ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

교육학석사학위논문

중학교 수학 교과서의 기하영역 분석
 - 추론과 정당화를 중심으로 -

2014년 2월

서울대학교 대학원

$$
\begin{aligned}
& \text { 수학교육과 } \\
& \text { 조 미 혜 }
\end{aligned}
$$

중학교 수학 교과서의 기하영역 분석
 - 추론과 정당화를 중심으로 -
 지도교수 권 오 남

이 논문을 교육학 석사학위논문으로 제출함

2013년 10월

> 서울대학교 대학원
> 수학교육과
> 조 미 혜

조미헤의 석사학위논문을 인준함 2013년 12월
위 원 장
부 위 원 장
위
원
(인)

국문초록

중학교 수학 교과서의 기하영역 분석 - 추론과 정당화를 중심으로 -

중학교 기하영역은 추론과 정당화를 발달시키는 데 필요한 영역이며, 기하영역에서의 학습은 도형을 탐구하여 기하학적 성질을 이해하고 이를 통해 추론능력을 신장시키는 것을 목표로 한다. 그러나 학생들은 기하학 습을 하는 데 있어 증명에 대한 어려움을 느끼고 추론을 의미 있게 경험 하지 못한다. 이에 2009 개정 교육과정에서의 기하영역은 기하학적 성 질의 이해를 위해 형식적 체계를 강조하는 증명보다는 학생의 경험적 지 식에 바탕을 둔 정당화를 강조하고 있다. 이는 어떤 수학적 사실이 옳다 는 것을 학생이 이미 알고 있는 수확적 사실을 바탕으로 모순 없이 설명 하도록 하는 활동을 중요하게 다룸으로써 엄밀한 증명 대신 학생의 직접 적인 활동을 통한 추측활동을 강조하고, 학생들에게 추론 기회를 폭넓게 제공하고자 함을 알 수 있다. 그러나 이와 같이 교육과정에서 형식적 증 명을 약화하고 정당화를 강조하는 것에 대해 구체적인 방안이 마련되지 않아 공청회 등에서 많은 논쟁을 야기하였다. 또한 기하영역에서 증명 대신 정당화를 실질적으로 도입하는 것이 초유의 일이라 할 수 있는 만 큼 정당화의 의미에 대한 논의가 필요하다는 연구가 있어 왔다.
따라서 이러한 맥락에서 교과서에 구현된 추론과 정당화의 의미를 논 의하기 위해 이 연구는 추론과 정당화의 관점에서 교과서가 어떻게 구현 되었는지 분석하는 것을 목적으로 한다. 이를 위해 2009 개정 교육과정 에 의해 개발된 13 종의 중학교 2 학년 수학 교과서를 분석대상으로 하 며, 특히 2 학년 교과서의 기하 단원인 '삼각형의 성질'과 '사각형의 성질' 에 초점을 맞춰 교과서 도입에 제시된 탐구활동, 추론과 정당화가 나타 난 내용 설명, 문제를 분석하였다. 이를 위해 '기하학적 개념, 사실 알 기', '기하학적 성질 적용하기', '기하학적 성질 추론하기'로 구성된 수행

에 대한 기대 측면에서의 분석틀과 '경험적•귀납적 정당화, 예에 의한 정당화, 준연역적 정당화, 형식적•연역적 정당화'로 구성된 정당화의 유 형 측면에서의 분석틀을 마련하여 교과서 분석을 실시하였다.

교과서 분석 결과를 살펴보면, 첫째, 탐구활동의 질문과 문제에서 요구 하는 수행에 대한 기대는 '기하학적 성질 추론하기'의 비율이 '기하학적 개념, 사실 알기'와 '기하학적 성질 적용하기'의 비율보다 낮게 나타났다. 따라서 탐구활동의 질문과 문제를 구성함에 있어 단순히 기하학적 성질 을 알고 적용하는 것보다 '기하학적 성질 추론하기'를 의미 있게 경험할 수 있도록 이에 대한 고려가 필요하다. 둘째, 탐구활동과 내용 설명에서 사용된 정당화의 유형을 분석한 결과 경험적•귀납적 정당화에서 형식적 - 연역적 정당화로 바로 유도되는 경우가 많았다. 예에 의한 정당화와 준연역적 정당화는 경험적•귀납적 정당화와 형식적•연역적 정당화를 매개하기 위한 목적으로 제시되어 있었지만 이를 활용한 비율은 높지 않 았다. 또한 '정당화하기' 문제들은 대부분 형식적•연역적 정당화를 요구 하는 문제로 분석되었다. 따라서 경험적•귀납적 정당화에서 형식적•연 역적 정당화를 매개할 수 있는 다양한 유형의 정당화를 활용할 필요가 있으며, 학생들의 수준에 맞게 다양한 정당화의 유형을 경험할 수 있도 록 이를 고려할 필요가 있다.
이 연구는 중학교 수학 교과서의 기하영역이 추론과 정당화의 관점에 서 어떻게 구현되었는지 분석하였다. 이를 통해 2009 개정 교육과정에 따라 개발된 13 종의 교과서의 기하영역에 대한 추론과 정당화의 측면에 서의 전체적인 특징과 함께 교과서에 잘 구현된 점을 살펴봄에 따라 교 과서를 개발하는 개발자들과 실제 교과서를 활용해 수업을 할 때 교사들 이 고려해야 할 사항에 대한 시사점을 제공할 수 있을 것이다.

주요어 : 추론, 정당화, 중학교 기하영역, 교과서 분석
하 번 : 2011-23651
목 차
국문 초록 i
목차 iii
표 목차 v
그림 목차 vii
I. 서론 1

1. 연구의 목적 및 필요성 1
2. 연구문제 4
3. 용어의 정의 6
3.1. 탐구활동 - 6
II. 문헌검토 7
4. 중학교 기하영역에서의 추론과 정당화 7
1.1. 추론과 증명 7
1.2. 정당화 14
1.3. 추론과 정당화의 교수 • 학습방법 관련 선행연구 22
5. 교과서 분석 관련 선행 연구 24
2.1. 중학교 기하영역의 교과서 분석 선행 연구 25
2.2. 추론과 증명에 따른 교과서 분석 선행 연구 28
2.3. 수행에 대한 기대에 따른 교과서 분석 연구 35
III. 연구방법 40
6. 교과서 분석대상 40
7. 교과서 분석틀 42
8. 교과서 분석단위 및 분석방법 45
IV. 연구 결과 47
9. 삼각형의 성질 47
1.1. 수행에 대한 기대의 측면에서 교과서 분석결과 48
1.2. 정당화의 유형에 대한 분석결과 70
10. 사각형의 성질 86
2.1. 수행에 대한 기대 측면에서의 교과서 분석결과 87
2.2. 정당화의 유형에 따른 교과서 분석결과 104
V. 결론 125
11. 요약 및 결론 125
12. 논의 및 제언 130
참고문헌 133
Abstract 141

표 목 차

<표 $\Pi-1$ 〉 추론 능력 신장과 관련된 교수 . 학습 상의 유의점 9
<표 II-2> 정당화의 수준(Simon, Blume, 1996) 16
<표 Π-3> 정당화의 단계(김정하, 2010) 19
<표 $\Pi-4$ > 정당화 유형(김수철, 2013) 19
<표 $\Pi-5$ > 추론과 증명에 대한 교과서 분석틀(Stylianides, 2009: 262)28
<표 $\Pi-6>$ 추론과 증명에 대한 교과서 문제 분석틀(Thomson 외,2012: 262) .. 31
<표 $\Pi-7$ > 본문 설명에 대한 범주 (Newton \& Newton, 2006) 32
<표 $\Pi-8>$ TIMSS 2011 인지적 영역 분석틀 37
<표 III-1> 중학교 수학 (2)의 성취기준 41
<표 III-2> 수행에 대한 기대 측면에서의 교과서 분석틀 43
<표 III-3> 정당화 유형 측면에서의 교과서 분석틀 44
<표 IV-1> 삼각형의 성질에 대한 탐구활동과 내용 설명에서 사용된 정당화의 유형 72
<표 IV-2> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 형식적• 연역적 정당화의 예(교과서 $\mathrm{D}, 2012: 193,194$) 74
<표 IV-3> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한정당화, 형식적 • 연역적 정당화의 예(교과서 $\mathrm{H}, 2012$: 209,210)77
<표 IV-4> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 준연역적정당화, 형식적•연역적 정당화의 예(교과서 L, 2012:247)
<표 IV-5> 삼각형의 성질에 사용된 예에 의한 정당화와 형식적•연역적 정당화의 예(교과서 L, 2012: 247) ….................................... 81
<표 IV-6> 사각형의 성질에 대한 탐구활동과 내용 설명에서 사용된 정당화의 유형 107
<표 IV-7> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준연역적 정당화의 예(교과서 C, 2012: 247) …............................... 109
<표 IV-8> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{K}, 2012: 268$)
<표 IV-9> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{C}, 2012$: 235)
<표 IV-10> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 준연역적 정당화, 형식적•연역적 정당화의 예(교과서 C, 2012: 247)
<표 IV-11> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{K}, 2012$: 269)

그 림 목 차

[그림 $\Pi-1]$ 시각적 정당화의 예(Tall, 1995: 5) 12
[그림 II-2] Byrne의 증명방법의 예(장혜원, 2013: 185) 13
[그림 I-3] 포괄적 예 및 시각적 예를 통한 정당화의 사례(김수철, 2013) 20
[그림 III-1] '정당화하기' 문제에 대한 정당화의 유형 분석 과정 45
[그림 $\mathrm{IV}-1$] 삼각형의 성질에 대한 탐구활동의 수행에 대한 기대 비율(\%) 49
[그림 IV-2] 삼각형의 성질에 대한 탐구활동의 '인식하기' 질문의 예 (교과서 G, 2012: 179) 50
[그림 IV-3] 삼각형의 성질에 대한 탐구활동의 '계산하기' 질문의 예 (교과서 A, 2012: 236) 51
[그림 IV-4] 삼각형의 성질에 대한 탐구활동의 '측정하기' 질문의 예 (교과서 F, 2012: 244) 51
[그림 IV-5] 삼각형의 성질에 대한 탐구활동의 '이행하기' 질문의 예 (교과서 J, 2012: 254) 52
[그림 IV-6] 삼각형의 성질에 대한 '이행하기' 질문의 예(교과서 L , 2012: 241) 53
[그림 IV-7] 삼각형의 성질에 대한 탐구활동의 '기하학적 성질 추론 하기'의 질문 개수(개) 54
[그림 IV-8] 삼각형의 성질에 대한 탐구활동의 '정당화하기' 질문의 예 (교과서 I, 2012: 210) 55
[그림 IV-9] 삼각형의 성질에 대한 탐구활동의 '정당화하기' 질문의 예 (교과서 C, 2012: 210) 55
[그림 IV-10] 삼각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예 (교과서 M, 2012: 257) 56
[그림 IV-11] 삼각형의 성질에 대한 문제의 수행에 대한 기대 비율(\%)58
[그림 IV-12] 삼각형의 성질에 대한 ‘회상하기’와 ‘계산하기’ 문제의 예 (교과서 E, 2012: 232) 59
[그림 IV-13] 삼각형의 성질에 대한 '인식하기' 문제의 예(교과서 I, 2012: 208) 60
[그림 IV-14] 삼각형의 성질에 대한 ‘정형문제해결하기'의 문제의 예 (교과서 H, 2012: 213) 61
[그림 IV-15] 삼각형의 성질에 대한 ‘표현하기’의 문제의 예(교과서 H ,2012: 213)61
[그림 IV-16] 삼각형의 성질에 대한 '이행하기' 문제의 예(위: 교과서 C, 2012: 214, 아래: 교과서 J 2012: 252) 62
[그림 IV-17] 삼각형의 성질에 대한 ‘추측하기' 문제의 예 63
[그림 IV-18] 삼각형의 성질에 대한 ‘비정형문제해결하기’ 문제의 예 (교과서 B, 2012: 207) 63
[그림 IV-19] 삼각형의 성질에 대한 '정당화하기' 문제의 예(교과서 B, 2012: 201) 63
[그림 $\mathrm{IV}-20$] 삼각형의 성질에 대한 '기하학적 성질 추론하기'의 문제 개수(개) 64
[그림 IV-21] 삼각형의 성질에 대한 ‘추측하기' 문제의 예(교과서 C,
2012: 226) 65
[그림 IV-22] 삼각형의 성질에 대한 ‘추측하기' 문제의 예(교과서 C, 2012: 227) 65
[그림 IV-23] 삼각형의 성질에 대한 '종합하기' 문제의 예 (교과서 A, 2012: 238) 66
[그림 IV-24] 삼각형의 성질에 대한 '정당화하기' 문제의 예(위: 교과서B, 2012: 204; 아래: 교과서 F, 2012: 253)67
[그림 IV-25] 실생활맥락이 활용된 삼각형의 성질에 대한 '정당화하기' 의 문제의 예(위: 교과서 A, 2012: 239; 아래: 교과서 H, 2012: 211) 68
[그림 IV-26] 삼각형의 성질에 대한 ‘비정형문제해결하기' 문제의 예 (교과서 J, 2012: 253) 69
[그림 IV-27] 삼각형의 성질에 대한 교과서별 정당화의 유형 분포(\%)71
[그림 IV-28] 삼각형의 외심의 존재성에 대한 형식적•연역적 정당화 (교과서 A, 2012: 243) 75
[그림 IV-29] 직각삼각형의 합동조건에 대한 정당화의 예(교과서 B , 2012: 199) 80
[그림 IV-30] 삼각형의 성질에 대한 '정당화하기' 문제에 사용된 정당화의 유형 개수(개) 83
[그림 IV-31] 삼각형의 성질에 대한 '경험적•귀납적 정당화’와 '예에 의한 정당화' 문제의 예(교과서 $\mathrm{F}, 2012$: 254) 84
[그림 IV-32] 삼각형의 성질에 대한 ‘준연역적 정당화' 문제의 예 (교과서 H, 2012: 229) 85
[그림 $\mathrm{IV}-33$] 삼각형의 성질에 대한 ‘형식적•연역적 정당화’ 문제의 예 (교과서 M, 2012: 246) 86
[그림 IV-34] 사각형의 성질에 대한 탐구활동의 수행에 대한 기대 비율 (\%) 87
[그림 IV-35] 사각형의 성질에 대한 탐구활동의 '인식하기' 질문의 예 (교과서 A, 2012: 260) 88
[그림 IV-36] 사각형의 성질에 대한 탐구활동의 ‘추측하기’ 질문의 예 (교과서 J, 2012: 266) 89
[그림 IV-37] 사각형의 성질에 대한 탐구활동의 '이행하기' 질문의 예 (교과서 C, 2012: 240) 90
[그림 IV-38] 사각형의 성질에 대한 '정당화하기' 질문의 예(교과서 L,2012: 263)91
[그림 IV-39] 사각형의 성질에 대한 탐구활동의 ‘추측하기’ 질문의 예 (교과서 E, 2012: 251) 91
[그림 IV-40] 사각형의 성질에 대한 탐구활동의 '기하학적 성질 추론 하기'의 질문 개수(개) 92
[그림 IV-41] 사각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예 (교과서 L, 2012: 275) 92
[그림 IV-42] 사각형의 성질에 대한 탐구활동의 '정당화하기' 질문의 예(교과서 D, 2012: 209) 93
[그림 $\mathrm{IV}-43$] 사각형의 성질에 대한 '정당화하기' 질문의 예(교과서 J, 2012: 275) 94
[그림 $\mathrm{IV}-44$] 사각형의 성질에 대한 문제의 수행에 대한 기대 비율 (\%)96
[그림 IV-45] 사각형의 성질에 대한 '분류하기' 문제의 예(교과서 E, 2012: 255) 97
[그림 IV-46] 사각형의 성질에 대한 '계산하기' 문제의 예(교과서 G ,2012: 195)98
[그림 IV-47] 사각형의 성질에 대한 '정형문제해결하기' 문제의 예 (교과서 D, 2012: 328, 329) 99
[그림 $\mathrm{IV}-48$] 사각형의 성질에 대한 '기하학적 성질 추론하기'의 문제 개수(개) 100
[그림 $\mathrm{IV}-49$] 사각형의 성질에 대한 '정당화하기' 문제의 예(교과서 M , 2012: 279) 100
[그림 IV-50] 공학적 도구가 활용된 사각형의 성질에 대한 '정당화하 기’ 문제의 예(교과서 $\mathrm{B}, 2012$: 229) 101
[그림 IV-51] 사각형의 성질에 대한 ‘종합하기’ 문제의 예(교과서 F , 2012: 269) 102
[그림 IV-52] 사각형의 성질에 대한 '추측하기' 문제의 예(교과서 M , 2012: 284) 102
[그림 IV-53] 사각형의 성질에 대한 '비정형문제해결하기' 문제의 예(위: 교과서 A, 2012: 272, 아래: 교과서 D, 2012: 221)103
[그림 IV-54] 사각형의 성질에 대한 정당화의 유형 비율(\%) 105
[그림 IV-55] 사각형의 성질에 대한 '정당화하기'의 문제에 대한 정당화 유형의 비율 110
[그림 IV-56] 평행사변형의 성질에 대한 '정당화하기'의 문제에 대한정당화 과정 비교114
[그림 IV-57] 평행사변형의 성질에 대한 정당화 유형의 예(위: 교과서 C, 2012: 236; 아래: 교과서 B, 2012: 215) 117
[그림 IV-58] 사각형의 성질에 대한 '정당화하기'의 문제에 대한 정당화 유형 비율(\%)120
[그림 IV-59] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 G, 2012: 197)121
[그림 IV-60] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 $\mathrm{F}, 2012$: 267) 121
[그림 IV-61] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 M, 2012: 285)
[그림 IV-62] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 E, 2012: 266) 123
[그림 IV-63] 사각형의 성질에 대한 형식적•연역적 정당화를 요구하는 문제의 예(교과서 H, 2012: 257) 123

I. 서론

1. 연구의 목적 및 필요성

중학교 기하영역은 학생의 추론 능력 개발에 적합한 소재를 많이 담고 있으며(황선욱 외, 2011), 추론과 정당화를 발달시키는 데 필요한 영역 이다(NCTM, 2000). 또한 학생들은 기하 학습을 통하여 기하에 대한 추 측을 탐구하여 추론하는 것을 배울 수 있다. 그러나 학생들은 기하 학습 에 있어 증명에 대해 어려움을 느끼고 기하영역에서의 추론을 의미 있게 경험하지 못한다.
이에 2009 개정 교육과정의 기하영역에서는 학생들의 인지 수준과 흥 미를 고려하여 도형에 대한 탐구를 통해 학생들이 기하학적 성질을 이해 하고 그 논리적 타당성을 습득하도록 강조한다. 기하 지식의 습득 방법 에 있어서도 형식적 체계를 강조하는 증명보다는 학생의 직접적인 활동 을 통한 추측활동과 학생의 경험적 지식에 바탕을 둔 정당화를 강조한다 (신이섭 외, 2011). 즉, 어떤 수학적 사실이 옳다는 것을 학생이 이미 알고 있는 수학적 사실을 바탕으로 모순 없이 설명하도록 하는 활동을 중요하게 다룸으로써 학생들에게 추론 기회를 폭넓게 제공하고자 함을 알 수 있다. 이에 대한 해석으로 이환철, 김선희, 고호경(2012)은 2009 개정 교육과정의 기하영역에서 전통적인 증명 이외의 다양한 방법으로 명제가 참임을 설득시키는 과정을 증명의 한 분야로 포함시키면서 증명 의 포괄적인 의미로 정당화를 강조하고 있다고 하였다. 이를 통해 명제 가 참이라는 것을 경험적, 직관적으로 이해하고 그에 대한 이유를 학생 자신이 갖고 있는 지식을 활용하여 모순 없이 설명할 수 있게 하는 것은 정당화 활동 중 하나임을 알 수 있다.

그러나 중학교 교육과정에서 '증명'이라는 용어와 의미, 형식적인 증명 과정을 삭제하고 이를 '정당화'로 대체하고자 하는 제안은 연구진의 교 육과정 시안 논의 및 공청회 등을 거치면서 그 실천 방안에 대한 많은

논쟁을 야기하였다(장혜원, 2013). 이는 구체적인 방안의 부재와 기하 교육의 중요한 목표로 간주되어 온 논리 연역적 사고의 약화에 대한 우 려에서 기인하는 현상으로 볼 수 있다. 이로 인해 2009 개정 교육과정 의 기하영역에 대한 성취기준에서 '증명할 수 있다'를 대신해 사용하려 던 용어인 정당화를 적절히 대체하여 사용할 수 있는 표현으로써 '이해 하고 설명할 수 있다'라고 제시하고 있다(이환철, 김선희, 고호경, 2012). 그러나 박교식과 권석일(2012)은 기하영역에서 증명 대신 정당 화를 실질적으로 도입한 것은 초유의 일이라 할 수 있는 만큼 순탄한 이 행을 위해서는 정당화의 의미에 대한 논의가 필요하다고 주장하였다. 이 와 비슷한 맥락에서 실제 수업에서 사용될 교과서에 구현된 정당화의 의 미를 살펴보고 이를 논의할 필요가 있다.
추론과 정당화에 초점을 맞춰 교과서를 분석한 선행연구들을 살펴보면 이환철과 하영화(2011), 김수철(2013), Thomson, Senk와 Johnson(2012) 등의 연구가 있다. 이 중 이환철과 하영화(2011)는 2007 개정 교육과정 에 따라 개발된 기하영역의 교과서의 내용에서 나타나는 정당화 유형을 분석하였는데 교과서에 제시된 문제에 대해 분석이 이루어지지 않아 이 에 대한 분석이 필요하다. 또한 2007 개정 교육과정에 비해 학생들의 정당화 활동을 더욱 강조하는 2009 개정 교육과정에 따라 개발된 교과 서에서 나타나는 정당화 유형을 분석하여 교과서에서의 구현 정도를 확 인하는 것은 의미 있을 것으로 생각된다. 김수철(2013)의 연구에서는 정당화 지도를 위한 수업 모형 개발을 위하여 중학교 교과서의 기하영역 중 ‘삼각형과 사각형의 성질’에서 사용된 정당화의 유형을 분석하였다. 그러나 교과서에 제시된 정당화의 유형을 분석함으로써 정당화에 사용된 방법은 분석되었지만, 추측을 만들고 이를 일반화하여 정당화하는 등의 정당화의 과정에 대한 분석은 이루어지지 않았다. 따라서 교과서에 구현 된 정당화의 과정과 정당화의 유형을 함께 분석할 필요가 있다. 그리고 Thomson 외(2012)는 교과서에 제시된 추론의 유형을 연역 추론과 귀 납 추론으로 분석하였으나 추론 및 정당화의 유형이 세분화되지 않아 이 를 보완할 필요가 있다. 즉, 기하영역에 대한 교수 • 학습이 이루어질 때

학생들이 의미 있게 추론과 정당화를 경험할 수 있도록 교과서가 구성되 어 있는지 분석할 필요가 있으나 아직 연구가 부족한 실정이라고 할 수 있다. 따라서 정당화의 유형을 세분화하여 교과서 분석에 적용하며, 정 당화의 유형과 함께 정당화가 이루어지는 과정을 분석하기 위해 교과서 에 구현된 추론을 함께 분석하고자 한다.
교과서는 의도된 교육과정과 실행된 교육과정을 매개하는 도구이고, 잠재적으로 실행된 교육과정으로 간주되며, 교육과정에 담긴 내용을 수 학 교수 • 학습에서 활용할 수 있도록 구체화시킨 자료로써 수업의 방향 과 질을 결정하는 매우 중요한 요소이다(이경화, 강완, 2008). 또한 우 리나라 수학 교사들은 수업목표, 수업내용, 평가내용의 선정과정에서 교 과서 활용도가 높은 편이다(김민혁, 2012). 그러나 대부분의 수학 교사 들은 증명의 의미를 가정에서 결론을 이끌어 내는 연역으로만 제한하고 증명의 역할 역시 설명이나 의사소통과 같은 다양한 측면을 고려하기보 다 입증과 논리적 사고력을 기르는 수단으로 인식하는 경향을 갖고 있으 며, 대부분 교과서의 전개 방식에 의존해 증명을 지도한다(박은조, 방정 숙, 2005). 따라서 추론과 정당화를 강조하는 교육과정의 변화에 따라 개발된 교과서의 기하영역에서 추론과 정당화의 측면에서 어떻게 구현되 었는지 분석할 필요가 있다. 이를 위해 증명이 삭제되고 정당화가 처음 도입되는 중학교 2 학년 기하 단원인 '삼각형의 성질'과 '사각형의 성질' 을 분석하여 교과서가 추론과 정당화의 측면에서 어떻게 구현되었는지 살펴보고자 한다.
추론과 정당화의 관점에서 교과서를 분석하기 위해 교과서의 탐구활 동, 정당화가 나타난 내용 설명, 문제를 분석 대상으로 한다. 먼저 교과 서 도입에 제시된 탐구활동은 학생들이 구체적, 경험적 활동을 할 수 있 는 기회를 제공해 더욱 쉽게 기하학적 성질에 대한 추측을 할 수 있도록 돕는다. 따라서 탐구활동이 추론과 정당화를 촉진하기 위해 어떻게 구현 되었는지 살펴볼 필요가 있으며, 탐구활동과 정당화가 나타난 내용 설명 을 함께 분석하여 구체적, 경험적 활동이 기하학적 성질에 대한 추론으 로 어떻게 연결되는지 살펴볼 필요가 있다. 또한 $\mathrm{Li}(2002)$ 는 교과서의

내용 뿐 아니라 문제에 대한 분석까지 이루어져야 학생들에게 제공된 학 습 기회에 대해 분석할 수 있음을 강조함에 따라 교과서의 기하영역에 제시된 문제를 포함하여 분석함으로써 교과서가 학생들에게 추론과 정당 화의 기회를 어떻게 제공하고 있는지 분석하고자 한다. 이를 분석하기 위해 중학교 기하영역에서의 추론과 정당화의 의미에 대해 살펴보고, 이 를 촉진하는 교수 • 학습 방법에 대한 연구 및 교과서 분석에 대한 연구 를 검토한다. 이를 바탕으로 교과서 분석틀을 마련하여 교과서의 기하영 역을 분석하고자 한다.
이와 같이 중학교 교과서의 기하영역에 포함된 탐구활동, 내용 설명과 문제를 추론과 정당화의 측면에서 분석함으로써 교과서에서 잘 구현된 특징과 그렇지 못한 특징을 추출할 수 있을 것이다. 이를 통해 교과서를 개발하는 연구자들에게 교과서 개발에 있어 고려해야 하는 사항을 제시 할 수 있을 것이며, 실제 교수 • 학습과정에서 교육과정의 변화에 따라 증명 대신 학생의 추측활동을 통한 추론 및 정당화를 지도하게 될 교사 들에게 교과서의 내용 및 문제를 다룰 때 고려해야 할 사항에 대한 함의 점을 제공할 수 있기를 기대한다.

2. 연구문제

이 연구에서는 추론과 정당화의 측면에서 2009 개정 교육과정에 따라 개발된 교과서의 기하영역을 분석하고자 한다. 이를 위해 2009 개정 교 육과정에서 증명이 약화되고 정당화가 특히 강조되고 있는 중학교 2 학 년 수학 교과서1)의 '삼각형의 성질'과 '사각형의 성질' 단원에 초점을 맞 춰 분석하고자 한다. 추론과 정당화의 관점에서 교과서를 분석하기 위해 분석대상을 2009 개정 교육과정에 따라 개발된 13 종의 중학교 2 학년

1) 2009 개정 교육과정은 학년군으로 제시되어 있어 편의상 1 학년, 2 학년, 3 학 년과는 다른 개념인 '중학교 수학 교과서 (1)(2)(3)'으로 구분 고시되었다(이환 철, 김선희, 고호경, 2012). 그러나 실제 학교 현장에서 중학교 수학 교과서 (1)이 2013 학년도 1 학년에서 사용되고 있음을 감안하여 중학교 수학 교과서 (2)를 편의상 중학교 2 학년 수학 교과서로 표현한다.

수학 교과서를 대상으로 하며, 각 교과서의 탐구활동, 추론과 정당화가 나타난 내용 설명, 문제를 분석한다. 탐구활동과 문제에 대해서는 학생 들에게 요구되는 수행에 대한 기대를 분석함으로써 기하학적 성질에 대 한 추론을 어떻게 요구하고 있는지 살펴보며, 탐구활동과 내용 설명 그 리고 정당화를 요구하는 문제에 대해 정당화의 유형을 분석함으로써 교 과서에 구현된 추론과 정당화를 살펴보고자 한다. 따라서 이에 대한 연 구문제는 다음과 같다.

첫째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역의 탐구활동과 문제는 학생들에게 추론의 기회를 어떻게 제공하는가?

둘째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역에서 사용된 정당화의 유형은 어떠한가?

이에 따라 Π 장에서는 추론과 정당화의 의미와 추론과 정당화에 초점 을 맞춰 중학교 기하영역의 교수 • 학습에 대해 살펴보고자 한다. 이를 통해 추론과 정당화의 관점에서 교과서를 분석함에 있어 분석 요소를 추 출하고자 한다. 또한 교과서 분석 관련 선행연구를 추론과 정당화에 대 한 교과서 분석 연구, 중학교 기하영역에 대한 교과서 분석 연구, 수행 에 대한 기대에 따른 교과서 분석 연구로 나누어 살펴봄으로써 선행연구 의 결과 및 제한점을 파악하여 이를 바탕으로 교과서 분석틀을 구성하고 자 한다. III장에서는 교과서 분석 대상 및 분석 단위 및 방법, 분석틀을 제시하여 구체적인 연구방법을 제시하고, IV장에서는 개발한 교과서 분 석틀을 토대로 ‘삼각형의 성질'과 ‘사각형의 성질' 단원을 분석한 결과를 제시한다. V 장에서는 연구결과를 바탕으로 논의하여 결론을 맺고 후속 연구의 방향에 대한 제언한다.
이를 통해 2009 개정 교육과정에 따라 개발된 13 종의 교과서의 기하 영역에 대한 추론과 정당화의 측면에서의 전체적인 특징과 함께 교과서

에 잘 구현된 점을 살펴봄에 따라 교과서를 개발하는 개발자들과 실제 교과서를 활용해 수업을 할 때 교사들이 고려해야 할 사항에 대한 시사 점을 제공할 수 있을 것으로 생각된다.

3. 용어의 정의

3.1. 탐구활동

일반적으로 탐구활동은 추측과 정당화의 과정을 통해 기존 문제에 대 한 새로운 해법 뿐 아니라 그로부터 새로운 수학 내용이나 문제를 끊임 없이 제기하고 해결해나가는 활동으로 정의된다(도종훈, 2007). 그러나 이 연구에서는 추론과 정당화의 측면에서 교과서를 분석하고자 하므로, 교과서에 제시된 탐구활동으로 의미를 제한할 필요가 있다. 특히, 교과 서에서 내용 도입을 위해 학습내용 앞에 제시된 활동은 학생들이 학습할 기하학적 성질에 대한 추측활동을 돕기 위한 목적으로 제시되어 있으므 로 탐구활동의 의미를 교과서에서 내용 도입을 위해 학습내용 앞에 제시 된 활동으로 그 의미를 제한한다. 각 교과서마다 내용 도입을 위해 제시 된 활동들은 '탐구활동', '탐구', '활동으로 알아보기', '탐구하기', '생각열 기', '개념 열기', '활동하여 알아보기', '생각해봅시다', '생각 펼치기', '활 동하기' 등으로 나타나 있다.

II. 문헌검토

이 장에서는 추론과 정당화의 관점에서 교과서를 분석하기 위한 분석 요소를 추출하기 위해 이와 관련된 문헌을 검토하고자 한다. 1절에서는 중학교 기하영역에서의 추론과 정당화를 다룬다. 이를 통해 추론과 정당 화의 의미를 살펴보고 이를 촉진하기 위한 교수 • 학습방법을 살펴본다. 2절에서는 교과서 분석과 관련된 연구를 검토하며, 중학교 기하영역에 대한 교과서 분석 연구, 추론과 증명에 대한 교과서 분석 연구, 수행에 대한 기대에 대한 교과서 분석 연구에 초점을 맞춘다.

1. 중학교 기하영역에서의 추론과 정당화

$\operatorname{NCTM}(2000)$ 의 추론과 증명 규준은 추론을 할 수 있다는 것은 수학 을 이해하는 데 핵심적이라는 것을 강조한다. 따라서 학생들은 수학적 아이디어를 개발하고 현상을 탐구하며 결과를 정당화하고 추론을 활용함 으로써, 수학이 합리적이라는 것을 이해하고 기대할 수 있게 해야 한다. 또한 NCTM에 따르면, 기하영역은 학생들의 추론 및 정당화 기술을 발 달시키는 데 필요하고, 학생들은 잘 설계된 활동, 적절한 도구, 교사의 지원과 함께 기하에 대해 추측하고 탐구할 수 있으며 이를 통해 추론하 는 것을 배울 수 있다. 따라서 이 절에서는 중학교 기하영역에서의 추론 과 증명, 정당화에 대해 살펴보고 추론과 정당화를 촉진하기 위한 방안 에 대해 살펴본다.

1.1. 추론과 증명

1.1.1. 추론

추론은 일반적으로 이미 알고 있는 판단으로부터 새로운 판단을 이끌 어내는 사고과정을 의미한다. 강미광, 이병수, 양규환(1997)은 수학 지 식 구성에 있어 추론의 역할을 논의하면서 수학적 추론을 아이디어를 일 반화하고 그 아이디어들이 어떻게 관련되는지에 대한 타당한 결론을 이 끌어내는 수학적 사고의 일부분으로 정의하였다. 또한 수학적 일반화와 타당성을 확인하기 위한 귀납적 추론과 연역적 추론, 수학적 대상의 구 조에 대한 통찰이나 이해를 위한 유비추론과 변환적 추론으로 추론의 유 형을 구분하였다. 서동엽(2010)은 추론을 수학에서의 핵심적인 사고방 법으로 보고, 수학적 추론을 이분법적으로 귀납적 추론과 연역적 추론으 로 보는 게 아닌 점진적인 발달과정으로 보고 이에 대한 추론의 지도방 안을 논의하였다.
1989년부터 2000년까지의 NCTM의 과정 규준의 발달을 살펴보면, 추 론은 1989년의 과정 규준인 문제해결, 연결성, 의사소통과 함께 포함되 어 제시된 후, 2000년에 발표된 NCTM의 과정 규준에도 포함되어 있어 추론이 꾸준히 강조되고 있음을 알 수 있다. 이 중 $\operatorname{NCTM}(2000)$ 의 추 론과 증명 규준을 살펴보면 추론과 증명을 수학의 가장 근본적인 측면으 로 인식할 수 있도록 한다. 또한 나름의 주장과 추측에 대하여 깊이 있 게 평가하고, 귀납적 추론과 연역적 추론 등 다양한 유형의 추론을 통해 수학적 논의를 형식화함으로써, 추론 능력을 발전시키고 확장해야 함을 강조한다. 이를 위해서는 중학생들의 나이와 흥미에 맞고, 추론을 통하 여 수학적 관계를 알아보도록 하는 과제를 해결하도록 하는 것은 무엇보 다 중요하다는 것 또한 강조한다.
이와 비슷한 맥락으로 2009 개정 수학과 교육과정에서는 문제해결, 의사소통, 추론을 포함하는 '수학적 과정'을 신설하였는데, 수학적 과정 으로써 추론은 수학적 현상이나 사실 등을 대상으로 그와 관련된 잠재적 인 수학적 규칙성이나 원리, 구조 등에 결론적으로 이르기 위한 논리적 사고 과정을 수행하는 것으로 정의된다(황선욱 외, 2011). 또한 '추론 능력 신장과 관련된 교수 • 학습 상의 유의점'을 제시하고 있는데 이를 살펴보면 다음 <표 $\Pi-1>$ 과 같다.
<표 II-1> 추론 능력 신장과 관련된 교수•학습 상의 유의점
자. 추론 능력을 신장시키기 위하여 교수 • 학습에서 다음 사항에 유의한다.
(1) 귀납, 유추 등을 통해 학생 스스로 수학적 사실을 추측하고, 이를 정당화할 수 있게 한다.
(2) 수학적 사실이나 명제를 분석하고, 수학적 관계를 조직하고 종합 하며, 학생 자신의 사고 과정을 반성하게 한다.
(3) 추론을 통해 합리적으로 사고하는 능력을 키우고, 일상생활에서 자신의 의견을 정당화할 때 적절한 근거에 기초하여 논지를 전개할 수 있게 한다.

위의 <표 $\Pi-1>$ 에 제시되어 있듯이 추론 능력 신장과 관련된 교수• 학습은 합리적으로 사고하는 능력을 키워 일상생활에서도 자신의 의견을 정당화할 때 적절한 근거를 이용해 주장을 할 수 있도록 함을 목표로 함 을 알 수 있다. 이를 위해 학생들이 귀납, 유추 등을 통해 수학적 사실 을 추측하고 이를 정당화하도록 하며, 추론 결과 및 과정에 대해 자신의 사고 과정을 반성해보도록 한다.
Stylianides(2009)는 '추론과 증명하기(reasoning-and proving)'이라 는 용어를 정의해 증명과 관련되는 추론을 정의하였다. 이는 주어진 패 턴 속에서 수학적 관계를 일반화하는 것, 추측을 만드는 것, 정당화하거 나 증명하는 것, 정당화 또는 증명에 대해 평가하는 것을 포함한다. 이 는 정당화와 관련된 수학적 추론의 과정을 설명하고 있는 것으로 볼 수 있으며, 2009 개정 교육과정에 제시된 '추론 능력 신장과 관련된 교수• 학습 상의 유의점'과 비교해봤을 때 추측을 만들고, 이를 정당화하며 이 에 대한 사고과정의 반성을 하는 측면에 있어 유사하다고 볼 수 있다.
Mullis 외(2009)가 제시한 TIMSS 2011의 인지적 영역 분석틀에서 '추론’을 살펴보면 추론은 논리적, 체계적 사고에 대한 능력 뿐 아니라 비정형문제해결에 사용될 수 있는 패턴과 규칙성에 기초한 직관적인 추 론과 귀납적인 추론을 모두 포함하여 정의된다. 따라서 이 연구에서는

중학교 교과서의 기하영역 분석을 위하여 정당화와 관련된 추론의 과정을 고려하고 있는 Stylianides(2009)의 정의와 TIMSS 2011의 정의를 적용 하여 추측 만들기, 수학적 관계의 일반화, 정당화, 정당화의 평가 등의 정당화와 관련된 추론과 비정형문제해결에 사용되는 추론으로 한정하여 기하영역에 대한 추론을 정의하고자 한다.
한편, 추론을 지도하는 데 있어 우정호, 박미애, 권석일(2003)은 귀납 적 추론과 연역적 추론 사이에는 큰 간극이 있어 실험적, 귀납적 정당화 방식과 수학적 증명을 매개할 수 있는 중간 단계의 이행과정을 확인하고 그 수준을 구체화할 필요가 있다는 것을 강조한다. 이와 비슷한 맥락에 서 서동엽(2006)은 수학에 대한 형식과 대상의 관점에서 추론 지도의 수준을 논하며, 학교 수학에서 추론 지도의 수준을 보다 상세하게 구분 하고자 하였다. 귀납 추론과 형식적 연역 추론의 매개 단계로서 구체적 조작이나 감각 경험과 관련된 직관적 증명의 수준을 설정하는 것이 적절 하다고 주장하였으며, 이 때 활동 경험으로부터 일반성을 통찰하는 것이 중요하다고 하였다. 이에 따라 추론 지도의 수준을 구체적 사례를 통한 귀납 추론을 지도한 후 구체적 사례로부터 일반성을 인식하는 수준을 거 쳐 형식적 언어를 통한 연역 추론의 수준을 거쳐 지도해야 한다고 주장 하였다. 또한 Miyazaki(2000)의 연구에서는 증명의 수준을 설정하기 위 한 내용(연역 추론, 귀납 추론)과 표현(언어, 그림, 조작 가능한 대상)으 로 나누어 4 가지 기본 수준을 설정하였다. 즉, 논증의 기능적 언어를 이 용하는 연역 추론, 그림이나 조작 가능한 대상을 이용한 연역 추론, 그 림이나 조작 가능한 대상을 이용한 귀납 추론, 논증의 기능적 언어를 이 용하는 귀납 추론이 증명의 4 가지 수준으로 제시되었다.
지금까지 살펴본 연구들은 추론의 중요성을 강조하고 있음을 알 수 있 다. 또한 귀납적 추론과 연역적 추론 사이의 연결은 학생들에게 쉽지 않 기 때문에 중간단계의 이행을 도와야 하며 이를 위해 학생들의 수준과 흥미에 맞는 추론 과제가 제공되어야 함을 알 수 있다. 따라서 교과서에 제시된 활동 및 과제가 추론 측면에서 어떻게 구현되었는지 살펴볼 필요 가 있을 것이다.

1.1.2. 증명

수학은 본질적으로 증명에 관한 것으로, 증명은 수학적 진리를 발견하 는 맥락에서의 과정이자 수학적 진리가 참임을 보장하는 수단이고, 수학 사회에서 공적인 지식으로 받아들이는 과정에서 수학적 진리에 대한 자 기 확신과 이해, 타인에 대한 설득의 수단이기도 하다. 그러나 증명이 수학적 사고활동의 중요한 역할을 함에도 불구하고 학생들은 증명을 어 려워하며 증명방법을 전혀 탐색하지 못하고 명제의 해석을 어려워한다. 또한 정당화의 수단으로써 증명의 한계를 느끼며 반드시 기호를 사용해 야 한다는 데 많은 어려움을 겪는다(나귀수, 1998).

이는 현재의 증명 지도 수준보다 낮은 수준의 추론 지도에 대한 필요 성을 제기하고 있는 것으로 해석될 수 있다. 2009 개정 교육과정에서도 이러한 필요성이 반영되어 기하학적 성질을 이해하고 습득하는 방법을 제시함에 있어 형식적이고 엄밀한 증명 대신 학생의 직접적인 활동을 통 한 추측활동을 강조하고 있다(신이섭 외, 2011). 따라서 처음부터 학생 들에게 형식적 논증을 가르치지 않고 직관적 증명을 거쳐 점진적으로 형 식적 증명으로 나아가도록 해야 하며, 이러한 과정에서 직관적인 방법을 사용하고 수학의 응용적 측면을 소재로 사용하며 발생적 상황으로부터 출발함으로써 탐구와 발견의 정신을 추구할 필요가 있음을 알 수 있다 (우정호, 권석일, 2006).
또한 학생들이 증명에 대해 느끼는 어려움은 연역적이고 형식적인 증 명을 강조해 온 증명관에서 벗어나 학생들이 갖고 있는 정당화 유형부터 증명이 시작되어야 할 필요성을 제기하는 것이라 할 수 있다(김민주, 권 오남, 2006). 이와 비슷한 맥락으로 조완영과 권성룡(2001)은 연역적이 고 형식적이며 엄밀한 증명을 강조하는 전통적인 증명관에서 벗어나 다 양한 증명의 역할을 반영하고 수학교실 사회의 합의에 의해 증명의 타당 성에 대한 기준과 엄밀성의 수준이 결정될 수 있는 포괄적인 증명의 개 념을 받아들일 필요가 있다고 주장한다.

이러한 포괄적인 증명의 개념에 대한 연구들을 살펴보면 다음과 같다.

먼저 Tall(1995)은 다양한 수학적 표현을 이용해 할 수 있는 다양한 종 류의 증명을 소개하였다. 이는 학생 개인의 인지적 발달에 맞는 증명방 법으로 지도하기 위해 다양한 표현을 이용하여 설명해야 함을 강조한다. 그러한 예로서 소개된 증명은 활동적 증명, 시각적 증명, 조작적 증명이 있다. 활동적 증명은 어떤 것의 참임을 물리적 행동을 포함하여 증명하 는 것을 의미한다. 이는 시각적, 언어적 표현 뿐 아니라 요구되는 관계 를 보이기 위한 물리적 움직임도 요구된다. 예를 들면 이등변삼각형의 두 밑각이 같음을 보이기 위해 대칭축을 기준으로 두 변이 포개어지도록 접는 것을 들 수 있다. 또한 시각적 증명은 시각적 이미지를 이용한 증 명을 의미하며 보통 활동적 요소 중 언어를 포함한다. 예를 들어 아래의 [그림 $\Pi-1$]과 같이 피타고라스의 정리의 시각적 증명을 생각해볼 수 있다. 마지막으로 조작적 증명은 대수식과 같은 기호를 조작함으로써 정 당화하는 방법을 뜻한다.

[그림 $\Pi-1]$ 시각적 정당화의 예(Tall, 1995: 5)

이와 비슷한 맥락에서 장혜원(2013)은 시각적 표현을 이용해 기하 증 명을 한 Byrne의 'Euclid 원론'에 사용된 증명 방법을 소개하고 이를 수 업에 적용하였다. Byrne의 방법은 다음 [그림 $\Pi-2$]와 같이 증명의 아 이디어와는 별개로 문자 및 기호 사용에서 비롯되는 어려움을 극복하고 자 증명에 문자 대신 채색된 그림이라는 시각적 표현을 이용한 것이다.

[그림 II-2] Byrne의 증명방법의
예(장혜원, 2013: 185)

이러한 방법은 시각적 표현의 직관성에 근거해 증명을 제시할 때 이해 의 측면에서 학생들에게 도움을 주며, 색깔에 의해 자명하게 드러나는 도형 요소 사이의 관계에 대한 시각적 추론이 활발히 나타나도록 도울 것이다. 또한 홍진곤과 권석일(2004)은 포괄적 증명의 개념으로 실험적 이고 귀납적인 방식으로 이루어지는 정당화와 수학적으로 완전히 형식화 된 수준의 증명 사이에, 이 두 가지와 분명히 구별되어 논의될 수 있는 중간 수준의 증명 활동이라 할 수 있는 전형식적 증명의 개념을 소개하 였다. 전형식적 증명은 특수한 사례만이 아니라 일반적이고 보편적인 사 실을 정당화하며, 증명의 대상은 완전히 형식적으로 추상화되지 않아 감 각으로 지각할 수 있다. 또한 증명에 사용되는 언어는 형식적 증명에서 기능하는 논리적 언어를 제외한, 일상 언어나 구체적으로 조작 가능한 그림 등의 대상이 사용된다. 이를 교수학적으로 활용한다면 증명의 예비 단계 또는 증명의 발생적 맥락을 탐구하는 단계에서 그 학습을 돕는 역 할을 수행할 수 있다.
지금까지 살펴본 연구들을 통해 학생들이 증명에서 느끼는 어려움을 극복할 수 있도록 돕기 위해 학생들의 인지발달에 따라 직관적 증명에서 점차 형식적인 증명으로 나아갈 수 있도록 해야 함을 알 수 있다. 이를 위해 구체적 조작 활동, 지각적 활동과 같은 탐구활동과 시각적 표현을 포함한 다양한 표현을 이용한 여러 가지 방법을 활용해야 함을 알 수 있 다. 따라서 학생들의 증명을 돕기 위해 교과서에서 직관적 증명이 점진 적인 과정을 통해 형식적인 증명으로 발달하도록 구현되어 있는지 살펴 볼 필요가 있다.

1.2. 정당화

정당화는 학생들이 엄밀하고 형식적인 증명 이외에도 다양한 형태로 수확적 사실이 참임을 설명하고 다른 사람을 설득시킬 수 있어야 한다는 논의에서 나타났다. 이를 구체적으로 살펴보기 위해 정당화의 목적과 의 미를 알아보고, 정당화의 유형에 대해 살펴본다.

1.2.1. 정당화의 목적과 의미

Staples, Bartlo와 Thanheiser(2012)에 따르면, 정당화는 많은 목적을 가진다. 정당화는 주장의 타당성을 확인하기 위해, 결과 또는 현상에 대 한 통찰을 설명하거나 제공하기 위해, 지식을 체계화하기 위해 사용된 다. 여기서 체계화의 역할은 증명을 통해 여러 가지 결과들을 공리, 정 리, 정의 등을 연역적인 체계로 조직화하는 것을 의미한다. 이는 중학교 교육과정에서는 나타나지 않는다. 탐구의 목적으로써의 정당화는 추론의 형태를 사용하여 주장이 참임을 설명하는 것으로 정의된다. 이 때 주장 에 사용된 추론은 경험적이거나 예에 기반한 추론도 추론의 형태로서 허 용한다. 비록 많은 예들을 통한 경험적 주장은 주장의 참임을 보장하지 못하지만 이러한 추론의 형태는 주장이 참임을 설명하는 데 사용될 수 있다. 즉 정당화는 증명과 같은 목적으로 주어진 명제의 참을 검증하는 것이지만, 증명의 발견과 관련된 다양한 활동들을 모두 허용한다고 볼 수 있다.
또한 Stylianides(2009)는 정당화의 목적을 설명, 확인, 반증, 새로운 지식의 생성으로 제시하였다. 설명을 위한 정당화는 참, 거짓에 대한 통 찰을 제공하는 것이며, 확인을 위한 정당화는 주어진 명제의 참임을 확 인하는 것을 의미한다. 반증을 위한 정당화는 주어진 명제의 거짓을 확 인하는 것, 새로운 지식의 생성은 정당화를 통한 지식의 생성을 의미한 다. 이 중 정당화를 통한 새로운 지식의 생성은 Lakatos의 추측과 반박 에 의한 지식의 생성과 비슷한 의미를 나타내며, 반증은 추측이 거짓임

을 보이는 것을 의미한다. 반례를 보이는 것은 수학에서 일반적인 반증 의 방법이지만 이는 중학교 교과서에서는 거의 제시되지 않는다(이종희, 이지연, 2009). 따라서 Staples 외(2012)의 연구와 Stylianides(2009) 의 연구를 종합해봤을 때 중학교 교과서에서 사용될 수 있는 정당화의 목적은 주장이 참임을 확인하는 확인을 위한 정당화와 결과에 대한 설명 을 제공함으로써 참, 거짓에 대한 통찰을 제공하는 설명을 위한 정당화 를 생각해볼 수 있다.

정당화의 의미에 대해 김정하(2010)는 논리적, 개인적, 사회적 측면으 로 나누어 살펴보았다. 첫째, 정당화의 논리적 측면은 추측이 참임을 보 이기 위해 다양한 표현 방법을 이용하여 근거를 개인적인 논거 형식으로 제시하는 체계화과정을 의미한다. 넓은 의미로는 개인적 판단에 따라 타 당성이 확보된 모든 사고과정을 뜻하며, 교육상 의미로는 관찰과 암시, 검증이라는 자발적인 조정에 의한 사고과정이다. 좁은 의미로는 제한된 범위에서 논리법칙에 따라 논증하는 것으로 제한적으로 엄밀한 수학적 증명을 위한 사고과정으로 볼 수 있다. 즉, 정당화의 논리적 의미는 추 측이 참임을 확신하고자 할 때 귀납적인 사고 방법에 의해, 예를 확장해 감에 따라, 그림이나 활동과 같은 다양한 방법을 이용하는 등 학생의 발 달 단계에 부합하는 논리까지 포함된다고 볼 수 있다. 둘째, 정당화의 개인적 측면은 어떤 명제의 진위나 자신의 해결 방법에 대해 자신을 확 신시키는 과정을 의미한다. 마지막으로, 정당화의 사회적 측면은 수학 공동체를 설득시키고 확신시키기 위한 의사소통 과정을 의미한다. 이종 희 (2003)는 정당화를 형식적 증명을 포함하여 학생들이 경험, 연역적인 추론, 또는 교사나 교과서의 권위에 의해 심리적으로 수학 명제가 참임 을 확신하고 다른 사람을 설득할 때 사용하는 방법이라고 정의하였다. 이는 김정하(2010)의 정당화의 의미에서 논리적 측면과 사회적 측면의 정당화에 대한 설명과 유사함을 알 수 있다.

1.2.2. 정당화의 유형

$\operatorname{Bell}(1976)$ 은 정당화를 다른 사람들 사이에서 자신의 주장을 타당하 게 하고, 어떤 결과나 현상으로 통찰을 제공하며, 지식을 체계화하는 수 단으로 보고 증명 문제에 사용된 학생들의 정당화를 2 가지 유형으로 나 누었다. 이는 확신을 위해 몇 가지 예를 사용한 경험적 정당화와 자료로 부터 결론을 연결하기 위해 연역법을 사용한 연역적 정당화로 이루어진 다. 이러한 $\operatorname{Bell}(1976)$ 의 정당화의 유형은 담화 속에서 보이는 학생들의 반응을 관찰하여 정당화의 수준 및 유형을 보다 세분화하여 연구되어 왔 다(김정하, 2010; 김수철, 2013; Simon \& Blume, 1996; Sowder \& Harel, 1998; Marrades \& Gutiérrez, 2001 등). 이를 자세히 살펴보면 다음과 같다.
Simon과 Blume(1996)은 학생들의 반응에 나타나는 정당화의 수준을 5 가지로 나누었는데 다음 <표 $\Pi-2>$ 와 같다.
<표 II-2> 정당화의 수준(Simon, Blume, 1996)

수준	설명
1	정당화 없음(반응에 정당화가 들어있지 않음)
2	외부적 권위에 의한 정당화(공인된 사람에 의한 정당화)
3	경험적 증거에 의한 정당화(특정 예를 통한 정당화)
4	일반적 예에 의한 정당화(특정 예에 대한 연역적 정당화)
5	연역적 정당화(특정 예와는 별개로 연역적 논증을 제시)

위의 <표 $\Pi-2$ >를 통해 Simon과 Blume(1996)의 정당화의 수준은 $\operatorname{Bell(1976)}$)의 정당화의 유형보다 더 세분화되었음을 알 수 있다. 특히 학생들의 정당화를 관찰하면서 정당화가 나타나지 않거나 외부적 권위에 의한 정당화를 추가하였음을 알 수 있으며, 예를 사용해 어떻게 정당화 하였는지에 따라 경험적 정당화와 연역적 정당화가 세분화되어 제시되었 음을 알 수 있다.
Sowder와 $\operatorname{Harel}(1998)$ 은 수학적 증명 스키마를 설명하였는데, 학생들 의 증명 스키마를 외부적인 기반에 의한 증명 스키마, 경험적 기반에 의

한 증명 스키마, 분석 기반 증명 스키마로 구분하였다. 첫째, 외부적인 기반에 의한 증명 스키마는 권위에 의한 증명 스키마, 관습에 의한 증명 스키마, 기호적 증명 스키마로 나누어진다. 권위에 의한 증명 스키마는 증명을 할 때 교과서, 교사의 말 또는 친구의 말을 이용해 증명하는 것 으로 결과로 이끄는 추론의 세부적인 사항은 확인하지 않고 다른 사람의 결과를 그냥 받아들이는 것을 의미한다. 관습에 의한 증명 스키마는 추 론이 담고 있는 의미보단 추론의 형태에 의해 주장의 정확성을 판단하 며, 기호적 증명 스키마는 의미 없는 기호의 조작에 의한 증명을 의미하 며, 이는 논증의 타당성을 논증 형식이나 의미 없는 기호 조작에 지나치 게 의존한다는 의미가 함축되어 있다.
둘째, 경험적 증명 스키마는 지각적 증명 스키마와 예에 기반한 증명 스키마로 나누어진다. 지각적 증명 스키마는 학생들에게 친숙한 몇 가지 그림을 통해 참임을 증명하는 것이며, 예에 기반한 증명 스키마는 한 개 또는 그 이상의 예를 사용하여 추측을 평가하고 확신하는 증명이다.
마지막으로, 분석적 증명 스키마는 수학자나 수학교사들이 일반적으로 증명으로 인정하는 형태로서 변환적 증명 스키마와 공리적 증명 스키마 로 나누어진다. 변환적 증명 스키마는 상황의 일반적인 측면과 관계되는 학생들의 정당화와 관련된 증명으로 일반적인 추측에 대한 추론을 포함 한다. 공리적 증명 스키마는 무정의 용어, 정의, 가정, 정리를 포함하는 증명을 의미한다. 이는 이전의 정당화의 유형 및 수준을 나눈 연구들에 비해 더 세분화되었음을 알 수 있으며, 무정의 용어, 정의, 공리 등을 사 용하는 공리적 증명 스키마까지 포함하고 있음을 알 수 있다.
Marrades와 Gutiérrez(2001)은 학생들의 정당화를 분석하는 데 있어 정당화의 과정과 결과를 모두 고려하여 나누었다는 점에서 이전의 연구 들과 차별성을 갖는다. 즉, 정당화의 유형 뿐 아니라 추측의 생성, 정당 화의 고안, 정당화하기와 같은 학생들의 모든 활동을 포함하여 정당화를 분류하였다. Marrades와 Gutiérrez(2001)의 정당화의 유형은 Simon과 Blume(1996)의 연구와 비슷한 맥락으로 예를 사용했느냐 그렇지 않았 느냐에 따라 경험적 정당화, 연역적 정당화가 보다 세분화된다.

경험적 정당화는 확신을 위해 예를 사용한다. 학생들은 하나 또는 그 이상의 예들을 통해 규칙성을 인식한 후 추측을 하며, 추측을 정당화하 기 위해 예를 사용한다. 문제의 진술에 추측이 포함될 때 학생들은 오직 추측의 참, 거짓을 확인하기 위해 예를 사용한다. 이 때, 경험적 정당화 는 다시 소박한 경험주의, 결정적 실험, 포괄적 예에 의한 정당화로 나 뉜다. 소박한 경험주의는 하나 또는 몇 개의 예를 확인함으로써 추측을 정당화한다. 결정적 실험은 추측이 참임을 보이기 위해 조심스럽게 선택 된 예를 사용하며 일반화에 대한 필요성을 인식한다. 포괄적인 예에 의 한 정당화는 추측을 확인하기 위해 가능한 모든 경우의 대표적인 예를 선택하는 경우이다. 추론을 이용하여 추측의 타당성을 설명하려고 하지 만 포괄적인 예를 통해 추측의 참을 고려한다.

연역적 정당화는 맥락에서 벗어나 일반적인 방법으로 추측을 입증하는 것을 목표로 하며, 정당화를 조직하는 데 있어 예를 사용하는지 그렿지 않은지에 따라 사고실험과 형식적 연역으로 분류된다. 사고실험은 경험 에 의한 정당화에서 벗어난 형식화된 식을 사용하거나 변형함으로써 정 당화하는 기호적 계산 또는 개념적 증명의 형태이다. 형식적 연역은 특 정한 예의 도움 없이 정신적 조작에 근거하는 정당화를 의미한다.

이제 국내 정당화의 유형 및 수준과 관련된 연구를 살펴보면 다음과 같다. 김정하(2010)는 초등학생들의 정당화 단계의 특징을 고찰하였다. 이를 위해 요소별, 학생별, 과제별 정당화 분석을 실시하였는데, 정당화 분석틀의 요소 중 정당화의 단계는 Simon과 Blume(1996)의 정당화 수 준과 Sowder와 $\operatorname{Harel}(1998)$ 의 증명 스키마를 근거로 하여 구성하였다. 이를 자세히 살펴보면 다음 <표 $\Pi-3>$ 과 같다.
<표 II-3> 정당화의 단계(김정하, 2010)

단계	유형	
0	정당화 없음	
1	외적 확신에 의한 정당화	권위적 정당화 관습적 정당화 기호적 정당화
2	경험적•귀납적 정당화	지각적•활동적 정당화 - 평범한 예에 의한 정당화 - 결정적 예에 의한 정당화
3	포괄적 예를 통한 연역적 정당화	포괄적 예에 의한 정당화 - 시각적 예에 의한 정당화
4	단순 연역적 정당화	- 식의 조작에 의한 정당화 - 단순 연역적 정당화
5	형식적•연역적 정당화	- 가설 연역적 정당화 - 형식적 정당화

김수철(2013)은 정당화 지도를 위한 수업 모형 개발을 위하여 김정하 (2010)의 연구에서 정당화가 나타나지 않는 0단계와 외부로부터의 권위 에 의해 정당화를 시도하는 1 단계를 제외하고 다음 <표 $\Pi-4>$ 와 같이 정당화의 단계 및 유형을 제시하였다.
<표 Π-4> 정당화 유형(김수철, 2013: 58)

단계	유형	
1	경험적 • 귀납적 정당화	• 지각적, 활동적 정당화 •평범한 예에 의한 정당화
2	예에 의한 정당화 예에 의한 정당화	

서울대학교
sou wow umerin

경험적•귀납적 정당화는 시각 자료나 조작 활동(종이접기, 작도, 기하 소프트웨어 등을 이용하는 활동) 등을 통해 도형의 성질을 발견하고 발 견된 성질에 대하여 그것이 참이 된다는 것을 스스로 확인하거나 다른 사람에게 설명하는 단계를 의미한다. 이 단계에는 지각적 - 활동적 정당 화와 평범한 예에 의한 정당화, 극단적 예에 의한 정당화로 나뉜다. 예 를 들어, 이등변삼각형의 꼭지각의 이등분선이 밑변을 수직 이등분함을 보일 때 종이접기를 통해 참임을 설명하는 것은 지각적 - 활동적 정당화 에 해당된다. 또한 일반적인 형태의 삼각형을 이용해 삼각형의 외심을 확인하여 이를 바탕으로 설명하는 것은 평범한 예에 의한 정당화의 예로 볼 수 있다. 그리고 삼각형의 외심을 확인하고자 할 때 직각삼각형과 같 은 특수한 형태의 삼각형을 이용해 외심을 확인하는 사례가 극단적 예에 의한 정당화의 유형으로 볼 수 있다.
예에 의한 정당화는 예를 사용하여 연역적으로 설명하는 정당화를 의 미한다. 이 유형은 시각적 예에 의한 정당화, 포괄적 예에 의한 정당화 가 포함된다. 이는 김정하(2010)의 연구에서 포괄적 예를 통한 연역적 정당화와 동일한 의미로 해석된다. 예를 들어 평행사변형의 두 쌍의 대 각의 크기가 서로 같음을 정당화할 때 다음 [그림 $\Pi-3$] 과 같이 평행사 변형을 그리고 $\angle C=180^{\circ}-a-b$ 임을 설명해 $\angle A=\angle C$ 임을 보인다. 이 는 포괄적 예와 시각적 예에 의한 정당화의 유형이다.

[그림 $[\mathrm{I}-3$] 포괄적 예 및 시각적 예를 통한 정당화의 사례 (김수철, 2013: 55)

준연역적 정당화는 형식적인 증명은 아니지만 결론을 연역할 때 논리 적인 오류 없이 명제가 성립함을 타당하게 설명할 수 있는 것을 의미한 다. 이 유형은 식의 조작에 의한 정당화, 논리적 설명에 의한 정당화가 포함된다. 예를 들어 두 직각삼각형에서 빗변의 길이와 다른 한 변의 길 이가 각각 같으면 서로 합동임을 보일 때 주어진 두 직각삼각형의 빗변 이 아닌 두 변이 서로 일치하도록 뒤집어 이등변삼각형을 만든 다음, 이 등변삼각형의 성질을 이용하여 두 밑각의 크기가 같음을 수학적 기호를 사용하지 않고 설명함으로써 합동임을 보인다면 이는 논리적 설명에 의 한 정당화가 활용된 예이다. 또한, 식의 조작을 활용하여 연역적인 결론 을 도출하는 정당화가 식의 조작에 의한 정당화이다.
형식적•연역적 정당화는 어떤 인정된 형식에 따라 논리적으로 수학적 증명을 시도하는 것을 의미한다. 형식적 증명 유형이 여기에 속하는데, 평행사변형의 두 쌍의 대각의 길이가 같음을 보이기 위해 수학적 기호를 사용하여 삼각형의 합동조건을 이용하는 등 형식적이고 연역적인 방법으 로 주어진 명제가 참임을 증명하는 것을 예를 들 수 있다. 형식적•연역 적 정당화의 의미에서 김정하(2010)의 연구에서 제시되었던 부정에 의 한 증명, 수학적 귀납법 등을 포함한 가설 연역적 정당화는 제외되었는 데, 이것은 고등학교 이상의 교육과정에 포함된 내용이기에 중학교에서 의 정당화 지도를 위한 수업 모형을 살펴보기에 적합하지 않아 제외되었 음을 알 수 있다.
이상의 논의에서 알 수 있듯이, 정당화의 유형은 $\operatorname{Bell(1976)}$ 의 경험적 정당화와 연역적 정당화에서부터 점차 세분화되어 경험적 정당화와 연역 적 정당화 사이의 중간 단계의 정당화를 포함하여 설명하고 있음을 알 수 있다. 이처럼 다양한 수준에서 여러 단계로 정당화 유형을 분류하고 있는 것은 그만큼 학생들의 정당화하는 방법이나 사고의 수준이 다양하 다는 것을 나타내는 것으로 볼 수 있다(이경화, 최남광, 송상헌, 2007). 또한 앞에서 살펴본 연구들은 형식적 증명 뿐 아니라 추측이 참임을 확 신하고자 할 때 학생들의 다양한 수준에 맞게 귀납적인 사고 방법, 예의 확장, 그림이나 활동을 이용하는 등 다양한 방법을 이용한 논리적 활동

까지 모두 포함하는 것으로 정당화를 해석하고 있음을 알 수 있다. 그러 므로 이 연구에서는 정당화의 의미를 경험적, 귀납적인 방법부터 형식 적, 연역적인 방법까지 다양한 방법을 사용하여 자신의 추론이 참이라는 것을 설명하는 과정으로 정의하고자 한다.

1.3. 추론과 정당화의 교수•학습방법 관련 선행연구

중학교 기하영역에서의 추론과 정당화를 촉진시키기 위하여 교과서가 어떻게 구현되었는지 살펴보기 위해 추론과 정당화의 교수 • 학습방법과 관련된 선행 연구들을 살펴볼 필요가 있다. 이를 살펴보면 다음과 같이 세 가지 측면을 강조하고 있음을 알 수 있다.
첫째, 추론과 정당화를 촉진시키기 위해 형식적 정당화 이전의 구체적 조작활동을 경험하도록 한다. 이러한 맥락은 2009 개정 교육과정의 '개 념, 원리, 법칙, 기능의 교수 • 학습 상의 유의점'에도 제시되어 있다. 이 를 통해 학생들이 새로운 개념 및 원리를 학습할 때 구체적 조작활동을 통하여 학생 스스로 개념, 원리, 법칙을 발견하고 이를 정당화하도록 함 을 강조함을 알 수 있다. 즉, 이를 기하영역의 추론과 정당화에 적용해 봤을 때 구체적 조작활동을 통해 도형의 성질을 발견하고 이를 정당화하 도록 해야 한다.
신현용(2004)은 학교수학에서 증명지도의 문제점을 정당화의 측면에 서 분석하고 정당화 지도방법에 대해 논의하였다. 이에 대해 종이 접기 등 다양한 실험, 관찰, 컴퓨터 프로그램 등을 통하여 여러 가지 정당화 기법에 익숙해지도록 다양한 정당화를 지도해야 함을 강조한다. 또한 조 한혁, 안준화, 우혜영(2001)은 논리와 추론을 위한 의미 있는 문맥을 제 공하는 방법 중 하나로 중학교에서 다루는 도형과 그의 성질을 초등학교 에서 다뤘던 방법으로 탐구하도록 하는 것을 제안하였다. 이것은 초등 수준에서 증명의 전 단계로 도형의 성질을 연역적으로 받아들이고 이해 하기 전에 중간단계로 도형의 성질을 탐구하였던 것과 같이 중학교에서 도형의 성질을 다루는 데 있어 동일하게 논리와 추론을 도입하는 것을

의미한다. 즉, 형식적이고 연역적인 증명에 의해 도형의 성질을 학습하 는 대신 초등의 사고 수준을 따르는 조작과 활동을 통해 도형의 성질을 자연스럽게 발견하고, 수용할 수 있는 조작 환경을 만들어 제공하는 것 을 뜻한다고 볼 수 있다.
둘째, 기하영역에서 추론과 정당화를 촉진하기 위한 방안으로 도형을 관찰하며 이를 바탕으로 도형의 성질을 발견하고 탐구하도록 도울 수 있 도록 컴퓨터 소프트웨어의 활용을 강조한다. 이러한 맥락은 2009 개정 교육과정에서 '기하영역의 대한 교수 • 학습 상의 유의점'에서도 강조되 고 있다. 2009 개정 중학교 교육과정에서는 기하영역에서 추론을 지도 할 때 유의해야 할 점으로 공학적 도구나 다양한 교구를 활용하여 도형 의 성질을 추론할 수 있게 할 것을 제시한다. 즉, 추론을 촉진시키기 위 해 공학적 도구나 교구를 활용해 학생 스스로 기하학적 성질을 추측하게 하고 이를 바탕으로 추론활동을 할 수 있게 도와주어야 함을 강조한다고 볼 수 있다.
이와 비슷한 맥락으로 박주희(2004)는 점진적인 구성의 증명지도를 위하여 증명을 완성하기 이전에 추측을 할 수 있는 탐구활동을 통하여 증명의 필요성을 생각할 수 있도록 하며, 탐구의 과정에서 컴퓨터 소프 트웨어의 활용으로 발견의 기회를 풍부하게 하고 직관적 이해를 도울 수 있도록 할 것을 권장하였다. 또한 류희찬과 조완영(1999)은 교과서에 제시된 증명 문제는 학생들로 하여금 처음부터 형식적인 증명을 시도할 것을 요구하고 있음을 비판하고 그러한 문제를 학생들이 추측을 하도록 하고 이를 어떻게 정당화할 것인지 생각할 수 있게 제시할 필요가 있다 고 주장하였다. 이를 위해 몇 개의 사례를 토대로 실험, 측정, 시각적으 로 정당화하는 과정에서 탐구형 소프트웨어의 유용성을 강조하였는데 이 는 평면도형과 공간도형에 대한 학생들의 경험을 강화시켜 줄 수 있으며 다양한 예를 쉽게 만들어주고 도형의 중요한 요소를 잃지 않으면서 도형 을 자유자재로 변형시킬 수 있음을 제시하였다.
Marrades와 Gutiérrez(2001)은 동적기하환경에서 도형에 대한 실험을 하고 이에 대한 즉각적인 확인을 통하여 학생들이 연역적 정당화를 하기

전에 경험적 탐구를 할 수 있다는 점을 강조하였다.
마지막으로 추론과 정당화의 과정에서 시각적 이미지의 활용을 강조한 다. 류현아와 장경윤(2009)은 기하문제해결에서 시각화 과정을 분석하 여 기하 추론교육에 시사점을 얻고자 하였다. 시각적 이미지는 기하적 추론을 용이하게 도울 수 있다. 이는 개념과 명제들 사이의 형식적 관계 에 대한 이해를 발달시키기 위해 이미지 스키마의 내적인 구조가 구성적 으로 확장될 수 있기 때문이다. 평면도형을 지도할 때 학생들이 도형의 구조를 명확히 파악하고 부분도형들 간의 관련성을 보다 잘 이해할 수 있도록 교사는 도형에 대한 이해에 유념하여 시각화를 강조해야 한다고 하였다. 또한 장혜원(2013)과 Tall(1995)은 시각적 표현을 이용한 증명 방법을 소개하였는데 이를 통해 도형 요소 사이의 관계에 대한 시각적 추론이 활발히 나타나도록 도울 수 있다는 것을 강조하였다.
지금까지 추론과 정당화를 촉진할 수 있는 교수 • 학습 방법에 대한 연구들을 살펴보았다. 이는 연역적 정당화 이전에 구체적 조작활동 등을 이용하여 다양한 정당화의 유형을 경험하도록 하며, 기하학적 성질을 추 측하고 탐구하도록 하기 위한 컴퓨터 소프트웨어의 활용을 강조한다. 또 한 추론과 정당화의 과정에서 시각적 이미지의 활용을 강조하고 있음을 알 수 있다. 따라서 추론과 정당화의 측면에서 교과서를 분석하기 위해 이러한 요소들이 교과서에서 어떻게 활용되고 있는지 살펴볼 것이다.

2. 교과서 분석 관련 선행 연구

이 연구는 2009 개정 교육과정에 따라 개발된 교과서에서 중학교 2학 년 수학 교과서의 기하단원인 '삼각형의 성질'과 '사각형의 성질'에 초점 을 맞춰 추론과 정당화활동을 살펴보고자 한다. 따라서 교과서 분석에 있어 분석 기준을 마련하기 위해 이와 관련된 선행 연구를 살펴볼 필요 가 있다. 이를 위해 이 절에서는 중학교 기하영역에 대한 교과서 분석 관련 연구, 추론과 증명에 대한 교과서 분석 관련 연구, 수행에 대한 기 대에 대한 교과서 분석 관련 연구로 나누어 살펴본다.

2.1. 중학교 기하영역의 교과서 분석 선행 연구

중학교 기하영역에 대한 교과서 분석 관련 국내 연구들은 크게 다음과 같이 5 가지로 나눌 수 있다. 첫째, 외국과의 교과서 비교를 통한 시사점 을 도출한 연구들이 있다. 이것은 외국 교과서의 비교를 통해 교과서의 기하영역에 대한 개선점을 모색한 연구로, 기하영역의 교과서 분석에서 가장 많은 비중을 차지했다.

먼저 최용환(2012)은 한국과 중국의 수학 교과서를 기하영역을 중심 으로 비교하였다. 교과서 내용 구성 방식(본문 내용과 문제 제시 방식, 학습 주제의 도입 시기, 단원 구성방식)과 문제 유형(예제와 문제, 연습 문제의 비율), 기하 학습내용의 차이를 살펴보았다.
정소영(2012)은 한국과 MiC 교과서의 교수학적 변환방식을 비교 • 분 석하였다. 특히 기하 용어의 정의 방식과 기하영역에서 다루고 있는 수 학적 지식의 교수학적 변환 과정을 비교해봄으로써 탐구활동이 학생들의 개인화, 배경화의 과정을 도울 수 있도록 함으로써 학생들이 수학 학습 의 주체가 될 수 있는 교과서 구성에 대해 제언하였다. 이와 비슷한 연 구로 김후재(2004), 서지희(2012)는 현실적 수학교육 이론에 따라 우리 나라와 MiC 교과서를 비교 - 분석하였다.
문영미(2009)는 한국과 일본의 수학 교과서를 분석하기에 앞서 교육 과정의 성격 및 수학교육 목표를 확인하고 학습 분량과 단원의 구성, 학 습 내용의 비교를 하였다. 이승재(2013)는 한국과 인도의 수학 교과서 를 교과서 구성(단원구성과 단원의 전개 체제), 용어 및 기호, 학습 내 용, 문제 유형, 추론과 증명에 따라 비교하였다. 이에 대해 인도의 교과 서는 참인 명제를 증명하기 전에 그와 관련된 활동을 충분히 하여 명제 에 대한 추측을 정당화시키는 것을 통해 학생들에게 증명의 의미와 필요 성을 인식시키는 단계가 필요하다고 제언하였다.
또한 정희연(2008), 나홍수(2009)는 통일을 대비하여 남북한의 수학 교육에서의 유사점과 차이점을 알아보기 위해 기하영역에서의 내용상 차 이, 증명의 차이를 중점적으로 남북한의 중등 수학 교과서 비교 • 분석하

였다. 윤정민(2009), 심종섭(2012)은 우리나라와 홍콩의 중학교 교과서 를 비교하여 시사점을 도출하고자 하였다.
한국과 러시아의 교과서를 비교한 연구(안정주, 2005; 한인기, 2010) 도 있는데 이 중 한인기(2010)의 연구는 러시아의 기하 교과서와 우리 나라의 중학교 1 학년 교과서를 비교 • 분석하였다. 논리적 사고력 신장 은 증명하거나 정당화하는 것과 관련되는데, 러시아의 교과서에서는 학 생들의 수준을 감안하여 논리적 엄밀성과 직관적 측면을 절충해 본문을 기술하였음을 분석하였다. 그리고 직관적 정당화를 통한 설득, 증명이 포함되어 있음을 제시하였다. 또한 논리적 사고력과 관련된 문제는 계획 세우기, 증명하기, 탐구하기, 고찰하기 등으로 분석되었다.
장정순(2011)은 한국과 핀란드의 수학 교과서의 내용 구성 방식과 같 은 외형적인 비교와 학습내용 및 학습지도 내용 등의 내용 비교를 통해 유사점과 차이점을 도출하였다. 그 외에 한국과 필리핀의 교과서 비교 연구(이장현, 2013), 한국, 일본, 미국의 기하영역을 비교한 연구(김미 영, 2002)가 있다.
둘째, Van Hiele의 이론에 따라 기하영역을 분석한 연구들이 있다. 이 금주(2007), 박성희(2011), 김판수(2011)는 교육과정에 따라 개발된 교과서에 제시된 문제의 기하학습수준을 분석하였다. 이 중 김판수 (2011)의 연구를 자세히 살펴보면, 2007 개정 교육과정에 따라 개발된 교과서의 문제는 여러 가지 기하학적 성질을 상호 관련시키는 것이 필요 한 것으로 3 수준 또는 3 수준 이상에 해당되지만, 대부분의 학생들의 기 하학습수준은 2 수준임을 드러내 학생의 수준에 맞는 교사의 적절한 지 도가 필요함을 강조하였다. 또한 이중권(2006)은 교과서의 기하영역의 내용과 문제를 모두 분석하였는데, 이를 통해 1 학년은 $1,2,3$ 수준에 해 당되었지만 2,3 수준에 해당하는 비율이 높고, 2 학년은 3,4 수준에, 3 학 년은 $2,3,4$ 수준에 해당하는 내용과 문제들로 구성되었음을 제시하였 다. 따라서 증명의 점진적인 전개, 도형의 다양한 예를 통한 기본적인 성질의 제시, 학생들의 다양한 능력을 반영할 수 있는 여러 수준의 많은 문제와 이해를 돕는 시각화, 실제 생활을 적용한 기하 개념의 설명 등이

보완되어야 한다고 주장하였다.
셋째, 과제의 인지적 요구 수준에 따라 교과서를 분석한 연구가 있다. 권지현(2013)은 2007 개정 교육과정에 의해 개발된 교과서 문제를 대 상으로 기억 문제, 연계성 없는 절차형 문제인 낮은 인지적 요구 수준 과제와 연계성 있는 절차형 문제, 수학 하기 문제인 높은 인지적 요구 수준의 과제를 기준으로 하여 분석을 실시하였다. 그 결과 낮은 인지적 요구 수준의 문제가 95% 로 교과서의 대부분을 차지하였다.

넷째, 현실주의, 구성주의, Skemp의 이해, 교수학적 변환과 같은 관 점에서 교과서를 분석한 연구들이 있다. 김미진(2010), 김주경(2011)은 현실주의 수학교육 관점에서 교과서를 분석하였다. 또한 안주연(2011) 은 Skemp의 도구적 이해와 관계적 이해에 기초하여 2학년 기하영역에 대한 교과서를 분석하였다. 박지혜(2012)는 중학교 3 학년 기하영역의 교수학적 변환에 대해, 이소현(2011)은 중학교 1학년 기하영역에서의 교수학적 변환에 대해 분석하였다.

다섯째, 교육과정에 따른 교과서를 비교 - 분석한 연구들이 있다. 2009 개정 교육과정과 관련하여 살펴보면, 정유리(2013)는 교육과정의 변화에 따라 강조된 스토리텔링, 창의성 신장을 위한 요소들이 중학교 1 학년 교과서에 어떻게 구현되었는지 분석하였다. 또한 공학 도구의 활용 이 강조됨에 따라 심상길(2011)은 중학교 1학년 교과서 기하 단원에 제 시된 컴퓨터 활용에 대한 분석을 실시하였다.
지금까지의 기하영역의 교과서 분석에 대한 국내 연구를 살펴보면, 외 국 교과서와의 비교, 기하학습수준이나 인지적 요구수준에 따른 분석, 기하학습이론이나 교육과정에 초점을 맞춰 분석한 연구들로 비교적 다양 하게 나타났다. 그러나 분석과정을 살펴보면 대부분 명확한 틀을 제시하 지 않고 분석한 내용을 단지 서술하는 등 체계적인 방법으로 분석이 이 루어지지 못하고 있다. 또한 내용적인 요소보다는 외형적인 요소에 초점 을 맞춰 분석한 연구들이 많아 주요 학습 요소의 구체적 제시방법, 각 교과서만의 독특한 특징은 분석해내지 못했다. 따라서 이 연구에서는 추론과 정당화를 촉진하기 위한 학습 요소의 구체적인 제시방법을 분석

하기 위해 선행 연구 검토를 통해 분석 요소를 추출한 후 교과서 분석을 위한 틀을 마련하여 이에 따라 체계적으로 분석하고자 한다.

2.2. 추론과 증명에 따른 교과서 분석 선행 연구

1절에서 살펴봤듯이 추론과 증명 활동이 학생들의 수학적 경험에서 중 심이 되어야 한다는 인식에도 불구하고, 많은 학생들은 이러한 활동을 함에 있어 많은 어려움을 느낀다(Stylianides, 2009). 그렇기에 실제 수 업에서 사용될 수학 교과서는 학생들에게 추론과 증명에 참여할 수 있는 기회를 제공하는 데 중요한 역할을 할 수 있다. 이러한 인식에 따라 추 론과 증명이 교과서에 어떻게 구현되었는지를 분석한 연구들을 살펴보면 다음과 같다.

먼저, Stylianides(2009)는 추론과 증명에 대한 연구들이 대부분 교 실 상황에서 교수, 학습 과정을 분석하는 연구들이거나 추론과 증명에 대한 교사의 개념이나 학생의 개념을 분석하는 것에 초점이 맞춰져 있음 을 지적하면서 미국 교과서에서의 추론과 증명에 초점을 맞춰 분석하였 다. 이러한 교과서 분석을 위해 다음 <표 $\Pi-5>$ 와 같은 분석틀을 개발 하였다.
<표 II-5> 추론과 증명에 대한 교과서 분석틀(Stylianides, 2009: 262)

	수학적 일반화		수학적 주장에 대한 지원 제공	
	패턴 확인	추측 형성	증명 제공	비-증명 제공
차원 1: 추론과 증명의 요소와 하위 요소	-그럴듯한 패턴 -명백한 패턴	-추측	-포괄적 예 -설명	-경험적 주장 근본적 이유
차원 2: 패턴, 추측, 증명의 목적	-추측의 생성 -추측의 생성과 관련 없음	-증명 생성 -증명생성과 관련 없음	$\begin{aligned} & \hline \text { •설명 •확인 } \\ & \text { •반증 } \\ & \text { •새로운 지식 생성 } \end{aligned}$	

위의 <표 II-5>의 분석틀은 2 개의 차원으로 구성되는데, 차원 1 은 증명과 관련된 활동을 포함하며, 차원 2 는 증명이 발달되는 과정을 패 턴, 추측, 증명으로 설명한 것이다. 차원 1 의 증명과 관련된 활동에는 수 학적 일반화 만들기와 수학적 주장에 대한 지원 제공이 포함된다. 수학 적 일반화 만들기는 패턴 만들기와 추측 만들기로 나눠진다. 먼저 패턴 은 주어진 자료에 맞는 일반적인 수학적 관계로 정의되며, 패턴은 특정 패턴에 대한 결정적인 근거를 제공하는 명백한 패턴과 그렇지 못한 패턴 인 그럴듯한 패턴으로 나뉜다. 추측은 완전하지 않은 근거를 바탕으로 얻어낸 일반적이고 수학적인 관계에 대해 추론된 가설을 의미한다.
수학적 주장에 대한 지원 제공은 증명과 비-증명의 제공으로 나뉜다. 증명은 받아들여진 사실을 바탕으로 한 타당한 주장을 의미하며, 하위요 소로 포괄적인 예와 설명으로 나뉜다. 먼저 포괄적인 예는 일반적인 예 를 대표하는 것으로 특정한 예를 사용하는 증명을 의미한다. 이는 학생 들이 보다 쉽게 확신과 설명의 수단에 도달할 수 있도록 도와준다. 두 번째 요소인 설명은 특정한 예의 대표성에 의존하는 증명이 아닌 타당한 주장으로 설명에 사용되는 표현에 제한을 두지 않는다. 비-증명 주장에 서의 경험적 주장은 모든 가능한 경우의 일부분에서 타당성을 확인함으 로써 수학적 주장에 대한 참을 보여주는 것을 의미하며, 근본적 이유는 증명으로 충분하지 않지만 수학적 주장에 대한 타당성을 보이는 것을 표 현하기 위한 요소이다. 차원 2 는 차원 1 을 보충하는 것으로 패턴이 추측 으로, 추측이 증명으로 발달되는 과정을 묘사하고 있다. 위의 틀로 미국 교과서를 분석한 결과, 과제의 40% 만이 추론과 증명을 유도하는 과제임 을 드러냈다.

Otten, Males와 Gilbertson(2013)은 6개의 미국 교과서를 대상으로 증명을 소개하는 단원에서 제공된 추론 기회를 분석하였다. 분석 대상은 교과서의 설명 부분과 학생 활동 부분을 모두 포함하였다. 교과서의 설 명은 소단원 본문의 예와 공식, 정리 등과 같은 주요 아이디어를 정리한 부분까지 포함하였으며, 학생들의 활동은 질문에 대답을 요구하는 문제,

특정 과제에 대한 완성을 요구하는 문제를 모두 포함하였다. 분석틀은 Stylianides(2009)의 연구에서 사용된 분석틀을 토대로 구성하였는데, 구체적으로 살펴보면 수학적 진술 또는 상황, 학생들에게 기대되는 활 동, 추론과 증명에 대한 기회 또는 반성의 3 가지 차원으로 이루어진다. 이 중 추론과 증명에 대한 반성은 교과서의 설명 부분에서 추측에 대한 반성을 할 수 있는 언급이 있는지 분석하였다. 이와 같은 추측에 대한 반성 요소는 추론과 정당화에서 중요하며, 이를 교과서에서 확인하기 위 해 탐구활동과 내용 설명을 연결하는 데 있어 탐구활동을 통해 얻게 된 추측을 정당화하기 전에 이에 대한 반성을 제공했는지 살펴볼 필요가 있 을 것으로 생각된다. 따라서 이 연구에서는 이를 적용하여 탐구활동과 내용 설명에 대한 정당화를 분석하는 데 있어 탐구활동을 통해 얻은 추 측에 대한 반성이 어떻게 고려되었는지 살펴보고자 한다.

Davis(2012)는 미국의 3개 교과서를 대상으로 다항함수에 대한 추론 과 증명의 기회를 분석하였다. 이를 분석하기 위해 Stylianides(2009)의 연구를 이용하여 패턴 확인하기, 추측을 만들고 검증하기, 수학적 주장 발전시키기의 단계로 나누어 교과서에서 나타나는 각 단계의 비율을 확 인하였다. 연구 결과로 패턴을 확인하는 기회는 충분히 제공되었지만, 추측을 만들고 검증하는 기회는 충분히 제공되지 않았음을 제시하였다. 이 연구는 패턴 확인하기, 추측 만들고 검증하기, 수학적 주장 발전시키 기를 확인함으로써 추론과 증명의 과정을 고려하였다는 점에서 의의가 있다. 따라서 이 연구에서도 이를 적용하여 추론이 발달되는 과정을 고 려하여 교과서를 분석하고자 한다.

Thomson 외(2012)는 20개의 미국의 고등학교 수학 교과서에서 다 루고 있는 추론과 증명에 대한 특징을 찾고자 하였다. 그들은 지수와 로 그, 다항식에 대해 다루고 있는 본문 설명과 연습문제를 연구 대상으로 삼았다. 이 연구는 교과서의 본문 설명은 교사가 학생들에게 추론과 증 명을 소개하는 기회를 제공하며, 문제는 학생들이 추론과 증명에 참여할 기회를 제공하기 때문에 본문 설명과 문제를 모두 분석 대상으로 두었 다. 먼저, 교과서 본문 설명을 분석하기 위한 분석틀은 정당화의 유형을

증명을 통해 정당화한 ‘일반적인’, 특정한 예 또는 귀납법을 사용하여 정 당화하는 '특수한', 학생들이 정리를 완성하도록 하는 '학생들에게 남겨 둔', '정당화하지 않은'으로 구성하였다. 그러나 이는 교과서 내용 설명을 분석하기에 정당화의 유형이 세분화되어 있지 않아 이보다 더 세분화된 정당화의 유형을 적용할 필요가 있다. 두 번째로 적용한 추론과 증명에 대한 교과서 문제 분석틀을 살펴보면 다음 <표 II-6>과 같다.
<표 Π-6> 추론과 증명에 대한 교과서 문제 분석틀 (Thomson 외, 2012: 262)

추측을 만들거나 탐구하기	
$\mathrm{MG} / \mathrm{MS}$	추측 만들기(Making a conjecture): 추측을 만들기 위해 패턴을 사용하도록 요구하는 문제
$\mathrm{IG} / \mathrm{IS}$	추측 탐구하기(Investigate a conjecture): 추측이 서술되고 학생들이 추측이 참인지 거짓인지 탐구하도록 요구하는 문제 주장을 발전시키거나 평가하기
$\mathrm{DG} / \mathrm{DS}$	주장 발전시키기(Develop an argument): 수학전 진술에 대한 증명을 쓰도록 요구하는 문제
$\mathrm{EG} / \mathrm{ES}$	주장 평가하기(Evaluate an argument): 진술된 수학적 주장이 타당한지 판단을 요구하는 문제
다른 증명과 관련된 추론	

문제에 대한 분석틀은 크게 추측을 만들거나(M) 탐구하기(I), 주장을 발전시키거나(D) 평가하기(E), 증명과 관련된 추론 요소(C)로 구성되었 고, 이는 $\operatorname{TIMSS}(2002)$ 의 추론과 증명 규준으로부터 추출하였다. 추측 만들기와 탐구하기, 주장 발전시키기와 평가하기, 잘못된 부분을 수정하 거나 확인하기는 일반적인 경우(G)와 특수한 경우(S)에 대한 것으로 다 시 나누어 분석하였다. 이를 <표 $\Pi-6>$ 에서 살펴보면 각각 $\mathrm{MG} / \mathrm{MS}$, $\mathrm{IG} / \mathrm{IS}, \mathrm{DG} / \mathrm{DS}, \mathrm{EG} / \mathrm{ES}, \mathrm{CG} / \mathrm{CS}$ 로 표기하였음을 알 수 있다.
또한, 다른 관점에서 Newton과 Newton(2006)의 연구는 교과서가 교 사들의 추론을 다루는 능력에 대한 전문성 신장을 지원하는지 확인하기 위해 미국의 초등학교 수학 교과서 18 개를 분석하였다. 이를 분석하기 위해 본문 설명을 이유에 대한 부분(‘-때문에'를 포함하는 부분)과 목적 에 대한 부분(‘-하기 위해'를 포함하는 부분)으로 나누어 이유에 대한 부분과 목적에 대한 부분에 대한 비율을 확인하였다. 또한, 7 개의 범주 에 따라 원인, 목적에 대해 서술된 부분의 비율을 확인하였는데, 이는 다음 <표 $\Pi-7>$ 과 같다.
<표 $\Pi-7>$ 본문 설명에 대한 범주 (Newton \& Newton, 2006)

범주	설명
1	학생들을 위한 활동의 목적을 소개 (수학 외적, 주제를 경험하기 위한 활동에 대한 소개)
2	학생들을 위한 예와 맥락을 제공 (수학 외적, 실생활 관련 예와 응용, 수학을 직접적으로 설명하지 않음)
3	수학적 과정, 연산, 알고리즘을 소개 (특정 결과를 얻기 위해 수학적 과정, 연산, 알고리즘을 제공)
4	학생들을 위한 수학적 표현의 제공
5	문맥의 목적과 의도 제공 (학습 목표를 제공)
6	수학적 주장을 지원하기 위한 추론 제공
7	수학 외적인 주장을 지원하기 위한 추론 제공

Newton과 Newton(2006)의 분석 결과, 일부의 교과서는 교사가 수업 을 소개하고 구조화하는 것을 도와주었지만 담화를 이해하는 것을 돕진 못했으며, 추론보다는 연습, 알고리즘을 통한 계산 기능 발달에 초점이 맞춰져 있음이 확인되었다.
Stacey와 Vincent(2009)는 호주 8학년 교과서에서 새로운 수학적 규 칙, 관계를 소개하기 위해 제시된 설명에 초점을 맞춰 사용된 추론의 유 형을 분석하였다. 이를 위해 추론의 유형을 권위에 의한 추론, 질적 유 추, 모델의 규칙과의 일치, 실험적 설명, 모델을 사용한 연역 추론, 특정 한 예를 이용한 연역 추론, 일반적인 예를 이용한 연역 추론으로 나누었 다. 예를 들면 임의의 각을 사용하여 두 직선이 평행임을 설명한 부분에 대해서는 일반적인 예를 이용한 연역 추론으로 분석하였으며, 학생들이 삼각형의 세 개의 각을 찢어서 삼각형의 내각의 합이 180 도임을 알게 하는 부분은 실험적 설명으로 분석하였다. 분석 결과 대부분의 교과서는 단순히 규칙을 유도하기 위해 설명을 사용하였음을 제시하였다.
서동엽(2003)은 우리나라 초등학교 수학 교재에서 정당화 과정이나 문제 해결 과정에서 활용되는 추론을 분석하였다. 그 결과 전형적인 예 에 대한 국소적 연역 추론이 가장 전형적인 특징으로 드러났으며, 열거 에 의한 귀납 추론은 그리 많이 활용되지 않으며, 구체물을 통한 유추가 많이 활용되고 있었다. 이에 대해 보다 점진적인 추론의 지도를 제안하 였는데, 이는 전형적인 예에 대한 경험적 정당화, 전형적인 예에 대한 경험으로부터 추측의 구성, 다양한 예에 대한 추측의 타당성 조사, 일반 성에 대한 스키마 형성, 함의 관계의 이해를 위한 기초 경험의 다섯 가 지 수준을 의미한다.
이환철과 하영화(2011)는 김정하(2010)의 연구에서 제시한 정당화의 단계 중 교과서에는 제시되지 않을 0 단계인 '정당화 없음', 1 단계인 '외 적 확신에 의한 정당화'를 제외하고 나머지 유형으로 교과서 내용을 분 석하여 정당화 방안을 탐색하였다. 분석 결과, 증명이 중학교 2 학년의 도형의 성질 단원에서 제시된 모든 명제가 형식적-연역적 정당화가 이 루어지고 1 학년의 기하 단원에 비해 형식적•연역적 정당화의 비중이

크게 증가하여 학생들의 인지 상태를 고려해 사용할 수 있는 정당화의 유형이 사용되지 않았음을 제시하였다. 이에 학생들의 인지 수준에 알맞 다고 판단되는 다양한 정당화의 유형을 제시하여 교과서를 집필할 것을 제언하였다.
김수철(2013)은 중학교 기하영역을 중심으로 하여 정당화 지도를 위 한 수업 모형을 개발하였다. 이를 위해 중학교 2학년 교과서의 삼각형과 사각형의 성질에 제시된 내용에 대해 정당화 유형을 분석하여 정당화의 단계 및 유형을 다양하게 제시하지 않고 있음을 지적하였다. 따라서 정 당화 능력이 낮은 학생들은 지각적, 활동적 정당화 유형과 평범한 예에 의한 정당화 유형을 활용하여 활동을 시작할 수 있도록 유도하고, 정당 화 능력이 높은 학생들은 시각적 예에 의한 정당화 유형과 식의 조작에 의한 정당화 유형을 활용하여 형식적 증명을 시도하게 함으로써 형식적 - 연역적 정당화 단계에서 활동을 시작하도록 할 것을 제언하였다.

지금까지의 교과서에서의 추론과 정당화에 초점을 맞춰 분석한 연구 들을 종합해보면, 추론과 정당화의 과정을 패턴확인하기, 추측만들기, 수 학적 주장 발전시키기, 수학적 주장 평가하기 등으로 나누어 이를 분석 한 연구가 있었다(Stylianides, 2009; Thomson, 외, 2012; Davis, 2012). 따라서 이 연구에서도 이를 적용하여 추론과 정당화의 과정을 고려하여 이를 교과서에서 분석하고자 한다.
Thomson 외(2012)는 정당화의 유형을 일반적인 것과 특수한 것으로 나누었으나 이는 교과서에서의 정당화의 유형을 분석하기엔 구체적이지 못해 적용하기 어렵다. 또한 서동엽(2003)은 교과서에서 제시되는 추론 및 정당화의 유형을 전형적인 예에 대한 국소적 연역 추론, 구체물을 통 한 유추, 열거에 의한 귀납 추론으로 나누었지만 이는 초등학교 교과서 를 분석하기 위한 기준으로서 중학교에 적용하기는 어렵다. 이환철과 하 영화(2011), 김수철(2013)은 김정하(2010)의 연구에서 제시된 정당화 의 유형 중 교과서를 분석하기에 의미가 없는 정당화의 유형을 제외하였 다. 이 중 김수철(2013)은 이환철과 하영화(2011)의 연구에서 사용된 정당화의 유형에서 중학교 교과서에서는 활용되지 않는 형식적 • 연역적

정당화 중 '부정에 의한 증명', 수학적 귀납법 등이 포함되는 '가설 연역 적 정당화'를 제외하였다. 따라서 이 연구에서 중학교 교과서를 분석하 기에 적합하며 세분화된 정당화의 유형을 제시하고 있는 김수철(2013) 의 정당화 유형을 적용하여 교과서에 제시된 정당화의 유형을 분석하고 자 한다.

2.3. 수행에 대한 기대에 따른 교과서 분석 연구

Pepin, Guedet와 Trouche(2013)에 따르면, 많은 교육과정에 따른 교 과서 분석 연구들은 내용(예: 기하), 수행에 대한 기대(예: 문제해결, 추 론), 관점(예: 태도 또는 특정한 특징)을 요소로 포함한다고 한다. 이 중 수행에 대한 기대를 교과서 분석에 포함하고 있는 선행연구들을 살펴보 면 다음과 같다.
Van Zanten과 Van den Heuvel-Panhuizen(2014)은 교과서는 의도된 교육과정과 실행된 교육과정 사이를 매개하기 때문에 잠재적으로 실행된 교육과정으로 간주하며, 교과서는 수학 교육에 있어 매우 중요하다는 것 을 강조하였다. 특히, 네덜란드의 현실주의교육에 기초하여 개발된 교과 서와 그렇지 않은 교과서가 교육과정의 방향을 잘 반영하고 있는지 비교 하기 위해 분석틀을 개발하여 100 까지의 뻴셈에 대한 교과서 문제를 분 석하였다. 교과서 분석틀은 내용, 수행에 대한 기대, 학습 촉진자로 나누 어 구성되었다.
먼저, 내용에 대한 분석요소는 문제의 유형, 문제의 형태(현실주의 수 학교육에 기초한 것과 그렇지 않은 교과서의 비교를 위해 맥락문제와 그 렇지 않은 문제로 구분), 뺄셈에 대한 교수학적 분석을 통해 얻은 문제 의 의미적 구조를 포함하였다. 수행에 대한 기대는 교육과정에서 추출한 것으로 '뺄 셈과 관련된 사실 알기', ‘뻴셈 수행하기', '뻴 셈 응용하기', '뺄 셈 이해하기'로 구성되었다. 마지막으로 학습 촉진자는 과제가 어떻게 배열되었는지, 과제를 해결하도록 어떻게 돕고 있는지를 살펴보기 위한 요소로 볼 수 있다.

또한, Jones와 Fujita(2013)은 일본과 영국의 기하 교과서를 비교, 분 석함으로써, 교과서와 교육과정이 어떻게 연결되는지를 연구하였다. 이 를 위해 먼저 영국과 일본의 교육과정을 분석하고, 교과서의 내용을 작 게 블록(block)으로 나누고 각 블록의 유형에 대한 내용, 수행에 대한 기대로 분석틀을 구성하였다. 이 때 수행에 대한 기대는 TIMSS의 분석 틀과 일본과 영국의 교육과정에서 추출하여 교과서 분석틀을 구성하였 다.

수행에 대한 기대를 명확히 제시한 Van Zanten과 Van den HeuvelPanhuizen(2014)의 연구와 Jones와 Fujita(2013)의 연구를 비교했을 때 두 연구 모두 교육과정에 근거하여 수행에 대한 기대를 추출했다는 공통 점이 있다. 그러나 Van Zanten과 Van den Heuvel-Panhuizen(2014)의 연구에서는 교육과정으로부터 알기, 수행하기, 응용하기, 이해하기의 4 개 의 범주로 나누었지만, Jones와 Fujita(2013)의 연구에서의 수행에 대한 기대는 교육과정에서 추출된 것을 보다 구체화시키기 위해 TIMSS의 분 석틀을 활용하였다. 따라서 이 연구에서는 탐구활동과 문제를 해결하는 데 있어 학생들에게 요구되는 수행에 대한 기대를 분석하고, 이를 토대 로 기하학적 성질에 대한 추론을 분석하고자 한다. 또한 수행에 대한 기 대를 세분화하기 위해 TIMSS 2011의 분석틀(2009)을 사용하고자 한 다. 이를 살펴보면 다음 <표 $\Pi-8>$ 과 같다.
<표 Π-8> TIMSS 2011 인지적 영역 분석틀

수행에 대한 기대	하위 범주	설명
알기 (knowing)	회상하기	용어, 정의, 성질, 기호에 대한 회상
	인식하기	도형, 수, 표현, 수학적 대상의 인식
	계산하기	정형적 과정에 의한 계산
	유도하기	그래프, 표 등을 통해 정보를 얻음
	측정하기	적절한 측정도구를 이용하여 측정
	분류하기	공통된 성질에 의해 대상을 분류
적용하기 (applying)	선택하기	정형적 문제해결을 위한 전략, 방법 선택
	표현하기	주어진 대상, 관계에 대한 동등한 표현
	모델만들기	정형문제 해결을 위한 기하학적 그림 또는 다이어그렘과 같은 적절한 모델 이용
	이행하기	도형 그리기와 같이 수학적 설명 따르기
	정형 문제 해결하기	익숙한 상황, 수학적 상황의 문제 해결
추론하기 (reasoning)	추측하기	수학적 상황에서의 대상들 사이의 관계를 설명하고, 주어진 정보로부터 수학적 추측 만들기
	일반화하기	수학적 문제해결의 결과를 통해 확장하거나 보다 일반적으로 표현
	종합하기	다른 지식과 표현, 아이디어 사이의 연결을 만드는 것
	정당화하기	알고 있는 수학적 결과 또는 정리를 참고하 여 정당화하기
	비정형문제 해결하기	수학적 또는 실생활맥락 등 학생들에게 익 숙하지 않은 문제를 해결하기

위의 <표 Π - 8 >에서 제시된 '알기'는 기본적인 수학적 개념, 사실, 이와 관련된 표현을 회상하고 알고 있는 것을 의미한다. 이는 수학적 상

황에 대한 추론 및 문제해결에 있어 잠재력을 발휘한다는 점에서 강조된 다. '적용하기'는 지식을 적용하여 문제를 풀거나 질문에 답하기 위해 개 념적 이해를 하는 것에 초점을 둔다. 또한 수학적 도구를 다양한 맥락에 서 적용하는 것을 포함한다. '추론하기'에서의 추론은 논리적, 체계적 사 고에 대한 능력 뿐 아니라 비정형문제해결에 사용될 수 있는 패턴과 규 칙성에 기초한 직관적인 추론과 귀납적인 추론을 모두 포함한다. 이러한 추론을 요구하는 과제는 학생들에게 익숙하지 않은 비정형문제로 제시되 어 새로운 상황에 지식과 기능 및 추론 기술을 적용하도록 요구하는 과 제이거나 수학적 대상을 관찰하여 추측하도록 요구하는 과제, 이를 정당 화하도록 요구하는 과제 등을 포함하여 나타날 수 있다.
<표 Π-8>에 제시된 TIMSS 2011의 인지적 영역 분석틀(2009)을 이용하여 교과서의 기하영역을 분석하기 위해서 '알기', '적용하기', '추론 하기'를 보다 구체화할 필요가 있다. 따라서 '알기'를 '기하학적 개념, 사 실 알기'로, '적용하기'를 '기하학적 성질 적용하기'로, '추론하기'를 '기하 학적 성질 추론하기'로 바꾸어 교과서 분석에 사용하고자 한다.
따라서 위의 표에 따라 '기하학적 개념, 사실 알기'는 기하학적 용어, 정의, 성질, 기호에 대한 회상을 요구하는 '회상하기', 도형에서 같은 크 기의 각이나 같은 길이의 변을 인식하는 등 수학적 대상이 같음을 인식 하도록 요구하는 '인식하기', 학습한 기하학적 사실을 바로 적용해 간단 한 계산을 하도록 요구하는 '계산하기', 기하학적 대상을 보고 이에 대한 정보를 이끌어내도록 요구하는 '유도하기', 공통된 기하학적 성질에 의해 대상을 분류하는 '분류하기'로 하위범주가 구성된다.
'기하학적 성질 적용하기'는 정형문제 해결을 위한 방법을 선택하도록 요구하는 '선택하기', 주어진 조건에 따라 도형을 표현하도록 요구하는 '표현하기', 정형문제 해결을 위해 기하학적 그림과 같은 적절한 모델을 이용하도록 요구하는 '모델만들기’, 도형 그리기, 작도 등 간단한 수학적 설명을 따르도록 요구하는 '이행하기', 학습한 기하학적 성질을 이용해 학생들에게 익숙한 상황의 문제를 해결하도록 요구하는 '정형문제해결하 기'로 하위범주가 구성된다.
'기하학적 성질 추론하기'는 수학적 상황에서의 도형 사이의 관계를 설 명하고 주어진 조건으로부터 수학적 추측을 만들도록 요구하는 '추측하 기', 기하학적 문제해결의 결과를 보다 확장하거나 일반화하도록 요구하 는 '일반화하기', 다른 기하학적 지식들 사이의 연결을 만들도록 요구하 는 '종합하기', 알고 있는 수학적 결과 또는 정리를 참고하여 정당화하도 록 요구하는 '정당화하기', 학습한 기하학적 성질들을 연결하여 학생들에 게 익숙하지 않은 상황의 문제를 해결하도록 요구하는 ‘비정형문제해결 하기'로 하위범주가 구성된다.
이 연구에서는 지금까지 살펴본 '기하학적 개념, 사실 알기', '기하학적 성질 적용하기', '기하학적 성질 추론하기'를 적용하여 탐구활동과 문제 에서 학생들에게 요구하는 수행에 대한 기대를 분석하고자 한다. 이 중 '기하학적 성질 추론하기'를 더욱 구체적으로 분석하여 교과서의 탐구활 동과 문제에서 학생들에게 추론의 기회를 어떻게 제공하고 있는지 살펴 보고자 한다.

III. 연구방법

이 연구의 목적은 2009 개정 교육과정에 따라 개발된 교과서의 기하 영역이 추론과 정당화의 측면에서 어떻게 구현되었는지 살펴보기 위한 것이다. 이를 위해 II장의 문헌 검토를 통해 기하영역에서의 추론과 정 당화의 의미 및 이와 관련된 교과서 분석 관련 연구를 살펴보았다.

이 장에서는 선행 연구 분석을 통해 추출한 교과서의 기하영역에서의 추론과 정당화를 살펴볼 수 있는 요소를 바탕으로 분석틀을 마련하고 이 에 따른 분석대상이 된 교과서 및 분석방법을 제시한다.

1. 교과서 분석대상

$\mathrm{Li}(2002)$ 는 교과서의 내용 뿐 아니라 문제에 대한 분석까지 이루어져 야 학생들에게 제공된 학습 기회에 대해 분석할 수 있음을 강조하며, 문 제와 내용 모두 교과서 분석의 대상으로 해야 한다고 주장한다. 또한 Thompson 외(2012)에 따르면 교과서의 내용 설명은 교사가 학생들에 게 추론과 증명을 소개하는 기회를 제공하며, 문제는 학생들이 추론과 증명에 참여할 기회를 제공하기 때문에 교과서의 내용 설명과 문제를 모 두 분석할 필요가 있다고 주장하였다. 따라서 2009 개정 교육과정에 따 라 개발된 13 종의 중학교 2 학년 수학 교과서2)의 기하단원인 '삼각형의 성질'과 '사각형의 성질'의 내용과 문제를 모두 분석하기 위해 탐구활동 과 내용 설명, 문제를 대상으로 분석하고자 한다. 연구에서 언급하는 탐 구활동은 I 장의 용어의 정의에서 다루었듯이 각 학습주제를 도입하기 위해 교과서마다 내용도입에 제시된 부분을 의미한다. 내용 설명은 추론 과 정당화가 나타나는 내용부분과 예제를 포함하며, 문제는 탐구활동 이 외의 학생들이 해결하도록 제시된 모든 과제를 의미하여 기본 학습 후
2) 2009 개정 교육과정에 따라 개발된 중학교 2학년 수학 교과서는 2014년부 터 적용될 예정이며, 교과서 분석은 2012년에 출판된 전시본으로 한다.

제시되는 문제, 중단원 정리문제, 대단원 정리문제, 단원 마무리 활동 등 을 모두 포함한다.
중학교 교과서의 기하영역을 분석하기 위한 단원으로 '삼각형의 성질' 단원과 '사각형의 성질' 단원을 선정한 이유는 2009 개정 중학교 수학과 교육과정에 의해 처음으로 증명과 관련된 용어가 삭제되고 이를 약화시 킴에 따라 정당화가 강조되고 있는 단원이므로 추론과 정당화의 관점에 서 중학교 교과서의 기하영역을 분석하기 위해 적합한 단원으로 생각되 었기 때문이다. 구체적으로 분석 대상이 되는 단원인 삼각형의 성질과 사각형의 성질에 대한 2009 개정 교육과정의 성취기준을 살펴보면 다음 <표 III-1>과 같다.
<표 III-1> 중학교 수학 (2)의 성취기준

내용	성취기준
삼각형과	(1) 이등변삼각형의 성질을 이해하고 설명할 수 있다. 사각형의 상질 삭형의 있다. (3) 사감힘과 의 성질을 이희 해하고 성질멸할 알 수 이해하고 다. 설명할

중학교 수학 (2)의 성취기준은 2007 개정 교육과정과 비교해 볼 때 많 은 변화가 있다. 우선 <표 III-1>에서 볼 수 있듯이, 삼각형과 사각형 의 성질에서 학습했던 명제의 뜻과 증명의 의미에 대한 학습이 삭제되었 는데, 이환철 외(2012)는 이를 형식적 증명보다는 학생들의 이해 수준 에 입각한 정당화 수준의 교육을 지향하고자 하는 의도로써 해석하였다. 즉, 다양한 형태의 증명을 통해 학생들이 보다 쉽게 기하학적 성질을 이 해하고 그 논리적 타당성을 습득하는 것을 강조하며, 기하학적 성질이 만족함을 경험적, 직관적으로 이해하고 그에 대한 이유를 학생 자신이 갖고 있는 지식을 활용하여 모순 없이 설명할 수 있게 하는 것 또한 정 당화 활동 중 하나로 설명하고 있음을 알 수 있다. 이러한 의도에 따라 2007 개정 교육과정에서의 '증명할 수 있다'는 2009 개정 교육과정에서
‘이해하고 설명할 수 있다'로 모두 변화되었다(이환철, 김선희, 고호경, 2012). 또한 박교식과 권석일(2012)은 2009 개정 교육과정에서 정당화 는 어떤 수학적 사실이 옳다는 것을 이미 알고 있는 수학적 사실을 바탕 으로 명제, 가정, 결론, 역 등의 용어를 사용하지 않은 채 조리 있게 설 명하는 것으로 해석하였다.
삼각형과 사각형의 성질에 대한 학습내용은 <표 $I I-1>$ 에 따라 이등 변삼각형의 성질, 삼각형의 외심과 내심의 성질, 사각형의 성질로 살펴 볼 수 있다. 그러나 이와 관련된 성취기준은 2007 개정 교육과정에 비 해 간단하게 제시되어 있음을 알 수 있는데 이는 다양한 교과서 개발을 유도하기 위함이다(신이섭 외, 2011). 실제로 2009 개정 교육과정에 의 해 개발된 13 종의 교과서마다 단원 구성 및 배열에 있어 약간의 차이가 존재한다. 따라서 이 연구에서는 교과서를 분석할 때 단원 구성이 교과 서마다 다른 경우, 다수의 교과서에서 다루고 있는 순서대로 학습내용을 분석한다. 예를 들어, '삼각형의 무게중심'은 2009 개정 교육과정에서는 삼각형과 사각형의 성질에 제시되어 있지 않지만 교과서 3종에서 '삼각 형의 성질' 단원에 포함하고 있었다. 그 외의 10 종의 교과서는 '닮음의 활용' 단원에서 다루고 있으므로 이는 교과서 분석대상에서 제외한다. 또한, 13 종의 교과서는 $\mathrm{A} \sim \mathrm{M}$ 으로 약자로 간단히 하여 다루도록 한다.

2. 교과서 분석틀

교과서의 분석틀은 '수행에 대한 기대 측면에서의 분석틀'과 '정당화 의 유형 측면에서의 분석틀'로 크게 2가지로 구성된다. '수행에 대한 기 대 측면에서의 분석틀'을 통해 탐구활동과 문제에서 학생들에게 요구하 는 수행에 대한 기대를 분석하여 추론과 정당화의 기회를 제공하기 위해 교과서가 어떻게 구현되었는지 분석한다. 또한 '정당화의 유형 측면에서 의 분석틀'을 통해 탐구활동과 내용 설명에서 제시된 정당화의 유형을 분석하고 정당화를 요구하는 문제에 대해 정당화의 유형을 분석하고자 한다. 이를 보다 구체적으로 살펴보면 다음과 같다.

먼저, ‘수행에 대한 기대 측면에서의 분석틀’에 의한 분석대상은 탐구 활동과 문제이다. 이를 통해 탐구활동과 문제에서 학생들에게 요구하는 수행에 대한 기대를 '기하학적 개념, 사실 알기', '기하학적 성질 적용하 기', '기하학적 성질 추론하기' 로 나누어 분석한다. 이는 I장에서 다뤘 던 TIMSS 2011 인지적 영역 분석틀(2009)을 기하영역에 적용한 것이 다. 그 후 '기하학적 성질 추론하기'에 초점을 맞춰 분석함으로써, '기하 학적 성질 추론하기'의 하위범주인 ‘추측하기’, '일반화하기', '종합하기', ‘정당화하기', '비정형문제해결하기'가 어떻게 구현되었는지 살펴봄으로써 학생들에게 추론과 정당화의 기회를 제공하기 위해 교과서가 어떻게 구 현되었는지 살펴보고자 한다. 이를 정리한 '수행에 대한 기대 측면에서 의 교과서 분석틀'은 다음 <표 III-2>와 같다.
<표 III-2> 수행에 대한 기대 측면에서의 교과서 분석틀

범주	하위범주
기하학적 개념, 사실 알기	회상하기
	인식하기
	계산하기
	유도하기
	측정하기
	분류하기
기하학적 성질 적용하기	선택하기
	표현하기
	모델만들기
	이행하기
	정형문제해결하기
기하학적 성질 추론하기	추측하기
	일반화하기
	종합하기
	정당화하기
	비정형문제해결하기

'정당화의 유형 측면에서의 교과서 분석틀'은 II장에서 논의했던 김수 철(2013)의 정당화의 유형을 사용한다. 이를 살펴보면 다음 <표 III $-3>$ 과 같다.
<표 III-3> 정당화 유형 측면에서의 교과서 분석틀

관점	범주	하위범주
정당화의 유형	경험적•귀납적 정당화	- 지각적, 활동적 정당화 - 평범한 예에 의한 정당화 - 극단적 예에 의한 정당화
	예에 의한 정당화	- 시각적 예에 의한 정당화 - 포갈적 예에 의한 정당화
	준연역적 정당화	식의 조작에 의한 정당화 - 논리적 설명에 의한 정당화
	형식적 - 연역적 정당화	- 형식적 증명

<표 III-3>에 의한 분석대상을 살펴보면 크게 2 가지이다. 첫째, 탐구 활동과 내용 설명에서 정당화가 나타난 부분이다. 13 종의 교과서를 살펴 보면 탐구활동을 통해 얻은 추측을 바탕으로 내용 설명에서 정당화가 이 루어진다. 따라서 탐구활동과 내용 설명을 묶어 학습내용 중심으로 정당 화의 유형을 분석한다. 이 때 탐구활동과 연결되지 않더라도 예제 등을 통해 내용 설명에서 정당화가 제시된 부분이 있는 경우 이를 포함하여 정당화의 유형을 분석한다. 둘째, '수행에 대한 기대 측면에서의 교과서 분석틀'에서 '기하학적 성질 추론하기' 중 '정당화하기'로 분석된 문제를 대상으로 정당화의 유형을 분석한다. 이를 그림으로 나타내면 다음 [그 림 $\mathrm{III}-1]$ 과 같다.

[그림 III-1] '정당화하기' 문제에 대한 정당화의 유형 분석 과정
[그림 III-1]을 살펴보면 <표 III-2> '수행에 대한 기대 측면에서의 교과서 분석틀'에 의해 '기하학적 성질 추론하기'의 하위범주 중 '정당화 하기'로 분석된 문제를 대상으로 <표 III-3> '정당화의 유형 측면에서 의 교과서 분석틀’로 정당화의 유형을 분석하는 과정을 나타내고 있다.

3. 교과서 분석단위 및 분석방법

위의 두 가지 분석틀을 이용하여 다음과 같은 방법으로 각 분석요소들 을 분석한다.
첫째, <표 III-2>의 '수행에 대한 기대 측면에서의 교과서 분석틀'에 서는 탐구활동, 문제를 대상으로 하되, 탐구활동을 구성하고 있는 질문 1 개와 문제 1 개를 각각 한 단위로 삼는다. 이를 바탕으로 각 중단원별

분포를 알아보기 위해 '기하학적 개념, 사실 알기', '기하학적 성질 적용 하기', '기하학적 성질 추론하기'에 대해 한 중단원에 포함된 탐구활동의 질문의 개수에 대한 비율을 조사하며, 이를 바탕으로 '기하학적 성질 추 론하기'의 질문과 문제에 대한 특징을 분석한다. 또한 구체적으로 각 수 행에 대한 기대에 따라 탐구활동, 문제가 어떻게 구현되었는지 살펴보고 자 한다. 특히 '기하학적 성질 추론하기'로 분석된 탐구활동의 질문과 문 제에 대해서는 '기하학적 성질 추론하기'의 하위범주인 '추측하기', '일반 화하기', '종합하기', '정당화하기', ‘비정형문제해결하기'에 따라 구체적으 로 그 특징을 분석한다. 이 때 컴퓨터 프로그램의 활용(조한혁, 안준화, 우혜영, 2001; 박주희, 2004; 류희찬, 조완영, 1999 등), 시각적 이미지 의 활용(장혜원, 2013 ; 류현아, 장경운, 2009 등), 추측에 대한 반성 (Otten 외, 2013) 등과 같이 Π 장에서 논의되었던 추론과 정당화를 촉 진하는 교수•학습 방법에 따라 교과서가 구현되었는지 분석하여 함께 서 술한다.
둘째, <표 III-3>의 '정당화의 유형 측면에서의 교과서 분석틀'에서는 탐구활동과 내용 설명, 그리고 정당화하기 문제를 분석 대상으로 삼는 다. 탐구활동과 내용 설명은 하나의 학습내용 도입을 위해 제시된 탐구 활동, 정당화를 포함하고 있는 내용 설명의 한 단락을 분석단위로 하여 정당화의 유형을 분석한다. '정당화하기'의 문제는 문제 1 개를 분석단위 로 하여 교과서에서 학생들에게 요구하는 정당화의 유형을 분석한다. 이 를 바탕으로 한 중단원에서 각 교과서별로 활용된 정당화의 유형에 대한 비율을 확인하며, 13 종의 교과서에서 사용된 정당화의 유형을 종합하여 구체적으로 정당화의 유형에 대한 특징을 서술하고자 한다.

IV. 연구 결과

이 장에서는 중학교 2 학년 수학교과서의 기하영역의 중단원인 '삼각형 의 성질', '사각형의 성질'을 중심으로 교과서 분석결과를 살펴보고자 한 다.

1. 삼각형의 성질

중단원 '삼각형의 성질'은 교과서마다 학습 내용에 있어서는 차이가 없 었지만, 교과서마다 소단원 구성이 달라 삼각형의 성질에서 다루게 될 학습 내용의 비중 측면에서 차이가 있었다. 13 종의 모든 교과서에서 이 등변삼각형의 성질, 외심의 성질, 내심의 성질은 하나의 소단원으로 구 성하여 비중 있게 다루고 있었으나 교과서에 따라 직각삼각형의 합동조 건은 약간의 차이가 나타났다. 4종의 교과서(교과서 $\mathrm{A}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서는 이등변삼각형의 성질을 다루는 소단원에서 함께 직각삼각형의 합동조건 을 다루었으며, 특히 교과서 K 는 직각삼각형의 합동조건 중 이등변삼각 형의 성질을 이용하여 설명할 수 있는 RHS합동만 다루고 있었다. 나머 지 9 종의 교과서에서는 다른 학습내용과 동일하게 하나의 소단원을 구 성하여 비교적 비중 있게 다루고 있음을 알 수 있었다. 이는 2009 개정 교육과정에 제시된 성취기준에 직각삼각형의 합동조건에 대한 언급이 없 어 교과서마다 다르게 구성된 것으로 생각된다. 또한 2009 개정 교육과 정에 따른 수학과 교육과정에서의 무게중심의 교수 • 학습에 대한 하영 화, 고호경(2011)의 연구에서 나타난 것처럼 3 종의 교과서(교과서 A , $\mathrm{B}, \mathrm{C})$ 에서는 삼각형의 중심의 하나로써 삼각형의 무게중심을 다루기 위 해 삼각형의 성질에서 삼각형의 외심, 내심과 함께 다루고 있었으나 나 머지 10 종의 교과서는 중단원 '닮음의 활용'에서 다루고 있었다.

이에 '삼각형의 성질'에서 분석할 교과서의 내용을 모든 교과서에서 비 중 있게 다루고 있는 이등변삼각형의 성질, 이등변삼각형이 되는 조건, 외심의 성질, 내심의 성질과 함께 교과서마다 구성의 차이는 있었지만

대부분의 교과서에서 다루고 있는 직각삼각형의 합동조건을 포함하고자 한다. 삼각형의 무게중심은 많은 교과서에서 중단원 '닮음의 활용'에서 다루고 있으므로 이는 제외한다.

1.1. 수행에 대한 기대의 측면에서 교과서 분석결과

1.1.1. 탐구활동

'삼각형의 성질'에 제시된 탐구활동은 평균적으로 5 개 정도 포함되어 있었다. 이 중 교과서 M 은 각 학습내용마다 실생활맥락이 활용된 탐구 활동과 구체적 조작 활동을 할 수 있도록 제시된 탐구활동으로 2 개씩 제시되어 있어 탐구활동의 개수의 합이 12 개로 가장 많이 나타났다. 또 한 탐구활동에 포함된 질문의 개수의 합은 평균적으로 11 개 정도로 나 타났다. 즉, 평균적으로 하나의 탐구활동마다 $2 \sim 3$ 개 정도의 질문을 포 함하고 있음을 알 수 있다.

중단원 '삼각형의 성질'에서의 탐구활동의 수행에 대한 기대는 학습할 내용을 확인하는 정도의 '기하학적 개념, 사실 알기'의 비중이 가장 높았 다. 이를 자세히 살펴보면 다음 [그림 IV-1]과 같다.

[그림 $\mathrm{IV}-1$] 삼각형의 성질에 대한 탐구활동의 수행에 대한 기대
비율(\%)
[그림 $\mathrm{IV}-1]$ 은 탐구활동의 질문에서 요구하는 수행에 대한 기대를 비 율로 나타내고 있다. 이를 살펴보면 '기하학적 개념, 사실 알기'의 비율 이 가장 높은 교과서는 11 종이며 그 비율이 50% 이상인 교과서가 10 종 이 되어 탐구활동의 수행에 대한 기대 중 '기하학적 개념, 사실 알기'는 꽤 높은 비율을 차지한다고 볼 수 있다. '기하학적 성질 적용하기'의 비 율이 가장 높게 나타난 교과서는 없었으며, '기하학적 성질 추론하기'의 비율이 가장 높게 나타난 교과서는 1 종으로 분석되었다. 또한 교과서 B 는 '기하학적 개념, 사실 알기'와 '기하학적 성질 추론하기'의 비율이 40% 로 동일하게 가장 높게 나타났다. 구체적으로 각 수행에 대한 기대 에 대해 살펴보면 다음과 같다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'를 요구하는 질문 중 '인식하기'가 가장 믾 이 나타났으며, 학습내용에 따라 필요한 경우 '계산하기'와 '측정하기'를

요구하는 질문이 포함되었다. 또한 '기하학적 개념, 사실 알기의 비율이 13 종의 교과서 중 가장 높게 나타나고 있는 것은 교과서 $\mathrm{G}(91.7 \%)$ 이 다. 예를 통해 이를 살펴보면 다음 [그림 IV-2]와 같다.

[그림 IV-2] 삼각형의 성질에 대한 탐구활동의
'인식하기' 질문의 예(교과서 G, 2012: 179)

위의 [그림 IV-2]에 제시된 탐구활동의 질문은 3개로 구성되었는데 모두 $\triangle \mathrm{ABC}$ 에서 길이가 같은 변을 인식하거나 이등변삼각형임을 인식 하거나 같은 각을 인식하도록 요구하는 문제로 모두 '기하학적 개념, 사 실 알기' 중 '인식하기'에 해당하는 질문으로 분석될 수 있다. 이는 이등 변삼각형의 성질을 탐구하기 위해 종이접기를 이용한 활동을 제시하고 있지만 탐구활동의 질문은 학생들이 이등변삼각형의 성질을 추측하도록 요구하는 질문이 아닌 학습할 내용을 확인하도록 요구하는 질문으로 제 시되어 있음을 알 수 있다.
'기하학적 개념, 사실 알기' 중 '계산하기'에 해당하는 질문은 직각삼각 형의 합동조건에 대한 탐구활동에서 주로 분석되었다. 이를 살펴보면 다 음 [그림 IV-3] 과 같다.

```
오르ᄂ쪼ᄀ 그리ᄆ과 가ᄐ이 }\angle\textrm{C}=\angle\textrm{F}=9\mp@subsup{0}{}{\circ}\mathrm{ 이ᄂ 두 지ᄀ
가ᄀ사ᄆ가ᄀ혀ᄋ }\textrm{ABC},\textrm{DEF}\mathrm{ 에서 }\overline{\textrm{AB}}=\overline{\textrm{DE}}=6\textrm{cm}\mathrm{ ,
A= }\textrm{D}=4\mp@subsup{0}{}{\circ}\mathrm{ 이다.
(1) }\angle\textrm{B}\mathrm{ 와 }\angle\textrm{E}\mathrm{ 의 크기르ᄅ 구하여 보자.
(2) }\triangle\textrm{ABC}=\triangle\textrm{DEF}\mathrm{ 이ᄆ으ᄅ 사ᄆ가ᄀ혀ᄋ의 하ᄆ도ᄋ조
    거ᄂ으ᄅ 이요ᄋ하여 서ᄅ며ᄋ히여 보자.
```

[그림 $\mathrm{IV}-3$] 삼각형의 성질에 대한 탐구활동의
'계산하기' 질문의 예(교과서 A, 2012: 236)

위의 [그림 $\mathrm{V}-3$]의 질문(1)은 삼각형의 내각의 합을 이용하여 필요 한 각을 계산해보도록 요구하고 있는 '기하학적 개념, 사실 알기' 중 '계 산하기'의 질문으로 분석될 수 있다. 이는 질문(2)에서 주어진 직각삼각 형이 합동임을 정당화하기 위하여 필요한 기하학적 사실을 얻기 위한 질 문으로 볼 수 있다. 또한 '기하학적 개념, 사실 알기' 중 '측정하기'는 삼 각형의 외심과 내심에 대한 탐구활동에서 주로 분석되었다. 이를 예를 통해 살펴보면 다음 [그림 IV-4]와 같다.


```
(3) 두 ञᅪ지\저ᄆ }\textrm{A},\textrm{C}\mathrm{ 가 마ᄂ나도莫 자ᄇ여ᄊ다가 꺼ᄅ치ᄂ다.
(4) (2)와 [3)에서 저ᄇ으ᄂ 두 서ᄂ의 교저ᄆ요ᄅ O라고 표시튜ᄂ다.
```



```
(1) 두 꼭짓졈 \(\mathrm{B}, \mathrm{C}\) 가 만나도록 접었다가 펼쳤은 때, 접은 선이 졈 O 를 지나는지 확인하여 보자 (2) 점 O 에서 시 폭짓점에 이르는 거리를 비료하여 보자.
```

[그림 IV-4] 삼각형의 성질에 대한 탐구활동의
‘측정하기’ 질문의 예(교과서 $\mathrm{F}, 2012: 244$)

위의 [그림 IV-4]에 제시된 탐구활동은 삼각형의 외심과 관련된 것이 다. 탐구활동의 질문(2)는 외심에서 각 꼭짓점에 이르는 거리를 측정하

여 비교해보도록 요구하는 문제로 '측정하기'로 분석될 수 있다. 또한 질 문 (1)은 접은 선이 외심을 지나는지 확인하도록 요구하는 문제로 '인식 하기'로 분석되어 탐구활동의 질문 모두가 '인식하기'로 분석되어 탐구활 동에서 '기하학적 성질 추론하기'의 질문이 나타나지 않음을 알 수 있다.

지금까지 '기하학적 개념, 사실 알기'를 요구하는 탐구활동의 질문을 살펴보았다. 분석 결과 기하학적 사실을 확인한 것을 바탕으로 추측을 형성하는 것을 돕기 위해 '추측하기'의 질문과 함께 '기하학적 개념, 사 실 알기'의 질문을 제시한 경우도 있었지만, 탐구활동의 모든 질문이 '기 하학적 개념, 사실 알기'를 요구하는 질문으로 구성된 교과서도 있었다. 이는 종이접기활동과 같은 구체적 조작활동을 이용해 탐구활동을 제시하 더라도 탐구활동의 질문을 통해 학생들이 기하학적 성질을 추측하도록 도울 수 있도록 이에 대한 고려가 필요할 것으로 보인다.
2) 기하학적 성질 적용하기
'기하학적 성질 적용하기'를 요구하는 탐구활동의 질문을 살펴보면 모 두 '이행하기'로 분석되었다. 이는 학습할 기하학적 성질을 확인하기 위 해 점을 연결하여 선을 그어보거나 간단한 작도를 해보도록 요구하는 질 문에서 나타났다. 이를 예로써 살펴보면 다음 [그림 IV-5]와 같다.

[그림 $\mathrm{IV}-5$] 삼각형의 성질에 대한 탐구활동의
'이행하기' 질문의 예(교과서 J, 2012: 254)
[그림 IV-5]의 탐구활동에서 질문 3은 외접원을 직접 그려보도록 요 구하고 있다. 따라서 두 질문 모두 '기하학적 성질 적용하기' 중 '이행하 기'를 요구하는 질문으로 분석될 수 있다.
또한 컴퓨터 프로그램을 이용하여 '이행하기'를 요구하는 탐구활동의 질문을 살펴보면 다음 [그림 IV-6]과 같다.

[그림 IV-6] 삼각형의 성질에 대한 '이행하기' 질문의 예(교과서 L, 2012: 241)

위의 [그림 IV-6]은 삼각형의 외심과 관련된 탐구활동이다. 종이접기 를 이용한 활동을 제시한 다른 교과서들과 다르게 컴퓨터 프로그램을 이 용한 탐구활동을 제시하고 있다. 탐구활동의 질문 1,2 에서 수직이등분 선을 그리고 외심에서 각 꼭짓점에 이르는 거리를 측정하도록 요구하는 질문은 '이행하기'로 분석된다. 류희찬과 조완영(1999)에 따르면 이러한 컴퓨터 프로그램은 다양한 도형의 예를 쉽게 만들어주고 도형의 중요한 요소를 잃지 않으면서 도형을 자유자재로 변형시킬 수 있는 장점이 있다 고 하였다. 따라서 단순히 기하학적 사실을 확인하기 위해 사용하기보다 이러한 탐구활동에 도형의 크기를 바꿔보거나 꼭짓점을 이동시키는 등 다양한 예를 탐구할 수 있는 기회를 제공할 필요가 있을 것으로 생각된 다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'의 질문이 어떻게 구성되었는지 살펴보면 다 음 [그림 IV-7] 과 같다.

[그림 IV-7] 삼각형의 성질에 대한 탐구활동의 '기하학적 성질 추론하기'의 질문 개수(개)
[그림 $\mathrm{IV}-7]$ 을 통해 알 수 있듯이, '기하학적 성질 추론하기'에 해당 하는 질문은 '추측하기'와 '정당화하기'로 분포되어 있으며, '일반화하기', '종합하기’, '비정형문제해결하기'의 질문은 탐구활동에서 분석되지 않았 다. 학습 내용 도입을 위한 탐구활동에서 '정당화하기'가 비교적 많이 나 타난 것은 '직각삼각형의 합동조건'에서 이미 학습한 삼각형의 합동조건 을 이용하여 주어진 직각삼각형이 합동임을 설명하도록 요구하는 질문을 포함하는 탐구활동이 포함된 교과서가 많았기 때문으로 생각된다. 특히 교과서 I의 경우'기하학적 성질 추론하기'에 해당하는 질문 3 개가 모두 '정당화하기'의 질문으로 분석되었는데 이는 '직각삼각형의 합동조건'과 ‘삼각형의 외심’, ‘삼각형의 내심’의 탐구활동에서 각각 하나씩 나타났다. ‘직각삼각형의 합동조건'은 앞에서 언급한 것처럼 삼각형의 합동조건을 이용하여 두 직각삼각형이 합동임을 보이도록 요구하는 질문이었으며, ‘삼각형의 외심’, ‘삼각형의 내심’에 대한 탐구활동에서는 기하학적 성질

을 추측하기 위해 도입한 종이접기 활동을 반성할 수 있도록 다음 [그림 $\mathrm{IV}-8]$ 과 같이 학생들에게 정당화를 요구하는 질문을 포함하였다.

[그림 $\mathrm{IV}-8$] 삼각형의 성질에 대한 탐구활동의
'정당화하기' 질문의 예(교과서 I, 2012: 210)
[그림 $\mathrm{IV}-8$]의 질문 '탐구 1 '을 살펴보면 변의 양 끝 점이 겹치도록 접어서 생긴 선분이 수직이등분선이 됨을 설명해보도록 '정당화하기'를 요구하고 있다. 이와 같은 질문을 통해 단순히 종이접기 활동을 따라하 지 않고, 했던 활동을 돌이켜봄으로써 활동의 의미를 알 수 있도록 돕는 질문이라고 볼 수 있다. 또한 교과서 C 도 비교적 '정당화하기'의 질문을 많이 포함하고 있는데 이를 자세히 살펴보면 [그림 IV-9]와 깉다.

```
탐구(1) 두 변이 겹치도록 접은 선은 내각의 무엇을 나타내는지 말해 보자.
탐구 (2) 위의 (4)에서 접은 선은 점 I 를 지나는지 알아보자.
탐구(3) 점 I 에서 삼각형의 세 변에 이르는 거리를 각각 재어 비교해 보자.
영욤ㅁㅁ문(4) 다른 친구들이 접은 삼각형도 위의 탐구 (2)와 탐구(3)의 결과와 같은지 확인해 보자.
영욤ㅁㅁㅜㅜ (5 위의 탐구 (4)에서 얻은 결과를 설명해 보자.
```

[그림 IV-9] 삼각형의 성질에 대한 탐구활동의
'정당화하기' 질문의 예(교과서 C, 2012: 210)
[그림 IV-9]의 탐구활동은 삼각형의 내심과 관련되는 종이접기 활동

을 담고 있다. 다른 교과서들과 다르게 탐구활동의 질문 '탐구 4’와 같이 다른 친구들과 탐구활동의 결과를 비교해보도록 요구하는 질문을 제시하 였다. 이는 의사소통을 이용한 추론활동을 할 수 있도록 구성된 질문으 로 분석될 수 있다. 질문 '탐구 5'에서 친구들과 결과를 비교해 본 것을 바탕으로 탐구활동에서 얻은 결과를 설명해보도록 '정당화하기'를 요구 하는 질문이 포함되어있다.

이제 '기하학적 성질 추론하기' 중 '추측하기'의 질문에 대해 살펴보면 다음과 같다. [그림 $\mathrm{IV}-7$]에 따르면 13 종의 교과서 중 '기하학적 성질 추론하기'의 질문이 모두 '추측하기'로 분석된 교과서가 3 종 (교과서 B , $\mathrm{K}, \mathrm{M})$ 이 있었다. 이 중 교과서 M 은 '추측하기'의 질문이 3 개로 분석되 어 가장 많은 '추측하기'의 질문을 포함하고 있는데 이는 실생활맥락에 서 제시된 탐구활동의 질문에서 많이 나타났다. 이를 자세히 살펴보면 다음 [그림 IV-10]과 같이 구성된다.

[그림 IV-10] 삼각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예(교과서 $\mathrm{M}, 2012$: 257)
[그림 IV-10]의 탐구활동은 '삼각형의 내심'과 관련되는 실생활맥락에 서 주어진 것으로, 탐구활동의 질문은 삼각형에 내접하는 내접원의 개념 을 포함하는 시계의 중심을 찾도록 '추측하기'를 요구하는 질문으로 분 석될 수 있다. 교과서 B 의 탐구활동도 '추측하기'의 질문이 2 개 포함되 어 있는데 이는 교과서 M 과 유사하게 '삼각형의 내심’, '삼각형의 외심’ 의 개념을 포함하고 있는 실생활맥락에서 탐구활동을 도입하였는데, 이 는 학습할 내용을 직접적으로 확인하도록 하기 보다는 실제 활용될만한

상황을 제시하여 기하학적 성질을 경험하도록 하는 데 보다 중점을 두고 있다고 볼 수 있다.

지금까지의 '삼각형의 성질' 단원의 탐구활동 질문에 대한 수행에 대한 기대를 분석한 결과를 정리하면, 대체적으로 '기하학적 개념, 사실 알기' 를 요구하는 질문이 가장 많음을 알 수 있다. 이 중 삼각형에서 길이가 같은 변 또는 크기가 같은 각 등을 인식하도록 요구하는 '인식하기'의 질문이 가장 많이 나타났으며 학습내용에 따라 필요한 경우 '측정하기' 와 '계산하기'의 질문이 나타났다. '기하학적 성질 적용하기'를 요구하는 질문은 모두 학습할 기하학적 성질을 확인하기 위해 점을 그어보거나 간 단한 작도를 해보도록 요구하는 '이행하기'의 질문으로 구성되어 있었다. 또, '기하학적 성질 추론하기'를 요구하는 질문은 학습할 내용을 직접적 으로 묻는 게 아니라 도형이 갖고 있는 성질을 생각해보도록 하는 '추측 하기'의 질문이 많이 분석되었다. '기하학적 성질 추론하기' 중 '정당화하 기'의 질문도 제시되어 있었는데, 이는 직각삼각형의 합동조건에 대한 탐구활동에서 이전에 학습한 삼각형의 합동조건을 이용하여 주어진 두 직각삼각형의 합동을 설명하는 질문에서 나타났다. 그리고 탐구활동에서 '정당화하기'를 요구하는 질문은 도입한 종이접기와 같은 활동을 단순히 따라하도록 하지 않고 활동을 반성할 수 있도록 종이접기를 통해 새롭게 생긴 선이 무엇인지 설명해보도록 요구하거나 탐구활동을 통해 얻은 결 과를 설명해보도록 요구하는 질문에서 나타남을 알 수 있었다.

1.1.2. 문제

중단원 '삼각형의 성질'에 제시된 문제는 평균적으로 58 개 정도 포함 되어 있었다. 이 중 교과서 D 와 H 는 부록으로 각각 '개념 확인 \& 익힘 문제'와 '보충, 심화문제'를 추가로 구성하여 70개 이상의 문제를 포함하 여 가장 많은 문제가 제시되어 있었다.
'삼각형의 성질'에서의 문제의 수행에 대한 기대는 '기하학적 개념, 사

실 알기'의 비율이 가장 높은 교과서가 3 종, '기하학적 성질 적용하기'의 비율이 가장 높은 교과서가 9종, '기하학적 성질 추론하기'의 비율이 가 장 높은 교과서가 1 종으로 분석되었다. 이를 자세히 살펴보면 다음 [그 림 $\mathrm{IV}-11]$ 과 같다.

[그림 IV-11] 삼각형의 성질에 대한 문제의 수행에 대한 기대 비율 (\%)
[그림 IV-11]은 문제가 요구하는 수행에 대한 기대를 비율로 나타내 고 있다. 이를 살펴보면 모든 교과서에서 '기하학적 개념, 사실 알기'와 '기하학적 성질 적용하기'의 비율의 합이 모두 60% 이상이 되어 '기하학 적 성질 추론하기'보다는 학습한 내용을 적용하여 문제를 해결하는 측면 에 보다 초점이 맞춰져 있음을 알 수 있다. 실제로 '기하학적 성질 추론 하기'의 비율은 모든 교과서에서 40% 미만으로 나타났는데 이 중 30% 미만인 교과서가 12 종으로 낮은 비율을 나타내고 있음을 알 수 있다. 이 제 구체적으로 각 수행에 대한 기대에 대해 살펴보면 다음과 같다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'를 살펴보면, '계산하기'가 가장 많이 나타 났으며 교과서에 따라 '회상하기', '인식하기'의 문제도 제시되어 있었다. 또한 '기하학적 개념, 사실 알기의 비율이 13 종의 교과서 중 가장 높게 나타나고 있는 것은 교과서 $\mathrm{E}(42.4 \%)$ 이다. 이는 다른 교과서들과 다르 게 소단원 학습을 마친 후 '이 시간에 배운 내용 스스로 해결하기'라는 코너를 구성하여 새로 학습한 기하학적 성질에 대해 ‘회상하기'를 요구 하는 문제와 학습한 기하학적 성질을 바로 적용하여 '계산하기'를 요구 하는 문제들을 위주로 제시하고 있기 때문으로 분석된다. 이를 보다 구 체적으로 살펴보면 [그림 IV-12]와 같다.

[그림 IV-12] 삼각형의 성질에 대한 '회상하기'와 '계산하기' 문제의 예(교과서 E, 2012: 232)
[그림 IV-12]의 문제 1 은 이등변삼각형의 성질에 대해 '회상하기'를 요구하는 문제이며, 문제 2 는 두 밑각에 대한 이등변삼각형의 성질을 바 로 적용하여 '계산하기'를 요구하는 문제로써 문제 1 , 문제 2 모두 '기하 학적 개념, 사실 알기'를 요구하는 문제로 볼 수 있다.
'기하학적 개념, 사실 알기' 중 '인식하기'를 요구하는 문제는 각 교과 서마다 직각삼각형의 합동조건과 관련된 문제에서 많이 나타났는데 이를 예로써 살펴보면 다음 [그림 IV-13]과 같다.
```
ᄑ्⿺⿻十一㇂㇒丶제2 오르ᄂ쪼ᄀ 그리ᄇ과 가ᄐ으ᄂ 두 지ᄀ가
사ᄆ가ᄀ혀ᄋ }\textrm{ABC},\textrm{DEF}\mathrm{ 에서 다으ᄆ으ᄅ 구
하여라.
（1）\(\angle \mathrm{F}\) 의 크기
（2）\(\overline{\mathrm{EF}}\) 의 길이
```


［그림 $\mathrm{IV}-13$ ］삼각형의 성질에 대한＇인식하기＇
문제의 예（교과서 I，2012：208）

위의［그림 $\mathrm{IV}-13$ ］은 주어진 두 직각삼각형이 합동임을 알고 합동인 도형의 성질에 따라 각의 크기와 변의 길이를 구하도록 요구하고 있다． 따라서 이 문제는 합동조건을 통한 각의 크기와 변의 길이를 인식하도록 요구하는＇기하학적 개념，사실 알기＇의＇인식하기＇문제로 분석될 수 있 다．

2）기하학적 성질 적용하기
＇기하학적 성질 적용하기＇는 대부분 ‘정형문제해결하기＇로 분석되었고， 교과서에 따라＇표현하기＇，＇이행하기＇의 문제가 나타났다．그러나＇선택하 기＇와＇모델만들기＇를 요구하는 문제는 나타나지 않았다．또한 다른 수행 에 대한 기대보다＇기하학적 성질 적용하기＇의 비율이 가장 높은 교과서 는 9 종 있었으며，이 중 그 비율이 50% 이상인 교과서는 5 종으로 비교 적 높게 나타났다． 54.3% 로 비율이 가장 높게 나타난 교과서 H 는 기본 학습 후 새로 학습한 기하학적 성질을 확인하는 문제를 각 학습내용마다 $1 \sim 2$ 문제로 적게 제시하고，이를 적용하여 해결할 수 있는＇기하학적 성 질 적용하기＇의 문제를 다른 교과서에 비해 많이 포함하고 있음을 알 수 있었다．그 예를 살펴보면 다음［그림 IV－14］，［그림 IV－15］와 같다．

문졔 5 오픈쪽 그킴과 간이 $\overline{\mathrm{AC}}=\overline{\mathrm{BC}}$ 인 아항변삼각영 ABC 에서

 $\angle \mathrm{A}$ 의 이통분선이 $\overline{\mathrm{BC}}$ 와 만나는 점을 D 라교 하자. $\angle \mathrm{B}=72^{\circ}, \overline{\mathrm{DC}}=3$ 일 때, $\overline{\mathrm{AB}}$ 읙 길앞⿱ㄹㄹ 구하여라.
[그림 $\mathrm{IV}-14$] 삼각형의 성질에 대한 '정형문제해결하기'의 문제의 예(교과서 $\mathrm{H}, 2012$: 213)
 각각 그림으로 나타내고, $\triangle \mathrm{ABC}$ 의 서 나가의 크기툴 모두 구하여라.
$\begin{array}{ll}\text { (1) } \angle \mathrm{A} \text { 가 폭지자인 졍우 } & \text { (2) } \angle \mathrm{A} \text { 가 밑각인 경우 }\end{array}$
[그림 IV-15] 삼각형의 성질에 대한 '표현하기'의
문제의 예(교과서 $\mathrm{H}, ~ 2012: 213$)
[그림 IV-14]에 제시된 '문제 5'는 기본학습에서 배운 이등변삼각형 의 성질을 보다 활용하여 풀이해야 하는 '정형문제해결하기'로 분석되며, [그림 $\mathrm{IV}-15$]의 '문제 6'은 이등변삼각형을 경우에 따라 그려보고 세 내각의 크기를 구하도록 요구하는 '표현하기'로 '기하학적 성질 적용하 기'로 분석될 수 있다. 또한 '기하학적 성질 적용하기' 중 '이행하기'를 요구하는 문제는 교과서의 탐구활동과 비슷하게 수학적 설명에 따라 직 접 활동을 해보도록 요구하는 것으로 분석되었다. 이를 살펴보면 다음 [그림 $\mathrm{IV}-16$] 과 같다.

[그림 $\mathrm{IV}-16$] 삼각형의 성질에 대한 '이행하기' 문제의 예(위:
교과서 C, 2012: 214, 아래: 교과서 J 2012: 252)

위의 [그림 $\mathrm{IV}-16$]의 교과서 C 의 문제는 외심에 대한 탐구활동을 한 후 삼각형의 종류에 따라 내심의 위치를 살펴보기 위해 직접 종이접기를 통해 외심의 위치를 찾도록 요구하고 있다. 또한 [그림 IV-16]의 아래 에 제시된 교과서 J 의 문제는 세 변의 수직이등분선을 작도하여 외심을 찾고 외접원을 그려보도록 요구하고 있다. 따라서 두 문제 모두 수학적 지시에 따른 이행을 요구하는 '이행하기'의 문제로 '기하학적 성질 적용 하기'로 분석된다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'의 문제의 비율은 다른 수행에 대한 기대에 비해 낮게 나타닜다. 또한 교과서별로 편차가 큰 편이었는데 가장 높은 교과서가 35.8%, 가장 낮은 교과서는 7.6% 로 나타닜다. 이 중 가장 높 은 비율을 나타내는 교과서 B 는 소단원이 끝나고 '창의력 플러스 추론' 코너를 마련하여 학생들의 추론 기회를 제공하였다. 이를 구체적으로 살 펴보면 다음 [그림 $\mathrm{IV}-17$], [그림 $\mathrm{IV}-18$]과 같다.

[그림 IV-17] 삼각형의 성질에 대한 '추측하기' 문제의
예(교과서 B, 2012: 207)
서 출호된 르기 귤기 서매의 장우녀 거울 조가
이다. 이 겨옹의 줜래 모영이 원이었다고 할
때, ㄱ⼯ 춴의 중심가 반지뱁을 구하는 방벖을 설
명하여라.

[그림 IV-18] 삼각형의 성질에 대한 '비정형문제해결하기' 문제의 예(교과서 B, 2012: 207)
[그림 IV-17]의 ‘창의력 플러스 추론’의 문제들은 각각 사각형의 내접 원의 존재성, 삼각형의 외심의 위치에 대해 '추측하기'를 요구하는 문제 로써 모두 '기하학적 성질 추론하기'로 분석되며, [그림 IV-18]의 '문제 4'는 '삼각형의 외심'에 대한 '비정형문제해결하기'를 요구하는 문제이다. 또한 다음 [그림 IV-19]의 문제는 '기하학적 성질 추론하기' 중 '정당화 하기'를 요구하는 문제이다.

[그림 $\mathrm{NV}-19$] 삼각형의 성질에 대한 ‘정당화하기’ 문제의 예(교과서 $\mathrm{B}, 2012: 201$)
[그림 IV-19]는 '직각삼각형의 합동조건'을 학습하고 풀이하게 되는 문제 중 하나이다. 직각삼각형의 합동조건을 이용해 두 직각삼각형 $\triangle \mathrm{PCO}, \triangle \mathrm{PDO}$ 이 합동임을 보여 $\overline{\mathrm{CP}}=\overline{\mathrm{BP}}$ 임을 설명하도록 '정당화하기' 를 요구하는 문제로 '기하학적 성질 추론하기'로 분석된다.
이제 보다 구체적으로 '기하학적 성질 추론하기'의 문제가 어떻게 구성 되었는지 살펴보면 [그림 IV-20]과 같다.

[그림 IV-20] 삼각형의 성질에 대한 '기하학적 성질추론하기'의 문제 개수(개)
[그림 IV-20]은 탐구활동의 '기하학적 성질 추론하기'의 분포를 나타 내는 [그림 IV-7]과 다른 형태를 나타낸다. 13종 교과서 중 일부 교과 서에서 '기하학적 성질 추론하기'를 요구하는 탐구활동 질문을 포함한 것에 비해 교과서 문제에서는 13 종 교과서 모두에서'기하학적 성질 추 론하기'를 요구하는 문제가 나타났다. 또한 탐구활동의 질문에서는 없었 던 '비정형문제해결하기'와 '종합하기'를 요구하는 문제가 나타났다. 그러 나 '일반화하기'를 요구하는 문제는 모든 교과서에서 나타나지 않았다.

먼저 '기하학적 성질 추론하기' 중 '추측하기'를 요구하는 문제는 교과 서 6 종 (교과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}$)에서 나타났다. 이 중 '추측하기'의 문 제가 4 개로 가장 많은 교과서 C 를 살펴보면 중단원 '삼각형의 성질'을 모두 학습한 후 제시되는 '창의력 교실' 코너에서 '추측하기'를 요구하는 문제가 분석되었다. 이를 자세히 살펴보면 [그림 IV-21]과 [그림 IV -22]와 같다.

[그림 $\mathrm{IV}-21$] 삼각형의 성질에 대한
'추측하기' 문제의 예(교과서 C, 2012: 226)

수영 가계

[그림 $\mathrm{IV}-22$] 삼각형의 성질에 대한
'추측하기' 문제의 예(교과서 C, 2012: 227)
[그림 $\mathrm{IV}-21]$ 은 모래를 이용해 삼각형의 내심을 찾아보는 활동을 한 후 학생들이 해결할 2 개의 문제가 제시되어 있다. 문제를 살펴보면 활동 을 통해 삼각형 판 위에 모래를 쌓음으로써 생긴 세 모서리와 가장 높게 쌓인 부분의 수학적 의미에 대해 '추측하기'를 요구하는 문제이다. 이는 단순히 구체적 조작활동을 하는 것에 그치지 않고 활동을 반성해봄으로 써 기하학적 성질을 추측해보도록 요구하는 문제로 분석될 수 있다. 또 한 [그림 IV-22]는 컴퓨터 프로그램을 이용하여 삼각형의 내심과 내접 원을 만들고 여러 가지 성질에 대해 '추측하기'를 요구하는 문제이다. 즉, 컴퓨터 프로그램을 이용해 다양하게 삼각형을 움직여봄으로써 삼각 형의 내심과 내접원이 갖는 성질을 추측해보도록 요구하는 문제로 컴퓨 터 프로그램의 장점을 잘 활용한 예로 볼 수 있다.
'기하학적 성질 추론하기' 중 '종합하기'를 요구하는 문제는 교과서 8 종에서 나타났다. 이 중 '종합하기'를 요구하는 문제가 5 문제로 가장 많 이 나타난 교과서 A 를 예로써 살펴보면 [그림 IV-23]과 같다.

[그림 IV-23] 삼각형의 성질에 대한 '종합하기'
문제의 예 (교과서 A, 2012: 238)
[그림 IV-23]의 '문제 7'은 학생들에게 정당화과정을 모두 설명하도 록 요구하지 않고 정당화 과정의 일부를 제시하고 이를 완성하도록 하였 다. 이는 제시된 조건과 유도해야 하는 결과를 연결을 요구하므로 '종합 하기'의 문제로 분석될 수 있다. 또한 '문제 9 '는 두 직각삼각형이 합동 이 되기 위해 필요한 조건과 주어진 조건의 연결을 요구하므로 마찬가지 로 '종합하기'의 문제로 분석된다.
'정당화하기'를 요구하는 문제는 대부분 이전 교육과정에 따라 개발된 교과서에서 증명을 요구하는 문제가 변형된 것으로 문제의 서술어만 '증 명하여라'에서 '설명하여라'로 바뀐 문제들이 대부분이었다. 그러나 '정당 화하기'를 요구하는 문제 중 학생들이 보다 쉽게 정당화를 할 수 있도록 돕는 문제의 형태가 있었는데 이를 살펴보면 다음 [그림 IV-24]와 같 다.

[그림 IV-24] 삼각형의 성질에 대한 '정당화하기' 문제의
예(위: 교과서 B, 2012: 204; 아래: 교과서 F, 2012: 253)
[그림 IV-24]의 두 문제는 같은 내용에 대해 정당화하기를 요구하는 문제이다. 그러나 위의 문제는 결과만 제시하고 정당화하기를 요구하는 데 비해, 아래의 문제는 정당화에 필요한 과정으로 하위의 문제를 나눠 단계적으로 정당화할 수 있도록 제시하고 있다. 즉 (1)에서는 내심의 성 질과 평행선의 성질을 이용해 $\overline{\mathrm{DB}}=\overline{\mathrm{DI}}$ 임을 보이고 이를 이용하여 (2)를

정당화하도록 구성함으로써 보다 단계적으로 정당화할 수 있도록 제시되 어 있음을 알 수 있다.
또한 실생활맥락이 활용된 문제 중에 '정당화하기'를 요구하는 문제도 나타났는데, 이는 아래의 [그림 IV-25]와 같다.

옛날 사람들은 오른쪽 그림과 같은 모영의 도구를 만들어 지평 선과 평행한 선을 찾았다고 한다. 이 도구는 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 이등변 삼각형 ABC 모임의 판에 $\overline{\mathrm{BC}}$ 의 종점인 M 을 표시하고, 점 A 에 졸을 고정한 다음, 줄의 다른 쪽 뀰에 추를 매단 것이다. 줄이 점 M 을 지날 때, 직선 BC 와 지평선이 서로 평형한 이유를 설명 아여라.

[그림 IV-25] 실생활맥락이 활용된 삼각형의 성질에 대한 '정당화하기'의 문제의 예
(위: 교과서 A, 2012: 239; 아래: 교과서 H, 2012: 211)

위의 [그림 IV-25]에 제시된 문제는 모두 이등변삼각형의 성질과 관련 된 것으로 실생활맥락에서 제시된 '정당화하기'를 요구하는 문제로 분석된 다. 이는 문제에서 실생활맥락을 활용하여 정당화에 대한 필요성을 알게 하기 위한 문제로 분석될 수 있다(신현용, 2004).
'기하학적 성질 추론하기' 중 '비정형문제해결하기'를 요구하는 문제는 실생활맥락에서 제시된 문제가 많았다. 이를 예를 통해 살펴보면 다음 [그림 IV-26]과 같다.

[그림 IV-26] 삼각형의 성질에 대한 ‘비정형문제해결하기’ 문제의 예(교과서 J, 2012: 253)

위의 [그림 IV-26]은 삼각형의 외심의 성질을 이용하여 기와를 복원하 는 문제로써 이러한 외심의 성질은 세 점으로부터 같은 거리에 있는 점을 찾아야 하는 실생활맥락에서 다른 형태로 '비정형문제해결하기'를 요구하 는 문제로 분석된다.

지금까지의 '삼각형의 성질' 단원에서 문제의 수행에 대한 기대를 분석 한 결과를 정리하면, 모든 교과서에서 '기하학적 개념, 사실 알기'와 '기 하학적 성질 적용하기'의 비율의 합이 60% 이상으로 분석되어 상대적으 로 '기하학적 성질 추론하기'의 비율은 낮게 나타남을 알 수 있었다.
'기하학적 개념, 사실 알기'를 요구하는 문제는 학습한 기하학적 성질 에 대해 '회상하기'를 요구하는 문제, 학습한 기하학적 성질을 바로 적용 하여 '계산하기'를 요구하는 문제 위주로 분석되었다. '기하학적 성질 적 용하기'의 문제는 대부분 '정형문제해결하기'로 분석되었으며 교과서에 따라 '표현하기'와 '이행하기'를 요구하는 문제가 분석되었다. 이는 조건 에 따라 삼각형을 그려보거나 외접원, 내접원을 작도하는 것을 요구하는 문제에서 나타났다.
'기하학적 성질 추론하기'의 문제를 살펴보면 '정당화하기'를 요구하는 문제가 가장 많이 나타났으며, '추측하기'의 문제도 나타났다. 또한 탐구 활동의 질문에서는 나타나지 않았던 '비정형문제해결하기'와 '종합하기' 를 요구하는 문제가 분석되었다. '추측하기'의 문제는 삼각형의 성질에 대한 기본학습을 끝낸 후 추가로 제시되는 활동에서 분석되어 활동을 통 해 얻게 된 성질을 추측해보도록 요구하여 탐구활동의 '추측하기'와 유

사한 목적으로 제시되어 있음을 알 수 있다. '종합하기'의 문제는 정당화 과정의 일부를 제시하고 이를 완성하도록 요구하는 문제에서 주로 분석 되었는데 이는 주어진 조건과 유도해야 하는 결과에 대한 연결을 필요로 함을 알 수 있었다. '정당화하기'의 문제는 2009 개정 교육과정 이전의 교과서에서는 '증명하여라'로 제시되었던 문제를 '설명하여라'로 바꾸어 제시할 뿐 거의 증명과 동일한 수준을 요구하는 문제가 대부분이었으나 정당화과정을 단계별로 제시하는 등 학생들의 추론을 돕기 위해 고려한 요소들을 살펴볼 수 있었다.

1.2. 정당화의 유형에 대한 분석결과

1.2.1. 탐구활동과 내용 설명

탐구활동과 정당화가 나타난 내용 설명에 대한 정당화의 유형 분석은 2 가지 관점에서 이루어졌다. 먼저 각 교과서에서 사용된 정당화의 유형 비율을 분석하였다. 그 후 13 종의 교과서를 분석한 결과를 종합하여 학 습내용에 따라 하나의 기하학적 성질이 정당화되는 과정에서 사용된 정 당화의 유형을 묶어서 정당화 과정에서 사용된 정당화의 유형을 분석하 였다.
먼저 각 교과서에서 사용된 정당화의 유형에 대한 비율을 살펴보면 다 음 [그림 IV-27]과 같다.

[그림 IV-27] 삼각형의 성질에 대한 교과서별 정당화의 유형 분포(\%)
[그림 IV-27]을 살펴보면 13종의 교과서 모두 형식적•연역적 정당 화가 정당화의 유형 중 가장 높은 비율로 나타났다. 이 중 교과서 H 는 형식적•연역적 정당화의 비율과 예에 의한 정당화의 비율이 각각 36.9% 와 36.8% 로 거의 비슷하게 나타났는데 이는 형식적-연역적 정당 화를 제시하는 부분마다 시각적 예를 함께 제시하였기 때문으로 분석된 다. 또한 경험적•귀납적 정당화에 비해 형식적•연역적 정당화의 비율 이 높게 나타난 것은 경험적•귀납적 정당화를 시도하는 탐구활동 없이 바로 형식적•연역적 정당화로 도입된 부분이 꽤 존재한다는 것을 알 수 있다.

이제 13 종의 교과서를 분석한 결과를 종합하여 학습내용에 따라 하나 의 기하학적 성질이 정당화되는 과정에서 사용된 정당화의 유형을 묶어 서 분석하면 다음 <표 IV $-1>$ 과 같다. 이는 13 종의 교과서에서 정당화 가 나타난 부분을 분석하여 얻은 표로써 전체 교과서에서 정당화가 나타 난 부분은 모두 85 개이다.
<표 IV-1> 삼각형의 성질 단원의 탐구활동과 내용 설명에서 사용된 정당화의 유형

사용된 정당화의 유형		횟수(회)	비율(\%)
1)		34	40
2)		7	8.2
3)		11	12.9
4)		14	16.5
5)		1	1.2
6)		9	10.6
7)		9	10.6
	합계	85	100

<표 $\mathrm{IV}-1>$ 를 통해 살펴보면 경험적•귀납적 정당화와 형식적•연역 적 정당화를 사용하여 정당화한 것이 40% 로 가장 높은 것을 알 수 있 다. 이는 탐구활동에서 구체적 조작활동을 하거나 평범한 예를 통해 기 하학적 성질을 경험한 것을 바탕으로 본문의 내용 설명에서 형식적•연 역적 정당화를 한 경우에 해당한다. 그러나 이는 우정호, 박미애, 권석일 (2003)에 의하면 귀납적 정당화와 연역적 정당화 사이의 큰 간극이 있 어 중간 단계의 이행과정을 확인하고 그 수준을 구체화할 필요가 있으 나, 경험적•귀납적 정당화와 형식적•연역적 정당화 사이에 다른 정당 화의 유형이 활용되지 않아 중간을 매개할 수 있는 정당화의 유형이 사

용될 필요가 있음을 나타낸다.
이제 <표 $\mathrm{IV}-1>$ 에 제시된 정당화의 유형을 경우에 따라 자세히 살펴 보면 다음과 같다.

1) 경험적•귀납적 정당화와 형식적•연역적 정당화

경험적•귀납적 정당화와 형식적•연역적 정당화가 사용된 것을 '삼각 형의 성질'에 대한 학습내용 중심으로 살펴보면 다음과 같다.

먼저 이등변삼각형의 밑각에 대한 성질에 대해 11종의 교과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서 경험적•귀납적 정당화와 형식적 - 연역적 정당화가 사용되었다. 또한 외심의 성질과 내심의 성질에 대해 10 종의 교과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{M}$)에서 경험적•귀납 적 정당화와 형식적•연역적 정당화가 사용되었다. 이는 탐구활동에서 종이접기와 같은 구체적 조작활동이나 평범한 예를 통하여 기하학적 성 질을 관찰하는 경험적•귀납적 정당화를 한 뒤 이를 바탕으로 형식적 증 명인 형식적•연역적 정당화로 이끌어나가는 형태로 나타났다. 이를 삼 각형의 외심에 대한 탐구활동과 이에 대한 설명을 예로써 살펴보면 다음 <표 IV-2>와 같다.
<표 IV-2> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 형 식적•연역적 정당화의 예(교과서 $\mathrm{D}, 2012: 193,194$)

정당화 유형	교과서에 제시된 삼각형의 외심에 대한 정당화
경험적. 귀납적 정당화	표훙비아 둥미브기 0 곽훙이어 $\triangle \mathrm{ABC}$ 팔 그썬 다을 저븐다. (9) 졈 A 와 짐 B 가 일치히도룍 점은 후 펼련다. 이뗘 (2)어서 생진 선과의 교겸을 O 라고 하자. (9) 정 B 와 겸 C 가 일최하도닥겸은 후 편쳥다. (9) 겸 A 와 겹 C 가 일치하도록 검은 후 진천다. C53 점 앞의 홭동으로부터 $\triangle \mathrm{ABC}$ 에서 서 변 $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ 의 수직이등분신은 한 졈 O 에서 만나고, 점 O 에서 서 꼭짓짐이 이르는 거리는 갆음을 확인할 수 있다.
형식적• 연역적 정당화	 sinccoblatei SmAh 4- CKat殾兂. $\angle O A D=$ SOtit scell- AOCE GCAF = $\triangle C E F$ 졀 O 는 변 AB 의 수징ㅇㅇ충붇산 위아 임으므로 $\overline{O A}=\overline{O B}$ $\begin{aligned} \overline{O B} & =\overline{O C} \\ \text { I. } 2 \text { 여서 } \overline{O A} & =\overline{O C} \end{aligned}$ $\triangle O A D$ 아 $\triangle O C D$ 아서 주에젼 조젼으로푸다 $\angle \mathrm{ADO}=\angle \mathrm{CDO}=90^{\circ}$ 조포오 $\angle O A D=\angle O C D$ 이다. 따라서 $\overline{\mathrm{AD}}=\overline{\mathrm{CD}}$ 하는 윈은 $\triangle \mathrm{ABC}$ 의 4 푹짓겸 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 률 지난다.

<표 IV-2>를 통해 살펴보면 종이접기를 활용한 탐구활동을 통하여 경험적•귀납적 정당화를 한 후 이를 바탕으로 본문 내용 설명에서 수직 이등분선의 성질과 삼각형의 합동조건을 이용해 형식적•연역적 정당화 를 하고 있음을 알 수 있다. 형식적•연역적 정당화 과정을 살펴보면, 정당화 과정의 왼쪽에 별도로 정당화에 필요한 선분의 수직이등분선의 성질을 그림과 설명으로 제공해 학생들의 추론을 돕고 있음을 알 수 있 다. 또한 세 변의 수직이등분선이 한 점에서 만남을 증명하여 외접원의 존재성과 유일성을 함께 정당화하고 있음을 알 수 있는데 이는 교과서 A 의 형식적•연역적 정당화와 다르게 나타난다. 이를 살펴보면 다음 [그림 IV-28] 과 같다.

$$
\begin{align*}
& \text { 일반적으로 삼각형의 두 변의 수직이등분선의 교점에서 세 꼭짓점에 이르는 거리 } \\
& \text { 가 같음을 알아보자. } \\
& \triangle \mathrm{ABC} \text { 에서 변 } \mathrm{AB} \text { 와 변 } \mathrm{AC} \text { 의 수직이등분선의 교점 } \\
& \text { 을 } \mathrm{O} \text { 라 하면, 점 } \mathrm{O} \text { 는 } \overline{\mathrm{AB}} \text { 의 수지이등분선 위에 있으믈 } \\
& \overline{\mathrm{OA}}=\overline{\mathrm{OB}} \\
& \text { 이다, 또 점 } \mathrm{O} \text { 는 } \overline{\mathrm{AC}} \text { 의 수직이등분선 위에 있으믈 } \\
& \qquad \overline{\mathrm{OA}}=\overline{\mathrm{OC}} \tag{2}\\
& \text { 이다. (1), (2)에 의하여 } \overline{\mathrm{OA}}=\overline{\mathrm{OB}}=\overline{\mathrm{OC}} \text { 임을 알 수 있다. } \tag{1}\\
& \text { 따라서 } \triangle \mathrm{ABC} \text { 의 변 } \mathrm{AB} \text { 와 변 } \mathrm{AC} \text { 의 수직이등분선의 교점 } \mathrm{O} \text { 에서 세 폭짓점에 이 } \\
& \text { 르는 거리는 같다. } \\
& \text { 이때 점 } \mathrm{O} \text { 를 중심으로 하고 바지름의 길이가 } \overline{\mathrm{OA}} \text { 인 원을 그리면 이 원은 } \triangle \mathrm{ABC} \text { 의 } \\
& \text { 세 족짓점을 모두 지난다. }
\end{align*}
$$

[그림 IV-28] 삼각형의 외심의 존재성에 대한 형식적•연역적 정당화(교과서 A, 2012: 243)

위의 [그림 IV-28]은 교과서 A에서 두 변의 수직이등분선의 교점에 서 세 꼭짓점에 이르는 거리가 같음을 형식적-연역적 정당화를 이용해 설명하여 외접원의 존재성을 보인 것이다. 이를 설명한 후 예제를 통해 세 변의 수직이등분선이 한 점에서 만나는 이유를 정당화하여 유일성을

보인다. 이와 다르게 교과서 G 는 세 변의 수직이등분선이 한 점에서 만 나는 것은 경험적•귀납적 정당화만 하고 이를 다시 형식적•연역적 정 당화를 하지 않는다. 이와 같이 형식적-연역적 정당화의 과정이 다르게 나타나는 것은 문헌검토에서 살펴본 외접원의 존재성과 유일성의 문제와 관련된다(변희현, 2011). 변희현(2011)의 연구에 따르면 임의의 삼각형 에 대하여 외접원이 존재하는지에 대한 의문을 제기해 답을 찾은 후 임 의의 삼각형에 대한 외접원이 유일한지를 생각해볼 수 있는 맥락을 제공 하는 것이 필요하므로 이에 대한 고려가 필요할 것으로 생각된다.
또한 외심과 내심의 정의에 대해 전영배, 강정기, 노은환(2011)은 삼 각형의 외심과 내심의 정의를 구성에 초점을 둔 정의와 의미에 초점을 둔 정의, 그리고 구성과 의미에 초점을 둔 정의로 나누어 설명하였다. 여기에서 구성에 초점을 둔 정의는 외심(내심)을 세 변의 수직이등분선 의 교점(세 내각의 이등분선의 교점)으로 정의하는 것을 의미하며, 의미 에 초점을 둔 정의는 외심(내심)을 삼각형의 외접원의 중심(삼각형의 내 접원의 중심)으로 정의하는 것을 의미한다. 전영배 외(2011)는 외심과 내심의 정의에 있어 의미에 초점을 둔 정의로부터 외심(내심)의 조건을 만족하는 점을 찾기 위한 노력을 통해 구성에 초점을 둔 정의를 학생들 이 발견할 수 있도록 지도하여야 한다고 주장한다. 따라서 이러한 맥락 을 고려하여 교과서를 서술할 필요가 있다.
2) 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화

경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화가 사용된 것을 학습내용 중심으로 살펴보면, 이등변삼각형의 밑각에 대한 성질에 대해 2 종의 교과서(교과서 B, H)에서 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화가 사용되었다. 또한 직각삼각 형의 합동조건(RHS합동)에 대해 교과서 G 에서 이를 사용하였다. 외심 의 성질과 내심의 성질에 대해서는 2 종의 교과서(교과서 B, H)에서 경 험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화가 사 용되었다. 이는 1)에서 사용한 경험적•귀납적 정당화와 형식적•연역적

정당화를 매개할 수 있는 시각적 예를 사용하는 예에 의한 정당화가 사 용되었음을 나타낸다. 예를 통해 살펴보면 다음 <표 IV -3 >과 같다.
<표 IV-3> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 예 에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{H}, 2012$: 209, 210)

정당화 유형	교과서에 제시된 이등변삼각형의 성질에 대한 정당화
경험적• 귀납적 정당화	오른쪽 그밈은 직사작형 모영의 중 이률 반으로 접은 다음 $\overline{\mathrm{AB}}$ 를 따 라 자른 후 펼켰음 마 생진 $\triangle \mathrm{ABC}$ 이다. $\triangle \mathrm{ABC}$ 는 어면 삼작형인지 말하고, $\angle \mathrm{B}$ 와 크기가 같은 각을 말하여라. 이등병삼간형은 '두 년의 길이가 같은 삼각항' 이다. 위의 개범 열기어서 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 이므로 $\triangle \mathrm{ABC}$ 는 이등변삼각형이고, $\angle \mathrm{B}$ 와 $\angle \mathrm{C}$ 의 크기는 서로 같음을 알 수 있다.
예에 의한 정당화	
형식적• 연역적 정당화	이둥변삼각영의 두 밀가의 크기는 서로 값다. 이 성질이 항상 성립하는지 알아보자. 한 각을 이등분하는 반지선을 그 각의 이등분선이라고 한다. 다음 그립과 같이 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 이등변삼각형 ABC 에서 $\angle \mathrm{A}$ 의 이등분선 을 그어 변 BC 와의 교점을 D 라고 하자. 이때 $\triangle \mathrm{ABD}$ 와 $\triangle \mathrm{ACD}$ 에서 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}, \angle \mathrm{BAD}=\angle \mathrm{CAD}, \overline{\mathrm{AD}} \text { 는 공룽 }$ 이므로 $\triangle \mathrm{ABD}=\triangle \mathrm{ACD}(\mathrm{SAS}$ 함동)입을 알 수 있다. 합동인 두 삼각형에서 대융각의 크기는 서로 같으믈 $\angle \mathrm{B}=\angle \mathrm{C}$ 이다.

<표 IV -3 >은 이등변삼각형의 밑각에 대한 성질을 정당화한 것이다. 이를 살펴보면 경험적•귀납적 정당화와 형식적•연역적 정당화 사이에 시각적 예를 이용하여 정당화과정을 보여주는 예에 의한 정당화를 이용 하고 있음을 알 수 있다. 이를 통해 학생들은 경험적•귀납적 정당화에 서 바로 형식적•연역적 정당화로 정당화를 하는 것보다 쉽게 정당화 과 정을 이해할 수 있을 것으로 생각된다. 또한 경험적•귀납적 정당화를 한 후 형식적•연역적 정당화를 하는 이유를 '이 성질이 항상 성립하는 지 살펴보자'라고 제시한 부분을 찾아볼 수 있다. 이는 경험적•귀납적 정당화를 통해 얻은 결과를 보다 일반화하여 모든 이등변삼각형에서 만 족하는 것을 형식적•연역적 정당화를 통해 보이고자 함을 나타낸다고 볼 수 있다.
3) 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용된 것을 ‘삼각형의 성질’에 대한 학습내용 중심으로 살펴보면 다음 과 같다.
이등변삼각형의 꼭지각의 이등분선에 대한 성질에 대해 4 종의 교과서 (교과서 $\mathrm{E}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용하였다. 또한 직각삼각형의 합동조건(RHA 합동)에 대해 교과서 9 종(교과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{R}, \mathrm{J}, \mathrm{M}$)에서 이를 사용하였다. 이는 경험적•귀납적 정당화를 한 후 형식적•연역적 정당 화를 하는 과정에서 식의 조작이 필요하거나 논리적 설명이 필요한 경우 에 나타났다. 이를 직각삼각형의 합동조건(RHA합동)에 대한 탐구활동과 이에 대한 내용 설명을 살펴보면 다음 <표 IV $-4>$ 과 같다.
<표 $\mathrm{IV}-4>$ 삼각형의 성질에 사용된 경험적•귀납적 정당화와 준연 역적 정당화, 형식적•연역적 정당화의 예(교과서 L, 2012: 247)

정당화 유형	교과서에 제시된 직각삼각형의 합동조건에 대한 정당화
경험적• 귀납적 정당화	오른쪽 그림은 교량의 일부분이다. 두 삼각형 ABC 와 DEF 에서 $\begin{aligned} & \angle \mathrm{C}=\angle \mathrm{F}=90^{\circ}, \overline{\mathrm{AB}}=\overline{\mathrm{DE}}, \\ & \angle \mathrm{~A}=\angle \mathrm{D}=30^{\circ} \end{aligned}$ 이다. $0 \quad \angle \mathrm{~B}$ 와 $\angle \mathrm{E}$ 의 크기는 각각 얼마인가? (3) 삼각형 ABC 와 삼각형 DEF 는 합동인지 생각해 보자.
준연역적 정당화, 형식적• 연역적 정당화	이제 $\angle \mathrm{C}=\angle \mathrm{F}=90^{\circ}$ 인 $\triangle \mathrm{ABC}$ 와 $\triangle \mathrm{DEF}$ 에서 $\overline{\mathrm{AB}}=\overline{\mathrm{DE}}$ 이고 $\angle \mathrm{A}=\angle \mathrm{D}$ 이면 $\triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$ 임을 설명해 보자. $\triangle \mathrm{ABC}$ 와 $\triangle \mathrm{DEF}$ 에서 $\begin{align*} & \angle \mathrm{A}=\angle \mathrm{D} \tag{1}\\ & \overline{\mathrm{AB}}=\overline{\mathrm{DE}} \\ & \angle \mathrm{C}=\angle \mathrm{F}=90^{\circ} \text { 이므로 } \\ & \angle \mathrm{B}=90^{\circ}-\angle \mathrm{A} \\ & \tag{3}\\ & =90^{\circ}-\angle \mathrm{D}=\angle \mathrm{E} \end{align*}$ 즉, $\angle \mathrm{B}=\angle \mathrm{E}$ 이다. (1), (2), (3)에서 $\triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$ (ASA 합동)

위의 <표 $\mathrm{IV}-4>$ 를 살펴보면 직각삼각형에 대한 평범한 예를 통해 경 험적•귀납적 정당화를 하고 있음을 알 수 있다. 또한 형식적•연역적 정당화 과정에서 삼각형의 합동을 보이기 위해 $\angle \mathrm{B}=\angle \mathrm{E}$ 임을 식의 조 작을 이용하여 보이고 있음을 알 수 있다. 따라서 식의 조작에 의한 정 당화인 준연역적 정당화와 형식적•연역적 정당화가 함께 나타나고 있음 을 알 수 있다. 그러나 교과서 B 에서는 직각삼각형의 합동조건에 대한 정당화에서 식의 조작이 아닌 논리적 설명에 의해 준연역적 정당화를 사 용하였는데 이를 살펴보면 다음 [그림 IV-29]와 같다.

```
오르ᄂ쪼ᄀ 사지ᄂ으ᄂ 다예네 지ᄇ이 이사ᄋ% 떠 이
묘ᄋ하ᄂ 사다리차의 오소ᄇ이다.
    \triangle\textrm{ABC}\mathrm{ 가 }\angle\textrm{C}=9\mp@subsup{0}{}{\circ}\mathrm{ 이ᄂ 지ᄀ가ᄀ사ᄆ가ᄀ혀ᄋ이고}
\angleB=30'이ᄅ 때 }\angle\textrm{A}\mathrm{ 여 크기ᄂᄂ 여ᄋ마이ᄂ가?
```



```
삼각형의 합동 조긴은 두 삼각헝에서 세 변여 길이, 두 변의 길이와 그 사잇 각의 크기, 한 변의 긴이와 그 양 끌 가의 크기가 각각 같은 것으로, 어느 것이 나 서 가지 요소률 확인하여야 한다. 직각심각형의 경우에는 직각이라는 하나 의 픅수한 조건이 있으므로 서 가지 요소 가운데 적절한 두 가지 요소만 확인하 여도 합동인지 아넌지 알 수 있다.
생각열기에시 알 수 있듯이 직각상각형에서 한 여작의 크기가 정히지면 다른 예강의 크기도 정혜진다. 따라서 두 직각삼각형에서 한 예각의 크기가 서로 같 으뗜 다른 여각의 크기도 서로 갈다.
이를 이응하면 칙각삼각형이 개한 다음 합동 조정을 얼을 수 있다.
```


직각삽각형의 찹동 조건(1)

```
씻변의 길이와 한 예가의 크기가 각각 같은 두 직각삽각형은 합동이다.
```

[그림 IV-29] 직각삼각형의 합동조건에
대한 정당화의 예(교과서 B, 2012: 199)

위의 [그림 IV-29]를 살펴보면 <표 IV-4>의 탐구활동과 동일하게 직각삼각형의 평범한 예를 이용하여 경험적•귀납적 정당화를 하고 있음 을 알 수 있다. 그러나 이는 직각삼각형의 합동조건에 대한 직접적인 탐 구활동이 아니라 직각삼각형에서 한 예각의 크기가 결정되면 다른 예각 의 크기가 결정됨을 알게 하기 위한 탐구활동임을 알 수 있다. 또한 이 를 논리적인 설명을 통해 정당화하고 형식적•연역적 정당화를 사용하지 않음을 알 수 있다.
4) 예에 의한 정당화와 형식적•연역적 정당화

예에 의한 정당화와 형식적•연역적 정당화가 사용된 것을 '삼각형의 성질'에 대한 학습내용 중심으로 살펴보면 다음과 같다.
이등변삼각형이 되는 조건은 대부분 교과서에서 예제로 형식적•연역 적 정당화만 다루고 있었으나 2종의 교과서(교과서 H, K)에서는 이를

시각적 예를 이용하여 예에 의한 정당화를 한 후 형식적•연역적 정당화 를 다루고 있었다. 또한 직각삼각형의 합동조건(RHS합동)에 대해서는 두 직각삼각형을 붙여 이등변삼각형을 만드는 과정을 시각적 예로 보여 준 후 이등변삼각형의 성질을 이용해 정당화하는 과정이 모든 교과서에 서 동일하게 나타닜다. 이를 이등변삼각형이 되는 조건에 대한 탐구활동 과 이에 대한 내용 설명을 예를 통해 살펴보면 다음 <표 IV $-5>$ 와 같 다.
<표 $\mathrm{IV}-5>$ 삼각형의 성질에 사용된 예에 의한 정당화와 형식적

- 연역적 정당화의 예(교과서 L, 2012: 247)

정당화 유형	교과서에 제시된 이등변삼각형이 되는 조건에 대한 정당화
예에 의한 정당화	
형식적• 연역적 정당화	

<표 $\mathrm{IV}-5>$ 는 두 내각의 크기가 같은 삼각형이 이등변삼각형임을 정 당화하는 과정이다. 이를 살펴보면 형식적•연역적 정당화 과정을 하기 전에 시각적 예를 이용하여 먼저 예에 의한 정당화를 보이고 있다. 또한

형식적•연역적 정당화 과정에서 왼쪽에 별도로 제시된 부분에 정당화를 통해 보여야 할 것을 '생각 두드림'에서 제시하여 학생들의 추론을 돕고 있음을 알 수 있다.
5) 예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화

예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용 된 것을 '삼각형의 성질'에 대한 학습내용 중심으로 살펴보면 이등변삼 각형의 꼭지각의 이등분선에 대한 성질에서 교과서 H 는 시각적인 예를 사용하여 예에 의한 정당화와 식의 조작을 사용한 준연역적 정당화, 형 식적•연역적 정당화를 보이고 있다. 또한 직각삼각형의 합동조건(RHA 합동)에 대해서도 <표 IV $-4>$ 에서 사용되었던 준연역적 정당화와 형식 적•연역적 정당화와 함께 교과서 H 에서 시각적인 예를 활용하여 정당 화하고 있는 것으로 분석되었다. 이는 교과서 H 의 특징으로 볼 수 있으 며 경험적•귀납적 정당화와 형식적•연역적 정당화를 연결하는 중간 매 개를 위한 정당화의 유형으로써 시각적 예를 이용한 예에 의한 정당화를 사용한 것으로 분석된다.
6) 준연역적 정당화와 형식적•연역적 정당화

준연역적 정당화, 형식적•연역적 정당화가 사용된 것을 '삼각형의 성 질'에 대한 학습내용 중심으로 살펴보면 이등변삼각형의 꼭지각의 이등 분선에 대한 성질에 대해서 교과서 8 종(교과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}$) 에서, 직각삼각형의 합동조건(RHA 합동)에 대해서는 교과서 2 종(교과 서 F, L)에서 준연역적 정당화와 형식적-연역적 정당화를 하였다. 이를 통해 별도의 탐구활동 없이 바로 연역적 정당화를 도입하였음을 알 수 있다.
7) 형식적•연역적 정당화

형식적•연역적 정당화만 사용된 것을 ‘삼각형의 성질'에 대한 학습내 용 중심으로 살펴보면 이등변삼각형이 되는 조건에 대해서 교과서 8 종(교

과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{L}$)에서 형식적-연역적 정당화만 사용되었다. 또한 외심의 성질과 내심의 성질에 대해서는 교과서 K 에서 형식적•연 역적 정당화만 사용되었는데 이는 외심의 성질과 내심의 성질을 다루기 전 각각 수직이등분선의 성질, 각의 이등분선의 성질을 탐구활동을 통해 다루고 이를 형식적•연역적 정당화하였기 때문에 삼각형의 외심과 내심 에 대해서는 탐구활동 없이 형식적•연역적 정당화를 함을 알 수 있다.

1.2.2. 문제

<표 III-2>의 수행에 대한 기대 측면에서의 교과서 분석틀에 의해 '기하학적 성질 추론하기' 중 '정당화하기'로 분석된 문제를 대상으로 각 교과서에 나타나는 정당화의 유형을 분석해보면 다음 [그림 IV-30]과 같다.

[그림 $\mathrm{IV}-30$] 삼각형의 성질에 대한 문제에 사용된 정당화의 유형 개수(개)

서울대학교
xat wow wersan
[그림 IV-30]을 통해 살펴보면 모든 교과서에서 형식적•연역적 정당 화를 요구하는 문제가 가장 많은 것을 알 수 있다. 또한 준연역적 정당 화도 교과서 D 를 제외하고 모든 교과서에서 나타났다. 이를 통해 교과서 의 '정당화하기'의 문제는 대부분 연역적 정당화를 요구하고 있음을 알 수 있다. 경험적•귀납적 정당화를 요구하는 문제는 교과서 3 종(교과서 F, J, M)에서 나타났고, 예에 의한 정당화는 교과서 F에서만 분석되었 다.
교과서 F 에서는 경험적•귀납적 정당화와 예에 의한 정당화를 요구하 는 문제가 포함되어 있었다. 이를 다음 [그림 IV-31]을 통해 살펴보면 다음과 같다.

[그림 $\mathrm{IV}-31$] 삼각형의 성질에 대한 '경험적•귀납적 정당화'와 '예에 의한 정당화' 문제의 예(교과서 $\mathrm{F}, 2012$: 254)
[그림 $\mathrm{IV}-31]$ 은 직각삼각형을 이용해 삼각형에 대한 내접원의 반지름 을 구하는 것을 색종이를 이용해 직각삼각형과 내접원을 만드는 활동을 통해 경험하도록 한다. 이를 바탕으로 2 개의 직각삼각형을 큰 직사각형 으로 만들어보면서 경험적•귀납적 정당화를 하도록 문제를 제시한다. 또한 [그림 IV-32]에 제시된 [그림 1]과 [그림2]의 시각적 예를 통해 학생들이 정당화하는 것을 돕고 있으므로 이는 예에 의한 정당화를 사용 한 것으로 분석할 수 있다.
'준연역적 정당화'를 요구하는 문제를 살펴보면 다음 [그림 IV-32]와

같다.

180° 의 비밀

오른쭉 그럽의 $\triangle \mathrm{ABC}$ 는 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 이틍번삼각형이다. 밉변 BC 위여 한 졀 D 에 내하여 $\overline{\mathrm{BD}}=\overline{\mathrm{CE}}$ 인 $\overline{\mathrm{AC}}$ 위의 졈을 $\mathrm{E}, \overline{\mathrm{DC}}=\overline{\mathrm{BF}}$ 인 $\overline{\mathrm{AB}}$ 위의 점을 F 라고 하자. 다음 물음어 답 하여라.

1. $\triangle \mathrm{BDF}$ 와 험동인 섬죠옹을 훚고 그 이윷를 할하여라.

 빤히안
<풀이>
2. $\angle \mathrm{EDF}=180^{\circ}-(\angle \mathrm{BDF}+\angle \mathrm{CDE})$

$$
=180^{\circ}-(\angle \mathrm{BDF}+\angle \mathrm{BFD})=\angle \mathrm{B}
$$

3. $\angle \mathrm{A}=\angle a, \angle \mathrm{~B}=\angle \mathrm{C}=\angle b$ 이므로 $\triangle \mathrm{ABC}$ 에서 $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=\angle a+2 \angle b=180^{\circ}$
[그림 IV-32] 삼각형의 성질에 대한 '준연역적 정당화’ 문제의 예(교과서 $\mathrm{H}, 2012: 229)$

위의 [그림 IV-32]에 제시된 문제 2 와 3 에 대한 풀이를 살펴보면 문제 1 에서 정당화한 성질을 이용해 간단한 식의 조작에 의한 정당화를 사용하여 정당화하고 있음을 알 수 있다. 따라서 문제 2,3 은 준연역적 정당화를 요구하는 것으로 분석될 수 있다.
'형식적•연역적 정당화'를 사용하고 있는 문제의 예를 살펴보면 다음 [그림 IV-33]과 같다.

문제(4) 오른쪽 그림은 $\overline{\mathrm{BC}}$ 의 수직이등분선 위 에 한 점 A 를 잡아 $\triangle \mathrm{ABC}$ 를 그린 것이다. 다음 물음에 답하여라.
(1) $\triangle \mathrm{ABD}$ 와 $\triangle \mathrm{ACD}$ 가 합동임을 설명하여라.
(2) $\triangle \mathrm{ABC}$ 가 이등변삼각형임을 설명하여라.

[그림 IV-33] 삼각형의 성질에 대한 '형식적•연역적 정당화' 문제의 예(교과서 $\mathrm{M}, 2012: 246$)

위의 [그림 $\mathrm{IV}-33$]에 제시된 문제(1)에서 삼각형의 합동조건을 이용 해 정당화를 요구하므로 형식적•연역적 정당화를 요구하는 문제로 분석 될 수 있다.

2. 사각형의 성질

중단원 ‘사각형의 성질'은 이전 중단원인 '삼각형의 성질'과 다르게 소 단원 구성에 있어 교과서별 차이가 없었다. 13 종의 교과서 모두 '평행사 변형의 성질'과 '여러 가지 사각형'으로 소단원이 구성되어 있었다. '평행 사변형의 성질'에서는 평행사변형의 두 쌍의 대변과 두 쌍의 대각에 대 한 성질을 다루고, 사각형이 평행사변형이 될 조건에 대해 다루고 있었 으며, '여러 가지 사각형의 성질'에서는 직사각형, 정사각형, 마름모의 대 각선에 대한 성질을 학습한 후 여러 가지 사각형 사이의 관계를 다루고 있었으며 평행선과 넓이 사이의 관계를 포함하여 다루고 있었다.
따라서 '사각형의 성질'에서 분석할 교과서의 내용은 모든 교과서에서 공통적으로 다루고 있는 평행사변형의 성질, 평행사변형이 될 조건, 직 사각형, 마름모, 정사각형의 성질과 이들 사이의 관계, 평행선과 넓이 사 이의 관계를 포함하고자 한다.

2.1. 수행에 대한 기대 측면에서의 교과서 분석결과

2.1.1. 탐구활동

'사각형의 성질’에 제시된 탐구활동은 평균적으로 5 개 정도 포함되어 있었다. 이 중 교과서 C 와 M 은 각각 탐구활동을 9 개, 10 개 포함하고 있 어 다른 교과서에 비해 많은 탐구활동을 포함하고 있었다. 이는 교과서 C 는 평행사변형의 대변, 대각, 대각선의 성질과 여러 가지 사각형 각각 에 대한 탐구활동을 포함하고 있기 때문이며 교과서 M 은 '삼각형의 성 질'과 동일하게 각 학습내용마다 실생활맥락의 탐구활동과 구체적 조작 활동과 관련된 탐구활동을 포함하고 있기 때문으로 분석된다.

중단원 ‘사각형의 성질’에서의 탐구활동의 수행에 대한 기대를 살펴보 면 다음 [그림 IV-34]와 같다.

[그림 IV-34] 사각형의 성질에 대한 탐구활동의 수행에 대한 기대 비율(\%)
[그림 IV-34]를 통해 알 수 있듯이, '기하학적 개념, 사실 알기'의 비 율이 가장 높은 교과서는 12 종이었으며, 그 비율이 모두 50% 이상으로 꽤 높은 비율을 차지한다고 볼 수 있다. '기하학적 성질 적용하기'의 비 율이 가장 높게 나타난 교과서는 없었으며, 8 종의 교과서에서는 아예 나 타나지 않았다. '기하학적 성질 추론하기'는 교과서 E에서 100% 의 비율 로 나타났으며, 이를 제외하고 모두 '기하학적 개념, 사실 알기'보다는 낮은 비율로 나타났다. 그러나 교과서별로 비교했을 때'기하학적 성질 추론하기'의 비율이 높아진 교과서를 살펴보면 8종(교과서 E, F, G, H, $\mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)이었다. 이는 '삼각형의 성질' 단원에 비해 탐구활동을 통해 알게 된 기하학적 사실을 바탕으로 추측하도록 요구하는 질문이나 간단 히 논리적인 설명을 통해 기하학적 사실이 참인 이유를 설명하도록 요구 하는 질문이 더 추가되었기 때문으로 볼 수 있다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'는 '인식하기'와 '측정하기'가 가장 많이 나 타났다. 또한 교과서 F 에서는 평행사변형이 될 조건에 대한 탐구활동에 서 여러 가지 조건 중 평행사변형이 만들어지는 경우에 대해 '분류하기' 의 질문이 분석되었다. 13 종의 교과서 중 '기하학적 개념, 사실 알기'의 비율이 13 종의 교과서 중 가장 높게 100% 의 비율로 나타나고 있는 것 은 교과서 A이다. 그 예를 살펴보면 다음 [그림 IV-35]와 같다.

[그림 IV-35] 사각형의 성질에 대한 탐구활동의
‘인식하기’ 질문의 예(교과서 $\mathrm{A}, 2012: 260)$

위의 [그림 $\mathrm{IV}-35$]의 질문 (1)은 만든 사각형을 보고 두 쌍의 대변의 길이가 같은 것에 대해 '인식하기'를 요구하는 질문으로 분석되며, 질문 (2)는 두 쌍의 대변의 길이가 같은 사각형이 평행사변형임을 단순히 확 인하도록 요구하는 질문으로 이것도 '인식하기'로 분석될 수 있다. 이와 비슷하게 빨대와 실을 이용하여 두 쌍의 대변의 길이가 같음을 경험하도 록 하는 탐구활동이지만 질문이 다르게 구성된 예를 살펴보면 다음 [그 림 $\mathrm{IV}-36]$ 과 같다.

[그림 IV-36] 사각형의 성질에 대한 탐구활동의 ‘추측하기' 질문의 예(교과서 J, 2012: 266)
[그림 $\mathrm{IV}-35$]의 질문 (2)에서는 두 쌍의 대변의 길이가 같은 사각형 이 평행사변형이라는 사실을 학생들에게 제공하고 이를 확인하도록 요구 하는 반면, [그림 $\mathrm{IV}-36$]의 질문 (2)에서는 확인한 결과를 바탕으로 두 쌍의 대변의 길이가 같은 사각형이 평행사변형이 되는지 추측하도록 질 문하고 있음을 알 수 있다. 따라서 같은 내용을 담고 있는 탐구활동이라 도 질문에 따라 학생들이 추론을 경험하도록 할 수 있고 그렇지 않을 수 있으므로 이에 대한 고려가 필요할 것으로 보인다.
2) 기하학적 성질 적용하기
'기하학적 성질 적용하기'는 여러 가지 사각형의 성질에 대해서는 분석 되지 않았으며, 평행사변형의 성질에 대한 탐구활동의 질문에서 '이행하

기'만 분석되었다. 13 종의 교과서 중 '기하학적 성질 적용하기'의 비율이 28.6% 로 가장 높게 나타나는 것은 교과서 C이다. 교과서 C의 탐구활동 을 살펴보면 다음 [그림 $\mathrm{IV}-37$]과 같이 주어진 사각형에서 기하학적 성 질을 인식하도록 한 뒤, 모눈종이에 사각형을 그려보고 주어진 사각형과 새로 그린 사각형을 통하여 사각형의 대각선의 성질을 추측해보도록 구 성되어 있음을 알 수 있다.

[그림 IV-37] 사각형의 성질에 대한 탐구활동의
‘이행하기’ 질문의 예(교과서 C, 2012: 240)

구체적으로 [그림 IV-37]의 탐구활동을 살펴보면, 탐구 (1)과 탐구 (2) 와 같이 대각선을 그리거나 직사각형을 그리도록 '이행하기'를 요구하는 질문이 포함되어 있음을 알 수 있고 이는 '기하학적 성질 적용하기'로 분석될 수 있다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'는 교과서 1종(교과서 A)을 제외한 모든 교 과서의 탐구활동에서 나타났다. 이러한 질문은 대부분의 교과서에서 탐 구활동을 통해 얻은 결과에 대해 '추측하기'를 요구하는 질문이거나 결 과에 대한 간단한 이유를 설명하도록 '정당화하기'를 요구하는 질문으로 분석되었다. 구체적으로 '정당화하기'의 질문을 예로써 살펴보면 다음 [그림 IV-38] 과 같다.

[그림 IV-38] 사각형의 성질에 대한
'정당화하기' 질문의 예(교과서 L, 2012: 263)

위의 [그림 IV-38]은 컴퓨터 프로그램을 통해 세 개의 삼각형을 그린 후 넓이가 모두 같음을 알고 그에 대한 이유를 설명하도록 요구하는 '정 당화하기'로 분석될 수 있다. 또한 교과서 E 는 모든 탐구활동에서 '기하 학적 성질 추론하기'의 질문으로 구성되었는데 이를 살펴보면 [그림 IV -39]와 같다.

[그림 IV-39] 사각형의 성질에 대한 탐구활동의 '추측하기’ 질문의 예(교과서 $\mathrm{E}, 2012: 251$)
[그림 IV-39]에서 살펴볼 수 있는 특징은 중단원 '삼각형의 성질’에서 도 비슷하게 나타났던 교과서 E 의 탐구활동의 특징으로, 학습할 내용에 대해 직접적으로 제시하지 않고 두 개의 삼각형을 붙여 사각형을 만들 때 만들어지는 사각형의 모양을 통해 평행사변형이 되는 조건을 추측해 보는 경험을 제공하고 있음을 알 수 있다.
이제 보다 구체적으로 '기하학적 성질 추론하기'가 어떻게 구성되었는 지 살펴보면 다음 [그림 IV-40]과 같다.

[그림 IV-40] 사각형의 성질에 대한 탐구활동의
'기하학적 성질 추론하기'의 질문 개수(개)
[그림 IV-40]을 통해 알 수 있듯이, '기하학적 성질 추론하기'에 해당 하는 질문은 '삼각형의 성질' 단원과 동일하게 '추측하기'와 '정당화하기' 로 분포되어 있었다. 그러나 '삼각형의 성질' 단원에서는 '추측하기'의 질 문이 총 10 개였던 것에 비해 '사각형의 성질' 단원에서는 '추측하기'의 질문이 총 32 개로 분석되어 더 많이 분포함을 알 수 있다. 예를 통해 살 펴보면 다음 [그림 IV-41]과 같다.

[그림 IV-41] 사각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예(교과서 L, 2012: 275)

서울대학교
SEOUL NATONAL LINIERSTY

위의 [그림 IV-41]의 탐구활동은 평행사변형을 만들어본 후 평행사변 형의 대변의 성질에 대한 형식적•연역적 정당화의 과정과 동일하게 활 동을 구성된 것을 알 수 있다. 또한 이를 바탕으로 평행사변형의 대변의 길이와 대각의 크기에 대한 성질을 관찰하여 '추측하기'를 요구하는 질 문으로 분석된다.
'기하학적 성질 추론하기' 중 '정당화하기'에 대한 질문을 예를 통해 살 펴보면 다음 [그림 IV-42]와 같다.

[그림 IV-42] 사각형의 성질에 대한 탐구활동의
‘정당화하기’ 질문의 예(교과서 $\mathrm{D}, 2012: 209)$

위의 [그림 IV-42]는 평행사변형이 될 조건을 탐구하는 탐구활동이 다. 이에 대한 질문은 두 쌍의 대변의 길이가 같도록 직사각형을 잘라 평행사변형으로 잘라 변형한 후 이를 이용하여 두 쌍의 대변이 평행임을 설명하도록 요구하는 '정당화하기' 질문으로 분석된다. 다른 교과서에 제 시된 평행사변형이 될 조건에 대한 탐구활동은 [그림 IV-36]과 같이 길 이가 같은 두 쌍의 막대 또는 빨대를 이용해 평행사변형임을 추측하는 활동으로 제시된 것에 비해 직사각형 모양의 종이를 활용하여 보다 특수 한 경우의 예를 활용하고 있음을 알 수 있다. 또한 컴퓨터 프로그램을 이용한 '정당화하기'의 질문에 대한 예를 살펴보면 다음 [그림 IV-43]

과 같다.

[그림 IV-43] 사각형의 성질에 대한
'정당화하기' 질문의 예(교과서 J, 2012: 275)

위의 [그림 IV-43]은 컴퓨터가 활용된 맥락을 제공하고 있는 탐구활 동의 예이다. 컴퓨터가 활용된 맥락을 제공한 다른 교과서들보다 다양한 예를 제시하고 여러 형태로 삼각형을 변형하였을 때 변하는 것과 변하지 않는 것을 학생들이 인식하도록 하여 평행선 사이의 삼각형의 넓이가 같 을 조건을 찾도록 돕고 있다. 즉, 단순히 컴퓨터가 활용된 맥락을 제시 하고 도형의 성질을 추측하도록 하는 것보다 위의 [그림 IV-43]과 같이 컴퓨터 프로그램의 장점이 활용될 수 있도록 다양한 예를 관찰하고 변하 지 않는 성질을 바탕으로 도형의 성질을 추측할 수 있도록 구성될 필요 가 있다.

지금까지의 '사각형의 성질' 단원에서의 탐구활동 질문에 대한 분석 결 과를 정리하면, 탐구활동의 수행에 대한 기대 중 '기하학적 성질 추론하 기'보다 '기하학적 개념, 사실 알기'의 비율이 더 높게 분석되었다. 그러 나 '삼각형의 성질’ 단원에 비해 '기하학적 성질 추론하기'의 비율이 더

높게 나타난 교과서가 8종 있었는데, 이는 학생들에게 탐구활동을 통해 알게 된 기하학적 사실을 바탕으로 추측하도록 요구하는 질문이나 간단 한 논리적 설명을 통해 기하학적 성질이 참인 이유를 설명하도록 요구하 는 질문이 더 많이 구성되었기 때문이다. 이를 통해 '삼각형의 성질' 단 원에서 추론과 정당화를 접하고 난 후 '사각형의 성질' 단원에서는 추론 과 정당화의 기회를 많이 제공하고자 함을 알 수 있다. '기하학적 개념, 사실 알기'를 요구하는 질문은 '삼각형의 성질'과 유사하게 '인식하기'와 ‘측정하기'가 가장 많이 나타났다. 또한 평행사변형이 될 조건을 학습하 는 데 있어 평행사변형이 되는 것과 그렿지 않은 것을 분류하도록 요구 하는 '분류하기' 질문도 분석되었다. 또한 '기하학적 성질 적용하기'의 질 문은 '삼각형의 성질’과 마찬가지로 수학적 설명을 따르도록 하는 '이행 하기'의 질문으로 구성되었다. '기하학적 성질 추론하기'의 질문은 '추측 하기'와 '정당화하기'의 질문으로 구성되었다. 그러나 '삼각형의 성질' 단 원의 '추측하기' 질문의 개수는 전체 10 개로 분석된 것에 비해 '사각형의 성질' 단원의 '추측하기'의 질문은 전체 32 개로 분석되어 '추측하기'의 질 문이 더 많이 제시되어 있었다. '추측하기'의 질문의 개수가 더 많아진 교과서를 살펴보면 단순히 학습할 내용을 확인하는 것이 아니라 의도적 으로 활동한 결과를 통해 알게 된 것을 추측하도록 요구하는 질문이 더 많아졌음을 알 수 있다.
이러한 탐구활동의 추론과 정당화를 돕기 위한 요소로써 탐구활동에서 컴퓨터 프로그램을 활용한 예가 분석되었다. 이는 단순히 컴퓨터 프로그 램을 활용한 맥락을 제공하거나 컴퓨터 프로그램을 통해 변의 길이와 각 의 크기를 확인하는 것이 아닌 다양한 형태로 변화시켰을 때 변하는 것 과 변하지 않는 것을 관찰하여 이를 바탕으로 도형의 성질을 추측하도록 돕는 형태로 나타났음을 알 수 있다.

2.1.2. 문제

중단원 '사각형의 성질'에 제시된 문제는 평균적으로 68 개 정도 포함

되어 있었다. 이 중 교과서 D 는 85 개, 교과서 G 는 97 개로 가장 많은 문 제를 포함하고 있었다. 이는 두 교과서 모두 부록으로 추가 문제를 제공 하였기 때문이다.
'사각형의 성질'에서의 문제의 수행에 대한 기대는 '기하학적 개념, 사 실 알기'의 비율이 가장 높게 나타난 교과서가 많았고 이전 중단원인 '삼각형의 성질' 단원에 비해 1 종의 교과서(교과서 A)를 제외하고 '기하 학적 성질 추론하기'의 비율이 ‘사각형의 성질’ 단원에서 더 높게 나타났 다. 이를 구체적으로 살펴보면 [그림 IV-44]와 같다.

[그림 IV-44] 사각형의 성질에 대한 문제의 수행에 대한 기대
비율(\%)
[그림 IV-44]를 통해 알 수 있듯이, 중단원 '사각형의 성질'에서의 문 제의 수행에 대한 기대는 '기하학적 개념, 사실 알기'의 비율이 가장 높 은 교과서가 7종, '기하학적 성질 적용하기'의 비율이 가장 높은 교과서 가 1 종, '기하학적 성질 추론하기'의 비율이 가장 높은 교과서가 5 종으로 분석된다. 이는 대체적으로 '기하학적 성질 적용하기'의 비율이 가장 높

았던 중단원 '삼각형의 성질'과 비교했을 때 '기하학적 개념, 사실 알기' 와 '기하학적 성질 추론하기'의 비율은 높게 나타나고 '기하학적 성질 적 용하기'의 비율은 비교적 낮게 나타남을 알 수 있다. 이는 학습한 사각 형의 성질을 보다 응용하여 해결할 수 있는 문제를 제공하기보다는 이를 적용하여 바로 풀 수 있는 문제들이 더 많이 포함되어 있음을 의미한다. 또한 '기하학적 성질 추론하기'의 비율이 높아진 것을 통해 중단원 '삼각 형의 성질'을 통해 기하 추론을 경험한 학생들에게 추론의 기회를 보다 더 제공하기 위함으로 해석될 수 있다. 각 수행에 대한 기대를 구체적으 로 살펴보면 다음과 같다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'에 대한 문제는 '회상하기', '인식하기', '계 산하기', ‘유도하기', '분류하기'를 요구하는 것으로 분석되었다. 이 중 '계 산하기'와 '인식하기'를 요구하는 문제가 가장 많았다. 또한 '분류하기'를 요구하는 문제가 포함되어 있었는데 이는 다음 [그림 IV-45]와 같이 ‘평행사변형이 될 조건’을 학습하고 이를 바탕으로 평행사변형이 되는 것과 그렇지 않은 것을 분류하도록 요구하는 문제에서 확인되었다.

$$
\begin{aligned}
& \text { 다음 } \square \mathrm{ABCD} \text { 에서 평행사변형인 것을 모두 찾아라. } \\
& \text { (단, 점 } \mathrm{O} \text { 는 두 대각서 } \mathrm{AC} \text { 와 } \mathrm{BD} \text { 의 교점이다.) } \\
& \text { (1) } \overline{\mathrm{AB}} / / \overline{\mathrm{DC}}, \overline{\mathrm{AB}}=\overline{\mathrm{DC}}=3 \mathrm{~cm} \\
& \text { (2) } \overline{\mathrm{OA}}=\overline{\mathrm{OB}}=\overline{\mathrm{OC}}=\overline{\mathrm{OD}}=7 \mathrm{~cm} \\
& \text { (3) } \angle \mathrm{A}=\angle \mathrm{C}=110^{\circ}, \angle \mathrm{D}=70^{\circ} \\
& \text { (4) } \overline{\mathrm{AB}}=\overline{\mathrm{BC}}=7 \mathrm{~cm}, \overline{\mathrm{CD}}=\overline{\mathrm{DA}}=5 \mathrm{~cm}
\end{aligned}
$$

[그림 IV-45] 사각형의 성질에 대한
'분류하기' 문제의 예(교과서 E, 2012: 255)
'기하학적 개념, 사실 알기'의 비율이 다른 수행에 대한 기대 비율에 비해 가장 높게 나타난 교과서 중 가장 높은 비율을 나타내는 교과서인 G 는 다른 교과서들과 비교했을 때 기본학습 후 제시되어 있는 문제 중

에 학습한 기하학적 성질을 바로 적용하여 풀 수 있는 '계산하기'의 문 제의 비중이 크게 나타났음을 알 수 있다. 이를 예를 통해 살펴보면 다 음 [그림 IV-46]과 같다.

[그림 IV-46] 사각형의 성질에 대한
'계산하기' 문제의 예(교과서 G, 2012: 195)
[그림 IV-46]을 살펴보면 '문제 1'은 평행사변형의 대변, 대각에 의한 성질을 알고 간단한 '계산하기'를 요구하는 문제이며, '문제 2 '는 평행사 변형의 대각선에 의한 성질을 알고 간단한 '계산하기'를 요구하는 문제 로 분석될 수 있다. 또한 '인식하기'를 요구하는 문제는 평행사변형에서 같은 크기의 각이나 같은 길이의 변을 인식하도록 요구하는 문제에서 분 석되었다.
2) 기하학적 성질 적용하기
'기하학적 성질 적용하기'는 '정형문제해결하기'가 대부분이었으며 교과 서에 따라 평행사변형을 그려보도록 요구하는 '표현하기' 문제와 '이행하 기'의 문제가 분석되었다.
13 종의 교과서 중 '기하학적 성질 적용하기'의 비율이 가장 높은 것은 교과서 D 이다. 교과서 D 는 다른 교과서들과 비교했을 때 수행에 대한 기대 측면에서 기본학습 후 제시되는 문제는 큰 차이가 없었으나 별도 부록으로 제시되어 있는 '개념 확인 및 익힘문제'에 비교적 다른 교과서

에 비해 '기하학적 성질 적용하기'를 요구하는 문제가 많이 포함되어 있 음을 알 수 있다. 다음 [그림 IV-47]은 교과서 D의 '정형문제해결하기' 를 요구하는 문제이다.

[그림 IV-47] 사각형의 성질에 대한
'정형문제해결하기'문제의 예 (교과서 D, 2012: 328, 329)

위의 [그림 $\mathrm{IV}-47$]은 평행사변형의 성질과 정사각형의 성질을 바로 적용하여 계산할 수 있는 문제가 아닌 이등변삼각형의 성질이나 삼각형 의 내각의 합 등 다른 기하학적 성질도 함께 이용해야 해결할 수 있는 문제로 '정형문제해결하기'로 분석된다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'의 문제의 비율은 이전 중단원인 '삼각형의 성질'에 비해 전반적으로 높게 나타났다. 그 비율이 30% 이상인 교과서 가 8 종으로, 이전 중단원에서 30% 이상인 교과서가 1 종이었던 것에 비 하면 비율이 높아졌음을 알 수 있다. 이를 보다 구체적으로 '기하학적 성질 추론하기'의 분포를 살펴보면 다음 [그림 IV-48]과 같다.

[그림 IV-48] 사각형의 성질에 대한 '기하학적 성질 추론하기'의 문제 개수(개)
[그림 IV-48]을 통해 '기하학적 성질 추론하기' 중 '정당화하기'와 '종 합하기'의 비중이 크게 나타남을 알 수 있다. 또한 이전 중단원과 비교 했을 때 '정당화하기'와 '종합하기'를 요구하는 문제의 개수가 더 많아졌 음을 알 수 있다. 이는 기본학습 후 제시되는 문제 중 '정당화하기'의 문 제의 수가 상대적으로 많아졌기 때문인데, 이를 예를 통해 살펴보면 다 음 [그림 IV-49]와 같다.

문제 2 오른쪽 그립의 $\square \mathrm{ABCD}$ 에서

$$
\angle \mathrm{A}=\angle \mathrm{C}, \angle \mathrm{~B}=\angle \mathrm{D}
$$

일 때, 다음을 설명하여라.
(1) $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
(2) $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$
(3) $\square \mathrm{ABCD}$ 는 평형사변형이다.
[그림 IV-49] 사각형의 성질에 대한 '정당화하기' 문제의 예(교과서 M, 2012: 279)

위의 [그림 IV-49]는 평행사변형의 대각에 대한 성질을 학생들이 스 스로 정당화하도록 제공한 문제이다. 보다 쉽게 학생들이 정당화를 할 수 있도록 단계를 주어 '정당화하기'를 요구한 문제로 볼 수 있다. 교과 서마다 차이는 있었지만 위의 [그림 IV-50]과 같이 평행사변형의 성질 또는 평행사변형이 되는 조건을 본문 내용 설명에서 모두 다루지 않고 일부를 학생들이 스스로 정당화하도록 제공한 문제들을 제시해 전체적으 로 '정당화하기'를 요구하는 문제의 수가 많아진 것으로 분석된다. 또한 [그림 IV-50]은 컴퓨터 프로그램을 이용한 '정당화하기' 문제의 예이다. 이를 살펴보면 다음과 같다.

사각형의 모양은 원이 결정한다.

대각선의 성질을 이용하면 여러 가지 사각형을 섭게 작도할 수 있다. 컴퓨터 프로그램을 이용하여 다음 각각의 사각형을 작도하고 아래 물음에 답하여라.
(1) 마주 보는 변의 길이와 마주 보는 각의 크기는 같은가?
(2) 사각형의 꼭짓점을 움직여서 도형의 모양을 변화시켜도 마주 보는 변과 마 주 보는 각에 대한 성질이 변하지 않는가?
(3) 원하는 사각형이 그려진 이유는 무엇인가?
[그림 IV-50] 공학적 도구가 활용된 사각형의 성질에 대한 '정당화하기' 문제의 예(교과서 B, 2012: 229)
[그림 IV-50]은 대각선의 성질을 이용하여 컴퓨터 프로그램을 이용해 사각형을 작도하고 변과 각에 대하여 변하지 않는 성질을 관찰하도록 하 고 있다. 이를 통해 원하는 사각형이 그려진 이유를 정당화하도록 요구 하는 문제로 '정당화하기'로 분석된다.
'종합하기'를 요구하는 문제는 평행사변형이 되는 조건을 학습하는 단 원과 여러 가지 사각형 사이의 관계를 학습하는 단원에서 많이 나타났 다. 그 중 여러 가지 사각형 사이의 관계에 대한 '종합하기'의 문제는 주 어진 조건들을 연결하여 어떤 사각형이 되는지 추론을 요구하는 문제로

많이 나타났다．이를 예로써 살펴보면 다음［그림 IV－51］과 같다．

6 오른쪽 그림과 감은 평형사변형 ABCD 가 다음 조전음 만족시키면 각 각 어떤 사가녕이 되는지 맘하열．
（1）$\angle \mathrm{A}=90^{\circ}$
（2）$\overline{\mathrm{AB}}=\overline{\mathrm{BC}}$
（3）$\overline{\mathrm{AC}}=\overline{\mathrm{BD}}$
（4）$\overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$
（5）$\angle \mathrm{A}=90^{\circ}, \overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$

［그림 IV－51］사각형의 성질에 대한＇종합하기＇문제의 예（교과서 F，2012：269）

위의［그림 IV－51］은 평행사변형에 각 조건이 주어졌을 때 어떤 사각 형이 되는지 연결해야 하는 문제로＇종합하기＇를 요구하는 것으로 분석 될 수 있다．그 외에 교과서에서 나타난 ‘추측하기’와＇비정형문제해결하 기＇의 예를 살펴보면 다음과 같다．먼저＇추측하기＇를 요구하는 문제의 예는 다음［그림 IV－52］와 같다．

3 사각형의 각 변의 중점을 연결하여 만든 사각형 । 수혁젹 후른
다음은 사각형의 가 변의 중점을 연결하여 작은 사자항을 못 차혜 반복하여 만든 그핌이다．

0 （ 호우 아래의 \square 안에 알맞은 것을 쎄넝어라．
〈그립 1〉가 갇이 정사학형의 각 변의 충졈을 연절하펀 정사작형을 겨속 하서 그랄 수 있다． （그럽 2）와 갈이 평행사번형의 각 변의 중정을 연결하면 \qquad 겨속혀서 그릴 수 있다．

（그렴 1）

〈그림 2〉

0 펴형 직사각형을 이용하여 위와 장이 각 년의 중점을 연졈하여 사각형을 그리면 어텬 중류이 사각형이 만들어지는지 추축하여라．
［그림 IV－52］사각형의 성질에 대한＇추측하기＇ 문제의 예（교과서 M，2012：284）

위의 [그림 IV-52]는 정사각형과 평행사변형의 각 변의 중점을 계속 해서 연결한 결과 생기는 사각형을 예로써 살펴본 뒤, 직사각형의 각 변 의 중점을 연결했을 때 생기는 어떤 사각형이 생기는지 '추측하기'를 요 구하는 문제이다. 또한 '비정형문제해결하기'를 요구하는 문제의 예를 살 펴보면 다음 [그림 $\mathrm{IV}-53$]과 같다.

[그림 IV-53] 사각형의 성질에 대한 '비정형문제해결하기' 문제의 예 (위: 교과서 A, 2012: 272, 아래: 교과서 D, 2012: 221)
[그림 $\mathrm{IV}-53$]의 위의 문제는 평행선과 넓이를 학습한 후 넓이가 같은 도형을 그려 논의 넓이를 변하지 않도록 경계선을 직선으로 바꾸도록 요 구하는 문제로 학생들에게 익숙하지 않은 상황의 문제이며 평행선과 넓 이 사이의 관계를 통해 추론을 요구하므로 '비정형문제해결하기'를 요구 하고 있다고 볼 수 있다. 또한 [그림 IV-53]의 아래의 문제는 놀이 기 구가 지면과 수평을 유지할 수 있는 이유를 평행사변형의 성질과 연결 지어 설명하도록 요구하는 문제로써 '비정형문제해결하기'를 요구하는 문제로 분석될 수 있다.

지금까지의 '사각형의 성질' 단원에서의 문제에 대한 분석 결과를 정리 하면, 문제의 수행에 대한 기대는 대체적으로 '기하학적 개념, 사실 알 기'의 비율이 높게 나타냈다. 그러나 '삼각형의 성질' 단원에 비해 '기하 학적 성질 추론하기'의 비율은 높게 나타남을 알 수 있었다. 이처럼 '기 하학적 성질 추론하기'의 비율이 높아진 것은 '삼각형의 성질' 단원에서 기하 추론을 경험한 학생들에게 추론의 기회를 더 제공하기 위함으로 해 석될 수 있다. '기하학적 개념, 사실 알기'를 요구하는 문제는 '계산하기' 와 '인식하기'의 문제가 가장 많이 나타났으며, 학습내용에 따라 '분류하 기'의 문제도 제시되어 있었다. '기하학적 성질 적용하기'의 문제는 '삼각 형의 성질' 단원과 유사하게 대부분 '정형문제해결하기'로 분석되었으며 교과서에 따라 '표현하기'와 '이행하기'를 요구하는 문제가 분석되었다. '기하학적 성질 추론하기'의 문제를 살펴보면 ‘삼각형의 성질' 단원과 유 사하게 '정당화하기’와 '종합하기'의 문제가 가장 많이 나타났고, '비정형 문제해결하기', '추측하기'의 문제도 분석되었으나 '일반화하기'의 문제는 나타나지 않음을 알 수 있다. '종합하기'의 문제는 여러 가지 사각형 사 이의 성질과 관계를 학습하는 부분에서 많이 나타나 학습한 사각형에 대 한 성질을 연결하여 추론을 요구하는 문제로 분석된 경우가 많았다. '정 당화하기'의 문제는 평행사변형과 사각형의 성질을 모두 예제로 다루지 않고 학생들이 직접 정당화해보도록 요구하는 형태로 많이 나타났으며, 교과서에 따라 간단한 설명을 요구하거나 형식적인 증명을 요구하는 등 기대하는 정당화의 유형에 차이가 있음을 알 수 있었다.

2.2. 정당화의 유형에 따른 교과서 분석결과

2.2.1. 탐구활동과 내용 설명

탐구활동과 정당화가 나타난 내용 설명에 대한 정당화의 유형 분석은 '삼각형의 성질' 단원과 동일하게 2 가지 관점에서 이루어졌다. 먼저 각

교과서에서 사용된 정당화의 유형 비율을 분석하였다. 그 후 13 종의 교 과서를 분석한 결과를 종합하여 학습내용에 따라 하나의 기하학적 성질 이 정당화되는 과정에서 사용된 정당화의 유형을 묶어서 정당화 과정에 서 사용된 정당화의 유형을 분석하였다.

먼저 각 교과서에서 사용된 정당화의 유형에 대한 비율을 살펴보면 다 음 [그림 IV-54]와 같다.

[그림 IV-54] 사각형의 성질에 대한 교과서별 정당화의 유형
분포(\%)
[그림 $\mathrm{IV}-54]$ 를 살펴보면 형식적•연역적 정당화가 정당화의 유형 중 가장 높은 비율로 나타나는 교과서는 8 종 (교과서 $\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}$, L)이며, 형식적•연역적 정당화와 경험적•귀납적 정당화의 비율이 같거 나 거의 비슷하게 나타는 교과서는 2 종 (교과서 A, M)이다. 또한 경험적 - 귀납적 정당화의 비율이 정당화의 유형 중 가장 높은 비율로 나타나는 교과서는 3 종(교과서 $\mathrm{C}, \mathrm{H}, \mathrm{K}$)으로 분석된다. 대부분의 교과서의 탐구 활동에서는 구체적 조작활동을 하도록 하거나 도형의 성질을 탐구할 수

있는 평범한 예를 통해 경험적•귀납적 정당화를 시도한다. 따라서 형식 적•연역적 정당화의 비율이 더 높게 나타난 교과서의 경우 그러한 탐구 활동 없이 바로 정당화한 내용이 하나 이상 존재함을 나타낸다. 상대적 으로 경험적•귀납적 정당화의 비율이 형식적•연역적 정당화보다 더 높 게 나타난 교과서는 탐구활동을 많이 포함하고 있거나 다른 교과서에서 활용하지 않은 예에 의한 정당화의 비율이 상대적으로 높게 나타났기 때 문이다. 실제로 경험적•귀납적 정당화의 비율이 가장 높은 교과서 C 는 탐구활동과 예제에서 모두 구체적 조작활동을 경험할 수 있도록 구성하 였으며, 교과서 H 와 교과서 K 는 다른 교과서에 비해 상대적으로 예에 의한 정당화를 활용한 비율이 높게 나타나 전체 사용된 정당화의 비율을 고려했을 때 경험적•귀납적 정당화의 비율이 가장 높게 나타났음을 볼 수 있다.
4개의 정당화 유형 중 형식적•연역적 정당화의 비율이 가장 높은 교 과서가 가장 많이 나타나며, 경험적•귀납적 정당화에서 형식적•연역적 정당화를 매개할 수 있는 중간 단계의 예에 의한 정당화와 준연역적 정 당화는 다른 유형에 비해 낮은 비율로 나타나고 있음을 알 수 있다. 특 히 예에 의한 정당화를 사용하지 않은 교과서는 5 종(교과서 A, E, F, I, L) 이다.

이제 학습내용에 따라 하나의 기하학적 성질이 정당화되는 과정에서 사용된 정당화의 유형을 결합하여 살펴보면 다음 <표 $\mathrm{IV}-6>$ 과 같다. 이는 13 종의 교과서에서 정당화가 나타난 부분을 분석하여 얻은 표로써 전체 교과서에서 정당화가 나타난 부분은 모두 120 개로 85 개로 분석되 었던 중단원 '삼각형의 성질'과 비교했을 때 더 많음을 알 수 있다.
<표 IV-6> 사각형의 성질에 대한 탐구활동과 내용 설명에서 사용 된 정당화의 유형

	사용된 정당화의 유형	횟수(회)	비율(\%)
1)		12	10
2)	경할먹 항슥하 귀벼직 정항탸 둠믹젹 졍도햐	41	34.2
3)	겅현혁 पपव도 도안 혈사직. 기넌헉 정명퐈 점혐피 면익혁 좀망혀	13	10.8
4)		11	9.2
5)		3	2.5
6)		3	2.5
7)	충혐이 좀함회 므억혁 훔밈휴	1	0.8
8)	준면푸풀	9	7.5
9)		8	6.7
10)		19	15.8
	합계	120	100

<표 IV-6>을 통해 살펴보면 경험적•귀납적 정당화와 형식적•연역 적 정당화를 사용하여 정당화한 것이 34.2% 로 가장 많았다. 또한 '삼각 형의 성질' 단원에서는 나타나지 않았던 형태가 있었는데, 이는 준연역 적 정당화만 사용한 형태와 경험적•귀납적 정당화와 준연역적 정당화를 사용한 형태, 그리고 4 가지의 정당화의 유형을 모두 사용한 형태이다.

이제 <표 IV-6>에 제시된 정당화의 유형을 경우에 따라 자세히 살펴 보면 다음과 같다.

1) 경험적•귀납적 정당화와 준연역적 정당화

경험적•귀납적 정당화와 준연역적 정당화가 함께 사용된 것은 '사각 형의 성질'에 대한 내용 중 정사각형의 성질과 평행선과 넓이 사이의 관 계에 대한 정당화에서였다.
먼저, 정사각형의 성질에 대해 2종의 교과서(교과서 C, F)에서 경험적 - 귀납적 정당화와 준연역적 정당화를 사용하였다. 이는 정사각형의 성 질은 학습한 직사각형의 성질과 마름모의 성질로부터 쉽게 유도되기 때 문에 간단한 논리적 설명을 이용하여 정당화함을 알 수 있다. 또한 평행 선과 넓이 사이의 관계에 대해 2 종의 교과서 (교과서 C, J)에서 이를 사 용하였다. 이는 직접 평행선 사이에 넓이가 같은 두 삼각형을 그려보고 이를 바탕으로 형식적 증명이 아닌 간단한 논리적 설명을 이용한 정당화 인 준연역적 정당화를 나타내고 있음을 알 수 있다. 이를 평행선과 넓이 사이의 관계에 대한 예를 통해 살펴보면 다음 <표 IV-7>과 같다.
<표 IV-7> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준 연역적 정당화의 예(교과서 $\mathrm{C}, 2012: 247$)

| 정당화 유형 | 교과서에 제시된 평행선과 넓이 사이의 관계에 대한 정당화 |
| :---: | :---: | :---: |

<표 $\mathrm{IV}-7>$ 을 통해 살펴보면 주어진 두 개의 삼각형의 넓이가 같은지 비교하기 위해 밑변과 높이의 길이를 비교하도록 한다. 그 후 평행선을 이용해 주어진 삼각형과 넓이가 같은 삼각형을 그려보도록 함으로써 평 행선을 이용하면 넓이가 같은 다른 모양의 삼각형으로 변형할 수 있다는 것을 경험적•귀납적 정당화를 함을 알 수 있다. 그 후 형식적 증명이 아닌 간단한 논리적 설명을 이용하여 준연역적 정당화를 하고 있음을 알 수 있다. 이와 비슷하게 평행선과 넓이 사이의 관계에 대해 준연역적 정 당화가 나타는 다른 예를 살펴보면 다음 [그림 $\mathrm{IV}-55$]와 같다.

```
오르ᄂ쪼ᄀ 그리ᄆᄋ|서 두 지ᄀ서ᄂ }l,m\mathrm{ 이 펴ᄋ햐ᄋ하ᄅ
ᄄ). }\triangle\textrm{ABC}\mathrm{ 와 }\triangle\mp@subsup{\textrm{A}}{}{\prime}\textrm{BC}\mathrm{ 의 너ᄡ이르ᄅ 비교하여
보자.
    두 사ᄆ자ᄀ혀ᄋ의 미ᄂ벼ᄂ의 기ᄅ이느ᄂ 가ᄐ고, 지ᄀ서ᄂ }l\mathrm{ 위
의 어느 저ᄋ으ᄅ 자ᄇ아도 노ᄑ이가 자ᄐ으ᄆ로 두 사ᄆ
가ᄀ혀ᄋ의 녊이느ᄂ 가ᄡ다.
    따라서 }\triangle\textrm{ABC}=\triangle\mp@subsup{\textrm{A}}{}{\prime}\textrm{BC}\mathrm{ 이다.
```

[그림 IV-55] 사각형의 성질에 대한 준연역적 정당화가 사용된 예(교과서 $\mathrm{H}, 2012: 246$)
[그림 IV-55]를 살펴보면, <표 IV-7>에서 사용된 준연역적 정당화 와 같이 논리적 설명을 이용하고 있음을 알 수 있다. 그러나 <표 IV $-7>$ 에서 사용된 준연역적 정당화에서는 정당화 과정에서 직사각형의 대변의 성질을 이용한 것에 비해 [그림 $\mathrm{IV}-56$]에서는 밑변과 높이의 길 이가 같음을 이용해 보다 쉽게 논리적 설명을 이끌어나가고 있음을 알 수 있다.
2) 경험적•귀납적 정당화와 형식적•연역적 정당화

경험적•귀납적 정당화와 형식적•연역적 정당화가 사용된 것을 '사각 형의 성질'에 대한 학습내용중심으로 살펴보면 다음과 같다.
평행사변형의 대변에 대한 성질에서는 11 종의 교과서(교과서 A, B, C, D, E, F, G, I, J, L, M)에서, 평행사변형의 대각에 대한 성질에서는 1 종(교과서 G)에서, 평행사변형의 대각선에 대한 성질은 1 종(교과서 A) 에서 경험적•귀납적 정당화와 형식적•연역적 정당화가 사용되었다. 이 는 평행사변형을 직접 만들어보고 이를 통해 평행사변형의 성질을 경험 적•귀납적 정당화를 한 후 형식적 증명 형태로 정당화하는 형식적•연 역적 정당화를 하는 형태로 나타나 이는 이전 탐구활동을 활용하여 정당 화하는 '삼각형의 성질' 단원과 유사한 성격을 나타냄을 알 수 있다.
평행사변형이 될 조건에 대해서는 대변과 관련된 조건에서는 7종의 교 과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{I}, \mathrm{M}$)에서, 대각선과 관련된 조건에서는 2

종의 교과서(교과서 A, C)에서 분석되었다.
직사각형의 성질에 대해서는 12 종의 교과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서, 마름모의 성질에 대해서는 7 종의 교과서(교과서 B , $\mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{G}, \mathrm{J}, \mathrm{M})$ 에서 경험적•귀납적 정당화와 형식적•연역적 정당 화가 사용되었다. 마찬가지로 구체적 조작활동을 통한 정당화를 하거나 평범한 예를 통한 경험적•귀납적 정당화를 한 후 이를 다시 형식적 증 명 형태의 형식적•연역적 정당화를 하는 형태로 나타남을 알 수 있다.
3) 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화는 2)의 경험적•귀납적 정당화와 형식적•연역적 정당화의 형태에 시각적 예를 이용한 예에 의한 정당화를 추가로 더 사용한 경우에 해당한다. 이 는 교과서 H 와 교과서 K 에서 나타났는데 '사각형의 성질' 중 평행사변 형의 성질에 대해서는 대변에 대한 성질과 대변의 성질에 대해 평행사변 형이 될 조건에서 이러한 형태의 정당화가 사용되었다. 이를 구체적으로 평행사변형의 대변에 대한 성질에서 살펴보면 다음 <표 IV-8>과 같다.
<표 IV-8> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 K, 2012: 268)

정당화 유형	교과서에 제시된 평행사변형의 성질에 대한 정당화
경험적. 귀납적 정당화	다음 순서예 따라 홀동을 혀 보고, 훌음에 담하여라. 0 셕총이 2 장율 건혀 눌고, 삼각헝을 그린 후 자른다. (2) 두 삼가행에서 크기가 같은 두 각을 찾아 표시한다. (3) 두 심각형의 길이가 갈은 변끼리 앗대어 사각형 ABCD 를 만토다. (1) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ 와 길이가 갑은 선분을 맡하여라. (2) 사각형 ABCD 유서 $\overline{\mathrm{AB}} / \overline{\mathrm{DC}}, \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ 인 이유를 각가 말하여라. (3) (1), (2)의 정라률 이용하여 졍햫사변형이 되는 조전을 수측하여라. 함구하기에서 두 쌍의 대변의 길이가 각각 같은 사각형은 평형사변형임을 추측 할 수 있다. 이 추책이 함상 옳은지 확인해 보자.
$\begin{gathered} \text { 예에 의한 } \\ \text { 정당화 } \end{gathered}$	
형식적. 연역적 정당화	그뼙의 $\overline{\mathrm{AB}}=\overline{\mathrm{DC}}, \overline{\mathrm{AD}}=\overline{\mathrm{BC}}$ 임 $\square \mathrm{ABCD}$ 에서 $\overline{\mathrm{AB}} / \overline{\mathrm{DC}}, \overline{\mathrm{AD}} / \overline{\mathrm{BC}}$ 이시 설둥하이 보가. 매각신 AC 를 그으면 $\triangle \mathrm{ABC}$ 와 $\triangle \mathrm{CDA}$ 에세 $\begin{array}{ll} \overline{\mathrm{AB}}=\overline{\mathrm{CD}} & \cdots \cdots(1) \\ \overline{\mathrm{BC}}=\overline{\mathrm{DA}} & \cdots \cdots(\mathbb{C l} \\ \overline{\mathrm{AC}} \text { 는 공훙인 변 } & \cdots \cdots \cdot(1) \end{array}$ (1). (3). (2)에 왁하여 $\triangle \mathrm{ABC}=\triangle \mathrm{CDA}$ (SSS 함둥) 이다. 따라서 $\begin{equation*} \angle \mathrm{BAC}=\angle \mathrm{DCA} \text { (엿가)이으포 } \overline{\mathrm{AB}} / \overline{\mathrm{DC}} \tag{4} \end{equation*}$ $\angle \mathrm{BCA}=\angle \mathrm{DAC}$ (핫ㄱㄱ)이므르 $\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ (3). (9)에 외하여 $\square A B C D$ 는 평형사밴형이다.

<표 IV-8>을 살펴보면 경험적•귀납적 정당화와 형식적•연역적 정당 화 사이에 시각적 예를 이용해 정당화 과정을 설명하는 예에 의한 정당 화가 포함되어 있음을 알 수 있다.
4) 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용된 것을 ‘사각형의 성질'에 대한 학습내용을 중심으로 살펴보면 다 음과 같다.
평행사변형의 성질에 대해서는 대각에 대한 성질에서 교과서 5 종 (교과 서 $\mathrm{C}, \mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{M}$)이 이러한 형태로 사용하였다. 또한 평행사변형이 될 조건에 대해 대각에 대한 성질에서도 교과서 3 종 (교과서 $\mathrm{B}, \mathrm{C}, \mathrm{J}$)에서 이러한 형태가 나타났다. 마지막으로 마름모에 대한 성질에서도 교과서 2 종(교과서 I, L)에서 마찬가지의 형태를 확인할 수 있었다. 이러한 경 우 모두 형식적•연역적 정당화 과정에서 각의 크기에 대한 식의 조작이 나타닜는데, 이를 구체적으로 살펴보면 <표 IV-9>와 같다.
<표 IV-9> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준 연역적 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{C}, 2012: 235$)

정당화 유형	교과서에 제시된 평행사변형이 될 조건에 대한 정당화
경험적• 귀납적 정당화	 $\angle \mathrm{A}=\angle \mathrm{C}=100^{\circ}$ 이고 $\angle \mathrm{B}=\angle \mathrm{D}=80^{\circ}$ 가 보도푹 제 으 고경훋․ 앗다.
준연역적 정당화, 형식적. 연역적 정당화	 $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}-360^{\circ}$ 이으르 다응이 섬뀬한다. $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ $\cdots \cdots(1)$ BA 여 연장선여 죄 E 륭 잠으몀 다윰이 성ㅎㅎ흰다. $\angle \mathrm{DAB}+\angle \mathrm{DAE}=180^{\circ}$ (1)가 (2)에 외해 $\angle \mathrm{B}=\angle \mathrm{DAE}$ 이다. 이대 둥휘가읙 크기가 잘으롤 $\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ 이고, 간은 낭빕으소 $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$ 이다. 따라써 ㅁ ABCD 는 두 쌍의 더떤이 학가 폄형하므르 졍형사변형이다.

<표 IV-9>는 대각에 대한 평행사변형이 될 조건에 대한 정당화 과정 을 나타내고 있다. 먼저 종이띠를 이용하여 두 쌍의 대각의 크기가 같도 록 사각형을 만들어보고 이를 통해 두 쌍의 대각의 크기가 같은 사각형 이 평행사변형임을 경험적•귀납적 정당화를 한다. 그 후 이는 동위각의 성질을 이용해서도 설명할 수 있음을 제시하여 형식적•연역적 정당화와 연결한다. 이를 통해 구체적 조작활동을 통해 얻은 추측으로 정당화한 경험적•귀납적 정당화와는 다른 방법인 형식적•연역적 정당화를 제시 하고자 함을 알 수 있다. 준연역적 정당화 과정을 살펴보면 사각형의 내 각의 합과 동위각의 성질이 사용되고 있음을 알 수 있으며, 정당화 과정 에서 식의 조작이 나타나므로 이는 준연역적 정당화에 해당된다. 또한 정당화 과정을 교과서 왼쪽에 그림을 통해 제시함으로써 학생들의 정당 화과정을 돕고자 함을 알 수 있다.
위에서 살펴본 평행사변형이 될 조건에 대한 정당화를 살펴보면 13 종 의 모든 교과서에서 식의 조작을 이용한 준연역적 정당화를 포함하고 있 음을 알 수 있다. 이에 비해 평행사변형의 대각에 대한 성질과 마름모의 성질에 대해서는 식의 조작을 이용하지 않아 준연역적 정당화 과정이 제 외되어 있는 경우가 있었다. 평행사변형의 대각에 대한 성질을 이용해 이를 비교해보면 다음 [그림 IV-56]과 같다.

[그림 $\mathrm{IV}-56$] 평행사변형의 성질에 대한 정당화 과정 비교
(왼쪽: 교과서 L, 2012: 249, 250; 오른쪽: 교과서 G, 2012: 194)
[그림 IV-56]을 살펴보면, 왼쪽과 오른쪽에 제시된 정당화 과정 모두 평행사변형의 대각에 대한 성질을 대변에 대한 성질과 함께 정당화하고 있다. 그러나 왼쪽에 제시되어있는 정당화 과정은 오른쪽에 제시된 정당 화 과정에 비해 $\angle \mathrm{A}=\angle \mathrm{C}$ 임을 보이기 위해 보다 구체적으로 식의 조작 을 이용한 준연역적 정당화 과정을 사용하고 있음을 알 수 있다. 따라서 학습내용에 따라 식의 조작이 꼭 필요한 경우도 있지만 위와 같이 정당 화과정을 보다 자세히 설명하기 위해 식의 조작을 이용하여 준연역적 정 당화를 사용하고 있는 경우도 있음을 알 수 있다.
5) 경험적•귀납적 정당화와 예에 의한 정당화, 준연역적 정당화, 형 식적•연역적 정당화
경험적•귀납적 정당화와 예에 의한 정당화, 준연역적 정당화, 형식적 - 연역적 정당화는 4 가지의 정당화 유형이 모두 사용된 형태로써 앞에 서 살펴본 4) 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역 적 정당화의 형태에 시각적 예를 이용한 예에 의한 정당화가 포함된 것 으로 볼 수 있다. 보다 구체적으로 살펴보면 평행사변형의 대각에 대한 성질에서는 교과서 2 종(교과서 H, K)에서, 대각에 대한 평행사변형이 될 조건에서는 교과서 H 에서 사용되었다. 이 중 평행사변형의 대각에 대한 성질에 대해 교과서 H 에 제시된 정당화 유형을 살펴보면 다음 <표 IV-10> 과 같다.
<표 $\mathrm{IV}-10$ > 사각형의 성질에 사용된 경험적•귀납적 정당화와 준연 역적 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{H}, 2012$: 233)

정당화 유형	교과서에 제시된 평행사변형이 될 조건에 대한 정당화
경험적• 귀납적 정당화	오른족 그렴과 같은 평행자 위의 평형사변형 ABCD 에서 다음을 비교하여라. $1 \overline{\mathrm{AB}}$ 와 $\overline{\mathrm{CD}}, \overline{\mathrm{BC}}$ 와 $\overline{\mathrm{DA}}$ 의 길이를 경퍼스를 이옹하여 가각 비교하여라. $2 \angle \mathrm{~A}$ 와 $\angle \mathrm{C}, \angle \mathrm{B}$ 와 $\angle \mathrm{D}$ 의 크기를 각도가불 이용하여 각 각 비교하여라. 위여 개넘 열기역 평훙사변흉 ABCD 예서 $\begin{aligned} & \overline{\mathrm{AB}}=\overline{\mathrm{CD}}, \quad \mathrm{BC}=\overline{\mathrm{DA}}, \\ & \angle \mathrm{~A}=\angle \mathrm{C}, \quad \angle \mathrm{~B}=\angle \mathrm{D} \end{aligned}$ 입음 알 수 힜다.
예에 의한 정당화	
준연역적 정당화, 형식적. 연역적 정당화	 $\triangle \mathrm{ABC}$ \& $\triangle \mathrm{CDA}$ 어 $4 \overline{\mathrm{AB}} / \overline{\mathrm{CD}}$ 이으료 $\angle \mathrm{BAC}=\angle \mathrm{DCA}\left(\mathrm{K}_{2}\right) \quad \cdots \cdots($ (1) $\overline{\mathrm{KD}} \mathrm{F}$ EC이으로 바레세 $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}, \overline{\mathrm{BC}}-\overline{\mathrm{DA}}, \angle \mathrm{B}=\angle \mathrm{D}$ 이 4 . $\begin{aligned} & \text { x1 ©. ©PD 외항 } \\ & \angle \mathrm{A}-\angle \mathrm{BAC}+\angle \mathrm{CAD} \\ & =\angle \mathrm{DCA}+\angle \mathrm{ACB} \end{aligned}$

<표 $\mathrm{IV}-10>$ 을 살펴보면 실생활맥락에서 평행사변형을 볼 수 있는 평 행자를 통해 경험적•귀납적 정당화를 하고 있음을 알 수 있다. 이를 바 탕으로 '이 성질이 항상 성립하는지 알아보자'라는 문장을 이용해 연역 적 정당화로 연결하고 있음을 알 수 있다. 연역적 정당화로 연결하면서 시각적인 예를 이용해 예에 의한 정당화를 사용한다. 또한 다른 교과서 에서는 '같은 방법으로 나머지 한 쌍의 대각의 크기가 같다'라고 제시하 고 정당화를 마무리하는 반면 위의 정당화과정의 마지막 부분에서 한 쌍

의 대각의 크기가 같음을 보이기 위해 식의 조작을 이용한 준연역적 정 당화를 사용하고 있음을 알 수 있다.
6) 예에 의한 정당화와 형식적•연역적 정당화

평행사변형의 대각선에 대한 성질의 정당화를 살펴보면 교과서 3 종(교 과서 $\mathrm{D}, \mathrm{G}, \mathrm{J}$)에서 예에 의한 정당화와 형식적•연역적 정당화가 분석되 었다. 이를 형식적•연역적 정당화만 사용한 것과 비교해보면 다음 [그 림 $I V-57]$ 과 같다.


```
    AC}\mathrm{ 와 BD,여 료펴ᄆ유ᄋ O혀ᄅ 하뮤 }\triangle\textrm{AOB}\mathrm{ 와 }\triangle\textrm{COD}\mathrm{ 여
    A| (\overline{AB}}/\overline{\textrm{DC}}\mathrm{ ᄋ|므로 다유ᄆ이 서ᄋ려ᄅ혀ᄋ다.
        \angleABO}=\angle\textrm{CDO}(\stackrel{\circ}{|
        \angleBAO}=\angle\textrm{DCO}(%\mathrm{ (%)㘯)
```



```
\triangleAOB=\triangleCOD이다. 그러므로 다여ᄇ이 서ᄋ댜ᄆtᅡ다.
    \overline { O A } = \overline { O C } , \overline { O B } = \overline { O D }
```



```
    펴ᄋ혀ᄋ사버ᄂ혀ᄋ의 두 대가서ᄂ으ᄂ 서로류ᄆ 이므ᄆ무ᄂ혀ᄂ으ᄅ 서ᄅ펴ᄋ히여ᄅ.
0 푸ᄅᄋ| 펴ᄋ해ᄋ사벼ᄂ혀ᄋ }\textrm{ABCD}\mathrm{ ᄋ|서 두 디가ᄀ서ᄂ
    AC
        AO}=\overline{CO},\overline{BO}=\overline{\textrm{DO}
    외ᄆ유ᄅ 서ᄅ며ᄋ하며ᄂ 쾨ᄂ다.
    \triangleABO}\mathrm{ 와 }\triangle\textrm{CDO}\mathrm{ 어서
        \angleABO}=\angle\textrm{CDO
        \angleBAO}=\angle\textrm{DCO}\quad.....-($
    사자ᄀ회ᄒ }\textrm{ABCD}\mathrm{ 느ᄂ 며ᄋ히ᄋ사벼ᄂ혀ᄋ이므로
        \overline{AB}}=\overline{\textrm{CD}}\quad=\cdots\cdots(8
    (1), (2), (8) 으로부터 }\triangle\textrm{ABO}=\triangle\textrm{CDO}\mathrm{ 이으로 }\overline{\textrm{AO}}=\overline{\textrm{CO}},\overline{\textrm{BO}}=\overline{\textrm{DO}}\mathrm{ 이다
    따라씨 켜ᄋ쳐ᄋ사벼ᄋ휘ᄋ여 두 대하ᄀ서ᄂ으ᄂ 서료.ᅭᅲ 이두ᄋ부ᄂ하ᄂ다.
```

[그림 IV-57] 평행사변형의 성질에 대한
정당화 유형의 예(위: 교과서 C, 2012:
236 ; 아래: 교과서 B, 2012: 215)
[그림IV-57]을 살펴보면 두 개의 정당화 모두 평행사변형의 두 대각선 이 서로를 이등분함을 설명하고 있다. 그러나 위의 정당화 과정을 살펴

보면 시각적인 예를 이용하여 예를 이용한 정당화를 사용하고 있는 반 면, 같은 내용을 정당화하고 있지만 아래에 제시된 정당화에서는 형식적 - 연역적 정당화만 사용하고 있음을 알 수 있다. 따라서 아래에 제시된 정당화보다 위에 제시된 정당화를 학생들이 보다 쉽게 이해할 것으로 생 각 된다.
7) 예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화

교과서 K 에서 대각에 대한 평행사변형이 될 조건의 정당화를 하기 위 해 예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용 되었다. 대각에 대한 평행사변형이 될 조건의 정당화는 6 종의 교과서(교 과서 $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{L}$)에서 준연역적 정당화와 형식적•연역적 정당화 를 사용하였다. 이에 비해 8)에서는 시각적 예를 추가하여 예에 의한 정 당화로 정당화 과정을 매개하고 있음을 알 수 있다. 이를 예를 통해 살 펴보면 다음 <표 IV-11>과 같다.
<표 IV-11> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{K}, 2012: 269$)

정당화 유형	교과서에 제시 된 평행사변형이 될 조건에 대한 정당화
예에 의한	
정당화	

<표 IV-11>을 살펴보면, 먼저 시각적인 예를 이용하여 두 쌍의 대 각의 크기가 같은 사각형이 평행사변형임을 보이고 있다. 따라서 예에 의한 정당화를 사용하고 있음을 알 수 있고, 사각형의 내각의 합과 주어 진 조건에 의해 (1)을 보이는 과정에서 준연역적 정당화가 사용되었으며, 이를 바탕으로 형식적 - 연역적 정당화가 나타남을 알 수 있다.
8) 준연역적 정당화

중단원 '삼각형의 성질’과 다르게 형식적•연역적 정당화까지 정당화하 지 않고 준연역적 정당화만 나타난 경우가 분석되었다. 이는 1)에서 살 펴봤던 경험적•귀납적 정당화와 준연역적 정당화와 동일하게 정사각형 의 성질과 평행선과 넓이 사이의 관계에서 분석되었으며 1)의 과정에서 경험적•귀납적 정당화 과정을 제외하고 논리적 설명을 이용한 준연역적 정당화 과정은 동일하게 나타났다.
9) 준연역적 정당화와 형식적-연역적 정당화
'사각형의 성질' 단원에 대한 내용을 중심으로 살펴보면 대각에 대한 평행사변형이 될 조건에 대해 교과서 6 종 (교과서 $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{L}$)에 서, 마름모가 될 조건에 대한 예제를 다루는 데 있어 교과서 M 에서 준 연역적 정당화와 형식적•연역적 정당화를 사용한 형태가 분석되었다.
10) 형식적•연역적 정당화
'사각형의 성질' 단원에 대한 내용을 중심으로 살펴보면 평행사변형의 대각선에 대한 성질에 대해 교과서 4 종 (교과서 $\mathrm{B}, \mathrm{F}, \mathrm{I}, \mathrm{L}$)에서, 대변과 관련된 평행사변형이 될 조건에 대해 교과서 3 종(교과서 $\mathrm{B}, \mathrm{F}, \mathrm{L}$)에서, 대각선과 관련된 평행사변형이 될 조건에 대해 교과서 1 종(교과서 M), 마름모의 성질에 대해 교과서 E 에서, 등변사다리꼴의 성질에 대해 교과 서 6 종(교과서 $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{I}$)에서 정당화 과정에 형식적-연역적 정 당화만 사용되었다. 또한 모든 교과서에서 공통적으로 다루고 있지 않은

마름모가 될 조건이나 평행사변형의 성질을 활용하여 형식적•연역적 정 당화를 요구하는 예제도 교과서 5 종 $(\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{F}, \mathrm{J})$ 에서 각각 1문제씩 분석되었다.

2.2.2. 문제

'정당화하기'를 요구하는 문제의 정당화의 유형을 분석한 결과 '경험적 - 귀납적 정당화'와 '예에 의한 정당화'는 전체 교과서 중 1 종(교과서 B)에서 분석되었고, 그 외의 교과서에서는 나타나지 않았다. 이에 전체 '정당화하기'를 요구하는 문제에 대한 '준연역적 정당화'와 '형식적•연역 적 정당화'의 비율에 대한 분포를 살펴보면 다음 [그림 IV-58] 과 같다.

[그림 IV-58] 사각형의 성질에 대한 '정당화하기'의 문제에 대한 정당화 유형 비율(\%)
[그림 $\mathrm{IV}-58$]을 통해 살펴보면 형식적-연역적 정당화의 비율이 준연 역적 정당화의 비율보다 높게 나타나는 교과서는 모두 10 종으로 교과서

G 와 교과서 M 을 제외한 나머지 교과서에 해당된다.
먼저, 준연역적 정당화를 요구하는 문제를 살펴보면 식의 조작을 이용 한 준연역적 정당화와 논리적 설명을 이용한 준연역적 정당화가 모두 분 석되었다. 먼저 논리적 설명을 이용한 준연역적 정당화를 요구하는 문제 를 살펴보면 [그림 IV-59]와 [그림 IV-60]과 같다.

```
S요녀ᅮᄋ 그히ᄆ여ᄀ पABCD에서 져ᄇ O
BD의 표저ᄆ이고,
    OA}=\overline{OC},\overline{OB}=\overline{OD
```


<풀이>
(1) $\overline{\mathrm{DC}}, \overline{\mathrm{BC}}$
(1) $\overline{\mathrm{DC}}, \overline{\mathrm{BC}}$
(2) 여시 두 쌍의 대변의 길이가 각각 같으 므로
$\square \mathrm{ABCD}$ 는 경행사변형이다.
[그림 IV-59] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 G, 2012: 197)

위의 [그림 IV-59]는 두 대각선이 서로 이등분될 때 평행사변형이 됨 을 정당화하도록 요구하는 문제이다. 이에 대한 풀이를 살펴보면 형식적 - 연역적 정당화를 요구하는 대신, 두 쌍의 대변의 길이가 같음을 이용 해 논리적 설명을 하고 있음을 볼 수 있다. 따라서 이 문제는 논리적 설 명을 이용한 준연역적 정당화를 요구하는 문제로 분석될 수 있다. 또한 [그림 IV-60]도 논리적 설명을 이용한 준연역적 정당화를 요구하는 문 제인데 자세히 살펴보면 다음 [그림 IV-60]과 같다.

[그림 IV-60] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 F, 2012: 267)
[그림 IV-60]은 두 대각선의 길이가 같고, 서로 다른 것을 수직이등 분하는 사각형이 정사각형임을 정당화하도록 요구하는 문제이다. 이에 대한 풀이를 살펴보면, 직사각형과 마름모의 성질을 연결해 정사각형임 을 정당화하고 있는데 이는 논리적 설명을 이용한 준연역적 정당화로 분 석된다.
이제 식의 조작을 이용한 준연역적 정당화를 살펴보면 [그림 IV-61] 과 [그림 IV-62]와 같다. 먼저 [그림 IV-61]을 살펴보면 다음과 같다.

03 오른쪽 그림과 갆은 병 챔사변형 ABCD 의 두 대작선 AC, BD 위에 $\overline{\mathrm{AP}}=\overline{\mathrm{CR}}, \overline{\mathrm{BQ}}=\overline{\mathrm{DS}}$ 가 되도록 네 점 $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ 를 정하면 $\square \mathrm{PQRS}$ 는 평행사변형입을 설명하여라.	03 앤ㄱㄱ) $\square \mathrm{ABCD}$ 는 평혐사변형이므로 $\overline{\mathrm{OA}}=\overline{\mathrm{OC}}, \overline{\mathrm{OB}}=\overline{\mathrm{OD}}$ 이때, $\overline{\mathrm{AP}}=\overline{\mathrm{CR}}, \overline{\mathrm{BQ}}=\overline{\mathrm{DS}}$ 이므로 $\begin{aligned} & \overline{\mathrm{OP}}=\overline{\mathrm{OA}}-\overline{\mathrm{AP}}=\overline{\mathrm{OC}}-\overline{\mathrm{CR}}=\overline{\mathrm{OR}} \\ & \overline{\mathrm{OQ}}=\overline{\mathrm{OB}}-\overline{\mathrm{BQ}}=\overline{\mathrm{OD}}-\overline{\mathrm{DS}}=\overline{\mathrm{OS}} \end{aligned}$ 따라서 $\square \mathrm{PQRS}$ 는 두 대각성이 서로 다른 것을 이 등분하므로 평혱사변형이다.

[그림 IV-61] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 M, 2012: 285)
[그림 IV-61]은 주어진 조건을 이용해 $\square \mathrm{PQRS}$ 가 평행사변형임을 보 이도록 정당화하는 문제이다. 풀이를 살펴보면 평행사변형의 성질과 식 의 조작을 통해 정당화하고 있음을 알 수 있어 식의 조작을 이용한 준연 역적 정당화를 요구하는 문제로 볼 수 있다. 또 다른 예로 [그림 IV -62]를 살펴보면 다음과 같다.

[그림 IV-62] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 E, 2012: 266)
[그림 IV-62]는 두 정사각형의 겹쳐진 부분의 넓이가 항상 일정함을 정당화하도록 요구하는 문제이다. 풀이를 살펴보면 겹쳐지는 부분을 3 가 지의 경우로 나눈 뒤 이를 각에 대한 식과 넓이에 대한 식을 만들어 식 의 조작을 통한 정당화를 시도하고 있음을 알 수 있다. 또한 형식적-연 역적 정당화를 요구하는 문제의 예는 다음 [그림 IV-63]과 같다.

12 다음 그림과 같은 평행사변형 ABCD 애서 $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ 의 중점을 각각 $\mathrm{E}, \mathrm{F}, \mathrm{G}$, H 라고 할 때, 물응에 답하여라. (1) $\triangle \mathrm{AEH}=\triangle \mathrm{CGF}, \triangle \mathrm{EBF}=\triangle \mathrm{GDH}$ 임 을설명하여라. \|4셤)	12 $\begin{align*} & \text { (1) } \triangle \mathrm{AEH} \text { 와 } \triangle \mathrm{CGF} \text { 에서 } \\ & \overline{\mathrm{AE}}=\overline{\mathrm{CG}}, \angle \mathrm{HAE}=\angle \mathrm{FCG}, \\ & \overline{\mathrm{AH}}=\overline{\mathrm{CF}} \tag{i} \end{align*}$ 이므로 $\triangle \mathrm{AEH}=\triangle \mathrm{CGF}$ (SAS 함동) $\triangle \mathrm{EBF}$ 와 $\triangle \mathrm{GDH}$ 에서 $\begin{aligned} & \overline{\mathrm{EB}}=\overline{\mathrm{GD}}, \angle \mathrm{EBF}=\angle \mathrm{GDH}, \\ & \overline{\mathrm{BF}}=\overline{\mathrm{DH}} \end{aligned}$ 이므로 $\triangle \mathrm{EBF}=\triangle \mathrm{GDH}$ (SAS 함동)

[그림 IV-63] 사각형의 성질에 대한 형식적•연역적 정당화를 요구하는 문제의 예(교과서 $\mathrm{H}, 2012: 257$)
[그림 IV-63]은 삼각형이 합동임을 정당화하도록 요구하는 문제이다. 이에 대한 풀이를 살펴보면 삼각형의 합동조건을 이용해 정당화하고 있 으므로 이는 형식적 증명의 형태를 띤 정당화로 볼 수 있다. 따라서 이 문제는 형식적 - 연역적 정당화를 요구하는 문제로 분석된다.

V. 결론 및 논의

1. 요약 및 결론

중학교 기하영역은 학생의 추론 능력 개발에 적합한 소재를 많이 담고 있으며, 우리나라의 기하영역에서의 학습은 도형을 탐구하여 기하학적 성질을 이해하고 이를 통해 추론능력을 신장시키는 것을 목표로 한다(황 선욱 외, 2011). 그러나 학생들은 기하영역에서의 증명을 학습하는 데 있어 많은 어려움을 느끼며 기하영역에서의 추론을 의미 있게 경험하지 못하고 있다.
이에 따라 2009 개정 교육과정에서는 기하 지식의 습득 방법에 있어 형식적 증명보다는 학생들의 추측활동과 경험적 지식에 바탕을 둔 정당 화를 강조하고 있다(신이섭 외, 2011). 이와 같이 형식적인 증명을 약화 시키고 정당화를 강화시키고자하는 교육과정의 변화는 구체적인 방안의 부재와 기하 교육의 중요한 목표인 논리 연역적 사고의 약화에 대한 우 려로 많은 논쟁이 있어왔다. 이에 2009 개정 교육과정의 기하영역의 성 취기준을 '증명할 수 있다'를 대신하여 정당화의 의미를 포함하고 있는 '이해하고 설명할 수 있다'로 서술하고 있으며, 교육과정의 순탄한 이행 을 위해 정당화의 의미에 대한 논의가 필요하다는 주장이 있었다(박교 식, 권석일, 2012). 이와 비슷한 맥락에서 이러한 교육과정의 변화에 따 라 개발된 교과서에 구현된 정당화의 의미에 대하여 살펴볼 필요가 있 다. 또한 정당화되는 과정을 함께 분석하기 위해 추론과 정당화의 관점 에서 교과서가 어떻게 구현되었는지 살펴볼 필요가 있다. 따라서 이 연 구에서는 2009 개정 교육과정에 따라 개발된 중학교 2학년 수학교과서 의 기하영역이 추론과 정당화의 관점에서 어떻게 구현되었는지 살펴보는 것을 목적으로 하였다. 이에 이 연구의 연구 목적을 달성하기 위하여 다 음과 같이 연구문제를 설정하였다.

첫째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역의 탐구활동과 문제는 학생들에게 추론의 기회를 어떻게 제공하는가?

둘째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역에서 사용된 정당화의 유형은 어떠한가?

연구문제를 해결하기 위하여 2009 개정 교육과정에 따라 개발된 13종 의 중학교 2 학년 수학 교과서의 기하영역 중 최초로 증명이 약화되고 정당화가 도입된 '삼각형의 성질' 단원과 '사각형의 성질' 단원을 대상으 로 교과서 분석을 실시하였다. 교과서를 분석하기 위해 '기하학적 개념, 사실 알기', '기하학적 성질 적용하기', '기하학적 성질 추론하기'와 같이 학생들에게 요구되는 수행에 대한 기대를 분석할 수 있는 분석틀과 정당 화의 유형을 분석할 수 있는 분석틀을 마련하였다. 이에 따라 얻은 결과 를 요약하면 다음과 같다.
[연구문제 1]에서는 탐구활동과 문제를 분석한 결과, 두 단원 모두에 서 '기하학적 성질 추론하기'의 비율은 '기하학적 개념, 사실 알기'와 '기 하학적 성질 적용하기'의 비율에 비해 낮게 나타났다.
먼저 탐구활동에 대해 살펴보면, '삼각형의 성질' 단원과 '사각형의 성 질' 단원은 탐구활동은 평균적으로 5개의 탐구활동이 제시되어 있었고 각 탐구활동마다 $2 \sim 3$ 개 정도의 질문이 포함되어 있어 각 교과서마다 탐 구활동의 개수 측면에 있어 큰 차이를 보이지 않았다. 탐구활동의 질문 에 대한 수행에 대한 기대를 살펴보면 두 단원 모두 '기하학적 개념, 사 실 알기', '기하학적 성질 적용하기', '기하학적 성질 추론하기' 중 대체적 으로 '기하학적 개념, 사실 알기'를 요구하는 질문이 가장 많았다. '기하 학적 성질 추론하기'를 요구하는 질문은 '삼각형의 성질' 단원에 비해 ‘사각형의 성질' 단원에서 더 많이 포함하고 있었다. 이를 통해 '삼각형 의 성질’ 단원에서 추론과 정당화를 접하고 난 후 ‘사각형의 성질’ 단원 에서 추론과 정당화의 기회를 더 많이 제공하고자 함을 알 수 있다.
'기하학적 성질 추론하기'의 질문 중에는 '추측하기'와 '정당화하기'의 질문이 가장 많이 분석되었다. '추측하기'의 질문은 학습할 내용을 직접 적으로 확인하는 것이 아니라 탐구활동을 통해 경험한 것을 바탕으로 도 형의 성질을 생각해보도록 하기 위해 제시되었으며, '정당화하기'의 질문 은 삼각형의 합동조건을 이용하여 주어진 두 직각삼각형의 합동을 설명 하는 질문과 같이 탐구활동에서 이전에 학습한 것을 이용해 정당화할 수 있는 내용일 경우 이에 대한 정당화를 요구하거나 탐구활동을 통해 얻은 결과를 설명해보도록 하기 위해 제시되었음을 알 수 있다. 또한 이러한 탐구활동의 추론과 정당화를 돕기 위한 요소로써 탐구활동에서 컴퓨터 프로그램을 활용한 예가 분석되었다. 이는 단순히 컴퓨터 프로그램을 활 용한 맥락을 제공하거나 컴퓨터 프로그램을 통해 변의 길이와 각의 크기 를 확인하는 것이 아닌 도형을 다양한 형태로 변화시켰을 때 변하는 것 과 변하지 않는 것을 관찰하여 이를 바탕으로 도형의 성질을 추측하도록 돕는 형태로 나타났다.
'삼각형의 성질’ 단원의 문제는 평균적으로 58 개 정도 제시되어 있었 고, '사각형의 성질' 단원의 문제는 평균적으로 68개 정도 제시되어 있었 다. 이는 교과서의 부록으로 추가 문제를 제시한 경우를 제외하고는 각 교과서별로 문제의 개수에는 큰 차이가 없었다. 이러한 문제의 수행에 대한 기대는 '삼각형의 성질' 단원에서는 모든 교과서에서, '사각형의 성 질' 단원에서는 12 종의 교과서에서 '기하학적 개념, 사실 알기'와 '기하 학적 성질 적용하기'의 비율의 합이 60% 이상으로 분석되어 상대적으로 '기하학적 성질 추론하기'의 비율은 낮게 나타남을 알 수 있었다.
'기하학적 성질 추론하기'의 문제를 살펴보면 '정당화하기'를 요구하는 문제가 가장 많이 나타났으며, '추측하기'의 문제도 분석되었다. 또한 탐 구활동의 질문에서는 나타나지 않았던 '비정형문제해결하기'와 '종합하 기'를 요구하는 문제가 분석되었다. 그러나 '일반화하기'를 요구하는 문 제는 두 단원 모두에서 분석되지 않았다. '추측하기'의 문제는 기본학습 을 끝낸 후 추가로 제시되는 활동 과제에서 분석되었는데 이는 탐구활동 의 '추측하기'와 유사한 목적으로 제시되어 있음을 알 수 있었다. '종합

하기'의 문제는 정당화 과정의 일부를 제시하고 이를 완성하도록 요구하 는 문제에서 주로 분석되었는데 이는 주어진 조건과 유도해야 하는 결과 에 대한 연결을 필요로 하는 문제임을 알 수 있었다. '정당화하기'의 문 제는 2009 개정 교육과정 이전의 '증명하여라'로 제시되었던 문제를 '설 명하여라'로 바꾸어 제시할 뿐 거의 증명과 동일한 수준을 요구하는 문 제가 대부분이었으나 정당화과정을 단계별로 해결하도록 요구하는 등 학 생들의 추론을 돕기 위해 고려한 요소들을 살펴볼 수 있었다. 또한 같은 내용을 묻는 문제이더라도 교과서에 따라 간단한 논리적 설명을 요구하 거나 형식적인 증명을 요구하는 등 학생들에게 요구하는 정당화의 유형 에 차이가 있음을 알 수 있었다.
[연구문제 2]에서는 탐구활동과 내용 설명에서 정당화가 나타난 부분 을 분석한 결과 두 단원 모두에서 형식적-연역적 정당화의 비율이 높게 나타났고, 경험적•귀납적 정당화로부터 형식적•연역적 정당화로 바로 유도되는 형태가 가장 높은 비율로 나타났다. 정당화하기'를 요구하는 문제의 정당화의 유형은 대부분 형식적-연역적 정당화의 수준까지 요구 하고 있었다.
먼저, 탐구활동과 내용 설명에서 사용된 정당화의 유형을 살펴보면, ‘삼각형의 성질' 단원에서는 모든 교과서에서 형식적•연역적 정당화의 비율이 가장 높게 나타났다. 이는 경험적•귀납적 정당화를 경험하도록 하는 탐구활동을 활용하지 않고 형식적-연역적 정당화를 시도하고 있는 교과서 내용 설명이 있음을 나타낸다. '사각형의 성질' 단원에서는 8 종의 교과서에서 형식적•연역적 정당화의 비율이 가장 높게 나타났고, 나머 지 교과서에서는 경험적•귀납적 정당화의 비율이 가장 높게 나타나거나 경험적•귀납적 정당화의 비율과 형식적•연역적 정당화의 비율이 비슷 하게 나타났다. 이는 대부분의 학습내용을 탐구활동을 이용해 경험적• 귀납적 정당화를 하고 이를 바탕으로 형식적•연역적 정당화를 시도하거 나 다른 교과서에 비해 예에 의한 정당화 또는 준연역적 정당화의 비율 이 높게 나타남에 따라 상대적으로 경험적•귀납적 정당화의 비율이 낮 아져 형식적•연역적 정당화의 비율과 비슷해진 것으로 분석되었다.

학습내용에 따라 하나의 기하학적 성질이 정당화되는 과정에서 사용된 정당화의 유형을 묶어서 분석한 결과, 두 단원 모두에서 경험적•귀납적 정당화와 형식적•연역적 정당화를 함께 사용된 형태가 가장 높은 비율 을 차지하였다. 또한 '삼각형의 성질’ 단원에서는 모든 학습내용이 다 형 식적•연역적 정당화의 수준까지 설명되었다. 그러나 '사각형의 성질' 단 원에서는 정사각형의 성질, 평행선과 넓이 사이의 관계에 대한 내용은 형식적•연역적 정당화의 수준까지 설명하지 않고 논리적 설명을 이용하 여 준연역적 정당화의 수준에서 설명되었다.
예에 의한 정당화는 대부분 포괄적인 예보다는 시각적 예를 이용한 정 당화의 형태로 나타났으며, 형식적•연역적 정당화에 대한 이해를 돕기 위하여 정당화 과정을 시각적 예를 이용해 표현하는 형태로 나타났다. 준연역적 정당화는 ‘사각형의 성질’ 단원의 정사각형의 성질, 평행선과 넓이 사이의 관계에 대한 내용을 제외하고는 형식적•연역적 정당화와 함께 나타났으며, 탐구활동과 내용 설명에 대해서는 모두 식의 조작을 이용한 준연역적 정당화가 함께 사용되었다. 식의 조작을 이용한 준연역 적 정당화의 경우 교과서에 따라 형식적•연역적 정당화의 과정을 보다 구체적으로 설명하기 위해 식의 조작을 이용한 준연역적 정당화가 제시 된 경우가 있었다. 따라서 교과서에서 사용된 예에 의한 정당화와 준연 역적 정당화는 대체적으로 형식적-연역적 정당화와 함께 나타난 경우, 이에 대한 이해를 돕고 경험적•귀납적 정당화와 형식적•연역적 정당화 사이를 매개하기 위한 목적으로 제시되었음을 알 수 있다.
그러나 두 단원 모두에서 예에 의한 정당화와 준연역적 정당화가 상대 적으로 낮은 비율로 나타났다. 이를 통해 경험적•귀납적 정당화와 연역 적•형식적 정당화 사이를 연결할 수 있는 정당화의 유형이 교과서에 잘 활용되고 있지 않음을 알 수 있다. 이는 2007 개정 교육과정에 따라 개 발된 교과서를 대상으로 정당화의 유형을 분석한 하영화, 이환철(2011) 의 연구와 비슷한 결과이다. 그러나 교과서에 제시된 정당화의 과정을 살펴보면 추론과 정당화를 돕기 위해 정당화 과정을 설명한 부분 이외에 별도로 보여야 하는 것을 그림 또는 설명으로 제시한다거나 정당화 과정

에 필요한 그림이나 설명을 제공하는 것을 볼 수 있었다. 또한 Otten 외 (2013)의 연구에서 강조되었던 탐구활동을 통해 얻은 추측을 다시 반성 하도록 하기 위해 내용 설명에서 이를 다시 언급하는 부분이 제시되기도 하였다. 따라서 교과서에서 다른 정당화 유형에 비해 형식적•연역적 정 당화가 여전히 많이 사용되고 있으나 이를 경험적•귀납적 정당화와 매 개하려는 시도와 정당화 과정을 돕기 위한 추측의 반성 기회 제공 등을 살펴볼 수 있었다.
지금까지의 결과를 종합해보면, '기하학적 성질 추론하기'를 요구하는 탐구활동의 질문과 문제는 다른 수행에 대한 기대에 비해 낮은 비율로 포함되어 있었다. 정당화의 유형 측면에서 살펴봤을 때, 탐구활동과 내 용 설명은 경험적•귀납적 정당화를 바탕으로 형식적•연역적 정당화로 유도하는 형태가 많았으며 정당화를 요구하는 문제에서도 형식적•연역 적 정당화의 수준까지 요구하는 문제가 가장 많이 분포하였다. 그러나 낮은 비율로 사용되긴 하였지만 경험적•귀납적 정당화와 형식적•연역 적 정당화를 매개하기 위한 정당화의 유형을 살펴볼 수 있었으며, 추론 과 정당화를 돕기 위한 질문 및 문제의 구성, 추론과 정당화의 과정에서 의 시각적 이미지 및 컴퓨터 프로그램의 활용 등을 살펴볼 수 있었다.

2. 논의 및 제언

2009 개정 교육과정에 따라 개발된 중학교 2학년 수학 교과서의 기하 영역에 대해 추론과 정당화의 측면에서의 분석을 통하여 알게 된 이상의 연구 결과를 바탕으로 추론과 정당화의 관점에서의 교과서 개발에 대한 고려사항과 교과서를 이용해 기하영역에서의 추론과 정당화를 지도할 교 사가 고려해야 할 사항을 논의하고자 한다.
첫째, 수행에 대한 기대 측면에서 교과서를 분석한 결과 '기하학적 성 질 추론하기'의 탐구활동 질문 및 문제는 '기하학적 개념, 사실 알기'와 '기하학적 성질 적용하기'의 질문 및 문제에 비해 낮은 비율로 나타났다. 이는 학생들이 기하 학습을 통해 추측을 탐구하여 추론하는 것을 배우는

것에 초점을 맞추기보다 기하학적 성질을 알고 이를 적용하여 문제를 해 결하는 것에 초점이 맞춰져 있음을 나타낸다.
그러나 같은 내용을 담고 있는 탐구활동이더라도 단순히 학습할 내용 을 확인하도록 제시된 질문이 있는 반면, 탐구활동을 통해 얻은 결과를 바탕으로 의도적으로 도형의 성질을 추측해보고 설명하도록 요구하거나 탐구활동을 통해 알게 된 것을 친구와 비교해보도록 하고 이를 바탕으로 얻을 결과를 설명해보도록 요구하는 질문을 제시한 교과서도 있었다. 이 는 탐구활동을 통해 도형의 성질에 대한 탐구와 발견을 경험하도록 하기 위함으로 해석될 수 있다(우정호, 권석일, 2006). 따라서 탐구활동을 구 성하는 데 있어 단순히 학습할 내용을 확인하도록 하는 게 아니라 탐구 활동을 되돌아보고 이를 바탕으로 추측을 할 수 있는 질문과 발견한 사 실을 정당화를 할 수 있는 질문을 활용하여 구성해야 할 것이다.
둘째, 학습내용에 따라 사용된 정당화의 유형을 분석한 결과, 다루고 있는 대부분의 내용에 대해 경험적•귀납적 정당화를 이용해 정당화하더 라도 이를 바로 형식적•연역적 정당화와 연결하여 다루는 경우가 많았 다. 그러나 이는 학생들에게 기하 학습에 대한 어려움을 느끼게 하는 원 인이 된다. 따라서 우정호, 박미애, 권석일(2003)이 언급하였듯이 경험 적•귀납적 정당화 방식과 형식적•연역적 정당화 방식을 매개할 수 있 는 중간 단계의 수준을 구체화하여 교과서에 제시할 필요가 있다. 이를 위해 논리적 언어가 아닌 일상적 언어, 구체적 조작이 가능한 그림 등을 사용하거나(홍진곤, 권석일, 2004) Tall(1995)의 시각적 증명, 조작적 증명 등을 활용해 점진적으로 구성할 필요가 있다. 즉, 정당화의 유형 측면에서 시각적 예 또는 포괄적인 예를 이용한 정당화와 식의 조작 또 는 논리적 설명을 이용한 준연역적 정당화를 경험적•귀납적 정당화와 형식적•연역적 정당화 사이에 활용할 필요가 있으며, 이환철과 하영화 (2011)가 주장하였듯이 학생들의 수준에 맞는 정당화의 유형을 경험할 수 있도록 다양한 정당화의 유형을 제시할 필요가 있다.
셋째, 교과서에서 학생들의 추론과 정당화를 도울 수 있는 요소들을 고려할 필요가 있다. 추론과 정당화를 돕는 교수학습 방법에 대한 연구

들을 살펴보면 추론과 정당화의 과정에서 시각적 이미지의 활용(Tall, 1995; 류현아, 장경윤, 2009; 장혜원, 2013 등)과 추측 및 정당화 과정 에 대한 반성(Otten 외, 2013 등), 도형의 성질을 탐구하도록 돕는 컴퓨 터 프로그램의 이용(조한혁, 안준화, 우혜영, 2001; 박주희, 2004 등)을 강조하고 있다. 이를 2009 개정 교육과정에 따라 개발된 교과서를 분석 한 결과 교과서마다 차이는 있었지만 많이 나타나지 않았다. 따라서 교 과서를 개발하고, 교사가 교과서를 활용하여 수업을 함에 있어 추론과 정당화를 돕는 이러한 요소들을 고려할 필요가 있다.
지금까지 살펴본 이 연구는 2009 개정 교육과정에 따라 개발된 13 종 의 중학교 2 학년 수학 교과서의 '삼각형의 성질' 단원과 '사각형의 성질' 단원을 추론과 정당화의 관점에서 어떻게 구현되었는지 분석하였다. 즉, 정당화와 관련된 추론을 살펴봄으로써 교과서에 구현된 정당화의 과정을 분석하였으며, 정당화의 유형을 살펴봄으로써 교과서에 구현된 정당화의 방법을 분석하였다. 이를 바탕으로 교과서를 개발하는 개발자들이 추론 과 정당화를 교과서에 구현하고자 할 때 고려해야 할 사항과 실제 교과 서를 활용해 수업을 하게 될 교사들이 추론과 정당화를 지도할 때 고려 해야 할 사항에 대 시사점을 제시한다는 데 의미가 있다고 볼 수 있다.
그러나 중학교 교과서의 기하영역에서 추론과 정당화가 도입된 '삼각 형의 성질'과 '사각형의 성질' 단원에 대해서만 분석이 이루어져 기하영 역의 모든 단원을 분석하지 못하였다. 따라서 이를 바탕으로 추론과 정 당화의 관점에서 교과서의 특징을 일반화하기엔 한계가 있다. 또한 교과 서가 추론과 정당화의 관점에서 잘 구현되어있더라도 실제 활용되는 것 에 따라 학생들이 추론과 정당화를 경험하는 것은 달라질 수 있으나 실 제 교사들이 수업에서 이러한 교과서를 어떻게 활용하는지는 살펴보지 못했다. 따라서 이에 대한 후속 연구로써 추론과 정당화의 관점에서 중 학교 교과서의 기하영역에 대한 분석을 통해 이에 대한 특징을 추출하 고, 실제 수업에서 교사가 교과서를 이용해 수업을 함에 있어 추론과 정 당화를 촉진하기 위해 어떻게 활용하는지에 대한 연구가 필요할 것이다.

참 고 문 헌

강옥기 외(2012). 중학교 수하 2. 서울: 두산동아(주)
강미광, 이병수, 양규한(1997). 수학적 지식 구성에서 추론의 역할. 수 학교육 프로시딩, 6. 411-428.
고호경 외(2012). 중학교 수하 2. 서울: (주)교학사.
교육과학기술부(2011). 수학과 교육과정. 고시 제 2011-361호 [별책 8].
권성룡(2003). 초등학생의 정당화에 관한 연구. 초등수하교육, 7(2).

$$
85-99
$$

권지현(2013). 인지적 노력수준에 따른 중학교 수하 교과서 분석: 기
하 영역을 중심으로. 석사학위논문. 서강대학교.
김미영(2002). 한구, 일본, 미국의 중학교 수하교과서 비교 연구: 기
하영역을 중심으로. 석사학위논문. 고려대학교.
김미진(2010). 현실주의 수학교육에 근거한 중하교 수학교과서 분석:
8-나 기하영역을 중심으로. 석사학위논문. 조선대학교.
김민주, 권오남(2006). 사회적 상호작용 중심의 탐구지향학습에서 나타
나는 학생들의 논증과 정당화. 교육학연구, 44(1). 247-275.
김민혁(2013). 수학교사의 교과서 및 교사용 지도서 활용도 조사. 학교
수하, 15(3). 503-531.
김서령 외(2012). 중하교 수하 2. 서울: (주)천재교육.
김수철(2013). 정당화 지도를 위한 수업 모형 개발 : 중학교 기하 영 역을 중심으로. 박사학위논문. 성균관대학교.
김원경 외(2012). 중하교 수하 2. 서울: (주)비상교육
김정하(2010). 초등학생의 정당화에 관한 연구. 박사학위논문. 이화여 자대학교.
김주경(2011). 현실주의 수학교육 관점에서 중하교 수학개정교과서 분석(중학교 3학년 기하영역을 중심으로). 석사학위논문. 서울시 립대학교.

김판수(2011). Van Hiele 이론을 통한 중학교 기하영역의 교과서 분 석 및 수업지도안 작성. 석사학위논문. 계명대학교.
김후재(2004). 제7차 수학 교육과정에 따른 중학교 교과서와 미국의 MiC 교과서 비교 분석. 석사학위논문. 서울대학교.
나귀수(1998). 증명의 본질과 지도 실제의 분석 : 중학교 기하 단원 을 중심으로. 박사학위논문. 서울대학교.
나홍수(2009). 남북한 수하교과서 비교: 중학교 기하영역을 중심으로. 석사학위논문. 목포대학교.
도종훈(2007). 학교수학에서 추측과 문제제기 중심의 수학적 탐구활동 설계하기. 학교수학, 46(1). 68-79.
류현아, 장경윤(2009). 중등 기하문제 해결에서 시각화 과정. 수하교육 학연구, 19(1). 143-161.
류희찬, 조완영(1999). 학생들의 정당화 유형과 탐구형 소프트웨어의 활 용에 관한 연구. 수학교육학연구, 9(1). 245-261.
류희찬 외(2012). 중학교 수학 2. 서울: (주)천재교과서.
문영미(2009). 한국과 일본의 중학교 수하 교과서 비교 연구: 기하 영역을 중심으로. 석사학위논문. 연세대학교.
박교식, 권석일(2012). 2011 중학교 수학과 교육과정의 비판적 고찰:
기하영역을 중심으로. 수학교육항연구, 22(2). 261-275.
박성희(2011). Van Hiele의 이론에 근거한 7차 개정 수학 교과서 기 하 학습 수준 분석 및 효과적인 지도방안: 중학교 2 학년을 중심 으로. 석사학위논문. 숙명여자대학교.
박은조, 방정숙(2005). 수학 교사들의 증명에 대한 인식. 한국학교수하 회논문집, 8(1). 101-116.
박주희(2001). 점진적 구성의 증명지도를 위한 학습 프로그램 개발 연 구. 수하교육논문집, 12. 185-200.
박지혜(2012). 중학교 3 학년 기하영역에서의 교수학적 변환에 관한 연구. 석사학위논문. 고려대학교.

변희현(2011). 삼각형의 외심 정의와 증명에 관한 고찰. 한국학교수하 회논문집, 14(2). 227-239.
서동엽(2003). 초등 수학 교재에서 활용되는 추론 분석. 수학교육학연 구, 13(2). 159-178.
\qquad (2006). 수학의 형식과 대상에 따른 추론 지도 수준. 수학교육학 연구, 16(2). 95-113.
\qquad (2010). 추론의 본질에 관한 연구. 한국초등수학교육학회지, 14(1). 65-80.
서지희(2012). 현실적 수학교육 이론에 따른 우리나라와 MiC 교과서 비교 분석. 석사학위논문. 고려대학교.
신이섭 외(2011). 2009 개정 교육과정에 따른 수학과 교육과정 연구.
서울: 한국과학창의재단.
신준국 외(2012). 중학교 수하 2. 서울: 두배의느낌.
신향균 외(2012). 중학교 수학 2. 서울: (주)지학사.
신현용(2004). 학교수학에서의 정당화 지도의 필요성 및 가능성에 관한 연구. 대한수학회논문집, 19(4). 585-599.
심상길(2011). 중학교 1 학년 교과서 기하 단원에 제시된 컴퓨터 활용에 대한 분석. 수학교육논문집, 25(3). 577-591.
심종섭(2012). 한국과 홍콩의 수학교과서 비교연구: 기하영역을 중심 으로. 석사학위논문. 국민대학교.

안정주(2005). 한국과 러시아의 중학교 교과서 비교연구-기하영역을
중심으로. 석사학위논문. 대구대학교.
안주연(2011). Skemp의 도구적 이헤와 관계적 이헤에 기초한 교과서 분석: 중학교 2학년 기하영역을 중심으로. 석사학위논문. 계명대 학교.
우정호, 박미애, 권석일(2003). 역사발생적 수학교육 원리에 대한 연구 (1)-증명의 의미 지도의 역사발생적 전개. 학교수학, 5(4). 401-420.

우정호, 권석일(2006). 중학교 기하 교재의 '원론' 교육적 고찰. 수학교 육학연구, 16(1). 1-23.
우정호 외(2012). 중학교 수하 2. 서울: 두산동아(주).
윤정민(2009). 우리나라와 홍콩의 중학교 수학 교과서 비교 연구: 기
하영역을 중심으로. 석사학위논문, 고려대학교.
이강섭 외(2012). 중학교 수하 2. 서울: (주)미래엔.
이경화, 강완(2008). 길이재기 단원의 여정 : 수학 교과서 개발과정. 수 학교육학연구, 18(2). 157-177.
이경화, 최남광, 송상헌(2007). 수학영재들의 아르키메데스 다면체 탐구 과정: 정당화 과정과 표현과정을 중심으로. 학교수하, $9(4)$. 487-506.
이금주(2007). Van Hiele 이론에 기초한 교과서 분석과 효과적인 기 하 학습에 관한 연구. 석사학위논문. 중앙대학교.
이소현(2011). 중학교 1 학년 기하영역에서의 교수학적 변환에 관한연 구. 석사학위논문. 서강대학교.
이승재(2013). 한국과 인도의 수하 교과서 비교•분석: 중학교 기하영
역을 중심으로. 석사학위논문. 건국대학교.
이장현(2013). 한국과 필리핀의 중학교 수학교과서 비교 분석: 중학
교 3학년 기하영역을 중심으로. 석사학위논문. 대구가톨릭대학교.
이종희(2003). 비판적 사고와 증명 능력 및 정당화 유형과의 관계. 대한
수학교육학회 제 24회 추계학술대회 논문집. 535-548.
이종희, 이지연(2009). 상위권 고등학생들의 정당화와 반증의 유형에 대
한 사례연구. 교과교육학연구, 13(3). 633-652.
이준열 외(2012). 중학교 수학 2. 서울: (주)천재교육.
이중권(2006). Van Hiele의 기하 인지발달이론에 따른 중학교 기하교육 과정 및 우리나라 중학생들의 기하수준에 관한 연구. 한국교육문제 연구, 17. 55-85.
이환철, 하영화(2011). 중학교 수학 교과서 분석을 통한 정당화 방안 탐
색. 한국학교수학회논문집, 14(3). 329-341.

이환철, 김선희, 고호경(2012). 2009 개정 교육과정에 따른 중학교 수 학과 교육과정의 기하 성취기준에 대한 논의. 수학교육학연구, 22(4). 603-617.
장정순(2011). 한국과 핀란드 수학교과서 기하영역 비교. 석사학위논 문. 한국교원대학교.
장혜원(2013). Byrne의 'Euclid 원론'에 기초한 증명 지도에 대한 연구. 수학교육학연구, 23(2). 173-192.
전영배, 강정기, 노은환(2011). 삼각형의 외심, 내심의 정의에 관한 고 찰. 한국학교수하회논문집, 14(3). 359-379.
정상권 외(2012). 중학교 수하 2. 서울: (주)금성출판사.
정소영(2012). 우리나라 중학교 교과서와 MiC 교과서의 기하영역 교 수하ㅈㅓㅓㄱ 변환방식의 비교•분석. 석사학위논문. 고려대학교.
정유리(2013). 2009 개정 교육과정에 따른 중학교 1 학년 기하영역의 교과서 비교 분석. 석사학위논문. 경북대학교.
정희연(2008). 남북한 중등 수하 교과서 비교, 분석: 중학교 기하영역
을 중심으로. 석사학위논문. 한국교원대학교.
조완영, 권성룡(2001). 학교 수학에서의 '증명'. 수학교육학연구, 11(2). 385-402.
조한혁, 안준화, 우혜영(2001). 컴퓨터를 통한 수학적 사고력 신장의 가 능성 모색. 수확교육논문집, 14. 197-215.
최용환(2012). 한국과 중국의 중학교 수학교과서 비교: 기하영역을 중심으로. 석사학위논문. 교원대학교.
하영화, 고호경(2011). 2009 개정 교육과정에 따른 수학과 교육과정에 서의 무게중심 교수 • 학습 제안. 학교수학, 25(4). 681-691.
한인기(2010). 러시아 7학년 기하학 교과서의 내용 및 연습문제 분석 연구. 교육연구, 18(1). 77-106.

허민 외(2012). 중학교 수하 2. 서울: (주)대교.
홍진곤, 권석일(2004). 전형식적 증명의 교수학적 의미에 관한 고찰. 학 교수학, 43(4). 381-390.

황선욱 외(2011). 창의 중심의 미래형 수학과 교과내용 개선 및 교육 과정 개정 시안 연구. 서울. 한국과학창의재단.
황선욱 외(2012). 중학교 수하 2. 서울: (주)좋은책신사고.
Bell, A. W. (1976). A study of pupil`s proof-explanations in mathematical situations. Educational Studies in Mathematics, 71(1). 23-40.

Davis, J. D. (2012). An examination of reasoning and proof opportunities in three differently organized secondary mathematics textbook units. Mathematics education research journal 24. 467-491.
Jones, K., Fujita, T. (2013). Interpretations of national curricula: the case of geometry in textbooks from England and Japan. ZDM Mathematics Education 45. 671-683.

Li, Y (2000). A comparison of problems that follow selected content presentations in American and Chinese mathematics textbooks. Journal for Research in Mathematics Education 31(2). 234-241.
Marrades, R., Gutiérrez, A. (2001). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics 44. 87-125.

Miyazaki, M. (2000). Levels of proof in lower secondary school mathematics. Educational Studies in Mathematics 41(1). 47-68.

Mullis, I. V. S., et al. (2009). TIMSS 2011 Assessment Frameworks. Chestnut Hill, MA: TIMSS \& PIRLS International Study Center, Boston College.
National Council of Teacher of Mathematics (NCTM) (2000). 학교수 학을 위한 원리와 규준 (류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 역.). 서울: 경문사. (원저 2000 출판).

Newton, D. P., Newton, L. D. (2006). Could elementary mathematics textbooks help give attention to reasons in the classroom?. Educational studies in Mathematics 64. 68-84.
Otten, S., Males, L. M.\& Gilberton, N. J. (2013). The introduction of proof in secondary geometry textbook. International journal of educational research.

Pepin, B., Gueudet, G.\& Trouche, L. (2013). Investigating textbooks as crucial interfaces between culture, policy and teacher curricular practice : two contrasted case studies in France and Norway. ZDM Mathematics Education 45. 685-698.
Simon, M., Blume, G. W. (1996). Justification in mathematics classroom: a study of prospective elementary teachers. Journal of Mathematical Behavior 15. 3-31.

Sower, L., Harel, G.(1998). Types of students` justifications. The Mathematics Teacher 91(8). 670-675.
Stacey, K., Vincent, J. (2009). Modes of reasoning in explanations in Australian eighth-grade mathematics textbooks. Educational studies in mathematics 72. 271-288.

Staples, M. E., Bartlo, J. \& Thanheiser, E. (2012). Justification as teaching and learning practice: its multifacted role in middle grades mathematics classrooms. The Journal of Mathematics Behavior 31(4). 447-462.
Stylianides, G. J. (2008). An analytic framework of reasoning-and -proving. For the Learning of Mathematics, 28(1). 9-16.
Stylianides, G. J. (2009). Reasoning and proving in school mathematics textbook. Mathematical thinking and learning 11(4). 258-288.

Tall, D. (1995). Cognitive development, representations and proof. The conference Justifying and Proving in School Mathematics Institute of Education. London. 27-38.
Thompson, D. R., Senk, S. L. \& Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education 43(3). 253-295.

Van Zanten, M., Van den Heuvel-Panhuizen, M. (2014). Freedom of design: the multiple faces of subtraction in Dutch primary school textbooks. In Y. Li \& G. Lappan(Eds). Mathematics curriculum in school education. New York: Springer. 231-259.

ABSTRACT

An Analysis on Geometry Area of middle school math textbook

: Focused on Reasoning and Justification

Cho Mi Hye
Department of Mathematics Education
The Graduate School
Seoul National University

Geometry area of middle school needs for developing reasoning and justification. The goal of learning geometry area is to understand geometric properties and to develop reasoning ability. But when students learn geometry area in middle school, they feel difficult in proving and they don't experience reasoning meaningfully. So in the 2009 Revised Mathematics Curriculum of middle school, geometry area emphasizes justification that is based on empirical knowledge than proof that put emphasis on formal system.
In this context, to discuss meaning of reasoning and justification embodied in middle school math textbook, the goal of this study is to analyze middle school math textbook in view of reasoning and justification.

For this purpose, inquiry-activities that introduce learning topics,
contents that including reasoning and justification and problems in textbook are analyzed. Especially, the textbook was analyzed focusing on the chapters that emphasize justification 'properties of triangle' and 'properties of rectangle' in the chapters of geometry area of the middle school math textbook.
The frameworks of textbook analysis consist of two: framework that is in terms of performance expectation and framework that is in terms of justification`s type. Framework that is in terms of performance expectation consists of 'knowing geometric concepts and facts', 'applying geometric properties' and 'reasoning geometric properties'. And framework that is in terms of justification`s type consists of 'empirical and inductive justification', 'justification by examples', 'semi-deductive justification' and 'formal and deductive justification'.
On textbook analysis, first, the rate of 'reasoning geometric properties' is lower than the rate of 'knowing geometric concepts and facts' and 'applying geometric properties' in terms of performance expectation about questions in inquiry-activities and problems. Therefore, when textbook developers or teachers compose questions in inquiry-activities and problems, they need to consider students to experience reasoning geometric properties meaningfully but rather that to know geometric properties. Second, when contents are presented after inquiry-activities, there is a gap in terms of justification`s type: from 'empirical and inductive justification' to 'formal and deductive justification'. Although 'justification by examples' and 'semi-deductive justification' are used for mediating between 'empirical and inductive justification' and 'formal and deductive justification', the rate of using these justification`s types is not high. Therefore, various types of justification to mediate between 'empirical
and inductive justification' and 'formal and deductive justification' will have to be presented in textbook.
This study analyzed geometry area of middle school math textbook in view of reasoning and justification. Through this analysis, in views of reasoning and justification, overall characteristic features and strength of geometry area in textbook are identified. It is expected that this will suggest implication in terms of reasoning and justification for textbook developers and teachers.

Keywords : reasoning, justification, geometry area of middle school, textbook analysis
Student Number : 2011-23651

©creative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

Disclaimer \square

c)Collection

교육학석사학위논문

중학교 수학 교과서의 기하영역 분석
 - 추론과 정당화를 중심으로 -

2014년 2월

서울대학교 대학원

$$
\begin{aligned}
& \text { 수학교육과 } \\
& \text { 조 미 혜 }
\end{aligned}
$$

중학교 수학 교과서의 기하영역 분석
 - 추론과 정당화를 중심으로 -
 지도교수 권 오 남

이 논문을 교육학 석사학위논문으로 제출함

2013년 10월

> 서울대학교 대학원
> 수학교육과
> 조 미 혜

조미헤의 석사학위논문을 인준함 2013년 12월
위 원 장
부 위 원 장
위
원
(인)

국문초록

중학교 수학 교과서의 기하영역 분석 - 추론과 정당화를 중심으로 -

중학교 기하영역은 추론과 정당화를 발달시키는 데 필요한 영역이며, 기하영역에서의 학습은 도형을 탐구하여 기하학적 성질을 이해하고 이를 통해 추론능력을 신장시키는 것을 목표로 한다. 그러나 학생들은 기하학 습을 하는 데 있어 증명에 대한 어려움을 느끼고 추론을 의미 있게 경험 하지 못한다. 이에 2009 개정 교육과정에서의 기하영역은 기하학적 성 질의 이해를 위해 형식적 체계를 강조하는 증명보다는 학생의 경험적 지 식에 바탕을 둔 정당화를 강조하고 있다. 이는 어떤 수학적 사실이 옳다 는 것을 학생이 이미 알고 있는 수확적 사실을 바탕으로 모순 없이 설명 하도록 하는 활동을 중요하게 다룸으로써 엄밀한 증명 대신 학생의 직접 적인 활동을 통한 추측활동을 강조하고, 학생들에게 추론 기회를 폭넓게 제공하고자 함을 알 수 있다. 그러나 이와 같이 교육과정에서 형식적 증 명을 약화하고 정당화를 강조하는 것에 대해 구체적인 방안이 마련되지 않아 공청회 등에서 많은 논쟁을 야기하였다. 또한 기하영역에서 증명 대신 정당화를 실질적으로 도입하는 것이 초유의 일이라 할 수 있는 만 큼 정당화의 의미에 대한 논의가 필요하다는 연구가 있어 왔다.
따라서 이러한 맥락에서 교과서에 구현된 추론과 정당화의 의미를 논 의하기 위해 이 연구는 추론과 정당화의 관점에서 교과서가 어떻게 구현 되었는지 분석하는 것을 목적으로 한다. 이를 위해 2009 개정 교육과정 에 의해 개발된 13 종의 중학교 2 학년 수학 교과서를 분석대상으로 하 며, 특히 2 학년 교과서의 기하 단원인 '삼각형의 성질'과 '사각형의 성질' 에 초점을 맞춰 교과서 도입에 제시된 탐구활동, 추론과 정당화가 나타 난 내용 설명, 문제를 분석하였다. 이를 위해 '기하학적 개념, 사실 알 기', '기하학적 성질 적용하기', '기하학적 성질 추론하기'로 구성된 수행

에 대한 기대 측면에서의 분석틀과 '경험적•귀납적 정당화, 예에 의한 정당화, 준연역적 정당화, 형식적•연역적 정당화'로 구성된 정당화의 유 형 측면에서의 분석틀을 마련하여 교과서 분석을 실시하였다.

교과서 분석 결과를 살펴보면, 첫째, 탐구활동의 질문과 문제에서 요구 하는 수행에 대한 기대는 '기하학적 성질 추론하기'의 비율이 '기하학적 개념, 사실 알기'와 '기하학적 성질 적용하기'의 비율보다 낮게 나타났다. 따라서 탐구활동의 질문과 문제를 구성함에 있어 단순히 기하학적 성질 을 알고 적용하는 것보다 '기하학적 성질 추론하기'를 의미 있게 경험할 수 있도록 이에 대한 고려가 필요하다. 둘째, 탐구활동과 내용 설명에서 사용된 정당화의 유형을 분석한 결과 경험적•귀납적 정당화에서 형식적 - 연역적 정당화로 바로 유도되는 경우가 많았다. 예에 의한 정당화와 준연역적 정당화는 경험적•귀납적 정당화와 형식적•연역적 정당화를 매개하기 위한 목적으로 제시되어 있었지만 이를 활용한 비율은 높지 않 았다. 또한 '정당화하기' 문제들은 대부분 형식적•연역적 정당화를 요구 하는 문제로 분석되었다. 따라서 경험적•귀납적 정당화에서 형식적•연 역적 정당화를 매개할 수 있는 다양한 유형의 정당화를 활용할 필요가 있으며, 학생들의 수준에 맞게 다양한 정당화의 유형을 경험할 수 있도 록 이를 고려할 필요가 있다.
이 연구는 중학교 수학 교과서의 기하영역이 추론과 정당화의 관점에 서 어떻게 구현되었는지 분석하였다. 이를 통해 2009 개정 교육과정에 따라 개발된 13 종의 교과서의 기하영역에 대한 추론과 정당화의 측면에 서의 전체적인 특징과 함께 교과서에 잘 구현된 점을 살펴봄에 따라 교 과서를 개발하는 개발자들과 실제 교과서를 활용해 수업을 할 때 교사들 이 고려해야 할 사항에 대한 시사점을 제공할 수 있을 것이다.

주요어 : 추론, 정당화, 중학교 기하영역, 교과서 분석
하 번 : 2011-23651
목 차
국문 초록 i
목차 iii
표 목차 v
그림 목차 vii
I. 서론 1

1. 연구의 목적 및 필요성 1
2. 연구문제 4
3. 용어의 정의 6
3.1. 탐구활동 - 6
II. 문헌검토 7
4. 중학교 기하영역에서의 추론과 정당화 7
1.1. 추론과 증명 7
1.2. 정당화 14
1.3. 추론과 정당화의 교수 • 학습방법 관련 선행연구 22
5. 교과서 분석 관련 선행 연구 24
2.1. 중학교 기하영역의 교과서 분석 선행 연구 25
2.2. 추론과 증명에 따른 교과서 분석 선행 연구 28
2.3. 수행에 대한 기대에 따른 교과서 분석 연구 35
III. 연구방법 40
6. 교과서 분석대상 40
7. 교과서 분석틀 42
8. 교과서 분석단위 및 분석방법 45
IV. 연구 결과 47
9. 삼각형의 성질 47
1.1. 수행에 대한 기대의 측면에서 교과서 분석결과 48
1.2. 정당화의 유형에 대한 분석결과 70
10. 사각형의 성질 86
2.1. 수행에 대한 기대 측면에서의 교과서 분석결과 87
2.2. 정당화의 유형에 따른 교과서 분석결과 104
V. 결론 125
11. 요약 및 결론 125
12. 논의 및 제언 130
참고문헌 133
Abstract 141

표 목 차

<표 $\Pi-1$ 〉 추론 능력 신장과 관련된 교수 . 학습 상의 유의점 9
<표 II-2> 정당화의 수준(Simon, Blume, 1996) 16
<표 Π-3> 정당화의 단계(김정하, 2010) 19
<표 $\Pi-4$ > 정당화 유형(김수철, 2013) 19
<표 $\Pi-5$ > 추론과 증명에 대한 교과서 분석틀(Stylianides, 2009: 262)28
<표 $\Pi-6>$ 추론과 증명에 대한 교과서 문제 분석틀(Thomson 외,2012: 262) .. 31
<표 $\Pi-7$ > 본문 설명에 대한 범주 (Newton \& Newton, 2006) 32
<표 $\Pi-8>$ TIMSS 2011 인지적 영역 분석틀 37
<표 III-1> 중학교 수학 (2)의 성취기준 41
<표 III-2> 수행에 대한 기대 측면에서의 교과서 분석틀 43
<표 III-3> 정당화 유형 측면에서의 교과서 분석틀 44
<표 IV-1> 삼각형의 성질에 대한 탐구활동과 내용 설명에서 사용된 정당화의 유형 72
<표 IV-2> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 형식적• 연역적 정당화의 예(교과서 $\mathrm{D}, 2012: 193,194$) 74
<표 IV-3> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한정당화, 형식적 • 연역적 정당화의 예(교과서 $\mathrm{H}, 2012$: 209,210)77
<표 IV-4> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 준연역적정당화, 형식적•연역적 정당화의 예(교과서 L, 2012:247)
<표 IV-5> 삼각형의 성질에 사용된 예에 의한 정당화와 형식적•연역적 정당화의 예(교과서 L, 2012: 247) ….................................... 81
<표 IV-6> 사각형의 성질에 대한 탐구활동과 내용 설명에서 사용된 정당화의 유형 107
<표 IV-7> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준연역적 정당화의 예(교과서 C, 2012: 247) …............................... 109
<표 IV-8> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{K}, 2012: 268$)
<표 IV-9> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{C}, 2012$: 235)
<표 IV-10> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 준연역적 정당화, 형식적•연역적 정당화의 예(교과서 C, 2012: 247)
<표 IV-11> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{K}, 2012$: 269)

그 림 목 차

[그림 $\Pi-1]$ 시각적 정당화의 예(Tall, 1995: 5) 12
[그림 II-2] Byrne의 증명방법의 예(장혜원, 2013: 185) 13
[그림 I-3] 포괄적 예 및 시각적 예를 통한 정당화의 사례(김수철, 2013) 20
[그림 III-1] '정당화하기' 문제에 대한 정당화의 유형 분석 과정 45
[그림 $\mathrm{IV}-1$] 삼각형의 성질에 대한 탐구활동의 수행에 대한 기대 비율(\%) 49
[그림 IV-2] 삼각형의 성질에 대한 탐구활동의 '인식하기' 질문의 예 (교과서 G, 2012: 179) 50
[그림 IV-3] 삼각형의 성질에 대한 탐구활동의 '계산하기' 질문의 예 (교과서 A, 2012: 236) 51
[그림 IV-4] 삼각형의 성질에 대한 탐구활동의 '측정하기' 질문의 예 (교과서 F, 2012: 244) 51
[그림 IV-5] 삼각형의 성질에 대한 탐구활동의 '이행하기' 질문의 예 (교과서 J, 2012: 254) 52
[그림 IV-6] 삼각형의 성질에 대한 '이행하기' 질문의 예(교과서 L , 2012: 241) 53
[그림 IV-7] 삼각형의 성질에 대한 탐구활동의 '기하학적 성질 추론 하기'의 질문 개수(개) 54
[그림 IV-8] 삼각형의 성질에 대한 탐구활동의 '정당화하기' 질문의 예 (교과서 I, 2012: 210) 55
[그림 IV-9] 삼각형의 성질에 대한 탐구활동의 '정당화하기' 질문의 예 (교과서 C, 2012: 210) 55
[그림 IV-10] 삼각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예 (교과서 M, 2012: 257) 56
[그림 IV-11] 삼각형의 성질에 대한 문제의 수행에 대한 기대 비율(\%)58
[그림 IV-12] 삼각형의 성질에 대한 ‘회상하기’와 ‘계산하기’ 문제의 예 (교과서 E, 2012: 232) 59
[그림 IV-13] 삼각형의 성질에 대한 '인식하기' 문제의 예(교과서 I, 2012: 208) 60
[그림 IV-14] 삼각형의 성질에 대한 ‘정형문제해결하기'의 문제의 예 (교과서 H, 2012: 213) 61
[그림 IV-15] 삼각형의 성질에 대한 ‘표현하기’의 문제의 예(교과서 H ,2012: 213)61
[그림 IV-16] 삼각형의 성질에 대한 '이행하기' 문제의 예(위: 교과서 C, 2012: 214, 아래: 교과서 J 2012: 252) 62
[그림 IV-17] 삼각형의 성질에 대한 ‘추측하기' 문제의 예 63
[그림 IV-18] 삼각형의 성질에 대한 ‘비정형문제해결하기’ 문제의 예 (교과서 B, 2012: 207) 63
[그림 IV-19] 삼각형의 성질에 대한 '정당화하기' 문제의 예(교과서 B, 2012: 201) 63
[그림 $\mathrm{IV}-20$] 삼각형의 성질에 대한 '기하학적 성질 추론하기'의 문제 개수(개) 64
[그림 IV-21] 삼각형의 성질에 대한 ‘추측하기' 문제의 예(교과서 C,
2012: 226) 65
[그림 IV-22] 삼각형의 성질에 대한 ‘추측하기' 문제의 예(교과서 C, 2012: 227) 65
[그림 IV-23] 삼각형의 성질에 대한 '종합하기' 문제의 예 (교과서 A, 2012: 238) 66
[그림 IV-24] 삼각형의 성질에 대한 '정당화하기' 문제의 예(위: 교과서B, 2012: 204; 아래: 교과서 F, 2012: 253)67
[그림 IV-25] 실생활맥락이 활용된 삼각형의 성질에 대한 '정당화하기' 의 문제의 예(위: 교과서 A, 2012: 239; 아래: 교과서 H, 2012: 211) 68
[그림 IV-26] 삼각형의 성질에 대한 ‘비정형문제해결하기' 문제의 예 (교과서 J, 2012: 253) 69
[그림 IV-27] 삼각형의 성질에 대한 교과서별 정당화의 유형 분포(\%)71
[그림 IV-28] 삼각형의 외심의 존재성에 대한 형식적•연역적 정당화 (교과서 A, 2012: 243) 75
[그림 IV-29] 직각삼각형의 합동조건에 대한 정당화의 예(교과서 B , 2012: 199) 80
[그림 IV-30] 삼각형의 성질에 대한 '정당화하기' 문제에 사용된 정당화의 유형 개수(개) 83
[그림 IV-31] 삼각형의 성질에 대한 '경험적•귀납적 정당화’와 '예에 의한 정당화' 문제의 예(교과서 $\mathrm{F}, 2012$: 254) 84
[그림 IV-32] 삼각형의 성질에 대한 ‘준연역적 정당화' 문제의 예 (교과서 H, 2012: 229) 85
[그림 $\mathrm{IV}-33$] 삼각형의 성질에 대한 ‘형식적•연역적 정당화’ 문제의 예 (교과서 M, 2012: 246) 86
[그림 IV-34] 사각형의 성질에 대한 탐구활동의 수행에 대한 기대 비율 (\%) 87
[그림 IV-35] 사각형의 성질에 대한 탐구활동의 '인식하기' 질문의 예 (교과서 A, 2012: 260) 88
[그림 IV-36] 사각형의 성질에 대한 탐구활동의 ‘추측하기’ 질문의 예 (교과서 J, 2012: 266) 89
[그림 IV-37] 사각형의 성질에 대한 탐구활동의 '이행하기' 질문의 예 (교과서 C, 2012: 240) 90
[그림 IV-38] 사각형의 성질에 대한 '정당화하기' 질문의 예(교과서 L,2012: 263)91
[그림 IV-39] 사각형의 성질에 대한 탐구활동의 ‘추측하기’ 질문의 예 (교과서 E, 2012: 251) 91
[그림 IV-40] 사각형의 성질에 대한 탐구활동의 '기하학적 성질 추론 하기'의 질문 개수(개) 92
[그림 IV-41] 사각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예 (교과서 L, 2012: 275) 92
[그림 IV-42] 사각형의 성질에 대한 탐구활동의 '정당화하기' 질문의 예(교과서 D, 2012: 209) 93
[그림 $\mathrm{IV}-43$] 사각형의 성질에 대한 '정당화하기' 질문의 예(교과서 J, 2012: 275) 94
[그림 $\mathrm{IV}-44$] 사각형의 성질에 대한 문제의 수행에 대한 기대 비율 (\%)96
[그림 IV-45] 사각형의 성질에 대한 '분류하기' 문제의 예(교과서 E, 2012: 255) 97
[그림 IV-46] 사각형의 성질에 대한 '계산하기' 문제의 예(교과서 G ,2012: 195)98
[그림 IV-47] 사각형의 성질에 대한 '정형문제해결하기' 문제의 예 (교과서 D, 2012: 328, 329) 99
[그림 $\mathrm{IV}-48$] 사각형의 성질에 대한 '기하학적 성질 추론하기'의 문제 개수(개) 100
[그림 $\mathrm{IV}-49$] 사각형의 성질에 대한 '정당화하기' 문제의 예(교과서 M , 2012: 279) 100
[그림 IV-50] 공학적 도구가 활용된 사각형의 성질에 대한 '정당화하 기’ 문제의 예(교과서 $\mathrm{B}, 2012$: 229) 101
[그림 IV-51] 사각형의 성질에 대한 ‘종합하기’ 문제의 예(교과서 F , 2012: 269) 102
[그림 IV-52] 사각형의 성질에 대한 '추측하기' 문제의 예(교과서 M , 2012: 284) 102
[그림 IV-53] 사각형의 성질에 대한 '비정형문제해결하기' 문제의 예(위: 교과서 A, 2012: 272, 아래: 교과서 D, 2012: 221)103
[그림 IV-54] 사각형의 성질에 대한 정당화의 유형 비율(\%) 105
[그림 IV-55] 사각형의 성질에 대한 '정당화하기'의 문제에 대한 정당화 유형의 비율 110
[그림 IV-56] 평행사변형의 성질에 대한 '정당화하기'의 문제에 대한정당화 과정 비교114
[그림 IV-57] 평행사변형의 성질에 대한 정당화 유형의 예(위: 교과서 C, 2012: 236; 아래: 교과서 B, 2012: 215) 117
[그림 IV-58] 사각형의 성질에 대한 '정당화하기'의 문제에 대한 정당화 유형 비율(\%)120
[그림 IV-59] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 G, 2012: 197)121
[그림 IV-60] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 $\mathrm{F}, 2012$: 267) 121
[그림 IV-61] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 M, 2012: 285)
[그림 IV-62] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제 의 예(교과서 E, 2012: 266) 123
[그림 IV-63] 사각형의 성질에 대한 형식적•연역적 정당화를 요구하는 문제의 예(교과서 H, 2012: 257) 123

I. 서론

1. 연구의 목적 및 필요성

중학교 기하영역은 학생의 추론 능력 개발에 적합한 소재를 많이 담고 있으며(황선욱 외, 2011), 추론과 정당화를 발달시키는 데 필요한 영역 이다(NCTM, 2000). 또한 학생들은 기하 학습을 통하여 기하에 대한 추 측을 탐구하여 추론하는 것을 배울 수 있다. 그러나 학생들은 기하 학습 에 있어 증명에 대해 어려움을 느끼고 기하영역에서의 추론을 의미 있게 경험하지 못한다.
이에 2009 개정 교육과정의 기하영역에서는 학생들의 인지 수준과 흥 미를 고려하여 도형에 대한 탐구를 통해 학생들이 기하학적 성질을 이해 하고 그 논리적 타당성을 습득하도록 강조한다. 기하 지식의 습득 방법 에 있어서도 형식적 체계를 강조하는 증명보다는 학생의 직접적인 활동 을 통한 추측활동과 학생의 경험적 지식에 바탕을 둔 정당화를 강조한다 (신이섭 외, 2011). 즉, 어떤 수학적 사실이 옳다는 것을 학생이 이미 알고 있는 수학적 사실을 바탕으로 모순 없이 설명하도록 하는 활동을 중요하게 다룸으로써 학생들에게 추론 기회를 폭넓게 제공하고자 함을 알 수 있다. 이에 대한 해석으로 이환철, 김선희, 고호경(2012)은 2009 개정 교육과정의 기하영역에서 전통적인 증명 이외의 다양한 방법으로 명제가 참임을 설득시키는 과정을 증명의 한 분야로 포함시키면서 증명 의 포괄적인 의미로 정당화를 강조하고 있다고 하였다. 이를 통해 명제 가 참이라는 것을 경험적, 직관적으로 이해하고 그에 대한 이유를 학생 자신이 갖고 있는 지식을 활용하여 모순 없이 설명할 수 있게 하는 것은 정당화 활동 중 하나임을 알 수 있다.

그러나 중학교 교육과정에서 '증명'이라는 용어와 의미, 형식적인 증명 과정을 삭제하고 이를 '정당화'로 대체하고자 하는 제안은 연구진의 교 육과정 시안 논의 및 공청회 등을 거치면서 그 실천 방안에 대한 많은

논쟁을 야기하였다(장혜원, 2013). 이는 구체적인 방안의 부재와 기하 교육의 중요한 목표로 간주되어 온 논리 연역적 사고의 약화에 대한 우 려에서 기인하는 현상으로 볼 수 있다. 이로 인해 2009 개정 교육과정 의 기하영역에 대한 성취기준에서 '증명할 수 있다'를 대신해 사용하려 던 용어인 정당화를 적절히 대체하여 사용할 수 있는 표현으로써 '이해 하고 설명할 수 있다'라고 제시하고 있다(이환철, 김선희, 고호경, 2012). 그러나 박교식과 권석일(2012)은 기하영역에서 증명 대신 정당 화를 실질적으로 도입한 것은 초유의 일이라 할 수 있는 만큼 순탄한 이 행을 위해서는 정당화의 의미에 대한 논의가 필요하다고 주장하였다. 이 와 비슷한 맥락에서 실제 수업에서 사용될 교과서에 구현된 정당화의 의 미를 살펴보고 이를 논의할 필요가 있다.
추론과 정당화에 초점을 맞춰 교과서를 분석한 선행연구들을 살펴보면 이환철과 하영화(2011), 김수철(2013), Thomson, Senk와 Johnson(2012) 등의 연구가 있다. 이 중 이환철과 하영화(2011)는 2007 개정 교육과정 에 따라 개발된 기하영역의 교과서의 내용에서 나타나는 정당화 유형을 분석하였는데 교과서에 제시된 문제에 대해 분석이 이루어지지 않아 이 에 대한 분석이 필요하다. 또한 2007 개정 교육과정에 비해 학생들의 정당화 활동을 더욱 강조하는 2009 개정 교육과정에 따라 개발된 교과 서에서 나타나는 정당화 유형을 분석하여 교과서에서의 구현 정도를 확 인하는 것은 의미 있을 것으로 생각된다. 김수철(2013)의 연구에서는 정당화 지도를 위한 수업 모형 개발을 위하여 중학교 교과서의 기하영역 중 ‘삼각형과 사각형의 성질’에서 사용된 정당화의 유형을 분석하였다. 그러나 교과서에 제시된 정당화의 유형을 분석함으로써 정당화에 사용된 방법은 분석되었지만, 추측을 만들고 이를 일반화하여 정당화하는 등의 정당화의 과정에 대한 분석은 이루어지지 않았다. 따라서 교과서에 구현 된 정당화의 과정과 정당화의 유형을 함께 분석할 필요가 있다. 그리고 Thomson 외(2012)는 교과서에 제시된 추론의 유형을 연역 추론과 귀 납 추론으로 분석하였으나 추론 및 정당화의 유형이 세분화되지 않아 이 를 보완할 필요가 있다. 즉, 기하영역에 대한 교수 • 학습이 이루어질 때

학생들이 의미 있게 추론과 정당화를 경험할 수 있도록 교과서가 구성되 어 있는지 분석할 필요가 있으나 아직 연구가 부족한 실정이라고 할 수 있다. 따라서 정당화의 유형을 세분화하여 교과서 분석에 적용하며, 정 당화의 유형과 함께 정당화가 이루어지는 과정을 분석하기 위해 교과서 에 구현된 추론을 함께 분석하고자 한다.
교과서는 의도된 교육과정과 실행된 교육과정을 매개하는 도구이고, 잠재적으로 실행된 교육과정으로 간주되며, 교육과정에 담긴 내용을 수 학 교수 • 학습에서 활용할 수 있도록 구체화시킨 자료로써 수업의 방향 과 질을 결정하는 매우 중요한 요소이다(이경화, 강완, 2008). 또한 우 리나라 수학 교사들은 수업목표, 수업내용, 평가내용의 선정과정에서 교 과서 활용도가 높은 편이다(김민혁, 2012). 그러나 대부분의 수학 교사 들은 증명의 의미를 가정에서 결론을 이끌어 내는 연역으로만 제한하고 증명의 역할 역시 설명이나 의사소통과 같은 다양한 측면을 고려하기보 다 입증과 논리적 사고력을 기르는 수단으로 인식하는 경향을 갖고 있으 며, 대부분 교과서의 전개 방식에 의존해 증명을 지도한다(박은조, 방정 숙, 2005). 따라서 추론과 정당화를 강조하는 교육과정의 변화에 따라 개발된 교과서의 기하영역에서 추론과 정당화의 측면에서 어떻게 구현되 었는지 분석할 필요가 있다. 이를 위해 증명이 삭제되고 정당화가 처음 도입되는 중학교 2 학년 기하 단원인 '삼각형의 성질'과 '사각형의 성질' 을 분석하여 교과서가 추론과 정당화의 측면에서 어떻게 구현되었는지 살펴보고자 한다.
추론과 정당화의 관점에서 교과서를 분석하기 위해 교과서의 탐구활 동, 정당화가 나타난 내용 설명, 문제를 분석 대상으로 한다. 먼저 교과 서 도입에 제시된 탐구활동은 학생들이 구체적, 경험적 활동을 할 수 있 는 기회를 제공해 더욱 쉽게 기하학적 성질에 대한 추측을 할 수 있도록 돕는다. 따라서 탐구활동이 추론과 정당화를 촉진하기 위해 어떻게 구현 되었는지 살펴볼 필요가 있으며, 탐구활동과 정당화가 나타난 내용 설명 을 함께 분석하여 구체적, 경험적 활동이 기하학적 성질에 대한 추론으 로 어떻게 연결되는지 살펴볼 필요가 있다. 또한 $\mathrm{Li}(2002)$ 는 교과서의

내용 뿐 아니라 문제에 대한 분석까지 이루어져야 학생들에게 제공된 학 습 기회에 대해 분석할 수 있음을 강조함에 따라 교과서의 기하영역에 제시된 문제를 포함하여 분석함으로써 교과서가 학생들에게 추론과 정당 화의 기회를 어떻게 제공하고 있는지 분석하고자 한다. 이를 분석하기 위해 중학교 기하영역에서의 추론과 정당화의 의미에 대해 살펴보고, 이 를 촉진하는 교수 • 학습 방법에 대한 연구 및 교과서 분석에 대한 연구 를 검토한다. 이를 바탕으로 교과서 분석틀을 마련하여 교과서의 기하영 역을 분석하고자 한다.
이와 같이 중학교 교과서의 기하영역에 포함된 탐구활동, 내용 설명과 문제를 추론과 정당화의 측면에서 분석함으로써 교과서에서 잘 구현된 특징과 그렇지 못한 특징을 추출할 수 있을 것이다. 이를 통해 교과서를 개발하는 연구자들에게 교과서 개발에 있어 고려해야 하는 사항을 제시 할 수 있을 것이며, 실제 교수 • 학습과정에서 교육과정의 변화에 따라 증명 대신 학생의 추측활동을 통한 추론 및 정당화를 지도하게 될 교사 들에게 교과서의 내용 및 문제를 다룰 때 고려해야 할 사항에 대한 함의 점을 제공할 수 있기를 기대한다.

2. 연구문제

이 연구에서는 추론과 정당화의 측면에서 2009 개정 교육과정에 따라 개발된 교과서의 기하영역을 분석하고자 한다. 이를 위해 2009 개정 교 육과정에서 증명이 약화되고 정당화가 특히 강조되고 있는 중학교 2 학 년 수학 교과서1)의 '삼각형의 성질'과 '사각형의 성질' 단원에 초점을 맞 춰 분석하고자 한다. 추론과 정당화의 관점에서 교과서를 분석하기 위해 분석대상을 2009 개정 교육과정에 따라 개발된 13 종의 중학교 2 학년

1) 2009 개정 교육과정은 학년군으로 제시되어 있어 편의상 1 학년, 2 학년, 3 학 년과는 다른 개념인 '중학교 수학 교과서 (1)(2)(3)'으로 구분 고시되었다(이환 철, 김선희, 고호경, 2012). 그러나 실제 학교 현장에서 중학교 수학 교과서 (1)이 2013 학년도 1 학년에서 사용되고 있음을 감안하여 중학교 수학 교과서 (2)를 편의상 중학교 2 학년 수학 교과서로 표현한다.

수학 교과서를 대상으로 하며, 각 교과서의 탐구활동, 추론과 정당화가 나타난 내용 설명, 문제를 분석한다. 탐구활동과 문제에 대해서는 학생 들에게 요구되는 수행에 대한 기대를 분석함으로써 기하학적 성질에 대 한 추론을 어떻게 요구하고 있는지 살펴보며, 탐구활동과 내용 설명 그 리고 정당화를 요구하는 문제에 대해 정당화의 유형을 분석함으로써 교 과서에 구현된 추론과 정당화를 살펴보고자 한다. 따라서 이에 대한 연 구문제는 다음과 같다.

첫째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역의 탐구활동과 문제는 학생들에게 추론의 기회를 어떻게 제공하는가?

둘째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역에서 사용된 정당화의 유형은 어떠한가?

이에 따라 Π 장에서는 추론과 정당화의 의미와 추론과 정당화에 초점 을 맞춰 중학교 기하영역의 교수 • 학습에 대해 살펴보고자 한다. 이를 통해 추론과 정당화의 관점에서 교과서를 분석함에 있어 분석 요소를 추 출하고자 한다. 또한 교과서 분석 관련 선행연구를 추론과 정당화에 대 한 교과서 분석 연구, 중학교 기하영역에 대한 교과서 분석 연구, 수행 에 대한 기대에 따른 교과서 분석 연구로 나누어 살펴봄으로써 선행연구 의 결과 및 제한점을 파악하여 이를 바탕으로 교과서 분석틀을 구성하고 자 한다. III장에서는 교과서 분석 대상 및 분석 단위 및 방법, 분석틀을 제시하여 구체적인 연구방법을 제시하고, IV장에서는 개발한 교과서 분 석틀을 토대로 ‘삼각형의 성질'과 ‘사각형의 성질' 단원을 분석한 결과를 제시한다. V 장에서는 연구결과를 바탕으로 논의하여 결론을 맺고 후속 연구의 방향에 대한 제언한다.
이를 통해 2009 개정 교육과정에 따라 개발된 13 종의 교과서의 기하 영역에 대한 추론과 정당화의 측면에서의 전체적인 특징과 함께 교과서

에 잘 구현된 점을 살펴봄에 따라 교과서를 개발하는 개발자들과 실제 교과서를 활용해 수업을 할 때 교사들이 고려해야 할 사항에 대한 시사 점을 제공할 수 있을 것으로 생각된다.

3. 용어의 정의

3.1. 탐구활동

일반적으로 탐구활동은 추측과 정당화의 과정을 통해 기존 문제에 대 한 새로운 해법 뿐 아니라 그로부터 새로운 수학 내용이나 문제를 끊임 없이 제기하고 해결해나가는 활동으로 정의된다(도종훈, 2007). 그러나 이 연구에서는 추론과 정당화의 측면에서 교과서를 분석하고자 하므로, 교과서에 제시된 탐구활동으로 의미를 제한할 필요가 있다. 특히, 교과 서에서 내용 도입을 위해 학습내용 앞에 제시된 활동은 학생들이 학습할 기하학적 성질에 대한 추측활동을 돕기 위한 목적으로 제시되어 있으므 로 탐구활동의 의미를 교과서에서 내용 도입을 위해 학습내용 앞에 제시 된 활동으로 그 의미를 제한한다. 각 교과서마다 내용 도입을 위해 제시 된 활동들은 '탐구활동', '탐구', '활동으로 알아보기', '탐구하기', '생각열 기', '개념 열기', '활동하여 알아보기', '생각해봅시다', '생각 펼치기', '활 동하기' 등으로 나타나 있다.

II. 문헌검토

이 장에서는 추론과 정당화의 관점에서 교과서를 분석하기 위한 분석 요소를 추출하기 위해 이와 관련된 문헌을 검토하고자 한다. 1절에서는 중학교 기하영역에서의 추론과 정당화를 다룬다. 이를 통해 추론과 정당 화의 의미를 살펴보고 이를 촉진하기 위한 교수 • 학습방법을 살펴본다. 2절에서는 교과서 분석과 관련된 연구를 검토하며, 중학교 기하영역에 대한 교과서 분석 연구, 추론과 증명에 대한 교과서 분석 연구, 수행에 대한 기대에 대한 교과서 분석 연구에 초점을 맞춘다.

1. 중학교 기하영역에서의 추론과 정당화

$\operatorname{NCTM}(2000)$ 의 추론과 증명 규준은 추론을 할 수 있다는 것은 수학 을 이해하는 데 핵심적이라는 것을 강조한다. 따라서 학생들은 수학적 아이디어를 개발하고 현상을 탐구하며 결과를 정당화하고 추론을 활용함 으로써, 수학이 합리적이라는 것을 이해하고 기대할 수 있게 해야 한다. 또한 NCTM에 따르면, 기하영역은 학생들의 추론 및 정당화 기술을 발 달시키는 데 필요하고, 학생들은 잘 설계된 활동, 적절한 도구, 교사의 지원과 함께 기하에 대해 추측하고 탐구할 수 있으며 이를 통해 추론하 는 것을 배울 수 있다. 따라서 이 절에서는 중학교 기하영역에서의 추론 과 증명, 정당화에 대해 살펴보고 추론과 정당화를 촉진하기 위한 방안 에 대해 살펴본다.

1.1. 추론과 증명

1.1.1. 추론

추론은 일반적으로 이미 알고 있는 판단으로부터 새로운 판단을 이끌 어내는 사고과정을 의미한다. 강미광, 이병수, 양규환(1997)은 수학 지 식 구성에 있어 추론의 역할을 논의하면서 수학적 추론을 아이디어를 일 반화하고 그 아이디어들이 어떻게 관련되는지에 대한 타당한 결론을 이 끌어내는 수학적 사고의 일부분으로 정의하였다. 또한 수학적 일반화와 타당성을 확인하기 위한 귀납적 추론과 연역적 추론, 수학적 대상의 구 조에 대한 통찰이나 이해를 위한 유비추론과 변환적 추론으로 추론의 유 형을 구분하였다. 서동엽(2010)은 추론을 수학에서의 핵심적인 사고방 법으로 보고, 수학적 추론을 이분법적으로 귀납적 추론과 연역적 추론으 로 보는 게 아닌 점진적인 발달과정으로 보고 이에 대한 추론의 지도방 안을 논의하였다.
1989년부터 2000년까지의 NCTM의 과정 규준의 발달을 살펴보면, 추 론은 1989년의 과정 규준인 문제해결, 연결성, 의사소통과 함께 포함되 어 제시된 후, 2000년에 발표된 NCTM의 과정 규준에도 포함되어 있어 추론이 꾸준히 강조되고 있음을 알 수 있다. 이 중 $\operatorname{NCTM}(2000)$ 의 추 론과 증명 규준을 살펴보면 추론과 증명을 수학의 가장 근본적인 측면으 로 인식할 수 있도록 한다. 또한 나름의 주장과 추측에 대하여 깊이 있 게 평가하고, 귀납적 추론과 연역적 추론 등 다양한 유형의 추론을 통해 수학적 논의를 형식화함으로써, 추론 능력을 발전시키고 확장해야 함을 강조한다. 이를 위해서는 중학생들의 나이와 흥미에 맞고, 추론을 통하 여 수학적 관계를 알아보도록 하는 과제를 해결하도록 하는 것은 무엇보 다 중요하다는 것 또한 강조한다.
이와 비슷한 맥락으로 2009 개정 수학과 교육과정에서는 문제해결, 의사소통, 추론을 포함하는 '수학적 과정'을 신설하였는데, 수학적 과정 으로써 추론은 수학적 현상이나 사실 등을 대상으로 그와 관련된 잠재적 인 수학적 규칙성이나 원리, 구조 등에 결론적으로 이르기 위한 논리적 사고 과정을 수행하는 것으로 정의된다(황선욱 외, 2011). 또한 '추론 능력 신장과 관련된 교수 • 학습 상의 유의점'을 제시하고 있는데 이를 살펴보면 다음 <표 $\Pi-1>$ 과 같다.
<표 II-1> 추론 능력 신장과 관련된 교수•학습 상의 유의점
자. 추론 능력을 신장시키기 위하여 교수 • 학습에서 다음 사항에 유의한다.
(1) 귀납, 유추 등을 통해 학생 스스로 수학적 사실을 추측하고, 이를 정당화할 수 있게 한다.
(2) 수학적 사실이나 명제를 분석하고, 수학적 관계를 조직하고 종합 하며, 학생 자신의 사고 과정을 반성하게 한다.
(3) 추론을 통해 합리적으로 사고하는 능력을 키우고, 일상생활에서 자신의 의견을 정당화할 때 적절한 근거에 기초하여 논지를 전개할 수 있게 한다.

위의 <표 $\Pi-1>$ 에 제시되어 있듯이 추론 능력 신장과 관련된 교수• 학습은 합리적으로 사고하는 능력을 키워 일상생활에서도 자신의 의견을 정당화할 때 적절한 근거를 이용해 주장을 할 수 있도록 함을 목표로 함 을 알 수 있다. 이를 위해 학생들이 귀납, 유추 등을 통해 수학적 사실 을 추측하고 이를 정당화하도록 하며, 추론 결과 및 과정에 대해 자신의 사고 과정을 반성해보도록 한다.
Stylianides(2009)는 '추론과 증명하기(reasoning-and proving)'이라 는 용어를 정의해 증명과 관련되는 추론을 정의하였다. 이는 주어진 패 턴 속에서 수학적 관계를 일반화하는 것, 추측을 만드는 것, 정당화하거 나 증명하는 것, 정당화 또는 증명에 대해 평가하는 것을 포함한다. 이 는 정당화와 관련된 수학적 추론의 과정을 설명하고 있는 것으로 볼 수 있으며, 2009 개정 교육과정에 제시된 '추론 능력 신장과 관련된 교수• 학습 상의 유의점'과 비교해봤을 때 추측을 만들고, 이를 정당화하며 이 에 대한 사고과정의 반성을 하는 측면에 있어 유사하다고 볼 수 있다.
Mullis 외(2009)가 제시한 TIMSS 2011의 인지적 영역 분석틀에서 '추론’을 살펴보면 추론은 논리적, 체계적 사고에 대한 능력 뿐 아니라 비정형문제해결에 사용될 수 있는 패턴과 규칙성에 기초한 직관적인 추 론과 귀납적인 추론을 모두 포함하여 정의된다. 따라서 이 연구에서는

중학교 교과서의 기하영역 분석을 위하여 정당화와 관련된 추론의 과정을 고려하고 있는 Stylianides(2009)의 정의와 TIMSS 2011의 정의를 적용 하여 추측 만들기, 수학적 관계의 일반화, 정당화, 정당화의 평가 등의 정당화와 관련된 추론과 비정형문제해결에 사용되는 추론으로 한정하여 기하영역에 대한 추론을 정의하고자 한다.
한편, 추론을 지도하는 데 있어 우정호, 박미애, 권석일(2003)은 귀납 적 추론과 연역적 추론 사이에는 큰 간극이 있어 실험적, 귀납적 정당화 방식과 수학적 증명을 매개할 수 있는 중간 단계의 이행과정을 확인하고 그 수준을 구체화할 필요가 있다는 것을 강조한다. 이와 비슷한 맥락에 서 서동엽(2006)은 수학에 대한 형식과 대상의 관점에서 추론 지도의 수준을 논하며, 학교 수학에서 추론 지도의 수준을 보다 상세하게 구분 하고자 하였다. 귀납 추론과 형식적 연역 추론의 매개 단계로서 구체적 조작이나 감각 경험과 관련된 직관적 증명의 수준을 설정하는 것이 적절 하다고 주장하였으며, 이 때 활동 경험으로부터 일반성을 통찰하는 것이 중요하다고 하였다. 이에 따라 추론 지도의 수준을 구체적 사례를 통한 귀납 추론을 지도한 후 구체적 사례로부터 일반성을 인식하는 수준을 거 쳐 형식적 언어를 통한 연역 추론의 수준을 거쳐 지도해야 한다고 주장 하였다. 또한 Miyazaki(2000)의 연구에서는 증명의 수준을 설정하기 위 한 내용(연역 추론, 귀납 추론)과 표현(언어, 그림, 조작 가능한 대상)으 로 나누어 4 가지 기본 수준을 설정하였다. 즉, 논증의 기능적 언어를 이 용하는 연역 추론, 그림이나 조작 가능한 대상을 이용한 연역 추론, 그 림이나 조작 가능한 대상을 이용한 귀납 추론, 논증의 기능적 언어를 이 용하는 귀납 추론이 증명의 4 가지 수준으로 제시되었다.
지금까지 살펴본 연구들은 추론의 중요성을 강조하고 있음을 알 수 있 다. 또한 귀납적 추론과 연역적 추론 사이의 연결은 학생들에게 쉽지 않 기 때문에 중간단계의 이행을 도와야 하며 이를 위해 학생들의 수준과 흥미에 맞는 추론 과제가 제공되어야 함을 알 수 있다. 따라서 교과서에 제시된 활동 및 과제가 추론 측면에서 어떻게 구현되었는지 살펴볼 필요 가 있을 것이다.

1.1.2. 증명

수학은 본질적으로 증명에 관한 것으로, 증명은 수학적 진리를 발견하 는 맥락에서의 과정이자 수학적 진리가 참임을 보장하는 수단이고, 수학 사회에서 공적인 지식으로 받아들이는 과정에서 수학적 진리에 대한 자 기 확신과 이해, 타인에 대한 설득의 수단이기도 하다. 그러나 증명이 수학적 사고활동의 중요한 역할을 함에도 불구하고 학생들은 증명을 어 려워하며 증명방법을 전혀 탐색하지 못하고 명제의 해석을 어려워한다. 또한 정당화의 수단으로써 증명의 한계를 느끼며 반드시 기호를 사용해 야 한다는 데 많은 어려움을 겪는다(나귀수, 1998).

이는 현재의 증명 지도 수준보다 낮은 수준의 추론 지도에 대한 필요 성을 제기하고 있는 것으로 해석될 수 있다. 2009 개정 교육과정에서도 이러한 필요성이 반영되어 기하학적 성질을 이해하고 습득하는 방법을 제시함에 있어 형식적이고 엄밀한 증명 대신 학생의 직접적인 활동을 통 한 추측활동을 강조하고 있다(신이섭 외, 2011). 따라서 처음부터 학생 들에게 형식적 논증을 가르치지 않고 직관적 증명을 거쳐 점진적으로 형 식적 증명으로 나아가도록 해야 하며, 이러한 과정에서 직관적인 방법을 사용하고 수학의 응용적 측면을 소재로 사용하며 발생적 상황으로부터 출발함으로써 탐구와 발견의 정신을 추구할 필요가 있음을 알 수 있다 (우정호, 권석일, 2006).
또한 학생들이 증명에 대해 느끼는 어려움은 연역적이고 형식적인 증 명을 강조해 온 증명관에서 벗어나 학생들이 갖고 있는 정당화 유형부터 증명이 시작되어야 할 필요성을 제기하는 것이라 할 수 있다(김민주, 권 오남, 2006). 이와 비슷한 맥락으로 조완영과 권성룡(2001)은 연역적이 고 형식적이며 엄밀한 증명을 강조하는 전통적인 증명관에서 벗어나 다 양한 증명의 역할을 반영하고 수학교실 사회의 합의에 의해 증명의 타당 성에 대한 기준과 엄밀성의 수준이 결정될 수 있는 포괄적인 증명의 개 념을 받아들일 필요가 있다고 주장한다.

이러한 포괄적인 증명의 개념에 대한 연구들을 살펴보면 다음과 같다.

먼저 Tall(1995)은 다양한 수학적 표현을 이용해 할 수 있는 다양한 종 류의 증명을 소개하였다. 이는 학생 개인의 인지적 발달에 맞는 증명방 법으로 지도하기 위해 다양한 표현을 이용하여 설명해야 함을 강조한다. 그러한 예로서 소개된 증명은 활동적 증명, 시각적 증명, 조작적 증명이 있다. 활동적 증명은 어떤 것의 참임을 물리적 행동을 포함하여 증명하 는 것을 의미한다. 이는 시각적, 언어적 표현 뿐 아니라 요구되는 관계 를 보이기 위한 물리적 움직임도 요구된다. 예를 들면 이등변삼각형의 두 밑각이 같음을 보이기 위해 대칭축을 기준으로 두 변이 포개어지도록 접는 것을 들 수 있다. 또한 시각적 증명은 시각적 이미지를 이용한 증 명을 의미하며 보통 활동적 요소 중 언어를 포함한다. 예를 들어 아래의 [그림 $\Pi-1$]과 같이 피타고라스의 정리의 시각적 증명을 생각해볼 수 있다. 마지막으로 조작적 증명은 대수식과 같은 기호를 조작함으로써 정 당화하는 방법을 뜻한다.

[그림 $\Pi-1]$ 시각적 정당화의 예(Tall, 1995: 5)

이와 비슷한 맥락에서 장혜원(2013)은 시각적 표현을 이용해 기하 증 명을 한 Byrne의 'Euclid 원론'에 사용된 증명 방법을 소개하고 이를 수 업에 적용하였다. Byrne의 방법은 다음 [그림 $\Pi-2$]와 같이 증명의 아 이디어와는 별개로 문자 및 기호 사용에서 비롯되는 어려움을 극복하고 자 증명에 문자 대신 채색된 그림이라는 시각적 표현을 이용한 것이다.

[그림 II-2] Byrne의 증명방법의
예(장혜원, 2013: 185)

이러한 방법은 시각적 표현의 직관성에 근거해 증명을 제시할 때 이해 의 측면에서 학생들에게 도움을 주며, 색깔에 의해 자명하게 드러나는 도형 요소 사이의 관계에 대한 시각적 추론이 활발히 나타나도록 도울 것이다. 또한 홍진곤과 권석일(2004)은 포괄적 증명의 개념으로 실험적 이고 귀납적인 방식으로 이루어지는 정당화와 수학적으로 완전히 형식화 된 수준의 증명 사이에, 이 두 가지와 분명히 구별되어 논의될 수 있는 중간 수준의 증명 활동이라 할 수 있는 전형식적 증명의 개념을 소개하 였다. 전형식적 증명은 특수한 사례만이 아니라 일반적이고 보편적인 사 실을 정당화하며, 증명의 대상은 완전히 형식적으로 추상화되지 않아 감 각으로 지각할 수 있다. 또한 증명에 사용되는 언어는 형식적 증명에서 기능하는 논리적 언어를 제외한, 일상 언어나 구체적으로 조작 가능한 그림 등의 대상이 사용된다. 이를 교수학적으로 활용한다면 증명의 예비 단계 또는 증명의 발생적 맥락을 탐구하는 단계에서 그 학습을 돕는 역 할을 수행할 수 있다.
지금까지 살펴본 연구들을 통해 학생들이 증명에서 느끼는 어려움을 극복할 수 있도록 돕기 위해 학생들의 인지발달에 따라 직관적 증명에서 점차 형식적인 증명으로 나아갈 수 있도록 해야 함을 알 수 있다. 이를 위해 구체적 조작 활동, 지각적 활동과 같은 탐구활동과 시각적 표현을 포함한 다양한 표현을 이용한 여러 가지 방법을 활용해야 함을 알 수 있 다. 따라서 학생들의 증명을 돕기 위해 교과서에서 직관적 증명이 점진 적인 과정을 통해 형식적인 증명으로 발달하도록 구현되어 있는지 살펴 볼 필요가 있다.

1.2. 정당화

정당화는 학생들이 엄밀하고 형식적인 증명 이외에도 다양한 형태로 수확적 사실이 참임을 설명하고 다른 사람을 설득시킬 수 있어야 한다는 논의에서 나타났다. 이를 구체적으로 살펴보기 위해 정당화의 목적과 의 미를 알아보고, 정당화의 유형에 대해 살펴본다.

1.2.1. 정당화의 목적과 의미

Staples, Bartlo와 Thanheiser(2012)에 따르면, 정당화는 많은 목적을 가진다. 정당화는 주장의 타당성을 확인하기 위해, 결과 또는 현상에 대 한 통찰을 설명하거나 제공하기 위해, 지식을 체계화하기 위해 사용된 다. 여기서 체계화의 역할은 증명을 통해 여러 가지 결과들을 공리, 정 리, 정의 등을 연역적인 체계로 조직화하는 것을 의미한다. 이는 중학교 교육과정에서는 나타나지 않는다. 탐구의 목적으로써의 정당화는 추론의 형태를 사용하여 주장이 참임을 설명하는 것으로 정의된다. 이 때 주장 에 사용된 추론은 경험적이거나 예에 기반한 추론도 추론의 형태로서 허 용한다. 비록 많은 예들을 통한 경험적 주장은 주장의 참임을 보장하지 못하지만 이러한 추론의 형태는 주장이 참임을 설명하는 데 사용될 수 있다. 즉 정당화는 증명과 같은 목적으로 주어진 명제의 참을 검증하는 것이지만, 증명의 발견과 관련된 다양한 활동들을 모두 허용한다고 볼 수 있다.
또한 Stylianides(2009)는 정당화의 목적을 설명, 확인, 반증, 새로운 지식의 생성으로 제시하였다. 설명을 위한 정당화는 참, 거짓에 대한 통 찰을 제공하는 것이며, 확인을 위한 정당화는 주어진 명제의 참임을 확 인하는 것을 의미한다. 반증을 위한 정당화는 주어진 명제의 거짓을 확 인하는 것, 새로운 지식의 생성은 정당화를 통한 지식의 생성을 의미한 다. 이 중 정당화를 통한 새로운 지식의 생성은 Lakatos의 추측과 반박 에 의한 지식의 생성과 비슷한 의미를 나타내며, 반증은 추측이 거짓임

을 보이는 것을 의미한다. 반례를 보이는 것은 수학에서 일반적인 반증 의 방법이지만 이는 중학교 교과서에서는 거의 제시되지 않는다(이종희, 이지연, 2009). 따라서 Staples 외(2012)의 연구와 Stylianides(2009) 의 연구를 종합해봤을 때 중학교 교과서에서 사용될 수 있는 정당화의 목적은 주장이 참임을 확인하는 확인을 위한 정당화와 결과에 대한 설명 을 제공함으로써 참, 거짓에 대한 통찰을 제공하는 설명을 위한 정당화 를 생각해볼 수 있다.

정당화의 의미에 대해 김정하(2010)는 논리적, 개인적, 사회적 측면으 로 나누어 살펴보았다. 첫째, 정당화의 논리적 측면은 추측이 참임을 보 이기 위해 다양한 표현 방법을 이용하여 근거를 개인적인 논거 형식으로 제시하는 체계화과정을 의미한다. 넓은 의미로는 개인적 판단에 따라 타 당성이 확보된 모든 사고과정을 뜻하며, 교육상 의미로는 관찰과 암시, 검증이라는 자발적인 조정에 의한 사고과정이다. 좁은 의미로는 제한된 범위에서 논리법칙에 따라 논증하는 것으로 제한적으로 엄밀한 수학적 증명을 위한 사고과정으로 볼 수 있다. 즉, 정당화의 논리적 의미는 추 측이 참임을 확신하고자 할 때 귀납적인 사고 방법에 의해, 예를 확장해 감에 따라, 그림이나 활동과 같은 다양한 방법을 이용하는 등 학생의 발 달 단계에 부합하는 논리까지 포함된다고 볼 수 있다. 둘째, 정당화의 개인적 측면은 어떤 명제의 진위나 자신의 해결 방법에 대해 자신을 확 신시키는 과정을 의미한다. 마지막으로, 정당화의 사회적 측면은 수학 공동체를 설득시키고 확신시키기 위한 의사소통 과정을 의미한다. 이종 희 (2003)는 정당화를 형식적 증명을 포함하여 학생들이 경험, 연역적인 추론, 또는 교사나 교과서의 권위에 의해 심리적으로 수학 명제가 참임 을 확신하고 다른 사람을 설득할 때 사용하는 방법이라고 정의하였다. 이는 김정하(2010)의 정당화의 의미에서 논리적 측면과 사회적 측면의 정당화에 대한 설명과 유사함을 알 수 있다.

1.2.2. 정당화의 유형

$\operatorname{Bell}(1976)$ 은 정당화를 다른 사람들 사이에서 자신의 주장을 타당하 게 하고, 어떤 결과나 현상으로 통찰을 제공하며, 지식을 체계화하는 수 단으로 보고 증명 문제에 사용된 학생들의 정당화를 2 가지 유형으로 나 누었다. 이는 확신을 위해 몇 가지 예를 사용한 경험적 정당화와 자료로 부터 결론을 연결하기 위해 연역법을 사용한 연역적 정당화로 이루어진 다. 이러한 $\operatorname{Bell}(1976)$ 의 정당화의 유형은 담화 속에서 보이는 학생들의 반응을 관찰하여 정당화의 수준 및 유형을 보다 세분화하여 연구되어 왔 다(김정하, 2010; 김수철, 2013; Simon \& Blume, 1996; Sowder \& Harel, 1998; Marrades \& Gutiérrez, 2001 등). 이를 자세히 살펴보면 다음과 같다.
Simon과 Blume(1996)은 학생들의 반응에 나타나는 정당화의 수준을 5 가지로 나누었는데 다음 <표 $\Pi-2>$ 와 같다.
<표 II-2> 정당화의 수준(Simon, Blume, 1996)

수준	설명
1	정당화 없음(반응에 정당화가 들어있지 않음)
2	외부적 권위에 의한 정당화(공인된 사람에 의한 정당화)
3	경험적 증거에 의한 정당화(특정 예를 통한 정당화)
4	일반적 예에 의한 정당화(특정 예에 대한 연역적 정당화)
5	연역적 정당화(특정 예와는 별개로 연역적 논증을 제시)

위의 <표 $\Pi-2$ >를 통해 Simon과 Blume(1996)의 정당화의 수준은 $\operatorname{Bell(1976)}$)의 정당화의 유형보다 더 세분화되었음을 알 수 있다. 특히 학생들의 정당화를 관찰하면서 정당화가 나타나지 않거나 외부적 권위에 의한 정당화를 추가하였음을 알 수 있으며, 예를 사용해 어떻게 정당화 하였는지에 따라 경험적 정당화와 연역적 정당화가 세분화되어 제시되었 음을 알 수 있다.
Sowder와 $\operatorname{Harel}(1998)$ 은 수학적 증명 스키마를 설명하였는데, 학생들 의 증명 스키마를 외부적인 기반에 의한 증명 스키마, 경험적 기반에 의

한 증명 스키마, 분석 기반 증명 스키마로 구분하였다. 첫째, 외부적인 기반에 의한 증명 스키마는 권위에 의한 증명 스키마, 관습에 의한 증명 스키마, 기호적 증명 스키마로 나누어진다. 권위에 의한 증명 스키마는 증명을 할 때 교과서, 교사의 말 또는 친구의 말을 이용해 증명하는 것 으로 결과로 이끄는 추론의 세부적인 사항은 확인하지 않고 다른 사람의 결과를 그냥 받아들이는 것을 의미한다. 관습에 의한 증명 스키마는 추 론이 담고 있는 의미보단 추론의 형태에 의해 주장의 정확성을 판단하 며, 기호적 증명 스키마는 의미 없는 기호의 조작에 의한 증명을 의미하 며, 이는 논증의 타당성을 논증 형식이나 의미 없는 기호 조작에 지나치 게 의존한다는 의미가 함축되어 있다.
둘째, 경험적 증명 스키마는 지각적 증명 스키마와 예에 기반한 증명 스키마로 나누어진다. 지각적 증명 스키마는 학생들에게 친숙한 몇 가지 그림을 통해 참임을 증명하는 것이며, 예에 기반한 증명 스키마는 한 개 또는 그 이상의 예를 사용하여 추측을 평가하고 확신하는 증명이다.
마지막으로, 분석적 증명 스키마는 수학자나 수학교사들이 일반적으로 증명으로 인정하는 형태로서 변환적 증명 스키마와 공리적 증명 스키마 로 나누어진다. 변환적 증명 스키마는 상황의 일반적인 측면과 관계되는 학생들의 정당화와 관련된 증명으로 일반적인 추측에 대한 추론을 포함 한다. 공리적 증명 스키마는 무정의 용어, 정의, 가정, 정리를 포함하는 증명을 의미한다. 이는 이전의 정당화의 유형 및 수준을 나눈 연구들에 비해 더 세분화되었음을 알 수 있으며, 무정의 용어, 정의, 공리 등을 사 용하는 공리적 증명 스키마까지 포함하고 있음을 알 수 있다.
Marrades와 Gutiérrez(2001)은 학생들의 정당화를 분석하는 데 있어 정당화의 과정과 결과를 모두 고려하여 나누었다는 점에서 이전의 연구 들과 차별성을 갖는다. 즉, 정당화의 유형 뿐 아니라 추측의 생성, 정당 화의 고안, 정당화하기와 같은 학생들의 모든 활동을 포함하여 정당화를 분류하였다. Marrades와 Gutiérrez(2001)의 정당화의 유형은 Simon과 Blume(1996)의 연구와 비슷한 맥락으로 예를 사용했느냐 그렇지 않았 느냐에 따라 경험적 정당화, 연역적 정당화가 보다 세분화된다.

경험적 정당화는 확신을 위해 예를 사용한다. 학생들은 하나 또는 그 이상의 예들을 통해 규칙성을 인식한 후 추측을 하며, 추측을 정당화하 기 위해 예를 사용한다. 문제의 진술에 추측이 포함될 때 학생들은 오직 추측의 참, 거짓을 확인하기 위해 예를 사용한다. 이 때, 경험적 정당화 는 다시 소박한 경험주의, 결정적 실험, 포괄적 예에 의한 정당화로 나 뉜다. 소박한 경험주의는 하나 또는 몇 개의 예를 확인함으로써 추측을 정당화한다. 결정적 실험은 추측이 참임을 보이기 위해 조심스럽게 선택 된 예를 사용하며 일반화에 대한 필요성을 인식한다. 포괄적인 예에 의 한 정당화는 추측을 확인하기 위해 가능한 모든 경우의 대표적인 예를 선택하는 경우이다. 추론을 이용하여 추측의 타당성을 설명하려고 하지 만 포괄적인 예를 통해 추측의 참을 고려한다.

연역적 정당화는 맥락에서 벗어나 일반적인 방법으로 추측을 입증하는 것을 목표로 하며, 정당화를 조직하는 데 있어 예를 사용하는지 그렿지 않은지에 따라 사고실험과 형식적 연역으로 분류된다. 사고실험은 경험 에 의한 정당화에서 벗어난 형식화된 식을 사용하거나 변형함으로써 정 당화하는 기호적 계산 또는 개념적 증명의 형태이다. 형식적 연역은 특 정한 예의 도움 없이 정신적 조작에 근거하는 정당화를 의미한다.

이제 국내 정당화의 유형 및 수준과 관련된 연구를 살펴보면 다음과 같다. 김정하(2010)는 초등학생들의 정당화 단계의 특징을 고찰하였다. 이를 위해 요소별, 학생별, 과제별 정당화 분석을 실시하였는데, 정당화 분석틀의 요소 중 정당화의 단계는 Simon과 Blume(1996)의 정당화 수 준과 Sowder와 $\operatorname{Harel}(1998)$ 의 증명 스키마를 근거로 하여 구성하였다. 이를 자세히 살펴보면 다음 <표 $\Pi-3>$ 과 같다.
<표 II-3> 정당화의 단계(김정하, 2010)

단계	유형	
0	정당화 없음	
1	외적 확신에 의한 정당화	권위적 정당화 관습적 정당화 기호적 정당화
2	경험적•귀납적 정당화	지각적•활동적 정당화 - 평범한 예에 의한 정당화 - 결정적 예에 의한 정당화
3	포괄적 예를 통한 연역적 정당화	포괄적 예에 의한 정당화 - 시각적 예에 의한 정당화
4	단순 연역적 정당화	- 식의 조작에 의한 정당화 - 단순 연역적 정당화
5	형식적•연역적 정당화	- 가설 연역적 정당화 - 형식적 정당화

김수철(2013)은 정당화 지도를 위한 수업 모형 개발을 위하여 김정하 (2010)의 연구에서 정당화가 나타나지 않는 0단계와 외부로부터의 권위 에 의해 정당화를 시도하는 1 단계를 제외하고 다음 <표 $\Pi-4>$ 와 같이 정당화의 단계 및 유형을 제시하였다.
<표 Π-4> 정당화 유형(김수철, 2013: 58)

단계	유형	
1	경험적 • 귀납적 정당화	• 지각적, 활동적 정당화 •평범한 예에 의한 정당화
2	예에 의한 정당화 예에 의한 정당화	

서울대학교
sou wow umerin

경험적•귀납적 정당화는 시각 자료나 조작 활동(종이접기, 작도, 기하 소프트웨어 등을 이용하는 활동) 등을 통해 도형의 성질을 발견하고 발 견된 성질에 대하여 그것이 참이 된다는 것을 스스로 확인하거나 다른 사람에게 설명하는 단계를 의미한다. 이 단계에는 지각적 - 활동적 정당 화와 평범한 예에 의한 정당화, 극단적 예에 의한 정당화로 나뉜다. 예 를 들어, 이등변삼각형의 꼭지각의 이등분선이 밑변을 수직 이등분함을 보일 때 종이접기를 통해 참임을 설명하는 것은 지각적 - 활동적 정당화 에 해당된다. 또한 일반적인 형태의 삼각형을 이용해 삼각형의 외심을 확인하여 이를 바탕으로 설명하는 것은 평범한 예에 의한 정당화의 예로 볼 수 있다. 그리고 삼각형의 외심을 확인하고자 할 때 직각삼각형과 같 은 특수한 형태의 삼각형을 이용해 외심을 확인하는 사례가 극단적 예에 의한 정당화의 유형으로 볼 수 있다.
예에 의한 정당화는 예를 사용하여 연역적으로 설명하는 정당화를 의 미한다. 이 유형은 시각적 예에 의한 정당화, 포괄적 예에 의한 정당화 가 포함된다. 이는 김정하(2010)의 연구에서 포괄적 예를 통한 연역적 정당화와 동일한 의미로 해석된다. 예를 들어 평행사변형의 두 쌍의 대 각의 크기가 서로 같음을 정당화할 때 다음 [그림 $\Pi-3$] 과 같이 평행사 변형을 그리고 $\angle C=180^{\circ}-a-b$ 임을 설명해 $\angle A=\angle C$ 임을 보인다. 이 는 포괄적 예와 시각적 예에 의한 정당화의 유형이다.

[그림 $[\mathrm{I}-3$] 포괄적 예 및 시각적 예를 통한 정당화의 사례 (김수철, 2013: 55)

준연역적 정당화는 형식적인 증명은 아니지만 결론을 연역할 때 논리 적인 오류 없이 명제가 성립함을 타당하게 설명할 수 있는 것을 의미한 다. 이 유형은 식의 조작에 의한 정당화, 논리적 설명에 의한 정당화가 포함된다. 예를 들어 두 직각삼각형에서 빗변의 길이와 다른 한 변의 길 이가 각각 같으면 서로 합동임을 보일 때 주어진 두 직각삼각형의 빗변 이 아닌 두 변이 서로 일치하도록 뒤집어 이등변삼각형을 만든 다음, 이 등변삼각형의 성질을 이용하여 두 밑각의 크기가 같음을 수학적 기호를 사용하지 않고 설명함으로써 합동임을 보인다면 이는 논리적 설명에 의 한 정당화가 활용된 예이다. 또한, 식의 조작을 활용하여 연역적인 결론 을 도출하는 정당화가 식의 조작에 의한 정당화이다.
형식적•연역적 정당화는 어떤 인정된 형식에 따라 논리적으로 수학적 증명을 시도하는 것을 의미한다. 형식적 증명 유형이 여기에 속하는데, 평행사변형의 두 쌍의 대각의 길이가 같음을 보이기 위해 수학적 기호를 사용하여 삼각형의 합동조건을 이용하는 등 형식적이고 연역적인 방법으 로 주어진 명제가 참임을 증명하는 것을 예를 들 수 있다. 형식적•연역 적 정당화의 의미에서 김정하(2010)의 연구에서 제시되었던 부정에 의 한 증명, 수학적 귀납법 등을 포함한 가설 연역적 정당화는 제외되었는 데, 이것은 고등학교 이상의 교육과정에 포함된 내용이기에 중학교에서 의 정당화 지도를 위한 수업 모형을 살펴보기에 적합하지 않아 제외되었 음을 알 수 있다.
이상의 논의에서 알 수 있듯이, 정당화의 유형은 $\operatorname{Bell(1976)}$ 의 경험적 정당화와 연역적 정당화에서부터 점차 세분화되어 경험적 정당화와 연역 적 정당화 사이의 중간 단계의 정당화를 포함하여 설명하고 있음을 알 수 있다. 이처럼 다양한 수준에서 여러 단계로 정당화 유형을 분류하고 있는 것은 그만큼 학생들의 정당화하는 방법이나 사고의 수준이 다양하 다는 것을 나타내는 것으로 볼 수 있다(이경화, 최남광, 송상헌, 2007). 또한 앞에서 살펴본 연구들은 형식적 증명 뿐 아니라 추측이 참임을 확 신하고자 할 때 학생들의 다양한 수준에 맞게 귀납적인 사고 방법, 예의 확장, 그림이나 활동을 이용하는 등 다양한 방법을 이용한 논리적 활동

까지 모두 포함하는 것으로 정당화를 해석하고 있음을 알 수 있다. 그러 므로 이 연구에서는 정당화의 의미를 경험적, 귀납적인 방법부터 형식 적, 연역적인 방법까지 다양한 방법을 사용하여 자신의 추론이 참이라는 것을 설명하는 과정으로 정의하고자 한다.

1.3. 추론과 정당화의 교수•학습방법 관련 선행연구

중학교 기하영역에서의 추론과 정당화를 촉진시키기 위하여 교과서가 어떻게 구현되었는지 살펴보기 위해 추론과 정당화의 교수 • 학습방법과 관련된 선행 연구들을 살펴볼 필요가 있다. 이를 살펴보면 다음과 같이 세 가지 측면을 강조하고 있음을 알 수 있다.
첫째, 추론과 정당화를 촉진시키기 위해 형식적 정당화 이전의 구체적 조작활동을 경험하도록 한다. 이러한 맥락은 2009 개정 교육과정의 '개 념, 원리, 법칙, 기능의 교수 • 학습 상의 유의점'에도 제시되어 있다. 이 를 통해 학생들이 새로운 개념 및 원리를 학습할 때 구체적 조작활동을 통하여 학생 스스로 개념, 원리, 법칙을 발견하고 이를 정당화하도록 함 을 강조함을 알 수 있다. 즉, 이를 기하영역의 추론과 정당화에 적용해 봤을 때 구체적 조작활동을 통해 도형의 성질을 발견하고 이를 정당화하 도록 해야 한다.
신현용(2004)은 학교수학에서 증명지도의 문제점을 정당화의 측면에 서 분석하고 정당화 지도방법에 대해 논의하였다. 이에 대해 종이 접기 등 다양한 실험, 관찰, 컴퓨터 프로그램 등을 통하여 여러 가지 정당화 기법에 익숙해지도록 다양한 정당화를 지도해야 함을 강조한다. 또한 조 한혁, 안준화, 우혜영(2001)은 논리와 추론을 위한 의미 있는 문맥을 제 공하는 방법 중 하나로 중학교에서 다루는 도형과 그의 성질을 초등학교 에서 다뤘던 방법으로 탐구하도록 하는 것을 제안하였다. 이것은 초등 수준에서 증명의 전 단계로 도형의 성질을 연역적으로 받아들이고 이해 하기 전에 중간단계로 도형의 성질을 탐구하였던 것과 같이 중학교에서 도형의 성질을 다루는 데 있어 동일하게 논리와 추론을 도입하는 것을

의미한다. 즉, 형식적이고 연역적인 증명에 의해 도형의 성질을 학습하 는 대신 초등의 사고 수준을 따르는 조작과 활동을 통해 도형의 성질을 자연스럽게 발견하고, 수용할 수 있는 조작 환경을 만들어 제공하는 것 을 뜻한다고 볼 수 있다.
둘째, 기하영역에서 추론과 정당화를 촉진하기 위한 방안으로 도형을 관찰하며 이를 바탕으로 도형의 성질을 발견하고 탐구하도록 도울 수 있 도록 컴퓨터 소프트웨어의 활용을 강조한다. 이러한 맥락은 2009 개정 교육과정에서 '기하영역의 대한 교수 • 학습 상의 유의점'에서도 강조되 고 있다. 2009 개정 중학교 교육과정에서는 기하영역에서 추론을 지도 할 때 유의해야 할 점으로 공학적 도구나 다양한 교구를 활용하여 도형 의 성질을 추론할 수 있게 할 것을 제시한다. 즉, 추론을 촉진시키기 위 해 공학적 도구나 교구를 활용해 학생 스스로 기하학적 성질을 추측하게 하고 이를 바탕으로 추론활동을 할 수 있게 도와주어야 함을 강조한다고 볼 수 있다.
이와 비슷한 맥락으로 박주희(2004)는 점진적인 구성의 증명지도를 위하여 증명을 완성하기 이전에 추측을 할 수 있는 탐구활동을 통하여 증명의 필요성을 생각할 수 있도록 하며, 탐구의 과정에서 컴퓨터 소프 트웨어의 활용으로 발견의 기회를 풍부하게 하고 직관적 이해를 도울 수 있도록 할 것을 권장하였다. 또한 류희찬과 조완영(1999)은 교과서에 제시된 증명 문제는 학생들로 하여금 처음부터 형식적인 증명을 시도할 것을 요구하고 있음을 비판하고 그러한 문제를 학생들이 추측을 하도록 하고 이를 어떻게 정당화할 것인지 생각할 수 있게 제시할 필요가 있다 고 주장하였다. 이를 위해 몇 개의 사례를 토대로 실험, 측정, 시각적으 로 정당화하는 과정에서 탐구형 소프트웨어의 유용성을 강조하였는데 이 는 평면도형과 공간도형에 대한 학생들의 경험을 강화시켜 줄 수 있으며 다양한 예를 쉽게 만들어주고 도형의 중요한 요소를 잃지 않으면서 도형 을 자유자재로 변형시킬 수 있음을 제시하였다.
Marrades와 Gutiérrez(2001)은 동적기하환경에서 도형에 대한 실험을 하고 이에 대한 즉각적인 확인을 통하여 학생들이 연역적 정당화를 하기

전에 경험적 탐구를 할 수 있다는 점을 강조하였다.
마지막으로 추론과 정당화의 과정에서 시각적 이미지의 활용을 강조한 다. 류현아와 장경윤(2009)은 기하문제해결에서 시각화 과정을 분석하 여 기하 추론교육에 시사점을 얻고자 하였다. 시각적 이미지는 기하적 추론을 용이하게 도울 수 있다. 이는 개념과 명제들 사이의 형식적 관계 에 대한 이해를 발달시키기 위해 이미지 스키마의 내적인 구조가 구성적 으로 확장될 수 있기 때문이다. 평면도형을 지도할 때 학생들이 도형의 구조를 명확히 파악하고 부분도형들 간의 관련성을 보다 잘 이해할 수 있도록 교사는 도형에 대한 이해에 유념하여 시각화를 강조해야 한다고 하였다. 또한 장혜원(2013)과 Tall(1995)은 시각적 표현을 이용한 증명 방법을 소개하였는데 이를 통해 도형 요소 사이의 관계에 대한 시각적 추론이 활발히 나타나도록 도울 수 있다는 것을 강조하였다.
지금까지 추론과 정당화를 촉진할 수 있는 교수 • 학습 방법에 대한 연구들을 살펴보았다. 이는 연역적 정당화 이전에 구체적 조작활동 등을 이용하여 다양한 정당화의 유형을 경험하도록 하며, 기하학적 성질을 추 측하고 탐구하도록 하기 위한 컴퓨터 소프트웨어의 활용을 강조한다. 또 한 추론과 정당화의 과정에서 시각적 이미지의 활용을 강조하고 있음을 알 수 있다. 따라서 추론과 정당화의 측면에서 교과서를 분석하기 위해 이러한 요소들이 교과서에서 어떻게 활용되고 있는지 살펴볼 것이다.

2. 교과서 분석 관련 선행 연구

이 연구는 2009 개정 교육과정에 따라 개발된 교과서에서 중학교 2학 년 수학 교과서의 기하단원인 '삼각형의 성질'과 '사각형의 성질'에 초점 을 맞춰 추론과 정당화활동을 살펴보고자 한다. 따라서 교과서 분석에 있어 분석 기준을 마련하기 위해 이와 관련된 선행 연구를 살펴볼 필요 가 있다. 이를 위해 이 절에서는 중학교 기하영역에 대한 교과서 분석 관련 연구, 추론과 증명에 대한 교과서 분석 관련 연구, 수행에 대한 기 대에 대한 교과서 분석 관련 연구로 나누어 살펴본다.

2.1. 중학교 기하영역의 교과서 분석 선행 연구

중학교 기하영역에 대한 교과서 분석 관련 국내 연구들은 크게 다음과 같이 5 가지로 나눌 수 있다. 첫째, 외국과의 교과서 비교를 통한 시사점 을 도출한 연구들이 있다. 이것은 외국 교과서의 비교를 통해 교과서의 기하영역에 대한 개선점을 모색한 연구로, 기하영역의 교과서 분석에서 가장 많은 비중을 차지했다.

먼저 최용환(2012)은 한국과 중국의 수학 교과서를 기하영역을 중심 으로 비교하였다. 교과서 내용 구성 방식(본문 내용과 문제 제시 방식, 학습 주제의 도입 시기, 단원 구성방식)과 문제 유형(예제와 문제, 연습 문제의 비율), 기하 학습내용의 차이를 살펴보았다.
정소영(2012)은 한국과 MiC 교과서의 교수학적 변환방식을 비교 • 분 석하였다. 특히 기하 용어의 정의 방식과 기하영역에서 다루고 있는 수 학적 지식의 교수학적 변환 과정을 비교해봄으로써 탐구활동이 학생들의 개인화, 배경화의 과정을 도울 수 있도록 함으로써 학생들이 수학 학습 의 주체가 될 수 있는 교과서 구성에 대해 제언하였다. 이와 비슷한 연 구로 김후재(2004), 서지희(2012)는 현실적 수학교육 이론에 따라 우리 나라와 MiC 교과서를 비교 - 분석하였다.
문영미(2009)는 한국과 일본의 수학 교과서를 분석하기에 앞서 교육 과정의 성격 및 수학교육 목표를 확인하고 학습 분량과 단원의 구성, 학 습 내용의 비교를 하였다. 이승재(2013)는 한국과 인도의 수학 교과서 를 교과서 구성(단원구성과 단원의 전개 체제), 용어 및 기호, 학습 내 용, 문제 유형, 추론과 증명에 따라 비교하였다. 이에 대해 인도의 교과 서는 참인 명제를 증명하기 전에 그와 관련된 활동을 충분히 하여 명제 에 대한 추측을 정당화시키는 것을 통해 학생들에게 증명의 의미와 필요 성을 인식시키는 단계가 필요하다고 제언하였다.
또한 정희연(2008), 나홍수(2009)는 통일을 대비하여 남북한의 수학 교육에서의 유사점과 차이점을 알아보기 위해 기하영역에서의 내용상 차 이, 증명의 차이를 중점적으로 남북한의 중등 수학 교과서 비교 • 분석하

였다. 윤정민(2009), 심종섭(2012)은 우리나라와 홍콩의 중학교 교과서 를 비교하여 시사점을 도출하고자 하였다.
한국과 러시아의 교과서를 비교한 연구(안정주, 2005; 한인기, 2010) 도 있는데 이 중 한인기(2010)의 연구는 러시아의 기하 교과서와 우리 나라의 중학교 1 학년 교과서를 비교 • 분석하였다. 논리적 사고력 신장 은 증명하거나 정당화하는 것과 관련되는데, 러시아의 교과서에서는 학 생들의 수준을 감안하여 논리적 엄밀성과 직관적 측면을 절충해 본문을 기술하였음을 분석하였다. 그리고 직관적 정당화를 통한 설득, 증명이 포함되어 있음을 제시하였다. 또한 논리적 사고력과 관련된 문제는 계획 세우기, 증명하기, 탐구하기, 고찰하기 등으로 분석되었다.
장정순(2011)은 한국과 핀란드의 수학 교과서의 내용 구성 방식과 같 은 외형적인 비교와 학습내용 및 학습지도 내용 등의 내용 비교를 통해 유사점과 차이점을 도출하였다. 그 외에 한국과 필리핀의 교과서 비교 연구(이장현, 2013), 한국, 일본, 미국의 기하영역을 비교한 연구(김미 영, 2002)가 있다.
둘째, Van Hiele의 이론에 따라 기하영역을 분석한 연구들이 있다. 이 금주(2007), 박성희(2011), 김판수(2011)는 교육과정에 따라 개발된 교과서에 제시된 문제의 기하학습수준을 분석하였다. 이 중 김판수 (2011)의 연구를 자세히 살펴보면, 2007 개정 교육과정에 따라 개발된 교과서의 문제는 여러 가지 기하학적 성질을 상호 관련시키는 것이 필요 한 것으로 3 수준 또는 3 수준 이상에 해당되지만, 대부분의 학생들의 기 하학습수준은 2 수준임을 드러내 학생의 수준에 맞는 교사의 적절한 지 도가 필요함을 강조하였다. 또한 이중권(2006)은 교과서의 기하영역의 내용과 문제를 모두 분석하였는데, 이를 통해 1 학년은 $1,2,3$ 수준에 해 당되었지만 2,3 수준에 해당하는 비율이 높고, 2 학년은 3,4 수준에, 3 학 년은 $2,3,4$ 수준에 해당하는 내용과 문제들로 구성되었음을 제시하였 다. 따라서 증명의 점진적인 전개, 도형의 다양한 예를 통한 기본적인 성질의 제시, 학생들의 다양한 능력을 반영할 수 있는 여러 수준의 많은 문제와 이해를 돕는 시각화, 실제 생활을 적용한 기하 개념의 설명 등이

보완되어야 한다고 주장하였다.
셋째, 과제의 인지적 요구 수준에 따라 교과서를 분석한 연구가 있다. 권지현(2013)은 2007 개정 교육과정에 의해 개발된 교과서 문제를 대 상으로 기억 문제, 연계성 없는 절차형 문제인 낮은 인지적 요구 수준 과제와 연계성 있는 절차형 문제, 수학 하기 문제인 높은 인지적 요구 수준의 과제를 기준으로 하여 분석을 실시하였다. 그 결과 낮은 인지적 요구 수준의 문제가 95% 로 교과서의 대부분을 차지하였다.

넷째, 현실주의, 구성주의, Skemp의 이해, 교수학적 변환과 같은 관 점에서 교과서를 분석한 연구들이 있다. 김미진(2010), 김주경(2011)은 현실주의 수학교육 관점에서 교과서를 분석하였다. 또한 안주연(2011) 은 Skemp의 도구적 이해와 관계적 이해에 기초하여 2학년 기하영역에 대한 교과서를 분석하였다. 박지혜(2012)는 중학교 3 학년 기하영역의 교수학적 변환에 대해, 이소현(2011)은 중학교 1학년 기하영역에서의 교수학적 변환에 대해 분석하였다.

다섯째, 교육과정에 따른 교과서를 비교 - 분석한 연구들이 있다. 2009 개정 교육과정과 관련하여 살펴보면, 정유리(2013)는 교육과정의 변화에 따라 강조된 스토리텔링, 창의성 신장을 위한 요소들이 중학교 1 학년 교과서에 어떻게 구현되었는지 분석하였다. 또한 공학 도구의 활용 이 강조됨에 따라 심상길(2011)은 중학교 1학년 교과서 기하 단원에 제 시된 컴퓨터 활용에 대한 분석을 실시하였다.
지금까지의 기하영역의 교과서 분석에 대한 국내 연구를 살펴보면, 외 국 교과서와의 비교, 기하학습수준이나 인지적 요구수준에 따른 분석, 기하학습이론이나 교육과정에 초점을 맞춰 분석한 연구들로 비교적 다양 하게 나타났다. 그러나 분석과정을 살펴보면 대부분 명확한 틀을 제시하 지 않고 분석한 내용을 단지 서술하는 등 체계적인 방법으로 분석이 이 루어지지 못하고 있다. 또한 내용적인 요소보다는 외형적인 요소에 초점 을 맞춰 분석한 연구들이 많아 주요 학습 요소의 구체적 제시방법, 각 교과서만의 독특한 특징은 분석해내지 못했다. 따라서 이 연구에서는 추론과 정당화를 촉진하기 위한 학습 요소의 구체적인 제시방법을 분석

하기 위해 선행 연구 검토를 통해 분석 요소를 추출한 후 교과서 분석을 위한 틀을 마련하여 이에 따라 체계적으로 분석하고자 한다.

2.2. 추론과 증명에 따른 교과서 분석 선행 연구

1절에서 살펴봤듯이 추론과 증명 활동이 학생들의 수학적 경험에서 중 심이 되어야 한다는 인식에도 불구하고, 많은 학생들은 이러한 활동을 함에 있어 많은 어려움을 느낀다(Stylianides, 2009). 그렇기에 실제 수 업에서 사용될 수학 교과서는 학생들에게 추론과 증명에 참여할 수 있는 기회를 제공하는 데 중요한 역할을 할 수 있다. 이러한 인식에 따라 추 론과 증명이 교과서에 어떻게 구현되었는지를 분석한 연구들을 살펴보면 다음과 같다.

먼저, Stylianides(2009)는 추론과 증명에 대한 연구들이 대부분 교 실 상황에서 교수, 학습 과정을 분석하는 연구들이거나 추론과 증명에 대한 교사의 개념이나 학생의 개념을 분석하는 것에 초점이 맞춰져 있음 을 지적하면서 미국 교과서에서의 추론과 증명에 초점을 맞춰 분석하였 다. 이러한 교과서 분석을 위해 다음 <표 $\Pi-5>$ 와 같은 분석틀을 개발 하였다.
<표 II-5> 추론과 증명에 대한 교과서 분석틀(Stylianides, 2009: 262)

	수학적 일반화		수학적 주장에 대한 지원 제공	
	패턴 확인	추측 형성	증명 제공	비-증명 제공
차원 1: 추론과 증명의 요소와 하위 요소	-그럴듯한 패턴 -명백한 패턴	-추측	-포괄적 예 -설명	-경험적 주장 근본적 이유
차원 2: 패턴, 추측, 증명의 목적	-추측의 생성 -추측의 생성과 관련 없음	-증명 생성 -증명생성과 관련 없음	$\begin{aligned} & \hline \text { •설명 •확인 } \\ & \text { •반증 } \\ & \text { •새로운 지식 생성 } \end{aligned}$	

위의 <표 II-5>의 분석틀은 2 개의 차원으로 구성되는데, 차원 1 은 증명과 관련된 활동을 포함하며, 차원 2 는 증명이 발달되는 과정을 패 턴, 추측, 증명으로 설명한 것이다. 차원 1 의 증명과 관련된 활동에는 수 학적 일반화 만들기와 수학적 주장에 대한 지원 제공이 포함된다. 수학 적 일반화 만들기는 패턴 만들기와 추측 만들기로 나눠진다. 먼저 패턴 은 주어진 자료에 맞는 일반적인 수학적 관계로 정의되며, 패턴은 특정 패턴에 대한 결정적인 근거를 제공하는 명백한 패턴과 그렇지 못한 패턴 인 그럴듯한 패턴으로 나뉜다. 추측은 완전하지 않은 근거를 바탕으로 얻어낸 일반적이고 수학적인 관계에 대해 추론된 가설을 의미한다.
수학적 주장에 대한 지원 제공은 증명과 비-증명의 제공으로 나뉜다. 증명은 받아들여진 사실을 바탕으로 한 타당한 주장을 의미하며, 하위요 소로 포괄적인 예와 설명으로 나뉜다. 먼저 포괄적인 예는 일반적인 예 를 대표하는 것으로 특정한 예를 사용하는 증명을 의미한다. 이는 학생 들이 보다 쉽게 확신과 설명의 수단에 도달할 수 있도록 도와준다. 두 번째 요소인 설명은 특정한 예의 대표성에 의존하는 증명이 아닌 타당한 주장으로 설명에 사용되는 표현에 제한을 두지 않는다. 비-증명 주장에 서의 경험적 주장은 모든 가능한 경우의 일부분에서 타당성을 확인함으 로써 수학적 주장에 대한 참을 보여주는 것을 의미하며, 근본적 이유는 증명으로 충분하지 않지만 수학적 주장에 대한 타당성을 보이는 것을 표 현하기 위한 요소이다. 차원 2 는 차원 1 을 보충하는 것으로 패턴이 추측 으로, 추측이 증명으로 발달되는 과정을 묘사하고 있다. 위의 틀로 미국 교과서를 분석한 결과, 과제의 40% 만이 추론과 증명을 유도하는 과제임 을 드러냈다.

Otten, Males와 Gilbertson(2013)은 6개의 미국 교과서를 대상으로 증명을 소개하는 단원에서 제공된 추론 기회를 분석하였다. 분석 대상은 교과서의 설명 부분과 학생 활동 부분을 모두 포함하였다. 교과서의 설 명은 소단원 본문의 예와 공식, 정리 등과 같은 주요 아이디어를 정리한 부분까지 포함하였으며, 학생들의 활동은 질문에 대답을 요구하는 문제,

특정 과제에 대한 완성을 요구하는 문제를 모두 포함하였다. 분석틀은 Stylianides(2009)의 연구에서 사용된 분석틀을 토대로 구성하였는데, 구체적으로 살펴보면 수학적 진술 또는 상황, 학생들에게 기대되는 활 동, 추론과 증명에 대한 기회 또는 반성의 3 가지 차원으로 이루어진다. 이 중 추론과 증명에 대한 반성은 교과서의 설명 부분에서 추측에 대한 반성을 할 수 있는 언급이 있는지 분석하였다. 이와 같은 추측에 대한 반성 요소는 추론과 정당화에서 중요하며, 이를 교과서에서 확인하기 위 해 탐구활동과 내용 설명을 연결하는 데 있어 탐구활동을 통해 얻게 된 추측을 정당화하기 전에 이에 대한 반성을 제공했는지 살펴볼 필요가 있 을 것으로 생각된다. 따라서 이 연구에서는 이를 적용하여 탐구활동과 내용 설명에 대한 정당화를 분석하는 데 있어 탐구활동을 통해 얻은 추 측에 대한 반성이 어떻게 고려되었는지 살펴보고자 한다.

Davis(2012)는 미국의 3개 교과서를 대상으로 다항함수에 대한 추론 과 증명의 기회를 분석하였다. 이를 분석하기 위해 Stylianides(2009)의 연구를 이용하여 패턴 확인하기, 추측을 만들고 검증하기, 수학적 주장 발전시키기의 단계로 나누어 교과서에서 나타나는 각 단계의 비율을 확 인하였다. 연구 결과로 패턴을 확인하는 기회는 충분히 제공되었지만, 추측을 만들고 검증하는 기회는 충분히 제공되지 않았음을 제시하였다. 이 연구는 패턴 확인하기, 추측 만들고 검증하기, 수학적 주장 발전시키 기를 확인함으로써 추론과 증명의 과정을 고려하였다는 점에서 의의가 있다. 따라서 이 연구에서도 이를 적용하여 추론이 발달되는 과정을 고 려하여 교과서를 분석하고자 한다.

Thomson 외(2012)는 20개의 미국의 고등학교 수학 교과서에서 다 루고 있는 추론과 증명에 대한 특징을 찾고자 하였다. 그들은 지수와 로 그, 다항식에 대해 다루고 있는 본문 설명과 연습문제를 연구 대상으로 삼았다. 이 연구는 교과서의 본문 설명은 교사가 학생들에게 추론과 증 명을 소개하는 기회를 제공하며, 문제는 학생들이 추론과 증명에 참여할 기회를 제공하기 때문에 본문 설명과 문제를 모두 분석 대상으로 두었 다. 먼저, 교과서 본문 설명을 분석하기 위한 분석틀은 정당화의 유형을

증명을 통해 정당화한 ‘일반적인’, 특정한 예 또는 귀납법을 사용하여 정 당화하는 '특수한', 학생들이 정리를 완성하도록 하는 '학생들에게 남겨 둔', '정당화하지 않은'으로 구성하였다. 그러나 이는 교과서 내용 설명을 분석하기에 정당화의 유형이 세분화되어 있지 않아 이보다 더 세분화된 정당화의 유형을 적용할 필요가 있다. 두 번째로 적용한 추론과 증명에 대한 교과서 문제 분석틀을 살펴보면 다음 <표 II-6>과 같다.
<표 Π-6> 추론과 증명에 대한 교과서 문제 분석틀 (Thomson 외, 2012: 262)

추측을 만들거나 탐구하기	
$\mathrm{MG} / \mathrm{MS}$	추측 만들기(Making a conjecture): 추측을 만들기 위해 패턴을 사용하도록 요구하는 문제
$\mathrm{IG} / \mathrm{IS}$	추측 탐구하기(Investigate a conjecture): 추측이 서술되고 학생들이 추측이 참인지 거짓인지 탐구하도록 요구하는 문제 주장을 발전시키거나 평가하기
$\mathrm{DG} / \mathrm{DS}$	주장 발전시키기(Develop an argument): 수학전 진술에 대한 증명을 쓰도록 요구하는 문제
$\mathrm{EG} / \mathrm{ES}$	주장 평가하기(Evaluate an argument): 진술된 수학적 주장이 타당한지 판단을 요구하는 문제
다른 증명과 관련된 추론	

문제에 대한 분석틀은 크게 추측을 만들거나(M) 탐구하기(I), 주장을 발전시키거나(D) 평가하기(E), 증명과 관련된 추론 요소(C)로 구성되었 고, 이는 $\operatorname{TIMSS}(2002)$ 의 추론과 증명 규준으로부터 추출하였다. 추측 만들기와 탐구하기, 주장 발전시키기와 평가하기, 잘못된 부분을 수정하 거나 확인하기는 일반적인 경우(G)와 특수한 경우(S)에 대한 것으로 다 시 나누어 분석하였다. 이를 <표 $\Pi-6>$ 에서 살펴보면 각각 $\mathrm{MG} / \mathrm{MS}$, $\mathrm{IG} / \mathrm{IS}, \mathrm{DG} / \mathrm{DS}, \mathrm{EG} / \mathrm{ES}, \mathrm{CG} / \mathrm{CS}$ 로 표기하였음을 알 수 있다.
또한, 다른 관점에서 Newton과 Newton(2006)의 연구는 교과서가 교 사들의 추론을 다루는 능력에 대한 전문성 신장을 지원하는지 확인하기 위해 미국의 초등학교 수학 교과서 18 개를 분석하였다. 이를 분석하기 위해 본문 설명을 이유에 대한 부분(‘-때문에'를 포함하는 부분)과 목적 에 대한 부분(‘-하기 위해'를 포함하는 부분)으로 나누어 이유에 대한 부분과 목적에 대한 부분에 대한 비율을 확인하였다. 또한, 7 개의 범주 에 따라 원인, 목적에 대해 서술된 부분의 비율을 확인하였는데, 이는 다음 <표 $\Pi-7>$ 과 같다.
<표 $\Pi-7>$ 본문 설명에 대한 범주 (Newton \& Newton, 2006)

범주	설명
1	학생들을 위한 활동의 목적을 소개 (수학 외적, 주제를 경험하기 위한 활동에 대한 소개)
2	학생들을 위한 예와 맥락을 제공 (수학 외적, 실생활 관련 예와 응용, 수학을 직접적으로 설명하지 않음)
3	수학적 과정, 연산, 알고리즘을 소개 (특정 결과를 얻기 위해 수학적 과정, 연산, 알고리즘을 제공)
4	학생들을 위한 수학적 표현의 제공
5	문맥의 목적과 의도 제공 (학습 목표를 제공)
6	수학적 주장을 지원하기 위한 추론 제공
7	수학 외적인 주장을 지원하기 위한 추론 제공

Newton과 Newton(2006)의 분석 결과, 일부의 교과서는 교사가 수업 을 소개하고 구조화하는 것을 도와주었지만 담화를 이해하는 것을 돕진 못했으며, 추론보다는 연습, 알고리즘을 통한 계산 기능 발달에 초점이 맞춰져 있음이 확인되었다.
Stacey와 Vincent(2009)는 호주 8학년 교과서에서 새로운 수학적 규 칙, 관계를 소개하기 위해 제시된 설명에 초점을 맞춰 사용된 추론의 유 형을 분석하였다. 이를 위해 추론의 유형을 권위에 의한 추론, 질적 유 추, 모델의 규칙과의 일치, 실험적 설명, 모델을 사용한 연역 추론, 특정 한 예를 이용한 연역 추론, 일반적인 예를 이용한 연역 추론으로 나누었 다. 예를 들면 임의의 각을 사용하여 두 직선이 평행임을 설명한 부분에 대해서는 일반적인 예를 이용한 연역 추론으로 분석하였으며, 학생들이 삼각형의 세 개의 각을 찢어서 삼각형의 내각의 합이 180 도임을 알게 하는 부분은 실험적 설명으로 분석하였다. 분석 결과 대부분의 교과서는 단순히 규칙을 유도하기 위해 설명을 사용하였음을 제시하였다.
서동엽(2003)은 우리나라 초등학교 수학 교재에서 정당화 과정이나 문제 해결 과정에서 활용되는 추론을 분석하였다. 그 결과 전형적인 예 에 대한 국소적 연역 추론이 가장 전형적인 특징으로 드러났으며, 열거 에 의한 귀납 추론은 그리 많이 활용되지 않으며, 구체물을 통한 유추가 많이 활용되고 있었다. 이에 대해 보다 점진적인 추론의 지도를 제안하 였는데, 이는 전형적인 예에 대한 경험적 정당화, 전형적인 예에 대한 경험으로부터 추측의 구성, 다양한 예에 대한 추측의 타당성 조사, 일반 성에 대한 스키마 형성, 함의 관계의 이해를 위한 기초 경험의 다섯 가 지 수준을 의미한다.
이환철과 하영화(2011)는 김정하(2010)의 연구에서 제시한 정당화의 단계 중 교과서에는 제시되지 않을 0 단계인 '정당화 없음', 1 단계인 '외 적 확신에 의한 정당화'를 제외하고 나머지 유형으로 교과서 내용을 분 석하여 정당화 방안을 탐색하였다. 분석 결과, 증명이 중학교 2 학년의 도형의 성질 단원에서 제시된 모든 명제가 형식적-연역적 정당화가 이 루어지고 1 학년의 기하 단원에 비해 형식적•연역적 정당화의 비중이

크게 증가하여 학생들의 인지 상태를 고려해 사용할 수 있는 정당화의 유형이 사용되지 않았음을 제시하였다. 이에 학생들의 인지 수준에 알맞 다고 판단되는 다양한 정당화의 유형을 제시하여 교과서를 집필할 것을 제언하였다.
김수철(2013)은 중학교 기하영역을 중심으로 하여 정당화 지도를 위 한 수업 모형을 개발하였다. 이를 위해 중학교 2학년 교과서의 삼각형과 사각형의 성질에 제시된 내용에 대해 정당화 유형을 분석하여 정당화의 단계 및 유형을 다양하게 제시하지 않고 있음을 지적하였다. 따라서 정 당화 능력이 낮은 학생들은 지각적, 활동적 정당화 유형과 평범한 예에 의한 정당화 유형을 활용하여 활동을 시작할 수 있도록 유도하고, 정당 화 능력이 높은 학생들은 시각적 예에 의한 정당화 유형과 식의 조작에 의한 정당화 유형을 활용하여 형식적 증명을 시도하게 함으로써 형식적 - 연역적 정당화 단계에서 활동을 시작하도록 할 것을 제언하였다.

지금까지의 교과서에서의 추론과 정당화에 초점을 맞춰 분석한 연구 들을 종합해보면, 추론과 정당화의 과정을 패턴확인하기, 추측만들기, 수 학적 주장 발전시키기, 수학적 주장 평가하기 등으로 나누어 이를 분석 한 연구가 있었다(Stylianides, 2009; Thomson, 외, 2012; Davis, 2012). 따라서 이 연구에서도 이를 적용하여 추론과 정당화의 과정을 고려하여 이를 교과서에서 분석하고자 한다.
Thomson 외(2012)는 정당화의 유형을 일반적인 것과 특수한 것으로 나누었으나 이는 교과서에서의 정당화의 유형을 분석하기엔 구체적이지 못해 적용하기 어렵다. 또한 서동엽(2003)은 교과서에서 제시되는 추론 및 정당화의 유형을 전형적인 예에 대한 국소적 연역 추론, 구체물을 통 한 유추, 열거에 의한 귀납 추론으로 나누었지만 이는 초등학교 교과서 를 분석하기 위한 기준으로서 중학교에 적용하기는 어렵다. 이환철과 하 영화(2011), 김수철(2013)은 김정하(2010)의 연구에서 제시된 정당화 의 유형 중 교과서를 분석하기에 의미가 없는 정당화의 유형을 제외하였 다. 이 중 김수철(2013)은 이환철과 하영화(2011)의 연구에서 사용된 정당화의 유형에서 중학교 교과서에서는 활용되지 않는 형식적 • 연역적

정당화 중 '부정에 의한 증명', 수학적 귀납법 등이 포함되는 '가설 연역 적 정당화'를 제외하였다. 따라서 이 연구에서 중학교 교과서를 분석하 기에 적합하며 세분화된 정당화의 유형을 제시하고 있는 김수철(2013) 의 정당화 유형을 적용하여 교과서에 제시된 정당화의 유형을 분석하고 자 한다.

2.3. 수행에 대한 기대에 따른 교과서 분석 연구

Pepin, Guedet와 Trouche(2013)에 따르면, 많은 교육과정에 따른 교 과서 분석 연구들은 내용(예: 기하), 수행에 대한 기대(예: 문제해결, 추 론), 관점(예: 태도 또는 특정한 특징)을 요소로 포함한다고 한다. 이 중 수행에 대한 기대를 교과서 분석에 포함하고 있는 선행연구들을 살펴보 면 다음과 같다.
Van Zanten과 Van den Heuvel-Panhuizen(2014)은 교과서는 의도된 교육과정과 실행된 교육과정 사이를 매개하기 때문에 잠재적으로 실행된 교육과정으로 간주하며, 교과서는 수학 교육에 있어 매우 중요하다는 것 을 강조하였다. 특히, 네덜란드의 현실주의교육에 기초하여 개발된 교과 서와 그렇지 않은 교과서가 교육과정의 방향을 잘 반영하고 있는지 비교 하기 위해 분석틀을 개발하여 100 까지의 뻴셈에 대한 교과서 문제를 분 석하였다. 교과서 분석틀은 내용, 수행에 대한 기대, 학습 촉진자로 나누 어 구성되었다.
먼저, 내용에 대한 분석요소는 문제의 유형, 문제의 형태(현실주의 수 학교육에 기초한 것과 그렇지 않은 교과서의 비교를 위해 맥락문제와 그 렇지 않은 문제로 구분), 뺄셈에 대한 교수학적 분석을 통해 얻은 문제 의 의미적 구조를 포함하였다. 수행에 대한 기대는 교육과정에서 추출한 것으로 '뺄 셈과 관련된 사실 알기', ‘뻴셈 수행하기', '뻴 셈 응용하기', '뺄 셈 이해하기'로 구성되었다. 마지막으로 학습 촉진자는 과제가 어떻게 배열되었는지, 과제를 해결하도록 어떻게 돕고 있는지를 살펴보기 위한 요소로 볼 수 있다.

또한, Jones와 Fujita(2013)은 일본과 영국의 기하 교과서를 비교, 분 석함으로써, 교과서와 교육과정이 어떻게 연결되는지를 연구하였다. 이 를 위해 먼저 영국과 일본의 교육과정을 분석하고, 교과서의 내용을 작 게 블록(block)으로 나누고 각 블록의 유형에 대한 내용, 수행에 대한 기대로 분석틀을 구성하였다. 이 때 수행에 대한 기대는 TIMSS의 분석 틀과 일본과 영국의 교육과정에서 추출하여 교과서 분석틀을 구성하였 다.

수행에 대한 기대를 명확히 제시한 Van Zanten과 Van den HeuvelPanhuizen(2014)의 연구와 Jones와 Fujita(2013)의 연구를 비교했을 때 두 연구 모두 교육과정에 근거하여 수행에 대한 기대를 추출했다는 공통 점이 있다. 그러나 Van Zanten과 Van den Heuvel-Panhuizen(2014)의 연구에서는 교육과정으로부터 알기, 수행하기, 응용하기, 이해하기의 4 개 의 범주로 나누었지만, Jones와 Fujita(2013)의 연구에서의 수행에 대한 기대는 교육과정에서 추출된 것을 보다 구체화시키기 위해 TIMSS의 분 석틀을 활용하였다. 따라서 이 연구에서는 탐구활동과 문제를 해결하는 데 있어 학생들에게 요구되는 수행에 대한 기대를 분석하고, 이를 토대 로 기하학적 성질에 대한 추론을 분석하고자 한다. 또한 수행에 대한 기 대를 세분화하기 위해 TIMSS 2011의 분석틀(2009)을 사용하고자 한 다. 이를 살펴보면 다음 <표 $\Pi-8>$ 과 같다.
<표 Π-8> TIMSS 2011 인지적 영역 분석틀

수행에 대한 기대	하위 범주	설명
알기 (knowing)	회상하기	용어, 정의, 성질, 기호에 대한 회상
	인식하기	도형, 수, 표현, 수학적 대상의 인식
	계산하기	정형적 과정에 의한 계산
	유도하기	그래프, 표 등을 통해 정보를 얻음
	측정하기	적절한 측정도구를 이용하여 측정
	분류하기	공통된 성질에 의해 대상을 분류
적용하기 (applying)	선택하기	정형적 문제해결을 위한 전략, 방법 선택
	표현하기	주어진 대상, 관계에 대한 동등한 표현
	모델만들기	정형문제 해결을 위한 기하학적 그림 또는 다이어그렘과 같은 적절한 모델 이용
	이행하기	도형 그리기와 같이 수학적 설명 따르기
	정형 문제 해결하기	익숙한 상황, 수학적 상황의 문제 해결
추론하기 (reasoning)	추측하기	수학적 상황에서의 대상들 사이의 관계를 설명하고, 주어진 정보로부터 수학적 추측 만들기
	일반화하기	수학적 문제해결의 결과를 통해 확장하거나 보다 일반적으로 표현
	종합하기	다른 지식과 표현, 아이디어 사이의 연결을 만드는 것
	정당화하기	알고 있는 수학적 결과 또는 정리를 참고하 여 정당화하기
	비정형문제 해결하기	수학적 또는 실생활맥락 등 학생들에게 익 숙하지 않은 문제를 해결하기

위의 <표 Π - 8 >에서 제시된 '알기'는 기본적인 수학적 개념, 사실, 이와 관련된 표현을 회상하고 알고 있는 것을 의미한다. 이는 수학적 상

황에 대한 추론 및 문제해결에 있어 잠재력을 발휘한다는 점에서 강조된 다. '적용하기'는 지식을 적용하여 문제를 풀거나 질문에 답하기 위해 개 념적 이해를 하는 것에 초점을 둔다. 또한 수학적 도구를 다양한 맥락에 서 적용하는 것을 포함한다. '추론하기'에서의 추론은 논리적, 체계적 사 고에 대한 능력 뿐 아니라 비정형문제해결에 사용될 수 있는 패턴과 규 칙성에 기초한 직관적인 추론과 귀납적인 추론을 모두 포함한다. 이러한 추론을 요구하는 과제는 학생들에게 익숙하지 않은 비정형문제로 제시되 어 새로운 상황에 지식과 기능 및 추론 기술을 적용하도록 요구하는 과 제이거나 수학적 대상을 관찰하여 추측하도록 요구하는 과제, 이를 정당 화하도록 요구하는 과제 등을 포함하여 나타날 수 있다.
<표 Π-8>에 제시된 TIMSS 2011의 인지적 영역 분석틀(2009)을 이용하여 교과서의 기하영역을 분석하기 위해서 '알기', '적용하기', '추론 하기'를 보다 구체화할 필요가 있다. 따라서 '알기'를 '기하학적 개념, 사 실 알기'로, '적용하기'를 '기하학적 성질 적용하기'로, '추론하기'를 '기하 학적 성질 추론하기'로 바꾸어 교과서 분석에 사용하고자 한다.
따라서 위의 표에 따라 '기하학적 개념, 사실 알기'는 기하학적 용어, 정의, 성질, 기호에 대한 회상을 요구하는 '회상하기', 도형에서 같은 크 기의 각이나 같은 길이의 변을 인식하는 등 수학적 대상이 같음을 인식 하도록 요구하는 '인식하기', 학습한 기하학적 사실을 바로 적용해 간단 한 계산을 하도록 요구하는 '계산하기', 기하학적 대상을 보고 이에 대한 정보를 이끌어내도록 요구하는 '유도하기', 공통된 기하학적 성질에 의해 대상을 분류하는 '분류하기'로 하위범주가 구성된다.
'기하학적 성질 적용하기'는 정형문제 해결을 위한 방법을 선택하도록 요구하는 '선택하기', 주어진 조건에 따라 도형을 표현하도록 요구하는 '표현하기', 정형문제 해결을 위해 기하학적 그림과 같은 적절한 모델을 이용하도록 요구하는 '모델만들기’, 도형 그리기, 작도 등 간단한 수학적 설명을 따르도록 요구하는 '이행하기', 학습한 기하학적 성질을 이용해 학생들에게 익숙한 상황의 문제를 해결하도록 요구하는 '정형문제해결하 기'로 하위범주가 구성된다.
'기하학적 성질 추론하기'는 수학적 상황에서의 도형 사이의 관계를 설 명하고 주어진 조건으로부터 수학적 추측을 만들도록 요구하는 '추측하 기', 기하학적 문제해결의 결과를 보다 확장하거나 일반화하도록 요구하 는 '일반화하기', 다른 기하학적 지식들 사이의 연결을 만들도록 요구하 는 '종합하기', 알고 있는 수학적 결과 또는 정리를 참고하여 정당화하도 록 요구하는 '정당화하기', 학습한 기하학적 성질들을 연결하여 학생들에 게 익숙하지 않은 상황의 문제를 해결하도록 요구하는 ‘비정형문제해결 하기'로 하위범주가 구성된다.
이 연구에서는 지금까지 살펴본 '기하학적 개념, 사실 알기', '기하학적 성질 적용하기', '기하학적 성질 추론하기'를 적용하여 탐구활동과 문제 에서 학생들에게 요구하는 수행에 대한 기대를 분석하고자 한다. 이 중 '기하학적 성질 추론하기'를 더욱 구체적으로 분석하여 교과서의 탐구활 동과 문제에서 학생들에게 추론의 기회를 어떻게 제공하고 있는지 살펴 보고자 한다.

III. 연구방법

이 연구의 목적은 2009 개정 교육과정에 따라 개발된 교과서의 기하 영역이 추론과 정당화의 측면에서 어떻게 구현되었는지 살펴보기 위한 것이다. 이를 위해 II장의 문헌 검토를 통해 기하영역에서의 추론과 정 당화의 의미 및 이와 관련된 교과서 분석 관련 연구를 살펴보았다.

이 장에서는 선행 연구 분석을 통해 추출한 교과서의 기하영역에서의 추론과 정당화를 살펴볼 수 있는 요소를 바탕으로 분석틀을 마련하고 이 에 따른 분석대상이 된 교과서 및 분석방법을 제시한다.

1. 교과서 분석대상

$\mathrm{Li}(2002)$ 는 교과서의 내용 뿐 아니라 문제에 대한 분석까지 이루어져 야 학생들에게 제공된 학습 기회에 대해 분석할 수 있음을 강조하며, 문 제와 내용 모두 교과서 분석의 대상으로 해야 한다고 주장한다. 또한 Thompson 외(2012)에 따르면 교과서의 내용 설명은 교사가 학생들에 게 추론과 증명을 소개하는 기회를 제공하며, 문제는 학생들이 추론과 증명에 참여할 기회를 제공하기 때문에 교과서의 내용 설명과 문제를 모 두 분석할 필요가 있다고 주장하였다. 따라서 2009 개정 교육과정에 따 라 개발된 13 종의 중학교 2 학년 수학 교과서2)의 기하단원인 '삼각형의 성질'과 '사각형의 성질'의 내용과 문제를 모두 분석하기 위해 탐구활동 과 내용 설명, 문제를 대상으로 분석하고자 한다. 연구에서 언급하는 탐 구활동은 I 장의 용어의 정의에서 다루었듯이 각 학습주제를 도입하기 위해 교과서마다 내용도입에 제시된 부분을 의미한다. 내용 설명은 추론 과 정당화가 나타나는 내용부분과 예제를 포함하며, 문제는 탐구활동 이 외의 학생들이 해결하도록 제시된 모든 과제를 의미하여 기본 학습 후
2) 2009 개정 교육과정에 따라 개발된 중학교 2학년 수학 교과서는 2014년부 터 적용될 예정이며, 교과서 분석은 2012년에 출판된 전시본으로 한다.

제시되는 문제, 중단원 정리문제, 대단원 정리문제, 단원 마무리 활동 등 을 모두 포함한다.
중학교 교과서의 기하영역을 분석하기 위한 단원으로 '삼각형의 성질' 단원과 '사각형의 성질' 단원을 선정한 이유는 2009 개정 중학교 수학과 교육과정에 의해 처음으로 증명과 관련된 용어가 삭제되고 이를 약화시 킴에 따라 정당화가 강조되고 있는 단원이므로 추론과 정당화의 관점에 서 중학교 교과서의 기하영역을 분석하기 위해 적합한 단원으로 생각되 었기 때문이다. 구체적으로 분석 대상이 되는 단원인 삼각형의 성질과 사각형의 성질에 대한 2009 개정 교육과정의 성취기준을 살펴보면 다음 <표 III-1>과 같다.
<표 III-1> 중학교 수학 (2)의 성취기준

내용	성취기준
삼각형과	(1) 이등변삼각형의 성질을 이해하고 설명할 수 있다. 사각형의 상질 삭형의 있다. (3) 사감힘과 의 성질을 이희 해하고 성질멸할 알 수 이해하고 다. 설명할

중학교 수학 (2)의 성취기준은 2007 개정 교육과정과 비교해 볼 때 많 은 변화가 있다. 우선 <표 III-1>에서 볼 수 있듯이, 삼각형과 사각형 의 성질에서 학습했던 명제의 뜻과 증명의 의미에 대한 학습이 삭제되었 는데, 이환철 외(2012)는 이를 형식적 증명보다는 학생들의 이해 수준 에 입각한 정당화 수준의 교육을 지향하고자 하는 의도로써 해석하였다. 즉, 다양한 형태의 증명을 통해 학생들이 보다 쉽게 기하학적 성질을 이 해하고 그 논리적 타당성을 습득하는 것을 강조하며, 기하학적 성질이 만족함을 경험적, 직관적으로 이해하고 그에 대한 이유를 학생 자신이 갖고 있는 지식을 활용하여 모순 없이 설명할 수 있게 하는 것 또한 정 당화 활동 중 하나로 설명하고 있음을 알 수 있다. 이러한 의도에 따라 2007 개정 교육과정에서의 '증명할 수 있다'는 2009 개정 교육과정에서
‘이해하고 설명할 수 있다'로 모두 변화되었다(이환철, 김선희, 고호경, 2012). 또한 박교식과 권석일(2012)은 2009 개정 교육과정에서 정당화 는 어떤 수학적 사실이 옳다는 것을 이미 알고 있는 수학적 사실을 바탕 으로 명제, 가정, 결론, 역 등의 용어를 사용하지 않은 채 조리 있게 설 명하는 것으로 해석하였다.
삼각형과 사각형의 성질에 대한 학습내용은 <표 $I I-1>$ 에 따라 이등 변삼각형의 성질, 삼각형의 외심과 내심의 성질, 사각형의 성질로 살펴 볼 수 있다. 그러나 이와 관련된 성취기준은 2007 개정 교육과정에 비 해 간단하게 제시되어 있음을 알 수 있는데 이는 다양한 교과서 개발을 유도하기 위함이다(신이섭 외, 2011). 실제로 2009 개정 교육과정에 의 해 개발된 13 종의 교과서마다 단원 구성 및 배열에 있어 약간의 차이가 존재한다. 따라서 이 연구에서는 교과서를 분석할 때 단원 구성이 교과 서마다 다른 경우, 다수의 교과서에서 다루고 있는 순서대로 학습내용을 분석한다. 예를 들어, '삼각형의 무게중심'은 2009 개정 교육과정에서는 삼각형과 사각형의 성질에 제시되어 있지 않지만 교과서 3종에서 '삼각 형의 성질' 단원에 포함하고 있었다. 그 외의 10 종의 교과서는 '닮음의 활용' 단원에서 다루고 있으므로 이는 교과서 분석대상에서 제외한다. 또한, 13 종의 교과서는 $\mathrm{A} \sim \mathrm{M}$ 으로 약자로 간단히 하여 다루도록 한다.

2. 교과서 분석틀

교과서의 분석틀은 '수행에 대한 기대 측면에서의 분석틀'과 '정당화 의 유형 측면에서의 분석틀'로 크게 2가지로 구성된다. '수행에 대한 기 대 측면에서의 분석틀'을 통해 탐구활동과 문제에서 학생들에게 요구하 는 수행에 대한 기대를 분석하여 추론과 정당화의 기회를 제공하기 위해 교과서가 어떻게 구현되었는지 분석한다. 또한 '정당화의 유형 측면에서 의 분석틀'을 통해 탐구활동과 내용 설명에서 제시된 정당화의 유형을 분석하고 정당화를 요구하는 문제에 대해 정당화의 유형을 분석하고자 한다. 이를 보다 구체적으로 살펴보면 다음과 같다.

먼저, ‘수행에 대한 기대 측면에서의 분석틀’에 의한 분석대상은 탐구 활동과 문제이다. 이를 통해 탐구활동과 문제에서 학생들에게 요구하는 수행에 대한 기대를 '기하학적 개념, 사실 알기', '기하학적 성질 적용하 기', '기하학적 성질 추론하기' 로 나누어 분석한다. 이는 I장에서 다뤘 던 TIMSS 2011 인지적 영역 분석틀(2009)을 기하영역에 적용한 것이 다. 그 후 '기하학적 성질 추론하기'에 초점을 맞춰 분석함으로써, '기하 학적 성질 추론하기'의 하위범주인 ‘추측하기’, '일반화하기', '종합하기', ‘정당화하기', '비정형문제해결하기'가 어떻게 구현되었는지 살펴봄으로써 학생들에게 추론과 정당화의 기회를 제공하기 위해 교과서가 어떻게 구 현되었는지 살펴보고자 한다. 이를 정리한 '수행에 대한 기대 측면에서 의 교과서 분석틀'은 다음 <표 III-2>와 같다.
<표 III-2> 수행에 대한 기대 측면에서의 교과서 분석틀

범주	하위범주
기하학적 개념, 사실 알기	회상하기
	인식하기
	계산하기
	유도하기
	측정하기
	분류하기
기하학적 성질 적용하기	선택하기
	표현하기
	모델만들기
	이행하기
	정형문제해결하기
기하학적 성질 추론하기	추측하기
	일반화하기
	종합하기
	정당화하기
	비정형문제해결하기

'정당화의 유형 측면에서의 교과서 분석틀'은 II장에서 논의했던 김수 철(2013)의 정당화의 유형을 사용한다. 이를 살펴보면 다음 <표 III $-3>$ 과 같다.
<표 III-3> 정당화 유형 측면에서의 교과서 분석틀

관점	범주	하위범주
정당화의 유형	경험적•귀납적 정당화	- 지각적, 활동적 정당화 - 평범한 예에 의한 정당화 - 극단적 예에 의한 정당화
	예에 의한 정당화	- 시각적 예에 의한 정당화 - 포갈적 예에 의한 정당화
	준연역적 정당화	식의 조작에 의한 정당화 - 논리적 설명에 의한 정당화
	형식적 - 연역적 정당화	- 형식적 증명

<표 III-3>에 의한 분석대상을 살펴보면 크게 2 가지이다. 첫째, 탐구 활동과 내용 설명에서 정당화가 나타난 부분이다. 13 종의 교과서를 살펴 보면 탐구활동을 통해 얻은 추측을 바탕으로 내용 설명에서 정당화가 이 루어진다. 따라서 탐구활동과 내용 설명을 묶어 학습내용 중심으로 정당 화의 유형을 분석한다. 이 때 탐구활동과 연결되지 않더라도 예제 등을 통해 내용 설명에서 정당화가 제시된 부분이 있는 경우 이를 포함하여 정당화의 유형을 분석한다. 둘째, '수행에 대한 기대 측면에서의 교과서 분석틀'에서 '기하학적 성질 추론하기' 중 '정당화하기'로 분석된 문제를 대상으로 정당화의 유형을 분석한다. 이를 그림으로 나타내면 다음 [그 림 $\mathrm{III}-1]$ 과 같다.

[그림 III-1] '정당화하기' 문제에 대한 정당화의 유형 분석 과정
[그림 III-1]을 살펴보면 <표 III-2> '수행에 대한 기대 측면에서의 교과서 분석틀'에 의해 '기하학적 성질 추론하기'의 하위범주 중 '정당화 하기'로 분석된 문제를 대상으로 <표 III-3> '정당화의 유형 측면에서 의 교과서 분석틀’로 정당화의 유형을 분석하는 과정을 나타내고 있다.

3. 교과서 분석단위 및 분석방법

위의 두 가지 분석틀을 이용하여 다음과 같은 방법으로 각 분석요소들 을 분석한다.
첫째, <표 III-2>의 '수행에 대한 기대 측면에서의 교과서 분석틀'에 서는 탐구활동, 문제를 대상으로 하되, 탐구활동을 구성하고 있는 질문 1 개와 문제 1 개를 각각 한 단위로 삼는다. 이를 바탕으로 각 중단원별

분포를 알아보기 위해 '기하학적 개념, 사실 알기', '기하학적 성질 적용 하기', '기하학적 성질 추론하기'에 대해 한 중단원에 포함된 탐구활동의 질문의 개수에 대한 비율을 조사하며, 이를 바탕으로 '기하학적 성질 추 론하기'의 질문과 문제에 대한 특징을 분석한다. 또한 구체적으로 각 수 행에 대한 기대에 따라 탐구활동, 문제가 어떻게 구현되었는지 살펴보고 자 한다. 특히 '기하학적 성질 추론하기'로 분석된 탐구활동의 질문과 문 제에 대해서는 '기하학적 성질 추론하기'의 하위범주인 '추측하기', '일반 화하기', '종합하기', '정당화하기', ‘비정형문제해결하기'에 따라 구체적으 로 그 특징을 분석한다. 이 때 컴퓨터 프로그램의 활용(조한혁, 안준화, 우혜영, 2001; 박주희, 2004; 류희찬, 조완영, 1999 등), 시각적 이미지 의 활용(장혜원, 2013 ; 류현아, 장경운, 2009 등), 추측에 대한 반성 (Otten 외, 2013) 등과 같이 Π 장에서 논의되었던 추론과 정당화를 촉 진하는 교수•학습 방법에 따라 교과서가 구현되었는지 분석하여 함께 서 술한다.
둘째, <표 III-3>의 '정당화의 유형 측면에서의 교과서 분석틀'에서는 탐구활동과 내용 설명, 그리고 정당화하기 문제를 분석 대상으로 삼는 다. 탐구활동과 내용 설명은 하나의 학습내용 도입을 위해 제시된 탐구 활동, 정당화를 포함하고 있는 내용 설명의 한 단락을 분석단위로 하여 정당화의 유형을 분석한다. '정당화하기'의 문제는 문제 1 개를 분석단위 로 하여 교과서에서 학생들에게 요구하는 정당화의 유형을 분석한다. 이 를 바탕으로 한 중단원에서 각 교과서별로 활용된 정당화의 유형에 대한 비율을 확인하며, 13 종의 교과서에서 사용된 정당화의 유형을 종합하여 구체적으로 정당화의 유형에 대한 특징을 서술하고자 한다.

IV. 연구 결과

이 장에서는 중학교 2 학년 수학교과서의 기하영역의 중단원인 '삼각형 의 성질', '사각형의 성질'을 중심으로 교과서 분석결과를 살펴보고자 한 다.

1. 삼각형의 성질

중단원 '삼각형의 성질'은 교과서마다 학습 내용에 있어서는 차이가 없 었지만, 교과서마다 소단원 구성이 달라 삼각형의 성질에서 다루게 될 학습 내용의 비중 측면에서 차이가 있었다. 13 종의 모든 교과서에서 이 등변삼각형의 성질, 외심의 성질, 내심의 성질은 하나의 소단원으로 구 성하여 비중 있게 다루고 있었으나 교과서에 따라 직각삼각형의 합동조 건은 약간의 차이가 나타났다. 4종의 교과서(교과서 $\mathrm{A}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서는 이등변삼각형의 성질을 다루는 소단원에서 함께 직각삼각형의 합동조건 을 다루었으며, 특히 교과서 K 는 직각삼각형의 합동조건 중 이등변삼각 형의 성질을 이용하여 설명할 수 있는 RHS합동만 다루고 있었다. 나머 지 9 종의 교과서에서는 다른 학습내용과 동일하게 하나의 소단원을 구 성하여 비교적 비중 있게 다루고 있음을 알 수 있었다. 이는 2009 개정 교육과정에 제시된 성취기준에 직각삼각형의 합동조건에 대한 언급이 없 어 교과서마다 다르게 구성된 것으로 생각된다. 또한 2009 개정 교육과 정에 따른 수학과 교육과정에서의 무게중심의 교수 • 학습에 대한 하영 화, 고호경(2011)의 연구에서 나타난 것처럼 3 종의 교과서(교과서 A , $\mathrm{B}, \mathrm{C})$ 에서는 삼각형의 중심의 하나로써 삼각형의 무게중심을 다루기 위 해 삼각형의 성질에서 삼각형의 외심, 내심과 함께 다루고 있었으나 나 머지 10 종의 교과서는 중단원 '닮음의 활용'에서 다루고 있었다.

이에 '삼각형의 성질'에서 분석할 교과서의 내용을 모든 교과서에서 비 중 있게 다루고 있는 이등변삼각형의 성질, 이등변삼각형이 되는 조건, 외심의 성질, 내심의 성질과 함께 교과서마다 구성의 차이는 있었지만

대부분의 교과서에서 다루고 있는 직각삼각형의 합동조건을 포함하고자 한다. 삼각형의 무게중심은 많은 교과서에서 중단원 '닮음의 활용'에서 다루고 있으므로 이는 제외한다.

1.1. 수행에 대한 기대의 측면에서 교과서 분석결과

1.1.1. 탐구활동

'삼각형의 성질'에 제시된 탐구활동은 평균적으로 5 개 정도 포함되어 있었다. 이 중 교과서 M 은 각 학습내용마다 실생활맥락이 활용된 탐구 활동과 구체적 조작 활동을 할 수 있도록 제시된 탐구활동으로 2 개씩 제시되어 있어 탐구활동의 개수의 합이 12 개로 가장 많이 나타났다. 또 한 탐구활동에 포함된 질문의 개수의 합은 평균적으로 11 개 정도로 나 타났다. 즉, 평균적으로 하나의 탐구활동마다 $2 \sim 3$ 개 정도의 질문을 포 함하고 있음을 알 수 있다.

중단원 '삼각형의 성질'에서의 탐구활동의 수행에 대한 기대는 학습할 내용을 확인하는 정도의 '기하학적 개념, 사실 알기'의 비중이 가장 높았 다. 이를 자세히 살펴보면 다음 [그림 IV-1]과 같다.

[그림 $\mathrm{IV}-1$] 삼각형의 성질에 대한 탐구활동의 수행에 대한 기대
비율(\%)
[그림 $\mathrm{IV}-1]$ 은 탐구활동의 질문에서 요구하는 수행에 대한 기대를 비 율로 나타내고 있다. 이를 살펴보면 '기하학적 개념, 사실 알기'의 비율 이 가장 높은 교과서는 11 종이며 그 비율이 50% 이상인 교과서가 10 종 이 되어 탐구활동의 수행에 대한 기대 중 '기하학적 개념, 사실 알기'는 꽤 높은 비율을 차지한다고 볼 수 있다. '기하학적 성질 적용하기'의 비 율이 가장 높게 나타난 교과서는 없었으며, '기하학적 성질 추론하기'의 비율이 가장 높게 나타난 교과서는 1 종으로 분석되었다. 또한 교과서 B 는 '기하학적 개념, 사실 알기'와 '기하학적 성질 추론하기'의 비율이 40% 로 동일하게 가장 높게 나타났다. 구체적으로 각 수행에 대한 기대 에 대해 살펴보면 다음과 같다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'를 요구하는 질문 중 '인식하기'가 가장 믾 이 나타났으며, 학습내용에 따라 필요한 경우 '계산하기'와 '측정하기'를

요구하는 질문이 포함되었다. 또한 '기하학적 개념, 사실 알기의 비율이 13 종의 교과서 중 가장 높게 나타나고 있는 것은 교과서 $\mathrm{G}(91.7 \%)$ 이 다. 예를 통해 이를 살펴보면 다음 [그림 IV-2]와 같다.

[그림 IV-2] 삼각형의 성질에 대한 탐구활동의
'인식하기' 질문의 예(교과서 G, 2012: 179)

위의 [그림 IV-2]에 제시된 탐구활동의 질문은 3개로 구성되었는데 모두 $\triangle \mathrm{ABC}$ 에서 길이가 같은 변을 인식하거나 이등변삼각형임을 인식 하거나 같은 각을 인식하도록 요구하는 문제로 모두 '기하학적 개념, 사 실 알기' 중 '인식하기'에 해당하는 질문으로 분석될 수 있다. 이는 이등 변삼각형의 성질을 탐구하기 위해 종이접기를 이용한 활동을 제시하고 있지만 탐구활동의 질문은 학생들이 이등변삼각형의 성질을 추측하도록 요구하는 질문이 아닌 학습할 내용을 확인하도록 요구하는 질문으로 제 시되어 있음을 알 수 있다.
'기하학적 개념, 사실 알기' 중 '계산하기'에 해당하는 질문은 직각삼각 형의 합동조건에 대한 탐구활동에서 주로 분석되었다. 이를 살펴보면 다 음 [그림 IV-3] 과 같다.

```
오르ᄂ쪼ᄀ 그리ᄆ과 가ᄐ이 }\angle\textrm{C}=\angle\textrm{F}=9\mp@subsup{0}{}{\circ}\mathrm{ 이ᄂ 두 지ᄀ
가ᄀ사ᄆ가ᄀ혀ᄋ }\textrm{ABC},\textrm{DEF}\mathrm{ 에서 }\overline{\textrm{AB}}=\overline{\textrm{DE}}=6\textrm{cm}\mathrm{ ,
A= }\textrm{D}=4\mp@subsup{0}{}{\circ}\mathrm{ 이다.
(1) }\angle\textrm{B}\mathrm{ 와 }\angle\textrm{E}\mathrm{ 의 크기르ᄅ 구하여 보자.
(2) }\triangle\textrm{ABC}=\triangle\textrm{DEF}\mathrm{ 이ᄆ으ᄅ 사ᄆ가ᄀ혀ᄋ의 하ᄆ도ᄋ조
    거ᄂ으ᄅ 이요ᄋ하여 서ᄅ며ᄋ히여 보자.
```

[그림 $\mathrm{IV}-3$] 삼각형의 성질에 대한 탐구활동의
'계산하기' 질문의 예(교과서 A, 2012: 236)

위의 [그림 $\mathrm{V}-3$]의 질문(1)은 삼각형의 내각의 합을 이용하여 필요 한 각을 계산해보도록 요구하고 있는 '기하학적 개념, 사실 알기' 중 '계 산하기'의 질문으로 분석될 수 있다. 이는 질문(2)에서 주어진 직각삼각 형이 합동임을 정당화하기 위하여 필요한 기하학적 사실을 얻기 위한 질 문으로 볼 수 있다. 또한 '기하학적 개념, 사실 알기' 중 '측정하기'는 삼 각형의 외심과 내심에 대한 탐구활동에서 주로 분석되었다. 이를 예를 통해 살펴보면 다음 [그림 IV-4]와 같다.


```
(3) 두 ञᅪ지\저ᄆ }\textrm{A},\textrm{C}\mathrm{ 가 마ᄂ나도莫 자ᄇ여ᄊ다가 꺼ᄅ치ᄂ다.
(4) (2)와 [3)에서 저ᄇ으ᄂ 두 서ᄂ의 교저ᄆ요ᄅ O라고 표시튜ᄂ다.
```



```
(1) 두 꼭짓졈 \(\mathrm{B}, \mathrm{C}\) 가 만나도록 접었다가 펼쳤은 때, 접은 선이 졈 O 를 지나는지 확인하여 보자 (2) 점 O 에서 시 폭짓점에 이르는 거리를 비료하여 보자.
```

[그림 IV-4] 삼각형의 성질에 대한 탐구활동의
‘측정하기’ 질문의 예(교과서 $\mathrm{F}, 2012: 244$)

위의 [그림 IV-4]에 제시된 탐구활동은 삼각형의 외심과 관련된 것이 다. 탐구활동의 질문(2)는 외심에서 각 꼭짓점에 이르는 거리를 측정하

여 비교해보도록 요구하는 문제로 '측정하기'로 분석될 수 있다. 또한 질 문 (1)은 접은 선이 외심을 지나는지 확인하도록 요구하는 문제로 '인식 하기'로 분석되어 탐구활동의 질문 모두가 '인식하기'로 분석되어 탐구활 동에서 '기하학적 성질 추론하기'의 질문이 나타나지 않음을 알 수 있다.

지금까지 '기하학적 개념, 사실 알기'를 요구하는 탐구활동의 질문을 살펴보았다. 분석 결과 기하학적 사실을 확인한 것을 바탕으로 추측을 형성하는 것을 돕기 위해 '추측하기'의 질문과 함께 '기하학적 개념, 사 실 알기'의 질문을 제시한 경우도 있었지만, 탐구활동의 모든 질문이 '기 하학적 개념, 사실 알기'를 요구하는 질문으로 구성된 교과서도 있었다. 이는 종이접기활동과 같은 구체적 조작활동을 이용해 탐구활동을 제시하 더라도 탐구활동의 질문을 통해 학생들이 기하학적 성질을 추측하도록 도울 수 있도록 이에 대한 고려가 필요할 것으로 보인다.
2) 기하학적 성질 적용하기
'기하학적 성질 적용하기'를 요구하는 탐구활동의 질문을 살펴보면 모 두 '이행하기'로 분석되었다. 이는 학습할 기하학적 성질을 확인하기 위 해 점을 연결하여 선을 그어보거나 간단한 작도를 해보도록 요구하는 질 문에서 나타났다. 이를 예로써 살펴보면 다음 [그림 IV-5]와 같다.

[그림 $\mathrm{IV}-5$] 삼각형의 성질에 대한 탐구활동의
'이행하기' 질문의 예(교과서 J, 2012: 254)
[그림 IV-5]의 탐구활동에서 질문 3은 외접원을 직접 그려보도록 요 구하고 있다. 따라서 두 질문 모두 '기하학적 성질 적용하기' 중 '이행하 기'를 요구하는 질문으로 분석될 수 있다.
또한 컴퓨터 프로그램을 이용하여 '이행하기'를 요구하는 탐구활동의 질문을 살펴보면 다음 [그림 IV-6]과 같다.

[그림 IV-6] 삼각형의 성질에 대한 '이행하기' 질문의 예(교과서 L, 2012: 241)

위의 [그림 IV-6]은 삼각형의 외심과 관련된 탐구활동이다. 종이접기 를 이용한 활동을 제시한 다른 교과서들과 다르게 컴퓨터 프로그램을 이 용한 탐구활동을 제시하고 있다. 탐구활동의 질문 1,2 에서 수직이등분 선을 그리고 외심에서 각 꼭짓점에 이르는 거리를 측정하도록 요구하는 질문은 '이행하기'로 분석된다. 류희찬과 조완영(1999)에 따르면 이러한 컴퓨터 프로그램은 다양한 도형의 예를 쉽게 만들어주고 도형의 중요한 요소를 잃지 않으면서 도형을 자유자재로 변형시킬 수 있는 장점이 있다 고 하였다. 따라서 단순히 기하학적 사실을 확인하기 위해 사용하기보다 이러한 탐구활동에 도형의 크기를 바꿔보거나 꼭짓점을 이동시키는 등 다양한 예를 탐구할 수 있는 기회를 제공할 필요가 있을 것으로 생각된 다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'의 질문이 어떻게 구성되었는지 살펴보면 다 음 [그림 IV-7] 과 같다.

[그림 IV-7] 삼각형의 성질에 대한 탐구활동의 '기하학적 성질 추론하기'의 질문 개수(개)
[그림 $\mathrm{IV}-7]$ 을 통해 알 수 있듯이, '기하학적 성질 추론하기'에 해당 하는 질문은 '추측하기'와 '정당화하기'로 분포되어 있으며, '일반화하기', '종합하기’, '비정형문제해결하기'의 질문은 탐구활동에서 분석되지 않았 다. 학습 내용 도입을 위한 탐구활동에서 '정당화하기'가 비교적 많이 나 타난 것은 '직각삼각형의 합동조건'에서 이미 학습한 삼각형의 합동조건 을 이용하여 주어진 직각삼각형이 합동임을 설명하도록 요구하는 질문을 포함하는 탐구활동이 포함된 교과서가 많았기 때문으로 생각된다. 특히 교과서 I의 경우'기하학적 성질 추론하기'에 해당하는 질문 3 개가 모두 '정당화하기'의 질문으로 분석되었는데 이는 '직각삼각형의 합동조건'과 ‘삼각형의 외심’, ‘삼각형의 내심’의 탐구활동에서 각각 하나씩 나타났다. ‘직각삼각형의 합동조건'은 앞에서 언급한 것처럼 삼각형의 합동조건을 이용하여 두 직각삼각형이 합동임을 보이도록 요구하는 질문이었으며, ‘삼각형의 외심’, ‘삼각형의 내심’에 대한 탐구활동에서는 기하학적 성질

을 추측하기 위해 도입한 종이접기 활동을 반성할 수 있도록 다음 [그림 $\mathrm{IV}-8]$ 과 같이 학생들에게 정당화를 요구하는 질문을 포함하였다.

[그림 $\mathrm{IV}-8$] 삼각형의 성질에 대한 탐구활동의
'정당화하기' 질문의 예(교과서 I, 2012: 210)
[그림 $\mathrm{IV}-8$]의 질문 '탐구 1 '을 살펴보면 변의 양 끝 점이 겹치도록 접어서 생긴 선분이 수직이등분선이 됨을 설명해보도록 '정당화하기'를 요구하고 있다. 이와 같은 질문을 통해 단순히 종이접기 활동을 따라하 지 않고, 했던 활동을 돌이켜봄으로써 활동의 의미를 알 수 있도록 돕는 질문이라고 볼 수 있다. 또한 교과서 C 도 비교적 '정당화하기'의 질문을 많이 포함하고 있는데 이를 자세히 살펴보면 [그림 IV-9]와 깉다.

```
탐구(1) 두 변이 겹치도록 접은 선은 내각의 무엇을 나타내는지 말해 보자.
탐구 (2) 위의 (4)에서 접은 선은 점 I 를 지나는지 알아보자.
탐구(3) 점 I 에서 삼각형의 세 변에 이르는 거리를 각각 재어 비교해 보자.
영욤ㅁㅁ문(4) 다른 친구들이 접은 삼각형도 위의 탐구 (2)와 탐구(3)의 결과와 같은지 확인해 보자.
영욤ㅁㅁㅜㅜ (5 위의 탐구 (4)에서 얻은 결과를 설명해 보자.
```

[그림 IV-9] 삼각형의 성질에 대한 탐구활동의
'정당화하기' 질문의 예(교과서 C, 2012: 210)
[그림 IV-9]의 탐구활동은 삼각형의 내심과 관련되는 종이접기 활동

을 담고 있다. 다른 교과서들과 다르게 탐구활동의 질문 '탐구 4’와 같이 다른 친구들과 탐구활동의 결과를 비교해보도록 요구하는 질문을 제시하 였다. 이는 의사소통을 이용한 추론활동을 할 수 있도록 구성된 질문으 로 분석될 수 있다. 질문 '탐구 5'에서 친구들과 결과를 비교해 본 것을 바탕으로 탐구활동에서 얻은 결과를 설명해보도록 '정당화하기'를 요구 하는 질문이 포함되어있다.

이제 '기하학적 성질 추론하기' 중 '추측하기'의 질문에 대해 살펴보면 다음과 같다. [그림 $\mathrm{IV}-7$]에 따르면 13 종의 교과서 중 '기하학적 성질 추론하기'의 질문이 모두 '추측하기'로 분석된 교과서가 3 종 (교과서 B , $\mathrm{K}, \mathrm{M})$ 이 있었다. 이 중 교과서 M 은 '추측하기'의 질문이 3 개로 분석되 어 가장 많은 '추측하기'의 질문을 포함하고 있는데 이는 실생활맥락에 서 제시된 탐구활동의 질문에서 많이 나타났다. 이를 자세히 살펴보면 다음 [그림 IV-10]과 같이 구성된다.

[그림 IV-10] 삼각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예(교과서 $\mathrm{M}, 2012$: 257)
[그림 IV-10]의 탐구활동은 '삼각형의 내심'과 관련되는 실생활맥락에 서 주어진 것으로, 탐구활동의 질문은 삼각형에 내접하는 내접원의 개념 을 포함하는 시계의 중심을 찾도록 '추측하기'를 요구하는 질문으로 분 석될 수 있다. 교과서 B 의 탐구활동도 '추측하기'의 질문이 2 개 포함되 어 있는데 이는 교과서 M 과 유사하게 '삼각형의 내심’, '삼각형의 외심’ 의 개념을 포함하고 있는 실생활맥락에서 탐구활동을 도입하였는데, 이 는 학습할 내용을 직접적으로 확인하도록 하기 보다는 실제 활용될만한

상황을 제시하여 기하학적 성질을 경험하도록 하는 데 보다 중점을 두고 있다고 볼 수 있다.

지금까지의 '삼각형의 성질' 단원의 탐구활동 질문에 대한 수행에 대한 기대를 분석한 결과를 정리하면, 대체적으로 '기하학적 개념, 사실 알기' 를 요구하는 질문이 가장 많음을 알 수 있다. 이 중 삼각형에서 길이가 같은 변 또는 크기가 같은 각 등을 인식하도록 요구하는 '인식하기'의 질문이 가장 많이 나타났으며 학습내용에 따라 필요한 경우 '측정하기' 와 '계산하기'의 질문이 나타났다. '기하학적 성질 적용하기'를 요구하는 질문은 모두 학습할 기하학적 성질을 확인하기 위해 점을 그어보거나 간 단한 작도를 해보도록 요구하는 '이행하기'의 질문으로 구성되어 있었다. 또, '기하학적 성질 추론하기'를 요구하는 질문은 학습할 내용을 직접적 으로 묻는 게 아니라 도형이 갖고 있는 성질을 생각해보도록 하는 '추측 하기'의 질문이 많이 분석되었다. '기하학적 성질 추론하기' 중 '정당화하 기'의 질문도 제시되어 있었는데, 이는 직각삼각형의 합동조건에 대한 탐구활동에서 이전에 학습한 삼각형의 합동조건을 이용하여 주어진 두 직각삼각형의 합동을 설명하는 질문에서 나타났다. 그리고 탐구활동에서 '정당화하기'를 요구하는 질문은 도입한 종이접기와 같은 활동을 단순히 따라하도록 하지 않고 활동을 반성할 수 있도록 종이접기를 통해 새롭게 생긴 선이 무엇인지 설명해보도록 요구하거나 탐구활동을 통해 얻은 결 과를 설명해보도록 요구하는 질문에서 나타남을 알 수 있었다.

1.1.2. 문제

중단원 '삼각형의 성질'에 제시된 문제는 평균적으로 58 개 정도 포함 되어 있었다. 이 중 교과서 D 와 H 는 부록으로 각각 '개념 확인 \& 익힘 문제'와 '보충, 심화문제'를 추가로 구성하여 70개 이상의 문제를 포함하 여 가장 많은 문제가 제시되어 있었다.
'삼각형의 성질'에서의 문제의 수행에 대한 기대는 '기하학적 개념, 사

실 알기'의 비율이 가장 높은 교과서가 3 종, '기하학적 성질 적용하기'의 비율이 가장 높은 교과서가 9종, '기하학적 성질 추론하기'의 비율이 가 장 높은 교과서가 1 종으로 분석되었다. 이를 자세히 살펴보면 다음 [그 림 $\mathrm{IV}-11]$ 과 같다.

[그림 IV-11] 삼각형의 성질에 대한 문제의 수행에 대한 기대 비율 (\%)
[그림 IV-11]은 문제가 요구하는 수행에 대한 기대를 비율로 나타내 고 있다. 이를 살펴보면 모든 교과서에서 '기하학적 개념, 사실 알기'와 '기하학적 성질 적용하기'의 비율의 합이 모두 60% 이상이 되어 '기하학 적 성질 추론하기'보다는 학습한 내용을 적용하여 문제를 해결하는 측면 에 보다 초점이 맞춰져 있음을 알 수 있다. 실제로 '기하학적 성질 추론 하기'의 비율은 모든 교과서에서 40% 미만으로 나타났는데 이 중 30% 미만인 교과서가 12 종으로 낮은 비율을 나타내고 있음을 알 수 있다. 이 제 구체적으로 각 수행에 대한 기대에 대해 살펴보면 다음과 같다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'를 살펴보면, '계산하기'가 가장 많이 나타 났으며 교과서에 따라 '회상하기', '인식하기'의 문제도 제시되어 있었다. 또한 '기하학적 개념, 사실 알기의 비율이 13 종의 교과서 중 가장 높게 나타나고 있는 것은 교과서 $\mathrm{E}(42.4 \%)$ 이다. 이는 다른 교과서들과 다르 게 소단원 학습을 마친 후 '이 시간에 배운 내용 스스로 해결하기'라는 코너를 구성하여 새로 학습한 기하학적 성질에 대해 ‘회상하기'를 요구 하는 문제와 학습한 기하학적 성질을 바로 적용하여 '계산하기'를 요구 하는 문제들을 위주로 제시하고 있기 때문으로 분석된다. 이를 보다 구 체적으로 살펴보면 [그림 IV-12]와 같다.

[그림 IV-12] 삼각형의 성질에 대한 '회상하기'와 '계산하기' 문제의 예(교과서 E, 2012: 232)
[그림 IV-12]의 문제 1 은 이등변삼각형의 성질에 대해 '회상하기'를 요구하는 문제이며, 문제 2 는 두 밑각에 대한 이등변삼각형의 성질을 바 로 적용하여 '계산하기'를 요구하는 문제로써 문제 1 , 문제 2 모두 '기하 학적 개념, 사실 알기'를 요구하는 문제로 볼 수 있다.
'기하학적 개념, 사실 알기' 중 '인식하기'를 요구하는 문제는 각 교과 서마다 직각삼각형의 합동조건과 관련된 문제에서 많이 나타났는데 이를 예로써 살펴보면 다음 [그림 IV-13]과 같다.
```
ᄑ्⿺⿻十一㇂㇒丶제2 오르ᄂ쪼ᄀ 그리ᄇ과 가ᄐ으ᄂ 두 지ᄀ가
사ᄆ가ᄀ혀ᄋ }\textrm{ABC},\textrm{DEF}\mathrm{ 에서 다으ᄆ으ᄅ 구
하여라.
（1）\(\angle \mathrm{F}\) 의 크기
（2）\(\overline{\mathrm{EF}}\) 의 길이
```


［그림 $\mathrm{IV}-13$ ］삼각형의 성질에 대한＇인식하기＇
문제의 예（교과서 I，2012：208）

위의［그림 $\mathrm{IV}-13$ ］은 주어진 두 직각삼각형이 합동임을 알고 합동인 도형의 성질에 따라 각의 크기와 변의 길이를 구하도록 요구하고 있다． 따라서 이 문제는 합동조건을 통한 각의 크기와 변의 길이를 인식하도록 요구하는＇기하학적 개념，사실 알기＇의＇인식하기＇문제로 분석될 수 있 다．

2）기하학적 성질 적용하기
＇기하학적 성질 적용하기＇는 대부분 ‘정형문제해결하기＇로 분석되었고， 교과서에 따라＇표현하기＇，＇이행하기＇의 문제가 나타났다．그러나＇선택하 기＇와＇모델만들기＇를 요구하는 문제는 나타나지 않았다．또한 다른 수행 에 대한 기대보다＇기하학적 성질 적용하기＇의 비율이 가장 높은 교과서 는 9 종 있었으며，이 중 그 비율이 50% 이상인 교과서는 5 종으로 비교 적 높게 나타났다． 54.3% 로 비율이 가장 높게 나타난 교과서 H 는 기본 학습 후 새로 학습한 기하학적 성질을 확인하는 문제를 각 학습내용마다 $1 \sim 2$ 문제로 적게 제시하고，이를 적용하여 해결할 수 있는＇기하학적 성 질 적용하기＇의 문제를 다른 교과서에 비해 많이 포함하고 있음을 알 수 있었다．그 예를 살펴보면 다음［그림 IV－14］，［그림 IV－15］와 같다．

문졔 5 오픈쪽 그킴과 간이 $\overline{\mathrm{AC}}=\overline{\mathrm{BC}}$ 인 아항변삼각영 ABC 에서

 $\angle \mathrm{A}$ 의 이통분선이 $\overline{\mathrm{BC}}$ 와 만나는 점을 D 라교 하자. $\angle \mathrm{B}=72^{\circ}, \overline{\mathrm{DC}}=3$ 일 때, $\overline{\mathrm{AB}}$ 읙 길앞⿱ㄹㄹ 구하여라.
[그림 $\mathrm{IV}-14$] 삼각형의 성질에 대한 '정형문제해결하기'의 문제의 예(교과서 $\mathrm{H}, 2012$: 213)
 각각 그림으로 나타내고, $\triangle \mathrm{ABC}$ 의 서 나가의 크기툴 모두 구하여라.
$\begin{array}{ll}\text { (1) } \angle \mathrm{A} \text { 가 폭지자인 졍우 } & \text { (2) } \angle \mathrm{A} \text { 가 밑각인 경우 }\end{array}$
[그림 IV-15] 삼각형의 성질에 대한 '표현하기'의
문제의 예(교과서 $\mathrm{H}, ~ 2012: 213$)
[그림 IV-14]에 제시된 '문제 5'는 기본학습에서 배운 이등변삼각형 의 성질을 보다 활용하여 풀이해야 하는 '정형문제해결하기'로 분석되며, [그림 $\mathrm{IV}-15$]의 '문제 6'은 이등변삼각형을 경우에 따라 그려보고 세 내각의 크기를 구하도록 요구하는 '표현하기'로 '기하학적 성질 적용하 기'로 분석될 수 있다. 또한 '기하학적 성질 적용하기' 중 '이행하기'를 요구하는 문제는 교과서의 탐구활동과 비슷하게 수학적 설명에 따라 직 접 활동을 해보도록 요구하는 것으로 분석되었다. 이를 살펴보면 다음 [그림 $\mathrm{IV}-16$] 과 같다.

[그림 $\mathrm{IV}-16$] 삼각형의 성질에 대한 '이행하기' 문제의 예(위:
교과서 C, 2012: 214, 아래: 교과서 J 2012: 252)

위의 [그림 $\mathrm{IV}-16$]의 교과서 C 의 문제는 외심에 대한 탐구활동을 한 후 삼각형의 종류에 따라 내심의 위치를 살펴보기 위해 직접 종이접기를 통해 외심의 위치를 찾도록 요구하고 있다. 또한 [그림 IV-16]의 아래 에 제시된 교과서 J 의 문제는 세 변의 수직이등분선을 작도하여 외심을 찾고 외접원을 그려보도록 요구하고 있다. 따라서 두 문제 모두 수학적 지시에 따른 이행을 요구하는 '이행하기'의 문제로 '기하학적 성질 적용 하기'로 분석된다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'의 문제의 비율은 다른 수행에 대한 기대에 비해 낮게 나타닜다. 또한 교과서별로 편차가 큰 편이었는데 가장 높은 교과서가 35.8%, 가장 낮은 교과서는 7.6% 로 나타닜다. 이 중 가장 높 은 비율을 나타내는 교과서 B 는 소단원이 끝나고 '창의력 플러스 추론' 코너를 마련하여 학생들의 추론 기회를 제공하였다. 이를 구체적으로 살 펴보면 다음 [그림 $\mathrm{IV}-17$], [그림 $\mathrm{IV}-18$]과 같다.

[그림 IV-17] 삼각형의 성질에 대한 '추측하기' 문제의
예(교과서 B, 2012: 207)
서 출호된 르기 귤기 서매의 장우녀 거울 조가
이다. 이 겨옹의 줜래 모영이 원이었다고 할
때, ㄱ⼯ 춴의 중심가 반지뱁을 구하는 방벖을 설
명하여라.

[그림 IV-18] 삼각형의 성질에 대한 '비정형문제해결하기' 문제의 예(교과서 B, 2012: 207)
[그림 IV-17]의 ‘창의력 플러스 추론’의 문제들은 각각 사각형의 내접 원의 존재성, 삼각형의 외심의 위치에 대해 '추측하기'를 요구하는 문제 로써 모두 '기하학적 성질 추론하기'로 분석되며, [그림 IV-18]의 '문제 4'는 '삼각형의 외심'에 대한 '비정형문제해결하기'를 요구하는 문제이다. 또한 다음 [그림 IV-19]의 문제는 '기하학적 성질 추론하기' 중 '정당화 하기'를 요구하는 문제이다.

[그림 $\mathrm{NV}-19$] 삼각형의 성질에 대한 ‘정당화하기’ 문제의 예(교과서 $\mathrm{B}, 2012: 201$)
[그림 IV-19]는 '직각삼각형의 합동조건'을 학습하고 풀이하게 되는 문제 중 하나이다. 직각삼각형의 합동조건을 이용해 두 직각삼각형 $\triangle \mathrm{PCO}, \triangle \mathrm{PDO}$ 이 합동임을 보여 $\overline{\mathrm{CP}}=\overline{\mathrm{BP}}$ 임을 설명하도록 '정당화하기' 를 요구하는 문제로 '기하학적 성질 추론하기'로 분석된다.
이제 보다 구체적으로 '기하학적 성질 추론하기'의 문제가 어떻게 구성 되었는지 살펴보면 [그림 IV-20]과 같다.

[그림 IV-20] 삼각형의 성질에 대한 '기하학적 성질추론하기'의 문제 개수(개)
[그림 IV-20]은 탐구활동의 '기하학적 성질 추론하기'의 분포를 나타 내는 [그림 IV-7]과 다른 형태를 나타낸다. 13종 교과서 중 일부 교과 서에서 '기하학적 성질 추론하기'를 요구하는 탐구활동 질문을 포함한 것에 비해 교과서 문제에서는 13 종 교과서 모두에서'기하학적 성질 추 론하기'를 요구하는 문제가 나타났다. 또한 탐구활동의 질문에서는 없었 던 '비정형문제해결하기'와 '종합하기'를 요구하는 문제가 나타났다. 그러 나 '일반화하기'를 요구하는 문제는 모든 교과서에서 나타나지 않았다.

먼저 '기하학적 성질 추론하기' 중 '추측하기'를 요구하는 문제는 교과 서 6 종 (교과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}$)에서 나타났다. 이 중 '추측하기'의 문 제가 4 개로 가장 많은 교과서 C 를 살펴보면 중단원 '삼각형의 성질'을 모두 학습한 후 제시되는 '창의력 교실' 코너에서 '추측하기'를 요구하는 문제가 분석되었다. 이를 자세히 살펴보면 [그림 IV-21]과 [그림 IV -22]와 같다.

[그림 $\mathrm{IV}-21$] 삼각형의 성질에 대한
'추측하기' 문제의 예(교과서 C, 2012: 226)

수영 가계

[그림 $\mathrm{IV}-22$] 삼각형의 성질에 대한
'추측하기' 문제의 예(교과서 C, 2012: 227)
[그림 $\mathrm{IV}-21]$ 은 모래를 이용해 삼각형의 내심을 찾아보는 활동을 한 후 학생들이 해결할 2 개의 문제가 제시되어 있다. 문제를 살펴보면 활동 을 통해 삼각형 판 위에 모래를 쌓음으로써 생긴 세 모서리와 가장 높게 쌓인 부분의 수학적 의미에 대해 '추측하기'를 요구하는 문제이다. 이는 단순히 구체적 조작활동을 하는 것에 그치지 않고 활동을 반성해봄으로 써 기하학적 성질을 추측해보도록 요구하는 문제로 분석될 수 있다. 또 한 [그림 IV-22]는 컴퓨터 프로그램을 이용하여 삼각형의 내심과 내접 원을 만들고 여러 가지 성질에 대해 '추측하기'를 요구하는 문제이다. 즉, 컴퓨터 프로그램을 이용해 다양하게 삼각형을 움직여봄으로써 삼각 형의 내심과 내접원이 갖는 성질을 추측해보도록 요구하는 문제로 컴퓨 터 프로그램의 장점을 잘 활용한 예로 볼 수 있다.
'기하학적 성질 추론하기' 중 '종합하기'를 요구하는 문제는 교과서 8 종에서 나타났다. 이 중 '종합하기'를 요구하는 문제가 5 문제로 가장 많 이 나타난 교과서 A 를 예로써 살펴보면 [그림 IV-23]과 같다.

[그림 IV-23] 삼각형의 성질에 대한 '종합하기'
문제의 예 (교과서 A, 2012: 238)
[그림 IV-23]의 '문제 7'은 학생들에게 정당화과정을 모두 설명하도 록 요구하지 않고 정당화 과정의 일부를 제시하고 이를 완성하도록 하였 다. 이는 제시된 조건과 유도해야 하는 결과를 연결을 요구하므로 '종합 하기'의 문제로 분석될 수 있다. 또한 '문제 9 '는 두 직각삼각형이 합동 이 되기 위해 필요한 조건과 주어진 조건의 연결을 요구하므로 마찬가지 로 '종합하기'의 문제로 분석된다.
'정당화하기'를 요구하는 문제는 대부분 이전 교육과정에 따라 개발된 교과서에서 증명을 요구하는 문제가 변형된 것으로 문제의 서술어만 '증 명하여라'에서 '설명하여라'로 바뀐 문제들이 대부분이었다. 그러나 '정당 화하기'를 요구하는 문제 중 학생들이 보다 쉽게 정당화를 할 수 있도록 돕는 문제의 형태가 있었는데 이를 살펴보면 다음 [그림 IV-24]와 같 다.

[그림 IV-24] 삼각형의 성질에 대한 '정당화하기' 문제의
예(위: 교과서 B, 2012: 204; 아래: 교과서 F, 2012: 253)
[그림 IV-24]의 두 문제는 같은 내용에 대해 정당화하기를 요구하는 문제이다. 그러나 위의 문제는 결과만 제시하고 정당화하기를 요구하는 데 비해, 아래의 문제는 정당화에 필요한 과정으로 하위의 문제를 나눠 단계적으로 정당화할 수 있도록 제시하고 있다. 즉 (1)에서는 내심의 성 질과 평행선의 성질을 이용해 $\overline{\mathrm{DB}}=\overline{\mathrm{DI}}$ 임을 보이고 이를 이용하여 (2)를

정당화하도록 구성함으로써 보다 단계적으로 정당화할 수 있도록 제시되 어 있음을 알 수 있다.
또한 실생활맥락이 활용된 문제 중에 '정당화하기'를 요구하는 문제도 나타났는데, 이는 아래의 [그림 IV-25]와 같다.

옛날 사람들은 오른쪽 그림과 같은 모영의 도구를 만들어 지평 선과 평행한 선을 찾았다고 한다. 이 도구는 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 이등변 삼각형 ABC 모임의 판에 $\overline{\mathrm{BC}}$ 의 종점인 M 을 표시하고, 점 A 에 졸을 고정한 다음, 줄의 다른 쪽 뀰에 추를 매단 것이다. 줄이 점 M 을 지날 때, 직선 BC 와 지평선이 서로 평형한 이유를 설명 아여라.

[그림 IV-25] 실생활맥락이 활용된 삼각형의 성질에 대한 '정당화하기'의 문제의 예
(위: 교과서 A, 2012: 239; 아래: 교과서 H, 2012: 211)

위의 [그림 IV-25]에 제시된 문제는 모두 이등변삼각형의 성질과 관련 된 것으로 실생활맥락에서 제시된 '정당화하기'를 요구하는 문제로 분석된 다. 이는 문제에서 실생활맥락을 활용하여 정당화에 대한 필요성을 알게 하기 위한 문제로 분석될 수 있다(신현용, 2004).
'기하학적 성질 추론하기' 중 '비정형문제해결하기'를 요구하는 문제는 실생활맥락에서 제시된 문제가 많았다. 이를 예를 통해 살펴보면 다음 [그림 IV-26]과 같다.

[그림 IV-26] 삼각형의 성질에 대한 ‘비정형문제해결하기’ 문제의 예(교과서 J, 2012: 253)

위의 [그림 IV-26]은 삼각형의 외심의 성질을 이용하여 기와를 복원하 는 문제로써 이러한 외심의 성질은 세 점으로부터 같은 거리에 있는 점을 찾아야 하는 실생활맥락에서 다른 형태로 '비정형문제해결하기'를 요구하 는 문제로 분석된다.

지금까지의 '삼각형의 성질' 단원에서 문제의 수행에 대한 기대를 분석 한 결과를 정리하면, 모든 교과서에서 '기하학적 개념, 사실 알기'와 '기 하학적 성질 적용하기'의 비율의 합이 60% 이상으로 분석되어 상대적으 로 '기하학적 성질 추론하기'의 비율은 낮게 나타남을 알 수 있었다.
'기하학적 개념, 사실 알기'를 요구하는 문제는 학습한 기하학적 성질 에 대해 '회상하기'를 요구하는 문제, 학습한 기하학적 성질을 바로 적용 하여 '계산하기'를 요구하는 문제 위주로 분석되었다. '기하학적 성질 적 용하기'의 문제는 대부분 '정형문제해결하기'로 분석되었으며 교과서에 따라 '표현하기'와 '이행하기'를 요구하는 문제가 분석되었다. 이는 조건 에 따라 삼각형을 그려보거나 외접원, 내접원을 작도하는 것을 요구하는 문제에서 나타났다.
'기하학적 성질 추론하기'의 문제를 살펴보면 '정당화하기'를 요구하는 문제가 가장 많이 나타났으며, '추측하기'의 문제도 나타났다. 또한 탐구 활동의 질문에서는 나타나지 않았던 '비정형문제해결하기'와 '종합하기' 를 요구하는 문제가 분석되었다. '추측하기'의 문제는 삼각형의 성질에 대한 기본학습을 끝낸 후 추가로 제시되는 활동에서 분석되어 활동을 통 해 얻게 된 성질을 추측해보도록 요구하여 탐구활동의 '추측하기'와 유

사한 목적으로 제시되어 있음을 알 수 있다. '종합하기'의 문제는 정당화 과정의 일부를 제시하고 이를 완성하도록 요구하는 문제에서 주로 분석 되었는데 이는 주어진 조건과 유도해야 하는 결과에 대한 연결을 필요로 함을 알 수 있었다. '정당화하기'의 문제는 2009 개정 교육과정 이전의 교과서에서는 '증명하여라'로 제시되었던 문제를 '설명하여라'로 바꾸어 제시할 뿐 거의 증명과 동일한 수준을 요구하는 문제가 대부분이었으나 정당화과정을 단계별로 제시하는 등 학생들의 추론을 돕기 위해 고려한 요소들을 살펴볼 수 있었다.

1.2. 정당화의 유형에 대한 분석결과

1.2.1. 탐구활동과 내용 설명

탐구활동과 정당화가 나타난 내용 설명에 대한 정당화의 유형 분석은 2 가지 관점에서 이루어졌다. 먼저 각 교과서에서 사용된 정당화의 유형 비율을 분석하였다. 그 후 13 종의 교과서를 분석한 결과를 종합하여 학 습내용에 따라 하나의 기하학적 성질이 정당화되는 과정에서 사용된 정 당화의 유형을 묶어서 정당화 과정에서 사용된 정당화의 유형을 분석하 였다.
먼저 각 교과서에서 사용된 정당화의 유형에 대한 비율을 살펴보면 다 음 [그림 IV-27]과 같다.

[그림 IV-27] 삼각형의 성질에 대한 교과서별 정당화의 유형 분포(\%)
[그림 IV-27]을 살펴보면 13종의 교과서 모두 형식적•연역적 정당 화가 정당화의 유형 중 가장 높은 비율로 나타났다. 이 중 교과서 H 는 형식적•연역적 정당화의 비율과 예에 의한 정당화의 비율이 각각 36.9% 와 36.8% 로 거의 비슷하게 나타났는데 이는 형식적-연역적 정당 화를 제시하는 부분마다 시각적 예를 함께 제시하였기 때문으로 분석된 다. 또한 경험적•귀납적 정당화에 비해 형식적•연역적 정당화의 비율 이 높게 나타난 것은 경험적•귀납적 정당화를 시도하는 탐구활동 없이 바로 형식적•연역적 정당화로 도입된 부분이 꽤 존재한다는 것을 알 수 있다.

이제 13 종의 교과서를 분석한 결과를 종합하여 학습내용에 따라 하나 의 기하학적 성질이 정당화되는 과정에서 사용된 정당화의 유형을 묶어 서 분석하면 다음 <표 IV $-1>$ 과 같다. 이는 13 종의 교과서에서 정당화 가 나타난 부분을 분석하여 얻은 표로써 전체 교과서에서 정당화가 나타 난 부분은 모두 85 개이다.
<표 IV-1> 삼각형의 성질 단원의 탐구활동과 내용 설명에서 사용된 정당화의 유형

사용된 정당화의 유형		횟수(회)	비율(\%)
1)		34	40
2)		7	8.2
3)		11	12.9
4)		14	16.5
5)		1	1.2
6)		9	10.6
7)		9	10.6
	합계	85	100

<표 $\mathrm{IV}-1>$ 를 통해 살펴보면 경험적•귀납적 정당화와 형식적•연역 적 정당화를 사용하여 정당화한 것이 40% 로 가장 높은 것을 알 수 있 다. 이는 탐구활동에서 구체적 조작활동을 하거나 평범한 예를 통해 기 하학적 성질을 경험한 것을 바탕으로 본문의 내용 설명에서 형식적•연 역적 정당화를 한 경우에 해당한다. 그러나 이는 우정호, 박미애, 권석일 (2003)에 의하면 귀납적 정당화와 연역적 정당화 사이의 큰 간극이 있 어 중간 단계의 이행과정을 확인하고 그 수준을 구체화할 필요가 있으 나, 경험적•귀납적 정당화와 형식적•연역적 정당화 사이에 다른 정당 화의 유형이 활용되지 않아 중간을 매개할 수 있는 정당화의 유형이 사

용될 필요가 있음을 나타낸다.
이제 <표 $\mathrm{IV}-1>$ 에 제시된 정당화의 유형을 경우에 따라 자세히 살펴 보면 다음과 같다.

1) 경험적•귀납적 정당화와 형식적•연역적 정당화

경험적•귀납적 정당화와 형식적•연역적 정당화가 사용된 것을 '삼각 형의 성질'에 대한 학습내용 중심으로 살펴보면 다음과 같다.

먼저 이등변삼각형의 밑각에 대한 성질에 대해 11종의 교과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서 경험적•귀납적 정당화와 형식적 - 연역적 정당화가 사용되었다. 또한 외심의 성질과 내심의 성질에 대해 10 종의 교과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{M}$)에서 경험적•귀납 적 정당화와 형식적•연역적 정당화가 사용되었다. 이는 탐구활동에서 종이접기와 같은 구체적 조작활동이나 평범한 예를 통하여 기하학적 성 질을 관찰하는 경험적•귀납적 정당화를 한 뒤 이를 바탕으로 형식적 증 명인 형식적•연역적 정당화로 이끌어나가는 형태로 나타났다. 이를 삼 각형의 외심에 대한 탐구활동과 이에 대한 설명을 예로써 살펴보면 다음 <표 IV-2>와 같다.
<표 IV-2> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 형 식적•연역적 정당화의 예(교과서 $\mathrm{D}, 2012: 193,194$)

정당화 유형	교과서에 제시된 삼각형의 외심에 대한 정당화
경험적. 귀납적 정당화	표훙비아 둥미브기 0 곽훙이어 $\triangle \mathrm{ABC}$ 팔 그썬 다을 저븐다. (9) 졈 A 와 짐 B 가 일치히도룍 점은 후 펼련다. 이뗘 (2)어서 생진 선과의 교겸을 O 라고 하자. (9) 정 B 와 겸 C 가 일최하도닥겸은 후 편쳥다. (9) 겸 A 와 겹 C 가 일치하도록 검은 후 진천다. C53 점 앞의 홭동으로부터 $\triangle \mathrm{ABC}$ 에서 서 변 $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ 의 수직이등분신은 한 졈 O 에서 만나고, 점 O 에서 서 꼭짓짐이 이르는 거리는 갆음을 확인할 수 있다.
형식적• 연역적 정당화	 sinccoblatei SmAh 4- CKat殾兂. $\angle O A D=$ SOtit scell- AOCE GCAF = $\triangle C E F$ 졀 O 는 변 AB 의 수징ㅇㅇ충붇산 위아 임으므로 $\overline{O A}=\overline{O B}$ $\begin{aligned} \overline{O B} & =\overline{O C} \\ \text { I. } 2 \text { 여서 } \overline{O A} & =\overline{O C} \end{aligned}$ $\triangle O A D$ 아 $\triangle O C D$ 아서 주에젼 조젼으로푸다 $\angle \mathrm{ADO}=\angle \mathrm{CDO}=90^{\circ}$ 조포오 $\angle O A D=\angle O C D$ 이다. 따라서 $\overline{\mathrm{AD}}=\overline{\mathrm{CD}}$ 하는 윈은 $\triangle \mathrm{ABC}$ 의 4 푹짓겸 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 률 지난다.

<표 IV-2>를 통해 살펴보면 종이접기를 활용한 탐구활동을 통하여 경험적•귀납적 정당화를 한 후 이를 바탕으로 본문 내용 설명에서 수직 이등분선의 성질과 삼각형의 합동조건을 이용해 형식적•연역적 정당화 를 하고 있음을 알 수 있다. 형식적•연역적 정당화 과정을 살펴보면, 정당화 과정의 왼쪽에 별도로 정당화에 필요한 선분의 수직이등분선의 성질을 그림과 설명으로 제공해 학생들의 추론을 돕고 있음을 알 수 있 다. 또한 세 변의 수직이등분선이 한 점에서 만남을 증명하여 외접원의 존재성과 유일성을 함께 정당화하고 있음을 알 수 있는데 이는 교과서 A 의 형식적•연역적 정당화와 다르게 나타난다. 이를 살펴보면 다음 [그림 IV-28] 과 같다.

$$
\begin{align*}
& \text { 일반적으로 삼각형의 두 변의 수직이등분선의 교점에서 세 꼭짓점에 이르는 거리 } \\
& \text { 가 같음을 알아보자. } \\
& \triangle \mathrm{ABC} \text { 에서 변 } \mathrm{AB} \text { 와 변 } \mathrm{AC} \text { 의 수직이등분선의 교점 } \\
& \text { 을 } \mathrm{O} \text { 라 하면, 점 } \mathrm{O} \text { 는 } \overline{\mathrm{AB}} \text { 의 수지이등분선 위에 있으믈 } \\
& \overline{\mathrm{OA}}=\overline{\mathrm{OB}} \\
& \text { 이다, 또 점 } \mathrm{O} \text { 는 } \overline{\mathrm{AC}} \text { 의 수직이등분선 위에 있으믈 } \\
& \qquad \overline{\mathrm{OA}}=\overline{\mathrm{OC}} \tag{2}\\
& \text { 이다. (1), (2)에 의하여 } \overline{\mathrm{OA}}=\overline{\mathrm{OB}}=\overline{\mathrm{OC}} \text { 임을 알 수 있다. } \tag{1}\\
& \text { 따라서 } \triangle \mathrm{ABC} \text { 의 변 } \mathrm{AB} \text { 와 변 } \mathrm{AC} \text { 의 수직이등분선의 교점 } \mathrm{O} \text { 에서 세 폭짓점에 이 } \\
& \text { 르는 거리는 같다. } \\
& \text { 이때 점 } \mathrm{O} \text { 를 중심으로 하고 바지름의 길이가 } \overline{\mathrm{OA}} \text { 인 원을 그리면 이 원은 } \triangle \mathrm{ABC} \text { 의 } \\
& \text { 세 족짓점을 모두 지난다. }
\end{align*}
$$

[그림 IV-28] 삼각형의 외심의 존재성에 대한 형식적•연역적 정당화(교과서 A, 2012: 243)

위의 [그림 IV-28]은 교과서 A에서 두 변의 수직이등분선의 교점에 서 세 꼭짓점에 이르는 거리가 같음을 형식적-연역적 정당화를 이용해 설명하여 외접원의 존재성을 보인 것이다. 이를 설명한 후 예제를 통해 세 변의 수직이등분선이 한 점에서 만나는 이유를 정당화하여 유일성을

보인다. 이와 다르게 교과서 G 는 세 변의 수직이등분선이 한 점에서 만 나는 것은 경험적•귀납적 정당화만 하고 이를 다시 형식적•연역적 정 당화를 하지 않는다. 이와 같이 형식적-연역적 정당화의 과정이 다르게 나타나는 것은 문헌검토에서 살펴본 외접원의 존재성과 유일성의 문제와 관련된다(변희현, 2011). 변희현(2011)의 연구에 따르면 임의의 삼각형 에 대하여 외접원이 존재하는지에 대한 의문을 제기해 답을 찾은 후 임 의의 삼각형에 대한 외접원이 유일한지를 생각해볼 수 있는 맥락을 제공 하는 것이 필요하므로 이에 대한 고려가 필요할 것으로 생각된다.
또한 외심과 내심의 정의에 대해 전영배, 강정기, 노은환(2011)은 삼 각형의 외심과 내심의 정의를 구성에 초점을 둔 정의와 의미에 초점을 둔 정의, 그리고 구성과 의미에 초점을 둔 정의로 나누어 설명하였다. 여기에서 구성에 초점을 둔 정의는 외심(내심)을 세 변의 수직이등분선 의 교점(세 내각의 이등분선의 교점)으로 정의하는 것을 의미하며, 의미 에 초점을 둔 정의는 외심(내심)을 삼각형의 외접원의 중심(삼각형의 내 접원의 중심)으로 정의하는 것을 의미한다. 전영배 외(2011)는 외심과 내심의 정의에 있어 의미에 초점을 둔 정의로부터 외심(내심)의 조건을 만족하는 점을 찾기 위한 노력을 통해 구성에 초점을 둔 정의를 학생들 이 발견할 수 있도록 지도하여야 한다고 주장한다. 따라서 이러한 맥락 을 고려하여 교과서를 서술할 필요가 있다.
2) 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화

경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화가 사용된 것을 학습내용 중심으로 살펴보면, 이등변삼각형의 밑각에 대한 성질에 대해 2 종의 교과서(교과서 B, H)에서 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화가 사용되었다. 또한 직각삼각 형의 합동조건(RHS합동)에 대해 교과서 G 에서 이를 사용하였다. 외심 의 성질과 내심의 성질에 대해서는 2 종의 교과서(교과서 B, H)에서 경 험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화가 사 용되었다. 이는 1)에서 사용한 경험적•귀납적 정당화와 형식적•연역적

정당화를 매개할 수 있는 시각적 예를 사용하는 예에 의한 정당화가 사 용되었음을 나타낸다. 예를 통해 살펴보면 다음 <표 IV -3 >과 같다.
<표 IV-3> 삼각형의 성질에 사용된 경험적•귀납적 정당화와 예 에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{H}, 2012$: 209, 210)

정당화 유형	교과서에 제시된 이등변삼각형의 성질에 대한 정당화
경험적• 귀납적 정당화	오른쪽 그밈은 직사작형 모영의 중 이률 반으로 접은 다음 $\overline{\mathrm{AB}}$ 를 따 라 자른 후 펼켰음 마 생진 $\triangle \mathrm{ABC}$ 이다. $\triangle \mathrm{ABC}$ 는 어면 삼작형인지 말하고, $\angle \mathrm{B}$ 와 크기가 같은 각을 말하여라. 이등병삼간형은 '두 년의 길이가 같은 삼각항' 이다. 위의 개범 열기어서 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 이므로 $\triangle \mathrm{ABC}$ 는 이등변삼각형이고, $\angle \mathrm{B}$ 와 $\angle \mathrm{C}$ 의 크기는 서로 같음을 알 수 있다.
예에 의한 정당화	
형식적• 연역적 정당화	이둥변삼각영의 두 밀가의 크기는 서로 값다. 이 성질이 항상 성립하는지 알아보자. 한 각을 이등분하는 반지선을 그 각의 이등분선이라고 한다. 다음 그립과 같이 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 이등변삼각형 ABC 에서 $\angle \mathrm{A}$ 의 이등분선 을 그어 변 BC 와의 교점을 D 라고 하자. 이때 $\triangle \mathrm{ABD}$ 와 $\triangle \mathrm{ACD}$ 에서 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}, \angle \mathrm{BAD}=\angle \mathrm{CAD}, \overline{\mathrm{AD}} \text { 는 공룽 }$ 이므로 $\triangle \mathrm{ABD}=\triangle \mathrm{ACD}(\mathrm{SAS}$ 함동)입을 알 수 있다. 합동인 두 삼각형에서 대융각의 크기는 서로 같으믈 $\angle \mathrm{B}=\angle \mathrm{C}$ 이다.

<표 IV -3 >은 이등변삼각형의 밑각에 대한 성질을 정당화한 것이다. 이를 살펴보면 경험적•귀납적 정당화와 형식적•연역적 정당화 사이에 시각적 예를 이용하여 정당화과정을 보여주는 예에 의한 정당화를 이용 하고 있음을 알 수 있다. 이를 통해 학생들은 경험적•귀납적 정당화에 서 바로 형식적•연역적 정당화로 정당화를 하는 것보다 쉽게 정당화 과 정을 이해할 수 있을 것으로 생각된다. 또한 경험적•귀납적 정당화를 한 후 형식적•연역적 정당화를 하는 이유를 '이 성질이 항상 성립하는 지 살펴보자'라고 제시한 부분을 찾아볼 수 있다. 이는 경험적•귀납적 정당화를 통해 얻은 결과를 보다 일반화하여 모든 이등변삼각형에서 만 족하는 것을 형식적•연역적 정당화를 통해 보이고자 함을 나타낸다고 볼 수 있다.
3) 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용된 것을 ‘삼각형의 성질’에 대한 학습내용 중심으로 살펴보면 다음 과 같다.
이등변삼각형의 꼭지각의 이등분선에 대한 성질에 대해 4 종의 교과서 (교과서 $\mathrm{E}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용하였다. 또한 직각삼각형의 합동조건(RHA 합동)에 대해 교과서 9 종(교과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{R}, \mathrm{J}, \mathrm{M}$)에서 이를 사용하였다. 이는 경험적•귀납적 정당화를 한 후 형식적•연역적 정당 화를 하는 과정에서 식의 조작이 필요하거나 논리적 설명이 필요한 경우 에 나타났다. 이를 직각삼각형의 합동조건(RHA합동)에 대한 탐구활동과 이에 대한 내용 설명을 살펴보면 다음 <표 IV $-4>$ 과 같다.
<표 $\mathrm{IV}-4>$ 삼각형의 성질에 사용된 경험적•귀납적 정당화와 준연 역적 정당화, 형식적•연역적 정당화의 예(교과서 L, 2012: 247)

정당화 유형	교과서에 제시된 직각삼각형의 합동조건에 대한 정당화
경험적• 귀납적 정당화	오른쪽 그림은 교량의 일부분이다. 두 삼각형 ABC 와 DEF 에서 $\begin{aligned} & \angle \mathrm{C}=\angle \mathrm{F}=90^{\circ}, \overline{\mathrm{AB}}=\overline{\mathrm{DE}}, \\ & \angle \mathrm{~A}=\angle \mathrm{D}=30^{\circ} \end{aligned}$ 이다. $0 \quad \angle \mathrm{~B}$ 와 $\angle \mathrm{E}$ 의 크기는 각각 얼마인가? (3) 삼각형 ABC 와 삼각형 DEF 는 합동인지 생각해 보자.
준연역적 정당화, 형식적• 연역적 정당화	이제 $\angle \mathrm{C}=\angle \mathrm{F}=90^{\circ}$ 인 $\triangle \mathrm{ABC}$ 와 $\triangle \mathrm{DEF}$ 에서 $\overline{\mathrm{AB}}=\overline{\mathrm{DE}}$ 이고 $\angle \mathrm{A}=\angle \mathrm{D}$ 이면 $\triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$ 임을 설명해 보자. $\triangle \mathrm{ABC}$ 와 $\triangle \mathrm{DEF}$ 에서 $\begin{align*} & \angle \mathrm{A}=\angle \mathrm{D} \tag{1}\\ & \overline{\mathrm{AB}}=\overline{\mathrm{DE}} \\ & \angle \mathrm{C}=\angle \mathrm{F}=90^{\circ} \text { 이므로 } \\ & \angle \mathrm{B}=90^{\circ}-\angle \mathrm{A} \\ & \tag{3}\\ & =90^{\circ}-\angle \mathrm{D}=\angle \mathrm{E} \end{align*}$ 즉, $\angle \mathrm{B}=\angle \mathrm{E}$ 이다. (1), (2), (3)에서 $\triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$ (ASA 합동)

위의 <표 $\mathrm{IV}-4>$ 를 살펴보면 직각삼각형에 대한 평범한 예를 통해 경 험적•귀납적 정당화를 하고 있음을 알 수 있다. 또한 형식적•연역적 정당화 과정에서 삼각형의 합동을 보이기 위해 $\angle \mathrm{B}=\angle \mathrm{E}$ 임을 식의 조 작을 이용하여 보이고 있음을 알 수 있다. 따라서 식의 조작에 의한 정 당화인 준연역적 정당화와 형식적•연역적 정당화가 함께 나타나고 있음 을 알 수 있다. 그러나 교과서 B 에서는 직각삼각형의 합동조건에 대한 정당화에서 식의 조작이 아닌 논리적 설명에 의해 준연역적 정당화를 사 용하였는데 이를 살펴보면 다음 [그림 IV-29]와 같다.

```
오르ᄂ쪼ᄀ 사지ᄂ으ᄂ 다예네 지ᄇ이 이사ᄋ% 떠 이
묘ᄋ하ᄂ 사다리차의 오소ᄇ이다.
    \triangle\textrm{ABC}\mathrm{ 가 }\angle\textrm{C}=9\mp@subsup{0}{}{\circ}\mathrm{ 이ᄂ 지ᄀ가ᄀ사ᄆ가ᄀ혀ᄋ이고}
\angleB=30'이ᄅ 때 }\angle\textrm{A}\mathrm{ 여 크기ᄂᄂ 여ᄋ마이ᄂ가?
```



```
삼각형의 합동 조긴은 두 삼각헝에서 세 변여 길이, 두 변의 길이와 그 사잇 각의 크기, 한 변의 긴이와 그 양 끌 가의 크기가 각각 같은 것으로, 어느 것이 나 서 가지 요소률 확인하여야 한다. 직각심각형의 경우에는 직각이라는 하나 의 픅수한 조건이 있으므로 서 가지 요소 가운데 적절한 두 가지 요소만 확인하 여도 합동인지 아넌지 알 수 있다.
생각열기에시 알 수 있듯이 직각상각형에서 한 여작의 크기가 정히지면 다른 예강의 크기도 정혜진다. 따라서 두 직각삼각형에서 한 예각의 크기가 서로 같 으뗜 다른 여각의 크기도 서로 갈다.
이를 이응하면 칙각삼각형이 개한 다음 합동 조정을 얼을 수 있다.
```


직각삽각형의 찹동 조건(1)

```
씻변의 길이와 한 예가의 크기가 각각 같은 두 직각삽각형은 합동이다.
```

[그림 IV-29] 직각삼각형의 합동조건에
대한 정당화의 예(교과서 B, 2012: 199)

위의 [그림 IV-29]를 살펴보면 <표 IV-4>의 탐구활동과 동일하게 직각삼각형의 평범한 예를 이용하여 경험적•귀납적 정당화를 하고 있음 을 알 수 있다. 그러나 이는 직각삼각형의 합동조건에 대한 직접적인 탐 구활동이 아니라 직각삼각형에서 한 예각의 크기가 결정되면 다른 예각 의 크기가 결정됨을 알게 하기 위한 탐구활동임을 알 수 있다. 또한 이 를 논리적인 설명을 통해 정당화하고 형식적•연역적 정당화를 사용하지 않음을 알 수 있다.
4) 예에 의한 정당화와 형식적•연역적 정당화

예에 의한 정당화와 형식적•연역적 정당화가 사용된 것을 '삼각형의 성질'에 대한 학습내용 중심으로 살펴보면 다음과 같다.
이등변삼각형이 되는 조건은 대부분 교과서에서 예제로 형식적•연역 적 정당화만 다루고 있었으나 2종의 교과서(교과서 H, K)에서는 이를

시각적 예를 이용하여 예에 의한 정당화를 한 후 형식적•연역적 정당화 를 다루고 있었다. 또한 직각삼각형의 합동조건(RHS합동)에 대해서는 두 직각삼각형을 붙여 이등변삼각형을 만드는 과정을 시각적 예로 보여 준 후 이등변삼각형의 성질을 이용해 정당화하는 과정이 모든 교과서에 서 동일하게 나타닜다. 이를 이등변삼각형이 되는 조건에 대한 탐구활동 과 이에 대한 내용 설명을 예를 통해 살펴보면 다음 <표 IV $-5>$ 와 같 다.
<표 $\mathrm{IV}-5>$ 삼각형의 성질에 사용된 예에 의한 정당화와 형식적

- 연역적 정당화의 예(교과서 L, 2012: 247)

정당화 유형	교과서에 제시된 이등변삼각형이 되는 조건에 대한 정당화
예에 의한 정당화	
형식적• 연역적 정당화	

<표 $\mathrm{IV}-5>$ 는 두 내각의 크기가 같은 삼각형이 이등변삼각형임을 정 당화하는 과정이다. 이를 살펴보면 형식적•연역적 정당화 과정을 하기 전에 시각적 예를 이용하여 먼저 예에 의한 정당화를 보이고 있다. 또한

형식적•연역적 정당화 과정에서 왼쪽에 별도로 제시된 부분에 정당화를 통해 보여야 할 것을 '생각 두드림'에서 제시하여 학생들의 추론을 돕고 있음을 알 수 있다.
5) 예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화

예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용 된 것을 '삼각형의 성질'에 대한 학습내용 중심으로 살펴보면 이등변삼 각형의 꼭지각의 이등분선에 대한 성질에서 교과서 H 는 시각적인 예를 사용하여 예에 의한 정당화와 식의 조작을 사용한 준연역적 정당화, 형 식적•연역적 정당화를 보이고 있다. 또한 직각삼각형의 합동조건(RHA 합동)에 대해서도 <표 IV $-4>$ 에서 사용되었던 준연역적 정당화와 형식 적•연역적 정당화와 함께 교과서 H 에서 시각적인 예를 활용하여 정당 화하고 있는 것으로 분석되었다. 이는 교과서 H 의 특징으로 볼 수 있으 며 경험적•귀납적 정당화와 형식적•연역적 정당화를 연결하는 중간 매 개를 위한 정당화의 유형으로써 시각적 예를 이용한 예에 의한 정당화를 사용한 것으로 분석된다.
6) 준연역적 정당화와 형식적•연역적 정당화

준연역적 정당화, 형식적•연역적 정당화가 사용된 것을 '삼각형의 성 질'에 대한 학습내용 중심으로 살펴보면 이등변삼각형의 꼭지각의 이등 분선에 대한 성질에 대해서 교과서 8 종(교과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}$) 에서, 직각삼각형의 합동조건(RHA 합동)에 대해서는 교과서 2 종(교과 서 F, L)에서 준연역적 정당화와 형식적-연역적 정당화를 하였다. 이를 통해 별도의 탐구활동 없이 바로 연역적 정당화를 도입하였음을 알 수 있다.
7) 형식적•연역적 정당화

형식적•연역적 정당화만 사용된 것을 ‘삼각형의 성질'에 대한 학습내 용 중심으로 살펴보면 이등변삼각형이 되는 조건에 대해서 교과서 8 종(교

과서 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{L}$)에서 형식적-연역적 정당화만 사용되었다. 또한 외심의 성질과 내심의 성질에 대해서는 교과서 K 에서 형식적•연 역적 정당화만 사용되었는데 이는 외심의 성질과 내심의 성질을 다루기 전 각각 수직이등분선의 성질, 각의 이등분선의 성질을 탐구활동을 통해 다루고 이를 형식적•연역적 정당화하였기 때문에 삼각형의 외심과 내심 에 대해서는 탐구활동 없이 형식적•연역적 정당화를 함을 알 수 있다.

1.2.2. 문제

<표 III-2>의 수행에 대한 기대 측면에서의 교과서 분석틀에 의해 '기하학적 성질 추론하기' 중 '정당화하기'로 분석된 문제를 대상으로 각 교과서에 나타나는 정당화의 유형을 분석해보면 다음 [그림 IV-30]과 같다.

[그림 $\mathrm{IV}-30$] 삼각형의 성질에 대한 문제에 사용된 정당화의 유형 개수(개)

서울대학교
xat wow wersan
[그림 IV-30]을 통해 살펴보면 모든 교과서에서 형식적•연역적 정당 화를 요구하는 문제가 가장 많은 것을 알 수 있다. 또한 준연역적 정당 화도 교과서 D 를 제외하고 모든 교과서에서 나타났다. 이를 통해 교과서 의 '정당화하기'의 문제는 대부분 연역적 정당화를 요구하고 있음을 알 수 있다. 경험적•귀납적 정당화를 요구하는 문제는 교과서 3 종(교과서 F, J, M)에서 나타났고, 예에 의한 정당화는 교과서 F에서만 분석되었 다.
교과서 F 에서는 경험적•귀납적 정당화와 예에 의한 정당화를 요구하 는 문제가 포함되어 있었다. 이를 다음 [그림 IV-31]을 통해 살펴보면 다음과 같다.

[그림 $\mathrm{IV}-31$] 삼각형의 성질에 대한 '경험적•귀납적 정당화'와 '예에 의한 정당화' 문제의 예(교과서 $\mathrm{F}, 2012$: 254)
[그림 $\mathrm{IV}-31]$ 은 직각삼각형을 이용해 삼각형에 대한 내접원의 반지름 을 구하는 것을 색종이를 이용해 직각삼각형과 내접원을 만드는 활동을 통해 경험하도록 한다. 이를 바탕으로 2 개의 직각삼각형을 큰 직사각형 으로 만들어보면서 경험적•귀납적 정당화를 하도록 문제를 제시한다. 또한 [그림 IV-32]에 제시된 [그림 1]과 [그림2]의 시각적 예를 통해 학생들이 정당화하는 것을 돕고 있으므로 이는 예에 의한 정당화를 사용 한 것으로 분석할 수 있다.
'준연역적 정당화'를 요구하는 문제를 살펴보면 다음 [그림 IV-32]와

같다.

180° 의 비밀

오른쭉 그럽의 $\triangle \mathrm{ABC}$ 는 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ 인 이틍번삼각형이다. 밉변 BC 위여 한 졀 D 에 내하여 $\overline{\mathrm{BD}}=\overline{\mathrm{CE}}$ 인 $\overline{\mathrm{AC}}$ 위의 졈을 $\mathrm{E}, \overline{\mathrm{DC}}=\overline{\mathrm{BF}}$ 인 $\overline{\mathrm{AB}}$ 위의 점을 F 라고 하자. 다음 물음어 답 하여라.

1. $\triangle \mathrm{BDF}$ 와 험동인 섬죠옹을 훚고 그 이윷를 할하여라.

 빤히안
<풀이>
2. $\angle \mathrm{EDF}=180^{\circ}-(\angle \mathrm{BDF}+\angle \mathrm{CDE})$

$$
=180^{\circ}-(\angle \mathrm{BDF}+\angle \mathrm{BFD})=\angle \mathrm{B}
$$

3. $\angle \mathrm{A}=\angle a, \angle \mathrm{~B}=\angle \mathrm{C}=\angle b$ 이므로 $\triangle \mathrm{ABC}$ 에서 $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=\angle a+2 \angle b=180^{\circ}$
[그림 IV-32] 삼각형의 성질에 대한 '준연역적 정당화’ 문제의 예(교과서 $\mathrm{H}, 2012: 229)$

위의 [그림 IV-32]에 제시된 문제 2 와 3 에 대한 풀이를 살펴보면 문제 1 에서 정당화한 성질을 이용해 간단한 식의 조작에 의한 정당화를 사용하여 정당화하고 있음을 알 수 있다. 따라서 문제 2,3 은 준연역적 정당화를 요구하는 것으로 분석될 수 있다.
'형식적•연역적 정당화'를 사용하고 있는 문제의 예를 살펴보면 다음 [그림 IV-33]과 같다.

문제(4) 오른쪽 그림은 $\overline{\mathrm{BC}}$ 의 수직이등분선 위 에 한 점 A 를 잡아 $\triangle \mathrm{ABC}$ 를 그린 것이다. 다음 물음에 답하여라.
(1) $\triangle \mathrm{ABD}$ 와 $\triangle \mathrm{ACD}$ 가 합동임을 설명하여라.
(2) $\triangle \mathrm{ABC}$ 가 이등변삼각형임을 설명하여라.

[그림 IV-33] 삼각형의 성질에 대한 '형식적•연역적 정당화' 문제의 예(교과서 $\mathrm{M}, 2012: 246$)

위의 [그림 $\mathrm{IV}-33$]에 제시된 문제(1)에서 삼각형의 합동조건을 이용 해 정당화를 요구하므로 형식적•연역적 정당화를 요구하는 문제로 분석 될 수 있다.

2. 사각형의 성질

중단원 ‘사각형의 성질'은 이전 중단원인 '삼각형의 성질'과 다르게 소 단원 구성에 있어 교과서별 차이가 없었다. 13 종의 교과서 모두 '평행사 변형의 성질'과 '여러 가지 사각형'으로 소단원이 구성되어 있었다. '평행 사변형의 성질'에서는 평행사변형의 두 쌍의 대변과 두 쌍의 대각에 대 한 성질을 다루고, 사각형이 평행사변형이 될 조건에 대해 다루고 있었 으며, '여러 가지 사각형의 성질'에서는 직사각형, 정사각형, 마름모의 대 각선에 대한 성질을 학습한 후 여러 가지 사각형 사이의 관계를 다루고 있었으며 평행선과 넓이 사이의 관계를 포함하여 다루고 있었다.
따라서 '사각형의 성질'에서 분석할 교과서의 내용은 모든 교과서에서 공통적으로 다루고 있는 평행사변형의 성질, 평행사변형이 될 조건, 직 사각형, 마름모, 정사각형의 성질과 이들 사이의 관계, 평행선과 넓이 사 이의 관계를 포함하고자 한다.

2.1. 수행에 대한 기대 측면에서의 교과서 분석결과

2.1.1. 탐구활동

'사각형의 성질’에 제시된 탐구활동은 평균적으로 5 개 정도 포함되어 있었다. 이 중 교과서 C 와 M 은 각각 탐구활동을 9 개, 10 개 포함하고 있 어 다른 교과서에 비해 많은 탐구활동을 포함하고 있었다. 이는 교과서 C 는 평행사변형의 대변, 대각, 대각선의 성질과 여러 가지 사각형 각각 에 대한 탐구활동을 포함하고 있기 때문이며 교과서 M 은 '삼각형의 성 질'과 동일하게 각 학습내용마다 실생활맥락의 탐구활동과 구체적 조작 활동과 관련된 탐구활동을 포함하고 있기 때문으로 분석된다.

중단원 ‘사각형의 성질’에서의 탐구활동의 수행에 대한 기대를 살펴보 면 다음 [그림 IV-34]와 같다.

[그림 IV-34] 사각형의 성질에 대한 탐구활동의 수행에 대한 기대 비율(\%)
[그림 IV-34]를 통해 알 수 있듯이, '기하학적 개념, 사실 알기'의 비 율이 가장 높은 교과서는 12 종이었으며, 그 비율이 모두 50% 이상으로 꽤 높은 비율을 차지한다고 볼 수 있다. '기하학적 성질 적용하기'의 비 율이 가장 높게 나타난 교과서는 없었으며, 8 종의 교과서에서는 아예 나 타나지 않았다. '기하학적 성질 추론하기'는 교과서 E에서 100% 의 비율 로 나타났으며, 이를 제외하고 모두 '기하학적 개념, 사실 알기'보다는 낮은 비율로 나타났다. 그러나 교과서별로 비교했을 때'기하학적 성질 추론하기'의 비율이 높아진 교과서를 살펴보면 8종(교과서 E, F, G, H, $\mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)이었다. 이는 '삼각형의 성질' 단원에 비해 탐구활동을 통해 알게 된 기하학적 사실을 바탕으로 추측하도록 요구하는 질문이나 간단 히 논리적인 설명을 통해 기하학적 사실이 참인 이유를 설명하도록 요구 하는 질문이 더 추가되었기 때문으로 볼 수 있다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'는 '인식하기'와 '측정하기'가 가장 많이 나 타났다. 또한 교과서 F 에서는 평행사변형이 될 조건에 대한 탐구활동에 서 여러 가지 조건 중 평행사변형이 만들어지는 경우에 대해 '분류하기' 의 질문이 분석되었다. 13 종의 교과서 중 '기하학적 개념, 사실 알기'의 비율이 13 종의 교과서 중 가장 높게 100% 의 비율로 나타나고 있는 것 은 교과서 A이다. 그 예를 살펴보면 다음 [그림 IV-35]와 같다.

[그림 IV-35] 사각형의 성질에 대한 탐구활동의
‘인식하기’ 질문의 예(교과서 $\mathrm{A}, 2012: 260)$

위의 [그림 $\mathrm{IV}-35$]의 질문 (1)은 만든 사각형을 보고 두 쌍의 대변의 길이가 같은 것에 대해 '인식하기'를 요구하는 질문으로 분석되며, 질문 (2)는 두 쌍의 대변의 길이가 같은 사각형이 평행사변형임을 단순히 확 인하도록 요구하는 질문으로 이것도 '인식하기'로 분석될 수 있다. 이와 비슷하게 빨대와 실을 이용하여 두 쌍의 대변의 길이가 같음을 경험하도 록 하는 탐구활동이지만 질문이 다르게 구성된 예를 살펴보면 다음 [그 림 $\mathrm{IV}-36]$ 과 같다.

[그림 IV-36] 사각형의 성질에 대한 탐구활동의 ‘추측하기' 질문의 예(교과서 J, 2012: 266)
[그림 $\mathrm{IV}-35$]의 질문 (2)에서는 두 쌍의 대변의 길이가 같은 사각형 이 평행사변형이라는 사실을 학생들에게 제공하고 이를 확인하도록 요구 하는 반면, [그림 $\mathrm{IV}-36$]의 질문 (2)에서는 확인한 결과를 바탕으로 두 쌍의 대변의 길이가 같은 사각형이 평행사변형이 되는지 추측하도록 질 문하고 있음을 알 수 있다. 따라서 같은 내용을 담고 있는 탐구활동이라 도 질문에 따라 학생들이 추론을 경험하도록 할 수 있고 그렇지 않을 수 있으므로 이에 대한 고려가 필요할 것으로 보인다.
2) 기하학적 성질 적용하기
'기하학적 성질 적용하기'는 여러 가지 사각형의 성질에 대해서는 분석 되지 않았으며, 평행사변형의 성질에 대한 탐구활동의 질문에서 '이행하

기'만 분석되었다. 13 종의 교과서 중 '기하학적 성질 적용하기'의 비율이 28.6% 로 가장 높게 나타나는 것은 교과서 C이다. 교과서 C의 탐구활동 을 살펴보면 다음 [그림 $\mathrm{IV}-37$]과 같이 주어진 사각형에서 기하학적 성 질을 인식하도록 한 뒤, 모눈종이에 사각형을 그려보고 주어진 사각형과 새로 그린 사각형을 통하여 사각형의 대각선의 성질을 추측해보도록 구 성되어 있음을 알 수 있다.

[그림 IV-37] 사각형의 성질에 대한 탐구활동의
‘이행하기’ 질문의 예(교과서 C, 2012: 240)

구체적으로 [그림 IV-37]의 탐구활동을 살펴보면, 탐구 (1)과 탐구 (2) 와 같이 대각선을 그리거나 직사각형을 그리도록 '이행하기'를 요구하는 질문이 포함되어 있음을 알 수 있고 이는 '기하학적 성질 적용하기'로 분석될 수 있다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'는 교과서 1종(교과서 A)을 제외한 모든 교 과서의 탐구활동에서 나타났다. 이러한 질문은 대부분의 교과서에서 탐 구활동을 통해 얻은 결과에 대해 '추측하기'를 요구하는 질문이거나 결 과에 대한 간단한 이유를 설명하도록 '정당화하기'를 요구하는 질문으로 분석되었다. 구체적으로 '정당화하기'의 질문을 예로써 살펴보면 다음 [그림 IV-38] 과 같다.

[그림 IV-38] 사각형의 성질에 대한
'정당화하기' 질문의 예(교과서 L, 2012: 263)

위의 [그림 IV-38]은 컴퓨터 프로그램을 통해 세 개의 삼각형을 그린 후 넓이가 모두 같음을 알고 그에 대한 이유를 설명하도록 요구하는 '정 당화하기'로 분석될 수 있다. 또한 교과서 E 는 모든 탐구활동에서 '기하 학적 성질 추론하기'의 질문으로 구성되었는데 이를 살펴보면 [그림 IV -39]와 같다.

[그림 IV-39] 사각형의 성질에 대한 탐구활동의 '추측하기’ 질문의 예(교과서 $\mathrm{E}, 2012: 251$)
[그림 IV-39]에서 살펴볼 수 있는 특징은 중단원 '삼각형의 성질’에서 도 비슷하게 나타났던 교과서 E 의 탐구활동의 특징으로, 학습할 내용에 대해 직접적으로 제시하지 않고 두 개의 삼각형을 붙여 사각형을 만들 때 만들어지는 사각형의 모양을 통해 평행사변형이 되는 조건을 추측해 보는 경험을 제공하고 있음을 알 수 있다.
이제 보다 구체적으로 '기하학적 성질 추론하기'가 어떻게 구성되었는 지 살펴보면 다음 [그림 IV-40]과 같다.

[그림 IV-40] 사각형의 성질에 대한 탐구활동의
'기하학적 성질 추론하기'의 질문 개수(개)
[그림 IV-40]을 통해 알 수 있듯이, '기하학적 성질 추론하기'에 해당 하는 질문은 '삼각형의 성질' 단원과 동일하게 '추측하기'와 '정당화하기' 로 분포되어 있었다. 그러나 '삼각형의 성질' 단원에서는 '추측하기'의 질 문이 총 10 개였던 것에 비해 '사각형의 성질' 단원에서는 '추측하기'의 질문이 총 32 개로 분석되어 더 많이 분포함을 알 수 있다. 예를 통해 살 펴보면 다음 [그림 IV-41]과 같다.

[그림 IV-41] 사각형의 성질에 대한 탐구활동의 '추측하기' 질문의 예(교과서 L, 2012: 275)

서울대학교
SEOUL NATONAL LINIERSTY

위의 [그림 IV-41]의 탐구활동은 평행사변형을 만들어본 후 평행사변 형의 대변의 성질에 대한 형식적•연역적 정당화의 과정과 동일하게 활 동을 구성된 것을 알 수 있다. 또한 이를 바탕으로 평행사변형의 대변의 길이와 대각의 크기에 대한 성질을 관찰하여 '추측하기'를 요구하는 질 문으로 분석된다.
'기하학적 성질 추론하기' 중 '정당화하기'에 대한 질문을 예를 통해 살 펴보면 다음 [그림 IV-42]와 같다.

[그림 IV-42] 사각형의 성질에 대한 탐구활동의
‘정당화하기’ 질문의 예(교과서 $\mathrm{D}, 2012: 209)$

위의 [그림 IV-42]는 평행사변형이 될 조건을 탐구하는 탐구활동이 다. 이에 대한 질문은 두 쌍의 대변의 길이가 같도록 직사각형을 잘라 평행사변형으로 잘라 변형한 후 이를 이용하여 두 쌍의 대변이 평행임을 설명하도록 요구하는 '정당화하기' 질문으로 분석된다. 다른 교과서에 제 시된 평행사변형이 될 조건에 대한 탐구활동은 [그림 IV-36]과 같이 길 이가 같은 두 쌍의 막대 또는 빨대를 이용해 평행사변형임을 추측하는 활동으로 제시된 것에 비해 직사각형 모양의 종이를 활용하여 보다 특수 한 경우의 예를 활용하고 있음을 알 수 있다. 또한 컴퓨터 프로그램을 이용한 '정당화하기'의 질문에 대한 예를 살펴보면 다음 [그림 IV-43]

과 같다.

[그림 IV-43] 사각형의 성질에 대한
'정당화하기' 질문의 예(교과서 J, 2012: 275)

위의 [그림 IV-43]은 컴퓨터가 활용된 맥락을 제공하고 있는 탐구활 동의 예이다. 컴퓨터가 활용된 맥락을 제공한 다른 교과서들보다 다양한 예를 제시하고 여러 형태로 삼각형을 변형하였을 때 변하는 것과 변하지 않는 것을 학생들이 인식하도록 하여 평행선 사이의 삼각형의 넓이가 같 을 조건을 찾도록 돕고 있다. 즉, 단순히 컴퓨터가 활용된 맥락을 제시 하고 도형의 성질을 추측하도록 하는 것보다 위의 [그림 IV-43]과 같이 컴퓨터 프로그램의 장점이 활용될 수 있도록 다양한 예를 관찰하고 변하 지 않는 성질을 바탕으로 도형의 성질을 추측할 수 있도록 구성될 필요 가 있다.

지금까지의 '사각형의 성질' 단원에서의 탐구활동 질문에 대한 분석 결 과를 정리하면, 탐구활동의 수행에 대한 기대 중 '기하학적 성질 추론하 기'보다 '기하학적 개념, 사실 알기'의 비율이 더 높게 분석되었다. 그러 나 '삼각형의 성질’ 단원에 비해 '기하학적 성질 추론하기'의 비율이 더

높게 나타난 교과서가 8종 있었는데, 이는 학생들에게 탐구활동을 통해 알게 된 기하학적 사실을 바탕으로 추측하도록 요구하는 질문이나 간단 한 논리적 설명을 통해 기하학적 성질이 참인 이유를 설명하도록 요구하 는 질문이 더 많이 구성되었기 때문이다. 이를 통해 '삼각형의 성질' 단 원에서 추론과 정당화를 접하고 난 후 '사각형의 성질' 단원에서는 추론 과 정당화의 기회를 많이 제공하고자 함을 알 수 있다. '기하학적 개념, 사실 알기'를 요구하는 질문은 '삼각형의 성질'과 유사하게 '인식하기'와 ‘측정하기'가 가장 많이 나타났다. 또한 평행사변형이 될 조건을 학습하 는 데 있어 평행사변형이 되는 것과 그렿지 않은 것을 분류하도록 요구 하는 '분류하기' 질문도 분석되었다. 또한 '기하학적 성질 적용하기'의 질 문은 '삼각형의 성질’과 마찬가지로 수학적 설명을 따르도록 하는 '이행 하기'의 질문으로 구성되었다. '기하학적 성질 추론하기'의 질문은 '추측 하기'와 '정당화하기'의 질문으로 구성되었다. 그러나 '삼각형의 성질' 단 원의 '추측하기' 질문의 개수는 전체 10 개로 분석된 것에 비해 '사각형의 성질' 단원의 '추측하기'의 질문은 전체 32 개로 분석되어 '추측하기'의 질 문이 더 많이 제시되어 있었다. '추측하기'의 질문의 개수가 더 많아진 교과서를 살펴보면 단순히 학습할 내용을 확인하는 것이 아니라 의도적 으로 활동한 결과를 통해 알게 된 것을 추측하도록 요구하는 질문이 더 많아졌음을 알 수 있다.
이러한 탐구활동의 추론과 정당화를 돕기 위한 요소로써 탐구활동에서 컴퓨터 프로그램을 활용한 예가 분석되었다. 이는 단순히 컴퓨터 프로그 램을 활용한 맥락을 제공하거나 컴퓨터 프로그램을 통해 변의 길이와 각 의 크기를 확인하는 것이 아닌 다양한 형태로 변화시켰을 때 변하는 것 과 변하지 않는 것을 관찰하여 이를 바탕으로 도형의 성질을 추측하도록 돕는 형태로 나타났음을 알 수 있다.

2.1.2. 문제

중단원 '사각형의 성질'에 제시된 문제는 평균적으로 68 개 정도 포함

되어 있었다. 이 중 교과서 D 는 85 개, 교과서 G 는 97 개로 가장 많은 문 제를 포함하고 있었다. 이는 두 교과서 모두 부록으로 추가 문제를 제공 하였기 때문이다.
'사각형의 성질'에서의 문제의 수행에 대한 기대는 '기하학적 개념, 사 실 알기'의 비율이 가장 높게 나타난 교과서가 많았고 이전 중단원인 '삼각형의 성질' 단원에 비해 1 종의 교과서(교과서 A)를 제외하고 '기하 학적 성질 추론하기'의 비율이 ‘사각형의 성질’ 단원에서 더 높게 나타났 다. 이를 구체적으로 살펴보면 [그림 IV-44]와 같다.

[그림 IV-44] 사각형의 성질에 대한 문제의 수행에 대한 기대
비율(\%)
[그림 IV-44]를 통해 알 수 있듯이, 중단원 '사각형의 성질'에서의 문 제의 수행에 대한 기대는 '기하학적 개념, 사실 알기'의 비율이 가장 높 은 교과서가 7종, '기하학적 성질 적용하기'의 비율이 가장 높은 교과서 가 1 종, '기하학적 성질 추론하기'의 비율이 가장 높은 교과서가 5 종으로 분석된다. 이는 대체적으로 '기하학적 성질 적용하기'의 비율이 가장 높

았던 중단원 '삼각형의 성질'과 비교했을 때 '기하학적 개념, 사실 알기' 와 '기하학적 성질 추론하기'의 비율은 높게 나타나고 '기하학적 성질 적 용하기'의 비율은 비교적 낮게 나타남을 알 수 있다. 이는 학습한 사각 형의 성질을 보다 응용하여 해결할 수 있는 문제를 제공하기보다는 이를 적용하여 바로 풀 수 있는 문제들이 더 많이 포함되어 있음을 의미한다. 또한 '기하학적 성질 추론하기'의 비율이 높아진 것을 통해 중단원 '삼각 형의 성질'을 통해 기하 추론을 경험한 학생들에게 추론의 기회를 보다 더 제공하기 위함으로 해석될 수 있다. 각 수행에 대한 기대를 구체적으 로 살펴보면 다음과 같다.

1) 기하학적 개념, 사실 알기
'기하학적 개념, 사실 알기'에 대한 문제는 '회상하기', '인식하기', '계 산하기', ‘유도하기', '분류하기'를 요구하는 것으로 분석되었다. 이 중 '계 산하기'와 '인식하기'를 요구하는 문제가 가장 많았다. 또한 '분류하기'를 요구하는 문제가 포함되어 있었는데 이는 다음 [그림 IV-45]와 같이 ‘평행사변형이 될 조건’을 학습하고 이를 바탕으로 평행사변형이 되는 것과 그렇지 않은 것을 분류하도록 요구하는 문제에서 확인되었다.

$$
\begin{aligned}
& \text { 다음 } \square \mathrm{ABCD} \text { 에서 평행사변형인 것을 모두 찾아라. } \\
& \text { (단, 점 } \mathrm{O} \text { 는 두 대각서 } \mathrm{AC} \text { 와 } \mathrm{BD} \text { 의 교점이다.) } \\
& \text { (1) } \overline{\mathrm{AB}} / / \overline{\mathrm{DC}}, \overline{\mathrm{AB}}=\overline{\mathrm{DC}}=3 \mathrm{~cm} \\
& \text { (2) } \overline{\mathrm{OA}}=\overline{\mathrm{OB}}=\overline{\mathrm{OC}}=\overline{\mathrm{OD}}=7 \mathrm{~cm} \\
& \text { (3) } \angle \mathrm{A}=\angle \mathrm{C}=110^{\circ}, \angle \mathrm{D}=70^{\circ} \\
& \text { (4) } \overline{\mathrm{AB}}=\overline{\mathrm{BC}}=7 \mathrm{~cm}, \overline{\mathrm{CD}}=\overline{\mathrm{DA}}=5 \mathrm{~cm}
\end{aligned}
$$

[그림 IV-45] 사각형의 성질에 대한
'분류하기' 문제의 예(교과서 E, 2012: 255)
'기하학적 개념, 사실 알기'의 비율이 다른 수행에 대한 기대 비율에 비해 가장 높게 나타난 교과서 중 가장 높은 비율을 나타내는 교과서인 G 는 다른 교과서들과 비교했을 때 기본학습 후 제시되어 있는 문제 중

에 학습한 기하학적 성질을 바로 적용하여 풀 수 있는 '계산하기'의 문 제의 비중이 크게 나타났음을 알 수 있다. 이를 예를 통해 살펴보면 다 음 [그림 IV-46]과 같다.

[그림 IV-46] 사각형의 성질에 대한
'계산하기' 문제의 예(교과서 G, 2012: 195)
[그림 IV-46]을 살펴보면 '문제 1'은 평행사변형의 대변, 대각에 의한 성질을 알고 간단한 '계산하기'를 요구하는 문제이며, '문제 2 '는 평행사 변형의 대각선에 의한 성질을 알고 간단한 '계산하기'를 요구하는 문제 로 분석될 수 있다. 또한 '인식하기'를 요구하는 문제는 평행사변형에서 같은 크기의 각이나 같은 길이의 변을 인식하도록 요구하는 문제에서 분 석되었다.
2) 기하학적 성질 적용하기
'기하학적 성질 적용하기'는 '정형문제해결하기'가 대부분이었으며 교과 서에 따라 평행사변형을 그려보도록 요구하는 '표현하기' 문제와 '이행하 기'의 문제가 분석되었다.
13 종의 교과서 중 '기하학적 성질 적용하기'의 비율이 가장 높은 것은 교과서 D 이다. 교과서 D 는 다른 교과서들과 비교했을 때 수행에 대한 기대 측면에서 기본학습 후 제시되는 문제는 큰 차이가 없었으나 별도 부록으로 제시되어 있는 '개념 확인 및 익힘문제'에 비교적 다른 교과서

에 비해 '기하학적 성질 적용하기'를 요구하는 문제가 많이 포함되어 있 음을 알 수 있다. 다음 [그림 IV-47]은 교과서 D의 '정형문제해결하기' 를 요구하는 문제이다.

[그림 IV-47] 사각형의 성질에 대한
'정형문제해결하기'문제의 예 (교과서 D, 2012: 328, 329)

위의 [그림 $\mathrm{IV}-47$]은 평행사변형의 성질과 정사각형의 성질을 바로 적용하여 계산할 수 있는 문제가 아닌 이등변삼각형의 성질이나 삼각형 의 내각의 합 등 다른 기하학적 성질도 함께 이용해야 해결할 수 있는 문제로 '정형문제해결하기'로 분석된다.
3) 기하학적 성질 추론하기
'기하학적 성질 추론하기'의 문제의 비율은 이전 중단원인 '삼각형의 성질'에 비해 전반적으로 높게 나타났다. 그 비율이 30% 이상인 교과서 가 8 종으로, 이전 중단원에서 30% 이상인 교과서가 1 종이었던 것에 비 하면 비율이 높아졌음을 알 수 있다. 이를 보다 구체적으로 '기하학적 성질 추론하기'의 분포를 살펴보면 다음 [그림 IV-48]과 같다.

[그림 IV-48] 사각형의 성질에 대한 '기하학적 성질 추론하기'의 문제 개수(개)
[그림 IV-48]을 통해 '기하학적 성질 추론하기' 중 '정당화하기'와 '종 합하기'의 비중이 크게 나타남을 알 수 있다. 또한 이전 중단원과 비교 했을 때 '정당화하기'와 '종합하기'를 요구하는 문제의 개수가 더 많아졌 음을 알 수 있다. 이는 기본학습 후 제시되는 문제 중 '정당화하기'의 문 제의 수가 상대적으로 많아졌기 때문인데, 이를 예를 통해 살펴보면 다 음 [그림 IV-49]와 같다.

문제 2 오른쪽 그립의 $\square \mathrm{ABCD}$ 에서

$$
\angle \mathrm{A}=\angle \mathrm{C}, \angle \mathrm{~B}=\angle \mathrm{D}
$$

일 때, 다음을 설명하여라.
(1) $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
(2) $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$
(3) $\square \mathrm{ABCD}$ 는 평형사변형이다.
[그림 IV-49] 사각형의 성질에 대한 '정당화하기' 문제의 예(교과서 M, 2012: 279)

위의 [그림 IV-49]는 평행사변형의 대각에 대한 성질을 학생들이 스 스로 정당화하도록 제공한 문제이다. 보다 쉽게 학생들이 정당화를 할 수 있도록 단계를 주어 '정당화하기'를 요구한 문제로 볼 수 있다. 교과 서마다 차이는 있었지만 위의 [그림 IV-50]과 같이 평행사변형의 성질 또는 평행사변형이 되는 조건을 본문 내용 설명에서 모두 다루지 않고 일부를 학생들이 스스로 정당화하도록 제공한 문제들을 제시해 전체적으 로 '정당화하기'를 요구하는 문제의 수가 많아진 것으로 분석된다. 또한 [그림 IV-50]은 컴퓨터 프로그램을 이용한 '정당화하기' 문제의 예이다. 이를 살펴보면 다음과 같다.

사각형의 모양은 원이 결정한다.

대각선의 성질을 이용하면 여러 가지 사각형을 섭게 작도할 수 있다. 컴퓨터 프로그램을 이용하여 다음 각각의 사각형을 작도하고 아래 물음에 답하여라.
(1) 마주 보는 변의 길이와 마주 보는 각의 크기는 같은가?
(2) 사각형의 꼭짓점을 움직여서 도형의 모양을 변화시켜도 마주 보는 변과 마 주 보는 각에 대한 성질이 변하지 않는가?
(3) 원하는 사각형이 그려진 이유는 무엇인가?
[그림 IV-50] 공학적 도구가 활용된 사각형의 성질에 대한 '정당화하기' 문제의 예(교과서 B, 2012: 229)
[그림 IV-50]은 대각선의 성질을 이용하여 컴퓨터 프로그램을 이용해 사각형을 작도하고 변과 각에 대하여 변하지 않는 성질을 관찰하도록 하 고 있다. 이를 통해 원하는 사각형이 그려진 이유를 정당화하도록 요구 하는 문제로 '정당화하기'로 분석된다.
'종합하기'를 요구하는 문제는 평행사변형이 되는 조건을 학습하는 단 원과 여러 가지 사각형 사이의 관계를 학습하는 단원에서 많이 나타났 다. 그 중 여러 가지 사각형 사이의 관계에 대한 '종합하기'의 문제는 주 어진 조건들을 연결하여 어떤 사각형이 되는지 추론을 요구하는 문제로

많이 나타났다．이를 예로써 살펴보면 다음［그림 IV－51］과 같다．

6 오른쪽 그림과 감은 평형사변형 ABCD 가 다음 조전음 만족시키면 각 각 어떤 사가녕이 되는지 맘하열．
（1）$\angle \mathrm{A}=90^{\circ}$
（2）$\overline{\mathrm{AB}}=\overline{\mathrm{BC}}$
（3）$\overline{\mathrm{AC}}=\overline{\mathrm{BD}}$
（4）$\overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$
（5）$\angle \mathrm{A}=90^{\circ}, \overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$

［그림 IV－51］사각형의 성질에 대한＇종합하기＇문제의 예（교과서 F，2012：269）

위의［그림 IV－51］은 평행사변형에 각 조건이 주어졌을 때 어떤 사각 형이 되는지 연결해야 하는 문제로＇종합하기＇를 요구하는 것으로 분석 될 수 있다．그 외에 교과서에서 나타난 ‘추측하기’와＇비정형문제해결하 기＇의 예를 살펴보면 다음과 같다．먼저＇추측하기＇를 요구하는 문제의 예는 다음［그림 IV－52］와 같다．

3 사각형의 각 변의 중점을 연결하여 만든 사각형 । 수혁젹 후른
다음은 사각형의 가 변의 중점을 연결하여 작은 사자항을 못 차혜 반복하여 만든 그핌이다．

0 （ 호우 아래의 \square 안에 알맞은 것을 쎄넝어라．
〈그립 1〉가 갇이 정사학형의 각 변의 충졈을 연절하펀 정사작형을 겨속 하서 그랄 수 있다． （그럽 2）와 갈이 평행사번형의 각 변의 중정을 연결하면 \qquad 겨속혀서 그릴 수 있다．

（그렴 1）

〈그림 2〉

0 펴형 직사각형을 이용하여 위와 장이 각 년의 중점을 연졈하여 사각형을 그리면 어텬 중류이 사각형이 만들어지는지 추축하여라．
［그림 IV－52］사각형의 성질에 대한＇추측하기＇ 문제의 예（교과서 M，2012：284）

위의 [그림 IV-52]는 정사각형과 평행사변형의 각 변의 중점을 계속 해서 연결한 결과 생기는 사각형을 예로써 살펴본 뒤, 직사각형의 각 변 의 중점을 연결했을 때 생기는 어떤 사각형이 생기는지 '추측하기'를 요 구하는 문제이다. 또한 '비정형문제해결하기'를 요구하는 문제의 예를 살 펴보면 다음 [그림 $\mathrm{IV}-53$]과 같다.

[그림 IV-53] 사각형의 성질에 대한 '비정형문제해결하기' 문제의 예 (위: 교과서 A, 2012: 272, 아래: 교과서 D, 2012: 221)
[그림 $\mathrm{IV}-53$]의 위의 문제는 평행선과 넓이를 학습한 후 넓이가 같은 도형을 그려 논의 넓이를 변하지 않도록 경계선을 직선으로 바꾸도록 요 구하는 문제로 학생들에게 익숙하지 않은 상황의 문제이며 평행선과 넓 이 사이의 관계를 통해 추론을 요구하므로 '비정형문제해결하기'를 요구 하고 있다고 볼 수 있다. 또한 [그림 IV-53]의 아래의 문제는 놀이 기 구가 지면과 수평을 유지할 수 있는 이유를 평행사변형의 성질과 연결 지어 설명하도록 요구하는 문제로써 '비정형문제해결하기'를 요구하는 문제로 분석될 수 있다.

지금까지의 '사각형의 성질' 단원에서의 문제에 대한 분석 결과를 정리 하면, 문제의 수행에 대한 기대는 대체적으로 '기하학적 개념, 사실 알 기'의 비율이 높게 나타냈다. 그러나 '삼각형의 성질' 단원에 비해 '기하 학적 성질 추론하기'의 비율은 높게 나타남을 알 수 있었다. 이처럼 '기 하학적 성질 추론하기'의 비율이 높아진 것은 '삼각형의 성질' 단원에서 기하 추론을 경험한 학생들에게 추론의 기회를 더 제공하기 위함으로 해 석될 수 있다. '기하학적 개념, 사실 알기'를 요구하는 문제는 '계산하기' 와 '인식하기'의 문제가 가장 많이 나타났으며, 학습내용에 따라 '분류하 기'의 문제도 제시되어 있었다. '기하학적 성질 적용하기'의 문제는 '삼각 형의 성질' 단원과 유사하게 대부분 '정형문제해결하기'로 분석되었으며 교과서에 따라 '표현하기'와 '이행하기'를 요구하는 문제가 분석되었다. '기하학적 성질 추론하기'의 문제를 살펴보면 ‘삼각형의 성질' 단원과 유 사하게 '정당화하기’와 '종합하기'의 문제가 가장 많이 나타났고, '비정형 문제해결하기', '추측하기'의 문제도 분석되었으나 '일반화하기'의 문제는 나타나지 않음을 알 수 있다. '종합하기'의 문제는 여러 가지 사각형 사 이의 성질과 관계를 학습하는 부분에서 많이 나타나 학습한 사각형에 대 한 성질을 연결하여 추론을 요구하는 문제로 분석된 경우가 많았다. '정 당화하기'의 문제는 평행사변형과 사각형의 성질을 모두 예제로 다루지 않고 학생들이 직접 정당화해보도록 요구하는 형태로 많이 나타났으며, 교과서에 따라 간단한 설명을 요구하거나 형식적인 증명을 요구하는 등 기대하는 정당화의 유형에 차이가 있음을 알 수 있었다.

2.2. 정당화의 유형에 따른 교과서 분석결과

2.2.1. 탐구활동과 내용 설명

탐구활동과 정당화가 나타난 내용 설명에 대한 정당화의 유형 분석은 '삼각형의 성질' 단원과 동일하게 2 가지 관점에서 이루어졌다. 먼저 각

교과서에서 사용된 정당화의 유형 비율을 분석하였다. 그 후 13 종의 교 과서를 분석한 결과를 종합하여 학습내용에 따라 하나의 기하학적 성질 이 정당화되는 과정에서 사용된 정당화의 유형을 묶어서 정당화 과정에 서 사용된 정당화의 유형을 분석하였다.

먼저 각 교과서에서 사용된 정당화의 유형에 대한 비율을 살펴보면 다 음 [그림 IV-54]와 같다.

[그림 IV-54] 사각형의 성질에 대한 교과서별 정당화의 유형
분포(\%)
[그림 $\mathrm{IV}-54]$ 를 살펴보면 형식적•연역적 정당화가 정당화의 유형 중 가장 높은 비율로 나타나는 교과서는 8 종 (교과서 $\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{J}$, L)이며, 형식적•연역적 정당화와 경험적•귀납적 정당화의 비율이 같거 나 거의 비슷하게 나타는 교과서는 2 종 (교과서 A, M)이다. 또한 경험적 - 귀납적 정당화의 비율이 정당화의 유형 중 가장 높은 비율로 나타나는 교과서는 3 종(교과서 $\mathrm{C}, \mathrm{H}, \mathrm{K}$)으로 분석된다. 대부분의 교과서의 탐구 활동에서는 구체적 조작활동을 하도록 하거나 도형의 성질을 탐구할 수

있는 평범한 예를 통해 경험적•귀납적 정당화를 시도한다. 따라서 형식 적•연역적 정당화의 비율이 더 높게 나타난 교과서의 경우 그러한 탐구 활동 없이 바로 정당화한 내용이 하나 이상 존재함을 나타낸다. 상대적 으로 경험적•귀납적 정당화의 비율이 형식적•연역적 정당화보다 더 높 게 나타난 교과서는 탐구활동을 많이 포함하고 있거나 다른 교과서에서 활용하지 않은 예에 의한 정당화의 비율이 상대적으로 높게 나타났기 때 문이다. 실제로 경험적•귀납적 정당화의 비율이 가장 높은 교과서 C 는 탐구활동과 예제에서 모두 구체적 조작활동을 경험할 수 있도록 구성하 였으며, 교과서 H 와 교과서 K 는 다른 교과서에 비해 상대적으로 예에 의한 정당화를 활용한 비율이 높게 나타나 전체 사용된 정당화의 비율을 고려했을 때 경험적•귀납적 정당화의 비율이 가장 높게 나타났음을 볼 수 있다.
4개의 정당화 유형 중 형식적•연역적 정당화의 비율이 가장 높은 교 과서가 가장 많이 나타나며, 경험적•귀납적 정당화에서 형식적•연역적 정당화를 매개할 수 있는 중간 단계의 예에 의한 정당화와 준연역적 정 당화는 다른 유형에 비해 낮은 비율로 나타나고 있음을 알 수 있다. 특 히 예에 의한 정당화를 사용하지 않은 교과서는 5 종(교과서 A, E, F, I, L) 이다.

이제 학습내용에 따라 하나의 기하학적 성질이 정당화되는 과정에서 사용된 정당화의 유형을 결합하여 살펴보면 다음 <표 $\mathrm{IV}-6>$ 과 같다. 이는 13 종의 교과서에서 정당화가 나타난 부분을 분석하여 얻은 표로써 전체 교과서에서 정당화가 나타난 부분은 모두 120 개로 85 개로 분석되 었던 중단원 '삼각형의 성질'과 비교했을 때 더 많음을 알 수 있다.
<표 IV-6> 사각형의 성질에 대한 탐구활동과 내용 설명에서 사용 된 정당화의 유형

	사용된 정당화의 유형	횟수(회)	비율(\%)
1)		12	10
2)	경할먹 항슥하 귀벼직 정항탸 둠믹젹 졍도햐	41	34.2
3)	겅현혁 पपव도 도안 혈사직. 기넌헉 정명퐈 점혐피 면익혁 좀망혀	13	10.8
4)		11	9.2
5)		3	2.5
6)		3	2.5
7)	충혐이 좀함회 므억혁 훔밈휴	1	0.8
8)	준면푸풀	9	7.5
9)		8	6.7
10)		19	15.8
	합계	120	100

<표 IV-6>을 통해 살펴보면 경험적•귀납적 정당화와 형식적•연역 적 정당화를 사용하여 정당화한 것이 34.2% 로 가장 많았다. 또한 '삼각 형의 성질' 단원에서는 나타나지 않았던 형태가 있었는데, 이는 준연역 적 정당화만 사용한 형태와 경험적•귀납적 정당화와 준연역적 정당화를 사용한 형태, 그리고 4 가지의 정당화의 유형을 모두 사용한 형태이다.

이제 <표 IV-6>에 제시된 정당화의 유형을 경우에 따라 자세히 살펴 보면 다음과 같다.

1) 경험적•귀납적 정당화와 준연역적 정당화

경험적•귀납적 정당화와 준연역적 정당화가 함께 사용된 것은 '사각 형의 성질'에 대한 내용 중 정사각형의 성질과 평행선과 넓이 사이의 관 계에 대한 정당화에서였다.
먼저, 정사각형의 성질에 대해 2종의 교과서(교과서 C, F)에서 경험적 - 귀납적 정당화와 준연역적 정당화를 사용하였다. 이는 정사각형의 성 질은 학습한 직사각형의 성질과 마름모의 성질로부터 쉽게 유도되기 때 문에 간단한 논리적 설명을 이용하여 정당화함을 알 수 있다. 또한 평행 선과 넓이 사이의 관계에 대해 2 종의 교과서 (교과서 C, J)에서 이를 사 용하였다. 이는 직접 평행선 사이에 넓이가 같은 두 삼각형을 그려보고 이를 바탕으로 형식적 증명이 아닌 간단한 논리적 설명을 이용한 정당화 인 준연역적 정당화를 나타내고 있음을 알 수 있다. 이를 평행선과 넓이 사이의 관계에 대한 예를 통해 살펴보면 다음 <표 IV-7>과 같다.
<표 IV-7> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준 연역적 정당화의 예(교과서 $\mathrm{C}, 2012: 247$)

| 정당화 유형 | 교과서에 제시된 평행선과 넓이 사이의 관계에 대한 정당화 |
| :---: | :---: | :---: |

<표 $\mathrm{IV}-7>$ 을 통해 살펴보면 주어진 두 개의 삼각형의 넓이가 같은지 비교하기 위해 밑변과 높이의 길이를 비교하도록 한다. 그 후 평행선을 이용해 주어진 삼각형과 넓이가 같은 삼각형을 그려보도록 함으로써 평 행선을 이용하면 넓이가 같은 다른 모양의 삼각형으로 변형할 수 있다는 것을 경험적•귀납적 정당화를 함을 알 수 있다. 그 후 형식적 증명이 아닌 간단한 논리적 설명을 이용하여 준연역적 정당화를 하고 있음을 알 수 있다. 이와 비슷하게 평행선과 넓이 사이의 관계에 대해 준연역적 정 당화가 나타는 다른 예를 살펴보면 다음 [그림 $\mathrm{IV}-55$]와 같다.

```
오르ᄂ쪼ᄀ 그리ᄆᄋ|서 두 지ᄀ서ᄂ }l,m\mathrm{ 이 펴ᄋ햐ᄋ하ᄅ
ᄄ). }\triangle\textrm{ABC}\mathrm{ 와 }\triangle\mp@subsup{\textrm{A}}{}{\prime}\textrm{BC}\mathrm{ 의 너ᄡ이르ᄅ 비교하여
보자.
    두 사ᄆ자ᄀ혀ᄋ의 미ᄂ벼ᄂ의 기ᄅ이느ᄂ 가ᄐ고, 지ᄀ서ᄂ }l\mathrm{ 위
의 어느 저ᄋ으ᄅ 자ᄇ아도 노ᄑ이가 자ᄐ으ᄆ로 두 사ᄆ
가ᄀ혀ᄋ의 녊이느ᄂ 가ᄡ다.
    따라서 }\triangle\textrm{ABC}=\triangle\mp@subsup{\textrm{A}}{}{\prime}\textrm{BC}\mathrm{ 이다.
```

[그림 IV-55] 사각형의 성질에 대한 준연역적 정당화가 사용된 예(교과서 $\mathrm{H}, 2012: 246$)
[그림 IV-55]를 살펴보면, <표 IV-7>에서 사용된 준연역적 정당화 와 같이 논리적 설명을 이용하고 있음을 알 수 있다. 그러나 <표 IV $-7>$ 에서 사용된 준연역적 정당화에서는 정당화 과정에서 직사각형의 대변의 성질을 이용한 것에 비해 [그림 $\mathrm{IV}-56$]에서는 밑변과 높이의 길 이가 같음을 이용해 보다 쉽게 논리적 설명을 이끌어나가고 있음을 알 수 있다.
2) 경험적•귀납적 정당화와 형식적•연역적 정당화

경험적•귀납적 정당화와 형식적•연역적 정당화가 사용된 것을 '사각 형의 성질'에 대한 학습내용중심으로 살펴보면 다음과 같다.
평행사변형의 대변에 대한 성질에서는 11 종의 교과서(교과서 A, B, C, D, E, F, G, I, J, L, M)에서, 평행사변형의 대각에 대한 성질에서는 1 종(교과서 G)에서, 평행사변형의 대각선에 대한 성질은 1 종(교과서 A) 에서 경험적•귀납적 정당화와 형식적•연역적 정당화가 사용되었다. 이 는 평행사변형을 직접 만들어보고 이를 통해 평행사변형의 성질을 경험 적•귀납적 정당화를 한 후 형식적 증명 형태로 정당화하는 형식적•연 역적 정당화를 하는 형태로 나타나 이는 이전 탐구활동을 활용하여 정당 화하는 '삼각형의 성질' 단원과 유사한 성격을 나타냄을 알 수 있다.
평행사변형이 될 조건에 대해서는 대변과 관련된 조건에서는 7종의 교 과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{I}, \mathrm{M}$)에서, 대각선과 관련된 조건에서는 2

종의 교과서(교과서 A, C)에서 분석되었다.
직사각형의 성질에 대해서는 12 종의 교과서(교과서 $\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$)에서, 마름모의 성질에 대해서는 7 종의 교과서(교과서 B , $\mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{G}, \mathrm{J}, \mathrm{M})$ 에서 경험적•귀납적 정당화와 형식적•연역적 정당 화가 사용되었다. 마찬가지로 구체적 조작활동을 통한 정당화를 하거나 평범한 예를 통한 경험적•귀납적 정당화를 한 후 이를 다시 형식적 증 명 형태의 형식적•연역적 정당화를 하는 형태로 나타남을 알 수 있다.
3) 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화는 2)의 경험적•귀납적 정당화와 형식적•연역적 정당화의 형태에 시각적 예를 이용한 예에 의한 정당화를 추가로 더 사용한 경우에 해당한다. 이 는 교과서 H 와 교과서 K 에서 나타났는데 '사각형의 성질' 중 평행사변 형의 성질에 대해서는 대변에 대한 성질과 대변의 성질에 대해 평행사변 형이 될 조건에서 이러한 형태의 정당화가 사용되었다. 이를 구체적으로 평행사변형의 대변에 대한 성질에서 살펴보면 다음 <표 IV-8>과 같다.
<표 IV-8> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 K, 2012: 268)

정당화 유형	교과서에 제시된 평행사변형의 성질에 대한 정당화
경험적. 귀납적 정당화	다음 순서예 따라 홀동을 혀 보고, 훌음에 담하여라. 0 셕총이 2 장율 건혀 눌고, 삼각헝을 그린 후 자른다. (2) 두 삼가행에서 크기가 같은 두 각을 찾아 표시한다. (3) 두 심각형의 길이가 갈은 변끼리 앗대어 사각형 ABCD 를 만토다. (1) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ 와 길이가 갑은 선분을 맡하여라. (2) 사각형 ABCD 유서 $\overline{\mathrm{AB}} / \overline{\mathrm{DC}}, \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ 인 이유를 각가 말하여라. (3) (1), (2)의 정라률 이용하여 졍햫사변형이 되는 조전을 수측하여라. 함구하기에서 두 쌍의 대변의 길이가 각각 같은 사각형은 평형사변형임을 추측 할 수 있다. 이 추책이 함상 옳은지 확인해 보자.
$\begin{gathered} \text { 예에 의한 } \\ \text { 정당화 } \end{gathered}$	
형식적. 연역적 정당화	그뼙의 $\overline{\mathrm{AB}}=\overline{\mathrm{DC}}, \overline{\mathrm{AD}}=\overline{\mathrm{BC}}$ 임 $\square \mathrm{ABCD}$ 에서 $\overline{\mathrm{AB}} / \overline{\mathrm{DC}}, \overline{\mathrm{AD}} / \overline{\mathrm{BC}}$ 이시 설둥하이 보가. 매각신 AC 를 그으면 $\triangle \mathrm{ABC}$ 와 $\triangle \mathrm{CDA}$ 에세 $\begin{array}{ll} \overline{\mathrm{AB}}=\overline{\mathrm{CD}} & \cdots \cdots(1) \\ \overline{\mathrm{BC}}=\overline{\mathrm{DA}} & \cdots \cdots(\mathbb{C l} \\ \overline{\mathrm{AC}} \text { 는 공훙인 변 } & \cdots \cdots \cdot(1) \end{array}$ (1). (3). (2)에 왁하여 $\triangle \mathrm{ABC}=\triangle \mathrm{CDA}$ (SSS 함둥) 이다. 따라서 $\begin{equation*} \angle \mathrm{BAC}=\angle \mathrm{DCA} \text { (엿가)이으포 } \overline{\mathrm{AB}} / \overline{\mathrm{DC}} \tag{4} \end{equation*}$ $\angle \mathrm{BCA}=\angle \mathrm{DAC}$ (핫ㄱㄱ)이므르 $\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ (3). (9)에 외하여 $\square A B C D$ 는 평형사밴형이다.

<표 IV-8>을 살펴보면 경험적•귀납적 정당화와 형식적•연역적 정당 화 사이에 시각적 예를 이용해 정당화 과정을 설명하는 예에 의한 정당 화가 포함되어 있음을 알 수 있다.
4) 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용된 것을 ‘사각형의 성질'에 대한 학습내용을 중심으로 살펴보면 다 음과 같다.
평행사변형의 성질에 대해서는 대각에 대한 성질에서 교과서 5 종 (교과 서 $\mathrm{C}, \mathrm{I}, \mathrm{J}, \mathrm{L}, \mathrm{M}$)이 이러한 형태로 사용하였다. 또한 평행사변형이 될 조건에 대해 대각에 대한 성질에서도 교과서 3 종 (교과서 $\mathrm{B}, \mathrm{C}, \mathrm{J}$)에서 이러한 형태가 나타났다. 마지막으로 마름모에 대한 성질에서도 교과서 2 종(교과서 I, L)에서 마찬가지의 형태를 확인할 수 있었다. 이러한 경 우 모두 형식적•연역적 정당화 과정에서 각의 크기에 대한 식의 조작이 나타닜는데, 이를 구체적으로 살펴보면 <표 IV-9>와 같다.
<표 IV-9> 사각형의 성질에 사용된 경험적•귀납적 정당화와 준 연역적 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{C}, 2012: 235$)

정당화 유형	교과서에 제시된 평행사변형이 될 조건에 대한 정당화
경험적• 귀납적 정당화	 $\angle \mathrm{A}=\angle \mathrm{C}=100^{\circ}$ 이고 $\angle \mathrm{B}=\angle \mathrm{D}=80^{\circ}$ 가 보도푹 제 으 고경훋․ 앗다.
준연역적 정당화, 형식적. 연역적 정당화	 $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}-360^{\circ}$ 이으르 다응이 섬뀬한다. $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ $\cdots \cdots(1)$ BA 여 연장선여 죄 E 륭 잠으몀 다윰이 성ㅎㅎ흰다. $\angle \mathrm{DAB}+\angle \mathrm{DAE}=180^{\circ}$ (1)가 (2)에 외해 $\angle \mathrm{B}=\angle \mathrm{DAE}$ 이다. 이대 둥휘가읙 크기가 잘으롤 $\overline{\mathrm{AD}} / / \overline{\mathrm{BC}}$ 이고, 간은 낭빕으소 $\overline{\mathrm{AB}} / / \overline{\mathrm{DC}}$ 이다. 따라써 ㅁ ABCD 는 두 쌍의 더떤이 학가 폄형하므르 졍형사변형이다.

<표 IV-9>는 대각에 대한 평행사변형이 될 조건에 대한 정당화 과정 을 나타내고 있다. 먼저 종이띠를 이용하여 두 쌍의 대각의 크기가 같도 록 사각형을 만들어보고 이를 통해 두 쌍의 대각의 크기가 같은 사각형 이 평행사변형임을 경험적•귀납적 정당화를 한다. 그 후 이는 동위각의 성질을 이용해서도 설명할 수 있음을 제시하여 형식적•연역적 정당화와 연결한다. 이를 통해 구체적 조작활동을 통해 얻은 추측으로 정당화한 경험적•귀납적 정당화와는 다른 방법인 형식적•연역적 정당화를 제시 하고자 함을 알 수 있다. 준연역적 정당화 과정을 살펴보면 사각형의 내 각의 합과 동위각의 성질이 사용되고 있음을 알 수 있으며, 정당화 과정 에서 식의 조작이 나타나므로 이는 준연역적 정당화에 해당된다. 또한 정당화 과정을 교과서 왼쪽에 그림을 통해 제시함으로써 학생들의 정당 화과정을 돕고자 함을 알 수 있다.
위에서 살펴본 평행사변형이 될 조건에 대한 정당화를 살펴보면 13 종 의 모든 교과서에서 식의 조작을 이용한 준연역적 정당화를 포함하고 있 음을 알 수 있다. 이에 비해 평행사변형의 대각에 대한 성질과 마름모의 성질에 대해서는 식의 조작을 이용하지 않아 준연역적 정당화 과정이 제 외되어 있는 경우가 있었다. 평행사변형의 대각에 대한 성질을 이용해 이를 비교해보면 다음 [그림 IV-56]과 같다.

[그림 $\mathrm{IV}-56$] 평행사변형의 성질에 대한 정당화 과정 비교
(왼쪽: 교과서 L, 2012: 249, 250; 오른쪽: 교과서 G, 2012: 194)
[그림 IV-56]을 살펴보면, 왼쪽과 오른쪽에 제시된 정당화 과정 모두 평행사변형의 대각에 대한 성질을 대변에 대한 성질과 함께 정당화하고 있다. 그러나 왼쪽에 제시되어있는 정당화 과정은 오른쪽에 제시된 정당 화 과정에 비해 $\angle \mathrm{A}=\angle \mathrm{C}$ 임을 보이기 위해 보다 구체적으로 식의 조작 을 이용한 준연역적 정당화 과정을 사용하고 있음을 알 수 있다. 따라서 학습내용에 따라 식의 조작이 꼭 필요한 경우도 있지만 위와 같이 정당 화과정을 보다 자세히 설명하기 위해 식의 조작을 이용하여 준연역적 정 당화를 사용하고 있는 경우도 있음을 알 수 있다.
5) 경험적•귀납적 정당화와 예에 의한 정당화, 준연역적 정당화, 형 식적•연역적 정당화
경험적•귀납적 정당화와 예에 의한 정당화, 준연역적 정당화, 형식적 - 연역적 정당화는 4 가지의 정당화 유형이 모두 사용된 형태로써 앞에 서 살펴본 4) 경험적•귀납적 정당화와 준연역적 정당화, 형식적•연역 적 정당화의 형태에 시각적 예를 이용한 예에 의한 정당화가 포함된 것 으로 볼 수 있다. 보다 구체적으로 살펴보면 평행사변형의 대각에 대한 성질에서는 교과서 2 종(교과서 H, K)에서, 대각에 대한 평행사변형이 될 조건에서는 교과서 H 에서 사용되었다. 이 중 평행사변형의 대각에 대한 성질에 대해 교과서 H 에 제시된 정당화 유형을 살펴보면 다음 <표 IV-10> 과 같다.
<표 $\mathrm{IV}-10$ > 사각형의 성질에 사용된 경험적•귀납적 정당화와 준연 역적 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{H}, 2012$: 233)

정당화 유형	교과서에 제시된 평행사변형이 될 조건에 대한 정당화
경험적• 귀납적 정당화	오른족 그렴과 같은 평행자 위의 평형사변형 ABCD 에서 다음을 비교하여라. $1 \overline{\mathrm{AB}}$ 와 $\overline{\mathrm{CD}}, \overline{\mathrm{BC}}$ 와 $\overline{\mathrm{DA}}$ 의 길이를 경퍼스를 이옹하여 가각 비교하여라. $2 \angle \mathrm{~A}$ 와 $\angle \mathrm{C}, \angle \mathrm{B}$ 와 $\angle \mathrm{D}$ 의 크기를 각도가불 이용하여 각 각 비교하여라. 위여 개넘 열기역 평훙사변흉 ABCD 예서 $\begin{aligned} & \overline{\mathrm{AB}}=\overline{\mathrm{CD}}, \quad \mathrm{BC}=\overline{\mathrm{DA}}, \\ & \angle \mathrm{~A}=\angle \mathrm{C}, \quad \angle \mathrm{~B}=\angle \mathrm{D} \end{aligned}$ 입음 알 수 힜다.
예에 의한 정당화	
준연역적 정당화, 형식적. 연역적 정당화	 $\triangle \mathrm{ABC}$ \& $\triangle \mathrm{CDA}$ 어 $4 \overline{\mathrm{AB}} / \overline{\mathrm{CD}}$ 이으료 $\angle \mathrm{BAC}=\angle \mathrm{DCA}\left(\mathrm{K}_{2}\right) \quad \cdots \cdots($ (1) $\overline{\mathrm{KD}} \mathrm{F}$ EC이으로 바레세 $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}, \overline{\mathrm{BC}}-\overline{\mathrm{DA}}, \angle \mathrm{B}=\angle \mathrm{D}$ 이 4 . $\begin{aligned} & \text { x1 ©. ©PD 외항 } \\ & \angle \mathrm{A}-\angle \mathrm{BAC}+\angle \mathrm{CAD} \\ & =\angle \mathrm{DCA}+\angle \mathrm{ACB} \end{aligned}$

<표 $\mathrm{IV}-10>$ 을 살펴보면 실생활맥락에서 평행사변형을 볼 수 있는 평 행자를 통해 경험적•귀납적 정당화를 하고 있음을 알 수 있다. 이를 바 탕으로 '이 성질이 항상 성립하는지 알아보자'라는 문장을 이용해 연역 적 정당화로 연결하고 있음을 알 수 있다. 연역적 정당화로 연결하면서 시각적인 예를 이용해 예에 의한 정당화를 사용한다. 또한 다른 교과서 에서는 '같은 방법으로 나머지 한 쌍의 대각의 크기가 같다'라고 제시하 고 정당화를 마무리하는 반면 위의 정당화과정의 마지막 부분에서 한 쌍

의 대각의 크기가 같음을 보이기 위해 식의 조작을 이용한 준연역적 정 당화를 사용하고 있음을 알 수 있다.
6) 예에 의한 정당화와 형식적•연역적 정당화

평행사변형의 대각선에 대한 성질의 정당화를 살펴보면 교과서 3 종(교 과서 $\mathrm{D}, \mathrm{G}, \mathrm{J}$)에서 예에 의한 정당화와 형식적•연역적 정당화가 분석되 었다. 이를 형식적•연역적 정당화만 사용한 것과 비교해보면 다음 [그 림 $I V-57]$ 과 같다.


```
    AC}\mathrm{ 와 BD,여 료펴ᄆ유ᄋ O혀ᄅ 하뮤 }\triangle\textrm{AOB}\mathrm{ 와 }\triangle\textrm{COD}\mathrm{ 여
    A| (\overline{AB}}/\overline{\textrm{DC}}\mathrm{ ᄋ|므로 다유ᄆ이 서ᄋ려ᄅ혀ᄋ다.
        \angleABO}=\angle\textrm{CDO}(\stackrel{\circ}{|
        \angleBAO}=\angle\textrm{DCO}(%\mathrm{ (%)㘯)
```



```
\triangleAOB=\triangleCOD이다. 그러므로 다여ᄇ이 서ᄋ댜ᄆtᅡ다.
    \overline { O A } = \overline { O C } , \overline { O B } = \overline { O D }
```



```
    펴ᄋ혀ᄋ사버ᄂ혀ᄋ의 두 대가서ᄂ으ᄂ 서로류ᄆ 이므ᄆ무ᄂ혀ᄂ으ᄅ 서ᄅ펴ᄋ히여ᄅ.
0 푸ᄅᄋ| 펴ᄋ해ᄋ사벼ᄂ혀ᄋ }\textrm{ABCD}\mathrm{ ᄋ|서 두 디가ᄀ서ᄂ
    AC
        AO}=\overline{CO},\overline{BO}=\overline{\textrm{DO}
    외ᄆ유ᄅ 서ᄅ며ᄋ하며ᄂ 쾨ᄂ다.
    \triangleABO}\mathrm{ 와 }\triangle\textrm{CDO}\mathrm{ 어서
        \angleABO}=\angle\textrm{CDO
        \angleBAO}=\angle\textrm{DCO}\quad.....-($
    사자ᄀ회ᄒ }\textrm{ABCD}\mathrm{ 느ᄂ 며ᄋ히ᄋ사벼ᄂ혀ᄋ이므로
        \overline{AB}}=\overline{\textrm{CD}}\quad=\cdots\cdots(8
    (1), (2), (8) 으로부터 }\triangle\textrm{ABO}=\triangle\textrm{CDO}\mathrm{ 이으로 }\overline{\textrm{AO}}=\overline{\textrm{CO}},\overline{\textrm{BO}}=\overline{\textrm{DO}}\mathrm{ 이다
    따라씨 켜ᄋ쳐ᄋ사벼ᄋ휘ᄋ여 두 대하ᄀ서ᄂ으ᄂ 서료.ᅭᅲ 이두ᄋ부ᄂ하ᄂ다.
```

[그림 IV-57] 평행사변형의 성질에 대한
정당화 유형의 예(위: 교과서 C, 2012:
236 ; 아래: 교과서 B, 2012: 215)
[그림IV-57]을 살펴보면 두 개의 정당화 모두 평행사변형의 두 대각선 이 서로를 이등분함을 설명하고 있다. 그러나 위의 정당화 과정을 살펴

보면 시각적인 예를 이용하여 예를 이용한 정당화를 사용하고 있는 반 면, 같은 내용을 정당화하고 있지만 아래에 제시된 정당화에서는 형식적 - 연역적 정당화만 사용하고 있음을 알 수 있다. 따라서 아래에 제시된 정당화보다 위에 제시된 정당화를 학생들이 보다 쉽게 이해할 것으로 생 각 된다.
7) 예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화

교과서 K 에서 대각에 대한 평행사변형이 될 조건의 정당화를 하기 위 해 예에 의한 정당화와 준연역적 정당화, 형식적•연역적 정당화가 사용 되었다. 대각에 대한 평행사변형이 될 조건의 정당화는 6 종의 교과서(교 과서 $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{L}$)에서 준연역적 정당화와 형식적•연역적 정당화 를 사용하였다. 이에 비해 8)에서는 시각적 예를 추가하여 예에 의한 정 당화로 정당화 과정을 매개하고 있음을 알 수 있다. 이를 예를 통해 살 펴보면 다음 <표 IV-11>과 같다.
<표 IV-11> 사각형의 성질에 사용된 경험적•귀납적 정당화와 예에 의한 정당화, 형식적•연역적 정당화의 예(교과서 $\mathrm{K}, 2012: 269$)

정당화 유형	교과서에 제시 된 평행사변형이 될 조건에 대한 정당화
예에 의한	
정당화	

<표 IV-11>을 살펴보면, 먼저 시각적인 예를 이용하여 두 쌍의 대 각의 크기가 같은 사각형이 평행사변형임을 보이고 있다. 따라서 예에 의한 정당화를 사용하고 있음을 알 수 있고, 사각형의 내각의 합과 주어 진 조건에 의해 (1)을 보이는 과정에서 준연역적 정당화가 사용되었으며, 이를 바탕으로 형식적 - 연역적 정당화가 나타남을 알 수 있다.
8) 준연역적 정당화

중단원 '삼각형의 성질’과 다르게 형식적•연역적 정당화까지 정당화하 지 않고 준연역적 정당화만 나타난 경우가 분석되었다. 이는 1)에서 살 펴봤던 경험적•귀납적 정당화와 준연역적 정당화와 동일하게 정사각형 의 성질과 평행선과 넓이 사이의 관계에서 분석되었으며 1)의 과정에서 경험적•귀납적 정당화 과정을 제외하고 논리적 설명을 이용한 준연역적 정당화 과정은 동일하게 나타났다.
9) 준연역적 정당화와 형식적-연역적 정당화
'사각형의 성질' 단원에 대한 내용을 중심으로 살펴보면 대각에 대한 평행사변형이 될 조건에 대해 교과서 6 종 (교과서 $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{I}, \mathrm{L}$)에 서, 마름모가 될 조건에 대한 예제를 다루는 데 있어 교과서 M 에서 준 연역적 정당화와 형식적•연역적 정당화를 사용한 형태가 분석되었다.
10) 형식적•연역적 정당화
'사각형의 성질' 단원에 대한 내용을 중심으로 살펴보면 평행사변형의 대각선에 대한 성질에 대해 교과서 4 종 (교과서 $\mathrm{B}, \mathrm{F}, \mathrm{I}, \mathrm{L}$)에서, 대변과 관련된 평행사변형이 될 조건에 대해 교과서 3 종(교과서 $\mathrm{B}, \mathrm{F}, \mathrm{L}$)에서, 대각선과 관련된 평행사변형이 될 조건에 대해 교과서 1 종(교과서 M), 마름모의 성질에 대해 교과서 E 에서, 등변사다리꼴의 성질에 대해 교과 서 6 종(교과서 $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{I}$)에서 정당화 과정에 형식적-연역적 정 당화만 사용되었다. 또한 모든 교과서에서 공통적으로 다루고 있지 않은

마름모가 될 조건이나 평행사변형의 성질을 활용하여 형식적•연역적 정 당화를 요구하는 예제도 교과서 5 종 $(\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{F}, \mathrm{J})$ 에서 각각 1문제씩 분석되었다.

2.2.2. 문제

'정당화하기'를 요구하는 문제의 정당화의 유형을 분석한 결과 '경험적 - 귀납적 정당화'와 '예에 의한 정당화'는 전체 교과서 중 1 종(교과서 B)에서 분석되었고, 그 외의 교과서에서는 나타나지 않았다. 이에 전체 '정당화하기'를 요구하는 문제에 대한 '준연역적 정당화'와 '형식적•연역 적 정당화'의 비율에 대한 분포를 살펴보면 다음 [그림 IV-58] 과 같다.

[그림 IV-58] 사각형의 성질에 대한 '정당화하기'의 문제에 대한 정당화 유형 비율(\%)
[그림 $\mathrm{IV}-58$]을 통해 살펴보면 형식적-연역적 정당화의 비율이 준연 역적 정당화의 비율보다 높게 나타나는 교과서는 모두 10 종으로 교과서

G 와 교과서 M 을 제외한 나머지 교과서에 해당된다.
먼저, 준연역적 정당화를 요구하는 문제를 살펴보면 식의 조작을 이용 한 준연역적 정당화와 논리적 설명을 이용한 준연역적 정당화가 모두 분 석되었다. 먼저 논리적 설명을 이용한 준연역적 정당화를 요구하는 문제 를 살펴보면 [그림 IV-59]와 [그림 IV-60]과 같다.

```
S요녀ᅮᄋ 그히ᄆ여ᄀ पABCD에서 져ᄇ O
BD의 표저ᄆ이고,
    OA}=\overline{OC},\overline{OB}=\overline{OD
```


<풀이>
(1) $\overline{\mathrm{DC}}, \overline{\mathrm{BC}}$
(1) $\overline{\mathrm{DC}}, \overline{\mathrm{BC}}$
(2) 여시 두 쌍의 대변의 길이가 각각 같으 므로
$\square \mathrm{ABCD}$ 는 경행사변형이다.
[그림 IV-59] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 G, 2012: 197)

위의 [그림 IV-59]는 두 대각선이 서로 이등분될 때 평행사변형이 됨 을 정당화하도록 요구하는 문제이다. 이에 대한 풀이를 살펴보면 형식적 - 연역적 정당화를 요구하는 대신, 두 쌍의 대변의 길이가 같음을 이용 해 논리적 설명을 하고 있음을 볼 수 있다. 따라서 이 문제는 논리적 설 명을 이용한 준연역적 정당화를 요구하는 문제로 분석될 수 있다. 또한 [그림 IV-60]도 논리적 설명을 이용한 준연역적 정당화를 요구하는 문 제인데 자세히 살펴보면 다음 [그림 IV-60]과 같다.

[그림 IV-60] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 F, 2012: 267)
[그림 IV-60]은 두 대각선의 길이가 같고, 서로 다른 것을 수직이등 분하는 사각형이 정사각형임을 정당화하도록 요구하는 문제이다. 이에 대한 풀이를 살펴보면, 직사각형과 마름모의 성질을 연결해 정사각형임 을 정당화하고 있는데 이는 논리적 설명을 이용한 준연역적 정당화로 분 석된다.
이제 식의 조작을 이용한 준연역적 정당화를 살펴보면 [그림 IV-61] 과 [그림 IV-62]와 같다. 먼저 [그림 IV-61]을 살펴보면 다음과 같다.

03 오른쪽 그림과 갆은 병 챔사변형 ABCD 의 두 대작선 AC, BD 위에 $\overline{\mathrm{AP}}=\overline{\mathrm{CR}}, \overline{\mathrm{BQ}}=\overline{\mathrm{DS}}$ 가 되도록 네 점 $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ 를 정하면 $\square \mathrm{PQRS}$ 는 평행사변형입을 설명하여라.	03 앤ㄱㄱ) $\square \mathrm{ABCD}$ 는 평혐사변형이므로 $\overline{\mathrm{OA}}=\overline{\mathrm{OC}}, \overline{\mathrm{OB}}=\overline{\mathrm{OD}}$ 이때, $\overline{\mathrm{AP}}=\overline{\mathrm{CR}}, \overline{\mathrm{BQ}}=\overline{\mathrm{DS}}$ 이므로 $\begin{aligned} & \overline{\mathrm{OP}}=\overline{\mathrm{OA}}-\overline{\mathrm{AP}}=\overline{\mathrm{OC}}-\overline{\mathrm{CR}}=\overline{\mathrm{OR}} \\ & \overline{\mathrm{OQ}}=\overline{\mathrm{OB}}-\overline{\mathrm{BQ}}=\overline{\mathrm{OD}}-\overline{\mathrm{DS}}=\overline{\mathrm{OS}} \end{aligned}$ 따라서 $\square \mathrm{PQRS}$ 는 두 대각성이 서로 다른 것을 이 등분하므로 평혱사변형이다.

[그림 IV-61] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 M, 2012: 285)
[그림 IV-61]은 주어진 조건을 이용해 $\square \mathrm{PQRS}$ 가 평행사변형임을 보 이도록 정당화하는 문제이다. 풀이를 살펴보면 평행사변형의 성질과 식 의 조작을 통해 정당화하고 있음을 알 수 있어 식의 조작을 이용한 준연 역적 정당화를 요구하는 문제로 볼 수 있다. 또 다른 예로 [그림 IV -62]를 살펴보면 다음과 같다.

[그림 IV-62] 사각형의 성질에 대한 준연역적 정당화를 요구하는 문제의 예(교과서 E, 2012: 266)
[그림 IV-62]는 두 정사각형의 겹쳐진 부분의 넓이가 항상 일정함을 정당화하도록 요구하는 문제이다. 풀이를 살펴보면 겹쳐지는 부분을 3 가 지의 경우로 나눈 뒤 이를 각에 대한 식과 넓이에 대한 식을 만들어 식 의 조작을 통한 정당화를 시도하고 있음을 알 수 있다. 또한 형식적-연 역적 정당화를 요구하는 문제의 예는 다음 [그림 IV-63]과 같다.

12 다음 그림과 같은 평행사변형 ABCD 애서 $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ 의 중점을 각각 $\mathrm{E}, \mathrm{F}, \mathrm{G}$, H 라고 할 때, 물응에 답하여라. (1) $\triangle \mathrm{AEH}=\triangle \mathrm{CGF}, \triangle \mathrm{EBF}=\triangle \mathrm{GDH}$ 임 을설명하여라. \|4셤)	12 $\begin{align*} & \text { (1) } \triangle \mathrm{AEH} \text { 와 } \triangle \mathrm{CGF} \text { 에서 } \\ & \overline{\mathrm{AE}}=\overline{\mathrm{CG}}, \angle \mathrm{HAE}=\angle \mathrm{FCG}, \\ & \overline{\mathrm{AH}}=\overline{\mathrm{CF}} \tag{i} \end{align*}$ 이므로 $\triangle \mathrm{AEH}=\triangle \mathrm{CGF}$ (SAS 함동) $\triangle \mathrm{EBF}$ 와 $\triangle \mathrm{GDH}$ 에서 $\begin{aligned} & \overline{\mathrm{EB}}=\overline{\mathrm{GD}}, \angle \mathrm{EBF}=\angle \mathrm{GDH}, \\ & \overline{\mathrm{BF}}=\overline{\mathrm{DH}} \end{aligned}$ 이므로 $\triangle \mathrm{EBF}=\triangle \mathrm{GDH}$ (SAS 함동)

[그림 IV-63] 사각형의 성질에 대한 형식적•연역적 정당화를 요구하는 문제의 예(교과서 $\mathrm{H}, 2012: 257$)
[그림 IV-63]은 삼각형이 합동임을 정당화하도록 요구하는 문제이다. 이에 대한 풀이를 살펴보면 삼각형의 합동조건을 이용해 정당화하고 있 으므로 이는 형식적 증명의 형태를 띤 정당화로 볼 수 있다. 따라서 이 문제는 형식적 - 연역적 정당화를 요구하는 문제로 분석된다.

V. 결론 및 논의

1. 요약 및 결론

중학교 기하영역은 학생의 추론 능력 개발에 적합한 소재를 많이 담고 있으며, 우리나라의 기하영역에서의 학습은 도형을 탐구하여 기하학적 성질을 이해하고 이를 통해 추론능력을 신장시키는 것을 목표로 한다(황 선욱 외, 2011). 그러나 학생들은 기하영역에서의 증명을 학습하는 데 있어 많은 어려움을 느끼며 기하영역에서의 추론을 의미 있게 경험하지 못하고 있다.
이에 따라 2009 개정 교육과정에서는 기하 지식의 습득 방법에 있어 형식적 증명보다는 학생들의 추측활동과 경험적 지식에 바탕을 둔 정당 화를 강조하고 있다(신이섭 외, 2011). 이와 같이 형식적인 증명을 약화 시키고 정당화를 강화시키고자하는 교육과정의 변화는 구체적인 방안의 부재와 기하 교육의 중요한 목표인 논리 연역적 사고의 약화에 대한 우 려로 많은 논쟁이 있어왔다. 이에 2009 개정 교육과정의 기하영역의 성 취기준을 '증명할 수 있다'를 대신하여 정당화의 의미를 포함하고 있는 '이해하고 설명할 수 있다'로 서술하고 있으며, 교육과정의 순탄한 이행 을 위해 정당화의 의미에 대한 논의가 필요하다는 주장이 있었다(박교 식, 권석일, 2012). 이와 비슷한 맥락에서 이러한 교육과정의 변화에 따 라 개발된 교과서에 구현된 정당화의 의미에 대하여 살펴볼 필요가 있 다. 또한 정당화되는 과정을 함께 분석하기 위해 추론과 정당화의 관점 에서 교과서가 어떻게 구현되었는지 살펴볼 필요가 있다. 따라서 이 연 구에서는 2009 개정 교육과정에 따라 개발된 중학교 2학년 수학교과서 의 기하영역이 추론과 정당화의 관점에서 어떻게 구현되었는지 살펴보는 것을 목적으로 하였다. 이에 이 연구의 연구 목적을 달성하기 위하여 다 음과 같이 연구문제를 설정하였다.

첫째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역의 탐구활동과 문제는 학생들에게 추론의 기회를 어떻게 제공하는가?

둘째, 2009 개정 교육과정에 따라 개발된 중학교 2 학년 수학 교과서의 기하영역에서 사용된 정당화의 유형은 어떠한가?

연구문제를 해결하기 위하여 2009 개정 교육과정에 따라 개발된 13종 의 중학교 2 학년 수학 교과서의 기하영역 중 최초로 증명이 약화되고 정당화가 도입된 '삼각형의 성질' 단원과 '사각형의 성질' 단원을 대상으 로 교과서 분석을 실시하였다. 교과서를 분석하기 위해 '기하학적 개념, 사실 알기', '기하학적 성질 적용하기', '기하학적 성질 추론하기'와 같이 학생들에게 요구되는 수행에 대한 기대를 분석할 수 있는 분석틀과 정당 화의 유형을 분석할 수 있는 분석틀을 마련하였다. 이에 따라 얻은 결과 를 요약하면 다음과 같다.
[연구문제 1]에서는 탐구활동과 문제를 분석한 결과, 두 단원 모두에 서 '기하학적 성질 추론하기'의 비율은 '기하학적 개념, 사실 알기'와 '기 하학적 성질 적용하기'의 비율에 비해 낮게 나타났다.
먼저 탐구활동에 대해 살펴보면, '삼각형의 성질' 단원과 '사각형의 성 질' 단원은 탐구활동은 평균적으로 5개의 탐구활동이 제시되어 있었고 각 탐구활동마다 $2 \sim 3$ 개 정도의 질문이 포함되어 있어 각 교과서마다 탐 구활동의 개수 측면에 있어 큰 차이를 보이지 않았다. 탐구활동의 질문 에 대한 수행에 대한 기대를 살펴보면 두 단원 모두 '기하학적 개념, 사 실 알기', '기하학적 성질 적용하기', '기하학적 성질 추론하기' 중 대체적 으로 '기하학적 개념, 사실 알기'를 요구하는 질문이 가장 많았다. '기하 학적 성질 추론하기'를 요구하는 질문은 '삼각형의 성질' 단원에 비해 ‘사각형의 성질' 단원에서 더 많이 포함하고 있었다. 이를 통해 '삼각형 의 성질’ 단원에서 추론과 정당화를 접하고 난 후 ‘사각형의 성질’ 단원 에서 추론과 정당화의 기회를 더 많이 제공하고자 함을 알 수 있다.
'기하학적 성질 추론하기'의 질문 중에는 '추측하기'와 '정당화하기'의 질문이 가장 많이 분석되었다. '추측하기'의 질문은 학습할 내용을 직접 적으로 확인하는 것이 아니라 탐구활동을 통해 경험한 것을 바탕으로 도 형의 성질을 생각해보도록 하기 위해 제시되었으며, '정당화하기'의 질문 은 삼각형의 합동조건을 이용하여 주어진 두 직각삼각형의 합동을 설명 하는 질문과 같이 탐구활동에서 이전에 학습한 것을 이용해 정당화할 수 있는 내용일 경우 이에 대한 정당화를 요구하거나 탐구활동을 통해 얻은 결과를 설명해보도록 하기 위해 제시되었음을 알 수 있다. 또한 이러한 탐구활동의 추론과 정당화를 돕기 위한 요소로써 탐구활동에서 컴퓨터 프로그램을 활용한 예가 분석되었다. 이는 단순히 컴퓨터 프로그램을 활 용한 맥락을 제공하거나 컴퓨터 프로그램을 통해 변의 길이와 각의 크기 를 확인하는 것이 아닌 도형을 다양한 형태로 변화시켰을 때 변하는 것 과 변하지 않는 것을 관찰하여 이를 바탕으로 도형의 성질을 추측하도록 돕는 형태로 나타났다.
'삼각형의 성질’ 단원의 문제는 평균적으로 58 개 정도 제시되어 있었 고, '사각형의 성질' 단원의 문제는 평균적으로 68개 정도 제시되어 있었 다. 이는 교과서의 부록으로 추가 문제를 제시한 경우를 제외하고는 각 교과서별로 문제의 개수에는 큰 차이가 없었다. 이러한 문제의 수행에 대한 기대는 '삼각형의 성질' 단원에서는 모든 교과서에서, '사각형의 성 질' 단원에서는 12 종의 교과서에서 '기하학적 개념, 사실 알기'와 '기하 학적 성질 적용하기'의 비율의 합이 60% 이상으로 분석되어 상대적으로 '기하학적 성질 추론하기'의 비율은 낮게 나타남을 알 수 있었다.
'기하학적 성질 추론하기'의 문제를 살펴보면 '정당화하기'를 요구하는 문제가 가장 많이 나타났으며, '추측하기'의 문제도 분석되었다. 또한 탐 구활동의 질문에서는 나타나지 않았던 '비정형문제해결하기'와 '종합하 기'를 요구하는 문제가 분석되었다. 그러나 '일반화하기'를 요구하는 문 제는 두 단원 모두에서 분석되지 않았다. '추측하기'의 문제는 기본학습 을 끝낸 후 추가로 제시되는 활동 과제에서 분석되었는데 이는 탐구활동 의 '추측하기'와 유사한 목적으로 제시되어 있음을 알 수 있었다. '종합

하기'의 문제는 정당화 과정의 일부를 제시하고 이를 완성하도록 요구하 는 문제에서 주로 분석되었는데 이는 주어진 조건과 유도해야 하는 결과 에 대한 연결을 필요로 하는 문제임을 알 수 있었다. '정당화하기'의 문 제는 2009 개정 교육과정 이전의 '증명하여라'로 제시되었던 문제를 '설 명하여라'로 바꾸어 제시할 뿐 거의 증명과 동일한 수준을 요구하는 문 제가 대부분이었으나 정당화과정을 단계별로 해결하도록 요구하는 등 학 생들의 추론을 돕기 위해 고려한 요소들을 살펴볼 수 있었다. 또한 같은 내용을 묻는 문제이더라도 교과서에 따라 간단한 논리적 설명을 요구하 거나 형식적인 증명을 요구하는 등 학생들에게 요구하는 정당화의 유형 에 차이가 있음을 알 수 있었다.
[연구문제 2]에서는 탐구활동과 내용 설명에서 정당화가 나타난 부분 을 분석한 결과 두 단원 모두에서 형식적-연역적 정당화의 비율이 높게 나타났고, 경험적•귀납적 정당화로부터 형식적•연역적 정당화로 바로 유도되는 형태가 가장 높은 비율로 나타났다. 정당화하기'를 요구하는 문제의 정당화의 유형은 대부분 형식적-연역적 정당화의 수준까지 요구 하고 있었다.
먼저, 탐구활동과 내용 설명에서 사용된 정당화의 유형을 살펴보면, ‘삼각형의 성질' 단원에서는 모든 교과서에서 형식적•연역적 정당화의 비율이 가장 높게 나타났다. 이는 경험적•귀납적 정당화를 경험하도록 하는 탐구활동을 활용하지 않고 형식적-연역적 정당화를 시도하고 있는 교과서 내용 설명이 있음을 나타낸다. '사각형의 성질' 단원에서는 8 종의 교과서에서 형식적•연역적 정당화의 비율이 가장 높게 나타났고, 나머 지 교과서에서는 경험적•귀납적 정당화의 비율이 가장 높게 나타나거나 경험적•귀납적 정당화의 비율과 형식적•연역적 정당화의 비율이 비슷 하게 나타났다. 이는 대부분의 학습내용을 탐구활동을 이용해 경험적• 귀납적 정당화를 하고 이를 바탕으로 형식적•연역적 정당화를 시도하거 나 다른 교과서에 비해 예에 의한 정당화 또는 준연역적 정당화의 비율 이 높게 나타남에 따라 상대적으로 경험적•귀납적 정당화의 비율이 낮 아져 형식적•연역적 정당화의 비율과 비슷해진 것으로 분석되었다.

학습내용에 따라 하나의 기하학적 성질이 정당화되는 과정에서 사용된 정당화의 유형을 묶어서 분석한 결과, 두 단원 모두에서 경험적•귀납적 정당화와 형식적•연역적 정당화를 함께 사용된 형태가 가장 높은 비율 을 차지하였다. 또한 '삼각형의 성질’ 단원에서는 모든 학습내용이 다 형 식적•연역적 정당화의 수준까지 설명되었다. 그러나 '사각형의 성질' 단 원에서는 정사각형의 성질, 평행선과 넓이 사이의 관계에 대한 내용은 형식적•연역적 정당화의 수준까지 설명하지 않고 논리적 설명을 이용하 여 준연역적 정당화의 수준에서 설명되었다.
예에 의한 정당화는 대부분 포괄적인 예보다는 시각적 예를 이용한 정 당화의 형태로 나타났으며, 형식적•연역적 정당화에 대한 이해를 돕기 위하여 정당화 과정을 시각적 예를 이용해 표현하는 형태로 나타났다. 준연역적 정당화는 ‘사각형의 성질’ 단원의 정사각형의 성질, 평행선과 넓이 사이의 관계에 대한 내용을 제외하고는 형식적•연역적 정당화와 함께 나타났으며, 탐구활동과 내용 설명에 대해서는 모두 식의 조작을 이용한 준연역적 정당화가 함께 사용되었다. 식의 조작을 이용한 준연역 적 정당화의 경우 교과서에 따라 형식적•연역적 정당화의 과정을 보다 구체적으로 설명하기 위해 식의 조작을 이용한 준연역적 정당화가 제시 된 경우가 있었다. 따라서 교과서에서 사용된 예에 의한 정당화와 준연 역적 정당화는 대체적으로 형식적-연역적 정당화와 함께 나타난 경우, 이에 대한 이해를 돕고 경험적•귀납적 정당화와 형식적•연역적 정당화 사이를 매개하기 위한 목적으로 제시되었음을 알 수 있다.
그러나 두 단원 모두에서 예에 의한 정당화와 준연역적 정당화가 상대 적으로 낮은 비율로 나타났다. 이를 통해 경험적•귀납적 정당화와 연역 적•형식적 정당화 사이를 연결할 수 있는 정당화의 유형이 교과서에 잘 활용되고 있지 않음을 알 수 있다. 이는 2007 개정 교육과정에 따라 개 발된 교과서를 대상으로 정당화의 유형을 분석한 하영화, 이환철(2011) 의 연구와 비슷한 결과이다. 그러나 교과서에 제시된 정당화의 과정을 살펴보면 추론과 정당화를 돕기 위해 정당화 과정을 설명한 부분 이외에 별도로 보여야 하는 것을 그림 또는 설명으로 제시한다거나 정당화 과정

에 필요한 그림이나 설명을 제공하는 것을 볼 수 있었다. 또한 Otten 외 (2013)의 연구에서 강조되었던 탐구활동을 통해 얻은 추측을 다시 반성 하도록 하기 위해 내용 설명에서 이를 다시 언급하는 부분이 제시되기도 하였다. 따라서 교과서에서 다른 정당화 유형에 비해 형식적•연역적 정 당화가 여전히 많이 사용되고 있으나 이를 경험적•귀납적 정당화와 매 개하려는 시도와 정당화 과정을 돕기 위한 추측의 반성 기회 제공 등을 살펴볼 수 있었다.
지금까지의 결과를 종합해보면, '기하학적 성질 추론하기'를 요구하는 탐구활동의 질문과 문제는 다른 수행에 대한 기대에 비해 낮은 비율로 포함되어 있었다. 정당화의 유형 측면에서 살펴봤을 때, 탐구활동과 내 용 설명은 경험적•귀납적 정당화를 바탕으로 형식적•연역적 정당화로 유도하는 형태가 많았으며 정당화를 요구하는 문제에서도 형식적•연역 적 정당화의 수준까지 요구하는 문제가 가장 많이 분포하였다. 그러나 낮은 비율로 사용되긴 하였지만 경험적•귀납적 정당화와 형식적•연역 적 정당화를 매개하기 위한 정당화의 유형을 살펴볼 수 있었으며, 추론 과 정당화를 돕기 위한 질문 및 문제의 구성, 추론과 정당화의 과정에서 의 시각적 이미지 및 컴퓨터 프로그램의 활용 등을 살펴볼 수 있었다.

2. 논의 및 제언

2009 개정 교육과정에 따라 개발된 중학교 2학년 수학 교과서의 기하 영역에 대해 추론과 정당화의 측면에서의 분석을 통하여 알게 된 이상의 연구 결과를 바탕으로 추론과 정당화의 관점에서의 교과서 개발에 대한 고려사항과 교과서를 이용해 기하영역에서의 추론과 정당화를 지도할 교 사가 고려해야 할 사항을 논의하고자 한다.
첫째, 수행에 대한 기대 측면에서 교과서를 분석한 결과 '기하학적 성 질 추론하기'의 탐구활동 질문 및 문제는 '기하학적 개념, 사실 알기'와 '기하학적 성질 적용하기'의 질문 및 문제에 비해 낮은 비율로 나타났다. 이는 학생들이 기하 학습을 통해 추측을 탐구하여 추론하는 것을 배우는

것에 초점을 맞추기보다 기하학적 성질을 알고 이를 적용하여 문제를 해 결하는 것에 초점이 맞춰져 있음을 나타낸다.
그러나 같은 내용을 담고 있는 탐구활동이더라도 단순히 학습할 내용 을 확인하도록 제시된 질문이 있는 반면, 탐구활동을 통해 얻은 결과를 바탕으로 의도적으로 도형의 성질을 추측해보고 설명하도록 요구하거나 탐구활동을 통해 알게 된 것을 친구와 비교해보도록 하고 이를 바탕으로 얻을 결과를 설명해보도록 요구하는 질문을 제시한 교과서도 있었다. 이 는 탐구활동을 통해 도형의 성질에 대한 탐구와 발견을 경험하도록 하기 위함으로 해석될 수 있다(우정호, 권석일, 2006). 따라서 탐구활동을 구 성하는 데 있어 단순히 학습할 내용을 확인하도록 하는 게 아니라 탐구 활동을 되돌아보고 이를 바탕으로 추측을 할 수 있는 질문과 발견한 사 실을 정당화를 할 수 있는 질문을 활용하여 구성해야 할 것이다.
둘째, 학습내용에 따라 사용된 정당화의 유형을 분석한 결과, 다루고 있는 대부분의 내용에 대해 경험적•귀납적 정당화를 이용해 정당화하더 라도 이를 바로 형식적•연역적 정당화와 연결하여 다루는 경우가 많았 다. 그러나 이는 학생들에게 기하 학습에 대한 어려움을 느끼게 하는 원 인이 된다. 따라서 우정호, 박미애, 권석일(2003)이 언급하였듯이 경험 적•귀납적 정당화 방식과 형식적•연역적 정당화 방식을 매개할 수 있 는 중간 단계의 수준을 구체화하여 교과서에 제시할 필요가 있다. 이를 위해 논리적 언어가 아닌 일상적 언어, 구체적 조작이 가능한 그림 등을 사용하거나(홍진곤, 권석일, 2004) Tall(1995)의 시각적 증명, 조작적 증명 등을 활용해 점진적으로 구성할 필요가 있다. 즉, 정당화의 유형 측면에서 시각적 예 또는 포괄적인 예를 이용한 정당화와 식의 조작 또 는 논리적 설명을 이용한 준연역적 정당화를 경험적•귀납적 정당화와 형식적•연역적 정당화 사이에 활용할 필요가 있으며, 이환철과 하영화 (2011)가 주장하였듯이 학생들의 수준에 맞는 정당화의 유형을 경험할 수 있도록 다양한 정당화의 유형을 제시할 필요가 있다.
셋째, 교과서에서 학생들의 추론과 정당화를 도울 수 있는 요소들을 고려할 필요가 있다. 추론과 정당화를 돕는 교수학습 방법에 대한 연구

들을 살펴보면 추론과 정당화의 과정에서 시각적 이미지의 활용(Tall, 1995; 류현아, 장경윤, 2009; 장혜원, 2013 등)과 추측 및 정당화 과정 에 대한 반성(Otten 외, 2013 등), 도형의 성질을 탐구하도록 돕는 컴퓨 터 프로그램의 이용(조한혁, 안준화, 우혜영, 2001; 박주희, 2004 등)을 강조하고 있다. 이를 2009 개정 교육과정에 따라 개발된 교과서를 분석 한 결과 교과서마다 차이는 있었지만 많이 나타나지 않았다. 따라서 교 과서를 개발하고, 교사가 교과서를 활용하여 수업을 함에 있어 추론과 정당화를 돕는 이러한 요소들을 고려할 필요가 있다.
지금까지 살펴본 이 연구는 2009 개정 교육과정에 따라 개발된 13 종 의 중학교 2 학년 수학 교과서의 '삼각형의 성질' 단원과 '사각형의 성질' 단원을 추론과 정당화의 관점에서 어떻게 구현되었는지 분석하였다. 즉, 정당화와 관련된 추론을 살펴봄으로써 교과서에 구현된 정당화의 과정을 분석하였으며, 정당화의 유형을 살펴봄으로써 교과서에 구현된 정당화의 방법을 분석하였다. 이를 바탕으로 교과서를 개발하는 개발자들이 추론 과 정당화를 교과서에 구현하고자 할 때 고려해야 할 사항과 실제 교과 서를 활용해 수업을 하게 될 교사들이 추론과 정당화를 지도할 때 고려 해야 할 사항에 대 시사점을 제시한다는 데 의미가 있다고 볼 수 있다.
그러나 중학교 교과서의 기하영역에서 추론과 정당화가 도입된 '삼각 형의 성질'과 '사각형의 성질' 단원에 대해서만 분석이 이루어져 기하영 역의 모든 단원을 분석하지 못하였다. 따라서 이를 바탕으로 추론과 정 당화의 관점에서 교과서의 특징을 일반화하기엔 한계가 있다. 또한 교과 서가 추론과 정당화의 관점에서 잘 구현되어있더라도 실제 활용되는 것 에 따라 학생들이 추론과 정당화를 경험하는 것은 달라질 수 있으나 실 제 교사들이 수업에서 이러한 교과서를 어떻게 활용하는지는 살펴보지 못했다. 따라서 이에 대한 후속 연구로써 추론과 정당화의 관점에서 중 학교 교과서의 기하영역에 대한 분석을 통해 이에 대한 특징을 추출하 고, 실제 수업에서 교사가 교과서를 이용해 수업을 함에 있어 추론과 정 당화를 촉진하기 위해 어떻게 활용하는지에 대한 연구가 필요할 것이다.

참 고 문 헌

강옥기 외(2012). 중학교 수하 2. 서울: 두산동아(주)
강미광, 이병수, 양규한(1997). 수학적 지식 구성에서 추론의 역할. 수 학교육 프로시딩, 6. 411-428.
고호경 외(2012). 중학교 수하 2. 서울: (주)교학사.
교육과학기술부(2011). 수학과 교육과정. 고시 제 2011-361호 [별책 8].
권성룡(2003). 초등학생의 정당화에 관한 연구. 초등수하교육, 7(2).

$$
85-99
$$

권지현(2013). 인지적 노력수준에 따른 중학교 수하 교과서 분석: 기
하 영역을 중심으로. 석사학위논문. 서강대학교.
김미영(2002). 한구, 일본, 미국의 중학교 수하교과서 비교 연구: 기
하영역을 중심으로. 석사학위논문. 고려대학교.
김미진(2010). 현실주의 수학교육에 근거한 중하교 수학교과서 분석:
8-나 기하영역을 중심으로. 석사학위논문. 조선대학교.
김민주, 권오남(2006). 사회적 상호작용 중심의 탐구지향학습에서 나타
나는 학생들의 논증과 정당화. 교육학연구, 44(1). 247-275.
김민혁(2013). 수학교사의 교과서 및 교사용 지도서 활용도 조사. 학교
수하, 15(3). 503-531.
김서령 외(2012). 중하교 수하 2. 서울: (주)천재교육.
김수철(2013). 정당화 지도를 위한 수업 모형 개발 : 중학교 기하 영 역을 중심으로. 박사학위논문. 성균관대학교.
김원경 외(2012). 중하교 수하 2. 서울: (주)비상교육
김정하(2010). 초등학생의 정당화에 관한 연구. 박사학위논문. 이화여 자대학교.
김주경(2011). 현실주의 수학교육 관점에서 중하교 수학개정교과서 분석(중학교 3학년 기하영역을 중심으로). 석사학위논문. 서울시 립대학교.

김판수(2011). Van Hiele 이론을 통한 중학교 기하영역의 교과서 분 석 및 수업지도안 작성. 석사학위논문. 계명대학교.
김후재(2004). 제7차 수학 교육과정에 따른 중학교 교과서와 미국의 MiC 교과서 비교 분석. 석사학위논문. 서울대학교.
나귀수(1998). 증명의 본질과 지도 실제의 분석 : 중학교 기하 단원 을 중심으로. 박사학위논문. 서울대학교.
나홍수(2009). 남북한 수하교과서 비교: 중학교 기하영역을 중심으로. 석사학위논문. 목포대학교.
도종훈(2007). 학교수학에서 추측과 문제제기 중심의 수학적 탐구활동 설계하기. 학교수학, 46(1). 68-79.
류현아, 장경윤(2009). 중등 기하문제 해결에서 시각화 과정. 수하교육 학연구, 19(1). 143-161.
류희찬, 조완영(1999). 학생들의 정당화 유형과 탐구형 소프트웨어의 활 용에 관한 연구. 수학교육학연구, 9(1). 245-261.
류희찬 외(2012). 중학교 수학 2. 서울: (주)천재교과서.
문영미(2009). 한국과 일본의 중학교 수하 교과서 비교 연구: 기하 영역을 중심으로. 석사학위논문. 연세대학교.
박교식, 권석일(2012). 2011 중학교 수학과 교육과정의 비판적 고찰:
기하영역을 중심으로. 수학교육항연구, 22(2). 261-275.
박성희(2011). Van Hiele의 이론에 근거한 7차 개정 수학 교과서 기 하 학습 수준 분석 및 효과적인 지도방안: 중학교 2 학년을 중심 으로. 석사학위논문. 숙명여자대학교.
박은조, 방정숙(2005). 수학 교사들의 증명에 대한 인식. 한국학교수하 회논문집, 8(1). 101-116.
박주희(2001). 점진적 구성의 증명지도를 위한 학습 프로그램 개발 연 구. 수하교육논문집, 12. 185-200.
박지혜(2012). 중학교 3 학년 기하영역에서의 교수학적 변환에 관한 연구. 석사학위논문. 고려대학교.

변희현(2011). 삼각형의 외심 정의와 증명에 관한 고찰. 한국학교수하 회논문집, 14(2). 227-239.
서동엽(2003). 초등 수학 교재에서 활용되는 추론 분석. 수학교육학연 구, 13(2). 159-178.
\qquad (2006). 수학의 형식과 대상에 따른 추론 지도 수준. 수학교육학 연구, 16(2). 95-113.
\qquad (2010). 추론의 본질에 관한 연구. 한국초등수학교육학회지, 14(1). 65-80.
서지희(2012). 현실적 수학교육 이론에 따른 우리나라와 MiC 교과서 비교 분석. 석사학위논문. 고려대학교.
신이섭 외(2011). 2009 개정 교육과정에 따른 수학과 교육과정 연구.
서울: 한국과학창의재단.
신준국 외(2012). 중학교 수하 2. 서울: 두배의느낌.
신향균 외(2012). 중학교 수학 2. 서울: (주)지학사.
신현용(2004). 학교수학에서의 정당화 지도의 필요성 및 가능성에 관한 연구. 대한수학회논문집, 19(4). 585-599.
심상길(2011). 중학교 1 학년 교과서 기하 단원에 제시된 컴퓨터 활용에 대한 분석. 수학교육논문집, 25(3). 577-591.
심종섭(2012). 한국과 홍콩의 수학교과서 비교연구: 기하영역을 중심 으로. 석사학위논문. 국민대학교.

안정주(2005). 한국과 러시아의 중학교 교과서 비교연구-기하영역을
중심으로. 석사학위논문. 대구대학교.
안주연(2011). Skemp의 도구적 이헤와 관계적 이헤에 기초한 교과서 분석: 중학교 2학년 기하영역을 중심으로. 석사학위논문. 계명대 학교.
우정호, 박미애, 권석일(2003). 역사발생적 수학교육 원리에 대한 연구 (1)-증명의 의미 지도의 역사발생적 전개. 학교수학, 5(4). 401-420.

우정호, 권석일(2006). 중학교 기하 교재의 '원론' 교육적 고찰. 수학교 육학연구, 16(1). 1-23.
우정호 외(2012). 중학교 수하 2. 서울: 두산동아(주).
윤정민(2009). 우리나라와 홍콩의 중학교 수학 교과서 비교 연구: 기
하영역을 중심으로. 석사학위논문, 고려대학교.
이강섭 외(2012). 중학교 수하 2. 서울: (주)미래엔.
이경화, 강완(2008). 길이재기 단원의 여정 : 수학 교과서 개발과정. 수 학교육학연구, 18(2). 157-177.
이경화, 최남광, 송상헌(2007). 수학영재들의 아르키메데스 다면체 탐구 과정: 정당화 과정과 표현과정을 중심으로. 학교수하, $9(4)$. 487-506.
이금주(2007). Van Hiele 이론에 기초한 교과서 분석과 효과적인 기 하 학습에 관한 연구. 석사학위논문. 중앙대학교.
이소현(2011). 중학교 1 학년 기하영역에서의 교수학적 변환에 관한연 구. 석사학위논문. 서강대학교.
이승재(2013). 한국과 인도의 수하 교과서 비교•분석: 중학교 기하영
역을 중심으로. 석사학위논문. 건국대학교.
이장현(2013). 한국과 필리핀의 중학교 수학교과서 비교 분석: 중학
교 3학년 기하영역을 중심으로. 석사학위논문. 대구가톨릭대학교.
이종희(2003). 비판적 사고와 증명 능력 및 정당화 유형과의 관계. 대한
수학교육학회 제 24회 추계학술대회 논문집. 535-548.
이종희, 이지연(2009). 상위권 고등학생들의 정당화와 반증의 유형에 대
한 사례연구. 교과교육학연구, 13(3). 633-652.
이준열 외(2012). 중학교 수학 2. 서울: (주)천재교육.
이중권(2006). Van Hiele의 기하 인지발달이론에 따른 중학교 기하교육 과정 및 우리나라 중학생들의 기하수준에 관한 연구. 한국교육문제 연구, 17. 55-85.
이환철, 하영화(2011). 중학교 수학 교과서 분석을 통한 정당화 방안 탐
색. 한국학교수학회논문집, 14(3). 329-341.

이환철, 김선희, 고호경(2012). 2009 개정 교육과정에 따른 중학교 수 학과 교육과정의 기하 성취기준에 대한 논의. 수학교육학연구, 22(4). 603-617.
장정순(2011). 한국과 핀란드 수학교과서 기하영역 비교. 석사학위논 문. 한국교원대학교.
장혜원(2013). Byrne의 'Euclid 원론'에 기초한 증명 지도에 대한 연구. 수학교육학연구, 23(2). 173-192.
전영배, 강정기, 노은환(2011). 삼각형의 외심, 내심의 정의에 관한 고 찰. 한국학교수하회논문집, 14(3). 359-379.
정상권 외(2012). 중학교 수하 2. 서울: (주)금성출판사.
정소영(2012). 우리나라 중학교 교과서와 MiC 교과서의 기하영역 교 수하ㅈㅓㅓㄱ 변환방식의 비교•분석. 석사학위논문. 고려대학교.
정유리(2013). 2009 개정 교육과정에 따른 중학교 1 학년 기하영역의 교과서 비교 분석. 석사학위논문. 경북대학교.
정희연(2008). 남북한 중등 수하 교과서 비교, 분석: 중학교 기하영역
을 중심으로. 석사학위논문. 한국교원대학교.
조완영, 권성룡(2001). 학교 수학에서의 '증명'. 수학교육학연구, 11(2). 385-402.
조한혁, 안준화, 우혜영(2001). 컴퓨터를 통한 수학적 사고력 신장의 가 능성 모색. 수확교육논문집, 14. 197-215.
최용환(2012). 한국과 중국의 중학교 수학교과서 비교: 기하영역을 중심으로. 석사학위논문. 교원대학교.
하영화, 고호경(2011). 2009 개정 교육과정에 따른 수학과 교육과정에 서의 무게중심 교수 • 학습 제안. 학교수학, 25(4). 681-691.
한인기(2010). 러시아 7학년 기하학 교과서의 내용 및 연습문제 분석 연구. 교육연구, 18(1). 77-106.

허민 외(2012). 중학교 수하 2. 서울: (주)대교.
홍진곤, 권석일(2004). 전형식적 증명의 교수학적 의미에 관한 고찰. 학 교수학, 43(4). 381-390.

황선욱 외(2011). 창의 중심의 미래형 수학과 교과내용 개선 및 교육 과정 개정 시안 연구. 서울. 한국과학창의재단.
황선욱 외(2012). 중학교 수하 2. 서울: (주)좋은책신사고.
Bell, A. W. (1976). A study of pupil`s proof-explanations in mathematical situations. Educational Studies in Mathematics, 71(1). 23-40.

Davis, J. D. (2012). An examination of reasoning and proof opportunities in three differently organized secondary mathematics textbook units. Mathematics education research journal 24. 467-491.
Jones, K., Fujita, T. (2013). Interpretations of national curricula: the case of geometry in textbooks from England and Japan. ZDM Mathematics Education 45. 671-683.

Li, Y (2000). A comparison of problems that follow selected content presentations in American and Chinese mathematics textbooks. Journal for Research in Mathematics Education 31(2). 234-241.
Marrades, R., Gutiérrez, A. (2001). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics 44. 87-125.

Miyazaki, M. (2000). Levels of proof in lower secondary school mathematics. Educational Studies in Mathematics 41(1). 47-68.

Mullis, I. V. S., et al. (2009). TIMSS 2011 Assessment Frameworks. Chestnut Hill, MA: TIMSS \& PIRLS International Study Center, Boston College.
National Council of Teacher of Mathematics (NCTM) (2000). 학교수 학을 위한 원리와 규준 (류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 역.). 서울: 경문사. (원저 2000 출판).

Newton, D. P., Newton, L. D. (2006). Could elementary mathematics textbooks help give attention to reasons in the classroom?. Educational studies in Mathematics 64. 68-84.
Otten, S., Males, L. M.\& Gilberton, N. J. (2013). The introduction of proof in secondary geometry textbook. International journal of educational research.

Pepin, B., Gueudet, G.\& Trouche, L. (2013). Investigating textbooks as crucial interfaces between culture, policy and teacher curricular practice : two contrasted case studies in France and Norway. ZDM Mathematics Education 45. 685-698.
Simon, M., Blume, G. W. (1996). Justification in mathematics classroom: a study of prospective elementary teachers. Journal of Mathematical Behavior 15. 3-31.

Sower, L., Harel, G.(1998). Types of students` justifications. The Mathematics Teacher 91(8). 670-675.
Stacey, K., Vincent, J. (2009). Modes of reasoning in explanations in Australian eighth-grade mathematics textbooks. Educational studies in mathematics 72. 271-288.

Staples, M. E., Bartlo, J. \& Thanheiser, E. (2012). Justification as teaching and learning practice: its multifacted role in middle grades mathematics classrooms. The Journal of Mathematics Behavior 31(4). 447-462.
Stylianides, G. J. (2008). An analytic framework of reasoning-and -proving. For the Learning of Mathematics, 28(1). 9-16.
Stylianides, G. J. (2009). Reasoning and proving in school mathematics textbook. Mathematical thinking and learning 11(4). 258-288.

Tall, D. (1995). Cognitive development, representations and proof. The conference Justifying and Proving in School Mathematics Institute of Education. London. 27-38.
Thompson, D. R., Senk, S. L. \& Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education 43(3). 253-295.

Van Zanten, M., Van den Heuvel-Panhuizen, M. (2014). Freedom of design: the multiple faces of subtraction in Dutch primary school textbooks. In Y. Li \& G. Lappan(Eds). Mathematics curriculum in school education. New York: Springer. 231-259.

ABSTRACT

An Analysis on Geometry Area of middle school math textbook

: Focused on Reasoning and Justification

Cho Mi Hye
Department of Mathematics Education
The Graduate School
Seoul National University

Geometry area of middle school needs for developing reasoning and justification. The goal of learning geometry area is to understand geometric properties and to develop reasoning ability. But when students learn geometry area in middle school, they feel difficult in proving and they don't experience reasoning meaningfully. So in the 2009 Revised Mathematics Curriculum of middle school, geometry area emphasizes justification that is based on empirical knowledge than proof that put emphasis on formal system.
In this context, to discuss meaning of reasoning and justification embodied in middle school math textbook, the goal of this study is to analyze middle school math textbook in view of reasoning and justification.

For this purpose, inquiry-activities that introduce learning topics,
contents that including reasoning and justification and problems in textbook are analyzed. Especially, the textbook was analyzed focusing on the chapters that emphasize justification 'properties of triangle' and 'properties of rectangle' in the chapters of geometry area of the middle school math textbook.
The frameworks of textbook analysis consist of two: framework that is in terms of performance expectation and framework that is in terms of justification`s type. Framework that is in terms of performance expectation consists of 'knowing geometric concepts and facts', 'applying geometric properties' and 'reasoning geometric properties'. And framework that is in terms of justification`s type consists of 'empirical and inductive justification', 'justification by examples', 'semi-deductive justification' and 'formal and deductive justification'.
On textbook analysis, first, the rate of 'reasoning geometric properties' is lower than the rate of 'knowing geometric concepts and facts' and 'applying geometric properties' in terms of performance expectation about questions in inquiry-activities and problems. Therefore, when textbook developers or teachers compose questions in inquiry-activities and problems, they need to consider students to experience reasoning geometric properties meaningfully but rather that to know geometric properties. Second, when contents are presented after inquiry-activities, there is a gap in terms of justification`s type: from 'empirical and inductive justification' to 'formal and deductive justification'. Although 'justification by examples' and 'semi-deductive justification' are used for mediating between 'empirical and inductive justification' and 'formal and deductive justification', the rate of using these justification`s types is not high. Therefore, various types of justification to mediate between 'empirical
and inductive justification' and 'formal and deductive justification' will have to be presented in textbook.
This study analyzed geometry area of middle school math textbook in view of reasoning and justification. Through this analysis, in views of reasoning and justification, overall characteristic features and strength of geometry area in textbook are identified. It is expected that this will suggest implication in terms of reasoning and justification for textbook developers and teachers.

Keywords : reasoning, justification, geometry area of middle school, textbook analysis
Student Number : 2011-23651

