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A model of monopolistically competitive industry is formulated
using the theory of large games. We show that an equilibrium
exists for the game and that equilibrium correspondence is
upper hemi-continuous. The model’s implications are discussed,
especially on existence and characteristics of structurally stable
equilibria and on the relationship to Kumar and Satterthwaite’s

(1985) model.
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I. Introduction

Game theory is now widely employed in various fields of
economics. The most commonly used form of games is a
finite-player non-cooperative game, for which Nash (1950) provided
the celebrated solution concept of an equilibrium.

A ‘large game’ in this paper refers to a specific sort of
non-cooperative game, namely a non-cooperative game that has an
infinite number of players. Although game theory is usually most
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effective for situations involving a few players (e.g., oligopoly), a
game with many players is not necessarily an anomaly, nor a mere
mathematical curiosity. Early proponents of game theory were
apparently aware of usefulness or even necessity of large games in
order for game theory to reach the status of a comprehensive
mathematical framework for social science. (See for example the
introductory section in Khan-Sun (2001) where they quote
pioneering game theorists’ remarks to such effects).

This paper considers a model of monopolistic competition using
the theory of large games. One of the first meaningful results of
this theory was obtained by Schmeidler (1973), who showed that in
a game where there are infinitely many non-cooperative players
whose actions affect each other's payoffs by means of a social
average, a Nash equilibrium consisting of pure strategies exists. A
force of this result is that the existence of pure strategy equilibria
is not generally guaranteed for finite-player games (‘matching
pennies’ is a well-known counterexample).

While mathematical and conceptual issues in the theory of large
games have been explored extensively (see Khan-Sun (2001) for a
recent survey), this paper presents a very simple model utilizing
some basic techniques from that field.

Our model of monopolistic competition is inspired by a model
originally proposed by Kumar and Satterthwaite (1985). In
hindsight, their model was naturally suited for a large game
formulation, but the theory of large games had not sufficiently
matured at the time.

In the model, a large number of firms with an identical profit
function compete with each other. Each firm ignores impact of its
own action on the market, and is affected by other firms’ actions
through a vector of aggregate statistics. In other words, the profit
function takes as its argument a firm’s own action and a summary
statistic of (almost) all firms. Because of the largeness, the
summary statistic is not affected by changes in action of a single
firm.

Kumar and Satterthwaite’s main contribution was that in such a
game the number (or the dimension) of the aggregate statistic can
effectively restrict the number of viable equilibria. More precisely,
the number of distinct structurally stable equilibria (which will be
elaborated on later) can be bounded by the dimension of the
aggregate statistic. This has interesting implications for the extent



of product or strategy differentiation in the monopolistic competition
model.

In Section II, we formulate the model in terms of large games
and easily prove that there exists a Nash equilibrium. In Section
III, we first prove that equilibrium correspondence is upper hemi-
continuous. Then we study the relationship between continuity
notions of equilibrium correspondence and structural stability of
equilibria. We show that there exists a structurally stable
equilibrium. In Section IV, we discuss further technical issues and
describe Kumar and Satterthwaite’s (1985) model, explaining how
introducing an infinite number improved the model.

II. Model and Existence Results

A. Model of Monopolistic Competition: A Special Case

Let the set of firms I be a nonatomic measure space with
measure p.1 We may simply think of I as [0,1] interval with
Lebesgue measure in order to grasp the arguments. This
formulation leads to the interpretation that each firm is negligible.

Let the firms have a common set of available actions X—a
compact, convex subset of R". For example, if a firm’s strategic
actions encompass “price,” “advertising,” and “R&D,” then we can
take L to be 3.

A strategy profile is a measurable function s: [=X. This function

tells us what action each firm chooses. Call the set of all strategy
profiles S. Then the set of “averages” of actions of all firms is 4=
{ s(i):s<S).
J[in order to put firms in an a priori identical position,2 let the
(identical) profit function take the form of 7. XXJ—R.
Information is aggregated through a specific form of statistics,
namely the average of the actions. The ‘dimension’ of aggregate
statistic is L because an action is an L-vector.

Notice first that the distribution of the “active” actions in a given

'This model was inspired by the finite-player model of Kumar and
Satterthwaite (1985). We shall discuss the parallels in the final section.

’All firms enjoy an identical position ex ante, but may choose different
actions in equilibrium. We interpret this exhibition of different equilibrium
actions as differentiation. Therefore, as a referee has correctly pointed out,
we will be interested in asymmetric equilibria of this model.



strategy profile s is represented by the induced measure . -s' on
X. An action x€X is active in the strategy profile s if (x - sHeg= 7
(s'09)= pliels(i)=x})>0, i.e. a non-null subset of firms choose the
action x. This induced measure (or the distribution) contains all
relevant information for the competing firms.

Aggregation of information is said to occur when this distribution
is converted into a finite-dimensional vector of statistics, as is the
case here: the full information s -s' is converted into a single
L-dimensional information s(@dy=R L

The (Nash) equilibrium[,can be defined in a straightforward
manner: A strategy profile sx is an equilibrium in pure strategies if,
for almost all i€1, s*())EArgmax vexr (X', sx({)dp).

Given this setup, we have the folljwing existence theorem.
Because the standard existence theorem for large games can be
directly applied, we only give a sketch of proof.

Theorem 1. For an industry in which a continuum of identical
firms aggregates competitive information into a social average to
choose their strategic actions, there exists an equilibrium if 7 is
continuous.

Sketch of Proof: A game can be thought of as a mapping from the
space of players I to the space of player characteristics (action sets
and payoff functions). The current model is a game where every
player is assigned the same action set and payoff function. Hence,
the game is a constant-valued mapping, therefore measurable. It
easily follows from Theorem 2 in Rath (1992) that there exists a
pure strategy equilibrium for this game.

The proof involves constructing a best response correspondence
and taking an integral of this correspondence. Showing that the
integral (which itself is a correspondence) satisfies the requirements
of Kakutani's fixed point theorem completes the proof, because the
fixed point is an equilibrium.

B. Model of Monopolistic Competition: The General Case

Although the preceding model uses a standard large game
formulation, one important aspect of the model (i.e., aggregation of
information) is somewhat limited, so we now extend to a more
general model that allows for a broader set of information
aggregation.



First, take g. X—>R" to be a smooth3 function that corfverts each
action x (r?fn L-vector) to an M-vector. If M is small, the conversion
gives only a crude information on the original action vector, while if
M is sufficiently large, it gives a relatively complete description.4
Since a strategy profile s: I-=-X can be thought of as a random
variable, g(s) may be considered another random variable (of a
different dimension). A vector of summary statistic y on the original
information s can be produced by taking the expected value of g(s):
y= gs@)dui)= gbad(p- s)(x).5 Denote the set of such vectors
as }f-r f X

Now we let the payoff function take the form x. The equilibrium
in pure strategies is defined as before as a strategy profile sx: [—X
such that for almost all i€, s:*()SArgmax rexr x, gls*(@))d ).

For proving existence of equilibria in this gam¢;, Theorem 2 in
Rath (1992) cannot be directly applied. We offer an existence
theorem and proof here.6 Although proof is elementary, it is given
here for the sake of completeness. While standard proofs work on
4 in our notation (see Theorem 1 above), we need to work on Y.
So the proof involves making sure that Y behaves nicely for the
purpose.

Intuitively this is easy because Y differs from 4 in only two
respects. First, the difference between g(s) and s should not
cause any difficulty because the functifn g was gssumed to be

smooth (in fact, measurability should suffice). Second, g(s) is in

SFor proving existence, the function g need only be measurable, but we
assume smoothness for later analysis involving structural stability.

*All dimensions of the information need not be treated equally. For
example, When L-=3 (price, advertising, R&D), and M=3, firms might be
looking at average price, average advertising level and average R&D level; or
they might be calculating average, variance and the third moment of price
only while ignoring information on advertising and R&D altogether.

SFor example, if x€R and g)=(x, xz), then y can give a two-dimensional
information of the average and the variance of players’ choices. On the
other hand, if M=L and g. X—>R" is the identity mapping, we recover the
special case of the previous subsection.

SThat the large games can accommodate statistics other than averages
was first observed by Rauh (1994). In Rauh (1994), a finite number of
moments, ie. the expected values of x, x°.... XM, are used. The theorem
appears as Lemma B in Appendix of Rauh (1997) without proof. However,
as is shown here any summary statistic (or any random variable) can be
used as long as the finite dimensionality is preserved (i.e., the range of g is
finite-dimensional).



R" while s is in R" . This also matters little because as long as
dimension is finite, the proof works just as well.

Theorem 2. For an industry in which a continuum of identical
firms aggregate the competitive information through an M-
dimensional vector of statistics, there exists an equilibrium if r is
continuous.

Proof: Let B: IxY=X be the best response correspondence.” In
other words, B(i, y)=Argmax yexr(x, y) where y= g(s(@))du(@ for
some strategy profile s(-).8 i

Now take y (B(, - ))={gld:xEB(, - )}, which is a mapping from Y(C
R™ to R™. Next, define another correspondence [:Y=Y as follows:
I'ly)= 7 (B). We need to verify the following. (It helps to see I
as a srflooth transform of the best response correspondence B.)

Claim 1. Y is nonempty, convex and compact.
Claim 2. [ is nonempty-valued.

Claim 3. I' convex-valued.

Claim 4. ' has a closed graph.

Claim 1: That Y is nonempty is obvious. Because X is convex, Y
=g(X) (Lyapunov’s theorem, see Hildenbrand, 1974, p. 62). So Y is
convex and compact.

Claim 2: This is equivalent to showing that there exists a
measurable selection for ['. This follows from Aumann’s measurable
selection theorem. (Aumann, 1965, Theorem 2)

Claim 3: This again follows from Lyapunov’s theorem. (Aumann,
1965, Theorem 1)

Claim 4: This follows from Aumann’s version of Fatou’s lemma
(Aumann, 1965) because best response correspondence is upper
hemicontinuous. See also Aumann (1976).

By the claims, [’ fulfills the requirements for Kakutani's fixed
point theorem. Hence, there exists a fixed point yx, ie. yx& I'(y%).
Then a strategy profile s* such that g(sx(@)dp(d=y+ is an

"To distinguish a correspondence from a function, we use the notation =
instead of —.

®Because payoff function r is common across all players, the index i is
superfluous but it helps to avoid confusion in doing integrals.



equilibrium.

This result is false for the case when the number of firms is
finite (that is, for the original model by Kumar and Satterthwaite
(1985)). Kumar and Satterthwaite (1985) had to invoke an
additional assumption® on the functional form of the profit function
to ensure the existence of equilibria.

IV. Continuity of Equilibrium Correspondence

In this section, we will examine continuity properties of Nash
equilibrium correspondence (a mapping that assigns Nash equilibria
to each game). We will define upper and lower hemicontinuity
properties and prove that our equilibrium correspondence is upper
hemicontinuous. This has implications for structurally stable
equilibria, a notion used by Kumar and Satterthwaite (1985).

A. Definitions of Continuity Concepts

Let us first recall standard definitions of continuity concepts for
a correspondence (i.e. a set-valued mapping). The following defini-
tions can be found in Green and Heller (1981) and Hildenbrand
(1974). Relatively complete definitions are given here for readers’
convenience. Consider an arbitrary correspondence ¢:X=Y, where
X and Y are topological spaces.10

Definition 1. A correspondence ¢ is upper hemi-continuous at x&X

if:

1) ¢ x=v and

(2) for every open neighborhood U of ¢ (x), there exists a neighb-
orhood V of x such that ¢ x)CU for all x&V.

¢ is upper hemi-continuous if it is upper hemi-continuous at all

Specifically, = (x, y)= mold + i%]y,- mi(x). This assumption requires the profit

function to be linear — the profit function can be broken into M+1
components and expressed as an inner product between a vector of
statistics (1,yi,**-,ym) and a vector of functions (o, 71,**, 7m).

'"“Because X is a compact subset of R", it follows that any measurable
function fiI-X is also integrable, i.e. [|fldu <co. Moreover, it is also true
that f€Lp(y) for any 1<p<co.



x€X. Upper hemi-continuity is also characterized by either of
following two equivalent conditions:

(1) (xeX: ¢ W} is open for any open subset W of Y; or

(2) (xeX: ¢ 0dNF= g} is closed for any closed subset F of Y.

Definition 2. A correspondence ¢ is lower hemi-continuous at x&X
if:

(1) ¢ (=2 and

(2) for every open subset W of Y such that WN ¢ (x)= @, there
exists a neighborhood V of x such that ¢ x)NW=g for all x¥’€V.

¢ is lower hemi-continuous if it is lower hemi-continuous at all x
€X. Lower hemi-continuity is also characterized by either of the
following two equivalent conditions:

(1) (xeX: ¢ g CF} is closed for any closed subset F of Y; or
(2) xeX:¢dNW= o} is open for any open subset W of Y.

Definition 3. A correspondence ¢ is continuous if it is both upper
hemi-continuous and lower hemi-continuous.

B. Upper Hemi-continuity of Equilibrium Correspondence

In this subsection, we will study the properties of Nash
equilibrium correspondence. Nash equilibrium correspondence (or
simply equilibrium correspondence) is ¢:/[/=S, where I is the
space of all possible profit functions (identified with the space of
games because in our model every firm has the same profit
function), S is the space of strategy profiles and ¢ (r) is the set of
Nash equilibria of the game r &//. We give the sup-norm topology
on /I and the essential sup norm topology on S. (See the next
subsection for more on the use of these topologies).

We shall first prove upper hemi-continuity of Nash equilibrium
correspondence ¢ ://=S, which we will later show is equivalent to
the existence of a structurally stable equilibrium. Any strategy
profile in S also belongs to L.(x).11 Because we need to integrate a
finite dimensional statistic of the strategy profile, putting the
essential sup norm topology (ie. viewing the functions as an

UBecause X is a compact subset of R", it follows that any measurable
function fiI—X is also integrable, ie. [|fldy <oo. Moreover, it is also true
that feLy(x) for any 1<p<oco.



element of L.(x)) will be more than enough for the purpose.

We first define a notion that is weaker than upper hemi-
continuity. Again the definitions and the related facts can be found
in Green and Heller (1981) and Hildenbrand (1974). First, the
graph of a correspondence ¢ :X=Y is the set G(¢)={(xy):y<s ¢ ()}

Definition 4. A correspondence ¢ :X=Y is closed at x, if for every
sequence (x,,yn)=G(¢) such that (,yr)—0.yo) it is true (xo,yo<E
G(¢) so that if y.=() and x—xo and y,—yo, then yo< ¢ (xq).

A correspondence is closed if it is closed at all xeX.

The closedness implies (in fact, is equivalent to) upper hemi-
continuity if two conditions are met: (1) the range of ¢ is compact
and (2) ¢(x) is a closed set for each 7. Therefore, in order to
prove upper hemi-continuity, we may proceed by first showing
closedness of equilibrium correspondence and then showing
compactness of the range of equilibrium correspondence.

Theorem 3. Nash equilibrium correspondence ¢ :/7=S is upper
hemi-continuous.

We shall prove the theorem in two steps.

Claim 1. The Nash equilibrium correspondence ¢ :[[=S is closed.

Proof: Choose a convergent sequence (znS, such that s,= ¢ (r)
and denote the limit by (r+,s¢). To prove the claim, we have to
show that s+ <€ ¢ (74).

First note that g(s)— g(ss). As s, converges to sy, almost
everywhere, g(sp))=g ﬁ Sn alsg’ converges to g(sy) almost everywhere.
Then g(s,) converges to g(sy) in distribution. See Hildenbrand
(1974).

By assumption, we have, for each n, =n(sa(i), g(sn))> mnlx, g(sn)
for all x£X. As each r, is (jointly) continuous anf 7z, converges to
7+ in the sup-norm topology, we see m«(s«(i), g(s«))=> m«(x, g(s«)) for
all xeX. Hence $sy< ¢ (7+)$. R f f

Claim 2. S is compact.

Proof: First, note that the set of all mappings from I to X can be
thought of as the product space X', where the number of products



equals the cardinality of the set I. Because X is a compact subset o
by Tychonoffs theorem, X' is compact in the product topology, whic
turn can be viewed as the point-wise convergence topology on the
set of functions. Then obviously, X' is also compact in the almost
everywhere convergence topology. Now consider S, the space of
measurable functions from I to X with the essential sup norm
topology. This set is certainly a subset of X'. The almost everywhere
limit of a sequence of integrable functions is measurable (see, e.g.,
Phillips, 1984, p. 204), therefore the set S is closed. This
establishes that the set S is compact. B

C. Conttinuity of Equilibrium Correspondence and Structural
Stability of Equilibria

Kumar and Satterthwaite (1985) define the notion of structural
stability of an equilibrium and characterize structurally stable
equilibria in terms of the dimension of the statistics vector that
aggregates the information. This result has an interesting
implication on the amount of variation (or differentiation) among
the actions chosen by firms in equilibrium. In this section, we
relate the notion of structural stability to continuity of Nash
equilibrium correspondence. Let us first briefly sketch Kumar and
Satterthwaite’s results.

a) Sketch of Kumar and Satterthwaite’s Stability Results

Let Cxy={h:XXY—R:heC”} be the set of smooth real-valued
functions’ defined on XxY. (The assumption of smoothness is used
significantly here.)

Definition 5. The function h,ECxy is a homotopic perturbation of a
function heCyy if and only if hy=h+ Af for some feCxy and a
scalar . “ “

A homotopic perturbation is close to the original function in all
orders of derivatives. Because firms in our model have a common
profit function, we can identify a game with the profit function.
Hence a perturbation of a game, equivalently a perturbation of a
profit function r can be defined appropriately.

An equilibrium is structurally stable if a small perturbation of
the game has an equilibrium that is a small perturbation of the

10



equilibrium of the unperturbed game. The following definition has
adapted from Kumar and Satterthwaite (1985) to our current settin
infinite number of players.

Definition 6. An equilibrium strategy profile s:I-=X of a game r is
structurally stable if for all sufficiently small homotopic perturbation
74 of z, an equilibrium s( 1) exists which is close to s.

The ‘closeness’ between strategy profiles needs to be defined for
the above definition to be meaningful. We choose to work with the
topology generated by essential supremum norm on the space of
measurable functions. The essential sup norm is given by

lIsll =ess sup icils@) | =inf zc1 . @g-olsup icr-zIs@d|}

We can define the distance between two functions using this
norm and this distance function in turn generates a topology. Two
functions that have zero distance have the same value almost
everywhere on the domain.

Convergence of measurable functions in this topology (almost
everywhere convergence) implies convergence in distribution (See
Hildenbrand, 1974, pp. 46, 47 and 51, especially statements (21)
and (39) there). This means that while Kumar and Satterthwaite
talk about closeness between equilibrium configurations (that is,
distribution of chosen actions in equilibrium, s ' in our
notation, (qk.xJd’s in their notation), we can safely focus on
closeness between strategy profiles as it takes care of the closeness
between the distributions.

Kumar and Satterthwaite present two theorems. The first theorem
shows that a “regular” equilibrium with more than M+1 distinct
actions, where M is the dimension of the statistics vector, is
structurally unstable. The second theorem shows that a “regular”
equilibrium that has the “non-singularity” property and not more
than M+1 distinct actions is structurally stable. (See Kumar and
Satterthwaite (1985) for precise statements including regularity and
non-singularity).

We can interpret these results as follows. Firms are in an ex
ante identical position. In a symmetric equilibrium, all firms would
take the same action exhibiting no differentiation.12 But in an
asymmetric equilibrium, it is in their best interests given others’

11



choices for firms to choose different actions. Such a differentiation
allows us to label this model as monopolistically competitive. More
importantly, the extent of the differentiation is not unbounded.

Given the limitations of information processing, they can exhibit
differentiation so far as their sophistication of information
aggregation allows. If firms only know or care about industry
average of actions (so M=1), it is likely that in equilibrium they
will divide into two groups (for example, high pricing firms and low
pricing firms) or will choose the same action. A third group
choosing a third action may appear, but this configuration is
structurally unstable, meaning that a small perturbation of payoff
structure will destroy the equilibrium.

The proofs of these theorems, which use tools from differential
topology, rely on the fact that there are only finitely many active
actions in any equilibrium. This fact does not have to be brought
out for the setting considered by Kumar and Satterthwaite because
there are a finite number of firms. In our formulation we cannot a
priori assume that there are a finite number of active actions.

We note, however, first that a measurable function can be
approximated by a step function which does have a finite image.
Hence, an equilibrium can be generally approximated by a strategy
profile with a finite number of actions. Because when the number
of actions is greater than M+1 the equilibrium is structurally
unstable, we may intuitively infer that in the limit when the
number of actions is infinite, the equilibrium must be structurally
unstable. This conclusion is not guaranteed of course; it is
well-known that the limit phenomenon can be quite different from
an approximating phenomenon.

Until we obtain a definitive characterization of an equilibrium
with infinitely many actions, we may accept Kumar and
Satterthwaite’s results in our setting on practical basis. It would be
of interest to construct concrete examples dealing with this matter.
We now turn our attention to another issue, ie. whether a
structurally stable equilibrium exists in general, independent of the
dimension of the statistics.

b) Structural Stability of Equilibria and Continuity of Equilibrium

2So a symmetric equilibrium will represent a competitive market.
Because we are interested in monopolistic competition, we focus on
asymmetric equilibria. I thank a referee for emphasizing this point.

12



Correspondence
In the following lemmas, we investigate the relationship between
structural stability of equilibria and continuity of Nash equilibrium
correspondence. As before, we give the sup-norm topology on [
and the essential sup norm topology on S.13

Lemma 1. If ¢ (o), the set of Nash equilibria for the game 7o,
consists of structurally stable equilibria only, then equilibrium
correspondence ¢ is lower hemi-continuous at ro.

Proof: Fix an open subset WCS with diameter D such that ¢ (o) N
W= 2. We need to show that there exists a neighborhood of 7o
whose image via ¢ intersects with W. Pick an sy ¢ (rmo) NW. Let
Visx, e)={rx<E1Il: is a perturbation of 7o such that there exists an s
¢ (x) with ||s,sx||<e. Let e <D and ¢ (x), where 7 <V(sy,e),
intersects with W.

Remark.

Structural stability does not imply upper hemi-continuity of ¢. To
see this, let us try proving it. We might proceed as follows. Fix a
neighborhood U of ¢ (7o) with diameter D. Then we need to show
that there exists a neighborhood of o whose image via ¢ is
contained in U, or in other words, the distance between any two
equilibria is less than D.

Fix sy€ ¢ (m0). Since sy is structurally stable by assumption, a
sufficiently small perturbation of 7o always has an equilibrium that
is arbitrarily close to sy. Let V(sy, ) be the same as in the above
proof. But ¢ (x) could still have another equilibrium that is far
from sy. Let V(e)=nN V(s«, €). Hence, for all sy ¢ (x0), there
exists is a 7 €V(e¢) that has s ¢ (7) within ¢ of sy.

This does not prove V(e¢) is the desired neighborhood of 7zo. The
image of V(e) touches every point of ¢ (7 within e, but ¢ (V(e))
may contain other points far from ¢ (7). W

The next lemma proves the converse of above Lemma,

8A referee thought it confusing to use homotopic perturbation of r in
defining structural stability and to use sup-norm topology on // in defining
continuity notions. Homotopic perturbation was employed by Kumar and
Satterthwaite (1985) to use techniques from differential topology and
requires smoothness, while our definitions of continuity are standard. A
homotopic perturbation always lies in a small open neighborhood (in
sup-norm topology), while in an open neighborhood, one can always select a
homotopic perturbation of a smooth 7.

13



establishing the equivalence of two notions.

Lemma 2.
If equilibrium correspondence ¢ is lower hemi-continuous at o,
then all equilibria of 7o are structurally stable.

Proof: Fix sy< ¢ (o). If we can find a perturbation 7 of o that
has an equilibrium near sy, then we have shown that s, is
structurally stable. Pick a neighborhood of sy and call it W (so that
¢ (o) NW= ). Then, by lower hemi-continuity of ¢ at o, there
exists a neighborhood V of 7o whose image via ¢ intersects with
W. Choose a perturbation 7 of 7o from this neighborhood V. Then
¢ (r)NWs= &), which means that there exists an s ¢ (7)NW. Let
the diameter of W be arbitrarily small, then s must be close to sy.

In hindsight, it is intuitively clear that lower hemi-continuity and
structural stability should be related. When the spaces X and Y are
both metric, a lower hemi-continuous correspondence ¢ :X=Y has
the following property: for every sequence (x,)CX that converges to
xoEX and for every yo< ¢ (xo), there exists a sequence (y)CY such
that yn=¢ () for all n and y,—x, Translated for equilibrium
correspondence, this roughly means: for a sequence of games (75
that converges to the game 7o and for every equilibrium s, of the
game o, there exists a sequence of equilibria (sp)) such that s, is
an equilibrium of the game r, and the sequence of equilibrium
converges to the equilibrium so. Although stated in terms of
sequences, this corresponds to the idea of structural stability.

What is brought out by this line of investigation is the
distinction of a game having only stable equilibria and a game
having at least one stable equilibrium. The following lemma shows
this.

Lemma 3.
If equilibrium correspondence ¢ is upper hemi-continuous at o,
then 7o has at least one structurally stable equilibrium.

Proof: Suppose ¢ is upper hemi-continuous at 9. Choose a
neighborhood U of ¢ (x¢). Then, there exists a neighborhood V of =«
o whose image via ¢ is contained in U. If we take a sufficiently
small perturbation r of 7o so that €V , then ¢ (x)CU, which
means that r has an equilibrium arbitrarily close to some points in
¢ (7o). Hence, mo has at least one structurally stable equilibrium.

14



Remark.
The above proof does not show that all points in ¢ (x¢ are
structurally stable.

By the lemmas, we know that upper hemi-continuity of ¢
implies the existence of a structurally stable equilibrium and lower
hemi-continuity of ¢ 1is equivalent to structural stability of all
equilibria.

Thus we have shown that the notion of structural stability is
closely related with notions of continuity of equilibrium correspond-
ence. Best response correspondences — Nash equilibrium corre-
spondence is a variant — seldom exhibit lower hemi-continuity. See
Kim (1997) for an example of demanding conditions for achieving
lower hemi-continuity. From our analysis here it is only natural to
find lower hemi-continuity to be restrictive; a lower hemi-
continuous equilibrium correspondence implies that those equilibria
are all structurally stable! Instead, we know equilibrium corre-
spondence is upper hemi-continuous in general (see also Rath,
1996), so we know that we have at least one structurally stable
equilibrium in general. We have the following theorem.

Theorem 4. There is at least one structurally stable equilibrium for
our model of monopolistic competition.

Proof: Follows from Lemma 3 and Theorem 3. H

IV. Discussion and Concluding Remarks

A. Lower Hemi-continuity of Nash Equilibrium Correspondence

As shown above, lower hemi-continuity of equilibrium correspond-
ence is equivalent to structural stability of all equilibria of games.
Hence, a result on lower hemi-continuity would provide a powerful
statement on structural stability of equilibria.

But lower hemi-continuity of a correspondence that involves
maximization is very difficult to obtain. For this reason, we have
elsewhere devised elaborate topologies in a somewhat different
setting to guarantee lower hemi-continuity of argmax correspond-
ence in Kim (1997). The techniques developed in Kim (1997) may
be of help here, but are not directly applicable because Kim (1997)
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was concerned with equilibria of a single game and here we are
concerned with perturbed games.

To take a different approach, it is possible to utilize a weaker
notion of lower hemi-continuity. Housman (1988) considers a model
of large games and proves results on continuity of Nash equilibr-
ium correspondence. Specifically, he noted the difficulty of proving
lower hemi-continuity and suggested a weaker result, namely using
a notion of approximate equilibria and proving a ‘near lower
hemi-continuity result. A similar strategy works here, but the
implication for the relationship of such weaker notion with
structural stability is weaker and more subtle. We leave that
exercise to our subsequent work.

B. Economic Implications of the Model

We have avoided discussing in detail the original model of Kumar
and Satterthwaite (1985) and its economic implications. Before
closing the paper, let us examine the parallels between our model
and Kumar and Satterthwaite (1985).

Kumar and Satterthwaite (1985) consider I identical firms, where
I is a large finite integer. Each firm chooses an action from a
compact convex set XC R" It is important to note that they allow
only pure strategies a priori.

Suppose K distinct actions are observed among firms in
equilibrium. Then the industry configuration can be described by a
vector z={(qi,x1), ", (gx.x)}EZC[0,1] XX, where q; is the proportion of
firms choosing the action ;=X (hence, Xqi=1).

An industry configuration z is a complete description of the
strategic information. Aggregation of information occurs if this
information is converted to an M-dimensional vector y=f{z), where
fZ—R" is a smooth function. Smoothness is needed for the
stability results, which are then implicitly used for the existence
result by Kumar and Satterthwaite. Denote the set of such vectors
by Y.

The (common) profit function for the firms is given by a smooth
function 7. XXY—R. Hence, the complete description of an industry
(or a game) with I firms is given by <X, z.f>.

An industry configuration z=:=:{(q>:k,)o:k)l'§c:1 is an equilibrium if, for
all k=1, K, xxEArgmax xex = flz#)). A moment’s reflection will
show that this is in fact a Nash equilibrium of the game.
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Theorem 5 (Kumar-Satterthwaite) For an industry in which a
large finite number I of identical firms aggregate the competitive
information through an M-dimensional vector of statistics, there
exists an equilibrium if the following functional restrictions hold:

7 bey) = mold + | y; 70, (1)
2
y=flz)= X Qg ), wfl:elre g. X—-RM 2)

The restrictive natur(}-S:ZIOf the condition (1) is obvious. The profit
function is assumed to be linear (to be precise, the profit function
can be broken into M+1 components and expressed as an inner
product between a vector of statistics (1,yi,--,ym) and a vector of
functions (7o, 71,":-, 7m)). The condition (2) is not as restrictive; it is
a requirement that the statistics take the form of the expected
value of a random vector g and our model employs similar
formulation.

The statistics function f:Z—R", which is actually given a form
qiga) for Theorem above can be thought of as the expected value
of gix) in our reformulation (i.e., gbJdd(px - s H9).

In summary, there are I firrffis, where I is a large but finite
integer, who choose only pure strategies. The firms have an
identical profit function. Each firm ignores the impact of its own
action on the market and aggregates the actions chosen by the
competitors into a finite-dimensional vector of summary statistics in
calculating its profit.

We intend to argue that large games provide a natural framework
for Kumar and Satterthwaite’s model that resolves some conceptual
and technical difficulties.

Take, for example, the assumption that each firm ignores its own
impact. For I firms, where I is finite, that a firm would ignore the
impact of its own action on the industry is a behavioral assump-
tion imposed by the modeler, which is very poor if I is small and
only nearly acceptable if I is large but finite. “For small I this is a
poor assumption that should be dropped. If, however, it is dropped,
then pure strategy equilibria may fail to exist.” (Kumar and
Satterthwaite, 1985, p. 44) One of their justifications for this
assumption is drawn from Chamberlin’s (1933) theory of mono-
polistic competition. It is interesting that for Chamberlin ‘an infinite
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number of firms’ was not a strange concept.14

Not only is our infinite-firm formulation compatible with
Chamberlin’s original theory, but it also strengthens Kumar and
Satterthwaite’s model in several ways. Note in the above quote that
Kumar and Satterthwaite are concerned about the existence of pure
strategy equilibria.15 One of the most interesting things about “large
games” is the existence of pure strategy equilibria (Schmeidler,
1973, Theorem 2). So it is natural that our reformulation easily
admits pure strategy equilibria. Our analysis also highlights the
fact that Kumar and Satterthwaite’s finite-firm model, with their
insistence on pure strategy equilibria, requires a linearity restriction
on the form of profit function, which is unnecessary in our case.

Of course, the importance of Kumar and Satterthwaite’s work lies
elsewhere, that is, in the finding that the structurally stable
equilibria have a limited extent of variations in active actions and
that this phenomenon occurs because of the aggregation of
information by the firms.

Kumar and Satterthwaite’s main objective was to show that the
aggregation of information (via an M-dimensional vector of statistics)
places an upper bound on the number of active actions in a
structurally stable equilibrium.

This conclusion basically carries over to our more general setting,
with one important provision. Their Theorem 2, which establishes
the structural stability of an equilibrium configuration with less
than M+1 distinct actions, needs minimal modification. The case is
somewhat different for their Theorem 1, which shows an equilibr-
ium with more than M-+1 actions is structurally unstable, the
difficulty here being that their argument rests on the assumption
that there are a finite number of distinct actions in equilibrium.
This assumption is satisfied in their model because there are only
a finite (but large) number of firms, while in our case, one cannot
exclude in advance the possibility of an infinite number of active
actions.

This is a good place to note the important role played by the
large but finite number I of Kumar and Satterthwaite. The

“In the eighth edition of Chamberlin (1933) published in 1962: p. 7
“infinite...large enough,” p. 11ln “large,” p. 48 “infinite...very large,” p. 54
“large enough...infinite,” p. 72n “a large number of,”... the list continues.

Also pp. 37-38: “Firms are forbidden to employ mixed strategies.”
(Kumar and Satterthwaite, 1985)
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largeness justifies their behavioral assumptions but because I is
still finite the existence result requires a linearity assumption. On
the other hand, finiteness rules out the possibility of an infinite
number of actions in an equilibrium configuration, and is used to
establish the stability results.

Finally, our upper hemi-continuity result showed that there
always exists a structurally stable equilibrium for the game. Kumar
and Satterthwaite (1985) were probably not concerned very much
with existence issues. They provide three theorems, first two of
which are on structural stability of equilibria without showing
existence of such equilibria and the last is on existence of Nash
equilibria without mention of stability. As pointed out above, their
existence result required a linearity assumption that is unnecessary
for their stability results and for existence in general setting as laid
out here. So our results in this paper provide a more solid
foundation for their findings both in setting a natural framework
and ensuring existence of equilibria and structurally stable
equilibria.

(Received ; Revised )
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