

A Thesis for the Degree of Master of Science

5-(3', 4'-Dihydroxyphenyl)-γ-valerolactone, a Metabolite of Procyanidins in Cacao, Suppresses MDI-induced Adipogenesis by Regulating Cell Cycle Progression

카카오 프로시아니딘 대사체의 세포 주기 조절을 통한 지방세포 분화 억제 효능

August, 2016

By

Younghyun Lee

Department of Agricultural Biotechnology

Seoul National University

ABSTRACT

Cacao (Theobroma cacao) which includes a large amount of polyphenols, has been reported to have potent beneficial effects on obesity. However, all of these previous studies have focused on the extract form of cacao or procyanidins and their potential mechanisms have not been fully elucidated with considering ADME (absorption, distribution, metabolism, and excretion). Here, in this study, I investigated the inhibitory effects of metabolites of procyanidins on adipogenic cocktail (MDI)-induced adipogenesis and lipogenesis in 3T3-L1 preadipocytes. Especially, 5-(3', 4'-Dihydroxyphenyl)-yvalerolactone (DHPV) which is known for the major metabolite of proycanidins, had the best inhibitory effects on adipogenesis and lipogenesis. I found that DHPV decreased the protein expression levels which are involved in adipogenesis such as peroxisome proliferatoractivated receptor γ (PPAR γ) and CCAT/enhancer-binding protein α (C/EBP α), and lipogenesis such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) dose-dependently. These inhibitory effects were mainly due to G1 phase arrest in the early stage of adipogenesis which called as mitotic clonal expansion (MCE) by suppressing cell proliferation. In kinase array, CDK2/cyclin O was preferentially selected through several citeria. DHPV directly suppressed activation of CDK2/cyclin O complex. DHPV inhibited the phosphorylation of C/EBP β which is responsible for induction of PPAR γ and C/EBP α . Taken together, this study implied that DHPV is one of the biologically active compound of cacao which brings the potential benefits on anti-obesity by inhibiting intracellular lipid contents and cell differentiation.

Keywords: Obesity; Adipogenesis; Metabolite; CDK2/cyclin O; 5-(3', 4'-Dihydroxyphenyl)-γ-valerolactone; DHPV;

Student ID: 2014-22460

CONTENTS

ABSTRACT	i
CONTENTS	iv
I . INTRODUCTION	1
II. MATERIALS AND METHODS	5
1. Chemicals and reagents	5
2. Cell culture and preadipocytes differentiation	6
3. Cell viability assay	7
4. Oil Red O staining	
5. Glycerol assay	9
6. Western blot analysis	10
7. Flow cytometry using a FACS	11
8. Kinase assay	12
9. Pull-down assay	
10. Statistical analysis	14

I.INTRODUCTION

Obesity is one of the biggest health problems worldwide, because it can lead a risk of severe human diseases such as cancer, hypertension, and type 2 diabetes [1, 2]. As its prevalence is constantly growing, numerous strategies and drugs are appeared to prevent or treat obesity [3-5]. However, it has been reported that there are many side effects of the anti-obesity drugs. Therefore, it is important to find the compounds which have both very few side effects and much greater effects.

Recent studies have focused on the anti-obesity effects of natural compounds such as polyphenols [6, 7]. Cacao (*Theobroma cacao*) which is the essential and main ingredient of the chocolate, is also known for including a large amount of polyphenols [8]. Interestingly, cacao has more phenolic and flavonoid contents than teas and red wine [9]. Among these cacao polyphenols, the procyanidins are reported to be the most abundant types of polyphenol group. Due to this high concentration of procyanidins, cacao could provide the preventative effects [10]. It has been reported that cacao could contribute the various potential health benefits such as cardiovascular disease [11], cancer [12], neuronal disease [13], and diabetes [14]. Furthermore, the anti-obesity effects of cacao have steadily been reported [15-18]. However, all of these previous researches are limited to studying the extract form of cacao or procyanidins.

Numerous studies are revealed the anti-obesity effects of cacao which contains high content of total procyanidins [17, 19]. However, the many functions of biologically activities may not result in the systemic bioavailability of procyanidins. It has been suggested that it may have minimal effects in vivo study due to intestinal decomposition [20]. Therefore, it is essentially considered in terms of absorption, distribution, metabolism, and excretion (ADME). That is, metabolites of procyanidins might play a very key role in the overall effects of native compounds of procyanidins [10]. Additionally, it is important that which concentration of metabolites remains in blood and plasma for an extended period of time.

In the present study, I focused on metabolites of procyanidins which bring the potential benefits on anti-obesity. I investigated the beneficial effects of procyanidins and their metabolites. According to previous studies, procyanidins are metabolized to (+)-Catechin, (-)-Epicatechin, 2-(3, 4-Dihydroxyphenyl)-acetic acid (DHPAA), 2-(3-Hydroxyphenyl)-acetic acid (HPAA), 3-(3, 4-Dihydroxyphenyl)propionic acid (DHHC), 3-(3-Hydroxyphenyl)-propionic acid (HC), and 5-(3', 4'-Dihydroxyphenyl)-γ-valerolactone (DHPV) as metabolites [10, 21-23].

First, I examined the anti-adipogenic effects of procyanidins

and their metabolites on MDI-induced adipogenesis. Of the 9 compounds, DHPV most strongly caused the inhibitory effect on adipogenesis in 3T3-L1 preadipocytes. Interestingly, DHPV is been reported that exists a high concentration in fasting plasma [21]. DHPV was found to block cell cycle progression, thereby inhibiting mitotic clonal expansion. DHPV also inhibited CDK2/cyclin O activity and suppressed adipogenesis and lipogenesis-related biomarkers. These results demonstrated that DHPV attenuated adipogenesis and lipogenesis in 3T3-L1 preadipocytes.

II. MATERIALS AND METHODS

2.1. Chemicals and reagents

Procyanidin B2 was purchased from Funakoshi Co. (Funakoshi, Japan). Procyanidin B3, (+)-Catechin, (-)-Epicatechin, 2-(3, 4-Dihydroxyphenyl)-acetic acid, 2-(3-Hydroxyphenyl)-acetic acid, 3-(3, 4-Dihydroxyphenyl)-propionic acid, isobutylmethylxanthine (IBMX), dexamethasone, and human insulin were purchased from Sigma-Aldrich (St. Louis, MO, USA). 3-(3-Hydroxyphenyl)-propionic acid was purchased from Alfa aeser Co. (Incheon, South Korea). 5-(3', 4'-Dihydroxyphenyl)-y-valerolactone was purchased from Chemieliva Co. (Chondqing, China). Dulbecco's modified eagle medium (DMEM), fetal bovine serum (FBS), and bovine calf serum (BCS) were purchased from GIBCO (Grand Island, NY).

Antibody against peroxisome proliferator-activated receptor y

(PPAR γ), cyclin-dependent kinase2 (CDK2), cyclin O, β -actin, and CCAAT/enhancer-binding proteins α and β (C/EBP α and β) were purchased from Santa cruz biotechnology (Santacruz, CA).

Fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), sterol regulatory element-binding protein 1c (SREBP1c), and phospho-CCAAT/enhancer-binding proteins β (p-C/EBP β) were purchased from Cell signaling Technology (Danvers, MA, USA).

2.2. Cell culture and preadipocytes differentiation

3T3-L1 preadipocytes were purchased from American Type Culture Collection (ATCC). 3T3-L1 preadipocytes were maintained in DMEM supplemented with 10% BCS, a 5% CO₂, and 37 °C until 100% confluence. After post-confluent (day 0), cells were incubated in DMEM supplemented with 10% fetal bovine serum (FBS) and adipogenic cocktail (MDI) which was a mixture of 0.5 mM 3-isobutyl1-methylxanthine (IBMX), 1 μ M dexamethasone (DEX), and 5 μ g/mL insulin for 2 days in order to induce differentiation. After 2 days, medium was changed to DMEM containing 10% FBS and 5 μ g/mL insulin. 2 days later, medium were switched to DMEM containing 10% FBS until preadipocytes were fully differentiated.

2.3. Cell viability assay

In order to assess cell viability, 3T3-L1 preadipocytes were seeded in 24 well plate at a density of 5 x 10⁴ cells per well. After confluence, cells were treated with 10% FBS DMEM supplemented with DHPV or only 10% FBS DMEM as a control. A 10% of MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] solution (Cleveland, OH, USA) of total medium was added to each well, and the cells were incubated for 1 hour. The medium was removed and the dark formazan crystals were dissolved in dimethyl sulfoxide (DMSO). The absorbance at 570 nm was measured with spectrophotometry. The results were expressed as percent MTT reduction relative to the absorbance of the control cells.

2.4. Oil Red O staining

In order to evaluate accumulated lipid contents in the cells, 3T3-L1 preadipocytes were seeded in 24 well plate at a density of 5 x 10⁴ cells per well. After confluence, the cells were differentiated for 6 days with or without compounds. Media were removed and differentiated cells were fixed with 4% formalin for 20 min and washed with the phosphate buffered saline (PBS). The fixed cells were then stained with Oil Red O solution for 15 min at room temperature in the dark. Oil Red O solution was prepared by dissolving 0.25 mg Oil Red O powder (Sigma-Aldrich, St. Louis, MO, USA) in 50 mL 60% isopropyl alcohol (Amresco, Solon, OH) followed by filtering with $0.45 \ \mu$ M membrane. After staining, the cells were washed 3 times with PBS. Intracellular lipid contents were quantified by eluting Oil Red O staining with isopropyl alcohol and measured at 515 nm with spectrophotometry. The results were expressed as percent Oil Red O staining reduction relative to the absorbance of the control cells.

2.5. Glycerol assay

In order to evaluate glycerol releases, 3T3-L1 preadipocytes were differentiated in 24 well plates as described above. The cells were then treated with 10% FBS DMEM supplemented with or without 5, 10, and 20 µM DHPV and isoproterenol (Sigma-Aldrich, St. Louis, MO, USA) as a positive control [24] for 3 days. Next, the cell-free culture supernatants were transferred to clear 96 well plates. Glycerol concentrations were measured using Free Glycerol Reagent (Sigma-Aldrich, St. Louis, MO, USA) as described by the manufacturer.

2.6. Western blot analysis

After 3T3-L1 preadipocytes were cultured in 6 cm dishes at a density of 5 x 10^4 cells per dish for 2 days in DMEM supplemented with 10% BCS. When cells reached confluence, medium was changed with DMEM supplemented with 10% FBS and MDI hormone cocktail containing with or without 5, 10, and 20 µM DHPV. The cells were washed with PBS and harvested by scraping in cell lysis buffer. The protein concentration was measured using a protein assay reagent kit (Hercules, CA) as described by the manufacturer. The proteins were separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) transferred and to nitrocellulose membrane (GE healthcare, Piscataway, NJ). The membranes were blocked in 5% skim milk for 1 hour, and then incubated with a specific primary antibody at 4 °C overnight. Protein bands were visualized by a chemiluminescence detection kit (GE Healthcare, London, UK) after hybridization with a HRP-conjugated secondary antibody (Life Technologies, Waltham, MA).

2.7. Flow cytometry using a fluorescence-activated cell sorter (FACS)

In order to analyze cell cycle, 3T3-L1 preadipocytes were seeded in 6 cm dishes a density of 5 x 10^4 cells per dish and cultured until confluence. And then, cells were incubated in DMEM supplemented with 10% FBS, 0.5 mM IBMX, 1 μ M DEX, 5 μ g/mL insulin and with and without 20 μ M DHPV for 0, 8, 16, 20, 24, and 48 hour, respectively. After, cells were trypsinized and centrifuged at 1000 rpm for 3 min. The pellets were re-suspended in PBS and centrifuged at 1000 rpm for 3 min again. The pellets were suspended in cold 70% (v/v) ethanol (Sigma-Aldrich, St. Louis, MO, USA) for fixing and maintained at 4 °C overnight. And then, cells were centrifuged at 1500 rpm for 3 min and re-suspended in 700 µL of PBS containing 10 µg/mL PI solution (Sigma-Aldrich, St. Louis, MO, USA) and 0.2 mg/ml RNase (Amresco, Solon, OH). Cells were incubated at 37 °C for 15 min in the dark. Finally, fluorescence emitted from cells was measured using a flow cytometer (FACSCalibur, Becton-Kickinson, San Jose, CA, USA) with CellQuest software (BC Biosciences). Ten thousand cells in each sampled were analyzed [25].

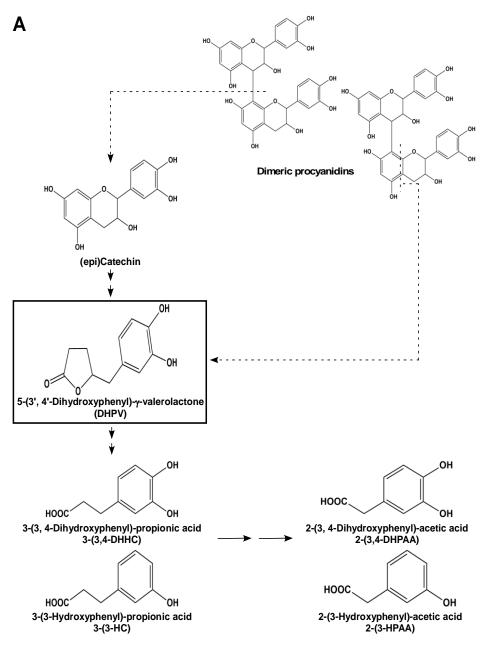
2.8. Kinase assay

In order to find the molecular targets of DHPV, kinase profiling were conducted by kinase assay services (Reaction Biology Corporation). Briefly, kinase was incubated with substrate and required cofactors. The reaction was initiated by the addition of the compound in DMSO and ³³P-ATP (specific activity 10 μ Ci/ μ l). After incubation for 120 min at room temperature, the reaction was spotted onto P81 ion exchange paper (GE Healthcare) and washed extensively in 0.75% phosphoric acid. Kinase activity data were expressed as the percent remaining kinase activity in test samples compared to vehicle (DMSO) reactions.

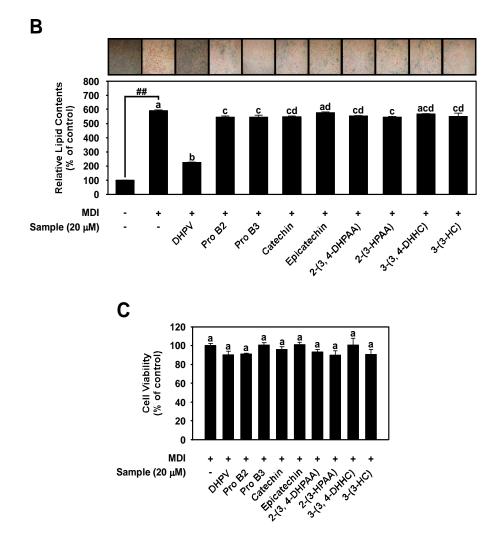
2.9. Pull-down assay

Sepharose 4B freeze-dried powder was purchased from GE Healthcare (Little Chalfont, UK). Sepharose 4B beads (0.3 g) were activated in 1 mM hydrogen chloride (HCl) and suspended in DHPV (2 mg) coupled solution (0.1 M NaHCO₃ and 0.5 M NaCl). Following overnight rotation at 4 °C, the mixture was transferred to 0.1 M Tris-HCl buffer (pH 8.0) and rotated at 4 °C overnight again. The mixture was then washed with 0.1 M acetated buffer (pH 4.0), 0.1 M Tris-HCl, 0.5 M NaCl buffer (pH 8.0) and suspended in PBS. After beads were ready for use, CDK2/cyclin O active protein (Signalchem, Richmond, Canada) was incubated with either Sepharose 4B alone or DHPV-Sepharose 4B beads in reaction buffer. After incubation at 4 °C, the beads were washed with washing buffer and the proteins bound to the beads were analyzed by western blot.

2.10. Statistical analysis


Statistical analyses were performed using one-way ANOVA followed by Duncan's Multiple Range Test, and p values of less than 0.05 were considered statistically significant.

III. RESULTS


3.1. DHPV had the most potent inhibitory effects on MDI-induced adipogenesis in 3T3-L1 preadipocytes.

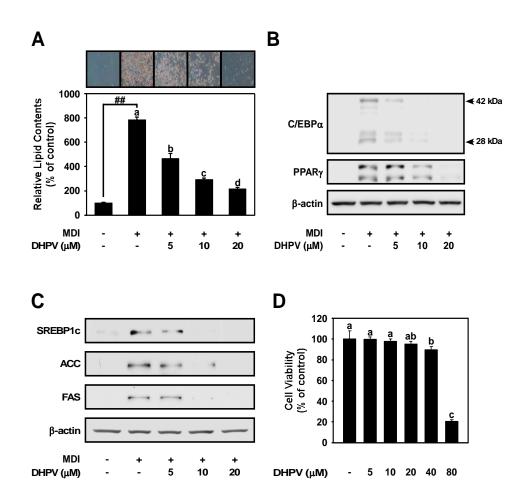
The structure and tentative pathway for human microbial degradation of procyanidins in cacao showed in Figure 1A [34, 35]. To investigate the anti-adipogenic effects of procyanidins and their preadipocytes were incubated with each metabolites. 3T3-L1 procyanidins and their metabolites simultaneously with 20 µM for 6 days. Lipid contents were quantified with Oil Red O staining. MDItreated differentiated cells were significantly increased the relative lipid contents by 6-fold compared to undifferentiated cells as control. ORO staining result showed that DHPV most strongly reduced lipid contents among other procyanidins and their metabolites (Fig. 1B). To determine whether the decreased lipid contents was a result of diminishing cell number, I examined the cell viability of each procyanidins and their metabolites using MTT assay. As a result, none of compounds did not decline cell viability (Fig. 1C).

Figure 1

Figure 1. continue

Figure 1. The greatest inhibitory effects of DHPV on MDIinduced adipogenesis in 3T3-L1 preadipocytes

(A) Provisional degradation pathway for procyanidins (B) Oil Red O staining images and data showed that DHPV significantly inhibited intracellular lipid accumulation in 3T3-L1 preadipocytes among other procyanidins such as procyanidins B2 and B3 which are known for rich in cacao [26, 27], and their metabolites such as (+)-Catechin, (-)-Epicatechin, 2-(3, 4-DHPAA), 2-(3-HPAA), 3-(3, 4-DHHC), 3-(3-HC), and DHPV. (C) All above compounds did not affect on cell viability. Data were represented as mean \pm standard error of mean (SEM) values of at least three independent experiments. The sharps (##) indicated a significant difference between the control group and the group treated with MDI cocktail alone (p < 0.01). To compare the differences among the groups, one-way ANOVA was used with Duncan's multiple range tests. Different letters indicated statistically


significant differences at p < 0.05.

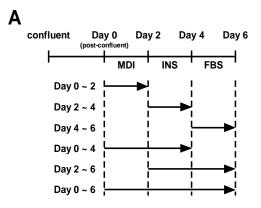
3.2. DHPV inhibited the adipogenic and lipogenic effects in 3T3-L1 preadipocytes.

To investigate the effects of DHPV on adipogenesis in 3T3-L1 preadipocytes, cells were treated with or without DHPV. Differentiation of 3T3-L1 preadipocytes were induced by the method as previously described and lipid contents were quantified with Oil Red O staining. As a result, compared to undifferentiated cells, the relative lipid contents of MDI-induced cells were increased by 8-fold. DHPV treated group reduced intracellular lipid contents dose-dependently at 5, 10, and 20 µM to about 41%, 63%, and 72%, respectively (Fig. 2A).

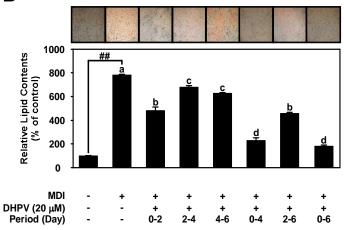
Consistent with this result, I also examined the MDI-induced expression of proteins, which are marker proteins of adipogenesis [28] and lipogenesis [29]. Western blot data showed that DHPV suppressed the protein expression levels of PPAR γ and C/EBP α which are key regulators of adipogenesis (Fig. 2B). Furthermore, DHPV suppressed the expression levels of SREBP1c, ACC, and FAS which are lipogenic proteins (Fig. 2C). Next, I performed MTT assay to investigate the toxic effect of DHPV on cell viability in 3T3-L1 preadipocytes. As a result, DHPV did not have toxicity up to 20 μ M (Fig. 2D).

Figure 2

Figure 2. Effects of DHPV on MDI-induced adipogenesis and lipogenesis 3T3-L1 preadipocytes


(A) Oil Red O staining images and data showed that DHPV significantly inhibited intracellular lipid accumulation in 3T3-L1 preadipocytes. (B) DHPV down-regulated the protein expression levels of adipogenesis such as PPAR γ and C/EBP α . (C) DHPV downregulated the protein expression levels of lipogenesis such as SREBP1c, ACC and FAS. (D) DHPV did not affect on cell viability up to 20 µM. Data were represented as mean \pm standard error of mean (SEM) values of at least three independent experiments. The sharps (##) indicated a significant difference between the control group and the group treated with MDI cocktail alone (p < 0.01). To compare the differences among the groups, one-way ANOVA was used with Duncan's multiple range tests. Different letters indicated statistically significant differences at p < 0.05.

3.3. DHPV inhibited MDI-induced adipogenesis at mitotic clonal expansion step in 3T3-L1 preadipocytes.


After growth arrested by contact inhibition, preadipocytes progress to cell differentiation called the adipogenesis. This process is divided into two broad stages, the mitotic clonal expansion which increases cell number, and the terminal differentiation which increases intracellular lipid contents, respectively [30, 31]. Therefore, I investigated which the critical time-point of the inhibitory effect of DHPV on adipocyte differentiation. To elucidate which stage in adipogenesis is affected by DHPV, I treated DHPV 20 µM at different periods of adipogenesis during 6 days for full differentiation (Fig. 3A). As expected, cells treated with DHPV for 6 days showed a complete inhibition of lipid contents like previous study (Fig. 2A). All stages were moderately inhibited of lipid contents, however interestingly, DHPV suppressed adipogenesis effectively when it was treated on the

duration including 0-2 days (Fig. 3B). This result indicated that DHPV primarily modulated in the early stage of differentiation, in which mitotic clonal expansion occurred.

Figure 3

Figure 3. Effects of DHPV on MDI-induced mitotic clonal expansion in the early stage of adipogenesis

(A) A schematic diagram of experiment; time schedule for periods treated DHPV for each group (B) Oil Red O staining images and data showed that DHPV had the strong anti-adipogenic effect when it was treated period including 0-2 days. Data were represented as mean \pm standard error of mean (SEM) values of at least three independent experiments. The sharps (##) indicated a significant difference between the control group and the group treated with MDI cocktail alone (p <0.01). To compare the differences among the groups, one-way ANOVA was used with Duncan's multiple range tests. Different letters indicated statistically significant differences at p < 0.05.

3.4. DHPV blocked the cell cycle progression by inducing G1 arrest in 3T3-L1 preadipocytes.

Continuously I investigated how DHPV inhibited the mitotic clonal expansion, which is known as a prerequisite stage in early adipogenesis [32]. To confirm that DHPV directly made impact on proliferation, I performed FACS analysis to investigate cell cycle progression on 3T3-L1 preadipocytes during mitotic clonal expansion. According to FACS analysis data, MDI-induced cell cycle progression was blocked by DHPV compared to the differentiated groups (Fig. 4A). At 16 hr, the MDI-treated cells moved S phase compared to control. Then, distinctively the number of cells in S phase were increased by MDI. However, the cells treated MDI with DHPV did not undergo cell cycle progression and stayed in basal stage, G1 phase, which was the same as control groups. (Fig. 4B). These results indicated that DHPV delayed cell cycle progression from G1 phase to S phase in the early stage of differentiation.

Figure 4

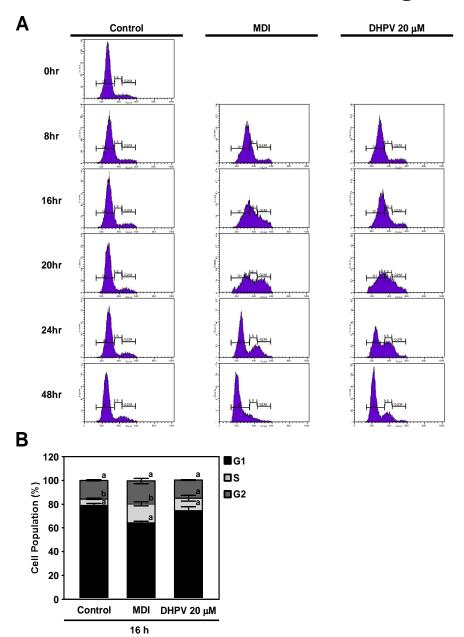


Figure 4. Effects of DHPV blocked the G1 phase during mitotic clonal expansion.

(A) FACS analysis histograms and (B) quantitative data showed that DHPV blocked the G1 phase in the early stage of differentiation. Data were represented as mean \pm standard error of mean (SEM) values of at least three independent experiments. To compare the differences among the groups, one-way ANOVA was used with Duncan's multiple range tests. Different letters indicated statistically significant differences at *p* < 0.05.

3.5. DHPV directly inhibited CDK2/cyclin 0 activity.

To elucidate the molecular mechanisms about how DHPV had the inhibitory effects, I performed kinase profiling analysis. First, I tested in duplicate mode at a concentration of DHPV 10 µM (Table 1). Based on Table 1, 6 kinases were selected, which were inhibited more than 65% by DHPV. Next, I tested in a 10-dose IC₅₀ mode with 3-fold serial dilution starting at DHPV 160 µM (Table 2). Additionally, based on the results from Table 2, I considered these following requirements. Target kinases should regulate to cell cycle, were expressed in mouse and adipocytes, and were related to MDI-induced signaling. As a result, I preferentially chosen CDK2/cyclin O kinase for potential target of DHPV.

DHPV effectively inhibited CDK2/cyclin O activity with the half maximal inhibitory concentration (IC₅₀) (IC₅₀ = 8.79 μ M) (Fig. 5A). To demonstrate whether DHPV directly interacted with CDK2/cyclin O then inhibited its activity, I performed pull-down assay using CDK2/cyclin O active protein. As a result, DHPV could directly bind to CDK2/cyclin O (Fig. 5B).

Continuously I investigated how CDK2/cyclin O affected during MDI-induced adipogenesis. According to previous study, CDK2 acts sequentially phosphorylation and activation of C/EBP β during adipocyte differentiation [33]. C/EBP β protein plays an important role in mitotic clonal expansion [34, 35] and also a key transcription factor for transcriptional activation of C/EBP α and PPAR γ [34-37], which are master regulators of adipogenesis and expression in terminal differentiation. Therefore, I examined the protein expression of C/EBP β . As a result, DHPV reduced phosphorylation of C/EBP β (Fig. 5C). These results implied DHPV inhibited mitotic clonal expansion by suppressing C/EBP β which is not only a downstream kinase of CDK2/cyclin O but also a transcription factor of C/EBP α and PPAR γ .

Table 1. Kinase profiling of DHPV (10 µM)

Kinase profiling analysis was performed on whole human type kinases (359 kinases) to find the target of DHPV (10 μ M) by kinase assay service (Reaction Biology Corporation). Data were representative of two independent experiments that gave similar results.

Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity
ABL1	105	ALK2/ACVR1	84	Aurora A	79	BRK	103	CAMK1a	69
ABL2/ARG	106	ALK3/BMPR1A	85	Aurora B	93	BRSK1	100	CAMK1b	89
ACK1	89	ALK4/ACVR1B	75	Aurora C	100	BRSK2	89	CAMK1d	82
AKT1	85	ALK5/TGFBR1	52	AXL	111	ВТК	101	CAMK1g	103
AKT2	84	ALK6/BMPR1B	79	BLK	105	c-Kit	87	CAMK2a	93
AKT3	118	ARAF	94	BMPR2	101	c-MER	77	CAMK2b	86
ALK	93	ARK5/NUAK1	102	BMX/ETK	91	c-MET	87	CAMK2d	101
ALK1/ACVRL1	69	ASK1/MAP3K5	101	BRAF	101	c-Src	106	CAMK2g	66

Table 1.	continue

Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity
CAMK4	94	CDK2/cyclin A	81	CDK7/cyclin H	114	CK1g3	102	DAPK2	91
CAMKK1	115	CDK2/Cyclin A1	102	CDK9/cyclin K	95	CK2a	116	DCAMKL1	107
CAMKK2	101	CDK2/cyclin E	85	CDK9/cyclin T1	96	CK2a2	76	DCAMKL2	95
CDC7/DBF4	103	CDK2/cyclin O	39	CHK1	91	CLK1	95	DDR1	103
CDK1/cyclin A	106	CDK3/cyclin E	60	CHK2	117	CLK2	93	DDR2	100
CDK1/cyclin B	96	CDK4/cyclin D1	93	CK1a1	94	CLK3	91	DLK/MAP3K12	95
CDK1/cyclin E	100	CDK4/cyclin D3	92	CK1a1L	87	CLK4	102	DMPK	111
CDK14/cyclin Y	99	CDK5/p25	48	CK1d	83	COT1/MAP3K8	95	DMPK2	96
CDK16/cyclin Y	91	CDK5/p35	96	CK1epsilon	118	CSK	95	DRAK1/STK17A	94
CDK17/cyclin Y	102	CDK6/cyclin D1	93	CK1g1	84	CTK/MATK	94	DYRK1/DYRK1A	. 96
CDK18/cyclin Y	95	CDK6/cyclin D3	92	CK1g2	94	DAPK1	122	DYRK1B	101

 Table 1. continue

Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity
DYRK2	79	EPHA8	97	ERN2/IRE2	91	FLT4/VEGFR3	91	GRK6	76
DYRK3	99	EPHB1	87	FAK/PTK2	91	FMS	104	GRK7	99
DYRK4	73	EPHB2	90	FER	88	FRK/PTK5	78	GSK3a	89
EGFR	93	EPHB3	96	FES/FPS	97	FYN	110	GSK3b	98
EPHA1	90	EPHB4	95	FGFR1	91	GCK/MAP4K2	103	Haspin	90
EPHA2	97	ERBB2/HER2	89	FGFR2	98	GLK/MAP4K3	92	НСК	96
EPHA3	104	ERBB4/HER4	88	FGFR3	95	GRK1	105	HGK/MAP4K4	95
EPHA4	94	ERK1	102	FGFR4	88	GRK2	100	HIPK1	117
EPHA5	88	ERK2/MAPK1	92	FGR	91	GRK3	85	HIPK2	94
EPHA6	101	ERK5/MAPK7	114	FLT1/VEGFR1	97	GRK4	87	HIPK3	99
EPHA7	95	ERK7/MAPK15	96	FLT3	98	GRK5	100	HIPK4	114

Table 1. c	ontinue
------------	---------

Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity
HPK1/MAP4K1	114	JAK2	97	LCK	90	МАРКАРКЗ	104	MEKK3	104
IGF1R	100	JAK3	100	LCK2/ICK	100	MAPKAPK5/PRAK	92	MEKK6	97
IKKa/CHUK	94	JNK1	87	LIMK1	96	MARK1	118	MELK	104
IKKb/IKBKB	103	JNK2	97	LIMK2	98	MARK2/PAR-1Ba	104	MINK/MINK1	118
IKKe/IKBKE	99	JNK3	95	LKB1	154	MARK3	128	MKK4	95
IR	96	KDR/VEGFR2	100	LOK/STK10	93	MARK4	110	MKK6	116
IRAK1	123	KHS/MAP4K5	95	LRRK2	86	MEK1	105	MKK7	108
IRAK4	105	KSR1	100	LYN	106	MEK2	103	MLCK/MYLK	100
IRR/INSRR	98	KSR2	98	LYN B	90	MEK3	104	MLCK2/MYLK2	99
ITK	99	LATS1	97	MAK	105	MEKK1	105	MLK1/MAP3K9	100
JAK1	84	LATS2	79	MAPKAPK2	129	MEKK2	85	MLK2/MAP3K10	105

 Table 1. continue

Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity
MLK3/MAP3K11	96	MST3/STK24	122	NEK5	92	p70S6K/RPS6KB1	98	PDGFRb	94
MLK4	96	MST4	102	NEK6	107	p70S6Kb/RPS6KB2	93	PDK1/PDPK1	109
MNK1	92	MUSK	92	NEK7	121	PAK1	101	PEAK1	96
MNK2	96	MYLK3	98	NEK9	91	PAK2	103	PHKg1	115
MRCKa/CDC42BPA	102	MYO3A	92	NIM1	103	PAK3	105	PHKg2	95
MRCKb/CDC42BPB	97	MYO3b	97	NLK	113	PAK4	116	PIM1	98
MSK1/RPS6KA5	104	NEK1	66	OSR1/OXSR1	94	PAK5	102	PIM2	100
MSK2/RPS6KA4	88	NEK11	118	P38a/MAPK14	116	PAK6	108	PIM3	91
MSSK1/STK23	91	NEK2	85	P38b/MAPK11	106	PASK	94	РКА	99
MST1/STK4	90	NEK3	111	P38d/MAPK13	97	PBK/TOPK	107	PKAcb	111
MST2/STK3	106	NEK4	106	P38g	95	PDGFRa	98	PKAcg	103

 Table 1. continue

Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity
РКСа	87	PKCzeta	103	PLK4/SAK	107	ROS/ROS1	101	SLK/STK2	107
PKCb1	103	PKD2/PRKD2	90	PRKX	100	RSK1	98	SNARK/NUAK2	129
PKCb2	82	PKG1a	90	PYK2	92	RSK2	94	SRMS	89
PKCd	131	PKG1b	90	RAF1	101	RSK3	96	SRPK1	99
PKCepsilon	92	PKG2/PRKG2	79	RET	154	RSK4	105	SRPK2	111
PKCeta	86	PKN1/PRK1	287	RIPK2	93	SGK1	83	SSTK/TSSK6	118
PKCg	84	PKN2/PRK2	119	RIPK3	98	SGK2	123	STK16	104
PKCiota	100	PKN3/PRK3	103	RIPK5	76	SGK3/SGKL	134	STK21/CIT	110
PKCmu/PRKD1	89	PLK1	71	ROCK1	101	SIK1	76	STK22D/TSSK1	112
PKCnu/PRKD3	106	PLK2	76	ROCK2	97	SIK2	98	STK25/YSK1	109
PKCtheta	107	PLK3	68	RON/MST1R	97	SIK3	108	STK32B/YANK2	107

 Table 1. continue

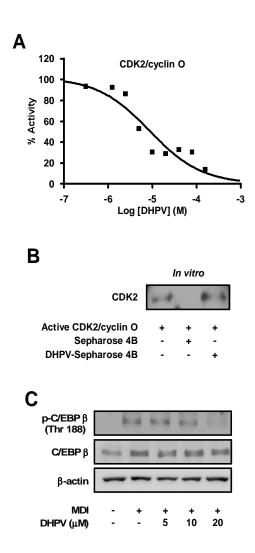

Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity	Kinase	Activity
STK32C/YANK3	103	TAOK3/JIK	110	TNK1	93	TYK1/LTK	99	WNK1	107
STK33	97	TBK1	102	TRKA	86	TYK2	89	WNK2	96
STK38/NDR1	64	TEC	107	TRKB	97	TYRO3/SKY	86	WNK3	105
STK38L/NDR2	102	TESK1	94	TRKC	94	ULK1	111	YES/YES1	100
STK39/STLK3	96	TGFBR2	105	TSSK2	104	ULK2	139	YSK4/MAP3K19	106
SYK	101	TIE2/TEK	71	TSSK3/STK22C	100	ULK3	101	ZAK/MLTK	104
TAK1	99	TLK1	105	TTBK1	123	VRK1	91	ZAP70	100
TAOK1	98	TLK2	79	TTBK2	127	VRK2	62	ZIPK/DAPK3	96
TAOK2/TAO1	104	TNIK	104	ТХК	89	WEE1	113		

Table 2. Kinase IC50 of DHPV

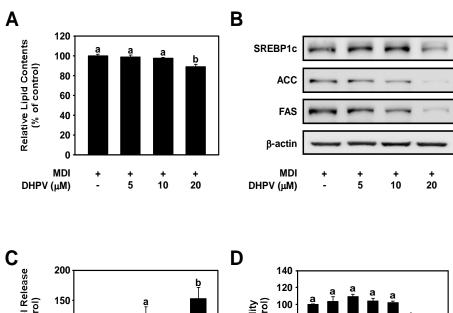
Based on Table 1, 6 kinases were selected because of inhibiting more than 65% kinase activity. DHPV were tested in a 10-dose IC_{50} mode with 3-fold serial dilution starting at DHPV 160 μ M.

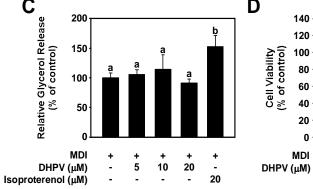
Kinase	Activity
CDK5/p25	6.04
CDK2/cyclin O	8.79
STK38/NDR1	18.4
ALK5/TGFBR1	20.8
CDK3/cyclin E	30.6

Figure 5

Figure 5. Effects of DHPV on CDK2/cyclin O activity and binding interaction

(A) DHPV markedly inhibited CDK2/cyclin O activity. (IC₅₀=8.79 μ M) (B) DHPV could directly bind to CDK2/cyclin O in vitro. (C) DHPV reduced phosphorylation of C/EBP β in 3T3-L1 preadipocytes. Western data are represented at least three independent experiments. 3.6. DHPV decreased lipid accumulation in 3T3-L1 mature adipocytes.


Next, I evaluated the effects of DHPV on adipocyte hypertrophy. The cells were differentiated by the method as previously described and treated with 10% FBS DMEM supplemented with or without 5, 10, and 20 μ M DHPV for 4 days. Lipid contents were quantified with Oil Red O staining. ORO staining result showed that DHPV had the inhibitory effect on intracellular lipid accumulation (Fig. 6A). Then I investigated whether DHPV might regulate the metabolic process of free fatty acids such as lipogenesis. As a result, DHPV suppressed the expression of the SREBP1c, ACC, and FAS which are the lipogenic proteins (Fig. 6B).


The adipocytes are mainly composed of a neutral lipid (Triglyceride) as the most important storage form of fats. Triglycerides are hydrolyzed and release glycerol and fatty acids. Therefore, the measurement of releasing levels of glycerol and free fatty acids are supposed to reflect lipolysis. However, unlike the glycerol, the free fatty acids can re-use and uptake by adipocytes [41]. Therefore, to evaluate the lipolytic effects of DHPV, I measured the released glycerol contents in the media. But, there was no difference on released glycerol contents (Fig. 6C). This result implied DHPV did not affect on lipolysis and fatty acid oxidation.

To prove that above results were not associated with diminished cell number, I performed MTT assay. As a result, DHPV did not decline cell viability (Fig. 6D).

Figure 6

+ + + + + + + - 2.5 5 10 20 40 80

Figure 6. Effects of DHPV on lipid accumulation in 3T3-L1 mature adipocytes

(A) DHPV inhibited intracellular lipid accumulation in 3T3-L1 mature adipocytes. (B) DHPV suppressed the expression of lipogenic proteins such as SREBP1c, ACC, and FAS. (C) DHPV had no effect on released glycerol contents. (D) DHPV did not affect on cell viability up to 20 μ M. Data were represented as mean \pm standard error of mean (SEM) values of at least three independent experiments. To compare the differences among the groups, one-way ANOVA was used with Duncan's multiple range tests. Different letters indicate statistically significant differences at p < 0.05

Figure 7

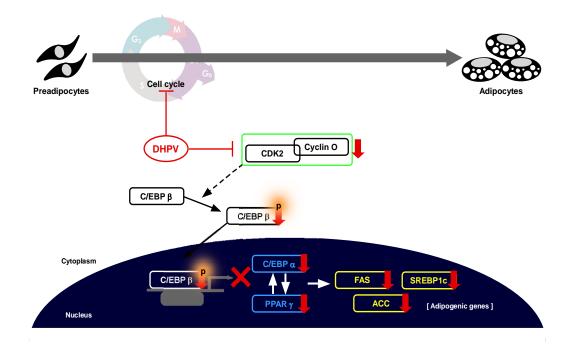


Figure 7. Proposed mechanism of DHPV

IV. DISCUSSION

Obesity is described as a condition of abnormal or excessive fat accumulation in adipose tissue because of an energy imbalance between calories consumed and expended [38]. When calories consumed is more than expended, excessed calories will store the form of triglyceride then accumulate in adipocytes.

In the present study, I investigated the anti-obesity effects using adipogenesis model. Adipogenesis is the process of cell differentiation by which preadipocytes become adipocytes and it consists of two stages by mitotic clonal expansion and terminal differentiation. I used the 3T3-L1 preadipocytes cell lines to elucidate this model. The 3T3-L1 preadipocytes are a well-established cell line to determine the process of adipogenesis model which can study both hyperplasia (increase in cell number) and hypertrophy (increase in cell size) of adipocytes [30, 31, 39, 40].

Confluent preadipocytes become growth arrest by contact inhibition and be fixed in G1 stage [41]. When adipocytes are stimulated with hormonal cocktail consisting of а isobutylmethylxanthine (IBMX), dexamethasone, and insulin (MDI), the adipocytes synchronously re-enter the cell cycle then we called this stage, mitotic clonal expansion [42, 43]. DHPV suppressed adipogenesis (Fig. 2) by inhibiting the mitotic clonal expansion stage (Fig. 3). Because DHPV blocked the G1 phase then regulated cell cycle progression (Fig. 4). The cell cycle constitutes four phases as G1, S, G2, and M phase [44, 45]. Cell cycle is adjusted by the several regulatory proteins containing both cyclin-dependent kinases (CDKs) and cyclins. Activation of some CDKs is generally known during the cell cycle: During G1 phase; CDK2, CDK4, and CDK6, During S phase; CDK2, and During G2 and M phase; CDK1 [44]. Therefore, I inferred DHPV

could affect the cell cycle regulatory proteins.

Next, I found to elucidate the direct molecular target of DHPV. I screened the 359 kinases and selected 6 kinases which were inhibited more than 65% by DHPV. And then, I tested various concentrations of DHPV with above kinases, I picked out 5 kinases excluding VRK2 kinase which was false positive because of no detection IC_{50} . Although CDK5/p25 kinase had the lowest IC_{50} , it was pushed back on the priority list. Because CDK5 bond to p25 inhibits PPAR γ pathway by its phosphorylation [46, 47]. Also, mice which ablated CDK5 in adipose tissues worsen insulin resistance [48].

For these reasons, I preferentially chosen CDK2/cyclin O kinase for potential target of DHPV based on these following prerequisites; expression in mouse and adipocytes, regulation to cell cycle, and relation to MDI-induced signaling. I further determined that DHPV played a significant role in modulating CDK2/cyclin O activity by binding directly (Fig. 5A and B).

According to Figure 4, DHPV regulated cell cycle progression by blocking G1 phase. CDK2 is well-known for regulating G1 and S phase during cell cycle [49-51]. Additionally, Cyclin O is a novel cyclin family protein which is also involved in cell cycle. Cyclin O has been reported as a G1 phase regulated protein whose promoter region contains cis-acting elements. Also, cyclin O protein and mRNA levels increase during G1 phase in vitro [52]. Additionally, cyclin O is been reported to interact with CDK2 then induces the intrinsic apoptosis pathway in lymphoid cells [53].

In mitotic clonal expansion stage, the cells increase in number and require CCAAT/enhancer-binding protein β (C/EBP β) which is stimulated by IBMX. C/EBP β is an important protein to initiate mitotic clonal expansion [54, 55] because it is an essential prerequisite for transcription of master regulator of proteins in terminal differentiation can be activated [33-37]. C/EBP β sequentially phosphorylates, first, a priming phosphorylation on Thr 188 by MAPK/ERK in G1 phase. Next, C/EBP β undergoes a phosphorylation on Thr 179 or Ser 184 by glycogen synthase kinase 3β (GSK 3β) [33, 56]. After dual phosphorylation, C/EBP β undergoes a conformational change then induces dimerization through its C-terminal leucine zipper domain [57, 58]. As a result, it can bind with DNA and obtain the transactivation capacity. In this process, CDK2 plays a role to retain the phosphorylated (Thr 188) state of C/EBP β during mitotic clonal expansion and thereby progression of terminal differentiation [33]. Therefore, I investigated the protein expression of phosphorylation of C/EBP β , DHPV suppressed the expression of protein which activates the key markers such as C/EBP α and peroxisome proliferator-activated receptor γ (PPAR γ) (Fig. 5C).

I demonstrated that DHPV effectively inhibited adipogenesis

and lipogenesis in vitro model using 3T3-L1 preadipocytes. However, one of the biggest unsolved issue on using fat cells study, it is still remain how it can be applicable on human. Also, adipocytes are active organ which is not only storage organ of energy but also endocrine organ of several hormones. It is considered as cross-talk between adipocytes and other organs [41]. Therefore, it is required that the antiobesity effects of DHPV in vivo and clinical studies. Also effectively physiological dosage needs to be determined by in vivo animal and clinical case.

In summary, DHPV suppressed MDI-induced adipogenesis in 3T3-L1 preadipocytes by delaying cell cycle progression. DHPV inhibited CDK2/cyclin O activity and thereby, regulated C/EBP β phosphorylation and reduced adipogenic markers. Additionally, DHPV inhibited MDI-induced lipogenesis by suppression lipogenic markers (Fig. 7).

Taken together, these observations implied that DHPV which presents a significant increase in plasma after cocoa consumption, could be a potential compound for the objective assessment of procyanidins in cacao intake that could help to beneficial effects on anti-obesity. Further, it is required how DHPV structurally binds CDK2/cyclin O and regulates its function. And because, there is a possibility that another target interacts with DHPV. Therefore, I need to perform additional studies to determine the other targets.

V. REFERENCES

- Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012;13(8):707-12.
- Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and Cancer. Annu Rev Pathol. 2015;11:431-49.
- Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010;9(6):465-82.
- Yun JW. Possible anti-obesity therapeutics from nature: a review. Phytochemistry. 2010;71(14-15):1625-41.
- Chiesi M, Huppertz C, Hofbauer G. Pharmacotherapy of obesity: targets and perspectives. Trends Pharmacol Sci. 2001;22(5):247-54.
- Rayalam SM, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem. 2008;19(11):717-26.
- Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr. 2002;76(6):1191-201.
- Cooper KA, Campos-Gimenez E, Kimenez Alvarez D, Nagy K, Donocan JL, et al. Rapid reversed phase ultra-performance liquid chromatography analysis of the major cocoa polyphenols and inter-relationships of their concentrations in chocolate. J Agric Food Chem. 2007;55(8):2841-7.

- Lee KW, Kin YH, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Fod Chem. 2003;51(25):7292-5.
- 10. Zhang L, Wang Y, Li D, Ho CT, Li J, et al. The absorption, distribution, metabolism, and excretion of procyanidins. Food Funct. 2016;7(3):1273-81.
- West SG, McIntyre MD, Piotrowski MJ, Poupin N, Miller DL, et al. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults. Br J Nutr. 2014;111(4):653-61.
- 12. Panduranga AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A. Dietary cocoa protects against colitis-associated cancer by activating the NRF2/Keap1 pathway. Biofactors. 2015;41(1):1-14.
- Wnaq J, Varghese M, Ono K, Yamada M, Levine S, et al. Cocoa extracts reduce oligomerization of amyloid-β: implications for cognitive improvement in Alzheimer's disease. J Alzheimers Dis. 2014;41(2):643-50.
- 14. Tomaru M, Takano H, Osakabe N, Yasuda A, Inoue K, et al. Dietary supplementation with cacao liquor proanthocyanidins prevents elevation of blood glucose levels in diabetic obese mice. Nutrition. 2007;23(4):351-5.
- 15. Matsui N, Ito R, Nishimura E, Yoshikawa M, Kamei M, et al. Ingested cocoa can prevent high-fat diet-induced obesity by regulating the expression of genes for fatty acid metabolism. Nutrition. 2005;21(5):594-601.

- 16. Johannes B, Diana K, Peter H, Alexander D. Chocolate with high cocoa content as a weight-loss accelerator. Glo J Med Res(K). 2015;15(1):9-14.
- 17. Yamashita Y, Okabe M, Natsume M, Ashida H. Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Arch Biochem Biophys. 2012;527(2):95-104.
- Min SY, Yang H, Seo SG, Shin SH, Chung MY, et al. Cocoa polyphenols suppress adipogenesis in vitro and obesity in vivo by targeting insulin receptor. Int J Obes (Lond). 2013;37(4):584-92.
- 19. Dorenkott MR, Griffin LE, Goodrich KM, Thompson-Witirick KA, Fundaro G, et al. Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. J Agric Food Chem. 2014;62(10):2216-27.
- 20. Spencer JP, Chaudry F, Pannala AS, Srai SK, Debnam E, et al. Decompotision of cocoa procyanidins on the transcription of interleukin-2 in peripheral blood mononuclear cells. Int J Immunother. 1999;15:23-9.
- 21. Urpi-Sarda M, Monagas M, Khan N, Liorach R, et al. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2009;1216(43):7258-67.

- 22. Fernando SP, Mourad C, Ignacio G, Carolina C, Abdelouahid S, et al. Synthesis, analytical features, and biological relevance of 5-(3', 4'-Dihydroxyphenyl)-γ-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols. J Agric Food Chem. 2011;59(13):7083-91.
- 23. Appeldoorn MM, Vinchen JP, Aura AM, Hollman PC, Gruppen H. Procyanidin dimers are metabolized by human microbiota with 2-(3,4dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gammavalerolactone as the major metabolites. J Agric Food Chem. 2009;57(3):1084-92.
- 24. Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormonesensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta. 2000;1483(2):251-62.
- 25. Cho ES, Jang YJ, Kang NJ, Hwang NK, Kim YT, et al. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med. 2009;46(10):1319-27.
- 26. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, et al. Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flacvanol-rich cocoa. Am J Clin Nutr. 2002;64(4):798-804.

- 27. Kelm MA, Johnson JC, Robbins RJ, Hammerstone JF, Schmitz HH. Highperformance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary Phase. J Agric Food Chem. 2006;54(5):1571-6.
- Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Biol. 2000;16:145-71.
- Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis.
 EMBO Rep. 2001;2(4):282-6.
- Sierbaek R, Nielsen R, Mandrup S. Transriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab. 2012;23(2):54-64.
- 31. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12(11):722-34.
- 32. Tang QQ, Otto TC, Land MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci USA. 2003;100(1):44-9.
- 33. Li X, Kim JW, Gronborg M, Urlaub H, Land MD, et al. Role of CDK2 in the sequential phosphorylation/activation of C/EBP beta during adipocyte differentiation. Proc Natl Acad Sci USA. 2007;104(28):11597-602.
- 34. Zhang JW, Tang QQ, Vinson C, Lane MD. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc

Natl Acad Sci USA. 2004;101(1):43-7.

- 35. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell. 1996;87(3):377-89.
- 36. Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci USA. 2003;100(3):850-5.
- 37. Li X, Molina H, Huang H, Zhang YY, Liu M, et al. O-linked Nacetylglucosamine modification on CCAAT enhancer-binding protein beta: role during adipocyte differentiation. J Biol Chem. 2009;284(29):19248-54.
- Dulloo AG, Montani JP. Body composition, inflammation and thermogenesis in pathways to obesity and the metabolic syndrome: an overview. Obes Rev. 2012; 13(suppl 2):1-5.
- Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013;19(10):1388-44.
- Otto TC, Land ME. Adipose development from stem cell to adipocyte. Crit Rev Biochem Mol Biol. 2005;40(40):229-42.
- 41. Kim JW. Research of metabolic diseases and differentiation of adipocytes. Biochem Mol Biol Rep. 2010;30(4):36-45.
- 42. Green H, Kehinde O. An established preadipose cell line and its

differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975;5(1):19-27.

- Student AK, Hsu RY, Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3t3-11 preadipocytes. J Biol Chem. 1908;255(10):4745-50.
- Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131-49.
- 45. Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441-70.
- 46. Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPAR γ by CDK5. Nautre. 2010;466(7035):451-6.
- 47. Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, et al. Antidiabetic actions of a non-agonist PPAR γ ligand blocking CDK5 mediated phosphorylation. Nature. 2011;466(7365):477-81.
- 48. Banks AS, McAllister FE, Camporez JP, Zushin PJ, Jurczak MJ, et al. An ERK/CDK5 axis controls the diabetogenic actions of PPARγ. Naure. 2015;517(7534):391-5.
- Reichert M, Eick D. Analysis of cell cycle arrest in adipocyte differentiation. Oncogene. 1999;18(2):459-66.

- 50. Jang YJ, Koo HJ, Sohn EH, Kang SC, Rhee DK, et al. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways. Food Funct. 2015;6(7):2365-74.
- 51. Xiao L, Zhang J, Li H, Liu J, He L, et al. Inhibition of adipocyte differentiation and adipogenesis by the traditional Chinese herb Sibiraea angustata. Exp Biol Med (Maywood). 2010;235(12):1442-9.
- 52. Muller SJ, Caradonna S. Cell cycle regulation of a human cyclin-like gene encoding uracil-DNA glycosylase. J Biol Chem. 1993;268(2):1310-9.
- 53. Roig MB, Roset R, Ortet L, Balsiger NA, Anfosso A, et al. Identification of a novel cyclin required for the intrinsic apoptosis pathway in lymphoid cells. Cell Death Differ. 2009;16(2):230-43.
- 54. Guo L, Li X, Tang QQ. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem. 2015;290(2):755-61.
- 55. Wu Z, Xie Y, Bucher NL, Farmer SR. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 1995; 9(19):2350-63.
- 56. Li X, Molina H, Huang H, Zhang YY, Liu M, et al. O-linked Nacetylglucosamine modification on CCAAT enhancer-binding protein beta: role during adipocyte differentiation. J Biol Chem. 2009;284(29):19245-54.

- 57. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992;6(3):439-53.
- 58. Kim JW, Tang QQ, Li X, Lane MD. Effect of phosphorylation and S-S bondinduced dimerization on DNA binding and transcriptional activation by C/EBPbeta. Proc Natl Acad Sci USA. 2007;104(6):1800-4.

Ⅵ. 국문 초록

비만은 체내에 지방조직이 과다한 상태로 비만인구의 증가는 전세계적으로 주요한 문제로 대두되고 있다. 특히. 지방세포의 분화과정은 비만의 원인 중 하나인 지방세포 수의 증가를 결정할 수 있는 중요한 모델로 여겨진다. 카카오는 많은 임상 연구와 전임상 연구에서 항비만 효능을 갖는다고 잘 알려져 있다. 하지만 근본적으로 카카오의 어떠한 성분 때문에 항비만 효능이 나타나는지에 관해서는 알려진 바가 없다. 본 연구에서는 카카오를 섭취한 후 혈중에 가장 높게 존재하는 대사체로 알려진 5-(3', 4'-Dihydroxyphenyl)-γvalerolactone (DHPV)의 지방세포 분화 및 지방 축적 저해 효능과 그에 관련한 분자기작을 규명하였다. DHPV는 지방 세포 분화의 주요 조절 마커인 PPAR y, C/EBP a, FAS 의 발현을 감소시킴으로써 3T3-L1 지방전구세포의 지방 축적 과정을 억제하였다. 3T3-L1 지방전구세포는 크게 유사 분열성 세포 증식 (mitotic clonal expansion)과 최종 분화 (terminal differentiation) 두 과정을 통하여 일어나게 되는데, DHPV는 이 과정 중, 유사분열성 세포 증식을 효과적으로 저해하였으며 세포분열 주기 중 G1기의 진행을 억제하였다. 또한, CDK2/cyclin O의 활성을 저해함으로써, 이의 하위인자이며 지방세포 분화에 중요한 마커인 C/EBP β의 인산화 역시 감소시켰다. 즉, DHPV는 CDK2/cyclin O의 활성을 감소시켜 세포분열을 저해함으로써 최종적으로 3T3-L1 지방전구세포의 분화를 억제함을 확인하였다. 이를 통하여 카카오의 항비만 효능 성분으로서 가능성을 제시하였으며 식품에서 유래한 안전성이 높은 천연물로 항비만을 예방하고 치료하는 물질로 활용할 수 있을 것이다.

주요어: 비만; 지방세포 분화; 지방 축적; 지방전구세포; 5-(3', 4'-Dihydroxyphenyl)-y-valerolactone (DHPV); 학번: 2014-22460

67