputation approach has a limitation due to low accuracy of imputed rare variants,
and customized chips are designed only for the specific targets. Various previous
studies have reported analysis strategies for improving imputation accuracy of rare
variants. Since, previous studies have mainly focused on utilization of reference
panel, different aspects of imputation strategy and methodological approach are
warranted to more efficiently improve imputation accuracy of rare variants.

For a new strategy, we proposed the combined approach that adopts
advantages of imputation and customized chip was described. In this approach, we
constructed exome reference panel using 848 identical samples with whole exome
sequencing data, GWAS chip, and exome array data. Using this population specific
whole-exome reference panel, we performed imputation analysis on 5,349 samples
of combined data including GWAS chip and exome array. We compared imputation
results of exome array, GWAS chip only, and combined data. As a result, the
combined approach increase about 11% in imputation accuracy and enhanced about
two times of genomic coverage for rare variants (MAF < 1%) compared to
imputation results of genotype panel with GWAS chip alone. Regardless of samples

size of reference panel, combined approach showed better imputation performance.

93



Also combined approach outperformed previously reported two-step imputation
approach.

Besides the analysis strategy for enhancing imputation accuracy of rare
variants, we develop a method to improve imputation performance, which is Pre-
collapsing based imputation approach (PreCimp) is described in chapter 3. PreCimp
method consists of two steps. In the first step, collapsed variables are generated using
rare variants in the reference panel and new reference panel is constructed by
inserting pre-collapsed variables (PCVs) into the reference panel. Next, typical
imputation analysis with the new reference provides the imputed genotypes of
collapsed variables. We demonstrated the performance of PreCimp on 5,349
genotyped samples using a Korean population specific reference panel including 848
samples of exome sequencing, Affymetrix 5.0, and exome chip. PreCimp
outperformed a traditional post-collapsing method that collapses imputed variants
after single rare variant imputation analysis. Although PreCimp poorly performed
for genes larger than 200kb (about 3% of all genes), its performance would be
improved by splitting large-sized genes into small sub-regions. PreCimp approach
was shown to increase imputation accuracy about 3.4 ~ 6.3% (dosage r* 0.6 ~ 0.8),
10.9 ~ 16.1% (dosage r* 0.4 ~ 0.6), and 21.4 ~ 129.4% (dosage r* below 0.4)
compared with the results of post-collapsing method.

With the proposed methods, we performed imputation based association
analysis on liver enzymes. 8,529 samples were imputed using whole-exome
reference panel. Following association analysis and meta-analysis on two cohort
including KARE and HEXA samples revealed 20 loci at the p-value 5x10°. Among
them, most loci were previously reported and 7 novel loci were discovered in this
study. However, none of 7 new associations didn’t reach the genome-wide

significance level (5x10®). Novel loci included two missense variants and one of
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them located at A/CF that is known to be a modulator of liver regeneration. Despite
the valuable of the findings, further replication study is warranted to confirm the
genetic effect of discovered variants in an independent cohort.

In summary, we propose a combined approach for analysis strategy and
develop PreCimp method to improve imputation accuracy of rare. Combined
approach enhanced imputation accuracy about 11% and two times of genomic
coverage for rare variants compared to previously used genotype panel consists of
GWAS chip only. Pre-collapsing based imputation approach enhanced imputation
accuracy of rare variants in forms of collapsed variables. PreCimp increased
imputation accuracy about 10.9 ~ 129.4% for imputed variants with imputation
quality score below 0.6. In the following imputation based association analysis, we
performed imputation analysis using whole-exome sequencing data on genotyped
samples comprising 8,529 samples. Subsequent association analysis discovered 7
novel loci including two missense variants. Our investigation of analysis strategy
and methodological approach for enhancing imputation accuracy of rare variants,
and following imputation based association study would be efficient analysis
approaches and valuable resource for understanding rare variants and its association

to various phenotypes.
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