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Abstract 
 

Analysis strategy and method to 
improve accuracy of imputation on 

rare variants 
 

Young Jin Kim 

Interdisciplinary Program in Bioinformatics 

College of Natural Science 

Seoul National University 
 

Rare variants have gathered much attention as an alternative source of 

missing heritability. Rapid development in high throughput sequencing 

technology has enabled us to discover a large number of rare variants. Although 

next-generation sequencing technology is becoming a powerful tool in 

genomics, it is not yet feasible to perform a large-scale population based 

genome study due to its high cost and required high computing power. 

Alternatively, two approaches, imputation and customized chips such as exome 

array and Metabochip, have been widely used in large scale genome studies. 

Imputation is a cost-effective approach that imputes rare variants into existing 

genotype data. Generally imputation analysis requires two panels as input: 

reference panel is the template for predicting untyped markers and genotype 

panel is the target for imputation analysis. After imputation analysis, the 

information of genotype panel contains previously experimentally genotyped 

information and predicted genotypes based on reference panel information.  
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However, imputing rare variants is very challenging due to low accuracy of 

imputed rare variants. Moreover, low accuracy of imputed rare variants would 

mislead the results of region-based association tests. Customized chips are 

designed to contain rare variants yet those chips are designed only for the 

specific targets. Therefore, new analysis strategy and method for obtaining rare 

variants are urgently in need.  

In this study, we developed two novel rare variant imputation 

approaches, combined approach and pre-collapsing imputation approach. We 

also applied two approaches to real data analysis. Imputation based association 

study was performed on liver enzyme traits. 

First, we proposed combined approach that imputes genotype panel 

consists of combined data of GWAS chip and exome array. The effectiveness 

and performance of combined approach were demonstrated using reference 

panel comprising exome sequencing, exome array, and GWAS chip of 848 

identical samples and 5,349 samples of genotype panel consisting of exome 

array and GWAS chip. As a result, the combined approach increased about 11% 

in imputation accuracy and enhanced about two times of genomic coverage for 

rare variants (MAF < 1%) compared to imputation results of genotype panel 

with GWAS chip alone. Regardless of samples size of reference panel, 

combined approach showed better imputation performance. Also combined 

approach outperformed previously reported two-step imputation approach. 

Second, we developed new method, pre-collapsing based imputation 

approach (PreCimp), to increase imputation accuracy in forms of collapsed 

variables. Unlike with previously introduced imputation approaches, PreCimp 

only requires computational cost. PreCimp consists of two steps. In the first step, 

collapsed variables are generated using rare variants in the reference panel and 



 

iii 

 

new reference panel is constructed by inserting pre-collapsed variables (PCVs) 

into the reference panel. Next, typical imputation analysis with the new 

reference provides the imputed genotypes of collapsed variables. We 

demonstrated the performance of PreCimp on 5,349 genotyped samples using a 

Korean population specific reference panel including 848 samples of exome 

sequencing, Affymetrix 5.0, and exome chip. PreCimp outperformed a 

traditional post-collapsing method that collapses imputed variants after single 

rare variant imputation analysis. Although PreCimp poorly performed for genes 

sized larger than 200kb (about 3% of all genes), PreCimp approach by split 

large-sized genes into small sub-regions could control the poor performance 

issues. PreCimp approach was shown to increase imputation accuracy about 3.4 

~ 6.3% (dosage r2 0.6 ~ 0.8), 10.9 ~ 16.1% (dosage r2 0.4 ~ 0.6), and 21.4 ~ 

129.4% (dosage r2 below 0.4) compared with the results of post-collapsing 

method. 

Two imputation approaches were applied to real data analysis. We 

performed imputation based association analysis on liver enzymes. Using 

whole-exome reference panel, imputation analysis was performed on 8,529 

samples of combined data consisting of GWAS chip and exome chip. 

Subsequent association analysis on about half million imputed and genotyped 

variants revealed 20 associated loci responsible for the variation of liver 

enzymes (P < 5x10-6). Among them, 7 novel loci including two missense 

variants were discovered. 

Taken together, two novel rare variant imputation approach were 

developed and applied to real data analysis. Imputation based association 

analysis on liver enzyme discovered several novel findings. This study proposed 

efficient analysis approaches for enhancing imputation accuracy of rare variants. 
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Additionally, in application to real data analysis, discovered variants will be 

valuable resource for understanding rare variants and its association to various 

phenotypes. 

Keywords: SNP, imputation, rare variant, genome-wide association study, 

association 

Student Number: 2009-30105 
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Chapter 1. Introduction 
 

1.1 Background and Motivation 

1.1.1 Genome-wide association study 

The ultimate goal of human genetics is to discover associated variants for 

common complex diseases (Hirschhorn and Daly 2005; Bush and Moore 2012). At 

the end of human genome project, various genetic variants were discovered 

including single nucleotide polymorphism (SNP). Most of SNPs are biallelic and 

most abundant type of variant in the human genome. In dbSNP b141 (21/05/2014), 

there are 62,387,983 reference SNP ids (rsID) available. One property of SNP is 

linkage disequilibrium (LD) that is non-random association of alleles at different loci 

(Bush and Moore 2012). Using LD structure, SNPs can be used as an indirect marker 

that is in high LD with causal SNP or as direct association marker that has functional 

effect on diseases (Bush and Moore 2012). These characteristics of SNPs enabled us 

to conduct association mapping for diseases and traits (Figure 1.1). There are two 

commonly used approaches for association mapping. The first approach is candidate 

gene study. This approach is hypothesis based study that genes are selected for 

association mapping based on other evidence of affecting disease risk (Hirschhorn 

and Daly 2005). Genome-Wide Association Study (GWAS) is the second approach. 

GWAS is hypothesis free approach that there is no assumption about genomic 

location or genes affecting disease risk (Hirschhorn and Daly 2005). GWAS scans 

disease associations across whole genome (Hirschhorn and Daly 2005). 

In 2005, GWAS successfully identified various genetic loci associated with 

age-related macular degeneration (Edwards et al. 2005; Haines et al. 2005; Klein et 

al. 2005). During the last decade, GWAS has become efficient tool for human 
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genomics for identifying genetic variants responsible for diseases and traits. As of 

November 2014, there are 2,051 publications and 14836 SNPs (GWAS catalogue: 

http://www.genome.gov/gwastudies/) (Hindorff et al. 2009). These increasing 

amount of information would lead us to an understanding of genetics underlying 

diseases. 
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1.1.2 Genotype imputation 

Genotype imputation predicts untyped markers of genotyping chip using 

reference haplotypes with dense set of markers such as International HapMap project 

or 1,000 genomes project (Marchini and Howie 2010) (Figure 1.2). Imputation 

analysis has been widely used in GWAS to perform in silico fine mapping and 

genome-wide meta-analysis (Marchini and Howie 2010).  

In GWAS, common SNP genotyping platform is SNP microarray. The chip, 

SNP microarray, contains more than hundreds of thousands of SNPs in a single chip. 

One of most widely used commercial chip contains approximately 1 million SNPs. 

SNP microarray contains only limited number of SNP markers that locate across 

human genome. Therefore, researchers would select associated regions of interests 

and perform fine mapping on the regions by resequencing or high density genotyping 

of SNPs in the region. These post-GWAS process requires high cost, time, and 

additional DNA samples of participants. By genotype imputation, researchers can 

perform in silico fine mapping with computational cost only. Example of in silico 

fine mapping is shown in Figure 1.3. High density imputed genotypes enhance 

association mapping power for the discovery of associated variants(Marchini and 

Howie 2010). 

For further identification of disease associations and increasing statistical 

power, genome-wide meta-analysis has been widely used (Thompson et al. 2011). 

However, large discrepancy in contents of commercial arrays used for GWAS is the 

major problem in genome-wide meta-analysis. For example, 1M chips of Affymetrix 

and Illumina only shares about 30% of their contents (http://www.affymetrix.com, 

http://www.illumina.com). The main reason of the difference is from the difference 

in design of chips. Affymetrix SNP genotyping 6.0 (1M chip) contains markers that 

evenly spaced across genomes and tagging SNPs. Illumina 1M chip contains most 

http://www.affymetrix.com/
http://www.illumina.com/
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of markers as tagging SNPs. This problem also can be solved via genotype 

imputation. Since imputation estimates every SNPs of the reference panel, all study 

genotypes after imputation have the same contents for meta-analysis. Example of 

imputation application in genome-wide meta-analysis is shown in Figure 1.4. 
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Figure 1.2 Schematic flow of imputation analysis (Li et al., Annu. Rev. Genomics 

Hum. Genet. 2009)  
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Figure 1.3 Example of in silico fine mapping 

  



 

 

 

8 

  

Fi
gu

re
 1

.4
 E

xa
m

pl
e 

of
 im

pu
ta

tio
n 

ap
pl

ic
at

io
n 

in
 g

en
om

e-
w

id
e 

m
et

a-
an

al
ys

is
 



 

 

 

9 

1.1.3 Missing heritability 

Despite the success of GWAS, discovered variants from GWAS have only 

explained small proportion of phenotypic variance (Manolio et al. 2009). For 

example, previous height GWAS on 180,000 samples discovered 180 loci and those 

loci only explain about 12% of heritability (Lango Allen et al. 2010; Lander 2011). 

Since estimated heritability from siblings was about 80% (Visscher et al. 2006), 

several questions on “missing heritability” after GWASs on tens of thousands of 

samples only explain small phenotypic variance. One of questions is the source of 

missing heritability. GWAS has primarily focused on common variants (minor allele 

frequency; MAF > 5%). Therefore, alternative source of missing heritability would 

be as follows (Manolio et al. 2009; Zuk et al. 2014): 1) much large number of 

common variants with small effect, 2) rare variants (MAF < 1%), 3) structural 

variants, 4) Gene-Gene interaction, and 5) inadequate accounting for shared 

environment among relatives. 

 

1.1.4 Rare variant imputation 

By the advent of Next Generation Sequencing (NGS) technology, rare variants 

have increasing attention among alternative source of missing heritability (Bansal et 

al. 2010; Zuk et al. 2014). However, NGS requires high cost and compute intensive 

process. Therefore, NGS is not yet applicable to a large scale population based 

genomic study such as GWAS. 

Alternatively, imputation analysis has been used for studying less common or 

rare variants (Auer et al. 2012). Imputation analysis is efficient way to obtain rare 

variants since it only requires computational cost. However, imputation has major 

limitation in imputing rare variants. Li et al. reported that extremely rare variants are 
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unlikely to impute even with thousands of reference samples (Li et al. 2011). 

To enhance imputation accuracy of rare variants, previous studies have reported 

various approaches (Joshi et al. 2013; Kreiner-Moller et al. 2014; Li et al. 2011; Duan 

et al. 2013; Deelen et al. 2014). Previous strategies can be categorized into four types: 

1) construct the reference panel with sequenced samples (Duan et al. 2013; Deelen 

et al. 2014), 2) increase samples size of reference panel (Li et al. 2011), 3) use 

complementary information retrieved from local sequencing (Joshi et al. 2013), and 

4) local ultra-high-density genotyping arrays (Kreiner-Moller et al. 2014). However, 

previous studies have mainly focused on utilization of reference panel. Therefore, 

different aspects of imputation strategy and methodological approach are warranted 

to more efficiently improve imputation accuracy of rare variants. 

 

1.2 Objective of the research 

Previous studies on improving imputation accuracy of rare variants suggested 

strategies based on construction or complementing information of reference panels 

(Joshi et al. ; Kreiner-Moller et al. ; Li et al. ; Duan et al. 2013; Deelen et al.). Since 

sequencing thousands of samples for constructing reference panel is not feasible and 

genotyping or sequencing a subset of samples require additional round of 

experiments, different aspect of rare imputation strategy and methodological 

approach is urgently in need. In this context, the primary purpose of this study is to 

develop rare variant imputation methods. First, combined approach was proposed. 

Combined approach uses combined data comprising GWAS chip and exome array 

for constructing genotype panel and following imputation analysis enhanced 

imputation accuracy and genomic coverage of rare variants. Second, a novel rare 

variant imputation method, pre-collapsing imputation approach, was proposed. Pre-
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collapsing imputation approach was developed to increase imputation accuracy of 

rare variants in terms of collapsed variables. In addition, we applied two approaches 

to real data analysis. Imputation based association analysis was performed on liver 

enzyme traits. 

The dissertation is organized as follows: Chapter 1 introduces the background 

of this study. Chapter 2 contains the study of analysis strategy of combined approach 

to enhance imputation accuracy of rare variants. In Chapter 3, pre-collapsing 

imputation approach was developed to increase imputation accuracy of rare variants 

in terms of collapsed variables. In following Chapter 4, developed approaches of 

previous chapters were used in imputation based association analysis on liver 

enzyme traits. Finally, Chapter 5 summarizes the paper and conclusion. 
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Chapter 2. Imputation approach using combined data 
 

2.1 Introduction 

Genome-wide association studies (GWAS) have revealed unprecedented 

amount of disease associated loci (Zuk et al. 2014; Hindorff et al. 2009). However, 

previously reported loci only explained small proportion of heritability (Zuk et al. 

2014; Gorlov et al. 2008; Bansal et al. 2010). Since previous GWAS mainly focused 

on common variants (minor allele frequency (MAF) > 5%), rare variants have 

gathered an increasing attention as an alternative source of missing heritability (Zuk 

et al. 2014; Gorlov et al. 2008; Bansal et al. 2010). By the advent of recent 

advancement in high-throughput sequencing technology, genome-wide assessment 

of rare variants has become possible (Zuk et al. 2014). For a large scale population 

based genome studies, however, sequencing technology is not yet feasible because 

of high cost and its computing intensive analysis process (Magi et al. 2012; Auer et 

al. 2012). Alternatively, two cost effective approaches have been widely used for 

studying rare variants. One approach is the genotype imputation analysis that 

estimates untyped rare markers using thousands of sequenced samples as a reference 

panel such as 1,000 genomes project data (Howie et al. 2012; Marchini and Howie 

2010). The second approach is using genotyping chips such as Metabochip and 

exome array that are customized to contain rare variants (Huyghe et al. 2013 ; Lango 

Allen et al. 2010). These chips can genotype at less cost than commercial genome-

wide single nucleotide polymorphism (SNP) arrays, and contain about quarter 

millions of variants optimized for specific targets. For example, Metabochip includes 

SNPs for replication and fine mapping aiming to study metabolic, cardiovascular, 

and anthropometric traits (Lango Allen et al. 2010). Exome array contains mainly 
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functional coding variants selected from ~ 12,000 sequenced samples (Huyghe et al. 

2013).  

Indeed, the two approaches have been cost effective methods to access rare 

variants. Recent imputation based association studies have discovered numerous less 

common or rare variants associated with coronary artery disease, blood cell traits, 

serum creatinine, chronic kidney disease, and adult body height (Du et al. 2014; 

Sveinbjornsson et al. 2014; Auer et al. 2012). Customized chips designed to contain 

rare variants have successfully identified novel associations for hematological traits, 

blood lipid traits, coronary heart disease, and glycemic traits (Auer et al. 2012; 

Holmen et al. 2014; Peloso et al. 2014; Scott et al. 2012). 

Despite noticeable successes, the two approaches have limitations. Imputing 

rare variants has been challenging due to low accuracy of imputed genotypes of rare 

variants (Li et al. 2011; Auer et al. 2012). Poorly imputed rare variants would result 

in misleading results in the following association study. Generally, imputation 

estimates untyped markers using haplotype patterns of common markers between 

reference panel and genotype panel (Howie et al. 2012; Marchini and Howie 2010). 

Therefore, the main reason for poor performance would be due to low correlation 

between rare variants and common tagging markers genotyped by GWAS chips. 

Accuracy of imputed rare variants would be improved if a chip used for genotype 

panel is designed to contain rare variants or markers tagging nearby rare variants 

(Joshi et al. 2013; Li et al. 2011). Customized chips are limited in that they are 

designed for specific purposes. Those chips do not contain markers for genome-wide 

scan. However, it can be a source of rare variants as a part of genotype panel for 

imputation analysis. In this context, the combined approach taking advantages of 

two approaches would be more powerful to obtain the genotypes of rare variants. If 

custom arrays can be genotyped on identical samples that were previously genotyped 
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with genome-wide scan arrays, the combined approach would enhance imputation 

performance and association mapping power. Although general analysis strategy of 

imputation and custom arrays have been introduced (Howie et al. 2012; Marchini 

and Howie 2010; Lango Allen et al. 2010; Duan et al. 2013), analysis strategy and 

its effectiveness of combined approach have not been reported. 

In this study, we describe the analysis strategy and its effectiveness of combined 

approach that performs imputation analysis on merged data including exome array 

and existing GWAS chip data. To demonstrate the effectiveness of our established 

strategy, we built a reference panel from 848 samples who have exome sequencing 

data, GWAS chip data, and exome chip data and then performed imputation analysis 

on genotype panels with 5,349 identical samples of an exome chip, a GWAS chip 

only, and merged data comprising a GWAS chip and an exome chip. Additionally, 

we studied sample size effect of reference panel on imputation performance of 

GWAS chip only and combined data. Also previously suggest two-step approach 

was compared with imputation results of GWAS chip only and combined data. To 

compare performance of results, we accessed imputation quality score and genomic 

coverage. 

 

2.2 Materials and Methods 

2.2.1 Overview of combined approach  

The overview of strategy of combined approach is described in Figure 2.1. 

Dataset used for constructing panels is summarized in Table 2.1. For reference panel, 

we built an initial reference panel and a final reference panel without non-imputable 

extremely rare variants that possibly mislead in interpreting imputation quality score, 

estimated r2. For a genotype panel, testing genotype panel consists of a GWAS chip 
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only of 5,349 samples and final genotype panel comprised of merged data of an 

exome chip and a GWAS chip of 5,349 identical samples. To set a threshold for 

excluding non-imputable variants, initial reference panel was constructed by 

merging exome sequencing, exome chip, and GWAS chip data of 848 identical 

samples. Testing genotype panel was imputed using initial reference panel and 

imputation results were compared with true genotypes. Lower bound MAF showing 

concordance between dosage r2 and estimated r2 was used as a MAF threshold for 

excluding non-imputable variants. Finally, the final reference panel removing non-

imputable variants were used to impute final genotype panel. 
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Figure 2.1 Overview of combined approach 
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Table 2.1 Datasets used in this study 

Category 

(# of samples) 
Type 

Exome 

sequencing 
GWAS chip 

Exome 

chip 

# of variants 500,821 344,366 66,196 

Reference 

panel 

(848) 

Initial reference panel O O O 

Final reference panel O O O 

Genotype 

panel 

(5,349) 

Exome chip genotype 

panel 
X X O 

Testing genotype 

panel 
X O X 

Final genotype panel X O O 

True data 

(5,349) 

For imputed variants 

using testing genotype 

panel 

X X O 
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2.2.2 Exome sequencing 

By the Type 2 Diabetes Genetic Exploration by Next-generation Sequencing in 

Ethnic Samples (T2D-GENES) Consortium  at the Broad Sequencing Center, about 

10,000 exomes from five ethnic groups have been sequenced using Agilent Human 

Exon v2 capture (~18,000 genes). Among them, part of samples from Korea 

Association REsource (KARE) project (Cho et al. 2009), including 538 samples 

from type 2 diabetes cases and 579 samples from controls, were included and 1,087 

samples were used for further analysis after quality control on samples. The 

reference genome hg19 was used for alignment and variant calling process that was 

performed using the Genome Analysis Toolkit v2 (McKenna et al. 2010). As a result, 

500,821 autosomal variants from 848 Korean samples were used for constructing 

reference panels. Accuracy of called variants was calculated by comparing 

genotypes from sequencing data with genotypes of genotyping chip data. Overall 

concordance was 99.76% and 99.96% for Affymetrix 5.0 and exome array, 

respectively. 

 

2.2.3 GWAS and exome chip genotyping 

Previously, 8,842 samples were genotyped using the Affymetrix Genome-Wide 

Human SNP Array 5.0 (Affymetrix Inc., San Diego, CA, USA) (Cho et al. 2009). 

Among them, 6,197 identical samples were genotyped using the Illumina 

HumanExome BeadChip v1.1 (Illumina, Inc., San Diego, CA, USA) exome array. 

For the two platform, standard quality control on samples were conducted excluding 

samples with a high missing rate (>4%), gender discrepancy, excessive 

heterozygosity, or cryptic first degree relatives. Exclusion criteria for SNPs of 

Affymetrix GWAS chip was as follows: Hardy-Weinberg equilibrium p-values < 10-
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6, genotype call rates < 95%, and MAF < 0.01. All chromosomal position of SNPs 

were updated to hg19 using the Affymetrix annotation file. Quality control on 

variants of exome array were similar to those of GWAS chip except threshold for 

filtering out variants with low allele frequency. Only monomorphic markers were 

excluded for further analysis. From quality controlled data, we used 6,197 samples 

that were common between sets of samples of Affymetrix GWAS chip and exome 

array. Variants included in the analysis were 344,366 and 66,196 for GWAS chip and 

exome array, respectively. Among 6,197 samples, 848 samples were used for 

constructing reference panel and remaining 5,349 samples were used for genotype 

panels. 

 

2.2.4 Building reference panel 

We constructed the reference panel by merging exome sequencing, exome array, 

and GWAS chip of 848 identical samples. The description of each data is 

summarized in Table 2.1. Prior to merging process, overlapped variants between 

sequencing data and chip data were removed from chip datasets. For overlapped 

variants between GWAS chip exome array, variants from exome array were used and 

overlapped variants were removed from GWAS chip. Number of overlapped and 

unique variants are shown as a Venn diagram in Figure 2.2. After merging all data, 

initial reference panel contained 856,690 variants and phased using the ShapeIT v2 

program (Delaneau et al. 2012). Initial reference panel was used to impute testing 

genotype panel for selecting MAF threshold to exclude non-imputable variants. 

After extremely rare non-imputable variants (MAF < 0.3%) were excluded, the final 

reference panel contained 487,381 variants and phased using the ShapeIT v2 

program. 
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Figure 2.2 A Venn diagram of variants of three platforms used in the reference 
panel 
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2.2.5 Building genotype panel 

Among 6,197 samples, 5,349 samples were remained after excluding 848 

samples used for constructing reference panel. Genotype panel consists of exome 

array of 5,349 samples were phased using the ShapeIT v2 progam. As the testing 

genotype panel, GWAS chip data of 5,349 samples were phased using the ShapeIT 

v2 program. For the final genotype panel, GWAS chip and exome array of 5,349 

identical samples were merged and phased using the ShapeIT v2 program. 

 

2.2.6 Two-step imputation approach 

Recently, Kreiner-Moller et al. reported a two-step imputation approach for 

improving imputation accuracy of rare variants (Kreiner-Moller et al. 2014). Two-

step imputation approach uses local reference panel constructed using ultra high 

density SNP array with many low frequency markers. This approach is implemented 

as follows: 1) Construct local reference panel by genotyping only a subset of samples 

using an array with many low frequency markers 2) Impute study genotype panel 

using local reference panel 3) Impute the study genotype panel imputed in 2) by 

using 1,000 genomes project reference panel. To compare two-step imputation 

approach with combined approach, we modified the strategy of two-step imputation 

approach to our dataset as follows: 1) construct local reference panel using only a 

subset of samples of combined GWAS chip and exome chip data 2) impute study 

genotype panel (GWAS chip only) using local reference panel 3) imputed genotype 

panel is then imputed using exome reference panel. 
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2.2.7 Statistical analysis 

In this study, we performed typical pre-phasing based imputation analysis on 

genotype panels (Howie et al. 2012). For imputation analysis, we used minimac 

software, a low memory and computationally efficient implementation of the MaCH 

algorithm (Li et al. 2011). To select MAF threshold for imputable variants, we 

compared dosage r2 and estimated r2 of imputed variants by observing scatter plots 

of each MAF bins. Dosage r2 was accessed by calculating squared Pearson 

correlation (dosage r2) between imputed dosages and true genotypes from exome 

array. For comparison analysis of imputation performance of genotype panels, we 

used estimated r2 provided by minimac as an imputation quality measure. To test the 

difference between estimated r2 values of imputation results of genotype panels, the 

Wilcoxon signed-rank test was performed. Statistical analyses and visualization of 

the results were performed using the R program. 

 

2.3 Results 

2.3.1 Selecting MAF threshold for non-imputable variants 

In this study, we excluded non-imputable variants to construct the final 

reference panel. Previously, Li et al. reported that estimated r2 would not be a good 

estimator for extremely rare variants (MAF≤0.5%) (Li et al. 2011). Here, we defined 

non-imputable variants as ones having a large difference between estimated r2 and 

dosage r2. If estimated r2 would not reflect true accuracy, one cannot filter out low 

quality imputed variants based on estimated r2 and comparison analysis of 

imputation performance using estimated r2 would be misleading. In this context, we 

compared estimated r2 with dosage r2 for several MAF bins. We first performed 

imputation analysis on testing genotype panel, containing GWAS chip only, by using 
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unfiltered initial reference panel. Among imputed variants, 45,802 imputed variants 

from 5,349 samples were compared to the corresponding variants obtained from an 

exome array constructed using identical samples. Figure 2.3 shows the imputation 

results of variants by MAF bins. As Li et al. reported, the estimated r2 did not reflect 

their true value, dosage r2, for extremely rare variants (MAF < 0.3%, Figure 2.3D). 

However, the estimated r2 worked well for variants with MAF t 0.3% (Figure 2.3A-

C). Therefore, variants with MAF t 0.3% were regarded as imputable in the current 

study.  
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Figure 2.3 Scatter plot of estimated r2 against dosage r2 by MAF bins 
Estimated r2 was plotted against dosage r2 by MAF bins (A) MAF t 5%, (B) MAF 
= 1 - 5%, (C) MAF = 0.3 - 1%, and (D) MAF < 0.3%. The red dotted line represents 
the diagonal. 
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2.3.2 Comparison of imputation accuracy among genotype panels 

Using the final reference panel without non-imputable variants, we performed 

imputation analysis on genotype panels including exome array only, GWAS chip 

only, and merged data of two platforms. For comparison analysis, we used imputed 

108,682 variants in overlap among three genotype panels and estimated r2 was a 

measure for imputation accuracy. Number of variants were 35,443 (32.6%), 21,191 

(19.5%), 19,527 (18.0%), and 32,547 (29.9%) for variant with MAF ≥ 5%, 1-5%, 

0.5-1%, and < 0.5%, respectively. Figure 2.4 shows the comparison results. As 

previously reported, the genotype panel of exome array alone showed the worst 

performance (Martin et al. 2014). The mean estimated r2 was 0.332, 0.616, and 0.661 

for genotype panels of exome array, GWAS chip, and combined approach, 

respectively. Combined genotype panel showed the best performance compared to 

other genotype panels (P < 2.2x10-16, about 7.3% increase in mean estimated r2 

compared to those of GWAS chip only). In Figure 2.5, most of imputed variants using 

combined approach showed better performance than that using genotype panel of 

GWAS chip alone. The increment in imputation accuracy was the largest when allele 

frequencies of imputed variants were below than 1%. The increment in estimated r2 

of combined genotype panel was about 10-11% for rare variants (MAF 0.5 – 1%) 

and extremely rare variants (MAF 0.3 – 0.5%) compared to the genotype panel with 

GWAS chip only. Mean estimated r2 of GWAS and combined approach was 0.870 

and 0.906 for MAF ≥ 5%, 0.653 and 0.706 for MAF 1 – 5%, 0.465 and 0.515 for 

MAF 0.5% - 1%, and 0.406 and 0.452 for MAF 0.3 – 0.5%. 
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Figure 2.4 Boxplot of estimated r2 of genotype panels 
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Figure 2.5 Mean estimated r2 of genotype panels by MAF bins 
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2.3.3 Comparison of genomic coverage among genotype panels 

Major advantage of imputation analysis is in obtaining dense set of imputed 

variants with relatively small number of markers of genotype panel. By using dense 

set of imputed markers, association mapping power can be increased via enhanced 

genomic coverage. This property has enabled us to perform in silico fine mapping in 

imputation based association studies. Recently, Nelson et al. reported imputation 

based genomic coverage of widely used genotyping arrays (Nelson et al. 2013). 

Imputation based genomic coverage is calculated as the number of imputed variants 

above imputation quality score threshold divided by total number of variants in the 

reference panel. In this study, we compared imputation based genomic coverage of 

genotype panels of GWAS chip only and combined approach. For genomic coverage, 

we selected 143,022 exonic variants including imputed and genotyped by exome 

array. Since we used exome sequencing data in constructing reference panel, 143,022 

variants were regarded as virtual exome in this study. Number of variants were 

56,326 (39.4%), 28,072 (19.6%), 22,931 (16.0%), and 35,693 (25.0%) for variant 

with MAF ≥ 5%, 1-5%, 0.5-1%, and < 0.5%, respectively. Table 2.2 summarized the 

results. We selected stringent cut-off as estimated r2 of 0.8 and less stringent cut-off 

as estimated r2 of 0.4. By using stringent cut-off, overall genomic coverage was 

0.435 and 0.560 for GWAS chip only and combined approach. In overall, 

approximately 29% increase in genomic coverage was observed if combined 

approach used (r2 threshold ≥ 0.8). For rare variants (MAF < 1%), however, genomic 

coverage of combined approach was about two times of those of genotype panel with 

GWAS chip only (r2 threshold ≥ 0.8).  
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Table 2.2 Genomic coverage of genotype panels of GWAS chip only and combined 

approach 

MAF bin 
r2 ≥ 0.8 r2 ≥ 0.4 

GWAS chip Combined GWAS chip Combined 

ALL 0.435 0.560 0.749 0.818 

≥ 5% 0.794 0.901 0.953 0.983 

1 – 5% 0.403 0.588 0.799 0.881 

0.5 – 1% 0.146 0.290 0.585 0.686 

0.3 – 0.5% 0.079 0.172 0.491 0.591 
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2.3.4 Sample size effect of reference panel and comparison analysis 

Previously, numerous efforts have been reported to enhance imputation 

performance of rare variants (Joshi et al. 2013; Kreiner-Moller et al. 2014; Li et al. 

2011; Duan et al. 2013; Deelen et al. 2014). Basically, there were three types of 

approaches. The first approach is to increase number of samples of the reference 

panel up to thousands of samples (Li et al. 2011). The second type of approach uses 

a study specific reference panel instead of public reference panel such as 1,000 

genomes project reference panel (Duan et al. 2013; Deelen et al. 2012). Last strategy 

uses local reference panel consisting a subset of samples with an array containing 

many low frequency markers or local sequencing (Joshi et al. 2013; Kreiner-Moller 

et al. 2014). Local reference panel was used as complementary to public reference 

panel. 

In this study, we studied sample size effect of reference panel on imputation 

performance of GWAS chip only and combined data. Additionally, we compared 

imputation performance of GWAS chip only, combined data, and previously reported 

two-step imputation approach that utilizes local reference panel (Kreiner-Moller et 

al. 2014). In this analysis, we used only chromosome 1 of the data. We used only 

imputed variants across all results. Number of imputed variants used for sample size 

effect analysis and comparison analysis were 10,624 and 10,912, respectively. 

For studying sample size effect of reference panel, we performed imputation on 

GWAS chip and combined data with a subset of samples of original reference panel. 

Figure 2.6 shows mean estimated r2 of GWAS chip only and combined data by MAF 

bins. Regardless of sample size of reference panel, combined data showed better 

imputation performance than GWAS chip only data. Combined data with 500 

samples of reference panel showed enhanced imputation accuracy than GWAS chip 

only data with 500-848 samples of reference panel. 



 

 

 

31 

  

Figure 2.6 Mean estimated r2 varied by sample size of reference panel 
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Next, we compared imputation performance of GWAS chip only, combined 

data, and a two-step approach. In this study, we modified the strategy of a two-step 

approach that a subset of samples of combined data was used as local reference panel. 

Table 2.3 and Table 2.4 summarized imputation results and genomic coverage of rare 

variants, respectively. In overall, combined data outperformed other approaches. 

Considering genotyping cost of samples, however, two-step imputation approach can 

be effective strategy since only additionally genotyped 1,000-2,000 samples can 

increase approximately 5% of mean estimated r2 and achieve similar genomic 

coverage to those of combined data. 
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Table 2.3 Mean estimated r2 of two-step imputation approach 

Sample size of local 

reference panel 
0.3 – 0.5% 0.5 – 1% 1 – 5% ≥ 5% 

0 

(GWAS chip only) 
0.423 0.498 0.668 0.882 

500 0.431 0.514 0.696 0.904 

1,000 0.440 0.520 0.700 0.905 

2,000 0.444 0.525 0.704 0.907 

3,000 0.444 0.527 0.706 0.907 

4,000 0.438 0.525 0.706 0.908 

Combined 0.463 0.542 0.720 0.920 

 

  



 

 

 

34 

Table 2.4 Genomic coverage of two-step imputation approach (r2 ≥ 0.8) 

Sample size of local 

reference panel 
0.3 – 0.5% 0.5 – 1% 

0 

(GWAS chip only) 
0.070 0.158 

500 0.086 0.188 

1,000 0.090 0.193 

2,000 0.095 0.195 

3,000 0.093 0.195 

4,000 0.096 0.198 

Combined 0.092 0.195 
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2.4 Discussion 

In this study, we described the analysis strategy of combined approach that 

utilizes merged data of GWAS chip and exome array and following imputation 

analysis. We showed effectiveness of combined approach by analyzing imputation 

results using reference panel consisting of exome sequencing, exome array, and 

GWAS chip and genotype panel consisting of exome array and GWAS chip. As a 

result, the combined approach showed improved imputation accuracy and enhanced 

genomic coverage, especially for rare variants (MAF < 1%). Combined approach 

effectively increased imputation accuracy up to 11% and about two times of genomic 

coverage for rare variants. 

Recently, various studies have been reported to increase imputation accuracy 

of rare variants (Joshi et al. 2013; Kreiner-Moller et al. 2014; Li et al. 2011; Duan et 

al. 2013; Deelen et al. 2012). Previous studies have mainly focused on utilization of 

reference panel by constructing the reference panel with sequenced samples (Duan 

et al. 2013; Deelen et al. 2012) or by increasing samples size of reference panel (Li 

et al. 2011) or by using complementary information retrieved from local sequencing 

(Joshi et al. 2013) or local ultra-high-density genotyping arrays (Kreiner-Moller et 

al. 2014). In a different aspect, our study suggests to use customized chips to increase 

imputation accuracy of rare variants. If customized chips are available for samples 

with previously genotyped using GWAS chips, the combined approach would be a 

possible cost-effective strategy for studying rare variants with increased accuracy 

and genomic coverage. Moreover, modified strategy adopting previously suggested 

approaches such as two-step approach can be used to efficiently design imputation 

based rare variant association study within a limited budget. 
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Rare variant contents of exome array used in this study have mainly designed 

based on data from sequenced samples with European ancestry 

(http://genome.sph.umich.edu/wiki/Exome_Chip_Design). Since we studied 

samples with East Asian ancestry, exome array may not be the best complementary 

source of rare variants in this study. Well-designed customized chip based on 

sequencing data of a specific population would possibly show more increase in 

imputation accuracy and genomic coverage. 

In the present study, we excluded non-imputable variants from the initial 

reference panel. The main reason for exclusion was to prevent misleading imputation 

results of extremely rare variants. As Li et al. reported, estimated r2 of extremely rare 

variants was not likely to reflect their true value. Instead of excluding non-imputable 

variants from the initial reference panel, one would filter out those extremely rare 

variants after imputation analysis. However, there are two possible concerns in using 

reference panel with non-imputable variants. First, rare variants are computationally 

difficult to phase due to its few frequency in a haplotype context (Browning and 

Browning). In this study, we excluded extremely non-imputable rare variants with 

MAF below 0.3%. Those non-imputable rare variants were about 370K and 74% of 

exome sequencing data. Therefore, non-imputable variants would introduce possible 

phasing errors to the reference panel. In addition to possible errors, a large number 

of variants in the reference panel may require more computational time in imputation 

analysis. 

As a reference panel, we only used study specific sequenced 848 samples. 

Imputation accuracy can be increased using large reference panels such as reference 

haplotypes from 1,000 genomes project data. However, Duan et al. reported 

previously that the reference panel consisting of study specific sequenced samples 

showed better imputation performance than using reference panel of 1,000 genomes 

http://genome.sph.umich.edu/wiki/
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project (Duan et al. 2013). Only modest gain of imputation accuracy (1.5 – 2.3%) 

was observed when combined reference panel of study specific reference panel and 

1,000 genomes project data. Since rare variants are tend to be population specific, 

relatively small number of samples per a specific ancestry would be limitation of 

1,000 genomes project data in imputing rare variants. Upcoming phase 3 of 1,000 

genomes project data will provide approximately 2,500 multi-ethnic sequenced 

samples and may provide more samples with a specific population ancestry.  

Although Next Generation Sequencing (NGS) is not efficient approach for a 

large scale genome study, NGS will become an essential tool in genomics as the cost 

is decreasing rapidly. Meanwhile, imputation based research strategy would be 

efficient approach to identify associations between diseases and variants including 

less common and rare variants.  
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Chapter 3. Pre-Collapsing Imputation approach 
 

3.1 Introduction 

Over the last decade, genome-wide association studies (GWASs) have been 

successful in unveiling the genetics of human diseases (Bush and Moore 2012). 

Certainly, GWAS have revealed unprecedented numbers of disease associated 

genetic variants (Hindorff et al. 2009). As of March 2014, 12,599 single nucleotide 

polymorphisms (SNPs) from 1,827 published GWASs are included in the National 

Human Genome Research Institute GWAS catalogue, a curated resource of SNP-

trait associations (Hindorff et al. 2009; Welter et al. 2014). However, despite 

previous efforts to discover the genetic sources of diseases, variants identified by 

GWASs have been shown to explain only a small proportion of the phenotypic 

variance observed (Manolio et al. 2009; Lander 2011). Since previous GWASs were 

largely based on common variants, other possible sources of missing heritability 

would be rare variants (minor allele frequency [MAF] < 1-5%), structural variants, 

gene-gene interactions, and gene-environment interactions (Manolio et al. 2009). 

With the recent advances in massively parallel sequencing, rare variants are 

gaining increasing attention in GWASs (Zuk et al. 2014). Indeed, recent sequencing 

based association studies discovered previously unknown less common (MAF = 1-

5%) and rare variants (MAF < 1%) associated with various phenotypes such as high-

density lipoprotein cholesterol, low-density lipoprotein cholesterol, schizophrenia, 

Alzheimer's disease, and nephropathy (Morrison et al. 2013; Cooke Bailey et al. 

2014; Cruchaga et al. 2014; Lange et al. 2014; Purcell et al. 2014). Two approaches 

are commonly used in association studies utilizing rare variants (Lee et al. 2012; Zuk 

et al. 2014). One approach is the individual variant test that is typically used in 
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GWAS. Although it is the simplest to use, this strategy is underpowered because of 

the low allelic frequencies and abundance of rare variants (Bansal et al. 2010; Zuk 

et al. 2014). The second approach, which is more powerful, is the region-based 

association tests, which collapses sets of rare variants and then tests for an 

association between multiple variants and a phenotype (Bansal et al. 2010; Lee et al. 

2012; Zuk et al. 2014). 

Given the relatively high cost of the current high-throughput sequencing 

technology as well as the amount of computing power required, it is not yet feasible 

to use next-generation sequencing to analyze the number of samples required to 

identify associations between rare variants and phenotypes (Auer et al. 2012; Magi 

et al. 2012). Recently, imputation has been widely used as another approach to 

comprehensively and cost effectively search for rare variants in large-scale cohorts 

(Auer et al. 2012; Pasaniuc et al. 2012). Imputation estimates untyped markers that 

are not directly genotyped in the SNP chip (Marchini and Howie 2010). Typically, 

imputation analysis requires a reference panel with a dense set of markers. The 

thousands of sequenced samples obtained from the 1,000 Genomes Project are 

commonly used as an external reference (Howie et al. 2011; Huang et al. 2012; Sung 

et al. 2012). Study-specific reference panels (Auer et al. 2012; Pasaniuc et al. 2012) 

are also a powerful resource, especially for rare variants, since rare variants tend to 

be population specific (Bodmer and Bonilla 2008). For example, by imputation-

based association analysis using the 1,000 Genomes Project, Magi et al. identified 

previously unknown variants associated with coronary artery disease from 17,000 

Wellcome Trust Case Control Consortium study samples that had already been 

extensively analyzed (Magi et al. 2012). Another previous study also performed 

imputation based association analysis on blood cell traits by using study-specific 

reference panel containing whole exome sequenced samples (Auer et al. 2012). The 
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other study reported that association analysis followed by imputation analysis using 

extremely low-coverage sequencing data increased power for GWAS (Pasaniuc et 

al. 2012). 

Despite its cost effectiveness and efficiency, the use of imputation on rare 

variants has a substantial disadvantage because of the inaccuracy of imputed 

genotypes (Li et al. 2011; Auer et al. 2012). Auer et al. reported that only 7.3% of 

imputed rare variants (MAF = 0.1%-0.5%) were available after stringent imputation 

quality control (estimated r2 threshold = 0.9) (Auer et al. 2012). The use of inaccurate 

imputed rare variants could distort the results of region-based association tests, 

which have become the standard method of analysis for rare variants. Moreover, 

estimated r2, one of the quality metrics for imputation, is not a good estimator for 

extremely rare variants (MAF ≤ 0.5%) (Li et al. 2011). Two solutions for enhancing 

the accuracy of the imputation of rare variants have been proposed: (1) increasing 

the reference sample size by thousands of samples (Li et al. 2011), or (2) using chips 

designed to tag rare variants and population-specific variants (Li et al. 2011; Joshi et 

al. 2013). However, these solutions cannot be immediately applied to existing 

genotype data since additional experiments would be required. Therefore, a new 

method for increasing the accuracy of the imputation of rare variants is necessary.  

In this study, we propose a pre-collapsing imputation (PreCimp) method to 

improve the imputation accuracy of rare variants in terms of collapsed variables 

(Figure 3.1 and Figure 3.2). The proposed method uses variants from a phased 

reference panel to make collapsed variables and then inserts these pre-collapsed 

variables (PCVs) into the original reference panel to make a new reference panel. 

Typical imputation with the new reference panel can impute PCVs into the genotypes 

from study samples at only a computational cost. To evaluate our method, we built a 

reference panel from 848 samples with data from exome sequencing, a GWAS chip, 
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and an exome chip. PreCimp was then performed on 5,349 samples obtained from 

the Korea Association REsource (KARE) project (Table 3.1) (Cho et al. 2009). 
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Figure 3.2 Schematic representations of the post-collapsing and pre-collapsing 
methods used in this study 
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Figure 3.2 Schematic representations of the post-collapsing and pre-collapsing 
methods used in this study 
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Table 3.1 Datasets used in this study 

Category 

(# of samples) 
Exome sequencing 

GWAS chip 

AFFY 5.0 Exome chip 

# of variants 500,821 344,366 66,196 

Reference panel 
(848) O O O 

Genotype panel 
(5,349) X O X 

True data 
(5,349) X X O 
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3.2 Materials and Methods 

3.2.1 Subjects  

Study subjects from the KARE project were recruited from two prospective 

population-based cohorts as a part of the Korean Genome Epidemiologic Study 

project. A total of 10,038 participants aging from 40 to 69 years old were registered 

from both cohorts at the baseline study for two years starting from 2001. A detailed 

description of KARE has been given in a previous paper (Cho et al. 2009). The study 

using KARE samples was approved by two independent institutional review boards 

at Seoul National University and the National Institute of Health, Korea. Liver 

enzyme, aspartate aminotransferase (AST), was obtained in the morning before the 

first meal of the day. Participants were removed from subsequent analysis if taking 

any medication likely to influence on the liver enzyme trait (Kim et al. 2011) 

 

3.2.2 Exome sequencing  

Approximately 10,000 exomes (~18,000 genes) from five ethnic groups have 

been sequenced by the The Type 2 Diabetes Genetic Exploration by Next-generation 

Sequencing in Ethnic Samples Consortium at the Broad Sequencing Center using 

Agilent Human Exon v2 capture. Some of the KARE samples, including 538 

samples from type 2 diabetes cases and 579 samples from controls, were included in 

this dataset. After quality control on DNA and sequenced samples, 1,087 samples 

were retained for further analysis. Alignment and variant calling process were 

performed based on the reference genome hg19. The Genome Analysis Toolkit v2 

was used to call the variants (McKenna et al. 2010). In this study, we used 500,821 
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autosomal variants of 848 Korean samples to build population specific reference 

panel. 

 

3.2.3 GWAS and exome chip genotyping  

KARE study subjects were genotyped with two genotyping platforms: the 

Affymetrix Genome-Wide Human SNP Array 5.0 (Affymetrix Inc., San Diego, CA, 

USA) and the Illumina HumanExome BeadChip v1.1 (Illumina, Inc., San Diego, CA, 

USA) exome array. Genotyping using the Affymetrix SNP Array 5.0 and quality 

control procedures have been described in detail previously (Cho et al. 2009). Briefly, 

samples with a high missing rate (>4%), gender discrepancy, excessive 

heterozygosity, or cryptic first degree relatives were removed. Then, those SNPs 

with Hardy-Weinberg equilibrium p-values < 10-6, genotype call rates < 95%, and 

MAF < 0.01 were also removed from the set. After the remaining SNPs were 

annotated using the Affymetrix annotation file (see Web Resources) without 

positional information were eliminated from further analysis. Finally, 8,842 samples 

with 344,366 autosomal SNPs remained, which were used for the imputation 

analysis. Of these previously genotyped samples, 6,197 samples were genotyped 

using exome array. All these samples passed the following exclusion criteria: call 

rate < 99%, excessive heterozygosity, and gender inconsistency. Then, variants with 

call rate < 0.95, Hardy-Weinberg equilibrium p-values < 10-6, duplicated markers, 

and monomorphic markers were removed, so that 66,196 of the initial 242,901 

variants were taken forward for further analysis. Among 6,197 samples, 848 samples 

used for constructing reference panel and remaining GWAS chip and exome chip of 

5,349 samples were used as genotype panel and true dataset, respectively (Table 3.1).  

 



 

 

 

48 

3.2.4 Building the population specific exome reference panel  

We then constructed a population-specific exome reference panel by merging 

data obtained from 848 identical samples via exome sequencing, exome array, and 

GWAS chip. Initially, there were 344,366, 66,196, and 500,821 variants obtained 

from Affymetrix 5.0, exome chip, and exome sequencing data, respectively. Prior to 

merging these variants, we excluded variants in that overlapped among the three 

platforms. The inclusion priority was in the following order: exome sequencing data, 

exome chip data, and Affymetrix 5.0 data. The number of unique variants obtained 

from the Affymetrix 5.0, exome chip, and exome sequencing data were 337,058, 

18,811, and 500,821, respectively. The merged panel initially contained 856,690 

variants. After extremely rare variants with MAF < 0.3% were excluded (Li et al. 

2011), the merged panel contained 487,381 variants and phased using the ShapeIT 

v2 program to build the phased reference panel for imputation analysis (Delaneau et 

al. 2012).  

 

3.2.5 Pre-collapsing and post-collapsing based imputation  

The collapsing method is an approach that collapses rare variants within a 

region (Li and Leal 2008). For imputed rare variants, we defined post-collapsing 

(PostC) and pre-collapsing imputation (PreCimp) methods as follows (see Figure 3.1 

for pre-collapsing method of PreCimp, see Figure 3.2 for schematic representations 

of the PostC and PreCimp methods). PostC method is an approach that is typically 

used in region-based association studies. A collapsed variable X of imputed rare 

variants for the ith individual is defined as 

1 1
0i

if the number of rare alleles
otherwise

x
t

 
­
®
¯
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The PreCimp method is an approach that collapses rare variants in a reference 

panel and generates a new reference panel by inserting these PCVs into the original 

reference panel. For this method, variants for each haplotype in the reference panel 

are collapsed. A collapsed variable X for the jth haplotype of the ith individual in the 

reference panel is defined as 

1 1
0ij

if the number of rare alleles
otherwise

x
t

 
­
®
¯

 

In this study, pre-phasing-based imputation was performed for rare variants 

imputation (Howie et al. 2012). Then the PostC method was applied to imputed rare 

variants after imputing single rare variants. Prior to PostC, genotypes with maximum 

posterior probabilities were assigned for imputed genotypes. The PreCimp method 

consists of two steps. First, a new reference panel containing PCVs was constructed 

using the PreCimp method. Since PCVs are artificially generated, these new markers 

need to be assigned to specific chromosomal positions in order to be incorporated 

into the reference panel. Here, if rare variants were only available in the reference 

panel, we used the mean positional value of rare variants as the positional value for 

the PCVs. If one or more rare variants were available in both the reference and 

genotype panels, we used five different positions: a position one base ahead of the 

position of the first rare variant (PreCimp-1), the position of the last rare variant 

(PreCimp-L), the position of the variant with the highest LD r2 (PreCimp-R2), the 

mean position of variants used for PreC (PreCimp-M), and the weighted mean 

position of variants used for PreC (PreCimp-WM). For pre-collapsed variable with 

m rare variants (k = 1,2,…,m), weighted mean position was defined as 

 /
m m

k k k
k k

Weighted mean position MAF Position MAF ¦ ¦   
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Next, typical pre-phasing based imputation with the new reference panel was 

performed. Imputation analysis was performed using minimac software (Howie et 

al. 2012).  

 

3.2.6 Comparison of imputation performance  

For gene-based collapsing, rare variants were selected for further analysis if 

they were available in the true dataset, the exome chip data. Rare variants of true 

data set were also collapsed using collapsing and collapsing based on haplotypes for 

PostC and PreCimp, respectively. To measure imputation accuracy, we used dosage 

r2 that is squared Pearson correlation between imputed dosages and true genotypes. 

 
3.2.7 Statistical analysis  

Prior to association analysis, AST values were transformed with the reciprocal 

to follow the normal distribution. Region-based association tests were performed by 

linear regression adjusting age, gender, and recruitment area. Collapsed variables of 

imputed rare variants using post-collapsing method and dosage values of imputed 

pre-collapsed variables from pre-collapsing method were used as the independent 

variable for post-collapsing method and pre-collapsing based imputation method, 

respectively. To test the difference between dosage r2 values between imputation 

results, the Wilcoxon signed-rank test was performed. Statistical analyses were 

performed using the R program. 
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3.3 Results 

3.3.1 PostC vs. PreCimp methods 

We performed a comparison analysis of the imputation performances of the 

PostC and PreCimp methods. Two sets of collapsed variants were used, MAF1 

(collapsing variants with MAF = 0.3 - 1%) and MAF5 (collapsing variants with MAF 

= 0.3% - 5%). In total, 1,597 genes for MAF1 and 3,830 genes for MAF5 sets were 

available if a region was defined as a gene region with two or more rare variants. 

The results from the two sets are compared in Figure 3.3. Figure 3.3A shows that 

imputation performance was enhanced by the PreCimp method. The proposed 

approach increased imputation accuracy about 3.4 ~ 6.3% (dosage r2 0.6 ~ 0.8), 10.9 

~ 16.1% (dosage r2 0.4 ~ 0.6), and 21.4 ~ 129.4% (dosage r2 below 0.4) compared 

with the results of post-collapsing method [Table 3.2]. A Wilcoxon signed-rank test 

was performed to test the statistical significance of difference in imputation 

performance and showed that the PreCimp method significantly outperformed the 

PostC method (p-value < 2.2x10-16). 

The difference in dosage r2 using the PreCimp and PostC methods are shown in 

Figure 3.3B (MAF5 set). Although the PreCimp method showed increased 

imputation performance, some collapsed variables with poor performance were also 

observed. Since the PreCimp method utilizes rare variants in the reference panel 

based on haplotype information, two factors that could affect the performance would 

be gene length and the number of rare variants used for PreCimp. Figure 3.4 shows 

the scatter plot of the number of variants used for PreCimp and gene length in the 

MAF5 set. Red circles indicate poor performance when PreCimp was used, and the 

size of circle reflects the magnitude of difference in dosage r2 between PreCimp and 

PostC. Genes < 200kb are shown in Figure 3.4A, and genes ≥ 200kb are shown in 
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Figure 3.4B. 

Gene length was a major factor affecting the imputation performance of the 

PreCimp method. For large genes (about >200kb, about 3% of genes in MAF5 set), 

the PreCimp method may not be good for improving the imputation accuracy of 

collapsed variables. However, the performance of PreCimp can be improved by 

splitting large genes into several small-sized regions. For example, ASTN2 in the 

MAF5 set is 803kb in size and has six variants. The values obtained by PostC and 

PreCimp for dosage r2 were 0.65 and 0.24, respectively. However, splitting ASTN2 

into two sub-regions for PreCimp increased the value of the mean dosage r2 for the 

two regions to 0.68. The increment in dosage r2 were 0.03 and 0.44, as compared to 

the values obtained by PostC and PreCimp without splitting, respectively. 

We next compared dosage r2 values of PreCimp and PostC method using 

haplotype block information. Generally, imputation methods perform better in 

genomic regions with strong LD than regions with weak LD (Pei et al. 2008; Hao et 

al. 2009). To obtain haplotype block information, we used LD-based haplotype block 

recognition software MIG++ implemented in LDexplorer (Taliun et al. 2014). In this 

analysis, haplotype blocks were obtained using chromosome 1 of the reference panel. 

There were 42,454 variants in chromosome 1 and 5,970 blocks were detected using 

default option of MIG++. Median number of variants in haplotype blocks was four. 

Minimum and Maximum number of variants in haplotype blocks were 2 and 76, 

respectively. Regions used for collapsing were divided into two groups based on 

following criteria: regions in haplotype block if all variants used for collapsing were 

in a single haplotype block, and regions not in haplotype block otherwise. 107 

regions were in haplotype blocks and 301 regions were located outside of haplotype 

blocks. As previously reported (Pei et al. 2008; Hao et al. 2009), PostC and PreCimp 

both performed better if regions were located in haplotype blocks than regions 
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outside of the haplotype blocks (Figure 3.5). However, difference in dosage r2 

(PreCimp – PostC) was greater for regions in haplotype blocks than regions outside 

of haplotype blocks. Mean difference in dosage r2 for regions in haplotype blocks 

and outside of blocks was 0.059 and 0.047, respectively. 
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Figure 3.3A Comparison of imputation performance of post-collapsing, and pre-
collapsing methods 
(A) Comparison of mean dosage r2 of methods by dosage r2 bin of PostC method. B 
shows histogram of difference in dosage r2 values for the pre- and post-collapsing 
imputation methods. The red dotted vertical line indicates no difference in dosage r2. 
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Figure 3.3B Comparison of imputation performance of post-collapsing, and pre-
collapsing methods 
(A) Comparison of mean dosage r2 of methods by dosage r2 bin of PostC method. B 
shows histogram of difference in dosage r2 values for the pre- and post-collapsing 
imputation methods. The red dotted vertical line indicates no difference in dosage r2. 
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Table 3.2 Enhanced imputation accuracy by the PreCimp method 

Dosage r2 
bin of 
PostC 

Mean increased in dosage r2 

Increased in dosage r2 
(%) 

(PreCimp – PostC) / 
PostC 

All genes 
(3,830 
genes) 
(# of 

genes) 

< 200kb 
(3,717 
Genes) 

(# of genes) 

≥ 200kb 
(113 Genes) 
(# of genes) 

< 200kb All genes 

0 ~ 0.1 0.060 
(236) 

0.060 
(236) 

- 
(0) 129.4% 129.4% 

0.1 ~ 0.2 0.087 
(230) 

0.088 
(228) 

-0.072 
(2) 58.8% 57.9% 

0.2 ~ 0.3 0.085 
(282) 

0.086 
(275) 

0.039 
(7) 34.1% 36.2% 

0.3 ~ 0.4 0.075 
(357) 

0.078 
(351) 

-0.055 
(6) 22.0% 21.4% 

0.4 ~ 0.5 0.073 
(435) 

0.076 
(423) 

-0.036 
(12) 16.8% 16.1% 

0.5 ~ 0.6 0.060 
(485) 

0.064 
(464) 

-0.028 
(21) 11.6% 10.9% 

0.6 ~ 0.7 0.040 
(506) 

0.048 
(487) 

-0.149 
(19) 7.4% 6.3% 

0.7 ~ 0.8 0.025 
(469) 

0.035 
(450) 

-0.206 
(19) 4.7% 3.4% 

0.8 ~ 0.9 0.008 
(422) 

0.018 
(401) 

-0.196 
(21) 2.1% 0.8% 

0.9 ~ 1.0 0.001 
(408) 

0.003 
(402) 

-0.147 
(6) 0.3% 0.1% 

 

  



 

 

 

57 

 

Figure 3.4A Difference in dosage r2 values by gene size and length 
(A) Scatter plot of the number of variants used for pre-collapsing vs. gene length for 
genes in the MAF5 set with size < 200kb (B) Scatter plot of the number of variants 
used for pre-collapsing vs. gene length for genes in the MAF5 set with size ≥ 200kb. 
Circle size represents the magnitude of difference in dosage r2. Blue color indicates 
that the pre-collapsing method performs better than the post-collapsing method. Red 
color indicates that the pre-collapsing performs worse than the post-collapsing 
method. 
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Figure 3.4B Difference in dosage r2 values by gene size and length 
(A) Scatter plot of the number of variants used for pre-collapsing vs. gene length for 
genes in the MAF5 set with size < 200kb (B) Scatter plot of the number of variants 
used for pre-collapsing vs. gene length for genes in the MAF5 set with size ≥ 200kb. 
Circle size represents the magnitude of difference in dosage r2. Blue color indicates 
that the pre-collapsing method performs better than the post-collapsing method. Red 
color indicates that the pre-collapsing performs worse than the post-collapsing 
method. 
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Figure 3.5 Boxplot of dosage r2 values of PreCimp and PostC. First two boxplot was 
shown for regions in haplotype blocks. Last two boxplot was shown for regions 
outside haplotype blocks.  
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3.3.2 PreCimp with additional information 

The PreCimp method greatly enhances imputation accuracy if additional 

information is used. Since rare variants used for PreCimp are more likely to correlate 

with PCVs, PreCimp would perform better if one or more rare variants used for 

PreCimp were available in both the reference and genotype panels. For example, 

low-cost customized chips containing rare variants, such as exome chip and metabo 

chip, can be powerful sources of rare variants with additional information (Figure 

3.6). Therefore, we analyzed the effect of additional information on the imputation 

performance of the PreCimp method by adding a variant used for PreCimp into the 

genotype panel. To maximize the performance, a rare variant with the highest LD r2 

with PCV was selected. Figure 3.7A shows the mean dosage r2 values obtained by 

PreCimp without additional information, and PostC (PostC-ADD) and PreCimp 

(PreCimp-ADD) when additional information was used for imputation (MAF5 set). 

The results show that the imputation performance of PreCimp and PostC was 

greatly improved when an additional variant was added. Furthermore, PreCimp also 

outperformed PostC. Overall, the mean difference in dosage r2 values was 0.338 

when PreCimp was used either with or without additional information. While dosage 

r2 was greatly improved overall, large genes showed relatively small increases in 

dosage r2 (Figure 3.7B). For example, in the MAF5 set, there are 2,976 genes with ≤ 

3 variant (77.7%) and 854 genes with > 3 variants (22.3%). The mean differences of 

dosage r2 were 0.233 and 0.368 for genes with ≤ 3 variants and those genes with > 3 

variants, respectively. For genes > 200kb with > 3 variants (60 genes, 1.6%), the 

increment of dosage r2 was dropped to 0.142.  
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Figure 3.7A Effect of additional information on imputation performance 
(A) Comparison of mean dosage r2 values obtained by the PreCimp without 
additional information, PostC with additional information (PostC-ADD), and 
PreCimp with additional information (PreCimp-ADD) are plotted by dosage r2 bin 
of PostC method with additional information. (B) The linkage disequilibrium r2 
between pre-collapsed variables and added variants is shown on the x-axis, and the 
difference between dosage r2 values obtained using pre-collapsing with additional 
information and those obtained using the pre-collapsing method without additional 
information is shown on the y-axis. Circle size represents number of variants used 
for collapsing. 
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Figure 3.7B Effect of additional information on imputation performance 
(A) Comparison of mean dosage r2 values obtained by the PreCimp without 
additional information, PostC with additional information (PostC-ADD), and 
PreCimp with additional information (PreCimp-ADD) are plotted by dosage r2 bin 
of PostC method with additional information. (B) The linkage disequilibrium r2 
between pre-collapsed variables and added variants is shown on the x-axis, and the 
difference between dosage r2 values obtained using pre-collapsing with additional 
information and those obtained using the pre-collapsing method without additional 
information is shown on the y-axis. Circle size represents number of variants used 
for collapsing. 
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3.3.3 Effect of PCV position on imputation performance 

PCV is an artificial value and has no specific genomic position. Thus, the 

position of PCVs should be assigned arbitrarily. Since the imputation method 

predicts untyped markers based on haplotype patterns consisting of sets of correlated 

variants, the position of PCVs could affect imputation performance, especially if 

additional variants are used for PreCimp. For the comparison analysis, we used five 

different positions: a position one base ahead of the position of the first rare variant 

(PreCimp-1), the position of the last rare variant (PreCimp-L), the position of the 

variant with the highest LD r2 (PreCimp-R2), the mean position of variants used for 

PreC (PreCimp-M), and the weighted mean position of variants used for PreC 

(PreCimp-WM). In this analysis, we only used chromosome 1. Figure 3.8 shows 

mean dosage r2 values obtained using the different PreCimp methods (MAF5 set). 

PreCimp-R2 showed an improved performance over other PreCimp methods. 

  



 

 

 

65 

 

Figure 3.8 The effect of pre-collapsed variable position on imputation performance 
Comparison of mean dosage r2 values obtained by the pre-collapsed imputation 
(PreCimp) method using various pre-collapsed variable positions including mean 
position of rare variants (PreCimp-M), weighted mean position of rare variants 
(PreCimp-WM), a position one base ahead of the position of the first rare variant 
(PreCimp-1), the position of the last rare variant (PreCimp-L), and the position of 
the variant with the highest LD r2 (PreCimp-R2)   
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3.3.4 Example of PreCimp and PostC in association study 

We next compared association analysis results of PreCimp and PostC method 

with those of true dataset. A liver enzyme trait, aspartate aminotransferase (AST), 

was tested with multiple linear regression analysis on collapsed variables after 

adjusting recruitment area, gender, and age. For comparison analysis, we used only 

variants available in the true dataset. Figure 3.9 shows scatter plots using –log10(p-

value) of true data, PreCimp, and PostC method. In Figure 3.9B, PostC method 

showed two false positives that were not significant in the results of true data (p-

value > 0.05). Two false results were summarized in Table 3.3. Collapsing of best 

guessed genotypes from low imputation quality variants caused misleading results. 

For example, dosage r2 values of two variants used for PostC was 0.157 and 0.173. 

However, dosage r2 of collapsed variable by PostC was 0.022 while dosage r2 of 

imputed pre-collapsed variable by PreCimp was 0.148. 
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Figure 3.9 Scatter plot of –log10(p-value) (A) True dataset vs. PreCimp  
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Figure 3.9 Scatter plot of –log10(p-value) (B) True dataset vs. PostC. 
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Table 3.3 False results by PostC method 

Gene 
Dosage r2 P-value 

Single 
variant PostC PreCimp PostC PreCimp True data 

CNOT3 0.157 
0.173 0.022 0.148 5.3x10-4 6.8x10-2 7.2x10-1 

GAS6-
AS1 

0.165 
0.271 0.062 0.160 6.0x10-4 2.7x10-2 8.3x10-1 
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3.4 Discussion 

In this study, we proposed a PreCimp method to improve the accuracy of 

imputation of rare variants by using collapsed variables. Using exome sequencing 

and chip data, we demonstrated that the proposed PreCimp method enhances the 

imputation performance of collapsed variables. For example, the imputation 

accuracy of genes with low dosage r2 (< 0.6) was improved by approximately 10.9 – 

129.4% (Table 3.2). Moreover, the performance was greatly enhanced if the variants 

used for PreCimp were also used in the imputation analysis. If available, customized 

chips such as exome chip and metabo chip can provide additional rare variants to the 

genotype panel so that the imputation accuracy of collapsed variables would be 

greatly increased. In addition, we investigated the effect of PCV position on 

imputation performance. Our results show that, if additional variants are available, 

imputation performance is increased by placing PCVs next to the added variants with 

the highest LD. 

The major advantages of the proposed approach are feasibility and flexibility in 

implementation. The PreCimp method simply builds a new reference panel and then 

performs standard imputation analysis with the new reference, which can impute 

collapsed variables more accurately. Since PreCimp uses the information of phased 

reference haplotypes, construction of new reference panel using PreCimp is 

computationally feasible and doesn’t require a compute intensive process such as 

haplotype estimation of reference panel. In addition, a coding scheme utilizing the 

PreCimp method would make it possible to identify disease-associated rare variants 

on the basis of haplotype. During PreCimp, rare variants are collapsed by each 

haplotype, and PCVs can be coded as 0, 1,or 2 depending on the number of 

haplotypes with rare variants. 
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Despite these advantages, however, the proposed PreCimp method has three 

main limitations. First, PreCimp showed poor performance with large genes 

(>200kb, Table 3.1). Generally, the distance between two variants is negatively 

correlated with LD, and there is weak correlation between rare variants due to their 

low allelic frequency. Therefore, collapsing multiple rare variants within large-sized 

region would result in a low correlation with common markers in the reference panel. 

It might be that the performance of PreCimp can be improved by splitting large genes 

into several small sub-regions. Since genes larger than 200kb are likely to show poor 

performance, we recommend that split large-sized genes into chunks smaller than 

200kb. Second, we used imputation via a pre-phasing method based on haplotype 

information using a bi-allelic coding scheme. Thus, the imputed collapsed variable 

can only be used as a variable indicating the presence or absence of rare variants. If 

another imputation strategy is used, a coding scheme based on counting can be used 

in the PreCimp method. Lastly, the imputed collapsed variables can only be used for 

burden type association tests. Non-burden type tests such as the weighting method 

and the sequence kernel association test (Wu et al. 2011) are difficult to use for the 

imputed collapsed variables. Thus, the proposed method will have to be extended in 

order to consider various aspects of rare variants in association analyses. 

Larger reference panel such as 1,000 genomes project data would enhance 

imputation accuracy, especially for rare variants. However, rare variants are likely 

to be population specific  (Bodmer and Bonilla 2008). Considering ancestry, 1,000 

genomes would not be a good source of rare variants compared to study specific 

sequencing data. For example, there are only 286 samples with East Asian ancestry 

in 1,000 genomes project phase 1 dataset. 286 samples are much lower than 848 

samples used in this study. Duan et al. reported that imputation performance using 

study specific reference panel showed better imputation quality than using the 
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reference panel of 1,000 genomes data (Duan et al. 2013). Also concatenation of 

study specific reference panel and 1,000 genomes reference panel showed only 

modest gains over study specific reference panel in imputation quality (1.5 ~ 2.3%). 

Therefore, PreCimp would perform best if population specific reference panel is 

available. However, PreCimp also can be applied to public reference panel such as 

1,000 genomes project data. 1,000 genomes project data provides ancestry 

information of samples. One can select samples with similar ancestry of study 

population and apply PreCimp on subset of the reference panel. It is expected that 

there will be more than 500 samples with a specific ancestry in reference panel of 

1,000 genomes project phase 3. 

In conclusion, next-generation sequencing technology is becoming an essential 

research tool in genomics. Although next-generation sequencing is not yet applicable 

to large-scale population based genome studies, the cost for sequencing is rapidly 

decreasing. In the meantime, genotype imputation of rare variants is a cost-efficient 

way to comprehensively search for rare variants. Thus, our PreCimp method is 

valuable for increasing imputation performance of collapsed variables because it has 

the ability to enhance the imputation performance of rare variants. 
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Chapter 4. Imputation based association analysis on 

liver enzyme traits 
 

4.1 Introduction 

Elevated level of γ-glutamyl transferase (GGT), alanine aminotransferase 

(ALT), and aspartate aminotransferase (AST), plasma liver enzymes, are well known 

indicator of increased risk of liver diseases (van Beek et al. 2013). Liver enzymes 

have been reported to be an index of liver injury (Pratt and Kaplan 2000) and a 

marker of fatty liver (Schindhelm et al. 2006; Targher et al. 2009; Vernon et al. 2011) 

and oxidative stress (Lee et al. 2008). Therefore, finding factors influencing liver 

enzyme levels is very important to understand individual difference and also 

underlying mechanism of liver related diseases. 

Heritability of liver enzymes was 32-69%, 22-64%, and 21-61% for GGT, ALT, 

and AST, respectively (Whitfield and Martin 1985; Bathum et al. 2001; Whitfield et 

al. 2002; Pilia et al. 2006; Lin et al. 2009; Makkonen et al. 2009; Nilsson et al. 2009; 

Rahmioglu et al. 2009; Loomba et al. 2010; Sung et al. 2010). As genetic factors 

have substantial influence on the variation of liver enzymes, numerous GWASs have 

been conducted to identify associated variants (Yuan et al. 2008; Chambers et al. 

2011; Kim et al. 2011). However, reported loci failed to fully explain phenotypic 

variance. Since previous GWASs mainly focused on common variations (MAF > 
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5%), identification of less common (MAF 1-5%) and rare variants (MAF < 1%) is 

warranted. 

In this context, we performed exome-wide association analysis by whole-

exome imputation on 8,749 samples of combined data comprising of GWAS chip 

and exome array. Whole-exome imputation and genotyped data using exome array 

enabled us to examine functional variants among previously known regions and less 

common or rare variants associated with liver enzyme levels. 

 

4.2 Materials and Methods 

4.2.1 Subjects  

Korea Association REsource (KARE) project is initiated in 2007. Two 

prospective cohorts as a part of Korean Genome Epidemiologic Study (KoGES) 

were participated in this project. There were 10,038 participants aging from 40 to 69 

years old. In these prospective cohorts, participants were examined clinical records, 

anthropometric, and biochemical traits for every two year. A detailed description of 

KARE has been reported previously(Cho et al. 2009). 

The HEXA cohort is one of the KoGES population-based cohorts which were 

initiated in 2001 aiming to identify risk factors of life-style related complex diseases 

such as type 2 diabetes, hypertension, and dyslipidemia. Approximately 3,700 of 

1,200,000 subjects aged 40-69 from the HEXA cohort were randomly selected as a 

shared control group for the Korean cancer and coronary artery disease (CAD) GWA 

studies. Genotyping was conducted with the Affymetrix Genome-Wide Human SNP 

array 6.0 in 2008. 
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4.2.2 GWAS and exome chip genotyping  

Initially, KARE and HEXA samples were genotyped using three different 

platforms. The Affymetrix Genome-Wide Human SNP Array 5.0 and SNP Array 6.0 

(Affymetrix Inc., San Diego, CA, USA) was used for genotyping samples of KARE 

and HEXA, respectively. And the Illumina HumanExome BeadChip v1.1 (Illumina, 

Inc., San Diego, CA, USA) exome array was used for genotyping a subset of KARE 

and HEXA samples that were previously genotyped using GWAS chips. A quality 

control procedure of GWAS chips of both cohorts are described in detail previously 

(Cho et al. 2009; Kim et al. 2011). Briefly, samples with a high missing rate (>4%), 

gender discrepancy, excessive heterozygosity, or cryptic first degree relatives were 

removed. Then, those SNPs with Hardy-Weinberg equilibrium p-values < 10-6, 

genotype call rates < 95%, and MAF < 0.01 were also removed from the set. After 

the remaining SNPs were annotated using the Affymetrix annotation file (see Web 

Resources) without positional information were eliminated from further analysis. 

Finally, 8,842 samples with about 344K autosomal SNPs and 3,703 samples with 

650K autosomal SNPs were remained for KARE and HEXA, respectively. Amog 

these previously genotyped samples, 6,197 KARE and 3,400 HEXA samples were 

genotyped using exome array. All these samples passed the following exclusion 

criteria: call rate < 99%, excessive heterozygosity, and gender inconsistency. Then, 

variants with call rate < 0.95, Hardy-Weinberg equilibrium p-values < 10-6, 

duplicated markers, and monomorphic markers were removed, so that 66,196 of the 

initial 242,901 variants were taken forward for further analysis. Among 6,197 KARE 

samples, 848 samples used for constructing reference panel and remaining GWAS 

chip and exome chip of KARE and HEXA samples were used as genotype panel 
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4.2.3 Building the population specific exome reference panel  

Type 2 Diabetes Genetic Exploration by Next-generation Sequencing in Ethnic 

Samples (T2D-GENES) consortium was initiated to identify functional variants 

associated with type 2 diabetes and its related risk factors. From five ethnic groups, 

about 10,000 exomes were sequenced at the Broad Sequencing Center using Agilent 

Human Exon v2 capture (capturing ~18,000 genes). Among ten thousands of 

samples, 538 type 2 diabetes and 579 control samples from KARE project were 

included. 1,087 samples were remained for further analysis after quality control on 

DNA and sequenced samples. For reference genome, hg19 was used for alignment 

and variant calling process. During the variant calling process, the Genome Analysis 

Toolkit v2 was used (McKenna et al. 2010). For 1,087 samples, we used 500,821 

autosomal variants of 848 Korean samples to construct whole-exome reference panel.  

We then constructed a population-specific whole-exome reference panel by 

merging data of exome sequencing, exome array, and GWAS chip of 848 identical 

KARE samples. The detailed description is reported in a separate paper (Kim et al. 

submitted). After merging process, initial reference panel contained 856,690 variants. 

After excluding non-imputable variants (extremely rare variants with MAF < 0.3%) 

(Kim et al. submitted), final whole-exome reference panel included 487,381 variants 

and phased using the ShapeIT v2 program to build the phased reference panel for 

imputation analysis (Delaneau et al. 2012).  

 

4.2.4 Statistical analysis  

For imputation analysis, we used typical pre-phasing based imputation analysis 

on combined genotype panels consisting of GWAS chip and exome chip (Howie et 

al. 2012). We used minimac software, a low memory and computationally efficient 
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implementation of the MaCH algorithm (Li et al. 2010). The association of imputed 

and genotypes SNPs with liver enzymes was tested by linear regression adjusting 

age, gender, and recruitment area (in case of KARE) using EPACTS 

(http://genome.sph.umich.edu/wiki/EPACTS). Prior to analysis, all imputed 

genotypes were assigned as best-guessed genotypes based on posterior probabilities. 

The meta-analysis was performed using a weighted average method assuming fixed 

effects with inverse variance using metal software (Willer et al. 2010). Statistical 

analyses and visualization of the results were performed using the R program. 

 

4.3 Results 

We performed whole-exome imputation on combined data consisting of GWAS 

chip and exome array from KARE and HEXA samples. Since we constructed whole-

exome reference panel using Affymetrix SNP 5.0, only a subset of GWAS data of 

HEXA cohort (Affymetrix SNP 6.0) matched with reference panel was used for 

imputation analysis. As a result, a total of 8,529 samples were imputed and 487,381 

imputed variants were generated. For association analysis, KARE and HEXA 

samples were analyzed separately. After association analysis, meta-analysis was 

conducted merging KARE and HEXA association results. 

Figure 4.1 is manhattan plot of AST association results of KARE samples. 

Quantile-quantile plot of AST association results of KARE is shown in Figure 4.2. 

As displayed in Figure 4.1 and 4.2, spurious signals with very strong statistical 

significance were observed from imputed variants with low imputation quality score 

http://genome.sph.umich.edu/wiki/EPACTS


 

 

 

78 

(rsq < 0.4). Therefore, we excluded imputed variants with low imputation quality 

score (rsq < 0.4) and 461,295 variants were remained.  
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Figure 4.1 manhattan plot of AST association results of KARE samples. (A) initial 
association results (B) association results after excluding low quality imputed 
variants 
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Figure 4.2 quantile-quantile plot of AST association results of KARE samples. (A) 
initial association results (B) association results after excluding low quality imputed 
variants 
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After quality control on imputed variants, there was no false positives by low quality 

imputed variants (Figure 4.3 and Figure 4.4). We performed meta-analysis with 

quality controlled association results of KARE and HEXA samples. As a result, we 

discovered 20 loci with p-value < 5x10-6. Although most of loci were previously 

reported, we discovered 7 novel loci among them after excluding 2 possible false 

positives with statistically significant p-value (P < 0.05) from heterogeneity test. 

However, no novel loci reached at the genome-wide significance level (P = 5x10-8). 

Top signals from ALT, AST, and GGT are shown in Table 4.1, 4.2, and 4.3, 

respectively. 
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Figure 4.3 manhattan plot of ALT, AST, and GGT association results of KARE samples. 
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Figure 4.4 quantile-quantile plot of ALT, AST, and GGT association results of KARE 

samples. (A) initial association results (B) association results after excluding low quality 

imputed variants 
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Table 4.1 Top signals from ALT association results 

CHR Function MAF P-value 
KARE 

P-value 
CITY 

P-value 
META 

P-value 
Het Known 

2 
Intron: 

LHCGR|STO
N1-GTF2A1L 

0.224 2.43E-03 2.69E-04 3.66E-06 3.02E-
01 X 

8 Intergenic 0.285 4.82E-04 1.54E-03 2.64E-06 6.64E-
01 O 

10 
Missense: 

A1CF 
[Lys -> Gln] 

0.001 1.37E-08 2.51E-01 1.31E-07 1.61E-
02 X 

12 Intron 
ALDH2 0.159 1.35E-05 3.27E-02 1.79E-06 3.96E-

01 O 

22 Synonymous: 
PNPLA3 0.419 7.29E-06 7.85E-05 2.37E-09 7.05E-

01 O 
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Table 4.2 Top signals from AST association results 

CHR Function MAF P-value 
KARE 

P-value 
CITY 

P-value 
META 

P-value 
Het Known 

1 Intron:OBSC
N 0.001 5.42E-06 4.23E-02 1.53E-06 1.86E-

01 X 

10 Missense:RET 
Arg -> His 0.009 6.87E-06 6.14E-02 2.74E-06 1.82E-

01 X 

10 
Missense: 

A1CF 
Lys->Gln 

0.001 1.40E-07 4.11E-01 2.19E-06 1.39E-
02 X 

10 Intergenic 0.226
2 2.74E-04 3.25E-03 2.84E-06 9.21E-

01 X 

10 
Missense: 

GOT1 
Gln->Glu 

0.014 3.59E-07 8.98E-05 1.28E-10 9.20E-
01 O 

12 
Missense: 
ALDH2 

Glu->Lys 
0.159 2.69E-08 6.73E-04 7.99E-11 5.60E-

01 O 

13 Intron: 
COL4A1 0.002 5.77E-02 1.22E-06 2.98E-06 1.19E-

02 X 

22 Synonymous: 
PNPLA2 0.419 2.39E-03 7.97E-07 5.19E-08 4.43E-

02 O 
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Table 4.3 Top signals from GGT association results 

CHR Function MAF P-value 
KARE 

P-value 
CITY 

P-value 
META 

P-value 
Het Known 

7 Intron:MLXIP
L 0.10 4.02E-06 1.34E-01 2.89E-06 1.97E-

01 O 

8 
Intron:AC135
352.1|KIAA1

456 
0.21 1.23E-04 8.64E-03 3.26E-06 8.71E-

01 X 

12 
missense:AL

DH2 
Glu -> Lys 

0.16 3.40E-29 1.95E-04 6.12E-31 6.04E-
03 O 

12 Intron:HNF1
A 0.48 7.30E-09 1.22E-02 4.83E-10 2.89E-

01 O 

13 Intergenic 0.46 2.62E-06 9.60E-01 1.07E-03 7.58E-
03 X 

22 Intron:GGT1 0.25 1.29E-07 1.55E-05 1.16E-11 4.03E-
01 O 
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Intronic and missense variants were newly associated with ALT trait. Nearby 

genomic region of variants at intron of LHCGR-STON1-GTF2A1L have been 

previously associated with obesity, endometrial cancer, and bipolar disorder. 

Missense variant at A1CF changes amino acid Lys to Gln. A1CF (APOBEC1 

complementation factor) is a protein-coding gene. A1CF was previously associated 

with anisometropia, and hydrocele. A1CF was previously reported to modulate liver 

regeneration via post-transcriptional regulation (Blanc et al. 2010). Regional 

association plot of missense variant at A1CF gene is shown in Figure 4.5. 
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Figure 4.5 regional association plot of missense variant at A1CF gene 
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For AST trait, 4 newly associations were discovered. 4 loci were located at 

intron of OBSCN, exon of RET, intergenic region, and intron of COL4A1. OBSCN 

(obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF) is a protein-coding 

gene. Diseases associated with OBSCN include leiomyosarcoma, and 

gastrointestinal stromal tumor. RET (ret proto-oncogene) is a protein-coding gene. 

RET has been reported to be associated with diseases such as thyroid cancer, 

childhood, and sipple syndrome. Also p.G533C mutation of RET was reported to 

confer predisposition to multiple endocrine neoplasia Type 2A (Oliveira et al. 2011). 

Regional association plot of variants at OBSCN and RET is displayed in Figure 4.6 

and 4.7, respectively. 
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Figure 4.6 regional association plot of missense variant at OBSCN gene 
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Figure 4.7 regional association plot of missense variant at RET gene 
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4.4 Discussion 

In this study, we performed whole-exome imputation on 8,529 samples and 

subsequent imputation based association study. Meta-analysis of two cohort samples 

revealed 7 novel associations including two missense functional variants. 

Interestingly, one missense variant was discovered at A1CF. The gene was 

previously reported to modulate liver regeneration via post-transcriptional regulation 

(Blanc et al. 2010). Our study would shed light on understanding underlying genetics 

of liver enzyme related functional variants and its effect on phenotypes. 

Although the newly discovered variants in the present study are valuable, those 

novel variants didn’t take forward to replication study in an independent cohort. We 

reduced the possible chance of discovering false positives by performing meta-

analysis on two cohorts and discarding spurious signals with statistically significant 

from heterogeneity test. However, it would be necessary to perform replication study 

to further confirm the associations in an independent cohort. 

One limitation of our study is the construction of whole-exome reference panel 

and following imputation. Since extremely rare variants (MAF < 0.3%) were 

excluded from the original reference panel, we only performed association analysis 

with limited number of rare variants. Our study will be more powerful by increasing 

the number of samples in the reference panel or using additional information such as 

phase 3 reference panel from 1,000 genomes project. 

In summary, our study reported 7 novel associations responsible for liver 

enzymes. Although those associations were not confirmed through replication study, 

by finding two functional variants, it would be valuable to understand the genetics 

of liver enzymes. 
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Chapter 5. Summary and Conclusion 
 

Rare variants have gathered increasing attention as a possible alternative source 

of missing heritability. Since next generation sequencing technology is not yet 

efficient in a large scale genomic study, two approaches, imputation and customized 

chips such as exome array and Metabochip, have been widely used in large scale 

genome studies. Two approaches have successfully identified numerous less 

common or rare variants associated with various phenotypes. However, this 

imputation approach has a limitation due to low accuracy of imputed rare variants, 

and customized chips are designed only for the specific targets. Various previous 

studies have reported analysis strategies for improving imputation accuracy of rare 

variants. Since, previous studies have mainly focused on utilization of reference 

panel, different aspects of imputation strategy and methodological approach are 

warranted to more efficiently improve imputation accuracy of rare variants. 

For a new strategy, we proposed the combined approach that adopts 

advantages of imputation and customized chip was described. In this approach, we 

constructed exome reference panel using 848 identical samples with whole exome 

sequencing data, GWAS chip, and exome array data. Using this population specific 

whole-exome reference panel, we performed imputation analysis on 5,349 samples 

of combined data including GWAS chip and exome array. We compared imputation 

results of exome array, GWAS chip only, and combined data. As a result, the 

combined approach increase about 11% in imputation accuracy and enhanced about 

two times of genomic coverage for rare variants (MAF < 1%) compared to 

imputation results of genotype panel with GWAS chip alone. Regardless of samples 

size of reference panel, combined approach showed better imputation performance. 
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Also combined approach outperformed previously reported two-step imputation 

approach. 

Besides the analysis strategy for enhancing imputation accuracy of rare 

variants, we develop a method to improve imputation performance, which is Pre-

collapsing based imputation approach (PreCimp) is described in chapter 3. PreCimp 

method consists of two steps. In the first step, collapsed variables are generated using 

rare variants in the reference panel and new reference panel is constructed by 

inserting pre-collapsed variables (PCVs) into the reference panel. Next, typical 

imputation analysis with the new reference provides the imputed genotypes of 

collapsed variables. We demonstrated the performance of PreCimp on 5,349 

genotyped samples using a Korean population specific reference panel including 848 

samples of exome sequencing, Affymetrix 5.0, and exome chip. PreCimp 

outperformed a traditional post-collapsing method that collapses imputed variants 

after single rare variant imputation analysis. Although PreCimp poorly performed 

for genes larger than 200kb (about 3% of all genes), its performance would be 

improved by splitting large-sized genes into small sub-regions. PreCimp approach 

was shown to increase imputation accuracy about 3.4 ~ 6.3% (dosage r2 0.6 ~ 0.8), 

10.9 ~ 16.1% (dosage r2 0.4 ~ 0.6), and 21.4 ~ 129.4% (dosage r2 below 0.4) 

compared with the results of post-collapsing method. 

     With the proposed methods, we performed imputation based association 

analysis on liver enzymes. 8,529 samples were imputed using whole-exome 

reference panel. Following association analysis and meta-analysis on two cohort 

including KARE and HEXA samples revealed 20 loci at the p-value 5x10-6. Among 

them, most loci were previously reported and 7 novel loci were discovered in this 

study. However, none of 7 new associations didn’t reach the genome-wide 

significance level (5x10-8). Novel loci included two missense variants and one of 
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them located at A1CF that is known to be a modulator of liver regeneration. Despite 

the valuable of the findings, further replication study is warranted to confirm the 

genetic effect of discovered variants in an independent cohort. 

In summary, we propose a combined approach for analysis strategy and 

develop PreCimp method to improve imputation accuracy of rare. Combined 

approach enhanced imputation accuracy about 11% and two times of genomic 

coverage for rare variants compared to previously used genotype panel consists of 

GWAS chip only. Pre-collapsing based imputation approach enhanced imputation 

accuracy of rare variants in forms of collapsed variables. PreCimp increased 

imputation accuracy about 10.9 ~ 129.4% for imputed variants with imputation 

quality score below 0.6. In the following imputation based association analysis, we 

performed imputation analysis using whole-exome sequencing data on genotyped 

samples comprising 8,529 samples. Subsequent association analysis discovered 7 

novel loci including two missense variants. Our investigation of analysis strategy 

and methodological approach for enhancing imputation accuracy of rare variants, 

and following imputation based association study would be efficient analysis 

approaches and valuable resource for understanding rare variants and its association 

to various phenotypes. 
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초    록 

 
희귀변이는 잃어버린 유전성을 설명할 수 있을 것으로 기대되는 

주요 유전 요인 중 하나로써 많은 관심을 받고 있다. 최근 급성장한 

차세대염기서열분석 기법으로 인해 희귀변이의 발굴과 분석이 가능하게 

되었다. 이처럼 차세대염기서열 분석이 유전체 연구에 강력한 

연구기법으로 활용되고 있으나, 실험을 위한 비용과 분석에 필요한 높은 

계산력의 문제로 대규모 인구집단 기반 유전체 연구에 활용하기에는 

아직 어려운 실정이다. 그 대안으로, 최근에는 사용자화칩(메타보칩, 

엑솜칩 등)과 임퓨테이션 기법이 대규모 인구집단 기반 유전체 연구에 

널리 활용되고 있다. 임퓨테이션 기법은 컴퓨터 계산을 통한 예측 

분석으로 희귀변이 정보를 얻을 수 있다. 그러나, 임퓨테이션을 통해 

얻은 희귀변이의 정확도가 낮다는 문제점이 있다. 또한, 낮은 정확도의 

임퓨테이션 결과를 이용하여 지역 기반 연관성 분석을 수행하게 된다면 

위양성 결과가 발생할 가능성이 있다. 사용자화칩의 경우 희귀변이가 

기본적으로 포함되도록 설계되어 있으나 대부분 특수한 목적으로 

설계되었다는 점에서 한계를 가지고 있다. 따라서, 희귀변이 정보를 얻기 

위한 새로운 분석 전략과 방법에 대한 요구가 증대되고 있다. 

첫번째로, 본 연구에서는 통합 정보를 이용하는 방법에 대한 

분석 전략을 수립하였다. 이 방법은 전장유전체칩과 엑솜칩을 통합하고 

임퓨테이션 분석을 진행하는 것이다. 이를 위해 848명의 동일한 샘플에 

대해 생산된 엑솜염기서열정보, 전장유전체칩, 엑솜칩 정보를 이용하여 

참조패널을 구축하였다. 실제 임퓨테이션 분석의 대상이 되는 유전형 
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패널의 경우 5,349명의 동일한 샘플에 대해 엑솜칩으로만 구성된 패널, 

전장유전체칩으로만 구성된 패널, 통합된 패널을 이용하여 임퓨테이션 

시 나타나는 정확도 변화를 분석하였다. 그 결과로 희귀변이 연구에서 

통합정보 패널을 이용하는 경우에 전장유전체칩으로만 구성된 패널을 

사용하는 경우보다 약 11%의 정확도 향상과 두 배의 유전체연구범위가 

향상되는 것을 관찰하였다. 참조패널의 샘플 수에 관계없이 통합패널이 

항상 더 좋은 결과를 보여주었다. 또한, 통합패널을 이용한 방법은 

기존에 소개된 두 단계 임퓨테이션 방법보다 더 높은 정확도를 

보여주었다. 

본 연구에서는 전략적 분석 방법 이외에도 분석 방법을 개발하여 

높은 정확도의 희귀변이 정보를 얻고자 하였다. 선병합 방법을 통한 

임퓨테이션을 이용하여 병합된 변수에 대한 정확도를 향상 시키고자 

하였다. 선병합 임퓨테이션 방법은 두 단계로 구성되어있다. 첫째로 

참조패널의 정보를 이용하여 병합된 정보를 생산하고 기존 참조패널에 

추가함으로써 새로운 참조패널을 생성한다. 다음으로 새로 생성된 

참조패널 정보를 이용하여 일반적인 임퓨테이션 분석을 수행하여 병합된 

정보에 대한 예측 값을 얻을 수 있다. 본 연구에서는 848명의 동일인을 

대상으로 생산된 엑솜염기서열정보, 전장유전체칩 정보, 엑솜칩 정보를 

활용하여 엑솜참조패널을 구축하였다. 구축된 참조패널은 선병합 방법을 

이용하여 새로운 패널을 구성하였고, 이 패널을 이용하여 5,349명의 

전장유전체칩을 임퓨테이션 분석하였다. 분석된 결과는 동일한 5,349명을 

대상으로 생산된 엑솜칩 정보와 비교하여 정확도를 측정하였다. 그 

결과로 선병합 방법은 기존에 사용되었던 임퓨테이션 후 병합하는 
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방법보다 더 좋은 결과를 보여주었다. 약 3%에 해당하는 크기가 200kb 

이상의 유전자에서는 좋지 않은 결과를 보여주었으나, 작은 단위로 

나눠서 선병합 방법을 적용하는 경우 다른 결과와 마찬가지로 정확도 

향상을 관찰 할 수 있었다. 선병합 방법은 임퓨테이션 후 병합하는 

방법에 비해 약 3.4 ~ 6.3% (dosage r2 0.6 ~ 0.8), 10.9 ~ 16.1% (dosage r2 0.4 ~ 

0.6), 21.4 ~ 129.4% (dosage r2 0.4 이하)의 정확도 향상을 보여주었다. 

마지막으로 본 연구에서는 상기 개발된 분석 전략과 방법을 

이용하여 임퓨테이션 기반 연관성 분석을 수행하여 간 효소에 연관된 

유전요인을 발굴하고자 하였다. 먼저 엑솜염기서열 정보를 포함하여 

엑솜 참조패널을 구성하였으며, 이를 총 8,529명에서 생산된 

전장유전체칩과 엑솜칩을 통합한 정보의 임퓨테이션 분석에 활용하였다. 

임퓨테이션 후 연관성 분석을 수행하여 간 효소에 연관된 20개의 

유전자좌를 발굴하였다 (유의확률 < 5x10-6). 발굴된 20개의 유전자좌 중, 

7개는 본 연구에서 새롭게 발굴된 것이며 2개의 변이는 단백질 형성에 

영향을 주는 것으로 알려져 있었다. 

본 연구에서는 희귀변이 연구를 위해 희귀변이 임퓨테이션 시 

정확도 향상을 위한 분석 전략과 방법론을 개발하였으며, 이를 연관성 

분석에 활용하여 간 효소에 연관된 새로운 7개의 유전변이를 발굴하였다. 

본 연구에서 개발된 효율적으로 높은 정확도의 희귀변이 정보를 얻을 수 

있는 방법과 간 효소에 연관된 유전변이 신규 발굴 정보는 희귀변이 

연구와 그것이 표현형에 미치는 연구에 널리 활용될 수 있는 것으로 

기대된다. 
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