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Abstract

We investigate Hubbard-type models by means of the dynamical mean-field

theory (DMFT) combined with the continuous-time quantum Monte Carlo

(CTQMC) method. In this thesis, a great deal of effort has been devoted to

investigating diverse facets of Mott physics. Interesting phenomena in strongly

correlated electron systems emerge mostly when various energy scales compete

with each other. We introduce additional degrees of freedom to the standard

Hubbard model. The additional degrees of freedom include a staggered lattice

potential, two orbitals, bilayer structure, and superconductivity. Depending

on the model system, we extend the single-site DMFT to the multi-orbital one

or employ cluster extension of the DMFT. In addition, two complementary

versions of CTQMC, weak and strong coupling algorithm, are adopted as an

impurity solver.

We first consider a Mott transition of the Hubbard model in infinite dimen-

sions. The DMFT is employed in combination with the CTQMC method for

an accurate description at low temperatures. Through the use of the double oc-

cupancy and the energy density, which are directly measured via the CTQMC

method, we construct the phase diagram. We pay particular attention to the
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construction of the first-order phase transition line (PTL) in the coexistence

region of metallic and insulating phases. The resulting PTL is found to ex-

hibit reasonable agreement with earlier finite-temperature results. We also

show, by including systematically low-temperature data, that the PTL, which

is obtained independently of the previous zero-temperature results, approaches

monotonically the transition point reported in earlier zero-temperature stud-

ies.

We next investigate paramagnetic metal-insulator transitions in the infinite-

dimensional ionic Hubbard model at finite temperatures. By means of the

DMFT with an impurity solver of the CTQMC, we show that an increase in

the interaction strength brings about a crossover from a band insulating phase

to a metallic one, followed by a first-order transition to the Mott insulating

phase. The first-order transition turns into a crossover above a certain critical

temperature, which becomes higher as the strength of the staggered lattice

potential is increased. Further, analysis of the temperature dependence of the

energy density discloses that the intermediate metallic phase is a Fermi liquid.

It is also found that the metallic phase is stable against strong staggered po-

tentials even at very low temperatures.

Finite-temperature phase transitions are also examined in the two-orbital

Hubbard model with Ising-type Hund’s coupling. We adopt the multi-orbital

extension of the DMFT combined with the strong coupling CTQMC. It is

found that there emerges a peculiar reverse-sloped first-order Mott transition

between the orbital-selective Mott phase and the Mott insulator phase. It

turns out that the increase of Hund’s coupling lowers the critical temperature
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of the reverse-sloped Mott transition. Beyond a certain critical value of Hund’s

coupling the first-order transition becomes a finite-temperature crossover.

Bilayer effects in the Hubbard model are also studied in the dynamical

cluster approximation (DCA) combined with the weak coupling algorithm of

CTQMC. In the magnetic phase diagrams obtained in earlier studies, there

still remain several controversial issues, particularly for weak on-site Coulomb

interactions. In this study, we adopt eight-site clusters which preserve the un-

derlying lattice symmetry. Magnetic properties and associated metal-insulator

transitions are examined at low temperatures, and their implications to the

ground-state phase diagram are also discussed.

Finally, we discuss the BCS+U model which is a natural generalization of

Gutzwiller-projected BCS model. For this study, we use the DCA combined

with the weak coupling CTQMC and verify the reliability of our calculation

by changing the cluster size. Our main focus is on the correlation effects of

the phenomenological d-wave superconductor. The transition between the su-

perconductor and the Mott insulator is observed as we change the interaction

strength or doping concentration. We discuss the change in the spectral prop-

erties of the system during the transition.

Keywords: strongly correlated electron systems, Hubbard-type model, dy-

namical mean-field theory, continuous-time quantumMonte Carlo method

Student Number: 2009-20403
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Chapter 1

Introduction

Strong correlations in electron systems are one of the central subjects in mod-

ern condensed matter physics. The electron-electron correlations can give

rise to various novel emergent phenomena such as the Mott transition, high-

Tc superconductivity, fractional quantum Hall effect, spin liquid, and heavy

fermions. It is, however, essentially impossible to consider the entire degrees

of freedom and their correlations in real materials because of their complexity.

From a theoretical point of view, extracting the most relevant degrees of free-

dom from real materials and constructing an effective model is an essential and

promising choice to study strongly correlated systems. Historically, this ap-

proach has made great success in describing various phenomena in the strongly

correlated systems via simple models: examples include the BCS model for su-

perconductivity, Kondo model for the Kondo effect, and Anderson model for

the disorder-driven metal-insulator transition.

The Hubbard model is a well-known effective model to describe the correlation-

driven metal-insulator transition, called the Mott transition [1–3]. It is a very
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simple model which considers just two mechanisms, hopping of electrons and

mutual Coulomb interactions. Due to its simplicity and a variety of fruitful

results, the Hubbard model has been regarded as a cornerstone of strongly

correlated electron systems. In spite of its simplicity, solving the Hubbard

model is extremely difficult due to its exponentially large Hilbert space. Ex-

cept for few special cases, the analytic solution of the Hubbard model is not

known. Since the Mott transition usually appear when two energy scales, the

hopping amplitude and the Coulomb interaction, compete with each other, it

is inevitable to resort to non-perturbative numerical approaches.

The dynamical mean-field theory (DMFT) is the first attempt to describe

in a non-perturbative unified framework the Mott transition itself and the

phases on both sides of the transition [4]. The DMFT approximates the self-

energy as a local dynamic quantity in a self-consistent way, which is one of the

most important quantities in describing the properties of strongly correlated

electrons. This approximation neglects spatial fluctuations of the system but

fully incorporates the temporal (quantum) fluctuations. Indeed, in the limit of

infinite dimensions, it is known that the spatial fluctuations freeze completely

and the approximation becomes exact. The DMFT is known to give an accu-

rate description of the Mott transition in relatively high spatial dimensions.

With the help of the recent development of the computing power and algo-

rithms for numerical calculations, studies beyond the DMFT now become pos-

sible. The cluster extensions of the DMFT have recently been introduced to in-

corporate spatial fluctuations which are completely ignored in the DMFT. The

dynamical cluster approximation (DCA) and the cellular DMFT (cDMFT) are
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representative examples of cluster extensions; the multi-orbital extension of the

DMFT is another direction to enlarge the scope of calculations.

Equipped with such newly developed methods, we investigate more realistic

models beyond the simple Hubbard model including another degrees of free-

dom. Various interesting mechanisms and phenomena in such systems which

we call the multi-component systems, are the main subjects of this thesis.

This thesis is organized as follows: Chapter 2 presents the brief theoretical

background of the Hubbard model. In Chap. 3, we discuss the DMFT, and

its cluster and multi-orbital extensions as numerical methods. In Chap. 4,

we apply our numerical method to calculate the first-order transition line in

the infinite-dimensional Hubbard model and compare our results with those in

existing literature to verify the accuracy of our calculation by the comparison

with the previous results. In the remaining part (Chap. 5 to 8), additional

degrees of freedom are introduced in the simple Hubbard model and diverse

phenomena beyond a simple Mott transition are investigated. Chapter 5 is

devoted to the finite-temperature nature of the ionic Hubbard model which

corresponds to the Hubbard model in the presence of the staggered lattice

potential. Specifically, the correlation effects in the band insulator will be

discussed. In Chap. 6, the orbital-selective Mott phase in the multi-orbital

Hubbard model is investigated and peculiar thermodynamic properties are de-

scribed. Chapter 7 deals with the magnetic properties of the bilayer Hubbard

model, which exhibits magnetic transitions between two different insulators.

Finally, in Chap. 8, the DCA study of the strongly correlated superconductor

is presented. In particular, the effects of the mutual interactions in the phe-

3



nomenological d-wave superconductor are studied.
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Chapter 2

Hubbard Model and Strongly

Correlated Systems

In the strongly correlated electron systems, the Hubbard model is one of the

most popular model. The Hubbard model has a very simple form of Hamilto-

nian,

H = −t
∑
⟨ij⟩σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ . (2.1)

It consists of the nearest-neighbor hopping t and on-site Coulomb interaction

between electrons, U . Here, ciσ(c
†
iσ) is the electron annihilation (creation)

operator at site i and µ is chemical potential of the system. In spite of its

simple form, the Hubbard model is known to show very rich phases of matters.

In 1963, the Hubbard model is first introduced by Hubbard [1], Kanamori [2],

and Gutzwiller [3] independently, to describe the ferromagnetism of the d elec-

trons in the transition metal oxides. After its proposal, the Hubbard model is

used as an prototype model to describe the metal-insulator transition driven
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Figure 2.1: Phase diagram for the metal-insulator transition in V2O3 as a
function of doping with Cr or Ti and as a function of pressure [5].

by the mutual Coulomb interaction, called the Mott transition. V2O3 is the

representative material which shows the Mott transition. Figure 2.1 shows

the temperature-versus-pressure phase diagram of V2O3 [5]. Three different

phases appear in this phase diagram; paramagnetic insulator at low pressure,

paramagnetic metal at high pressure, and antiferromagnetically ordered insu-

lator at low temperature. Here, the pressure controls the hopping amplitude,

so the effective interaction strength U/t, can be increased by decreasing the

pressure.

In the theoretical point of view, three different approaches have been in-

troduced to describe the Mott transition with the focus on each phase. In

1970, Brinkman and Rice explained the Mott transition as the divergence of

the effective mass of itinerant electrons [6]. So electrons lose their itinerant
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character at the Mott transition. On the other hand, Hubbard concentrated on

the spatially localized states of electrons in the paramagnetic insulator phase,

which resides in so-called Hubbard subbands [7]. In this approach, the Mott

transition can be viewed as closing of the gap between two Hubbard subbands.

And Slater considered the mechanism of the magnetic phase focusing on the

role of the mutual Coulomb interaction [8]. Although each of these approaches

gives clear mechanism for the Mott transition focusing on one phase of matter,

any of these does not give a coherent framework to cover these three phases.

The dynamical mean-field theory which is explained in Chap. 3 is the first

coherent framework to cover the three different phases.

In addition to the Mott transition, the Hubbard model is related to the

diverse phenomena in the condensed matter. The high-Tc superconductivity is

one of the most important example. In addition to the rather high transition

temperature, the cuprate superconductors show several mysterious phenomena

such as d-wave pairing symmetry and pseudo-gap phase. After the discovery

of the cuprate superconductor, Anderson pointed out that it is the doped Mott

insulator and that two-dimensional Hubbard model is the key to understand

cuprate superconductors [9]. Although it is controversial whether the Hubbard

model is sufficient to describe the high-Tc superconductivity, the importance of

the Coulombic correlation effect and the Hubbard model is a general consensus

among researchers.

Recently discovered iron-based superconductors have attracted much aca-

demic attentions. Since the iron-based superconductor is believed to be a new

example of unconventional superconductor, it is expected that these materials
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can give clues to understand the cuprate superconductors. One of the most

important difference compared with the cuprate superconductor is multiple-

orbital effects. In comparison to the single-band character originating from

the dx2−y2 orbital band in cuprate materials, all of the five orbital bands cross

the Fermi levels. In this respect, the multi-orbital Hubbard model is required

to study. The research about the multi-orbital Hubbard model is now one of

the active fields in modern condensed matter physics.

Following sections are devoted to the description of the basic properties

of the Hubbard model. In the first section, the simple derivation of the one-

band Hubbard model is given. Important limiting cases and the symmetries

are discussed in the next section. Finally, the multi-orbital extension of the

Hubbard model is presented in the last section.

2.1 Derivation

The general two-body interacting Hamiltonian can be written as

H =
∑
σ

∫
dx ψ†

σ(x)

[
− 1

2m
∇2 + V1(x)

]
ψσ(x)

+
1

2

∑
σσ′

∫
dxdx′ ψ†

σ(x)ψ
†
σ′(x

′)V2(x− x′)ψσ′(x′)ψσ(x) , (2.2)

where V1(x) and V2(x − x′) are the one-body and the two-body potential,

respectively.

The wave function can be conveniently expanded by the localized Wannier

8



function basis,

ψσ(x) =
∑
i

φi(x)ciσ , (2.3)

where φi(x) is the Wannier function localized at the lattice site i. Then the

hopping integral, tij, and the chemical potential, µ, can be defined by the

diagonal and the off-diagonal parts of the one-body Hamiltonian

tij(1− δij)− µδij ≡
∫
dx φ∗

i (x)

[
− 1

2m
∇2 + V1(x)

]
φj(x) . (2.4)

For the model of narrow-band electrons such as d or f -orbital electrons,

the Wannier functions are well-localized and the electrons are tightly bound

at the i lattice site. In the circumstances, the most dominant terms of the

Hamiltonian are the nearest-neighbor hopping and on-site two-body interac-

tions. By defining the on-site Coulomb interaction as

U ≡
∫
dxdx′|φi(x)|2V2(x− x′)|φi(x

′)|2, (2.5)

We can reduce the Hamiltonian to

H = −t
∑
⟨ij⟩σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ . (2.6)

Here, nearest-neighbor-hopping integral is denoted as constant t. This is the

celebrated form of the one-band Hubbard model.
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2.2 Limiting cases

The interesting phenomena of the Hubbard model emerge when the energy

scales compete with each other. In other words, the hopping amplitude t

and the mutual Coulomb interaction U are comparable to each other. In the

intermediate-parameter region, the nature of the Hubbard model depends on

the details of model, such as lattice structure and dimensionality. However,

some limiting cases are independent of the details of the system. In the fol-

lowing, some limiting cases will be discussed.

2.2.1 Noninteracting limit

The first limiting case of the Hubbard model is the noninteracting limit where

the mutual Coulomb interaction strength vanishes (U = 0). Then the Hubbard

model becomes the tight-binding model

H0 = −t
∑
⟨ij⟩σ

(
c†iσcjσ + h.c.

)
. (2.7)

With the help of the translational invariance, the tight-binding Hamiltonian

can be diagonalized by Fourier transformation,

ci =
1

N

∑
k

cke
ik·xi , (2.8)

where N is the number of the lattice sites. The resulting diagonalized Hamil-

tonian is

H0 =
∑
k

εkc
†
kσckσ , (2.9)
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Figure 2.2: (a) Dispersion and (b) DOS of the square lattice.

and the momentum dependence of εk depends on the underlying lattice struc-

ture.

As a representative example, the square lattice will be considered. In the

square lattice, the energy dispersion has the form of

εk = −2t(cos kx + cos ky) , (2.10)

which is shown in Fig. 2.2(a).

The density of states (DOS) of the square lattice,

ρ(ε) =
1

N

∑
k

δ(ε− εk) , (2.11)

can be expressed as a closed form by the analytic calculation. Using the 4-fold

symmetry of the energy dispersion in the Brillouin zone, we obtain

ρ(ε) = 4

∫ π

0

dkx
2π

∫ π

0

dky
2π

δ(ε+ 2t(cos kx + cos ky)) . (2.12)
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Defining x = cos kx, y = cos ky, and ε̃ = ε/2t,

ρ(2tε̃) =
1

2tπ2

∫ 1

−1

dx

∫ 1

−1

dy
δ(ε̃+ x+ y)√
(1− x2)(1− y2)

=
1

2tπ2


∫ 1−ε̃

−1
dx f(x), 2 > ε̃ ≥ 0∫ 1

1+ε̃
dx f(x), −2 < ε̃ < 0

0, otherwise

, (2.13)

where

f(x) =
1√

(1− x2)(1− (ε̃+ x)2)
. (2.14)

By the change of the variable

x = −(1 + ε̃) +
2ε̃

2− (2− ε̃) sin2 φ
, (2.15)

the DOS becomes

ρ(2tε̃) =
1

2tπ2
θ(2− |ε̃|)

∫ π/2

0

dφ√
1−m sinφ

(2.16)

for 0 < ε̃ < 2. Here, m = 1 − ε̃2

4
. Using the fact that ρ(ε) = ρ(−ε), we can

obtain the DOS of the square lattice,

ρ(ε) =
1

2π2t
θ(4t− |ε|)K

(
1− ε2

16t2

)
, (2.17)

where K(x) is the complete elliptic integral of the first kind. Figure. 2.2 shows

the DOS of the square lattice in the unit of t. The characteristic Van Hove

singularity is observed at ε = 0.
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2.2.2 Atomic limit

Another limit of the Hubbard model is the atomic limit where t = 0. The

atomic limit corresponds to the strong interaction limit where U/t becomes

infinite. Then the Hamiltonian becomes

HU = U
∑
i

ni↑ni↓ + ε0
∑
i

ni , (2.18)

where ni = ni↑ + ni↓. Since the Hamiltonian consists only of the local density

operators, the local occupation number is a good quantum number. When

the first electron is created at empty site i, it has the energy of ε0. Adding

another electron to the site i which is occupied by the electron with different

spin, the two electrons in site i have U + 2ε0 energy. It can be interpreted as

meaning that the second electron is added to the state with the energy U + ε0.

Since the resulting many-body state is the product state of local eigenstates,

the DOS of the system is simply the sum of two delta functions

ρ(ε) =
1

2
[δ(ε− ε0) + δ(ε− (ε0 + U))] , (2.19)

which is shown in Fig. 2.3(a). Each level has N degeneracy. As we increase the

chemical potential µ, the occupancy of the system increases as in Fig. 2.3(b)

at zero temperature.
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Figure 2.3: (a) DOS of the atomic Hamiltonian. (b) Occupation as a function
of the chemical potential.

2.2.3 Infinite dimensions

The limit of infinite dimensions is a very useful theoretical tool since the mean-

field theory becomes exact in this limit. In the Hubbard model, however, it is

tricky to make the appropriate limit of infinite dimensions due to the different

dimensional-scaling behavior of the constituting terms. For the noninteracting

Hamiltonian, the kinetic energy scales by
√
2D while the Coulomb interaction

term does not scale, where D is the spatial dimension of the system. As an

example, the variation of the kinetic energy of the half-filled system on the

hypercubic lattice at zero temperature,

1

N

∑
k

ϵ2k =

∫ π

−π

dkn
2π

(
−2t

D∑
n=1

cos kn

)2

= 4t2
∫ π

−π

dkn
2π

(
D∑

n=1

cos2 kn +
D∑

n̸=m

cos kn cos km

)
= 2Dt2 . (2.20)
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Figure 2.4: DOS of (a) hypercubic lattice and (b) Bethe lattice in the limit of
infinite dimensions.

As a result, we observe that the kinetic energy scales by
√
2D. For a non-trivial

model where the kinetic energy and Coulomb interaction energy compete with

each other, the hopping amplitude, t∗, should scale as 1/
√
2D,

t∗ =
t√
2D

. (2.21)

In the limit of infinite dimensions, we can obtain the DOS analytically for

the several lattices. We consider two representative lattices, the hypercubic

lattice and the Bethe lattice.

hypercubic lattice

The hypercubic lattice is a generalization of the three-dimensional cubic lattice

in arbitrary dimension. In the D-dimensional hypercubic lattice, the DOS of
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the system can be written by

ρ(ε) =
D∏

n=1

∫ π

−π

dkn
2π

δ(ε− εk) , (2.22)

where εk is the noninteracting dispersion

εk = −2t∗
D∑

n=1

cos kn . (2.23)

Then its Fourier transformation is

Φ(s) =

∫ ∞

−∞
dε ρ(ε)eisε =

[∫ π

−π

dk

2π
e−2ist∗ cos k

]D
= (J0(2st

∗))D , (2.24)

where J0(x) is the zeroth-order Bessel function of the first kind. Using the fact

that J0(x) has a peak at x = 0, we can expand in the order of st∗ which scales

by 1/
√
2D. Then,

Φ(s) = exp

(
−(st)2

2
− (st)4

16D
+O(D−2)

)
. (2.25)

In the infinite dimensions, the corresponding inverse Fourier transformation is

the Gaussian distribution

ρ(ε) =
1√
2πt2

exp

(
− ε2

2t2

)
, (2.26)

which is the DOS of the hypercubic lattice. Figure 2.4(a) represents the DOS

of the hypercubic lattice.
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Figure 2.5: Bethe lattice with coordinate number z = 3.

Bethe lattice

Another useful theoretical lattice is a Bethe lattice, which is shown in Fig. 2.5.

By the same scaling argument, the hopping amplitude in Bethe lattice should

scales by

t∗ =
t√
z
. (2.27)

The DOS of the Bethe lattice can be derived under the Green function for-

malism, called a cavity method. In the tight-binding Hamiltonian, the action

17



of the system can be split into three parts,

S = So + S∆ + S(o) ,

So =

∫ β

0

dτ c†o∂τco ,

S∆ = −
∫ β

0

dτ t∗
∑
⟨i,o⟩

(
c†oci + c†ico

)
,

S(o) =

∫ β

0

dτ

∑
i ̸=o

c†i∂τci − t∗
∑
⟨ij⟩≠o

c†icj

 . (2.28)

So and S
(o) are the local action at site o and the bath action, respectively. And

S∆ is the hybridization term between the site o and the bath sites. Performing

the Gaussian integral over the Grassmann variables, c†i and ci, where i ̸= o, we

can get the relation of the Green function,

G−1
oo (iω) = iω − (t∗)2

∑
⟨ij,o⟩

G
(o)
ij (iωn)

= iω − (t∗)2
∑
⟨i,o⟩

G
(o)
ii (iωn) . (2.29)

Here, Goo and G
(o)
ij are the Green functions of the site o and of the sites i, j

for the cavity action in which the lattice site o is removed. On the second

line, i and j site are identified due to the property of the Bethe lattice, where

two nearest neighbor sites of o are completely disconnected when the o site

is removed. Since the removal of the o site does not change the local Green
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function of i site due to the infinite connectivity,

G
(o)
ii (iωn) = Goo(iωn) . (2.30)

By the analytic continuation, iωn → ω + iη after solving the second order

equation of Goo, we can obtain the local Green function in real frequency,

G(ω) ≡ Goo(ω)

=
ω −

√
ω2 − 4(t∗)2z

2(t∗)2z
. (2.31)

Finally, the DOS of the infinite-dimensional Bethe lattice becomes

ρ(ε) = − 1

π
ImG(ε)

=
θ(2t− |ε|)

πt

√
1−

( ε
2t

)2
. (2.32)

The form of the DOS is semi-circular and shown in Fig. 2.4(b).

2.3 Symmetries

The Hubard model intrinsically has some useful symmetries. In the sense of

numerical calculation, these symmetries can help to reduce significantly the

cost of the calculations,

2.3.1 Spin-rotational symmetry

The Hubbard model intrinsically has a spin-rotational symmetry. For spin-1/2

electrons, the Pauli matrices are the generators of the spin-rotational symmetry

19



operation. Since the tight-binding and the chemical potential terms can be

represented by

−t∑⟨ij⟩(c
†
i↑c

†
i↓) I2×2

(
cj↑
cj↓

)
, (2.33)

and

−µ∑i(c
†
i↑c

†
i↓) I2×2

(
ci↑
ci↓

)
, (2.34)

respectively, it is obvious that these terms are invariant under the spin rotation.

On the other hand, the mutual interaction term is represented by

ni↓ni↑ = ni↑ − S+
i S

−
i

= ni↓ − S−
i S

+
i

=
ni

2
− 2(Sz

i )
2 , (2.35)

where S+ = c†↑c↓, S
− = c†↓c↑, S

α = 1
2

∑
ab c

†
aσ

(α)
ab cb, and σ(α) is Pauli matri-

ces with α = x, y, z. Averaging three expressions of the right-hand sides in

Eqn. (2.35), we can get the expression

ni↑ni↓ =
ni

2
− 2

3
S2
i , (2.36)

where we have used the identity

S+
i S

−
i + S−

i S
+
i = 2[(Sx

i )
2 + (Sy

i )
2] . (2.37)

Since ni and S2
i are spin-rotationally invariant terms, we can conclude that the
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Hubbard Hamiltonian has the spin-rotationally symmetry.

2.3.2 Particle-hole symmetry

In the bipartite lattice, the Hubbard model has a particle-hole symmetry when

µ = U/2. Considering the particle-hole transformation,(
cAσ

cBσ

)
→
(

c†Aσ

−c†Bσ

)
, (2.38)

each term in Eqn. (2.6) is transformed into

−t(c†AσcBσ + c†BσcAσ) → −t(c†BσcAσ + c†AσcBσ)

Uni↑ni↓ → U(ni↑ni↓ − ni↑ − ni↓ + 1)

−µniσ → −µ(1− niσ) . (2.39)

When µ = U/2, the Hubbard model is invariant under the particle-hole trans-

formation up to a constant,

H → H +
UN

2
, (2.40)

where N is total particle number in the system.

2.4 Multi-orbital Hubbard model

One of the most important extensions of the single band Hubbard is the exam-

ination of the multiple orbital effects. In the following section, the derivation

of the multi-orbital Hubbard model will be discussed.
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In the multi-orbital system, the general two-body interacting Hamiltonian

can be written as

H =
∑
σ

∫
dx ψ†

σ(x)

[
− 1

2m
∇2 + V1(x)

]
ψσ(x)

+
1

2

∑
σσ′

∫
dxdx′ ψ†

σ(x)ψ
†
σ′(x

′)V2(x− x′)ψσ′(x′)ψσ(x) . (2.41)

It is useful to expand the wave function based on the Wannier function basis,

ψσ(x) =
∑
iα

φiα(x)ciασ . (2.42)

Here, φiα(x) is the α orbital Wannier function localized at the lattice site i.

Then the hopping integral, tαα
′

ij and the chemical potential, µα can be defined

as the diagonal and off-diagonal parts of the first term of the Hamiltonian,

tαα
′

ij (1− δij)− µαδαα′δij ≡
∫
dx φ∗

iα(x)

[
− 1

2m
∇2 + V1(x)

]
φjα′(x) . (2.43)

If we assume the Wannier function of d orbital as the spherical harmonics

with l = 2, the only non-vanishing integrals are

Uαα′ ≡
∫
dxdx′|φiα(x)|2V2(x− x′)|φiα′(x′)|2,

Jαα′ ≡
∫
dxdx′ φ∗

iα(x)φ
∗
iα′(x′)V2(x− x′)φiα(x

′)φiα′(x) (α ̸= α′),

J ′
αα′ ≡

∫
dxdx′ φ∗

iα(x)φ
∗
iα(x

′)V2(x− x′)φiα′(x′)φiα′(x) (α ̸= α′).(2.44)
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The remaining part of mutual interaction Hamiltonian is

∑
iα

Uααniα↑niα↓

+
∑

i,α<α′,σ

[Uαα′niασniα′σ̄ + (Uαα′ − Jαα′)niασniα′σ]

+
∑

i,α ̸=α′

Jαα′c†iα↑c
†
iα′↓ciα↓ciα′↑

+
∑

i,α ̸=α′

J ′
αα′c

†
iα↑c

†
iα↓ciα′↓ciα′↑ . (2.45)

If we further assume that the overlap integral of the Wannier function is

only finite within the nearest-neighbor lattice sites, the final form of the multi-

orbital extension of the Hubbard Hamiltonian is

H = H0 +Hint ,

H0 =
∑
⟨ij⟩

∑
αα′σ

tαα
′

ij c†iασcjασ −
∑
iασ

µαniασ ,

Hint = U
∑
iα

niα↑niα↓ +
∑

i,α<α′,σ

[U ′niασniα′σ̄ + (U ′ − J)niασniασ] ,

+ J
∑

i,α<α′

(
c†iα↑c

†
iα′↓ciα↓ciα′↑ + c†iα↑c

†
α↓ciα′↓ciα′↑ + h.c.

)
. (2.46)

This form of the Hamiltonian has a spin-rotational SU(2) symmetry. By

introducing the spin operator,

Sa
iα ≡ 1

2

∑
ss′

c†iαsσ
a
ss′ciαs′ , (2.47)

with a = x, y, z, the symmetry can be explicitly shown in the form of the
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SU(2) Ising
eigenstate energy eigenstate energy
| ↑; ↑⟩ U ′ − J | ↑; ↑⟩ U ′ − J
| ↓; ↓⟩ U ′ − J | ↓; ↓⟩ U ′ − J

1√
2
(| ↑; ↓⟩+ | ↓; ↑⟩) U ′ − J 1√

2
(| ↑; ↓⟩+ | ↓; ↑⟩) U ′ + J

1√
2
(| ↑; ↓⟩ − | ↓; ↑⟩) U ′ + J 1√

2
(| ↑; ↓⟩ − | ↓; ↑⟩) U ′ + J

1√
2
(| ↑↓; 0⟩ − |0; ↓↑⟩) U − J 1√

2
(| ↑↓; 0⟩ − |0; ↓↑⟩) U

1√
2
(| ↑↓; 0⟩+ |0; ↓↑⟩) U + J 1√

2
(| ↑↓; 0⟩+ |0; ↓↑⟩) U

Table 2.1: Eigenstates and corresponding energies for the interaction part of
the two-orbital Hamiltonian. Only the half-filled sector of the Hamiltonian is
represented.

Hamiltonian,

Hint =
U

2

∑
i

(∑
α

niα

)2

−
∑
α

niα

− 5J

2

∑
i,α<α′

niαniα′

− 2J
∑

i,α<α′

Siα · Siα′ +
J

2

∑
i,α ̸=α′

(∑
σ

c†iασciα′σ

)2

. (2.48)

2.4.1 Hund’s coupling

The role of the Hund’s coupling is explicitly shown in Eqn. (2.48). The term

−2J
∑

i,α<α′ Siα ·Siα′ prefers the maximized total spin-angular momentum re-

flecting the famous Hund’s first rule. This property can be clearly shown from

the atomic eigenstates of the interacting part of the Hamiltonian, Eqn. (2.48).

For the half-filled sector of the two-orbital model, the eigenstates are listed

with their energy in the left column of Table 2.1.
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Ising-type Hund’s coupling

During the derivation of the multi-orbital Hubbard model, we have assumed

the SU(2) spin-rotational symmetry of the system and as a result, the Hund’s

coupling also has the form of spin-rotational symmetry. If we imagine the

symmetry breaking of the spin space, however, the form of the Hund’s coupling

becomes

− 2J
∑

SzSz − 2J ′
∑

(SxSx + SySy) . (2.49)

For the case J > J ′, it was shown that J ′ is irrelevant in the low-energy

effective Hamiltonian by the poor man’s scaling of Kondo model [10]. Following

this argument, the form of the Hamiltonian becomes

H =
∑
⟨ij⟩

∑
αα′σ

tαα
′

ij c†iασcjασ −
∑
iασ

µαniασ ,

+ U
∑
iα

niα↑niα↓ +
∑

i,α<α′,σ

[U ′niασniα′σ̄ + (U ′ − J)niασniασ] , (2.50)

and it is called multi-orbital Hubbard model with Ising-type Hund’s coupling.

Ising-type Hund’s coupling exhibits different atomic levels. The eigenstate

of the half-filled sector is shown in the right column of Table 2.1. The difference

in the ground states could result in different physical properties of the system.
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Chapter 3

Numerical Methods

3.1 Dynamical Mean-Field Theory

The dynamical mean-field theory (DMFT) is a coherent framework to describe

various energy scales in strongly correlated electron systems. Since it fully

incorporates local quantum (temporal) fluctuation, it has been regarded as an

appropriate tool for strongly correlated electron systems.

The Hubbard model is a representative example of the model to which the

DMFT is applied successfully. The model Hamiltonian is written as

H = −t
∑
⟨ij⟩σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓ . (3.1)

Within the DMFT, the Hubbard model on the lattice is mapped onto the

quantum impurity model which is defined by

HQI = Hloc +Hhyb +Hbath, (3.2)
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where

Hloc ≡ Uno↑no↓ − µ
∑
σ

noσ , (3.3)

Hhyb ≡
∑
pσ

(Vpσa
†
pσcoσ + V ∗

pσc
†
oσapσ) , (3.4)

Hbath ≡
∑
pσ

εpa
†
pσapσ . (3.5)

Here, coσ is an annihilation operator of spin-σ electron at the impurity site and

apσ is that of spin-σ electron at the bath of the index p. Note that Vpσ and εp

are auxiliary parameters which can be determined in a self-consistent way. In

the noninteracting case, U = 0, the Green function of the impurity electron,

called Weiss function, is written as

G−1
0σ (iωn) = iωn + µ−

∑
k

|Vpσ|2
iωn − εp

, (3.6)

which plays the role of Weiss fields. The information of auxiliary parameters

are encoded in this function. Then the effective action for the impurity electron

becomes

Seff = −
∑
σ

∫ β

0

dτ ′
∫ β

0

dτ c†oσ(τ)G−1
0σ (τ − τ ′)coσ(τ

′) + U

∫ β

0

dτ no↑(τ)no↓(τ) .

(3.7)

Now, the lattice problem is transformed into the impurity problem with the

effective action. Several methods have been developed to solve the latter ef-

fective action and these are called impurity solvers. Impurity solvers, which

are known to be very accurate, are (continuous-time) quantum Monte Carlo
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(QMC) method, exact diagonalization (ED), numerical renormalization group

(NRG), and so on. Particularly, the continuous-time quantum Monte Carlo

(CTQMC) method will be explained in great detail.

After obtaining the interacting impurity Green function of the effective ac-

tion, G(iωn), by using the impurity solver, the impurity self-energy is extracted

by Dyson’s equation,

Σimp(iωn) = G−1
0 (iωn)− G−1(iωn) . (3.8)

Note that the self-energy is a local, namely, momentum independent quantity

due to the local nature of the effective action. This is the formal definition

of the DMFT, which states that the self-energy of the original lattice model

is momentum independent quantity and that it is the same with the impurity

self-energy,

Σ(k, iωn) = Σimp(iωn) . (3.9)

To adjust the auxiliary parameters of the quantum impurity model, we need the

self-consistency relation which equates the given self-energy with the updated

Weiss function,

G−1
0 (iωn) =

(
1

N

∑
k

1

iωn − ϵk + µ− Σ(iωn)

)−1

+ Σ(iωn) . (3.10)

Here, the quantity in the parenthesis is a local Green function, which is the

momentum sum of lattice Green function,

G(k, iωn) =
1

iωn − ϵk + µ− Σ(iωn)
. (3.11)

28



initial guess, G0

impurity solver

Σimp,Gimpupdate,G0

self-consistency
condition

Σ,G

not satisfied

satisfied

Figure 3.1: Schematic diagram of the iterative flows in the DMFT. The lattice
information is used in the self-consistency relation.

The information of a lattice structure is reflected in the momentum-dependent

noninteracting single-particle energy ϵk. Equation (3.10) closes the loop of the

DMFT and successive iterations determine the self-energy in a self-consistent

way.

3.2 Dynamical Cluster Approximation

The central approximation of the DMFT is that the self-energy is a momentum

independent quantity. This implies that the spatial fluctuation of the system is
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Figure 3.2: Examples of the DCA tile shape in the Brillouin-zone of the square
lattice. Cluster size, Nc is (a) 1, (b) 2, (c) 4, (d) 8. Nc = 1 corresponds to the
DMFT case. The black dots are the coarse-grained momentum value, K.

suppressed within a mean-field theory. In low-dimensional systems, however,

it is known that the spatial fluctuation and corresponding momentum space

anisotropy plays a central role in strongly correlated electron systems.

To incorporate the spatial fluctuation, several cluster extensions of the

DMFT have been introduced. Two of the representative examples are the

cellular DMFT (cDMFT) and the dynamical cluster approximation (DCA).

The DCA introduces the momentum dependence into the self-energy in a

systematic way. Within the DCA, the Brillouin zone (BZ) of the lattice is

divided into a finite number of tiles, usually denoted as Nc. Some examples

are demonstrated in Fig. 3.2. Then we can consider the variation of the self-

energy between the tiles even though the self-energy is assumed to be the same

within each tile. Formally,

Σ(k, iωn) ∼ Σ(K, iωn) , (3.12)

where K represents the momentum of the BZ tile.

The tiling in the BZ constitutes the translationally invariant cluster in the
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real space. This is the characteristic feature of the DCA compared with the

cDMFT.

3.3 Continuous-Time Quantum Monte Carlo

method

The basic idea of the continuous-time quantumMonte Carlo method (CTQMC)

is the stochastic sampling of perturbation diagrams of a partition function. In

the system with the Hamiltonian H=H0+H1, we can express the partition

function as an expansion in the interaction picture,

Z = tr
[
e−βH]

=
∑
k

(−1)k
∫ β

τk−1

dτk · · ·
∫ β

0

dτ1 tr
[
Tτe

−βH0Ĥ1(τk) · · · Ĥ1(τ1)
]
,

(3.13)

where Ô(τ)≡eτH0Oe−τH0 for an operator O and Tτ represents a time-ordering

operator. After the expansion, the partition function can be regarded as a sum

of probability distribution,

Z =

∫
C
dx p(x) . (3.14)

In the CTQMC method, a random walker roams the configuration space C,
satisfying the probability distribution p(x). The configuration space is com-

posed of a perturbation order, perturbation positions on the imaginary-time

axis, and other parameters depending on the specific algorithm. Using the
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stochastic sampling of observables, we can obtain the expectation value of the

general observables A,

⟨A⟩ = 1

Z

∫
C
dx A(x)p(x) . (3.15)

The observables are not limited to the number but the function such as Green’s

function, two-particle correlation function, and etc.

In the subsequent subsections, we will discuss two different CTQMC algo-

rithms to solve the quantum impurity problem in Eqn. (3.2).

3.3.1 Weak Coupling Algorithm

In the weak coupling algorithm, the expansion term in the quantum impurity

model is the on-site Coulomb interaction term

H1 = U

(
n↑n↓ −

n↑ + n↓

2

)
− K

β
. (3.16)

Here, K is introduced as a tuning parameter of the perturbation order. Using

the Hubbard-Stratonovich transformation, we can decompose the interacting

Hamiltonian into the bilinear form,

1− βU

K

(
n↑n↓ −

n↑ + n↓

2

)
=

1

2

∑
s=±1

eγs(n↑−n↓) , (3.17)
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Figure 3.3: Configuration of the weak coupling algorithm. Horizontal line
represents the imaginary-time axis. Auxiliary Ising spins are marked as the
up and down arrows at the time points of closed symbol.

where cosh γ = 1+Uβ
2K

. And the expansion term is (−H1) = (K/2β)
∑

{s} exp{γs(n↑−
n↓)}. Then the partition function can be expressed by

Z =
∑
k=0

∑
{si}

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

(
K

2β

)k

Zk({si, τi}) ,

Zk({si, τi}) ≡ tr

[
1∏

i=k

e−∆τiH0esiγ(n↑−n↓)

]
. (3.18)

Here, ∆τi = τi+1 − τi. Now, the configuration space is defined by the com-

bination of {(si, τi)}, which is demonstrated in Fig. 3.3. For a given point

in configuration space, it can be easily shown that the weight of the point is

proportional to Zk,

Zk({si, τi})
Z0

=
∏
σ

detN−1
σ ({si, τi}) ,

N−1
σ ({si, τi}) ≡ eVσ({si}) −G

{τi}
0σ (eVσ({si}) − 1) ,

eVσ({si}) ≡ diag(eγ(−1)σs1 , · · · , eγ(−1)σsk) , (3.19)

where (−1)↑ ≡ 1, (−1)↓ ≡ −1, and
(
G

{τi}
0σ

)
a,b

= G0
σ(τa − τb).

The three major Monte Carlo updates will be described below. The first

update is the insertion of an auxiliary Ising spin. If the insertion update is

accepted, the configuration of the Monte Carlo sampling is changed in the
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following manner

{(s1, τ1), · · · , (si, τi), (si+1, τi+1), · · · (sk, τk)}

→ {(s1, τ1), · · · , (si, τi), (snew, τnew), (si+1, τi+1), · · · (sk, τk)} . (3.20)

The removal of an arbitrarily chosen auxiliary Ising spin is another update.

In this update, the configuration space is updated by

{(s1, τ1), · · · , (si−1, τi−1), (si, τi), (si+1, τi+1), · · · (sk, τk)}

→ {(s1, τ1), · · · , (si−1, τi−1), (si+1, τi+1), · · · (sk, τk)} . (3.21)

The insertion and removal updates constitute the ergodic sampling to span

the whole configuration space.

In addition to these two updates, there exists another update which makes

Monte Carlo sampling more efficient. It is the spin-flip update which modifies

the configuration space by

{(s1, τ1), · · · , (si, τi), · · · , (sk, τk)}

→ {(s1, τ1), · · · , (−si, τi), · · · , (sk, τk)} . (3.22)

During the Monte Carlo updates, several physical observables can be mea-

sured. One of the most important observables is the single-particle Green func-
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tion,

Gσ(τ, τ
′) =

1

Z

∑
k

∑
{si}

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

(
K

2Ncβ

)k

Zk({si, τi})

×G̃{si,τi}
σ (τ, τ ′) , (3.23)

where G̃
{si,τi}
σ (τ, τ ′) is the Green function for a given configuration {(si, τi)}.

After the Hubbard-Stratonovich transformation, the Green’s function for a

given configuration can be expressed by the noninteracing Green function using

Wick’s theorem,

G̃{si,τi}
σ (τ, τ ′) = G0

σ(τ, τ
′) +

k∑
l,m=1

G0
σ(τ, τl)MlmG0

σ(τm, τ
′)

Mlm =
[
(eVσ({si}) − 1)Nσ({si, τi})

]
lm

. (3.24)

Then we can measure Gσ(τ, τ
′) by the Monte Carlo average of G̃

{si,τi}
σ (τ, τ ′),

Gσ(τ, τ
′) =

〈
G̃{si,τi}

σ (τ, τ ′)
〉
MC

.

In addition to the Green function, we can also use Wick’s theorem to obtain for

higher point correlation functions, e.g. spin-spin, density-density correlation

function, and etc.

3.3.2 Strong Coupling Algorithm

In the strong coupling algorithm, we take Hbath+Hloc as an unperturbed

Hamiltonian H0 and expand the full Hamiltonian to the order of H1=Hhyb.

By recalling that Hhyb=
∑

σ(hσ+h
†
σ) with hσ≡

∑
p Vpσa

†
pσcσ, we can rewrite
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Eqn. (3.13) in the form

Z = Tr

[
e−βHa

∏
σ

∞∑
kσ=0

×
∫ β

0

dτ1σ

∫ β

0

dτ ′1σ · · ·
∫ β

τkσ−1

dτkσ

∫ β

τ ′kσ−1

dτ ′kσ

× h̃σ(τkσ)h̃
†
σ(τ

′
kσ) · · · h̃σ(τ1σ)h̃†σ(τ ′1σ)

]
. (3.25)

Here, we have used the fact that only the terms in which h̃σ and h̃†σ appear al-

ternately the same number of times produce nonzero traces due to the fermionic

nature of electrons.

We use a bath partition function Zbath defined by

Zbath ≡ Tra[e
−βHbath ] =

∏
pσ

(1 + e−βεp) (3.26)

and apply the Wick theorem to the bath fermionic operators to obtain the

expanded form of the partition function

Z = ZbathTrc

[
e−βHloc

∏
σ

∞∑
kσ=0

∫ ∞

0

dτ1σ

∫ ∞

0

dτ ′1σ · · ·
∫ ∞

τkσ−1

dτkσ

∫ ∞

τ ′kσ−1

dτ ′kσ

c̃σ(τkσ)c̃
†
σ(τ

′
kσ) · · · c̃σ(τ1σ)c̃†σ(τ ′1σ) det∆σ

]
. (3.27)

Here, ∆σ is a kσ × kσ matrix with elements

(∆σ)ij ≡ ∆σ(τ
′
iσ − τjσ),
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0

0

β

β

Figure 3.4: Configuration of the strong coupling algorithm. Upper (lower)
horizontal line represents the imaginary-time axis of spin-up (down). Segment,
which is explained in the text, starts at the time point of the closed symbol
and ends at the time point of the open symbol. Overlap between the segments
of the spin-up and down time-axis is marked by the shaded region.

with the antiperiodic hybridization function being given by

∆σ(τ) = [θ(−τ)− θ(τ)]
∑
p

|Vpσ|2
eβεp + 1

e−{τ−βθ(τ)}εp (3.28)

and with θ(τ) being a step function.

In the quantum impurity model, the occupation number operator at the

impurity commutes with H0, so we can give a systematic description of the

local trace factor in terms of segments and antisegments; they represent time

intervals during which an electron is present and absent at the impurity, re-

spectively. Typical configuration is displayed in Fig. 3.4. In the segment de-

scription, the local weight factor for

x=
∏
σ

{(τ1σ , τ ′1σ), · · · , (τkσ , τ ′kσ)} , (3.29)
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is given by

ωloc(x) ≡ Trc

[
e−βHloc

×
∏
σ

c̃σ(τkσ)c̃
†
σ(τ

′
kσ) · · · c̃σ(τ1σ)c̃†σ(τ ′1σ)

]
= seµ

∑
nσ Lnσe−U

∑
nm Onm , (3.30)

where Lnσ is the length of the nth segment of an electron with spin σ, Onm is

the overlap between the nth spin-up and the mth spin-down segments on the

imaginary-time axis, and s is a sign determined by the sequence of operators.

The main procedures in updating the configuration are the insertion and the

removal of segments or antisegments. We have separated the proposal proba-

bility so that we can get rid of the factor dτ 2 in the weight factor. We have

also used self-balance and global updates, which can reduce the autocorrela-

tion time significantly.

The above procedures enable us to evaluate the impurity Green function,

Gσ(τ)≡− ⟨Tτcσ(τ)c†σ(0)⟩, by using the formula

Gσ(τ) = − 1

β

〈
kσ∑
ij

(Mσ)jiδ̃(τ, τi − τ ′j)

〉
, (3.31)

where the angular brackets denote the Monte Carlo average, Mσ ≡ ∆−1
σ , and

δ̃(τ, τ ′) ≡ [θ(τ ′)− θ(−τ ′)]δ
(
τ − τ ′ − βθ(−τ ′)

)
. (3.32)

One advantage of the strong coupling is that we can measure directly some

local quantities during Monte Carlo samplings. The average occupancy can be
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evaluated by using the ratio of the Monte Carlo average of the total segment

length to the length of the imaginary-time axis:

⟨nσ⟩ =
1

β

〈∑
n

Lnσ

〉
. (3.33)

Similarly, the Monte Carlo average of the total overlap length gives the double

occupancy through the formula

dO ≡ ⟨n↑n↓⟩ =
1

β

〈∑
nm

Onm

〉
. (3.34)

In the strong coupling algorithm, we can also use the average perturbation

order ⟨kσ⟩ to evaluate the average kinetic energy of electrons with spin σ,

εKσ [11, 12]. We can show that the perturbation order estimates the average

value of the perturbing action, which enables us to obtain the kinetic energy

directly from the Monte Carlo average of the perturbation order:

⟨kσ⟩ = −
∫ β

0

dτ

∫ β

0

dτ ′∆σ(τ − τ ′)⟨c†σ(τ)cσ(τ ′)⟩

= −Tr[∆σGσ]

= −βεKσ . (3.35)
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Chapter 4

Estimate of the Phase

Transition Line in the

Infinite-Dimensional Hubbard

Model

4.1 Introduction

Over the past few decades, the dynamical mean-field theory (DMFT) [4, 13]

and its extensions [14] have proven to be successful in describing the dynamic

properties of strongly correlated systems. In DMFT, a lattice model is mapped

onto a corresponding quantum impurity model such as the Anderson impurity

model. The impurity self-energy, which is obtained by solving the quantum

impurity model, is identified with that of the lattice model, imposing a self-

consistency relation. Here, we assume that the self-energy is local; this is the

case in infinite spatial dimensions and provides a good approximation in high
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dimensions.

The efficiency of the DMFT depends strongly on the method of solving the

quantum impurity problem, which is called an impurity solver. Some pertur-

bative methods such as iterative perturbation theory [15] and the noncrossing

approximation [16] were proposed and turned out to yield qualitatively correct

results. For a quantitatively accurate description, however, non-perturbative

methods must be developed. One of the reliable non-perturbative tools is the

Hirsch-Fye quantum Monte Carlo method [17], which is useful at finite tem-

peratures. In that method, however, the discretization of the imaginary-time

axis raises difficulties in capturing the sharp variation of the imaginary-time

Green function, particularly at low temperatures. Such a problem can be re-

solved by using the recently-developed CTQMC method, which performs a

stochastic sampling of an expansion order in the imaginary-time axis without

any discretization [12, 18–20].

We here intend to examine the finite-temperature Mott transition in the

Hubbard model, which is well known to exhibit the characteristic features of

the Mott transition [21, 22]. Previous extensive studies help us to understand

the qualitative nature of the Mott transition in the Hubbard model: There

exists a critical temperature above which only a smooth crossover occurs be-

tween a metal and a Mott insulator [23]. Below the critical temperature, in

contrast, a coexistence region separates the metallic from the Mott insulating

phase [23, 24], which implies that the system undergoes a first-order phase

transition somewhere inside the coexistence region [4, 25].

Our work focuses on the numerical determination of a phase transition line
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(PTL) of the first-order Mott transition. We can determine a thermodynamically-

stable phase from the criterion of the lowest free energy. Also, at finite tem-

peratures, the entropy makes important contributions. Although the QMC

method is very useful at finite temperatures, obtaining the entropy directly

from the QMC method is very difficult. Accordingly, numerical computation

of the PTL has been a challenging problem. Only a few earlier studies made

efforts to obtain the PTL by using exact diagonalization [26] or Hirsch-Fye

QMC method [27], and a recent CTQMC study succeeded in locating a single

transition point at a very low temperature [20].

In this chapter, we present a reliable numerical scheme for estimating the

PTL of the Mott transition at low temperatures. We basically use the same dif-

ferential equation as in Ref. [27]. However, in contrast to that previous study,

where some fitting functions were introduced [27], we measure the quantities

for the equation directly by using the CTQMC method without any addi-

tional manipulation. We show that our method results in the PTL which is

fully consistent with earlier finite-temperature studies. We also demonstrate

that our finite-temperature result approaches gradually the zero-temperature

result when we systematically include low-temperature calculations. Finally,

the resulting PTL is found not to be changed significantly by the next-order

correction to some approximations that are made while solving the differential

equation.

This chapter is organized as follows: Section 4.2 is devoted to the de-

scription of the Hubbard model and the DMFT combined with the CTQMC

method. We present the results in Sec. 4.3: We display some physical quanti-
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ties, such as the double occupancy and the energy density, from the CTQMC

method, and we present a phase diagram constructed from the data. Particu-

larly, we describe how we can construct the PTL from the QMC data and give

some discussion on the resulting PTL. The results are summarized in Sec. 4.4.

4.2 Model and method

We begin with the one-band Hubbard model. Its Hamiltonian is given by

H = −t
∑
⟨ij⟩σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ . (4.1)

Here, ciσ (c†iσ) is an annihilation (creation) operator for an electron with spin

σ at site i, and niσ ≡ c†iσciσ. The parameters t and U denote the nearest-

neighbor hopping amplitude and the on-site Coulomb repulsion, respectively.

The chemical potential µ is set to U/2 so that the system is half-filled. We

consider a Bethe lattice in infinite dimensions, which results in a semicircular

density of state

ρ(ε) =
2

πD

√
1− (ε/D)2 (4.2)

with a half bandwidth D=2t. We restrict our study to paramagnetic solutions,

and throughout the chapter, we will represent all the energies in units of D.

In this work, we employ the single-site DMFT [4]. The central idea of the

DMFT is to map a lattice model onto a quantum impurity model, which should

satisfy a self-consistency relation imposed from the original lattice model. The
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effective action of the quantum impurity model is written in the form of

Seff = So

+
∑
σ

∫ β

0

dτ

∫ β

0

dτ ′ c†σ(τ)∆σ(τ − τ ′)cσ(τ
′) ,

(4.3)

where So is an action at the impurity site due to the local interaction, as

well as the chemical potential, and β≡1/T is an inverse temperature. The

hybridization function ∆σ(τ) in Eqn. (4.3) plays the role of a generalized Weiss

field. We should note that it is a function of the imaginary time τ .

In infinite dimensions the self-energy is local, that is, independent of the

momentum, and the local Green function with spin σ is given by

Gσ(iωn) =

∫ ∞

−∞
dε

ρ(ε)

iωn − ε+ µ− Σσ(iωn)
. (4.4)

The corresponding hybridization function ∆σ can also be calculated as

∆σ(iωn) = iωn + µ− Σσ(iωn)−G−1
σ (iωn). (4.5)

In the DMFT, the local self-energy is assumed to be an impurity self-energy,

yielding [∫ ∞

−∞
dε

ρ(ε)

iωn − ε+ µ− Σσ(iωn)

]−1

= iωn + µ− Σσ(iωn)−∆σ(iωn). (4.6)

This is the self-consistency relation that should be satisfied by the self-energy
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of the quantum impurity with the hybridization function ∆σ. By using a

semicircular density of states for ρ(ϵ) in Eqn. (4.2), we can further simplify the

above self-consistency relation to the form

∆σ(τ) =
D2

4
Gσ(τ) (4.7)

in the infinite-dimensional Bethe lattice.

4.3 Results

4.3.1 Double occupancy and energy density

We first examine the double occupancy dO defined in Eqn. (3.34). The double

occupancy is well known to provide a good measure for the degree of corre-

lation. As was explained in the Sec. 3.3, in the CTQMC method, it can be

calculated directly from the total overlap length of the segments. Figure 4.1(a)

presents the calculated double occupancy at the temperature T=1/128. As U

increases, the system becomes more correlated, and the double occupancy de-

creases. At a certain interaction strength Uc2(T ), the double occupancy shows

a discontinuous jump to a lower value, and the system becomes insulating. On

the other hand, when the interaction strength is decreased from that for the

insulating solutions, the system exhibits a discontinuous jump in the double

occupancy at the interaction strength Uc1(T ), which is lower than Uc2(T ). Ac-

cordingly, we have a finite region Uc1<U<Uc2 where both metallic and insu-

lating phases coexist; this demonstrates clearly the first-order nature of the
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Figure 4.1: (a) Double occupancy dO and (b) energy density ε as functions of
U at the temperature T=1/128. The data from the DMFT solutions obtained
by increasing and decreasing U are marked by solid and empty circles, respec-
tively.
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metal-insulator transition in the Hubbard model for infinite dimensions. Such

a first-order nature of the transition is also demonstrated in the variation of

the energy density. We have calculated the energy per lattice site ε as

ε = εK + εU , (4.8)

where we can compute the kinetic energy εK and the interaction energy εU

directly from the average quantities in the CTQMC method:

εK ≡ −T
∑
σ

⟨kσ⟩, (4.9)

εU ≡ UdO. (4.10)

We observe a clear hysteresis between the metallic and the insulating solutions

in the energy density as in the double occupancy. In the coexistence region,

the metallic phase always has a lower energy density than the insulating phase

at T=1/128, which is consistent with earlier DMFT results [4, 28].

4.3.2 Phase diagram and critical point

We can determine two transition points, Uc1(T ) and Uc2(T ), from the inter-

action strengths at which the double occupancy or the energy density shows

discontinuous jumps at temperature T . In Fig. 4.2 we plot Uc1 and Uc2 as func-

tions of the temperature T , displaying the phase diagram for metal-insulator

transitions on the plane of T and U . Both Uc1 and Uc2 increase monotonically

as the temperature is lowered. With decreasing T , the rate of increase of Uc1
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Figure 4.2: Phase diagram for the Mott transition in the infinite-dimensional
Hubbard model. The transition interaction strengths Uc1 and Uc2 (see the text
for definitions) are plotted for various temperatures, and the lines are merely
guides to the eye. The regions of the metallic and the insulating phases and
their coexisting regions are denoted by the labels M, I, and C, respectively.
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Figure 4.3: Inverse susceptibility 1/χ̄ estimated by using numerical deriva-
tives with a finite interval δU for various temperatures. The data for T =
1/33, 1/35, 1/40, and 1/50 are marked by squares, circles, triangles, and in-
verted triangles, respectively (from top to bottom). The solid lines represent
the best linear fits for each temperature. The inset shows the inverse suscep-
tibility 1/χ, which is estimated by extrapolating to δU=0.

diminishes while it is enhanced for Uc2. The two transition lines merge at the

critical temperature Tc, which gives an upper bound on the temperature of the

coexistence region denoted by C in Fig. 4.2. Above Tc, insulating and metallic

phases are connected gradually without any abrupt change.

By using the liquid-gas analogy [29], we define the susceptibility [23] as

χ ≡ lim
δU→0

χ̄(δU) , (4.11)
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with

χ̄(δU) ≡ max
U

(
−dO(U + δU)− dO(U)

δU

)
. (4.12)

Because the susceptibility χ diverges at the critical temperature Tc, we can use

χ to estimate the critical point precisely. In Fig. 4.3, we plot the inverse of χ̄

as a function of δU . We can then estimate 1/χ(T ) by extrapolating the best

linear fit to the data at the temperature T to the y-axis. As is demonstrated

in the inset of Fig. 4.3, the critical temperature Tc is estimated to be in the

range 1/40 < Tc < 1/35, which is consistent with earlier results from DMFT

combined with QMC [23, 27] and the exact diagonalization [26]. It is slightly

smaller than the estimate from the DMFT combined with the numerical renor-

malization group (NRG) [24]. The corresponding critical interaction strength

Uc(Tc)≡U∗ is U∗=2.33± 0.01.

4.3.3 Phase transition line

In the thermodynamic limit, the system in equilibrium resides in the phase with

the lowest free energy, and the phase transition between the two coexisting

phases occurs on the line where the free energies of the two phases are the

same. In this section, we will construct the PTL inside the coexistence region

by means of the DMFT combined with the CTQMC method, which will be

sketched below.

The free energy density f of the system is defined by

f ≡ ε− Ts, (4.13)
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where s is the entropy density, and the change in the free energy density is

given by

df = −sdT + dOdU. (4.14)

Although this form is a standard one, it is not useful in our method because

computing the entropy by using the QMC method is very difficult. Recalling

the relation
∂(βf)

∂β

∣∣∣∣∣
U

= ε , (4.15)

we can consider an alternative form

d(βf) = ε dβ + β dO dU, (4.16)

which is convenient to use because we can obtain the energy density directly

from the QMC average.

In the coexistence region, we take the difference in the free energy densities

between the metallic and the insulating phases, ∆f≡fM − fI, and the change

of that difference is given by

d(β∆f) = ∆ε dβ + β ∆dO dU, (4.17)

where the subscripts M and I denote the quantities of the metallic and the

insulating phases, respectively. On the PTL, the free energies of the two

phase are the same, ∆f=0; accordingly, the change in β∆f vanishes when the
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parameters change along the PTL, yielding

d[β∆f(β, Uc(β))] (4.18)

= ∆ε(β, Uc(β))dβ + β∆dO(β, Uc(β))dUc(β) = 0,

where Uc(β) is the interaction strength at which the thermodynamic transition

occurs at the temperature T=1/β. The resulting differential equation for the

PTL is
dUc(β)

dβ
= − ∆ε(β, Uc(β))

β∆dO(β, Uc(β))
, (4.19)

which can be transformed to a differential equation in temperature T :

dUc(T )

dT
= F (T, Uc(T )) (4.20)

with

F (T, U) =
∆ε(T, U)

T∆dO(T, U)
. (4.21)

In principle, the integration of Eqn. (4.20) with an initial condition Uc(Tc) = U∗

yields the PTL.

Indeed, Eqn. (4.20) was employed to study the PTL by using the DMFT

with the Hirsch-Fye QMC method [27]. In this study, however, some model-

specific fitting functions were introduced in evaluating F (T, U) to manage in-

evitable Trotter errors and the lack of data points, which may limit the appli-

cability of the method. In contrast, within the CTQMC method employed in

this work, such Trotter errors are absent. Furthermore, the kinetic energy and

the double occupancy can be measured directly from Monte Carlo sampling.
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Figure 4.4: (a) F (T, U) as a function of the interaction strength U for various
temperatures and (b) A(T ) as a function of the temperature T . In panel (a),
the data for T=1/46, 1/52, 1/64, 1/72, 1/82, and 1/128 are marked by squares,
circles, triangles, inverted triangles, diamonds, and pentagons, respectively
(from top to bottom). The curve of (Uc(T ), F (T, Uc(T ))) is also presented by
the solid line. In panel (b), the dashed line represents the best-fit curve to
Eqn. (4.23).

53



Thus, we can prepare F (T, U) for Eqn. (4.20) from the raw data obtained with

the CTQMC method by using Eqn. (4.21) without any additional treatment.

In Fig. 4.4(a), we plot F (T, U) calculated directly by using the CTQMC

method for various temperatures. We can observe that around the PTL, the

data for all temperatures agree well with the function

F (T, U) = A(T ) + bU (4.22)

with b=88.4. These functions are denoted by the linear dotted lines in Fig. 4.4(a).

We have obtained the value of b from the best linear fit at T=1/82. The con-

stant A(T ) is also obtained from the intercept of the fitting line at temperature

T on U=0 axis. According to the Fermi-liquid theory, A(T ) can be approxi-

mated by using the three leading-order terms,

A(T ) =
α√
T

+ γ + η
√
T , (4.23)

at low temperatures, where we can determine α, γ and η from the least-square

fits. The integration of Eqn. (4.20) yields an analytic expression for the PTL:

Uc(T ) = U∗eb(T−Tc) + ebT
∫ T

Tc

dT ′A(T ′)e−bT ′

=

[
U∗ +

γ + η
√
Tc

b

]
eb(T−Tc) − γ + η

√
T

b

+

√
π(2αb+ η)

2b
√
b

ebT [erf(
√
bT )− erf(

√
bTc)],

(4.24)
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where T<Tc and erf(x) is the error function defined by

erf(x) ≡ 2√
π

∫ x

0

dte−t2 . (4.25)

In fact, A(T ) is sensitive to the set of data points that we use to obtain the

best fit to Eqn. (4.22). Initially, we guess the PTL Uc(T ) and calculate F (T, U)

for the data points around the line, which, in turn, yields a new PTL Uc(T )

from the best fit to Eqn. (4.22). We have repeated the procedure until the data

points used for the fitting reasonably overlap with the resulting PTL. All the

fitting results presented in Fig. 4.4 are those obtained using the self-consistent

parameters. As can be seen in Fig. 4.4(b), the values of the self-consistent

A(T ) are well approximated by the expression derived from the Fermi-liquid

theory.

In Fig. 4.5(a), we have shown the resulting PTL. Clearly, the slope of PTL

is in good agreement with the inverse of F (T, U(T )) near the PTL, which

demonstrates the full self-consistency of the PTL. We have also examined the

dependence of the PTL on the variation in the position of the critical point.

We have obtained PTLs for different critical points that were varied maximally

within the numerical errors. The resulting PTLs shown in Fig. 4.5(a) show lit-

tle difference particularly at low temperatures, which indicates that the PTLs

estimated at low temperatures are robust against any small variation in the

position of the critical point.

In Fig. 4.5(b), we have also compared the PTL obtained in this work with

those from earlier DMFT works. The comparison shows that our results are
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Figure 4.5: (a) Phase transition line (PTL) of the infinite-dimensional Hub-
bard model and (b) comparison with earlier DMFT results. In panel (a), short
dotted-line segments represent the lines with the slope 1/F (T, U) at the point
(T, U). The solid lines are PTLs resulting from three different critical points
that are varied maximally within the numerical errors. In panel (b), the tran-
sition interaction strengths Uc1 and Uc2, and the PTL obtained in this work are
denoted by squares and a solid line, respectively. The earlier results obtained
by using the Hirsch-Fye quantum Monte Carlo [27], and exact diagonaliza-
tion [26] are shown as empty circles and triangles, respectively. The diamond
represents an earlier CTQMC result [20].
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fairly consistent with earlier results up to the lowest temperature that the

earlier works examined. Particularly, the agreement with the results obtained

from Hirsch-Fye QMC method [27] implies that our method is accurate enough

to reproduce the low-temperature transition nature without any knowledge of

the preceding zero-temperature results. Notably, our estimated PTL shows ex-

cellent agreement with the result obtained from earlier CTQMC calculation at

the temperature T≈0.0034 [20], which is much lower than the lowest temper-

ature T=1/128 for which we were able to obtain raw data from the CTQMC

method, indicating the efficiency of our method.

4.3.4 Transition interaction strength at zero tempera-

ture

From the PTL in Eqn. (4.24), we can easily estimate the transition interac-

tion strength at zero temperature, which yields Uc(T=0)≈3.04; this value is

slightly higher than the zero-temperature NRG result Uc≈2.94 [28]. We have

also examined the dependence of the estimated Uc(T=0) on the temperature

range of the CTQMC data used in the procedure. In determining the PTL, we

have used the CTQMC data in the range of TL<T<TH , where we have fixed

the upper-limit temperature as TH=1/46 and varied the lower-limit temper-

ature TL. Figure 4.6 shows Uc(T=0) as a function of TL. As TL is lowered,

the estimated Uc(T=0) shows a monotonic decrease and rapidly approaches

the zero-temperature NRG result, which is denoted by the dotted line in the

figure. Such a rapid monotonic approach implies that the CTQMC results at
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Figure 4.6: Uc(T=0) obtained from the CTQMC data in the temperature
range of TL<T<TH . We have fixed TH=1/46. The dotted line indicates the
zero-temperature NRG result Uc(T=0)=2.94 [28].

finite temperatures are fully consistent with those from the zero-temperature

approaches. Here, we should note that our method does not use any knowl-

edge of previous zero-temperature results; this implies that our results in the

zero-temperature limit provide an independent check on the zero-temperature

result.

4.3.5 Next-order correction

Finally, we check out the validity of the assumption in Eqn. (4.22) that F (T, U)

is linear in U . To include the next-order correction, we try the nonlinear

function

F (T, U) =
A(T ) + bU(1 + ζU)

1 + 2ζU
, (4.26)
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which includes a second-order correction in U and allows an analytic solution

for the differential equation in Eqn. (4.20). Although this form can include

the curvature of data, the singularity in the denominator, which is introduced

to allow an analytic solution for the differential equation, limits the range of

the parameter ζ. We have varied ζ in the range between -0.1 and 0.1 and

found that Uc(T=0) changes only by an amount 0.01, indicating that our low-

temperature results are also robust against the small corrections to Eqn. (4.22)

arising from next-order terms in U .

4.4 Summary

In summary, we have examined the Mott transition of the Hubbard model at

finite temperatures in infinite dimensions by using the DMFT with CTQMC

method being an impurity solver. We have measured the double occupancy

and the energy density, which yields a critical point, as well as a coexistence

region, in the phase diagram. We have determined the PTL of the first-order

Mott transition by integrating the differential equation of the transition in-

teraction strength. The PTL constructed in this way has been shown to be

in good agreement with earlier results. We have also shown that higher-order

corrections do not have much effect on the low-temperature PTL.
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Chapter 5

Correlation Effects in Band

Insulator

5.1 Introduction

The effects of correlations between electrons have been one of the most fasci-

nating topics in modern condensed matter physics. A variety of remarkable

phenomena such as superconductors with high critical temperatures [30] and

interaction-driven metal-insulator transitions [31] is well known to arise from

electron correlations. In describing such electron correlations, the Hubbard

model (HM) opened a new paradigm. It has proved to be successful in captur-

ing the essential physics of correlation-induced phenomena by incorporating

just a few simple ingredients: tight-binding electrons with the local Coulomb

interaction. Interesting variants of the HM have been proposed to investigate

correlation effects in the band insulator (BI). One of the popular examples is

the ionic Hubbard model (IHM), where tight-binding electrons interact via the
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local Coulomb interaction under a staggered lattice potential [32–34]. It was

first applied to the study of the neutral-ionic transition in a charge-transfer

organic chain [35–44] and also suggested as a model for the polarization phe-

nomena of ferroelectric perovskite materials [45–50] and Kondo insulators such

as FeSi and FeSb2 [51].

On a bipartite lattice, the staggered lattice potential of the IHM doubles

the periodicity of the system, giving rise to a gap at the zone boundary. Ac-

cordingly, in the noninteracting limit the system prefers a band insulating

phase where most electrons stay on a sublattice with lower potential. The

resulting BI competes with a Mott insulator (MI) with one electron per lattice

site, which is driven by local interactions. This competition is expected to

enrich the physics in the transition between the two phases, which has been

studied theoretically for decades.

The emergence of an intermediate phase has been studied in one dimen-

sion [37–39, 52–67] and in two dimensions [68–71]. In one dimension, it was

revealed by the bosonization method that a spontaneously dimerized insulat-

ing phase shows up between the BI and the MI [52, 59–62], which was con-

firmed subsequently in numerical studies [53, 63–67]. Some peculiar spectral

properties such as spin-charge separation were als studied by the cellular dy-

namical mean-field theory (DMFT) [54, 55]. Extensive investigations have

also been made into the effects of additional degrees of freedom on the one-

dimensional IHM, including electron-lattice coupling [36, 37, 41], spin-density

wave [41, 42, 56, 72], next-nearest-neighbor interaction [36–38, 42, 50, 57],

asymmetry in electron hopping [38, 39], alternating Hubbard interaction [56],
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periodicity of the lattice [62], coupling with conducting leads [73], and next-

nearest neighbor hopping [60]. As to the nature of the intermediate phase in

two dimensions, there is some controversy: The determinant quantum Monte

Carlo study [68, 69] predicted a metallic phase, while an insulating phase was

observed via the cellular DMFT or the variational cluster approach [70? ]

In infinite dimensions, on the other hand, the single-site DMFT has re-

vealed two successive metal-insulator transitions at zero temperature [74–77].

Weak interactions tend to reduce the single-particle gap, driving the system

into a metallic phase. The system eventually becomes an MI, caused by the

further increase in the interaction strength. Here it is remarkable that a metal-

lic phase emerges due to correlation effects of Coulomb interactions; this is in

sharp contrast with the intermediate insulating phase, which is confirmed in

the one-dimensional IHM. The effects of antiferromagnetic ordering induced

by local interactions have also been studied in the IHM [76, 78].

In this chapter, we focus on the finite-temperature properties of the tran-

sitions between paramagnetic phases in the infinite-dimensional IHM at half-

filling. We adopt the DMFT combined with the continuous-time quantum

Monte Carlo (CTQMC) method [12, 18, 20, 79]. First, the spectral proper-

ties of the IHM are examined at finite temperatures. The Fermi-level spec-

tral weight, which can be estimated from the imaginary-time Green function,

demonstrates that with an increase in the local interaction the system exhibits

a crossover from BI to metal, which is followed by a discontinuous transition

to an MI. The spectral function as well as local quantities such as double oc-

cupancy and staggered charge also supports the above description of the tran-
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sition behaviors. The energy density, which can be measured directly from

the CTQMC method, shows that the metallic phase always has a lower en-

ergy than the Mott insulating phase within the coexistence region as in the

standard HM. The resulting finite-temperature phase diagram illustrates that

the crossover interaction strength between metal and MI decreases with the

temperature. It is also found that the metal-MI transition is similar to that

in the HM while the critical temperature tends to increase as the staggered

lattice potential becomes stronger. The dependence of the total energy den-

sity on the temperature indicates that the correlation-driven metallic phase is

a Fermi liquid. The phase diagram at very low temperatures shows that the

metallic phase persists for very strong staggered lattice potentials.

This chapter is organized as follows: In Sec. 5.2 we introduce the IHM

and describe how to deal with the model by the single-site DMFT with the

CTQMC as an impurity solver. Section 5.3 presents the results of our nu-

merical calculations. We examine spectral properties, local quantities, and

several components of energy densities, based on which the phase diagram

is constructed. We also investigate the nature of the intermediate metallic

phase and the dependence of the transition on the strength of the staggered

lattice potential. Finally, we conclude the chapter by summarizing the results

in Sec. 5.4.
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5.2 Model and methods

We consider the IHM on a bipartite lattice, the Hamiltonian of which is given

by

H = −t
∑
⟨ij⟩σ

(c†jσciσ + c†iσcjσ) + U
∑
i

ni↑ni↓

+
∑
iσ

ϵiniσ − µ
∑
iσ

niσ, (5.1)

where ciσ (c†iσ) is the annihilation (creation) operator of an electron with spin

σ at the ith lattice site. The corresponding number operator is defined to be

niσ ≡ c†iσciσ. The parameters t and U represent the nearest-neighbor hopping

amplitude and the Hubbard interaction, respectively. The lattice is a bipartite

one composed of two sublattices, A and B, and the local lattice potential

energy ϵi is given by

ϵi =

{
∆ for i ∈ A,

−∆ for i ∈ B.
(5.2)

In this work we adopt the single-site DMFT, which is exact in infinite

dimensions [4]. Within the DMFT, the original lattice model is mapped onto

a single-impurity Anderson model, which is described by the Hamiltonian

Hα
SIAM = (εα − µ)nασ +

∑
k

(Vkασc
†
ασakσ + h.c.)

+Unα↑nα↓ +
∑
k

εkσa
†
kσakσ. (5.3)

Here cασ (c†ασ) is the annihilation (creation) operator of an electron at the

impurity corresponding to sublattice α, and akσ (a†kσ) is the annihilation (cre-
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ation) operator of an electron at the kth bath site which has on-site energy εkσ

and is coupled with the impurity via the hybridization matrix element Vkασ.

The structure of a bipartite lattice leads to an impurity Green function of

the form

Gα(iωn) = ζᾱ

∫ ∞

−∞
dε

ρ0(ε)

ζαζᾱ − ε2
(5.4)

for (α, ᾱ) = (A,B) and (B,A), where ρ0(ε) is the bare density of states (DOS)

of the lattice and ζα ≡ iωn − εα + µ − Σα(iωn) with the self-energy Σα and

Matsubara frequency ωn. The calculation is performed on the Bethe lattice,

where the DOS is given in the semicircular form: ρ0(ε) = (2/πD)
√

1− (ε/D)2.

Through this chapter we use the half-band width D = 2t as the unit of energy.

The DOS of a semicircular form allows analytic integration of Eqn. (5.4),

which yields

G−1
α (iωn) = ζα − D2

4
Gᾱ(iωn). (5.5)

With the help of the particle-hole symmetry, we have the following relations:

Σα(iωn) = U − Σᾱ(−iωn),

Gα(iωn) = −Gᾱ(−iωn). (5.6)

Then the Dyson’s equation, G−1
0α = Σα(iωn) +G−1

α (iωn), reduces to

G−1
0α (iωn) = iωn − εα + µ+

D2

4
Gα(−iωn), (5.7)

which imposes the self-consistency relation on the impurity problem.

We solve the impurity problem only in sublattice A to obtain GA(iωn) from
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G0A(iωn) by means of the CTQMC method based on the hybridization expan-

sion, which has proven to be efficient particularly in the strong-interaction

regime. We typically use 108 Monte Carlo steps for each DMFT iteration,

which turns out to be sufficient to achieve the required accuracy of the Green

function at the lowest temperature, T = 1/128. The self-consistency loop is

iterated 50 times for the convergence of the solution within the DMFT.

5.3 Results

5.3.1 Spectral properties

To probe the metal-insulator transitions, we consider the Fermi-level spectral

weight:

Ãα ≡ − 1

πT
Gα(τ=1/2T )

=
1

2πT

∫ ∞

−∞
dω

1

cosh(ω/2T )
Aα(ω), (5.8)

where Aα(ω) ≡ −(1/π)ImGα(ω+i0
+) is the spectral function of sublattice α.

At very low temperatures Ãα is approximately the same as the Fermi-level

spectral function Aα(ω=0). Since the imaginary-time Green function can be

measured directly from Monte Carlo sampling, it is frequently used to examine

the metal-insulator transition [79–81].

In Fig. 5.1, we present the Fermi-level spectral weight as a function of the

temperature T and the interaction strength U . The colored plot on the plane

of U and T clearly demonstrates that two insulating phases (dark regions) are
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Figure 5.1: Fermi-level spectral weight Ãα for ∆ = 0.5. (a) The colored
plot displays Ãα on the plane of the interaction strength U and temperature
T , obtained via increasing U . (b) Ãα at temperatures T = 1/32 [squares] and
1/128 [circles]. Filled and open symbols for T = 1/128 represent data obtained
via increasing and decreasing U , respectively.
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separated by an intermediate metallic phase (bright region). As clarified in

the existing zero-temperature studies [74–76], the insulating phase for weak

interactions correspond to a BI, while that at strong interactions represents an

MI.

The BI connects smoothly with the metallic phase via a finite-width crossover

region at finite temperatures. As the temperature is lowered, the onset value of

Ã becomes steeper and the size of the crossover region decreases appreciably;

this is consistent with the continuous transition observed at zero temperature.

For strong interactions, on the other hand, we observe a rather steeper

transition between the metal and the MI at finite temperatures. Below a

certain critical temperature, the Mott transition turns out to be of first order,

which is evidenced by the presence of the hysteretic behavior displayed at

T = 1/128 in Fig. 5.1(b). Accordingly, we have lower and upper transition

interaction strengths, Uc1 and Uc2, at which MI and metallic phases become

unstable, respectively. Thermodynamic phase transitions occur between Uc1

and Uc2 at finite temperatures; the determination of the phase transition line

is discussed later. Above the critical temperature, the boundary between the

metal and the MI also appears as a crossover, and the crossover region expands

as the temperature is increased.

We use the maximum entropy method (MEM) for analytic continuation of

the Matsubara Green function to the real frequency domain and obtain the

spectral function A(ω). The resulting spectral function is presented in Fig. 5.2.

In the region of weak interactions, the single-particle gap is formed around the
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Figure 5.2: Spectral function A(ω) for ∆ = 0.5 and T = 1/128. Corre-
sponding interaction strengths are (a) 1.0, (b) 2.5, (c) 2.8 (increasing U), (d)
2.8 (decreasing U), and (e) 4.0. Solid and dotted lines represent the spectral
function at sublattices A and B, respectively.
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Fermi level with singular behavior at the band edge, which is reminiscent of

the noninteracting DOS with a van Hove singularity. We also observe that in

the occupation of each sublattice there is a significant imbalance between A

and B sublattices, which is a characteristic feature of the BI.

On the other hand, the Mott gap emerges with a prominent four-peak

structure for strong interactions. For a given sublattice, two peaks correspond

to the upper and the lower Hubbard bands, respectively. The upper or lower

Hubbard bands on different sublattices are separated by the staggered lattice

potential ∆. Both Hubbard bands on sublattice B, having the lower lattice

potential, are located at a lower energy compared with those on sublattice A.

In the intermediate-interaction region, we observe a metallic phase with a

finite spectral weight at the Fermi level. In this phase a quasi-particle peak

near the Fermi level is surrounded by four Hubbard bands, and the disappear-

ance of the quasi-particle peak signifies the onset of a Mott phase. The quasi-

particle peak also shows pseudogap-like behavior around the Fermi level, which

is discussed in the zero-temperature study [75]. At temperature T = 1/128,

there exists a coexistence region where both metal and MI are locally stable.

Figures 5.2(c) and 5.2(d) correspond to metallic and insulating solutions, re-

spectively. The overall features of the spectral functions are in good agreement

with the previous zero-temperature results obtained via NRG [76].

Before going on to the next section, we make some comments on the stabil-

ity of our MEM procedure. The stability investigation shows that our MEM

procedure is reliable enough to characterize the fine structures of spectral func-

tion. For example, the pseudogap-like behavior around the Fermi level in
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Fig. 5.2(b) is robust against the statistical fluctuations of the imaginary-time

Green function. In our calculations the statistical error of the imaginary-time

Green function is around order 10−4. We have also checked the stability of the

MEM procedure by examining the dependence on the model function and the

scaling parameter selection, which turns out to have negligible effects on the

resulting spectral function.

5.3.2 Local quantities

The staggered charge density is given by the difference between the number

densities at two sublattices, nA−nB, with the sublattice number density de-

fined to be nα ≡ ∑
σ⟨nασ⟩ for α = A and B. We also compute the double

occupancy dO given by

dO ≡ 1

2

∑
α

⟨nα↑nα↓⟩. (5.9)

The results for the double occupancy and the staggered charge density are

shown in Figs. 5.3 and 5.4. In the IHM, the interaction strength U competes

with the staggered lattice potential ∆ due to different favorable electron con-

figurations. While the staggered lattice potential forces electrons to stay at

the lower potential sites on sublattice B, the interaction, giving rise to en-

ergy cost, tends to prevent two electrons from occupying the same site. In

the weak-interaction region, electrons prefer to gather on sublattice B and the

system experiences an imbalance between the two sublattices, resulting in a

higher double occupancy, compared with the HM, corresponding to ∆ = 0,
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Figure 5.3: Double-occupancy dO as a function of U : (a) for staggered lattice
potential ∆ = 0.5 at temperatures T = 1/32 [squares] and T = 1/128 [circles]
and (b) at temperature T = 1/128 for various values of the staggered lattice
potential-from top to bottom, ∆ = 1.0, 0.5, and 0.0. The inset in (a): Detailed
behavior in the coexistence region. Data for T = 1/64, diamonds; T = 1/128,
circles. Data obtained via increasing U , filled symbols; via decreasing U , open
symbols.
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Figure 5.4: Staggered charge density, nB − nA as a function of U : (a) for
staggered lattice potential ∆ = 0.5 at temperatures T = 1/32 [squares] and
T = 1/128 [circles] and (b) at T = 1/128 for ∆ = 0.5 [circles] and 1.0 [tri-
angles]. Inset in (a): Details in the coexistence region. Data for T = 1/64,
diamonds; T = 1/128, circles. Data obtained via increasing U , filled symbols;
decreasing U , open symbols.
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and a nonzero staggered charge density. Such tendencies become stronger as

∆ grows.

As the interaction strength is increased, both the double-occupancy and

the staggered charge density decrease monotonically with the imbalance be-

tween the two sublattices becoming weaker. In the MI phase, the staggered

charge density is close to 0. However, the sublattice symmetry is broken in

the Hamiltonian of the IHM and the staggered charge density does not exactly

vanish for any finite U .

In the coexistence region, the metallic phase always exhibits higher values

of the staggered charge density and double-occupancy than those in the MI

phase. The data at two temperatures, T = 1/64 and 1/128, are compared in

the insets in Figs. 5.3 and 5.4. It is observed that the coexisting region widens

as the temperature is lowered. Further, the critical interaction strength is

shown to increase with the staggered lattice potential.

5.3.3 Energy density

Here we attempt to analyze the competition of the phases in terms of energy

densities. At finite temperatures the free energy will also have the contribu-

tion of the entropy. We expect that the energy analysis given below is still

valid for explaining the qualitative behaviors at low temperatures considered.

The DMFT solution gives the total, kinetic, lattice potential, and interaction
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energies per site in the forms:

ε = εk + ε∆ + εU ,

εk =
T

2

∑
ασ

⟨kασ⟩,

ε∆ =
∆

2
(nA − nB),

εU = UdO, (5.10)

where ⟨kασ⟩ is the average perturbation order of the spin σ electron at the

impurity of sublattice α. This can be directly measured from CTQMC simu-

lations [11, 20, 82].

In Fig. 5.5 we plot all four energy densities for ∆ = 0.5, together with

those in the HM. Comparison between HM and IHM results indicates that for

weak interactions, the gain in the staggered lattice potential energy exceeds

the sum of the loss of both interaction and kinetic energies. In consequence,

the total energy of the IHM is lower than that of the HM, which agrees with

the characteristic behavior of the BI.

In the metallic region, the kinetic and interaction energies of the IHM

behave qualitatively the same as those of the HM. Quantitatively, the kinetic

energy of the IHM is, in general, lower than that of the HM with the same

interaction strength. We also observe that the kinetic energy increases with the

interaction strength U , which is in sharp contrast to the generally decreasing

behavior in the BI. Such different behaviors of the metal and the BI give rise

to a minimum of the kinetic energy at the interaction strength which generally

coincides with the boundary between the BI and the metal.
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In the MI phase, the staggered lattice potential energy becomes negligible;

as a result, the total energy difference between the HM and the IHM decreases

significantly and monotonically as the interaction strength U is increased. At

the boundary between the MI and the metal, a first-order Mott transition is

also present in the IHM. The critical interaction strength increases when the

staggered lattice potential is introduced. In the coexistence region, the total

energy density in the metallic phase is always lower than that in the MI phase,

which also holds in the case of the HM [4]. We expect that at zero temperature

the IHM also undergoes a continuous phase transition between the MI and the

metal at the critical strength Uc2 .

5.3.4 Finite-temperature phase transition

Based on the spectral properties as well as the local quantities, we may now

construct the phase diagram of the IHM. Figure 5.6 exhibits the phase diagram

for ∆ = 0.5 on the plane of the temperature T and the interaction strength U .

There exist three phases: metal, BI, and MI. The BI and metal are connected

through a crossover region while a first-order Mott transition separates the

metal from the MI.

As shown in Fig. 5.1(b), the onset of Ã becomes steeper as the temperature

is lowered. Accordingly, at zero temperature, the transition between the BI and

the metal is expected to be continuous with a kink in Ã. In order to estimate

the crossover interaction strength Uco at low temperatures, we obtain a best

linear fit of the area in which Ã grows rather linearly in the metallic region.
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Figure 5.6: Phase diagram for ∆ = 0.5 on the plane of T and U . Filled
circles and surrounding horizontal bars indicate the crossover strength Uco and
estimated crossover regions, respectively. Two transition points for the Mott
transition, Uc1 and Uc2, are plotted by squares for various temperatures. The
critical point of the Mott transition is represented by diamonds, along with
the first-order transition line. Regions of the band insulator (BI), metal (M),
and Mott insulator (MI) phases. The three open circles on the horizontal axis
correspond to Uco, Uc1, and Uc2, respectively, obtained from NRG-DMFT at
zero temperature (Ref. [76]).
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We then estimate Uco by the intersection point of the fitting line and Ã=0.

The half-width of the crossover region is also identified as the distance from

Uco to the linear region. As the temperature is raised, the resulting Uco tends

to decrease and the width of the crossover-region increases. It is also notable

that Uco estimated via CTQMC-DMFT in this work gradually approaches the

zero-temperature value obtained via NRG-DMFT [76].

At low temperatures we observe the coexistence region of the BI and metal

between Uc1 and Uc2, which can be identified by spectral functions and local

quantities such as double-occupancy and staggered charge densities. With an

increase in the temperature, Uc1 and Uc2 become closer, and the coexistence

region ceases to exist at a certain critical temperature, above which the transi-

tion between the MI and the metal also appears as a crossover. These general

features are rather similar to those of the Mott transition in the HM. Further,

the extrapolation of Uc1 and Uc2 to zero temperature is quite consistent with

that of NRG-DMFT results [76].

By solving the differential equations constructed from the free-energy anal-

ysis, we can obtain the first-order phase transition line, which is denoted by

the solid line in Fig. 5.6. Using the thermodynamic relation

∂(βf)

∂β

∣∣∣∣∣
U

= ε , (5.11)

we construct the differential equation of the interaction strength Uc of the
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first-order transition as a function of T ,

dUc(T )

dT
=

δε(T, U)

TδdO(T, U)
, (5.12)

with ∆ being fixed. Here f is the free-energy density and δε and δdO are the

differences in the energy and the double-occupancy between metal and MI in

the coexistence region, respectively. The numerical integration of Eqn. (5.12)

gives the first-order transition line. The CTQMC procedure has the advan-

tage that one can obtain the quantities necessary for the differential equations

directly from Monte Carlo sampling without any further approximation. The

details of the method can be found in Ref. [82], where the HM is investigated

by the same method. The resulting transition line is plotted by the solid line

in Fig. 5.6. The phase transition point at zero temperature is very close to

Uc2 obtained from NRG-DMFT, implying that the transition is continuous at

zero temperature; this is also the case in the HM without a staggered lattice

potential.

5.3.5 Nature of the intermediate metallic phase

One interesting issue is the nature of the metallic phase present in the region

of intermediate interaction strengths. The metallic phase, which is driven

by correlations from the BI, displays a peculiar pseudo-gap-like structure in

the spectral function near the Fermi level, as demonstrated in Fig. 5.2. Such

features raise the question whether the phase exhibits Fermi-liquid behavior.

According to the Fermi-liquid theory, the total energy density ε is propor-
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Figure 5.7: Total energy density ε as a function of temperature T . From top
to bottom, the staggered lattice potential and interaction strength are given by
(∆, U) = (0, 2.2) (squares), (0.5, 2.5) (circles), (1, 3.2) (triangles), and (3, 6.9)
(inverted triangles). The horizontal axis is drawn on the scale of T 2.
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Figure 5.8: Inverse susceptibility χ−1 versus temperature T for the staggered
lattice potential ∆ = 0.5 [squares], 1.0 [triangles], 3.0 [inverted triangles], and
5.0 [circles].

tional to T 2 at low temperatures. As a relevant check, we calculate the total

energy density at various temperatures and show the results in Fig. 5.7 for var-

ious values of ∆. Indeed ε appears to be proportional to T 2 within statistical

errors for all values of ∆ examined and we presume that the metallic phase

appearing in the IHM is a Fermi liquid. In addition, we have also computed

the imaginary part of the self-energy, to find that the quasi-particle has an

infinite lifetime at the Fermi level; this is also consistent with the Fermi-liquid

picture.
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Figure 5.9: Coexistence region for ∆ = 0.5 (diamonds), 1.0 (triangles), and
3.0 (inverted triangles). For clear comparison with the Hubbard model [repre-
sented by squares], data for ∆ = 0.5, 1.0, and 3.0 are shifted to the left by the
amount δU = 0.3, 1.0, and 4.69, respectively.

5.3.6 Critical point of the Mott transition

In this subsection, we consider how the phase diagram depends on the stag-

gered lattice potential ∆. Specifically, we compute the critical temperature Tc

of the Mott-Hubbard transition for various values of ∆. One way of obtaining

Tc is to utilize the divergence of the susceptibility at the critical point. By

analogy with a fluid system [23], we define the susceptibility as

χ ≡ Max
U

∣∣∣∣∂dO∂U

∣∣∣∣ (5.13)
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at given temperature T . In view of the divergence at the critical point, one

can identify the critical temperature as the temperature where the inverse sus-

ceptibility vanishes. In Fig. 5.8 we plot the inverse susceptibility χ−1 versus

temperature T for several values of ∆. For given ∆, as the temperature is low-

ered, the inverse susceptibility decreases and eventually vanishes, from which

the critical temperature can be estimated. Figure 5.8 illustrates that the crit-

ical temperature generally increases with the strength of the staggered lattice

potential.

We can reach a similar conclusion when we consider the critical interaction

strengths Uc1 and Uc2 directly. As demonstrated in Fig. 5.9, variations in Uc1

with temperature T are rather insensitive to the value of ∆, while the increase

in ∆ suppresses the change in Uc2 with the temperature. This implies that the

critical point is located at higher temperatures for larger values of ∆.

5.3.7 Phase diagram at low temperatures

Figure 5.10 depicts three regions, corresponding to the BI, metal, and MI

phases on the plane of ∆ and U at temperature T=1/128, which is the lowest

temperature examined. We can observe two prominent differences between

the resulting phase diagram and the two zero-temperature phase diagrams

obtained in IPT-DMFT studies [74, 75].

First, in our phase diagram the crossover interaction strength Uco increases

gradually from 0 as ∆ is turned on. This is quite in contrast with the rather

drastic increase for small ∆ in Ref. [74]. Further, here the width of the metallic
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1/128. band insulator (BI), metal (M), and Mott insulator (MI) phases. The
squares represent Uc1 and Uc2 of the Mott transition. The circles and vertical
bars describe Uco and the crossover region between the BI and the metal.
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region apparently remains constant above ∆ = 2, which suggests that the

metallic phase should extend to high values of ∆. We have indeed confirmed its

existence even for ∆ = 8. This qualitatively contradicts the existing prediction

that the metallic phase would cease to exist around ∆ = 1.5, beyond which

a coexistence region between the BI and the MI develops [75]. At this stage

the origin of the discrepancy is not clear and its resolution may require further

study.

5.4 Summary

We have studied the IHM in infinite dimensions by means of the DMFT com-

bined with the CTQMC method. The dependence of the double-occupancy

and the staggered charge density on the interaction strength as well as the

Fermi-level spectral weight exhibits crossover behavior from a BI to a metal

and, subsequently, a transition to an MI. The transition to an MI is of the first

order, and the critical temperature has been found to be higher for stronger

staggered lattice potentials. Analyzing the temperature dependence of the en-

ergy density, we have shown that the intermediate metallic phase is a Fermi

liquid. Finally, when the staggered lattice potential is strong, this metallic

phase has been found to persist even at very low temperatures.
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Chapter 6

Orbital Selective Mott Phase

and Finite Temperature

Transitions

6.1 Introduction

Coexistence of strongly and weakly correlated electrons has been one of the

intriguing subjects in condensed matter physics. Materials in which more than

one orbital are active near the Fermi level have exhibited interesting properties

and their main origin is believed to be the coexistence of electrons with different

degrees of correlations [83]. In the multi-orbital system, electron correlations

and Hund’s coupling have been known to show rich phenomena in the presence

of the orbital degree of freedom. In case that the degeneracy between active

orbitals is lifted by the difference of their bandwidths [84–94] or crystal-field

splitting [95–99], the degree of effective correlations in each orbital becomes

different. One prominent consequence of different degrees of correlations is
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the orbital-selective Mott phase (OSMP), where electrons in some orbitals are

totally localized due to the Mott physics while other orbitals are still occupied

by itinerant electrons [100, 101]. Here Hund’s coupling tends to intensify the

difference between orbitals [83, 102].

The coexistence of strongly and weakly correlated electrons is also believed

to play an important role in two-dimensional materials including strong spa-

tial fluctuations [103, 104]. In such a system spatial correlations and corre-

sponding momentum-space anisotropy of correlations are the key elements to

host the coexistence [81]. Thanks to the recent numerical developments in

the cluster dynamical mean-field theory (DMFT) [14, 105–108], it is known

that the spatial fluctuations modify qualitatively finite-temperature behaviors

of the correlation-driven metal-insulator transitions; this has been revealed by

the comparison with the single-site DMFT [4] neglecting spatial fluctuations.

The spatial correlations turn out to reduce greatly the ground-state entropy

of the paramagnetic Mott insulator (MI) at low temperatures and accordingly,

the itinerant bad metallic phase dominates in the region of relatively high tem-

peratures near the transition [109].

It is natural to anticipate such prominent changes in finite-temperature

transitions for multi-orbital systems. In spite of extensive studies [92–97, 110–

113], the temperature dependence of the transitions in the two-orbital Hubbard

model still lacks a thorough understanding. The principal purpose of this work

is to investigate the finite-temperature nature of the transitions in two-orbital

systems with emphasis on the effects of Hund’s coupling.

In this chapter we investigate the two-orbital Hubbard model by the dy-
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namical mean-field theory combined with the continuous Monte Carlo method.

In the model we find the reverse-sloped Mott transition in the presence of Ising-

type Hund’s coupling for two orbitals of different bandwidths. We also observe

that the drastic changes in the phase transition between the OSMP and the

MI phase are induced by the variation of the Hund’s coupling strength. The

analysis of the hysteresis behavior of local magnetic moments determines the

location of the critical end points, which reveals that the critical temperature

tends to reduce as the Hund’s coupling is increased. Eventually the hysteretic

behavior disappears at a certain value of Hund’s coupling and the system ex-

hibits only a crossover between the OSMP and the MI phase.

This chapter is organized as follows: In Sec. 6.2 we give a brief descrip-

tion of the two-orbital Hubbard model and the numerical method. Section 6.3

is devoted to the presentation of the numerical results, which include finite-

temperature phase diagrams, spectral functions, hysteresis of local magnetic

moments, and effects of Hund’s coupling. The results are summarized in

Sec. 6.4.

6.2 Model and methods

We consider the Hamiltonian

H = −
∑
⟨ij⟩ασ

tα(c
†
iασcjασ + h.c.)− µ

∑
iασ

niασ

+U
∑
iα

niα↑niα↓ +
∑
iσσ′

(U ′ − Jδσσ′)ni1σni2σ′ , (6.1)
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Figure 6.1: Phase diagrams on the plane of temperature T and interaction
strength U for (a) J = U/16 and (b) J = U/4. (a) Open and filled sym-
bols correspond to lower and upper critical interaction strengths, respectively.
The transitions for narrow and wide orbitals are denoted by squares and cir-
cles, respectively. The inset in (a) exhibits the critical interaction strength
of the single-orbital Hubbard model. (b) Lower [open squares] and upper
[filled squares] critical interaction strengths of the narrow orbital transition
and the phase boundary [filled circles] within the crossover region between the
OSMP and the MI phase. The open circles as well as the dashed line represent
the result of finite-temperature ED (Ref. [94]) while that of zero-temperature
ED (Ref. [88]) is represented by the filled triangle. The results from the HF-
QMC method in Refs. [92] and [110] are marked by open and filled inverted
triangles, respectively. The diamonds in both (a) and (b) represent the critical
end points of first-order transitions.
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for two orbitals α = 1 and 2. Here, ciασ (c†iασ) is the annihilation (creation) op-

erator of an electron with spin σ at site i and orbital α. In each orbital electrons

move on the infinite-dimensional Bethe lattice corresponding to a noninteract-

ing semi-circular density of states (DOS), ρ0α(ω) = (2/πDα)
√

1− (ω/Dα)2,

with the half bandwidth Dα = 2tα and interact with each other via the intra-

and inter-orbital Coulomb interactions U and U ′ and Hund’s coupling J . We

investigate the half-filled system with chemical potential µ = 3U/2 − 5J/2,

and also choose D2 = 2D1 and U ′ = U − 2J . Here we disregard spin-flip

and pair-hopping terms, which is appropriate for the study of the anisotropic

Hund’s coupling model.

We employ the DMFT combined with the continuous-time quantum Monte

Carlo (CTQMC) method through the hybridization expansion algorithm [11,

12, 96]. Typically, the statistical sampling of 108 Monte Carlo steps is per-

formed, which turns out to be sufficient for statistically reliable numerical re-

sults.

6.3 Results

6.3.1 Finite-temperature phase diagram

The main result of this work is the appearance of a reverse-sloped Mott transi-

tion accompanied by the drastic change in the behavior of finite-temperature

phase transitions, which is driven by the variation in Hund’s coupling. Fig-

ures 6.1(a) and (b) show phase diagrams on the temperature versus interaction

strength plane for two typical values of Hund’s coupling. In both cases two
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successive phase transitions with the intermediate OSMP appear in the pres-

ence of orbital degrees of freedom. The transition between the Fermi liquid

(FL) phase and the OSMP inherits the shape and energy scale of the coex-

istence region in the single-orbital model. In Fig. 6.1(a), on the other hand,

the coexistence region of the OSMP-to-MI phase transition is quite interest-

ing. First of all, the slope of the phase-transition line is opposite to that in

the single-orbital case shown in the inset of Fig. 6.1(a). The reverse-sloped

Mott transition was reported in the two-dimensional systems and its origin

was attributed to spatial modulations [109]. Here it is noted that our system

is an infinite-dimensional one without any spatial fluctuations. We can also

find that the critical temperature associated with the reverse-sloped transition

is considerably enhanced.

The effects of Hund’s coupling are rather drastic on the reverse-sloped Mott

transition. When we increase the Hund’s coupling strength to J = U/4, the

reverse-sloped Mott transition becomes a finite-temperature crossover, imply-

ing a continuous transition at zero temperature. Such a change in the zero-

temperature transition was reported in an effective low-energy model [114];

our result reveals that it reflects the change from the reverse-sloped transition

to a crossover at finite temperatures. In addition, the region of the OSMP,

which is present between the two transitions, becomes wider for larger Hund’s

coupling strength, from which we can infer that Hund’s coupling plays the role

of a ‘band decoupler’ [102]. In Fig. 6.1(b) we also plot the existing results

obtained from exact diagonalization (ED) [88, 94] and Hirsch-Fye quantum

Monte Carlo (HF-QMC) [92, 110], which are reasonably consistent with our
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data.

The reversed slope of the phase-transition line is a distinctive feature. In

a conventional Mott transition the localized MI phase dominates the itinerant

FL phase in the region of high temperatures near the phase transition; this is

mainly due to the extensive entropic contribution of the MI phase compared

with the very small ground-state entropy in the FL phase. Similarly to the

reverse-sloped transition in two-dimensional systems, the origin of which is the

significant reduction of the MI phase by the short-range correlations [109], the

reverse-sloped Mott transition in the two-orbital system can be understood in

terms of the entropy of the MI phase: It is expected to reduce considerably

through ferromagnetic correlations between electrons in different orbitals by

Hund’s coupling. Another important aspect in the two-orbital system is that

instead of the FL phase, the OSMP competes with the MI phase near the

transition. The OSMP, in which electrons are partly localized, has higher

entropy than the FL, and accordingly it is more likely to dominate the MI

phase at high temperatures to yield the reversed slope of the transition line.

6.3.2 Spectral function and self-energy

The local spectral function of each orbital, which can be evaluated via an

analytic continuation to the real-frequency domain by the maximum entropy

method (MEM), characterizes conveniently the feature of each phase in the

phase diagram. In the left panel of Fig. 6.2, the spectral functions of three

different phases are shown for J = U/16. In the FL phase with U = 3.0, the
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Figure 6.2: Spectral functions calculated via the maximum entropy method
[(a) to (c)] and imaginary-part self-energies of wide-orbital electrons [(d) to (f)]
at T = 1/200 for J/U = 1/16. From top to bottom, the interaction strength
corresponds to U = 3.00 [(a) and (d)], 3.60 [(b) and (e)], and 4.00 [(c) and
(f)]. In (a) to (c), the solid and dashed lines represent the spectral functions
of narrow and wide orbitals, respectively. For comparison, the noninteracting
density of states, marked with the dot-dashed line, is also shown in (a) (both
orbitals) and (b) (wide orbital).
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spectral function exhibits clearly a coherent peak, which satisfies the Luttinger

theorem. On the other hand, the coherent peak disappears and Mott gaps

develop for both orbitals in the MI phase. For the intermediate interaction

strength corresponding to OSMP, the narrow orbital is gapped while the wide

one still remains itinerant. It is remarkable that the spectral function of the

wide orbital deviates substantially from the noninteracting DOS at the Fermi

level. The violation of the Luttinger theorem implies the finite lifetime of

wide-orbital electrons at the Fermi level. The finite-scattering amplitude of the

wide-orbital electron at the Fermi level can be verified by the finite offset in the

imaginary-part of the self-energy, as shown in Fig. 6.2(e). Similar evidences

were also reported for the non-Fermi-liquid nature of the OSMP which crosses

over to the MI phase [112, 113].

6.3.3 Local magnetic moments

The first-order transition between the MI and the OSMP is demonstrated

by the hysteresis behavior of physical quantities such as the local magnetic

moment. In Fig. 6.3 we plot the local magnetic moment of the wide orbital

as a function of U for different temperatures. As the interaction strength

is increased, electrons become more localized and the average local moment

increases monotonically. Over a finite region of the interaction strength we can

observe the hysteresis of the local spin magnetic moment, which implies the

coexistence of the two phases. As shown in Fig. 6.3, we can estimate two critical

interaction strengths Uc1 and Uc2 from the minimum and the maximum values

95



0.09

0.13

0.17

0.21

0.25

3.60 3.65 3.70 3.75 3.80 3.85

〈
S

z
2

2
〉

U

(a)

Uc1Umax
Uc2

T

0.000

0.005

0.010

0.00 0.02 0.04 0.06

δ
〈
S

z
2

2
〉

T

(b)

Tc

3.6

3.7

3.8

3.9

0.00 0.02 0.04 0.06

U
m

a
x

T

(c)

Tc

Uc

Figure 6.3: (a) Squared magnetic moments of wide-orbital electron as a
function of the interaction strength at various temperatures for J/U =
1/16. From top to bottom, corresponding temperatures are T =
1/33, 1/40, 1/50, 1/67, 1/100, and 1/200. For better comparison, the data
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Maximum differences of the squared magnetic moments between two solutions
in the coexistence region at given temperatures. The solid line corresponds to
the least-square fit of the data. The critical temperature Tc is estimated by
the T -axis cut of the extrapolated line, which is denoted by the dotted arrow.
(c) Interaction strength Umax at which the difference reaches the maximum.
The critical interaction strength Uc is estimated by the extrapolation of the
least-square fit [solid line] to the critical temperature [dotted vertical arrow].
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of U , respectively, showing the coexistence. The coexistence region shifts to

the stronger interaction region with the increase of the temperature, resulting

in the reversed slope of the phase-transition line.

Using the above hysteresis, we can also estimate the position of the critical

end point of the reverse-sloped Mott transition. From the numerical data, we

obtain the maximum difference of the local moments for the two solutions (MI

and OSMP) in the coexistence region

δ⟨S2
z2⟩ ≡ Max

U

[
⟨S2

z2⟩MI − ⟨S2
z2⟩OSMP

]
(6.2)

at each temperature. In the plot of δ⟨S2
z2⟩ as a function of T , the T -axis cut

gives the critical temperature Tc, as shown in Fig. 6.3(b). The hysteresis data

provide the interaction strength Umax, where δ⟨S2
z2⟩ reaches the maximum, and

the extrapolated value of Umax to T = Tc gives the interaction strength of the

critical end point. [See Fig. 6.3(c).] We have thus determined the location

of the critical end points for both first-order transitions, which are plotted in

Fig. 6.1(a).

6.3.4 Effects of Hund’s coupling

In Fig. 6.4 we summarize the effects of Hund’s coupling on the transitions

by plotting various transition interaction strengths versus J/U at T = 1/200,

which is the lowest temperature considered. For J/U = 1/64, the system

appears to undergo a single transition without the OSMP. For larger values

of J/U , we can observe two separate transitions, and the region of OSMP
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Figure 6.4: Phase diagram on the plane of the interaction strength U and
the Hund’s coupling strength J/U at temperature T = 1/200. Filled and open
squares indicate upper and lower critical interaction strengths, respectively,
of the narrow-orbital transition. For J/U < 0.1, the filled and open circles
represent upper and lower critical interaction strengths of the wide-orbital
transition. For J/U > 0.1, the crossover points between the OSMP and the
MI phase are marked by the filled circles. Lines are guides to the eye. Inset:
Critical temperature of the wide-orbital transition versus J/U .
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expands gradually with the increase of J/U . It is also notable that the critical

interaction strengths associated with both orbitals tend to decrease as Hund’s

coupling grows. As J/U is increased, the critical temperature of the wide-

orbital first-order transition reduces. Above a certain value of J/U , which

turns out to be between 1/16 and 1/8, we cannot find the transition down

to T = 1/200, the lowest temperature considered, only to observe crossover

phenomena.

6.4 Summary

In summary, we have found the reverse-sloped Mott transition in the two-

orbital Hubbard model with Ising-type Hund’s coupling, in which two orbitals

have different bandwidths. The reversed slope of the phase-transition line

between the OSMP and the MI phase can be understood in terms of entropy

contributions. We have also observed drastic changes in transition nature

between the OSMP and the MI as the Hund’s coupling strength is varied. As

the Hund’s coupling strength increases, the first-order transition turns into

a finite-temperature crossover, implying a quantum phase transition at zero

temperature. The diminishing critical temperature of the first-order transition

is presumed to be the underlying mechanism of the drastic change in transition

nature.
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Chapter 7

Magnetic Properties in the

Bilayer Hubbard Model

7.1 Introduction

Two-dimensional bilayer Hubbard model is known to be relevant to several

high-Tc superconducting materials such as Bi2Sr2CaCu2O8 and YBa2Cu3O7 [115–

117]. Since these materials are antiferromagnetic insulators in the undoped

case, the bilayer effects on the magnetic properties are of great interest to

understand the high-Tc superconductivity. The existence of magnetic ground

state, however, is highly controversial due to the difficulties in numerical cal-

culation of the system. Early cellular DMFT (CDMFT) [118] and determinant

quantum Monte Carlo method (DQMC) [119] studies predicted the existence

of paramagnetic metallic ground state in the weak interaction region while

recent results from variational Monte Carlo method (VMC) [120], functional

renormalization group (fRG), and projective DQMC (PDQMC) [121] showed
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Figure 7.1: Phase diagrams obtained from previous studies. Squares and cir-
cles represent the CDMFT [118] and DQMC [119] results, respectively. Trian-
gles, inverted triangles, and diamonds are obtained from VMC [120], fRG [121],
and PDQMC [121], respectively. Band/singlet insulator (BI) and antiferro-
magnetic Mott insulator (AFMI) phase are observed by all previous results.
The boundary between BI and AFMI is marked by solid lines. The CDMFT
and DQMC results show the paramagnetic metal (PM) phase. Only CDMFT
results shows the antiferromagnetic metal (AFM). The dashed lines represent
the boundary between PM and AFMI. The dotted lines show the PM-to-
AFM transition line in CDMFT results and the PM-to-AFMI transition line
in DQMC results. The boundary between AFM and AFMI is marked by the
dash-dotted line.

that the paramagnetic metal was absent. Figure 7.1 shows the phase diagrams

obtained from previous studies.

Since the spatial fluctuation is believed to be the crucial factor in two

dimensions, early DMFT studies employed its cluster extension, especially

the cellular DMFT [118]. However, due to the high numerical cost of the

calculation, this study can use only the 4-site cluster (2 sites for each layer)
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which intrinsically breaks the rotational symmetry of the underlying lattice;

this may give the uncontrolled effects in the calculation. As a resolution to

this effect, we perform 8-site cluster study under the DCA which preserves the

rotational symmetry in the underlying lattice. We concentrate on investigating

the existence of the paramagnetic metal phase which is the central issue in the

controversy.

7.2 Model

The bilayer Hubbard model is described by the Hamiltonian,

H = Ht +HU

= −t
∑
⟨ij⟩lσ

(c†ilσcilσ + h.c.)− t⊥
∑
iσ

(c†i1σci2σ + c†i2σci1σ)− µ
∑
ilσ

nilσ

+U
∑
il

nil↑nil↓ , (7.1)

where cilσ(c
†
ilσ) is an annihilation (creation) operator of a σ-spin electron at the

ith site in the lth layer (l = 1, 2). Here, t, t⊥, and U represent the intra-, inter-

layer hopping amplitude, and the on-site Coulomb interaction, respectively.

Throughout this chapter, we use t as an energy unit. By the use of Fourier

transformation

cklσ =
1√
N

∑
i

cilσe
−ik·xi (7.2)
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with N being the number of sites of a single layer, the Hamiltonian can be

expressed in the form of

H =
∑
kασ

ξkαc
†
kασckασ

+
U

2N

∑
α1α2

∑
k1k2q

(
c†k1α1σ̄

ck1+qα1σ̄
c†k2α2σ

ck2−qα2σ

+ c†k1α1σ̄
ck1+qᾱ1σ̄

c†k2α2σ
ck2−qᾱ2σ

)
, (7.3)

where α is ±1 corresponding to the bonding (−) and antibonding (+) index,

and ξkα = −2t(cos kx + cos ky) + αt⊥ − µ. The bonding and anti-bonding

operators are defined by(
ci−

ci+

)
=

1√
2

(
ci1 + ci2

ci1 − ci2

)
. (7.4)

Figure 7.2(a) shows a noninteracting band dispersion for U = 0 and t⊥ =

0.8. In this dispersion, the energy difference between the bonding and anti-

bonding band for a given momentum is 2t⊥. As t⊥ increases, the system

undergoes a metal-to-insulator transition at t⊥ = 4t. When t⊥ > 4t, the energy

gap develops at the Fermi level and the system shows an insulating phase,

called a singlet insulator. The corresponding Fermi surface in Brillouin zone is

represented in Fig. 7.2(b). The Fermi surface shows a perfect nesting between

the bonding and anti-bonding bands with the nesting wavevector Q = (π, π).
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Figure 7.2: (a) Noninteracting energy dispersions of the bilayer Hubbard
model for t⊥ = 0.8. Lower (upper) sheet corresponds to the bonding (anti-
bonding) energy band. Γ, X, and M correspond to the high symmetry mo-
mentum point, (0, 0), (π, 0), and (π, π), respectively. (b) Fermi surfaces of the
noninteracting bilayer Hubbard model for t⊥ = 0.8. Outer (inner) line corre-
sponds to the Fermi surface of the bonding (anti-bonding) band. The dotted
arrow represents the nesting vector, Q = (π, π). The dashed line is the Fermi
surface of the decoupled model, t⊥ = 0.0.

7.3 Results

7.3.1 Staggered magnetization

Figure 7.3 shows the staggered magnetization as a function of t⊥. The stag-

gered magnetization is defined by

m ≡ 1

2N

∑
il

(−1)i+l(⟨nil↑⟩ − ⟨nil↓⟩)/2 , (7.5)

For a given interaction strength U and temperature T , the staggered magneti-

zation monotonically decreases as t⊥ increases and finally vanishes for a certain
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Figure 7.3: The staggered magnetization as a function of t⊥ for (a) T = 0.05
(b) U = 4.0. (a) From top to bottom, corresponding interaction strength values
are 5.0, 4.0, and 3.0. (b) From top to bottom, corresponding temperatures
are 0.05, 0.06, 0.07, 0.08, 0.09, and 0.10. Black cross-symbols denote to the
CDMFT results at zero temperature.

critical value tc⊥. The critical interlayer hopping tc⊥ tends to increase as the

temperature decreases. In addition, we find that the temperature dependence

of staggered magnetization is stronger in the region 1.5 < t⊥ ≤ 3.0 than that

in the region 0 ≤ t⊥ < 1.5. The previous results obtained using the cellular

DMFT [118] are qualitatively different from our results. In contrast to our

monotonic decrease of staggered magnetization, the staggered magnetization

exhibits a maximum at finite t⊥. On the other hand, for a given interlayer

hopping t⊥ and temperature T , the larger staggered magnetization is obtained

for the larger interaction strength U .
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Figure 7.4: The Néel temperature as a function of U . From top to bottom,
the corresponding t⊥ values are 0.0, and 1.5.

7.3.2 Néel temperatures

The Néel temperatures as a function of interaction strength are shown in

Fig. 7.4. For the decoupled layer system, t⊥ = 0, starting from nonmagnetic

limit for U = 0.0, the Néel temperature monotonically increases as interaction

strength increases. When the interlayer hopping, however, is introduced, the

Néel temperature is clearly suppressed. We find that the Néel temperature for

U ≤ 1.5 is smaller than T = 1/50 when t⊥ = 1.5 suggesting the existence of

paramagnetic metal at zero temperature. We cannot rule out the possibility

that the Néel temperature is exponentially small in this region.
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7.3.3 Spin-resolved local spectral function

The spin-resolved local spectral functions are shown in Fig. 7.5 for T = 0.05

and U = 4.0. When t⊥ ≤ 2.5, the spectral gap appears and the asymmetry

between the up and down spin is clearly shown, which are characteristics of

the antiferromagnetic insulator. As t⊥ increases, the size of magnetic gap

monotonically reduces. At the certain critical value tc⊥, the magnetic insulator-

to-band insulator transition occurs. For t⊥ > tc⊥, the band gap without the

spin asymmetry appears, which is a signature of the singlet insulator.

7.4 Summary

We have investigated the magnetic properties of the bilayer Hubbard model

on two-dimensional square lattice. We have adopted the dynamical clus-

ter approximation combined with the continuous-time quantum Monte Carlo

method. Compared with the single-layer model, the inter-layer hopping sup-

presses the Néel temperature. For the intermediate interaction strength, the

AFMI-to-BI transition occurs at the certain critical inter-layer hopping am-

plitude. The value of the critical inter-layer hopping amplitude decreases as

temperature increases. It will be interesting to investigate the doping effects

in this system. The superconducting instability and the possibility of the exci-

ton condensation upon doping were previously investigated within the DQMC

scheme. Since the cluster DMFT could be the complementary method to the

finite-lattice calculation, we expect that the results will add more interesting
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physics to the existing results.
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Figure 7.5: Spin-resolved local spectral functions for U = 4.0 and T = 0.05.
Solid (dashed) line represents the spin-up components of A sublattice. From
top to bottom, corresponding t⊥ values are 1.0, 1.5, 2.0, 2.5, and 4.0.
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Chapter 8

Strongly Correlated

Superconductivity

8.1 Introduction

In the high-Tc superconductors, the relation between antiferromagnetism and

superconductivity is one of the central issues. It is regarded that the strong

repulsive Coulomb interaction between electrons is important in both phenom-

ena. Particularly in cuprate materials, the microscopic model to deal with the

Coulomb interaction is the Hubbard model in the two-dimensional square lat-

tice. In the strong interaction limit, the Hubbard model can be transformed

into the t-J model which naturally shows antiferromagnetism via the exchange

interaction. The other approach starts from the phenomenological considera-

tion of the d-wave pairing in the cuprate superconductors. In this approaches,

the d-wave pairing is explicitly included in the BCS Hamiltonian and the effect

of strong repulsive interaction is considered via the Gutzwiller projection. The
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Gutzwiller-projected BCS model with d-wave pairing is an natural model.

The direct connection between these two seemingly different starting points

had been explicitly shown in previous exact diagonalization studies [122, 123].

In these studies, the overlap between the ground states of two different models

appears to be very high even in finite doping regions. The BCS+U model is

the natural generalization of the Gutzwiller projected BCS Hamiltonian, which

spans more realistic parameter spaces. Even though previous DMFT studies

of this model successfully showed the superconductor-to-insulator transition at

half filling and the reemergence of superconductivity upon hole-doping [124],

the non-local correlation effects were ignored within the assumption of the

single-site DMFT. We now discuss the non-local correlation effects within the

DCA. In addition, the effect of thermal fluctuations on the superconductivity

is also being investigated. We expect that this study can enhance the compre-

hensive understanding of the correlation effect in the high-Tc superconductiv-

ity and its connection to antiferromagnetism.
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8.2 Model

The BCS+U model is defined by

H = Ht +H∆ +HU

= −t
∑
⟨ij⟩σ

(c†iσcjσ + h.c.)− µ
∑
iσ

niσ

+
∑
⟨ij⟩

∆ij(c
†
i↑c

†
j↓ + c†j↑c

†
i↓ + h.c.)

+U
∑
i

ni↑ni↓ , (8.1)

where ∆ij = +∆ for j = i + x̂ and ∆ij = −∆ for j = i + ŷ. Throughout this

chapter, t is set to be an energy unit.

After Fourier transform, the Hamiltonian leads to

H = H0 +HU

=
∑
k

(
c†k↑ c−k↓

)( ξk ∆k

∆k −ξ−k

)(
ck↑
c†−k↓

)

+
U

N

∑
k1k2q

c†k1↑ck1+q↑c
†
k2↓ck2−q↓ (8.2)

where ξk = −2t(cos(kx) + cos(ky))− µ and ∆k = 2∆(cos(kx)− cos(ky)).
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Figure 8.1: sublattice index for 2-dimensional square lattice.

8.3 Results

8.3.1 Duality of local Green function

We can find the dual character of the model Hamiltonian. Let’s start by

defining two unitary transforms Ta:
cA↑

cA↓

cB↑

cB↓

→


cA↑

cA↓

−c†B↓

−c†B↑

 (8.3)

and Tb: 
cC↑

cC↓

cD↑

cD↓

→


cC↑

cC↓

−cD↑

−cD↓

 , (8.4)

where A,B,C,D are the sublattice indices shown in Fig. 8.1. For the half-

filled system, the Hamiltonian H(t,∆, U) transforms by the successive unitary
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transform, T ≡ TbTa as

H(t,∆, U) → H(∆, t, U) . (8.5)

Then the normal part of the local Green function can be represented by

G↑(i, τ)
∣∣∣
H(t,∆,U)

=
1

Z
tr
[
e−βH(t,∆,U)ci↑(τ)c

†
i↑

]
=

1

Z
tr
[
T −1T e−βH(t,∆,U)T −1T ci↑(τ)T −1T c†i↑T −1T

]
=


G↑(i, τ)

∣∣∣
H(∆,t,U)

i ∈ A

G↓(i, β − τ)
∣∣∣
H(∆,t,U)

i ∈ B

= G(i, τ)
∣∣∣
H(∆,t,U)

. (8.6)

On the forth line of Eqn. (8.6), we use the particle-hole symmetry of the Green

function and assume that the system is in the paramagnetic phase.

Figures 8.2 and 8.3 represent the normal part of the Green functions com-

puted from two different Hamiltonians which are dual to each other. The du-

ality is valid within the numerical accuracy for every parameter set which we

investigate. We can see that our numerical results reproduce well the local

duality of the system.

8.3.2 Local Spectral Function for half-filled system

Using the maximum entropy method, we study the properties of the local

spectral function (LSF) for the half-filled system. Figures 8.4 and 8.5 show the
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Figure 8.2: Imaginary-time local Green’s function which displays the local du-
ality of BCS+U model for Nc = 1. The system is half-filled and the temper-
ature of left (right) panel is 1/2 (1/4). Open (closed) symbol represent the
t = 0, ∆ = 1 (t = 1, ∆ = 0) case. From top to bottom, the corresponding
interaction strengths are 0.0, 3.0, 6.0, 9.0, 12.0. and 15.0
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Figure 8.3: Imaginary-time local Green’s function which displays the local du-
ality of BCS+U model for Nc = 4. The system is half-filled and the temper-
ature of left (right) panel is 1/2 (1/4). Open (closed) symbol represent the
t = 0, ∆ = 1 (t = 1, ∆ = 0) case. From top to bottom, the corresponding
interaction strengths are 0.0, 3.0, 6.0, 9.0, 12.0. and 15.0
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LSF for Nc = 1 and 4, respectively. When ∆ = 0, the BCS+U model becomes

the Hubbard model. It is well-known that the metal-insulator transition (MIT)

occurs in the Hubbard model. For Nc = 1 calculation, the coherent peak at

Fermi-level remains before the MIT occurs while the pseudogap appears in the

Nc = 4 case. The origin of the pseudogap is the strong renormalization of

electron mass in anti-nodal momentum sector. The quasi-particle weight of

each momentum sector is shown in Fig. 8.7.

For non-zero ∆, the system is a superconductor in the noninteracting limit.

The characteristic V-shape gap of d-wave superconductor appears in both clus-

ters of sizes Nc = 1 and 4. As the interaction strength becomes larger, the size

of gap, which is estimated by peak-to-peak distance, decreases for Nc = 1 cal-

culation. And finally the superconductor-to-Mott insulator transition occurs.

Within the superconductor phase, the coherent peaks are well-defined.

However, the results for Nc = 4 are qualitatively different from those for

Nc = 1. As the interaction strength increases, the size of the superconducting

gap increases. And the superconducting coherent peaks continuously smear

into the emergent Hubbard peaks. No signature for the superconductor-to-

Mott insulator transition is found in the LSF.

8.3.3 Local spectral function for hole-doped system

We also investigate the spectral properties of the system away from the half-

filling. Figure 8.6 shows the LSF for the hold-doped system calculated by

Nc = 1 and 4. The doping-concentration is controlled by the chemical potential
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Figure 8.4: Local spectral function in the half-filled system for Nc = 1. The
left (right) figure represents the ∆ = 0.0 (0.5) results at T = 1/8. From top
to bottom, the corresponding interaction strengths are 0.0, 3.0, 6.0, 9.0, 12.0,
and 15.0.
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Figure 8.5: Local spectral function in the half-filled system for Nc = 4. The
left (right) figure represents the ∆ = 0.0 (0.5) case at T = 1/4. From top
to bottom, the corresponding interaction strengths are 0.0, 3.0, 6.0, 9.0, 12.0,
and 15.0.
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and the interaction strength is fixed to be U = 12. In the case of Nc = 1, the

superconducting coherent peaks reemerge when µ ≲ 0.6µ0 where µ0 is the

value of the chemical potential at half-filling, µ0 = U/2. These coherent peaks

are well-separated from the upper and the lower Hubbard bands, resulting in

a four-peak structure in the LSF.

On the other hand, for Nc = 4, the smeared superconducting coherent

peaks become sharper as the doping concentration increases. In this case, the

lower coherent peak is not separated from the lower Hubbard band up to the

high doping concentration while the upper coherent peak emerges inside the

Mott gap. Thus the three-peak spectral function is found inNc = 4 calculation.

For both Nc = 1 and 4, the superconducting coherent peaks become more

prominent as the temperature decreases.

8.3.4 Quasi-particle weight for half-filled system

Figure 8.7 shows the quasi-particle weight as a function of the interaction

strength for the half-filled system. The quasi-particle weight is defined as

ZK =

(
1− ∂ReΣN(K, ω)

∂ω

∣∣∣∣
ω=0+

)−1

, (8.7)

and can be approximated as

ZK ≃
(
1− ImΣN(K, iω0)

ω0

)−1

, (8.8)

within the Matsubara space at low temperatures. Since the self-energy can

vary in the momentum space within DCA, we can observe the momentum-tile
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Figure 8.6: Local spectral function in the hole-doped system. The left (right)
figure shows the Nc = 1 (Nc = 4) results for three different temperatures. The
interaction strength U is fixed to be 12. From top to bottom, the chemical
potential is adjusted to the value of 1.0µ0, 0.8µ0, 0.6µ0, and 0.4µ0, where
µ0 = U/2 = 6.0. Solid, dashed, and dotted line correspond to T = 1/2, 1/4,
and 1/8, respectively.
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Figure 8.7: Quasi-particle weight of the half-filled system as a function of the
interaction strength U , estimated by Eqn. (8.8). Closed squares and circles
represent K = (0, 0) and (π, 0) for ∆ = 0.0, respectively. Closed triangles
and inverted-triangles show K = (0, 0) and (π, 0) for ∆ = 0.5. Open symbols
represent quasi-particle weight of K+(π, π) tile where K is the momentum of
tile corresponding to the closed symbols.

dependent quasi-particle weight.

For the ∆ = 0 case, the quasi-particle weights in (π, 0) and (0, π) sectors

show the stronger mass renormalization than those for (0, 0) and (π, π). These

momentum dependent trends also appear when the finite ∆ is introduced.

However, in the presence of the finite superconducting pairing the overall mass

renormalization is less severe.

8.3.5 Renormalized superconducting gap

Figure 8.8 presents the coarse-grained superconducting pairing as a function

of the interaction strength and the doping concentration. The renormalization

of the superconducting gap can be estimated by the coarse-grained anomalous
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Figure 8.8: Coarse-grained superconducting pairing as a function of the inter-
action strength and the hole-doping concentration at the temperature T = 1/8
for the pairing amplitude ∆ = 0.5. The left figure shows the results of the half-
filled system. And the right figure shows the doping-dependence of the coarse-
grained pairing for a given interaction strength U = 12.

Green function,

∆̄K=(π,0) = GA
K=(π,0)(0

+) . (8.9)

As the interaction strength increases the coarse-grained superconducting pair-

ing decreases monotonically. In contrast to Nc = 1 calculation, however, the

renormalized pairing remains finite up to very high interaction strength U = 15

for Nc = 4 calculation.

When the hole-doping is introduced to the system, the coarse-grained su-

perconducting pairing increases monotonically. This indicates that the hole-

doping and the decrease in the interaction strength have the similar effects on

the coarse-grained superconducting pairing.
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8.4 Summary

We have investigated the BCS+U model in the dynamical cluster approxima-

tion combined with the continuous-time quantum Monte Carlo method. We

have confirmed the dual character of the Hamiltonian by the numerical calcu-

lations. By analyzing the local spectral properties, we have found the common

features of the model independent of the cluster size; the suppression of the

superconductivity when the strong mutual interaction is introduced and the

reemergence when the system is hole-doped. For the hole-doped strong inter-

action region, the coherent superconducting peak develops well as the tem-

perature decreases. The transition nature, however, is qualitatively different

depending on the cluster size Nc, indicating that the spatial fluctuations have

crucial effects in the system.
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Appendix A

High-frequency Expansion of

Green Function

In this appendix, we present the high-frequency expansion of the general Green

function and extract the expansion coefficients of the specific models of the

previous chapters. For two reasons, this high-frequency expansion of Green

function is very useful in the dynamical mean-field theory and continuous-

time quantum Monte Carlo method. First, it gives the information about the

high-frequency tail of Green function which is very difficult to access due to the

limited number of the numerical data. In addition, using the high-frequency

tail, we can avoid the numerical Fourier transformation of the singular parts

of Green function. The most singular terms are subtracted from the Green

function and can be Fourier-transformed analytically. The remaining part of

Green function is well-behaved during the numerical Fourier transformation.

The general Matsubara Green function is the Fourier transformation of the

imaginary-time Green function. By the successive integration by parts, we
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can obtain the 1/iωn-expansion. The Green function can be represented by

the infinite series

Gµν(iωn) =

∫ β

0

dτ G(τ)eiωnτ

=
−G(β)−G(0)

iωn

− −G′(β)−G′(0)

(iωn)2
+

−G′′(β)−G′′(0)

(iωn)3
+ · · ·

= −
∑
k≥0

(−1)k
G(k)(0+)−G(k)(0−)

(iωn)k
. (A.1)

Here, G(k)(τ) is the k-th derivative by the imaginary-time and we use the

property that G(β−) = −G(0−) on the third line.

For a general index µ, the Green function is defined by

Gµ(τ) = − 1

Z
tr
[
e−βHTτ

(
cµ(τ)c

†
µ

)]
, (A.2)

where cµ(τ) = eτHcµe
−τH, and the derivatives of the Green function at τ = 0+

and 0− are expressed in terms of the commutation relation

∂τGµ(0
+) = −⟨Tτ

(
[H, cµ]c†µ

)
⟩ ,

∂τGµ(0
−) = ⟨Tτ

(
c†µ[H, cµ]

)
⟩ . (A.3)

It can be easily generalized to the k-th derivatives,

G(k)
µ (0+)−G(k)

µ (0−) = −
〈
Tτ{[

k times︷ ︸︸ ︷
H, [H, · · · [H, cµ] · · · ]], c†µ}

〉
≡ ⟨Tτ{[H, cµ]{k}, c†µ}⟩ . (A.4)

with G
(k)
µ (τ) ≡ ∂kτGµ(τ). Then, the Matsubara Green function is written in
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the form

Gµ(iωn) =
∑
k≥0

(−1)k
⟨Tτ{[H, cµ]{k}, c†ν}⟩

(iωn)k

≡
∑
k≥0

Gµ,k

(iωn)k
. (A.5)

In the following sections, we show how to determine the coefficients of the

expansion, Gµ,k, for various models.

A.1 Hubbard model

In the momentum space, the Hubbard model is described by

H =
∑
kσ

(ϵk − µ)c†kσckσ +
U

N

∑
q

nq↑n−q↓ , (A.6)

where nqσ =
∑

k c
†
kσck+qσ. By evaluating the commutation relations, we can

obtain the coefficients of the high-frequency expansion and the first three co-

efficients are

Gkσ,1 = ⟨{ckσ, c†kσ}⟩ = 1 ,

Gkσ,2 = −⟨{[H, ckσ] , c†kσ}⟩

= ϵk − µ+ U⟨nσ̄⟩ ,

Gkσ,3 = ⟨{[H, [H, ckσ]] , c†kσ}⟩

= (ϵk − µ)2 + 2(ϵk − µ)U⟨nσ̄⟩+ U2⟨nσ̄⟩ . (A.7)
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For the Bethe lattice in the infinite dimensions at half-filling, the local Green

function is

Gσ(iωn) =
1

N

∑
k

Gkσ(iωn)

=
1

iωn

+
U⟨nσ̄⟩ − µ

(iωn)2
+
t2 + µ2 − 2µU⟨nσ̄⟩+ U2⟨nσ̄⟩

(iωn)3
+O

(
1

(iωn)4

)
.

(A.8)

Here, we use the properties of half-filled Bethe lattice

1

N

∑
k

ϵk =

∫ ∞

−∞
dϵ ϵρ(ϵ) = 0 ,

1

N

∑
k

ϵ2k =

∫ ∞

−∞
dϵ ϵ2ρ(ϵ) = t2. (A.9)

Here, ρ(ϵ) is the semi-circular density of states and t is the next-nearest neigh-

bor hopping amplitude.

A.2 Ionic Hubbard model

In the momentum space, the Hamiltonian of the ionic Hubbard model is given

by

H =
∑
kσ

ϵk(c
†
kAσckBσ + c†kBσckAσ) +

∑
kασ

(∆α − µ)c†kασckασ +
U

N

∑
qα

nqα↑n−qα↓ ,

(A.10)

where α is the sublattice index, A orB, ∆α = (−1)α∆ and nqασ =
∑

k c
†
kασck+qασ.

Note that (−1)A = +1 and (−1)B = −1. Using the commutation relations,
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the coefficients of the expansion are

Gkασ,1 = ⟨{ckασ, c†kασ}⟩ = 1 ,

Gkασ,2 = −⟨{[H, ckασ] , c†kασ}⟩

= ∆α − µ+ U⟨nασ̄⟩ ,

Gkασ,3 = ⟨{[H, [H, ckασ]] , c†kασ}⟩

= ϵ2k + (∆α − µ)2 + 2(∆α − µ)U⟨nασ̄⟩+ U2⟨nασ̄⟩ . (A.11)

For half-filled Bethe lattice in the infinite dimensions, the local Green function

of sublattice α leads to

Gασ(iωn) =
1

N

∑
k

Gkασ(iωn)

=
1

iωn

+
U⟨nσ̄⟩+∆α − µ

(iωn)2
+
t2 + (∆α − µ)2 + 2(∆α − µ)U⟨nασ̄⟩+ U2⟨nασ̄⟩

(iωn)3

+O
(

1

(iωn)4

)
. (A.12)

A.3 Two-orbital Hubbard model

The two-orbital Hubbard model with the Ising-type Hund’s coupling is

H =
∑
kασ

(ϵkα − µ)c†kασckασ +
U

N

∑
qα

nqα↑n−qα↓

+
U ′ − J

N

∑
qσ

nq1σn−q2σ +
U ′

N

∑
qσ

nq1σn−q2σ , (A.13)
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where α is the orbital index, 1 or 2. Using the commutation relations, the

coefficients of the expansion become

Gkασ,1 = ⟨{ckασ, c†kασ}⟩ = 1 ,

Gkασ,2 = −⟨{[H, ckασ] , c†kασ}⟩

= ϵkα − µ+ U⟨nασ̄⟩+ (U ′ − J)⟨nᾱσ⟩+ U ′⟨nᾱσ̄⟩ ,

Gkασ,3 = ⟨{[H, [H, ckασ]] , c†kασ}⟩

= (ϵkα − µ)2 + 2(ϵkα − µ) [U⟨nασ̄⟩+ (U ′ − J)⟨nᾱσ⟩+ U ′⟨nᾱσ̄⟩]

+U2⟨nασ̄⟩+ (U ′ − J)2⟨nᾱσ⟩+ U ′2⟨nᾱσ̄⟩

+2 [U(U ′ − J)⟨nασ̄nᾱσ⟩+ UU ′⟨nασ̄nᾱσ̄⟩+ U ′(U ′ − J)⟨nᾱσ̄nᾱσ⟩] .

(A.14)

For half-filled Bethe lattice in the infinite dimensions, the local Green function

of orbital α leads to

Gασ(iωn) =
1

N

∑
k

Gkασ(iωn)

=
Gασ,1

iωn

+
Gασ,2

(iωn)2
+
Gασ,3

(iωn)3
+O

(
1

(iωn)4

)
, (A.15)
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where

Gασ,1 = 1 ,

Gασ,2 = −µ+ U⟨nασ̄⟩+ (U ′ − J)⟨nᾱσ⟩+ U ′⟨nᾱσ̄⟩ ,

Gασ,3 = t2α + µ2 − 2µ [U⟨nασ̄⟩+ (U ′ − J)⟨nᾱσ⟩+ U ′⟨nᾱσ̄⟩]

+U2⟨nασ̄⟩+ (U ′ − J)2⟨nᾱσ⟩+ U ′2⟨nᾱσ̄⟩

+2 [U(U ′ − J)⟨nασ̄nᾱσ⟩+ UU ′⟨nασ̄nᾱσ̄⟩+ U ′(U ′ − J)⟨nᾱσ̄nᾱσ⟩] .

(A.16)

Here tα is the next-nearest hopping amplitude of α-orbital.
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국문 초록

이 논문에서는 동역학적 평균마당 이론과 연속 시간 양자 몬트카를로 방법

을 이용한 허바드 형태 모형연구를 다룬다. 허바드 모형이 기술할 수 있는

모트 물리의 다양한 측면을 살펴보기 위하여, 기존의 홑 궤도함수 허바드

모형에 추가적인 자유도를 도입한다. 추가적으로 도입된 자유도는 엇갈림

격자 퍼텐셜, 뭇 궤도함수 효과, 두겹켜 구조, 그리고 초전도 효과가 있다.

도입된자유도에따라동역학적평균장이론뿐아니라이의뭇궤도함수확

장 또는 송이 확장 등이 사용된다. 또한 연속 시간 양자 몬테카를로 방법의

상호보완적인 두개의 풀이법이 사용된다.

먼저 무한 차원 허바드 모형에서의 모트 상전이에 대해 다룬다. 연속

시간 양자 몬테카를로 방법이 동역학적 평균장 이론과 결합되어 사용되며,

이를통해충분히낮은온도의물리를정확하게관찰할수있다. 몬테카를로

표본추출로부터 직접 측정되는 이중점유도와 운동에너지 밀도를 이용하여

모형의 상그림을 그린다. 특히 도체와 절연체가 공존하는 영역에서 불연속

적상전이선을결정하는것이이연구의주된목적이다. 계산된상전이선은

기존의 결과들과 좋은 일치를 보이며, 체계적으로 유한 온도에서의 결과를

고려함에 따라 알려진 절대영도의 결과롤 점차 정확하게 예측하는 것이 확

인된다.
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다음으로무한차원이온 허바드모형의도체-절연체상전이에 대해다룬

다. 연속 시간 양자 몬테카를로 방법과 동역학적 평균장 이론을 통하여, 상

호작용의 크기가 커지면, 계의 성질이 띄절연체에서 도체로 교차하고, 이어

도체가 모트 절연체로 불연속 상전이 함이 확인된다. 이 불연속 상전이는

특정 고비온도 이하에서만 일어나며, 보다 높은 온도에서는 교차한다. 고비

온도의 크기는 엇갈림 격자 퍼텐셜의 크기에 따라 증가한다. 에너지 밀도의

온도 변화를 분석함으로서, 중간에 등장하는 도체가 페르미 액체임을 확인

한다. 또한 이 도체는 강한 엇갈림 격자 퍼텐셜과 낮은 온도의 조건에서도

안정적으로 존재한다.

이후에는 뭇 궤도함수 허바드 모형의 유한온도 상전이에 대해 다룬다.

이징 형태의 훈트 결합이 사용되었다. 동역학적 평균장 이론의 뭇 궤도함수

확장이 강한 결합 연속 시간 양자 몬테카를로 방법과 함께 사용된다. 놀랍

게도 기울기 역전 불연속 모트 상전이가 궤도함수 선택적인 모트상과 모트

절연체 사이에서 발견된다. 훈트 결합의 크기가 커질수록 기울기 역전 모트

상전이의 고비온도는 감소한다. 특정 훈트 결합 이상에서 불연속 상전이는

유한온도 교차로 변한다.

허바드모형에서의두겹켜효과또한연구되었다. 동역학적송이어림이

약한 결합 연속시간 양자 몬테카를로 방법과 함께 사용된다. 기존에 연구된

자성 상그림은 여전히 확실하지 않은 부분이 남아있다. 이 연구에서는 여덟

개의 격자점으로 구성된 송이가 처음으로 사용되었으며, 이는 무한 격자의

대칭성을 보존한다. 계의 자기적 성질과 관련된 도체-절연체 상전이가 연구

되었으며, 계산 결과들이 절대영도의 물리에 암시하는 바에 대해 논한다.

마지막으로 구츠윌러-투영된 비시에스 모형의 자연스러운 확장인 비시

에스+유모형을다룬다. 이연구를위하여,동역학적송이어림과약한결합
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연속 시간 양자 몬테카를로 방법이 사용되었으며, 송이 크기 변화를 통해

계산의 안정성을 확인하였다. 이 연구의 주제는 현상론적인 디-파동 초전

도체에서 상호작용의 효과이다. 상호작용의 크기 또는 양공 첨가 농도를

조절함에 따라 초전도체와 모트 부도체 사이의 상전이가 관찰된다. 이 계의

상전이에 따른 스펙트럼 함수의 성질에 대해 논한다.

주요어: 강상관계, 허바드 형태 모형, 동역학적 평균장 이론, 연속 시간 양

자 몬테카를로

학번: 2009-20403
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