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This paper derives a closed-form solution for the European
call option price when the volatility of the underlying stock
returns is governed by a diffusion process. The model uses the
continuity property of a diffusion process and the martingale
approach to valuation of assets under no arbitrage. The pricing
formula differs from the Black-Scholes formula in that it needs
a volatility adjustment. The volatility movement is allowed to be
contemporaneously correlated with the stock price movement.
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I. Introduction

The variability of stock price volatility over time has received
considerable attention in the literature of option pricing. The
volatility of the underlying stock return changes stochastically over
time. There is ample evidence for stochastic volatilities of stock
returns (see Clark (1973), Blattberg and Gonedes (1974), Epps and
Epps (1976), Kon (1984) and French, Schwert, and Stambaugh
(1987)). This paper derives a closed-form solution for the European
call option price when the volatility of the underlying stock returns
is governed by a diffusion process.

Several explanations for stochastic volatility are offered in the
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literature. Castanias (1979), Chiras and Manaster (1978) and
French and Roll (1986) attribute changes in volatility to arrival of
unexpected information, while Schwert (1989) relates volatility
changes to the trading in index futures and/or index options, the
level of economic activity, leverage and stock trading volume.
Geske (1979) provides an economic rationale for an inverse re-
lationship between the stock price and volatility. If the stock is
viewed as a call option on the firm’s asset value, the volatility of
the stock return is a function of the leverage ratio, which in turn
changes as the stock price changes. Flood and Hodrick (1986) and
West (1988) relate volatility changes to the presence of bubbles and
fads.

The Black-Scholes option pricing model yields a time-varying
implied volatility of stock return from option prices. Merville and
Pieptea (1989) find empirical evidence that the implied volatility
follows a mixed mean-reverting diffusion process with noise. The
variability of stock-return variance is important in option pricing
since option prices are highly sensitive to variance. This observation
motivates researchers to examine the option price when the stock
has stochastic volatility. In fact, there is a growing body of
literature which examines an option price when the volatility of the
stock returns randomly changes over time.

There are two main lines of thinking in the literature regarding
option pricing with stochastic volatility. The first approach assumes
that there exists a deterministic functional relationship between the
stock price and volatility. As the stock price follows a diffusion
process, the volatility varies also. For example, in the compound
option pricing model of Geske (1979) the volatility is a function of
the firm’s leverage ratio, while in the constant-elasticity-of-variance
model of Cox and Ross (1976) the volatility is of the form o (S,t)=
5S°7'. The constant-elasticity-of-variance model of Cox and Ross
(1976) and the compound option model of Geske (1979) require the
stock price and the instantaneous standard deviation to be
functionally dependent and thus instantaneously perfectly corre-
lated. Beckers (1980) also obtains empirical results supporting an
inverse relationship between stock price and volatility.

The second approach assumes that the volatility process is
governed by a diffusion process of its own. This approach is more
general than the first in that the assumption of volatility depending
on the stock price level is relaxed, and a probabilistic correlation
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between the two processes is allowed. Research proposing diffusion-
type volatility models includes the papers of Eisenberg (1985),
Johnson and Shanno (1987), Hull and White (1987), Scott (1987),
Wiggins (1987), Chesney and Scott (1989) and Heston (1993).
Since it is more general, we adopt the second approach in this
paper.

The option pricing problem for assets with stochastic volatilities
is complex since there are no tradeable assets perfectly correlated
with the stock volatility, and thus volatility risk cannot be hedged
away. Hull and White (1987) and Scott (1987) assume that such
risk can be diversified away or is un-correlated with aggregate
consumption and thus the volatility is not priced by the market.
In order to eliminate volatility risk from the pricing equation,
Wiggins (1987) assumes the market portfolio to be the underlying
asset and the investors to have log utility. Furthermore, Hull and
White (1987) and Scott (1987) obtain a series solution by assuming
that volatility and the stock price are instantaneously un-correlated.
In the absence of a closed-form solution for the option price,
Wiggins (1987) numerically solves the fundamental partial differen-
tial equation, and Hull and White (1987) and Scott (1987) employ
the Monte Carlo approach in determining the distribution of the
final stock price and then use the risk-neutral argument. Heston
(1993) uses characteristic functions to value options with stochastic
volatility. Even though a numerical solution and the Monte Carlo
approach are useful to understand the option price, a closed-form
solution is always preferred.

We use the continuity property of Wiener processes and the
martingale approach to value call options under no arbitrage. By
using these properties, we are able to obtain a closed-form solution
for a European call option price when the volatility of the
underlying stock returns follows a diffusion process. The contribu-
tion of this paper is derivation of a simple formula under stochastic
volatility which is similar to the Black-Scholes formula. Even
though the instantaneous standard deviation of stock return
changes over time, the resulting formula requires volatility adjust-
ments in the Black-Scholes formula. In our analysis, the stock
price and volatility are allowed to be correlated. Thus we can
examine the implication of this correlation for the option price.

Section II develops the option pricing model when stochastic
volatility follows a mean-reverting diffusion process. Section III
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extends the analysis of Section II when a log-normal diffusion
process replaces the mean-reverting diffusion process. Finally,
Section IV provides a summary and conclusion.

II. The Model

Consider an economy with two traded assets, a stock and a
riskless bond. They are continuously traded in perfect markets,
where there are no transaction costs, taxes and no short-sale
restrictions. Let {zs(f):t>0} and {z,():t>0} be standard Wiener
processes defined on the probability space (Q,F,P), where Q
represents states of the world, F is the collection of events and P is
a probability measure. F is the smallest ¢ algebra which contains
{Fet>0} for all t, where F; is the right continuous and increasing
filtration (see Durrett (1984, p. 12) for definitions). The stock does
not pay cash dividends. The stock price S and the instantaneous
standard deviation satisfy the following stochastic differential
equations

dS(t) = pS)dt+ o[t)S(t)dzs(t) (1)
dolt)= k[c— o@]dt+ 6z,(0) 2)

where ., r,0 and §>0 are constants and the correlation coefficient
between dzs and dz, is p. The correlation coefficient o is allowed
to take any values between —1 and 1. According to (2), the
standard deviation of the stock is expected to drift instantaneously
towards the long-run average level o, with a speed of adjustment
« and its instantaneous variance is 62 Equation (2) is called an
Ornstein-Uhlenbeck process.! Scott (1987) uses this process for the
stochastic volatility of the stock. The specification with a mean-
reverting process is interesting since empirical evidence suggests
that the implied volatility follows a mixed mean-reverting diffusion
process with noise (see Merville and Pieptea (1989)). The risk-free
bond price satisfies

'The probability of negative volatility is positive for an Ornstein-Uhlenbeck
process, but small for a mean-reverting diffusion process.
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dB() =rB(t)dt 3)

where r>0 is a constant risk-free rate.

An equivalent probability measure defined on (2.,F) has the
following properties. First, an equivalent probability P* means that
P*X)=0 if and only if P(X)=0 for X&F. In other words, the two
probability measures share the same null sets. Second, the
Radon-Nikodym derivative ¢ =dP*/dP satisfies E( </;2)<00.

Using the martingale representation theorem (see Kunita and
Watanabe (1967) or Durrett (1984, p. 88)) for ¢ gives

v =B(¢)+ [ 7(s)azs) @)

where y is a two-dimensional vector of F-measurable real func-
tions, and Z is a two-dimensional Wiener process under P,
containing zs and z, as elements.

Similarly, y includes 7y, and 72 as elements. Applying the Girsanov
theorem (see Friedman (1975) or Karatzas and Shreve (1988)) gives

Z0=20-['9s) < ¢ Z> (5)

where Z* is a two-dimensional Wiener process under the equivalent
probability measure P* containing zg§ and zjS as elements, and
< ¢ ,Z> denotes the cross-variation process of ¢ and Z.2

Using (4) and (5), we can rewrite the stock price process (1) and
the volatility process (2) as

dS(t)=(p— 29)S@)dt+ o()St)dzs (1) (6)

do)=[x(g— 0)— Asldt+ 6dz#({t) or = k(55— o)dt+ 5dz () (7)

2Let X={X.,F; 0<t<oo} be a right-continuous martingale. Then X2:[Xl2,F,;
0<t<oo} is a non-negative sub-martingale. X has a unique decomposition
as the sum of a continuous martingale and a continuous, increasing,
integrable process with initial value zero. The latter process is defined as
the quadratic variation process and denoted by <X>. The cross variation
process <X,Y> for the martingales X and Y is defined as

<X, Y>=(1/4)[<X+Y>—-<X-Y>].

See Karatzas and Shreve (1988, p. 31) for details.
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where As=—((71+ pr2)/ ¢) o is the risk premium of the stock, A,=
—((pr1+ 72)/ ¢) 6 is the risk premium of volatility and o=o0—(1,/
x). The martingale property of the stock price (as will be shown in
(19)) implies that x— As—r=0. Thus the risk premium of the stock,
u—r, is As. We assume that a martingale process can be made by
adjusting As. Since the coefficients such as p and r are assumed
to be constant, As should be constant. As we can see from the
definitions of As and A,, p and ¢§ affect 1, whereas p affects As.3
The drift term can be transformed into a martingale under no
arbitrage condition by using the Girsanov theorem and As can be
changed through this process.

The processes (6) and (7) have the drift factor adjusted by the
risk premia. The stock price process (1) and the volatility process
(2) under P are transformed into (6) and (7) under P* respectively.4
Note that A, may not be observable in markets since the stock
volatility is not a traded asset.

Define e#/dt=dz&(t) and 7#/dt=dz#({t) (or equivalently e#V/At
=Az&t) and 7#/Adt=A4zX (@) by discretization) where &# and 7
are standard normal variables under P* occurring at time t. The
standard normal variables are serially independent, but they are
allowed to be correlated with each other contemporaneously. From
the Girsanov theorem, the contemporaneous correlation coefficient
between ¢* and 7* is also p. The following lemma shows a
continuity property of a standard Wiener process which will prove
useful in deriving important results.

Lemma 1.
With probability one, (dz&@)P=(dzz2D)*= 4t and Az&@) dzz20)= odt
for all i, and Az dz&()= Az &) Az ()= dz&{@) Az F(j)=0 for i=]j.

Proof: see the Appendix.

SUsually, the stock commands a positive risk premium. Under a constant
volatility or a zero value of p, 7: should be negative to provide a positive
risk premium As, since ¢ and ¢ are strictly positive. Thus as p increases,
the risk premium A, of stochastic volatility tends to increase. Similarly,
stochastic volatility commands a positive risk premium in a normal
situation. As ¢ increases, the risk premium A, also tends to increase.

“Starting from the original system of stochastic differential equations like
(1) and (2), Cox, Ingersoll, and Ross (1985) consider the alternative system
of equations like (6) and (7).
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Let T denote the expiration date of the option. It is assumed that
B(T) is unity. Thus we have that B(O)=e™". The discrete approx-
imations of (3), (6), and (7) are given by

Bi—Bi1
—=rAt (3a)
Bi1
Si—Si1 )
S—=(u— As) At+ oi1dz&() (6a)
i1
oi— oi-1= k (60— ci) At+ 6dz (i) (7a)

where AJt=T/n, and i runs from 1 to n. It follows from (3a), (6a)
and (7a) that

Bn=Bo[l1+r41" (8a)

Sn=Soll'k=1[1+(p— As) At+ ox-142&(K)] (8b)

k1= o+ (g0~ D1 — k40" + 61 11— k40" 4z 2@. (8¢
Substituting o1 of (8c) into (8b), we have

Sn=Solll=1{1+(p— As) At

+[5+ (00— A1 - #40" '+ 5 (01— k40 42201 422 0). (©)

Taking a limit on the both sides of (9) and using Lemma 1 (ie.,

AzED) Az F(@)= pdt for all i, and Az dz&()= Az i) Az ()= 4z&®)

Az F({)=0 for i=j), we can rewrite (9) as

lim Sn=Solim /7'k=1{1+ (1 — 2s) 4t

+[5+(00— D)1 — k40| 420 +o( 40} (10)

where o( - ) is the asymptotic order symbol defined by fl4)=o0(41) if
leil%ﬂm)/dho.

The dynamics of the stock price have two sources of uncertainty,
the stock price uncertainty and the volatility uncertainty. As we see
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from (10), the continuity property of Wiener processes eliminates
the volatility uncertainty. Consequently, the terminal stock price

does not exhibit the volatility uncertainty. Using a Taylor series
expansion along with Lemma 1, we can rewrite (8a) and (10) as®

lim Bn=Bolim exp[2.'k-1 r 1] +o(41) (11a)
lim S, =Solim expl > k-1( 11— 29 At+1G +(g0— B)1 — £ 40 1 420
—(1/2[G+ (00— D1 — k0T gth+0(40). (11b)
Since 1,}5130 Sn=S(T) and lrilrg(lx)Bn:B(ﬂ, we have that

S(T) S(0)
—_— = li — As—nT
B(T) B(0) nln;) expl{(p— As—1)

+ 2kl 5+ (00— )1 — £ 401 428k (12)

I _ _ k—1,2
- 7[6"‘(60— a)(1— k40" 1" 4t} +o(41).

Ross (1978) has shown that under no arbitrage, the asset price
function is a continuous and bounded linear functional. By the
Riesz representation theorem (see Luenberger (1969)), the continu-
ous and linear price functional of an asset can be written asé

°It is well known that a Taylor series expansion along with Lemma 1 is
equations equivalent to Ito’s lemma. But a naive application of Ito’s lemma
before substituting (8c) into (8b) loses information about the distribution of
the terminal stock price.

5The stochastic Euler equation derived by an equilibrium asset pricing
model (see Ahn and Thompson (1988)) is

Eo[TnR]:].
where m is the marginal rate of substitution and R is unity plus the rate of
return on an asset. Thus R is z(T)/ z(0). Substituting R into the above

equation yields

Eolm z (D] = z (0).
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7 (0)=Eomz (D)= [ mz (DdP (13)

where m and r(I) are Fr-measurable functions and E, denotes an
expectation operator with respect to P based on the information
available at time zero. In (13), 7z (T) is the payoff from the asset at
time T and m is called the Riesz payoff which turns out to be the
marginal rate of substitution for inter-temporal asset pricing
models. If equation (13) is applied to a default-free discount bond,
B(0), which has the payoff of $1 at time T, then we have that

B(0)=Eo[m] = f mdP. (14)

Using an equivalent probability measure P*, equation (14) can be
rewritten as

BO)= [ 4P b (15)
M

Since P* is a probability measure (i.e., f dpP*=1), equation (15) holds
if m=B(0)(dP*/dP)=B(0) ¢ where ¢ is the Radon-Nikodym deriva-
tive.7 Substituting m into (13) gives

7 (0) =B(0)f7r (DdP*=B(0)E¢[ z (T)]. (16)

Thus equation (13) also holds in an equilibrium model.
"By using an inter-temporal general equilibrium model, Cox, Ingersoll,
and Ross (1985, eq. 39) show that

Jw(W(s).Y(s).s)/Jw(W(0).Y(0).0) .
:exp[*fo r(W(u),Y(u),u)dqufos(* x Z)dw(u)*(l/Z)fOI 22 1%dul

where Jw(W(s),Y(s),s)/Jw(W(0),Y(0),0) is the marginal rate of substitution, exp
[— fo F(W(w),Y(u),u)du is the current bond price and expl f(ﬁ* %' X)dw(w) —(1/2)
fo °I'% 2 1°du] is the Radon-Nikodym derivative.

Thus, in terms of our notation, the above equation can be rewritten as

m=B(0)(dP*/dP).
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Equation (16) implies that the asset price is the discounted
expected value of the asset with respect to P*. The pricing function
is consistent with risk neutrality under the equivalent probability
measure P*. Since B(T) is unity equation, (16) can be rewritten as

7 (0)
—Eg
B(0)

x (D
[ | (17)

B(T)
It follows that under no arbitrage, the ratio of the asset price to
the bond price, r(t)/B(f) for t>0, is a P*-martingale (see Harrison
and Kreps (1979) and Harrison and Pliska (1981)). Using a general
equilibrium inter-temporal asset pricing model, Cox, Ingersoll, and
Ross (1985) also show that this ratio is a P*-martingale.
We need to mention that market incompleteness problem should be
solved before using martingale method under stochastic volatility
model.

By taking an expectation with respect to P* on the both sides of
(12), we have that

S S0
Eg I:ﬂ] — L exp [(/l* As—nT]. (18)
B(M B(0)

Since the ratio of the stock price to the bond price is a P*-
martingale as in (17), we should have that8

n— As—r=0. (19)

From the continuity of the exponential and logarithmic functions
and (19), equation (12) can be written as

S(7) S(0)
In B(D =In B(0) +,11iflo})zl}<:1{[5+(do— 51— k40" Az&(k)

(20

1 — — k—1,2
- 7[G+(00* o)(1— x4t 1" 4t +o(41).

®Martingale property under no arbitrage provides x— As—r=0.
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It follows from a Taylor series expansion and a binomial expansion
that (1— x48"" becomes expl—«k(k—1)dt]+o(4t) in a limit.9 Thus,
equation (20) can be rewritten as

In S0 In SO) +Hm > =l o+ ( olexpl—kllkc— 1) 4t} 4 z& (k)
——=In———+1lim - — o)expl—r(k— z&
B BO) k=1l 0 +(oo— o)exp[—«
(21a)
1
— 5 1o+ (oo~ aJexpl—k(lc— D)4t 4t +o(41)
or equivalently
S(’I] S(O] T _ — T
—=1 —o)e “ldz&
an " E0) +f0[a+[do ole "]
(21b)
1
- 7 fOT[ 5+ (oo— d)e T2dt.
Thus, In(S(T)/B(1) is normally distributed with a mean of
S(T) 5(0) 1 1—e " 1—e T
#ln——]=In——— —[5° oloo— 0)—— -7
Eo[rle] n BO) 5 [6°T+2 (60— o) p +(0o— 0) 2 ]
(22a)

and a variance of

“Without using expansions, alternatively, we can take a direct sum on
terms in (20) and then take a limit. For example,

(oo— o)’im > i-1(1— x 40" " At=(00— 3)’m((1 - (1 - £ 40"/~ (1~ £ 40)) 4t
=(co— o’lm((1 — (1~ x 40*)/(2 k — «* 40)= (0o~ 6)’Lim((1 — (1~ £ 40*)/2 &)
=(o0— )*((1—e *)/2 )

which is the last term of (22b). Thus, the both approaches provide the
same final result.
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—«T 24T

S
(2 1= °T+25(g0— ) ——+(go— 5)22— (22b)

Var*[ln

where Var* denotes a variance operator based on P*.

From equation (16), the European call option price is the
discounted expected payoff of the option at the expiration date with
respect to P*. Thus the European call option price is given by

C(0)=BI(0O)E§* [Max(0,S(T) —X)] (23)

where X is the exercise price of the option. The European call
option price is given by the following theorem.

Theorem 1. The European call option price is given by
C(0)=SN(d1) —X exp[—rTIN(d2) (24)

where S=S(0), N(-) denotes a standard cumulative distribution
function and

1
In(S/X)+rT+ E (727-

d,= (24a)
or

1 .
In(S/X) +rT— - oo

da= (24Db)
or
) . 1 _e*A'T ) 1 _6721(’1‘
or=0T+20(co— 0) ———+(oo—0) — (24c¢)
K 2
Ao
o=o0— (244d)
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The following parameter values are used to obtain option prices:
S=$45, X=8%$45, r=0.05 and T=time to expiration=0.5

FIGURE 1
CALL OPTION PRICES UNDER STOSHASTIC VOLATILITY

Proof: see the Appendix.

If the stock volatility becomes constant, we have that ¢= ¢ =0. It
follows from A,=—((pr1+ 72)/¢)6 in (7) that §=0 implies A,=0. It
follows from (24d) that o=_¢. Applying L'Hospital's rule gives that
lim((1—e )/ x)=lipTe =T and lLm((1-e>")/2 r)=liyTe *"=T. It
follows from (24c) that %= 6"T+25(g0o— )T+ (60— 0)°T=[6+(go—
5)]2T= (720T.

The Black-Scholes option pricing formula is obtained. Our
formula (24) includes the Black-Scholes formula as a special case.
Option prices are obtained with S=$45, X=$45, r=0.05, T=0.5
and various ¢ and are plotted in Figure 1. Note that the
Black-Scholes option price is the option price under stochastic
volatilty with x =0.

If the speed parameter x is zero but volatility is stochastic (§#=
0), then the formula (24) needs a change in (24c) such that!0
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o= ooT— A, oo+ 2, T°/3. (25)

The main difference between our formula (24) and the
Black-Scholes formula is in the specification of the variance of the
underlying stock return. Using a Taylor series expansion on (24c),
we have that

(26)
2 —2 — =y KT2 K273 _ /{3T4
or=0T+25((60— 0)T 5 + 6 o4
2, 3
+ (00— 3T T+ %— "TTA+ ).

The difference between our formula and the Black-Scholes formula
comes from the second and third terms of the right-hand side of
(26). It becomes apparent that for short-term-maturity options, the
Black-Scholes formula provides very similar option prices to one
obtained from (24) since terms with high orders of T (time to
expiration) have negligible effects, as seen in (26). Intuitively, the
effect of stochastic volatility is small because the volatility does not
change much for a short-term maturity. The pricing formula of
Theorem 1 describes the volatility adjustment to be made in the
Black-Scholes model when volatility is stochastic.

Even though risk-neutral pricing has been used in the previous
literature, the martingale property of the asset price has not been
extensively exploited so far. As shown by equation (17), a general
form of risk-neutral pricing arises. Thus the option price is the
discounted expected option value at the expiration date under P*
(the risk-neutral or equivalent probability measure).l! Results

In this case, the counterparts of (21a) and (21b) are
In(S(T)/ B(T)) =1In(S(0)/ B(0)) + ,13%27(: Ul oo—(k—1) A, 4t] 4 zs(k)
—(1/2) 60— = 1) A, 411> 4t} +0(41)
or equivalently

In (S(T)/B(M)=In (S(0)/B(0))+ fo (go— Adzs—(1/2) fo (60— AD%dt.

""The original form of risk neutral pricing arises from the fact that the
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presented here extend the work of Hull and White (1987), Scott
(1987) and Wiggins (1987) by deriving a closed-form solution for
the option price under stochastic volatility. This is possible by
utilizing the martingale and continuity properties. The martingale
property of the ratio of the stock price to the bond price has been
utilized as in equation (19). The continuity property of a Wiener
process has that with probability 1, (4z&@))*=(4z.*@))*= 4t and
Az&ED) Az, @)= pdt for all i, and Az&FW) dz&()= dz:*0) 4z *(j) = 4 z&(i)
Az,#{)=0 for i=j (Lemma 1). This property eliminates the volatility
uncertainty for the terminal stock price. Consequently, the terminal
stock price follows a log-normal distribution under the equivalent
probability measure.

Comparative statics are performed by differentiating (24) with
respect to each parameter:

0C

KZN(dI] >0 (27a)
%:Xre*”N(dz) + % exp(— d722][ 7+(oo—d)e “°>0 (27b)
g_;:( =—e "N(dy) <0 (27¢)
aTf::rXe*”N(dz) >0 (27d)
9C Xe™ exp ( - d222 ) [oo1—e*N+50—e )/ x>0 (27€)

360: 200v 27

oC Xe ™ do®>\ 1 262, 1—e T
e R
2 K K

Black-Scholes partial differential equation is independent of risk preferences
(see Cox and Ross (1976)). Hull and White (1987) do not impose the
martingale property on the ratio of the terminal stock price to the terminal
bond price based on the information at time zero (see their equation (11)).
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B 1—e 27 -~  4Te ™ T+e T—1
—2(00— 0) A — 5 —+20(00—0) 2 @279
2k Kk
L, 2kTe > T+e 71
+(00—"0) 2 ]
oC Xe " ( d22) [77{ - 1-e "
= — —— || oNoo—20)—
oo 261v21 P 2 ¢ K
279
1 —24T
~(60- 9 ]
K
oC Xe " ( d22) [ oT ( 2%) 1—e "
= — i ) [ (60—-275) ———
0 As orv2r P 2 ? K
(27h)

—(o0— o) 1—%]

The above comparative statics are straightforward. The call option
price increases with the current stock price, the risk-free interest
rate, the time to the expiration date and the initial volatility of
stock return.

In our model, the volatility movement and the stock price
movement are allowed to be correlated with each other. By the
visual inspection of (24) we can see that the correlation between
them has an effect on the call option price only through the risk
premium of stochastic volatility A,. Using a Taylor series expansion,
we can rewrite (27h) as

0C Xe ™ do?) T «T° 7T T 314T°
=——exp ( 7_) [ 60(7—4-—* + - 4+
i, or2rm 2 2 2 24 8 720
(271)
_ T T 78T T°
P L A SR |
3 4 60 24
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It follows from (27i) that for short-term-maturity options, as the
risk premium A, of stochastic volatility increases, the call option
price decreases. As discussed in Footnote 3, as the correlation
coefficient p increases, the risk premium of stochastic volatility 2,
tends to increase. Thus, as p increases, the call option price
decreases for short-term-maturity options.

Similarly, the diffusion coefficient ¢ of stochastic volatility affects
the call option price only through the risk premium A, of
stochastic volatility. As discussed in Footnote 3, as ¢ increases, A,
tends to increase. Thus, as ¢ increases, the call option price
decreases for short-term-maturity options.

Formula (24) includes the risk premium A, of stochastic volatility
as a parameter. The premium is unobservable since the volatility is
not a traded asset. Earlier papers assume that volatility risk is not
priced by the markets, ie., A,=0. For instance, Hull and White
(1987) assume that volatility is un-correlated with aggregate
consumption. Scott (1987) assumes that volatility risk can be
diversified away and that volatility and stock returns are un-
correlated. Wiggins (1987) assumes that the market portfolio is the
underlying asset and investors have logarithmic utility. Assuming
that A, is zero for any of the above arguments, we can test our
formula with market data by additionally estimating the speed
parameter ¢ and the long-run mean value g.

If A, is assumed to be zero, following Hull and White (1987),
Scott (1987) and Wiggins (1987), then the correlation coefficient o
and the diffusion coefficient 6 do not affect the call option price at
all. Thus the economic implication of non-priced volatility risk is
that the call option price is not affected by the correlation between
the stock price movement and the volatility movement and the
standard deviation of stochastic volatility.

III. Lognormal Diffusion Volatility

In this section, we extend the analysis of Section II when a
lognormal diffusion process replaces a mean-reverting diffusion
process (2) for the volatility of the stock. We specifically focus on
the differences from Section II.

Assume that the volatility of the stock follows a lognormal
diffusion process given by
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dot)= ac(dt+ So(t)dz,(t) (28)
where ¢ and §>0 are constants and the correlation coefficient
between dzs and dz, is p.

By transforming the stock price process and the volatility process
into those under an equivalent probability measure P*, we have
that

dS(t)=(p— 2s)S[@)dt+ o(0)S(t)dzs (1) (6)
do)=(a— A, o@dt+ so)dz (1) (29)

where A,=—((pr1+72)/¢)8 is the risk premium of volatility.
The discrete approximations of (6) and (29) are given by

Si—Si-1

=(p— As) At+ oi142z() (6a)
Si-1
Oi— Oi-1
—=(a— ) dt+ 84z #0) (29a)
Oi-1

where At=T/n, i runs from 1 to n. It follows from (6a) and (29a)
that

Sn=SoMl1[1+(p— As) At+ 11428 ()] (30a)
1= ooll'D1+(a— 2,) At+ 64z FD). (30b)
Substituting o1 of (30b) into (30a), we have

Sn=Soll'i_ifl+(p— A At+ ool 31+ (a— A,) At+ 84z F@)) Az&(k).
(31)

Taking a limit on the both sides of (31) and using Lemma 1 (ie.,
Az X)) dz&(k)= pdt for i=k, and Adz&{@)dz&()= dzF@{@) dz&()=0 for
i=J), we can rewrite (31) as'?

UmS,=Selim 7 k1[1+ (1 — As) At+ gol1+(a— A 40" 42(k) +o(4 ).
(32)
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There are two sources of uncertainty, the stock price uncertainty
and the volatility uncertainty. The volatility uncertainty has been
eliminated by the continuity property of Wiener processes. Conse-
quently, the terminal stock price follows a log-normal distribution

under the equivalent probability measure. Using a Taylor series
12

lim S =So lim expl Xk=1l(1— A9) At+ col1+(a— A 44" 4280
’ (33)

—(66°/2[1+(a— 2. 407V a6l +o0(41).

Since }llrpo Sn=S(T) and Lirg B,=B(1), by using (11a) and (33), we
have that

Sm _ S0 lim expl( 11— As— DT+ 2% ooll+(a— A, At Az&()
B B e SPRHT S kil g0l TlaT Ao : o

—(662 /21 +(a— 2. 407V a8l +o0(41).

By taking an expectation with respect to P* on the both sides of
(34), we have that

ORI L
o[—Bm]— oo @l s, (35)

Since the ratio of the stock price to the bond price is a P*-
martingale as in (17), we should have that!3

expl(p— As—NT1=1. (36)

By the continuity of the exponential and logarithmic functions and

It follows from Lemma 1 that
lim /7 {1+ (a— 2 dt+ 842 #D) 42200
=lim//ell1+(a— 27 40" 4209 +o(4)].

'3The same result has been obtained in section II with the mean-verting
diffusion process of stochastic volatility.
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(36), we can rewrite equation (34) as

S(T) S(0)
=In
B(T) B(0)

In +lim Xl ool 1+ (@ — 20 40 4280

37)
—(66* /21 +(a— 2.) 407V t+o(40).

It follows from a Taylor series expansion that [1+(a— Ag)zltlkf1
becomes expl(a— A,)(k—1)dt]+o(4t). Thus, equation (37) can be
rewritten as

Sm . S0 \
In = +1im 2%l oo expl(a— A,)lc—1) 4t Az (k)

=In
B B(O) - (38a)

—(00°/2) expl2(a— A)k—1) At] At+o( A1)}

or equivalently

S(0)
- Jyo explla— A)tldzs—(00%/2) [ expl2(a— 2)tdt.  (38D)

=In

It follows that In(S(T)/B(T)) is normally distributed with a mean of

o S(O) . 0'02 . B B
=By T (e qy @PRlem 2T (39)

ST ]

Eg [ln B

and a variance of

S ORI
B ] = lexpl2(a— 2,)TI—1} (39b)

Var* [ln 2a— 10

where Var* denotes a variance operator based on P*. The European
call option price can be obtained by using equation (23).

Theorem 2. The European call option price is given by

C(0)=SN(d)) —X exp[—rTIN(d2) (40)
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where S=S(0), N(-) denotes a standard cumulative distribution
function and

In(S/X)+rT+ —; o

di= (40a)
or
1 5
In(S/X)+rT— 50T
da= (40b)
or
oo
or=——"——"lexp[2(a— A,)T]—1}. (40c)
2( a— A a)

Proof: see the Appendix.

As we can see in Section II, the pricing formula is similar to the
Black-Scholes formula except for the volatility adjustment when
volatility is stochastic. If the stock volatility becomes constant,
we have that o= 8= A,=0. Applying L'Hospital's rule gives that
[£1%0(602/2[a— Adlexpl2(a— A )T — 1}=(}§§5}0602T expl2(a— A)T= 60°T.
It follows from (40c) that &°T becomes ¢o°T with a¢= 1,=0 and the
Black-Scholes option pricing formula is obtained. Our formula (40)
includes the Black-Scholes formula as a special case. Option prices
are obtained with S=$45, X=$45, r=0.05, T=0.5 and various a—
A, and are plotted in Figure 2. Note that the Black-Scholes option
price is the option price under stochastic volatilty with «— A,=0.

The main difference between our formula and the Black-Scholes
formula is in the specification of the variance of the underlying
stock return. Using a Taylor series expansion, we have that

2(a— 2)°T
or = 0o’ IT+(a— Ag)T2+a—

(a’_/lc)3’1‘4 2((1_/10)4’15
+ +
3 15

+

-], @1
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The following parameter values are used to obtain option prices:
S=$45, X=8%$45, r=0.05 and T=time to expiration=0.5

FIGURE 2
CALL OPTION PRICES UNDER STOSHASTIC VOLATILITY

It becomes apparent that for short-term-maturity options, the
Black-Scholes formula provides very similar option prices to one
obtained from (40) since terms with high orders of T (time to
expiration) have negligible effects, as seen in (41). The pricing
formula of Theorem 2 describes the volatility adjustment to be
made in the Black-Scholes model when volatility is stochastic.

As we discussed in Section II, the call option price (40) increases
with the current stock price, the risk-free interest rate, the time to
the expiration date and the initial volatility of stock return. The
effect of the risk premium A, of stochastic volatility on the call
option price is given by

8C: Xe T {_d_zz){_Texp[2(a*/IJ]T]+exp[2(af*/IU)T]fl}
o4 20mv2r PLT a— A, 2
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4
exp(— ) [—’I‘Z—T(a—M)Ts—(oz—ﬂg]z'l‘4 (42)

8
(a— A)°T°— -].
5

The effect of the risk premium A, of stochastic volatility on the call
option price depends on the sign of «— A,. Thus if o— A, is
positive, as A, increases, the call option price decreases. On the
other hand, if «— A, is negative, as A, increases, the call option
price may decrease or increase.

From the visual inspection of formula (40), we can easily see that
the diffusion coefficient § of stochastic volatility and the correlation
coefficient o between the stock price movement and the volatility
movement affect the call option price only through the risk
premium A, of stochastic volatility. As discussed in Footnote 3, as
o and ¢ increase, A, increases. Thus, as p and ¢ increase, the
call option price decreases if «— A, is positive.

If volatility risk is not priced (1,=0), following Hull and White
(1987), Scott (1987) and Wiggins (1987), then o and § do not
affect the call option price.

IV. Conclusion

We have examined the European call option price when the
volatility of the stock returns follows a diffusion process. The
continuity property of a diffusion process and the martingale
approach are used to obtain a closed-form solution.

Even though the instantaneous standard deviation of stock return
is uncertain over time, the resulting pricing formula is straight-
forward. The volatility adjustment is to be made in the Black-
Scholes formula, when volatility is stochastic. The volatility
movement is contemporaneously correlated with the stock price
movement. The closed-form solution for the option price allows us
to find the effect of stochastic volatility on the option price.

We show that the drift factor and the risk premium of stochastic
volatility are important in option pricing. The volatility of stock
price volatility and the correlation between the volatility movement
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and the stock price movement affect the option price only through
the risk premium of stochastic volatility. Thus they do not affect
the option price if volatility risk is not priced by the markets (ie.,
the risk premium of stochastic volatility is zero).

Appendix

Proof of Lemma 1 :
i) We use E§ to denote an expectation operator with respect to P*

based on the information available at time zero. Consider (4 zs’“(i])2
= &#*4t. Then we have that

E¢#l(4z#@) 1 =E¢ er® Atl= AtEG e7°]= At

and
Var#[(4z&#®)’] =E¢[(4 z&# @) —{Eg[ 42501

=E¢l e 4] — AP =24 =0(41)

where Var* is a variance operator based on P* and the asymptotic
order symbol o(4t) is defined by fld0)=o(48 if lim flat)/ 4t=0.

0
Since (Jz&(@))* is non-stochastic, (Azs*(i)]2:Eo*[(dzg"i(i])z]. Thus we

have that (4z&(@))>= 4t. Similarly, (4z D)= 4t.

ii) Consider Azg({M) dzF({)= & 7 4t. Then we have that
E¢[dzsW) Az # D =EG[ e 7 Atl= oAt

and

Vart[ 4z&() 4z #@) =E¢ (4 zs0) 42 F(0)°] —{E¢[ 4 z5() Az F D))

=E¢ &® 7#2 4] — 0> A= A1 — o) =0(41).

Since Az&(@i) 4z () is non-stochastic, 4z(i) 4z >0)=E¢[4dz&0) 4z F@0)].
Thus we have Az&(i) dz>({)= pdt.

iii) Consider Az (i) dzé(j)= & i At for i<j. Then, we have that

E¢[4z3() Az&DI=EG| & &ff AU =E¢| s#Ej—*[ &1 4t=0



PRICING CALL OPTIONS UNDER STOCHASTIC VOLATILITIES 523

and
Var*[ 4z&() 4z& ()] =E¢ (4 z&#W) 4z()*] —EF 4 z& @) 4 z#()F
=E¢[ &® ef” 4= AP =0(41).

Since Az&(i) 4z¢(j) is non-stochastic, A4z&() 4z (j) =E¢[4z(0) 4z&(7)].
Thus we have that Az&(i) 4zg(j)=0. We have the same result if i>j.
Similarly, we obtain that AzF{@)4z#{=0 and Az&W@)dz#({=0 for i
=j.

Q.E.D.
Proof of Theorem 1 :
Let y denote In(S(T)/B(T), pr denote E§[In(S(T)/B(T)] and 01> denote
Var*[In(S(T)/B(T)]. Note that y is normally distributed as shown in
(21a) or (21b), B(I=1 and B0)=e .

The European call option price is given by

C=B(0)E¢* [Max][0,S(T) - X]]

, S(T
=B(0)Eo*[Max[0.ﬁ—X]]
1 " SN y— m?
=B(0O)——— | [Max{0,———X] [-—————a
V27 or L’O B(D) P 2677 Y
—B(O); foo [Max[0,e’ —X] [— Mld
V2ror U ' P 207 v
_B(O); *© ey [_ M]d
V27 or "M P 267 v
1 o y— pn?
—XB(O)—— [-———1d
V271 or inx P 267 Y

1 o U2_2/1Ty—2 Gsz+ pr
=B(0)—— [ exp[— > dy
V27 or VX 20T
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Yz n X
—XB(0)N( T—), where N(-) is a standard normal distribution

or
1 o Y- wr— o)+ i’ —(ur+ or)?
:B(O)Tfl Xexp[— > ldy
V2rorh 20T

u“r X
—XB(ON(———)

or
B(O) [ GT2 ] 1 . [ (y— HT— G’r2]2 d
= expl pr+ - Yy
VZx or I 207"
pr—1n X
—XBO)N(———)
oT
GT2 pr—1In X+ 6T2 N
=B(0)expl pr+ IN( )
2 or
/17‘*11'1 X
—XBO)N(——)
oT
2 2
oT pr—In X+ or pr—In X
=B(0)expl pr+ IN( )—XBON(——)
2 oT oT
S(0) pr—In X+ 677 pr—In X
=B(0)exp[ In IN( )= XBON(——)
B(0) or or

=SN(d,) —X exp[—rTIN(d2)

where S=S(0) and

/jT—h’l X+ (7T2

d =
orT
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 InS/X) +1T+(1/2)[6T+2 500~ 0)(1 —e N/k+(c0—3)21—e>"N/2 k]

VeT+25(co—)1—e D/k+(c0—5)°(1—e /2«

pr—In X
gyt X
or

In(S/X)+rT—(1/2)[6T+25(s0— )1 —e )/ k+(00—3)(1 —e >")/2 4]

VoT+25(c0—0)1—e D/ k+(c0—0) (1 —e 2N)/2 «

Proof of Theorem 2 :

Q.E.D.

Let y denote In(S(T)/B(T)), xr denote Eg[In(S(T)/B(T)] and or> denote
Var*[In(S(T)/B(T)]. Note that y is normally distributed as shown in
(38a) or (38b), B(T)=1 and B(O)=e . The proof strategy of this

theorem closely follows the one of Theorem 1.
The European call option price is given by

C=B(0)E¢* [Max]0,S(T) —XI]

SN

=B(0)Eg [Max[O0, ﬁ —X]]
S(0) pr—In X+ or° 1z
=B(0)exp[ In IN( ) —XB(0O)N(
B(O) oT

=SN(d1)—X exp| —rTIN(d2)

where S=S(0) and

dl: /,tTfln X+ GT2

orT

—In X

or

 In(S/X)+1T+(1/2) so’lexpl2(a— AT — 1}/ [2(a— 4,)]

Voolexpl2(a— 2)T—1}/12(a— 1,)]
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/,tT*h'lX
2=
orT

In(S/X)+rT—(1/2) soXtexpl2(a— A)T1—1}/[2(a— 2.,)]
Vootlexpl2(a— A)T1—11/12(a— 1,)]

Q.E.D.
(Received 2 September 2002; Revised 20 Octorber 2003)
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