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Abstract

We are going to analyze mathematically the downswing of the golf using the double

pendulum model and Lagrangian function. We will show existence for expressed

as a system of differential equations of the arm and the club. In order to obtain the

clubhead speed, we calaulate the angular speed of the arm and the club by Runge-

Kutta method. Using the calcualted value of the clubhead speed, we can also obtain

a projection angle of the maximum projectile range of the ball.

Key words: the double pendulum model; Lagrangian function;

existence for differential equations; Runge-Kutta method; quadratic drag.
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Chapter 1

Introduction

It is important for athletes looking for a way to improve their records. For a typical

example, the research finding ways to increase the distance of the ski jump is the one

of them. In order to improve the flying distance of the ski jump, a player has to find

ways to increase lift and to decrease air resistance. To find ways in the ski jump, we

have to model the dynamics of the ski jump and solve the model equation. In gen-

eral, the model equation is expressed as a nonlinear system of differential equations.

Thus it is almost impossible to find the solution of nonlinear systems of differential

equations. We try to find approximate solutions for the systems using a computer.

Like ski jump, the flying distance of the golf ball are affected by the flying speed

of a ball, the angle of fire and the drag resistance[8]. Since the flying speed of the

ball is proportional to the speed of the clubhead and the angle of fire is primarily

dependent on the loft of the clubhead, we hope maximize the clubhead speed to

obtain the maximum projecitle range.

In earier studies of the golf swing, the dynamics was just to analyze the pictures
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to understand the swing process, which was merely to list the common features of

a professional golfer’s swing[4]. But since golf swing motions arise in the three-

dimensional space, it is difficult to analyze the golf’s swing. Further, it is also com-

plicate to measure the fact in the sports environment. Hence many people started

to interprete the golf swing motions as the double pendulum. The Figure 1.1 shows

the structure of the double pendulum. Two levers move as they are connected by the

hub. The upper lever L1 is rotated about the hub and the lower lever L2 is rotated

about m1. The point m2 can move freely.

The upper lever L1 move, from a backswing top to the impact point. Applying a

double pendulum model for a golf swing, a hub is a left shoulder joint, the upper

lever L1 is a left arm , m1 is a wrist, the lower lever L2 is a golf club, m2 is a club-

head and m3 is a ball.

Figure 1.1: the structure of the double pendulum
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Williams[11], Daish[3], and Jorgensen[7] have derived the system of equations of

motion under the double pendulum model using the Lagrangian method. Williams

derived the following system of differential equation;

X

m
=ẍ = −bθ̇2 cos θ − bθ̈ sin θ − aθ̇2 cos (θ + ψ0 − π)

− aθ̈ sin (θ + ψ0 − π), (1.1)
Y

m
=ÿ = −bθ̇2 sin θ + bθ̈ cos θ − aθ̇2 sin (θ + ψ0 − π)

+ aθ̈ cos (θ + ψ0 − π), (1.2)
C

m
=− abθ̇2 sinψ0 − abθ̈ cosψ0 + a2θ̈, (1.3)

where (x, y) is the position of the clubhead in the swing plane, ψ is the angle be-

tween arm and the club, θ is the angle between arm and the horizontal plane. C

is the wrist moment with a constant transverse shear force in the shaft as seen the

following Figure 1.2.

Figure 1.2: the plane xy represents hands-clubhead movement
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Daish[3] derived the system of motion in angles, which is

Aθ̈ +Bφ̈ cos(φ− θ)−Bφ̈2 sin(φ− θ) =− τ0 + τh, (1.4)

Bθ̈ cos(φ− θ) +Bθ̇2 sin(φ− θ) + Cφ̈ =− τh, (1.5)

where φ and θ are the angular positions of the arm and the club shaft with respect

to the vertical line to the ground, τh is the torque exerted by the hands and wrists, τ0
is the torque exerted by golfer’s torso.

Jorgensen[7] has obtained the Lagrangian form as

Ta =θ̈(J +MR2) + ψ̈RS cos(ψ − θ)

− ψ̇2RS sin(ψ − θ) + g(G+MR) cos θ, (1.6)

Tc =ψ̈I + θ̈RS cos(ψ − θ) + θ̇2RS sin(ψ − θ)

+ gS cosψ, (1.7)

which will be discussed later in detail.

Of course, we may think of the golf swing as a triple pendulum motion consisting of

torso, forearm, and the golf club. But if we neglect the effect of torso, we may think

the golf swing as a double pendulum motion. The double pendulum model transfers

the energy according to the laws of conservation of energy and angular momentum.

The club transfers the energy between the arms and the golf ball[10]. The potential

energy is generated by the club and the arm falling in the gravitational field, the

energy is emanated from muscles and the ball gets the energy by collison. Thus it

is necessary to get the maximum energy of the clubhead at the moment of impact.

Hence in order to obtain the maximum energy of the club, we have to maximize the

clubhead speed.
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Chapter 2

The dynamics of the golf swing

Since we are accustomed to consider the golf swing in the three dimensional space,

we may express the position of clubhead as (x(t), y(t), z(t)). But we may think that

the golf swing arises in a circular plane. In this case, we may express the motion

of golf swing in the two dimensional space, which is much simpler than that in the

three dimensional Euclidean space. This is the basic idea of the Lagrangian method.

In this chapter, we recall Lagrangian function of golf swing following Jorgensen[7].

As in Jorgensen, we consider the golf swing process as a double pendulum model

depicted in Figure 2.1.

In the above figure,

AB: the arm pivoted at A,

BC: the golf club connected to the arm at B,

Mi: the mass at the distance li from A,

Mj: the mass at the distance lj from B,
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Figure 2.1: Golf swing: double pendulum model

θ : the counterclockwise angle determined by the arm AB from the horizontal axis,

ψ : the counterclockwise angle determined by AB and BC,

M : the total mass of clubhead,

α : the counterclockwise angle from the at the top of backswing,

β : the counterclockwise angle from the club position at 90◦ to the arm.

Lagrangian Function is attained by the potential energy and the kinetic energy. In

order to calculate the kinetic energy, let as consider Figure 2.2. In Figure 2.2, since

−→
AB = (R cos θ, R sin θ) and

−−→
BMj = (lj cosψ, lj sinψ), (2.1)

we obtain the angular momentum −→w of the club relative to A as

−→w =Mj(θ̇(R cos θ, R sin θ) + ψ̇(lj cosψ, lj sinψ)). (2.2)
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Thus the kinetic energy Ke is expressed

Ke =
∑

(
(Miliθ̇)

2

2Mi

+
‖−→w ‖2

2Mj

)

=
∑
{1
2
Mil

2
i θ̇

2 +
1

2
MjR

2θ̇2 +
1

2
Mjl

2
j ψ̇

2 +MjljR cos(ψ − θ)θ̇ψ̇}

=
1

2
[(J +MR2)θ̇2 + Iψ̇2] + θ̇ψ̇RS cos(ψ − θ), (2.3)

where g is the gravitational acceleration,

J =
∑
Mil

2
i is the moment of inertia of the arm,

G =
∑
Mili is the moment of the arm,

I =
∑
Mjl

2
j is the moment of inertia of the club,

S =
∑
Mjlj is the moment of the club,

M is the mass of the club,

R = AB.

Figure 2.2: Diagram of arm and club

On the other hands, the pontential energy Pe can be put in the form

Pe =
∑

(gMili sin θ + gMR sin θ + gMjlj sinψ)
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= g[(G+MR) sin θ + S sinψ]. (2.4)

Therefore the function of the golf swing expressed as

L =
1

2
[(J +MR2)θ̇2 + Iψ̇2] + θ̇ψ̇RS cos(ψ − θ)

− g[(G+MR) sin θ + S sinψ]. (2.5)

Using the Lagrangian equation from the Lagrangian function, the torques Ta and Tc
applied to the arm and club, respectively, one obtained as

Ta =
d

dt
(
∂L

∂θ̇
)− ∂L

∂θ

=θ̈(J +MR2) + ψ̈RS cos(ψ − θ)

− ψ̇2RS sin(ψ − θ) + g(G+MR) cos θ, (2.6)

Tc =
d

dt
(
∂L

∂ψ̇
)− ∂L

∂ψ

=ψ̈I + θ̈RS cos(ψ − θ) + θ̇2RS sin(ψ − θ)

+ gS cosψ, (2.7)

and

Ts = Ta + Tc

= θ̈[(J +MR2) +RS cos(ψ − θ)] + ψ̈[I +RS cos(ψ − θ)]

− (ψ̇2 − θ̇2)RS sin(ψ − θ) + g[(G+MR) cos θ + S cosψ]. (2.8)
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Chapter 3

Analysis of the golf swing

Since the gravitational torque on the club is somewhat smaller, we may neglect it.

In this case, the torques Ta and Tc become

Tc =ψ̈I + θ̈RS cos(ψ − θ) + θ̇2RS sin(ψ − θ), (3.1)

Ts =θ̈[(J +MR2) +RS cos(ψ − θ)] + ψ̈[I +RS cos(ψ − θ)]

− (ψ̇2 − θ̇2)RS sin(ψ − θ). (3.2)

Dividing (3.1) and (3.2) by Ts and replacing (1/Ts)(d
2θ/dt2) by d2θ

dz2
,

we obtain

1 =J +MR2 +RS cos(ψ − θ)]d
2θ

dz2
+ [I +RS cos(ψ − θ)]d

2ψ

dz2

− [(
dψ

dz
)2 − (

dθ

dz
)2]RS sin(ψ − θ), (3.3)

Tc
Ts

=I
d2ψ

dz2
+
d2θ

dz2
RS cos(ψ − θ) + (

dθ

dz
)2RS sin(ψ − θ), (3.4)

where z = (
√
Ts)t is a new parameter.

Let the angle α be measured counterclockwise from the position at the top of the

backswing and the angle β be measured counterclockwise from the cocked position
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at 90◦ to the arms. That is, the angle β measures the angle when the wrist has been

uncocked. Using the angles α and β, we can express (3.3) and (3,4) as

1 =(J + I +MR2 + 2RS sin β)α̈ + (I +RS sin β)β̈

[(β̇ + α̇)2 − α̇2]RS cos β, (3.5)

Tc/Ts =Iβ̈ + (I +RS sin β)α̈− α̇2RS cos β, (3.6)

where a dotted letter refers to differentiation with respect to z.

Jorgensen[7] assumed that the torque Ts is constant for the swings under consider-

ation. His assumption help making a first approximation to what actually happens,

althogh it is impossibile to swing a club with Ts constant. Having cocked his wrist,

a golfer starts golf swing at the top of the backswing with α = α̇ = 0. If we assume

the angle between the club and his arm is 90◦(β = 0), (3.6) becomes

Tc = TsI(α̈ + β̈). (3.7)

When a golfer swings the club keeping wrist cocked for part of the swing, main-

taining β = β̇ = β̈ = 0, (3.6) becomes

Tc = Ts(Iα̈− α̇2RS), (3.8)

and (3.5) becomes

α̈ =
1

(J + I +MR2)
.

Since α̈ is constant, α̇2 = 2αα̈. Thus (3.6) becomes

Tc
Ts

=
I − 2αRS

J + I +MR2
. (3.9)

If α = 0 , then

Tc =
TsI

(J + I +MR2)
> 0.
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Thus Tc decreases linearly with α and becomes zero for α = I
2RS

.

The golfer must release the torque applying the club by his wrists at any moment

during the downswing. Until then, his wrist has been hindering the uncocking of

his wrists. Jorgensen[7] suggested Tc drops quickly to zero and stays at that value

after the arms have turned through some angle α = (N+1)I
2RS

. He called the quantity

N the “hindrance parameter” for the swing. Tc becomes zero as golfer swing the

club with perfectly flexible wrists. Then (3.5) and (3.6) become

α̈ =
1− β̈RS sin β − (α̇ + β̇)2RS cos β

J +MR2 +RS sin β
, (3.10)

Iβ̈ =α̇2RS cos β − α̈RS sin β − α̈I. (3.11)

By adding and subtracting, (3.10) and (3.11) become

α̈ =
I − I(α̇ + β̇)2RS cos β − α̇2R2S2 sin β cos β

I(J +MR2)−R2S2 sin2 β
, (3.12)

β̈ =
RS cos β{E(α̇ + β̇)2 + α̇2F} − E

I(J +MR2)−R2S2 sin2 β
, (3.13)

where E = (I +RS sin β), F = (J +MR2 +RS sin β).

If (3.12) and (3.13) have a unique solution on the interval |z| ≤
√
Ts
4

since

t ≤ 1
2
, we can change a sloution of (3.12) and (3.13) to a sloution about t. Since

z =
√
Tst, we obtain dα

dt
=
√
Ts

dα
dz

, dβ
dt

=
√
Ts

dβ
dz

. Using a sloution about t, we

have to calculate the clubhead speed .

To calculate the speed of clubhead Figure 3.1 is represented by a vector as follows:

−→
AC = (R cos θ + r cosψ,R sin θ + r sinψ), (3.14)
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Figure 3.1: Diagram showing speed of clubhead

where λ is the angle of backswing top, and r is the length of club BC.

Since λ is the angle of backswing top,

θ =
3

2
π + α− λ, ψ = α + β + π − λ.

The speed of clubhead ‖
−→
AC

′
‖ is as follows.

‖
−→
AC

′
‖ =

√
r2(

dα

dt
+
dβ

dt
)2 +R2(

dα

dt
)2 + 2rR

dα

dt
(
dα

dt
+
dβ

dt
)q, (3.15)

where q = sin θ sinψ + cos θ cosψ.
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Chapter 4

Existence for Differential Equations

We express which is (3.12) and (3.13) as a system of first order differential equa-

tions.

α̇ =x, (4.1)

β̇ =y, (4.2)

ẋ =
I − I(x+ y)2RS cos β − x2R2S2 sin β cos β

I(J +MR2)−R2S2 sin2 β
, (4.3)

ẏ =
RS cos β{E(x+ y)2 + x2F} − E
I(J +MR2)−R2S2 sin2 β

(4.4)

with initial conditions

α(0) =
(N + 1)I

2RS
,

β(0) = 0,

x(0) =

√
(N + 1)I

RS(J + I +MR2)
,

y(0) = 0.
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We now consider existence of a solution for a system of first order ordinary dif-

ferential equations. In general, a normal system of first order ordinary differential

equations is expressed as 
dx1
dt

= X1(x1, . . . , xn; t),
...

dxn
dt

= Xn(x1, . . . , xn; t).

(4.5)

Let us review some notations and facts on vectors and vector-valued functions. For

a vector x = (x1, . . . , xn), define ‖x‖ =
√
x21 + · · ·+ x2n. Then the normal system

(4.5) can be written as its vector form as in [6]

dx

dt
= X(x, t).

Definition 4.1. A vector-valued function X(x, t) is said to satisfy a Lipschitz con-

dition in a region Q in (x, t)-space if, for some constant L (called the Lipschitz

constant), we have

‖X(x, t)−X(y, t)‖ ≤ L‖x− y‖. (4.6)

whenever (x, t) ∈ Q and (y, t) ∈ Q.

It is well known in [6] that the following Lemma 4.2 and Theoreom 4.3 holds.

Lemma 4.2. If X(x, t) has continuous partial derivatives on a bounded closed

convex domain D, then it satisfies a Lipschitz condition in Q.

Theorem 4.3. Assume that X(x, t) is continuous and satisfies the Lipschitz condi-

tion (4.6) on the interval |t− a| ≤ P for all x,y. Then the initial value problem

dx

dt
= X(x, t), X(x, 0) = X0 (4.7)

has a unique solution on the interval |t− a| ≤ P .
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Let x = (α, β, x, y) and X(x, z) is the vector field . Then (4.1) - (4.4) become

dα

dz
= X1(x, z),

dβ

dz
= X2(x, z),

dx

dz
= X3(x, z),

dy

dz
= X4(x, z).

It is trivial that X1(x, z) and X2(x, z) have continuous partial derivatives on a

bounded closed convex domain. So we just have to show X3(x, z) and X4(x, z)

have continuous partial derivatives on a bounded closed convex domain. We obtain

‖∂X3(x, z)

∂β
‖

= ‖{I(x+ y)2RS sin β − x2R2S2 cos 2β}{I(J +MR2)−R2S2 sin β}
{I(J +MR2)−R2S2 sin β}2

+
R2S2 cos β{I − I(x+ y)2RS cos β − x2R2S2 sin β cos β}

{I(J +MR2)−R2S2 sin β}2
‖. (4.8)

Since

I =
∑

Mjl
2
j , J =

∑
Mil

2
i , S =

∑
Mjlj, R = AB

and M is the mass of the club,

I(J +MR2)−R2S2 sin β ≥ I(J +MR2)−R2S2 > 0.

Hence in (4.8)

{I(J +MR2)−R2S2 sin β}2 > {I(J +MR2)−R2S2}2 > 0.

Therefore X3(x, z) has continuous partial derivatives on a bounded closed convex

domain. Similarly, we can prove X4(x, z) has continuous partial derivatives on a
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bounded closed convex domain.

By Lemma 4.2 and Theorem 4.3, the initial value problem

dx

dz
= X(x, z)

has a unique solution on the interval |z| ≤
√
Ts
4

.
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Chapter 5

Numerical computation

Since the system (4.1) - (4.4) is nonlinear, it is not easy to find the analytical solu-

tion. Therefore we may have to apply numerical methods in order to obtain approx-

imate solutions. In this chapter, we are going to apply the fourth-order Runge-Kutta

method to solve the system.

Before we compute approximate solutions, we recall the fourth-order Runge-Kutta

method applied to
dy

dx
= f(x, y), y(x0) = y0.

We first take uniform step length h = xn+1 − xn. Then we calculate

k1 =f(xn, yn),

k2 =f(xn +
h

2
, yn +

k1
2
),

k3 =f(xn +
h

2
, yn +

k2
2
),

k4 =f(xn + h, yn + k3).

17



Then the fourth-order Runge-Kutta method, we obtain

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4). (5.1)

Similiary, we may apply the fourth-order Runge-Kutta method to the system (4.1) -

(4.4)

α̇ = f(z, α, β, x, y), α(0) = α0,

β̇ = g(z, α, β, x, y), β(0) = β0,

ẋ = i(z, α, β, x, y), x(0) = x0,

ẏ = j(z, α, β, x, y), y(0) = y0,

where h = zn+1 − zn . The steps are followings.
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Calculate

k1 = f(zn, αn, βn, xn, yn),

l1 = g(zn, αn, βn, xn, yn),

m1 = i(zn, αn, βn, xn, yn),

n1 = j(zn, αn, βn, xn, yn),

k2 = f(zn +
h

2
, αn +

k1
2
, βn +

l1
2
, xn +

m1

2
, yn +

n1

2
),

l2 = g(zn +
h

2
, αn +

k1
2
, βn +

l1
2
, xn +

m1

2
, yn +

n1

2
),

m2 = i(zn +
h

2
, αn +

k1
2
, βn +

l1
2
, xn +

m1

2
, yn +

n1

2
),

n2 = j(zn +
h

2
, αn +

k1
2
, βn +

l1
2
, xn +

m1

2
, yn +

n1

2
),

k3 = f(zn +
h

2
, αn +

k2
2
, βn +

l2
2
, xn +

m2

2
, yn +

n2

2
),

l3 = g(zn +
h

2
, αn +

k2
2
, βn +

l2
2
, xn +

m2

2
, yn +

n2

2
),

m3 = i(zn +
h

2
, αn +

k2
2
, βn +

l2
2
, xn +

m2

2
, yn +

n2

2
),

n3 = j(zn +
h

2
, αn +

k2
2
, βn +

l2
2
, xn +

m2

2
, yn +

n2

2
),

k4 = f(zn + h, αn + k3, βn + l3, xn +m3, yn + n3),

l4 = g(zn + h, αn + k3, βn + l3, xn +m3, yn + n3),

m4 = i(zn + h, αn + k3, βn + l3, xn +m3, yn + n3),

n4 = j(zn + h, αn + k3, βn + l3, xn +m3, yn + n3).
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And then

αn+1 = αn +
h

6
(k1 + 2k2 + 2k3 + k4),

βn+1 = βn +
h

6
(l1 + 2l2 + 2l3 + l4),

xn+1 = xn +
h

6
(m1 + 2m2 + 2m3 +m4),

yn+1 = yn +
h

6
(n1 + 2n2 + 2n3 + n4).

Since
dα

dt
=

√
Ts
dα

dz
and

dβ

dt
=

√
Ts
dβ

dz
,

we can obtain the speed as a function of t . Figures 5.1 - 5.3 are the graph of speed

as functions of time for suitably choosen parameters J = 0.25 slugs ft2, I = 0.146

slugs ft2, M = 0.031 slugs, R = 2 ft, S = 0.059 slugs ft, Ts = 103 lb ft. These

choosen parameters are obtained by the club of a No. 5 iron as in [7][8].

Figure 5.1(a) shows the graphs of angular speeds with N=0 and Figure 5.1(b) shows

a stroboscopic diagram when the backswing angle is 146◦. In these conditions, the

clubhead hits the ball when β = 82◦.

Figure 5.2(a) shows the graphs of angular speeds with N=1 and Figure 5.2(b) shows

a stroboscopic diagram when the backswing angle is 146◦. In these conditions, the

clubhead hits the ball when β = 72◦.

If t1 is the time at α = I
2RS

, t2 is the time at α = (N+1)I
2RS

and t3 is the time at

impact , then t2 − t1 is time to delay uncocoking of the wrist. When N = 1 ,

t2 − t1 = 0.0328. Figures 5.1 and 5.2 show that β̇ increases abruptly for larger hin-

drance when the wrist is relaxed. On the other hand, α̇ is not changed significantly

by larger hindrance.
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Figure 5.1: angular speeds with N=0 and the stroboscopic diagram .

Figure 5.2: angular speeds with N=1 and the stroboscopic diagram.

The clubheadspeeds of a No. 5 iron are shown in Figure 5.3. If we use the prior

calculated values of α, β, α̇, β̇, we can obtain the clubheadspeed by (3.15). When

the backswing angle is 146◦ , the clubhead speed at impact with N = 0 is 167.38

ft/sec and the clubhead speed at impact with N = 1 is 175.7 ft/sec . When N = 1,

a golfer has to delay uncocking of the wrist for 0.0328 seconds and the increaed

speed is roughly 8 ft/sec. However it is not easy for amateur golfers to hit the ball

as β = 72◦. If N = 2 with same conditions, the clubhead speed at impact is 183.69

ft/sec. But the clubhead hit the ball when β is 46◦. So it is impossibe to swing like

this way. If N = 0.3 with same conditions, the clubhead speed at impact is 170.15
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ft/sec. And the clubhead hit the ball when β is 80◦.

Figure 5.3: speed curve of clubhead.

Now we consider the relationship between the backswing angle and the clubhead

speed . When the backswing angle is 166◦ with N = 1, the clubhead speed at im-

pact is 176.66 ft/sec and the clubhead hit the ball with β = 90◦. This result means

that the increased rate of the clubhead speed is only 1 ft/sec when the backswing

angle is increased by 20◦. Thus, we know that the increasing of the backswing angle

doesn’t help to increase the clubhead speed and to hit the ball with precision.
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Chapter 6

Maximizing the projectile range of

golf

Ignoring air resistance, the horizontal range of the projectile has a maximum dis-

tance with a firing angle of 45◦. Althogh we ignore air resitance, the angle of launch

for maximum horizontal travel is in general less than 45◦. That reason is the angle

of launch for maximum horizontal travel depend on a height h above the ground[1].

Furthermore, maximizing the projectile range of golf is affected by drag. Using the

prior calculated clubhead speed, we can maximize the projectile range of golf with

the quadratic drag.

The drag force D is known to be

D =
1

2
CDAρv

2, (6.1)

where CD is the drag coefficient, A is the cross-sectional area of the ball, ρ is the air

density and v is the ball speed. For low speeds in air drag force goes as the square
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of the speed[5]. For a slowly moving golf ball we have

cv2t = mg, (6.2)

where m is weight of a golf ball and c is a quadratic drag coefficient . The equation

of motion for the case of quadratic drag can be expressed as

m
dvx
dt

=− cv2 cos θ, (6.3)

m
dvy
dt

=−mg − cv2 sin θ. (6.4)

Thus (6.3) and (6.4) become

dvx
dt

=− c

m

√
v2x + v2yvx, (6.5)

dvy
dt

=− g − c

m

√
v2x + v2yvy. (6.6)

Williams[12] has found that the drag force was 0.000783v lb. The weight of a golf

ball is 1.62 oz and a linear drag coefficient c1 is 0.000783 lb/(ft/s). Hence

c1
m

=
0.000783

(1.62/16)/32
= 0.25s−1. (6.7)

In the case of a nonspinning golf ball with linear air resistance, the termimal velocity

vt is

vt =
mg

c1
=

32

0.25
= 128ft/s. (6.8)

To get a hypothetical quadratic drag coefficient we can use the terminal velocity

of 128ft/s in (6.8), although the well-driven golf ball faces linear drag[5]. In this

case, (6.2) becomes
c

m
=

g

v2t
=

32

1282
=

1

512
ft−1. (6.9)

The ball speed v0 immediately after impact is

v0 = (1 + e)
M

M +m
vc, (6.10)
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where vc is the clubhead speed at impact, M is the weight of the clubhead and e is

a restitution coefficient .

Given v0, the clubface and the speed of ball are shown in Figure 6.1.

Figure 6.1: the clubface and velocities of the ball

It follows from (6.10) that

vx0 =(1 + e)
M

M +m
vc cos

2 θ0, (6.11)

vy0 =(1 + e)
M

M +m
vc cos θ0 sin θ0, (6.12)

where θ0 is projection angle from a height h above the ground. Figure 6.2 shows the

projectile trajectory launched with initial ball speed v0 cos θ0 and projection angle

θ0 from a height h above the ground. Since the restitution coefficient of the golf ball

is 0.83, we may choose e = 0.83.
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Figure 6.2: Projectile trajectory

In Chapter 4, when the backswing angle is 146◦ and N = 1, we obtained velocity

clubhead speed vc = 170.15 ft/s at impact with β = 80◦.

Thus, by Ruge-Kutta method we can obtain maximum projecitle range with quadratic

drag. Figure 6.3 shows a plot of coordinates for projection angle θ0 from 5◦ to 50◦.

We may see that maximum range for angle is obtained roughly 30◦. Also, the loft

angle of the No. 5 iron that we actually use in general is roughly 28◦.
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Figure 6.3: Trajectories for various projetion angles with quadratic drag

27



Chapter 7

Concluding Remarks

Computaional results in Chapter 5 show that the wrist action of a golfer affect club-

head speed in the moment of impact. Jorgensen[7] observed that any torque acting

to assist the uncocking of the wrist at the beginning of the downswing is not help-

ful to increase the clubhead speed. From t = t1 to t = t2, the negative torque of

club works by wrist to maintain the original wrist-cock angle β(0). In this thesis,

we showed that the negative torque of the club help the clubhead speed increase.

For a larger hindrance parameter, the clubhead speed increases. But the higher the

hindrance parameters, it is more difficult for amateur golfers to hit the ball with

precision. According to calculated values of the clubhead speed in Chapter 6, it is

necessary to take N=0.3.

Springs and Neal[9] showed that a properly timed wrist torque applied by the golfer

to the club’s handle can increase clubhead speed. Their simulation results show that

muscular wrist torque is desirable for maximizing clubhead speed at impact. Since

the golfer hinders the uncocking of the wrist by applying a negative torque during

the swing, he can’t produce as large a clubhead speed. However, the club hit the
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ball freely since the action of the golfer’s wrists is entirely passive after the torque

of the club decrease through zero[8].

So there have been used to predict the effects of applying a positive negative wrist

torque during the golf swing[2,7,8,9,10].

We found that the projecitle range of golf ball with quadratic drag has maximum

for a firing angle of roughly 30◦ in Chapter 6.
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국문초록

이논문에서는라그랑지안함수와이중진자모델을이용하여골프의다운스윙과정

을 수학적으로 해석하려고 한다. 팔과 클럽의 미분방정식 시스템으로 표현된 해의

존재성을보일것이다. 클럽해드의속력을구하기위해룬지쿠타방법으로팔과클

럽의각속도를구한다. 계산된클럽해드의속력을이용해최대가되게하는발사체

의범위를구할수있다.

주요어휘: 이중진자 모델, 라그랑지안 함수, 미분방정식의 해의 존재성, 룬지쿠타

방법,이차항력.

학번: 2012-21422
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