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Abstract

We study emergent phenomena that occur in low dimensional spin and elec-
tronic systems, especially those related to spin degrees of freedom. In frustrated
ferromagnetic spin-1 chains where the ferromagnetic nearest-neighbor coupling
competes with the antiferromagnetic next-nearest-neighbor coupling, we analyze
the ground state and its various correlation functions by using the density-matrix
renormalization group. The double Haldane phase with ferromagnetic coupling
shows incommensurate correlations of wavenumber ¢ with 0 < ¢ < 7 and trans-
forms through a phase transition to the ferromagnetic phase. Such short-range
correlations transform continuously into the ferromagnetic instability at the tran-
sition. The additional anisotropy in exchange interaction gives rise to a new dis-
ordered phase and a chirality phase in a wide region. We also compare the results
with the spin-1/2 and classical spin systems, and discuss the string orders in the
system.

We also investigate the magnetism on the edge of the Kane-Mele-Hubbard
model. By means of the Hartree-Fock approximation we examine the nature of
edge states in the presence of the Hubbard interaction in the Kane-Mele model.

We compute local magnetizations of a nanoribbon with various widths. Phase
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diagram is obtained in the thermodynamic limit. It turns out that in-plane
magnetic order survives at the edges in a wide range of the spin-orbit coupling.
The variation of its characteristic length is shown to be closely related to the

phase transition between topological insulator and antiferromagnetic insulator.

Keywords: quantum spin chain, one-dimensional system, Haldane gap, AKLT
state, spin exchange interaction, Heisenberg model, frustration, anisotropy,
density-matrix renormalization-group, Kane-Mele-Hubbard model, honey-
comb lattice, zigzag nanoribbon, spin-orbit interaction, Hubbard interac-

tion, Hartree-Fock approximation, edge state, topological state
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Chapter 1

Introduction

Low-dimensional quantum systems have attracted much interest for the past
decade. One of the reasons is that quantum fluctuations play a more dominant
role in their ground states than for higher-dimensional systems [1-3]. Generally
quantum fluctuations suppress long-range order of a many-body system in low
dimensions. In this case, interactions between particles play a more crucial role
leading to novel emergent phenomena.

In 1983, it was suggested by Haldane [4, 5] that in the presence of antiferro-
magnetic nearest-neighbor interactions the integer/half-integer Heisenberg spin
chains have ground states with/without excitation gaps. This has been con-
firmed by extensive theoretical and experimental studies [1-3]. In particular,
one-dimensional odd-integer spin systems have disordered ground states in which
symmetry is not broken with with a finite excitation gap [6-8]. There has been
a spectacular advance in numerical tools with the introductioni of the density-
matrix renormalization-group method by White [9, 10], which initiated extensive

research on one-dimensional systems. The unprecedented high accuracy can be



obtained by this method; This allows us to obtain accurate ground states of
much larger one-dimensional systems and to understand deeply the physics of
low-dimensional systems.

Frustration is another important concept in physics. It is caused by the com-
petition of two or more exchange interactions or the system geometry, and is
known to generate enormous quantum emergent phenomena in exotic phases.
One interesting example is a quantum spin chain with two types of interactions,
one between nearest-neighbor spins and the other between next-nearest-neighbor
spins. Extensive analytical and numerical studies on frustrated spin chains have
been performed [3]. The frustrated chains exhibit numerous exotic phases and
phase transitions among them. There is a nontrivial phase, the so-called AKLT
state [6, 7] in spin-1 chains characterized by the nonlocal string order with Zs x
Zs symmetry [11-13].

Not only the spins, but also electrons in low-dimensional systems show very
distinctive behaviors. It has been known that different topological orders can
exist and cause distinct phases in materials without symmetry breaking. In par-
ticular, two-dimensional topological systems were suggested [14]. Insulators are
classified into topologically trivial and non-trivial insulators in terms of a Z,
topological invariance [15, 16]. The former is called a normal band insulator
(NBI) that we are familiar with. The latter is characterized by bulk gap with
gapless edge excitations, distinguished from the NBI, and is called a topologi-
cal band insulator (TBI). The different topology produces metallic states at the
boundary between the NBI and TBI inevitably. In the two-dimensional (2D)

systems such a boundary state appears in the form of spin-current channels with



time-reversal symmetry conserved [17], and it has been generalized to the surface
state with Dirac cones in the three-dimensional (3D) systems [18]. In princi-
ple, the boundary state is protected topologically and accordingly it is robust
to weak disorder and interactions. Signatures of TBI were first observed in the
experiment on HgTe/CdTe quantum wells [19]. The theoretical predictions of the
surface states were also confirmed through the angle resolved photoemission spec-
troscopy (ARPES) experiment of BiSb [20]. A great number of experiments have
recently been performed, particularly in the search for the transport evidence.
Such recent studies of TBI were initiated by the discovery of quantum spin Hall
(QSH) insulators, which are induced by the intrinsic spin-orbit (SO) interactions
[16, 17]. The QSH phase is shown to exist in the Kane-Mele (KM) model on the
2D honeycomb lattice. The Hamiltonian of the KM model consists of two terms:
The nearest-neighbor hoppings from the kinetic energy and the next-nearest-
neighbor hoppings induced by the intrinsic SO couplings. FElectrons of QSH
insulators are in a helical motion as in the integer quantum Hall systems and also
in a chiral motion similar to that of graphene-pseudospins. Consequently, they
exhibit one-dimensional (1D) spin current channels at the edge of the system.
On the other hand, the Hubbard model which has local Coulomb interaction
between electrons with different spins has also been studied on the honeycomb
lattice [21, 22]. The Hubbard interaction makes the electrons feel the repulsion.
Above some critical value of the interaction strength electrons are localized, yield-
ing a Mott gap. It also gives the antiferromagnetic order in the system with a
spontaneous symmetry breaking [21]. The local magnetizations have been shown

to display peculiar properties at the open boundary [22]. Recently, it has also



been reported that there exists a quantum spin liquid (QSL) phase before the
charge-gap opening [23].

The interplay of the SO interaction and the Hubbard interaction has been
studied in the Kane-Mele-Hubbard (KMH) model. The mean-field study revealed
the phase transition from the TBI to antiferromagnetic insulator (AFI) in the
presence of both SO interactions and Hubbard interactions [24]. The QSL has
also been observed in the region of weak SO interactions [25]. Particular attention
has been paid to how the characteristic edge state of TBI evolves as the interaction
strength increases. While the helical edge state has been shown to persist below
the critical interaction strength in the quantum Monte Carlo (QMC) study [25]
and the variational cluster approach (VCA) [26], a different QMC calculation has
yielded finite edge magnetism in the limit of infinite length [27]. In the latter
study, finite edge magnetism has been interpreted as a signature of quasi-long-
range order due to the 1D nature of the edge and the U(1) symmetry of spins.
On the other hand the mean-field calculation in the finite nanoribbon system
has revealed rich phases of the edge states in the TBI phase, which includes the
half-metallic edge state with ferromagnetic order [28].

This dissertation is organized as follows. We first review quantum spin sys-
tems in one-dimension in Chap. 2. Previous theoretical studies are presented in
detail as well as experiments on relevant systems. Chapter 3 is devoted to an ex-
planation of numerical methods - the density-matrix renormalization group and
the Hartree-Fock approximation. In Chap. 4, we investigate the frustrated spin-1
chains and present its results. The effect of the anisotropic exchange interaction

in the frustrated chains is also examined in Chap. 5. Lastly, in Chap. 6, we



investigate the Kane-Mele-Hubbard model in nanoribbon geometry.



Chapter 2

Reviews of quantum spin chains

In this chapter, we will review the research on the one-dimensional spin-1 systems,
which has been performed extensively for decades. Many interesting results have
been known in one-dimensional quantum spin-1 models [1-3|, especially after
Haldane suggested that the antiferromagnetic spin chain systems can be classified
by the spin number S [4, 5]. Haldane showed that systems with the integer/half-
integer spin have ground states with/without excitation gaps in consideration of

the one-dimensional Heisenberg model [29]. Its Hamiltonian is
%Heisenberg = JZ Sz ' Si+1 ) (21>

where S; = (S7,57,S7) is a vector spin operator at ith site and J > 0. It was
proved by a semi-classical approach using the nonlinear o-model. Although his
conjecture corresponds to the large spin limit, numerous theoretical and experi-
mental studies have proved it in various spin systems. Some of these studies are

introduced in the following sections.



2.1 Spin-1 chain models

The spin-1 chains have been studied intensively together with the spin-1/2 chains
because they can be accessed more easily than others of higher spin number. Not
only the gap in the spectrum can exist, Haldane also showed that correlation
functions decay exponentially in the spin-1 chain. In addition to the suggestion
by Haldane, Affleck et al. [6-8] showed that the first rigorous example of the
gapped phase in spin-1 chains by using valence bonds.! They proved that the
proposed valence-bond-solid (VBS) state is a unique ground state of an isotropic
spin model with the translational and SO(3) symmetries. In addition, it also
shows the exponential decay of the correlation functions. Although the model
they investigated is different from the original Heisenberg model in Eq. (2.1) it
was verified that its ground state is connected to that of the Heisenberg model [30].

In order to examine further the ground state of the isotropic spin model some
researchers introduced a interesting correlation known as the “string” correla-
tion [11-13]. They used various approaches and analogies to understand the VBS
state with the string correlation function. It is shown that the VBS-type states in
the quantum spin chains are equivalent to the disordered flat phase which is dis-
covered in the two-dimensional surface-roughening transitions and that the string

correlation function characterizes these VBS states [11]. The string order is also

! As well as in the spin-1 chains, they showed that other non-integral spin S systems in higher
dimensions can have the gapped phases. This is when the following condition is satisfied :

S=—-dn. (2.2)

z
2
Spatial dimension and coordinate number are denoted by d and z, respectively, and n is any
positive integer.



S=1 spin site two S=1/2 spin site

Figure 2.1: Sketch of the AKLT description of a S = 1 spin site represented
by two S = 1/2 spins. In this case, symmetrization of the two S = 1/2 spins
should be considered. Each S = 1/2 spin will bond with that of one of nearest-
neighboring sites.

explained within the analogy between the S = 1 Heisenberg spin chain and the
fractional quantum Hall effect [12]. The appearance of the Haldane gap in the
S =1 spin chain corresponds to the breaking of a hidden Z; x Z; symmetry [13].
The nonlocal string order from the string correlation function is connected to the

Haldane gap consequently.

2.1.1 AKLT (Affleck-Kennedy-Lieb-Tasaki) state

We first explain in detail the state of the singlet bonds proposed by Affleck et al.
6, 7], the so-called AKLT (Affleck-Kennedy-Lieb-Tasaki) state or the VBS state,
which is an example of a class of quantum states for analytical studies, so-called
“matrix product states” [31]. This started from the idea of the representation of
the higher-spin states in the spin-1/2 basis states [6, 7]. For example, a spin-S
site is represented by 25 spin-1/2 sites within the angular momentum addition
(or the Clebsch-Gordan coefficients). Then, they consider the state in which there

are singlet bonds between the spin-1/2 components of the nearest-neighbor sites.



Figure 2.2: Sketch of the valence bond solid state, so-called the AKLT state,
taken from Ref. 7. Each dot, line, and dashed circle denote a spin-1/2, a singlet
bond, and a spin-1, respectively. It considers the free open boundary condition,
so there exists a free spin-1/2 on each edge.

It was proved that this state can be the ground state of the isotropic spin model
when it satisfies the condition of Eq. (2.2). It also enabled us to understand the
higher spin systems and their ground states.

According to the AKLT description, a spin-1 site is decomposed by sym-
metrized states (triplet states) of the two spin-1/2 states as illustrated in Fig. 2.1.
Together with their singlet bonds between the nearest-neighbor sites the spin-1
chain can be represented as shown in Fig. 2.2. The AKLT state was first con-
sidered in the special case of the bilinear-biquadratic model [32-37] of which

Hamiltonian is

Hpp = Z [Sz' - Sit1 — B(Si - Si+1)2} . (2.3)

1

It was proved that the AKLT state is the exact ground state of the bilinear-
biquadratic Hamiltonian for § = —%. This model is quiet different from the
Heisenberg model (Eq. (4.1)), but their connection has been examined which will
be explained later. In fact, the special case (3 = —3) of the bilinear-biquadratic
Hamiltonian (or the AKLT model) can come from a sum of projection operators.

The projection is taken for the nearest-neighbor S = 1 spins and is expressed by



the following equation :

where P denotes a projection operator of two spins to the S = 2 spin space It
acts on a direct product of the two S = 1 spins and gives 1 if the direct product is

in the S = 2 space or zero otherwise. By introducing another projection operator
X = (8i+ Sia) - (Si 4+ Si1) = (G +1) (2.5)
we can rewrite H; more specifically as follows :

7

2
Ho= PO(S,, Sia) = 52X+ (X)) (2.6)

Then we have the Hamiltonian H = ), H; as in Eq. (2.3) which differs by the
constant factor only. With this form of the Hamiltonian, one can shows that the
AKLT state is a unique ground state for the periodic boundary condition in the
thermodynamic limit (or it will have fourfold degeneracy for the standard open
boundary condition) [7]. More detailed calculations about the S = 1 AKLT state
on a chain, such as the correlation functions and the total spin value, will be

explained in Sec. 2.1.4.

2.1.2 Heisenberg spin chains

After the AKLT state was proposed, There has been a progress in the general
bilinear-biquadratic Hamiltonian which includes the isotropic Heisenberg model

to understand the isotropic spin chain more [30, 35, 36]. It was revealed that
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Figure 2.3: Spin-spin correlation length as a function of the biquadratic interac-
tion strength S taken from Ref. 30. It shows the finite correlation length remains
even in the Heisenberg point f = 0 and implies that a gapped state exists as
Haldane suggested.

there is a connection between the ground states of the isotropic Heisenberg model
and the AKLT model. As increasing  from —1 to 1 gradually in the bilinear-
biquadratic Hamiltonian (Eq. (2.1)), Kennedy [30] showed that the system in the
open boundary condition has the degenerate states from the AKLT description
and finite correlation length by means of exact diagonalization. One of their result
is shown in Fig. 2.3. This shows the spin-spin correlation length as a function of

(—1 < B < 1). It supports the Haldane’s conjecture because the finite correlation

11
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Table 2.1:  Ground state energy and gap for various numerical methods. The
data are taken from references ; Monte Carlo (MC) result from Ref. 38, exact di-
agonalization (ED) result from Ref. 39, series expansion (SE) result from Ref. 37,
and density-matrix renormalization-group (DMRG) result from Ref. 40.

Method Ground state energy (J) Energy gap (J)
MC —1.4015(5) ~ 0.41

ED - 0.1-04

SE - ~ 0.4

DMRG —1.401484038971(4) 0.41050(2)

length means that the existence of a gap in the spectrum. They also showed that
the total spin of the ground state becomes 0 or 1 depending on whether the size
of the system is even or odd. They interpreted that there is a singlet or a triplet
coming from unbounded S = 1/2 spins on each edge of the chain as we can see
in Fig. 2.2. The slight difference in energy between the singlet and the triplet is
shown to decay exponentially and become almost zero with increasing the system
size. The alternation of the total spin of the ground state can be regarded as a
result of the antiferromagnetic short-range correlation in the finite system. All
these results also support that the AKLT state can be extended to the ground
state of the Heisenberg model and become a good explanation.

In addition to the bilinear-biquadratic model, numerous numerical studies to
explain the existence of the Haldane gap have been conducted by investigating the
XXZ (exchange anisotropy) model [41-46] and the Heisenberg chain model itself
[10, 38, 39, 47-50]. Among them, the density-matrix renormalization-method by

12



White [9, 10] showed the ground state of the Heisenberg chain and its energy in
the open boundary condition with unprecedented accuracy. They calculated and
showed the finite edge magnetization at very large sizes. It is attributed by the
unbounded S = 1/2 edge spin which penetrates into the bulk, which is an evidence
of the AKLT description [9, 40]. They also calculated the spin-spin correlation
function (S, - S;) and showed that it decays exponentially with the correlation
length of £ ~ 6.03(1). The penetrating length of the edge magnetization is very
similar to that of the spin-spin correlation length. Some of numerical results of
the ground state energy and the Haldane gap are listed in Tab. 2.1 according to
calculation methods. The finite Haldane gap is obtained between the St°tal = ()
singlet ground state and the S!°*8! = 1 triplet states for the periodic boundary
conditions while is obtained between the degenerate (S°% = 0, 1) ground states

and the S* = 2 quintuplet state for the open boundary conditions.

2.1.3 String correlation

The AKLT state can be interpreted as a fluid phase of the spin-1/2 particles with
the antiferromagnetic order [11]. Nevertheless, the reason why spin-1 chain does
not show the magnetic order is because the fluid is disordered spatially. This
feature of the AKLT state can be characterized by the string correlation function

O(i, j) which is defined by

j—1

O(i, j) = —(S7 explir Y~ S{]S}) (2.7)

k=i+1

13



and shows the long range order, the so-called “string order”. This is understood
by the breaking of a hidden Z, x Z, symmetry [13], showing the ground state
is invariant under m-rotations about the three coordinate axes. With a nonlocal
unitary transformation, the string correlation functions associated with not only
S% but also S* are transformed into the ordinary spin-spin correlation functions
(575%) (o= z, z). The action of the transformation on a chain represented by

S*-eigenstates (+,0, and -) is as follows :

(a) It does not change sites of 0.

(b) If the number of +’s sites and -’s sites which are left to site [ is
odd we replace the sign of the site [, and if the number is even we

leave site [ unchanged.

(c) We then multiply the state by -1 if the number of 0’s at odd sites
is odd.

The transformation is generalized by a set of operators with more specific forms

later [51]. They expressed the above nonlocal transformation as follows :
v=][u (2.8)

where

N —

Ui= 50+ f7 + 51— frem™) . (2.9)

The string correlation function should be examined carefully because it can also

capture the magnetically ordered states where the Z; symmetry breaks sponta-

14



neously. In the AKLT state described in the isotropic model, the string order
parameters along (x and z) are the same, reflecting that the AKLT state is total

spin zero and isotropic.

2.1.4 Matrix-product states

The matrix-product states (MPS) are constructed by taking the relevant part
of the entire Hilbert space spanned by many-particle states, and are used in
variational analytical approach usually [52, 53]. They are known to show only
the exponentially decaying behavior rather than the criticality. In this section
we will show one of the MPS representation of the AKLT state [7, 31]. For

convenience, we will use the following notation :

1 1

(1) =15=35,5=+3) (2.10)

1 1
[ =15=55=-3) (2.11)

and

[+) =[S =1,8.=+1) (2.12)
0)=1]S=1,5. = 0) (2.13)
- =1S=1,5.=-1). (2.14)

15



As we explained in the S =1 AKLT state, two neighboring S = 1/2 spins forms

the singlet bonding state and its representation is

| Tbi\l’ai+1> - | \l/bi/rai+1>)
V2

_ 0 1/V2 | Taii)
= ( |sz> |\Lb1> > ( _1/\/§ 0 > ( ’\Lai+1> ) (216)

(. J/

12O); singlet) = ( (2.15)

=X

= Z |bi) (Z)bi,aiﬂ |ait1) (2.17)

bi,ait1

where we use

_ 0 1/v2
Z:(—U\/ﬁ \ > (2.18)

and a;(b;) denotes the one S = 1/2 spin on the left(right) side at ith site, i.e.,
la;) = {| Ta;)s | 4a;)} (see Fig. 2.1). Considering the entire bonds of a chain of

length L, we can write a state of the chain in terms of singlets as
s) = @] 57) . (2.19)

In order to describe a physical state of the S = 1 chain, we need a symmetrization
of the on-site two S = 1/2 spins. It is indeed the triplet state because of the
angular momentum addition. So we introduce a transformation operator (or a

projection operator) f)(i) which transforms the triplet state in the S = 1/2 basis
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to the S = 1 basis states. It is represented by

(T,

+ (s
V2

= ZZ o) (M), {ail (bi] (2.21)
where we define

10 0 -+ 00
we(on) e (G §)=0h) e
NG

and |o;) = {|+4), |0;), |—)}. Taking this operator into each site of the chain, we

PO = [+ (Fa e, | +10:) + =) (Jasd; | (2.20)

have finally the AKLT state ¥ which is written as

[v) = @; (POS1)) (2.23)

and

(ZZm M), az|<bi|) ST Dyl | (229)

al
oi a;,b; bz i+1

- Z Z o) (M), '+ (a;] ® |aj,) - (2.25)
%,_/

i a;, al
1+1
=C

We obtained the following matrices from Eq. (2.25) :

C’+E<O VLE),C’OE(_ ),C'_E< 01 O). (2.26)
0 O 0 —70

o

N[

N[ —=
[\o)
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We need to normalize the state in a common space, so we take the left-normalization

of C”, i.e., the unitarity in the a;+1 basis. It is carried out by using
~No; YOy 3
Y i = Har - (2.27)

and we take C% = \%C"’ so that

y ¢ =1, (2.28)

(o5

where [, denotes an identity matrix in a-space. The AKLT state can be rewritten

with the periodic boundary condition as
) = Tr[C7C7 - CH]|o) (2.29)

where 0 = |oy05 -+ - o). It should also satisfy the normalization condition,

(@le)y = Tr[C71C% - COH] % [TY[C7H O - - C°F]| (2.30)
= T[ (Z C C"l) (Z C*® 0‘72) e (Z C ® C"L>]
N N B (2.31)

=Te((D)"] =) (Apa)* (2.32)
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where D =3 C7* C% and Ap; is an eigenvalue of D. We can diagonalized D

as
g o ! 1 0 0 0
410 -3 0 0 0 —3 0 0
D= S —Ap = U'DU = S
310 0 —3 0 0 0 —3 0
1o o 1! 00 0 -1
(2.33)
We used an orthogonal matrix U (UUT = TI)
1 1
vz 00 -7
0 10 O
U= (2.34)
0 01 O
1 1
vz 00 7
in Eq. (2.33) Finally, we can see that the MPS state is normalized as
1 o0
(W) =143(=5)" == 1. (2.35)

We consider the thermodynamic limit (L — oo) where the normalization of the

AKLT state is valid for calculating its physical quantities in the following sections.
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Correlation function
We can now calculate the spin-spin correlation function (¥|S7S?[v). From Eq. (2.29)

we have

(]S7S2|w) = S T[CT o2 - OO SESETH[CT O - O] (2.36)

— Ty (Z C* ® C"l) o (Z ot @ (SfC"i)) (2.37)

o1 o4

X e X (ZC%*@(SjC%)) (ZC”*@C"L)]. (2.38)

o orL

By using the following relations

o = O (2.39)
and
C*|+4)
S2C% | 0;) = 0 , (2.40)
—C7 =)
we have
00 2
—_ 0% yA T, + + — _ 0 0 O
D.=) @ (SiC7) =CteCt —C"® (™ = 00 o
200 0

(2.41)
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With the transformation U from Eq. (2.34), we also obtain
D.=U"'D,U=D,. (2.42)

The correlation function then becomes

z Qz i— j—i— L—j
(|S;S3|py = Te[D*' D, D’ D, D"] (2.43)
= Tr[A"" D, AT~ D, AFT] (2.44)
N’

where we inserted U U into Eq. (2.43) to obtain Eq. (2.44). The underbraced

part in Eq. (2.44) is calculated as

1 0 0 0
- —Lyi—id
D.N77'D, =D, 0 (=2) 0 ) D,  (2.45)
0 0 (=)~ 0
0 0 0 (—3)7 !
(=3)71 0 0 0
000
_ 4 (2.46)
9 000
001
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As a result, we have a final form of the correlation function

(Y|S7S7 1)
—5(=3)"t 00 0
0 0 0 O
=Tr
0 00 O
0 00 —3
1 0 0 0
0 _ I\L—j+i—-1 0 0
o 2.47)
0 0 (—g) 0
0 0 0 (_%)L—j—i—z—l
4 1. . 4 1 L
— o (_Z j—i—1 _ \L—j+i—-1
9( 3) 9( 3)
4 1. .
~ —5(—5)7_1_1 for L - o0 . (2.48)

We can see that the correlation function is exponentially decaying with its cor-
relation length ¢ of (In3)~! ~ 0.91. Also, it has an oscillation with the distance
|i — j| of which period is 2. It reflects that the pure antiferromagnetic correlation
exists, but there is no magnetic order. It has been known that this correlation

length corresponds well to the numerical results [30, 54].

String order

The AKLT state is characterized not only by the absence of the magnetic order
but also by the nonlocal string order. We calculate the string correlation function

of the AKLT state by using the MPS representation and show that its long range
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order exists.

From Eq. (2.7) we first need to calculate the following :

De.=> C"@ (™07 = -CTaCT +C°0C" - C~aC™  (249)

o5

Looo
0o - 0 o
- 3 (2.50)
0 0 -1 o0
2 1
-3 0 0 3
where we used
—C7+i)
eI o) = | C00;) : (2.51)
—C7 =)
The transformation U from Eq. (2.34) gives us
1
-1 0 0 0
0 -+ 0 0
D.,— D, =U"'D.,U= 3 = A... (2.52)
0 0 1o
0O 0 0 1
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The string order parameter O(i, j) is then calculated as

j—1

—0(i,§) = (S; exp(im Y S7)S5) (2.53)
k=i+1
=Tr[D'"' D, DI;*"' D, D] (2.54)
=Tr[D, A7t D, AFTHY) (2.55)
e e
100 0 1 0 0 0
4 000 0 0 (=)t 0 0
e—— T L.
9 000 0 0 0 (=)t 0
000 (—3)! 0 0 0 (—1)Emarit
4 1
= (14 (=) 2.56
s (1+377) (250
4
~ —9 for L — o (2.57)

If we rewrite the above results, the value of the string order defined as

Ostring = lim O(Z7 ])

|i—j|—o0
is %. It certainly corresponds to the numerical results of the AKLT model (§ = —%
case in Eq. (2.3)) [12, 55].

2.1.5 Frustrated spin chains

So far we have reviewed the Heisenberg single chain with antiferromagnetic nearest-
neighbor couplings. The real system, however, has more complicated interactions
and geometries. This leads to frustration, one of the interesting things that enrich

physics. Since the first frustrated system [56] and the word “frustration” [57, 58]
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Figure 2.4: Two examples of the frustrated spin system. (a) One is the sys-
tem described by two types of interactions - the antiferromagnetic interaction
with nearest-neighbors and the ferromagnetic (or antiferromagnetic) interaction
with next-nearest-neighbors. Of which interaction strengths are denoted by the
positive constant J; and the negative Js, respectively. (b) The other one is the
system frustrated by the geometrical factor. The three spins are coupled by the
antiferromagnetic nearest-neighbor interaction of which strength is denoted by J.
These two systems has a ground state(s) which cannot be determined simply by
classical states.

were introduced it has attracted much attentions in the last decades [3]. Its rich
and unexpected effects have led to many interesting studies with enormous quan-
tum emergent phenomena and exotic phases. Extensive studies on the frustrated
spin chains have been performed. In this section, we will give one good example

of the frustrated spin chains and show the results of the previous studies.

Frustration

We say that a system is frustrated when its spin state cannot be determined by

fully satisfying all the interactions with neighboring spins to give the minimum
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energy in each bond [3, 59]. The frustration is mostly shown in systems including
at least one kind of antiferromagnetic interaction. This is because a set of ferro-
magnetic interactions can be satisfied fully and give rise to the ferromagnet such
as in the Heisenberg model (Eq. (2.1)). The main cause of frustration is either the
competition of two or more exchange interactions or the system geometry. Two
typical examples of the spin system in the frustration are shown in Fig. 2.4. One
is the case in which there is the two kinds of interactions the antiferromagnetic
interaction with nearest-neighbors and the ferromagnetic (or antiferromagnetic)
interaction with next-nearest-neighbors (Fig. 2.4(a)). The other one is the sys-
tem of which three spins are coupled by the antiferromagnetic nearest-neighbor
interaction only (Fig. 2.4(b)). Both two examples show that the classical spin
state is not fully satisfying all interactions, but partially. It is then hard to deter-
mine their ground state. We will find the degeneracy in the ground state instead.
This description is applicable to other types of local interactions, and shows that
the system is frustrated if the classical spin state does not fully minimize all the
interactions.

Another simple way to see if the system is frustrated is to use plaquettes,
polygons that make up an unit cell [57]. When the following quantity defined on

a plaquette is negative, the system or the plaquette are frustrated :

F

I sien(r)) (2.58)

(i,7) Eplaqutte

where J; ; is the exchange interaction strength between the nearest-neighbors ¢

and j. For example, a triangle and a square with the antiferromagnetic Heisen-
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berg interaction have F' = —1, and we can see that they and their lattices are

frustrated.

Ji-Jo model

We introduce the J;-J; model of the spin-1 chain. This model has the interplay
of the two interactions as we can see in Fig. 2.4(a). The Hamiltonian is written

as

7‘[ - Jl Z Sl . SiJrl + JQ Z Sl . S,L'+2 (259)

There have been many studies about the frustrated chain where both J; and J,
are positive and the resulting antiferromagnetic interactions interplay with each
other. If we first consider the case of the absence of the nearest-neighbor inter-
action (J; = 0). the system reduces to two decoupled subchains; each consists
of next-nearest-neighbor singlet pairs from the antiferromagnetic next-nearest-
neighbor interaction (J > 0). The individual subchain lies in the Haldane gapped
phase. As well as the excitation gap the exponentially decaying spin-spin corre-
lations and long-range string order [40] still remain. Such a phase is called the
double Haldane (DH) phase, This is also understood well by the AKLT descrip-
tion, with four unbounded S = 1/2 edge spins in open boundary condition and a
16-fold degeneracy of the ground state.

In the presence of the nearest-neighbor interaction in addition, it was re-
vealed [61, 62 that the double Haldane phase undergoes a discontinuous transi-
tion to the Haldane phase at Jy/J; =~ 0.744 although they seems to be similar

to each other. At the transition point, the system exhibits a jump in the string
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Figure 2.5: (a) String order parameters and (b) gap of the J;-J; model taken
from Ref. 60. The single and double string order parameters are denoted by
O; and O,, respectively, and o = Jo/J;. Each string order parameter has the
jump at the phase transition point, J/J; ~ 0.744. The gap between the ground
state and the first (bulk) excited state in spectrum is denoted by A. The result
that gap does not become zero at the transition point indicates that it is the
discontinuous phase transition between the Haldane and DH phases.

order parameter with the finite bulk gap and a cusp of the correlation length

data. As the ratio of J/J; is changed more, the string order which is defined in
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Eq. (2.7) becomes finite in the Haldane phase. The DH phase is, however, not
characterized by the type of string order. This fact shows that the string corre-
lation function is different from the ordinary correlation functions. Kolezhuk et

al. [60] considered so-called the “double” string correlation function defined by

j—2

Os(i, ) = (S7S7y explim Y S;1S7.5)) (2.60)

k=i+2
instead to characterize the DH phase. This correlator shows a long range order in
the DH phase only. These two kinds of the string correlation show a jump at the
transition point J/J; ~ 0.744 as shown in Fig. 2.5. It is interpreted as the two
AKLT states in the DH phase adiabatically change with the soliton excitations

and it results in a change of connectivities of the two states intertwined [60].
2.1.6 Anisotropy effects

XXZ spin chains

The effects of the anisotropic exchange interaction on the spin-1 chains will be
shown in the section. The Heisenberg isotropic exchange interaction is replaced

by the anisotropy as follows :

S;-Sin = SPST +SISY L+ J.S7SE (2.61)

1

1
= 5 (SISh + S780) + LSESE (2.62)

The strength of the exchange anisotropy is denoted by J,. Such a model described
by this anisotropic exchange interaction is called the “XXZ” model. The XXZ
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model connects the Heisenberg model with the Ising model [63, 64] and the XY
model [65] which traditionally have been studied for a very long time exhibited
many interesting phenomena. In the spin-1 system, anisotropic interactions also
cause spontaneous symmetry-breaking or the phase transition to the XY phase,
which is similar to the S = 1/2 or classical spin systems [41, 42]. For the Ising
limit (|.J,| — o0), there are two well-known symmetry-broken states; one is the
Ising ferromagnet and the other is the Ising antiferromagnet. They do not have
time-reversal symmetry, but long range magnetic orders. There is a difference
between the areas of these two Ising states in the spin-1 systems. The Haldane
gapped phase that we have described so far appears between the Ising antifer-
romagnet and the XY phases [39, 47, 48, 66-68|. It was shown that the phase
transition from the Haldane phase to the Ising antiferromagnetic phase occurs at
J, = J.e [41, 69, 70]. The value of J, ., is known as 1.167(7) for the large system

size [69]. They also obtained its critical exponents

B =0.126(7) (2.63)

v =0.98(2) (2.64)

n = 0.25(3) (2.65)
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defined by

m = lim 4 /(55.57) (2.66)
my ~ | — T |° (2.67)
E~ | = Joe ™" (2.68)

S PP SV (2.69)
(SZSFY ~ . (2.70)

These values are very close to the classical 2D Ising critical exponents - § = %,

v=1andn= }L. It means that they belong to the same universality class [69, 70].

Single-ion anisotropy

There has been another type of anisotropy in addition to the exchange isotropy.
It is the “single-ion anisotropy” (or crystal field anisotropy) which is effectively
derived from the weak spin-orbit coupling (see more details in Ref. 72). This
effect usually exists in the real systems. The additional Hamiltonian from the

single-ion anisotropy is given by
Hsinglefion = Z D (SZZ)Z (271)

where D denotes its strength. This anisotropy affects only the system with spin
S > 1/2. Briefly, the spins favour ordering along the z-direction when D > 0
while the spins tend to lie on the xy-plane when D < 0. In the spin-1 systems, its
effect has been studied in the XXZ model [43, 45, 46, 73-75]. Various distinctive
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Figure 2.6: Phase diagram of the XXZ model with the single-ion anisotropy in
J.-D plane from Ref. 71.

phases were obtained in this model as shown in Fig. 2.6. As well as the Haldane,
XY (or XY1), and two magnetic ordered phases that can be obtained in the XXZ
model, there are two more phases - the large-D phase and the XY2 phase - which
exist for relatively large D. The large-D phase can be represented by a state
of |0000---00) when D — oo (0 means a S, = 0 eigenstate for a S = 1 spin

site). The continuous transition to the Haldane phase from the large-D phase
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is found with closing the gap and is characterized by the value of the central
charge of the conformal field theory. The central charge can be obtained by the
excitation spectrum or the entanglement entropy [71, 75, 76]. It is interesting to
note that the Haldane phase is quiet robust against the anisotropy (D # 0 or
J. # 1). In particular, the area of the Haldane phase is enlarged for J, < 1. The
XY1 and XY2 phases appear with power-law decays of the correlation functions
without gap in spectrum. The XY1 phase shows the power-decay of the typical
correlation functions (SfS7) and (S7SY) while the XY2 phase shows the power-
decay of (S¢25%2) and (SY25Y?).

Anisotropy with frustration

The anisotropy has considerable effects on the spin chain when it appears together
with the frustration. We introduce some previous numerical results here in the
S =1 anisotropic Ji-J5 model. For antiferromagnetic nearest- and next-nearest-
neighbor interactions as in Sec. 2.1.5, the exchange anisotropy allows the frus-
trated system to have another spontaneous symmetry-broken phase, the chirality
phase which is not shown in the unfrustrated or anisotropic spin chains [78, 79].
The Z, symmetry is broken in this phase, and it shows a long range order of
chirality which is defined by

Z- (S'z X Si—i—l) = §f351+1 — S«y AZ-x_H. . (272)

N
z
K i

The chiral phase is also invariant under the time-reversal operation and shows no

magnetic long range order. The phase diagram in the J,-J, plane from Ref. 78 is
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Figure 2.7: Phase diagram of the J;-J; model with exchange anisotropy in Js-.J,
plane from Ref. 77. The notation is different from ours and j and A mean J, and
J., respectively.

shown in Fig. 2.7. Two different chiral phases appear in the anisotropic frustrated
spin-1 chain. One is the gapless chiral phase which shows the spin-spin correlation
function decaying algebraically. The other is the gapped chiral phase with the
exponentially decaying spin-spin correlation function. The gapless chiral phase is
located in a very narrow region between the Haldane and gapped chiral phases.

The J;-J5 model with the single-ion anisotropy exhibits a much more compli-

cated phase diagram [77]. For positive single-ion anisotropy strength, the region
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of the gapless chiral phase becomes larger and two new phases called the chiral-
large-D phase and the chiral-Haldane phase appear. The chiral-large-D phase is
characterized by the gap and the chirality order, and the chiral-Haldane phase
is characterized by the Haldane gap with the finite string order parameter as
well as the chirality order. The frustration helps the anisotropy the spontaneous

symmetry-breaking occur.
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2.2 Experiments on spin-1 chain systems

In condensed matter physics, experimental realization is very important because
not only does it further develop the theoretical considerations, but it also sup-
ports it very quickly, and vice versa. Extensive experimental studies have been
conducted for decades after the development of experimental techniques for the
magnetic structure of materials such as electron spin resonance and neutron
scattering. In this section, we will review several relevant materials of one-
dimensional spin-1 systems, such as NENP [80-88], CsNiCl; [89-92], NaV(WOy,),
(93], Y,BaNiO5 [94-98], and ANiyV,0g (A=Pb, Sr) [99-104], briefly.

Ni(C,H;N,),NO,Cl0, (NENP)

It has been well-known that Ni(CyHgN3)oNO2ClO, (Nickel ethylenediamine ni-
trite perchlorate or NENP) is one of the spin-1 chain materials since the material
was studied in 1982 [80]. Not only was evidence of the Haldane gap shown [81-
83, 88|, but evidence for the spin-1 chain described by the AKLT state was also
presented [84-87]. The crystal structure of the NENP at low temperature is
shown in Fig. 2.8. Hagiwara et al. substituted a small amount of Ni** by Cu?*
as impurities, which cause some the singlet bonds to break [84]. (Glarum et al.
also used non-magnetic impurities such as Zn**, Cd?*, and Hg*" [85].) Then,
they found that S = 1/2 degrees of freedoms are induced additionally by using
the electron spin resonance (ESR) technique. This result supports that the Ni-
ions with S = 1 spin composes the chains and each chain with open boundary has

fractionalized S = 1/2 spins on each edge as described by the AKLT state. Its
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Figure 2.8: Low-temperature crystal structure of NENP from Ref. 105. Ni-ions
compose the spin-1 chains along the horizontal direction.

schematic representation is shown in Fig. 2.9. The excitation and the dynamic
correlation function were also studied with inelastic neutron scattering experi-
ments [86]. They showed that the data is consistent with the numerical result

and there is a peak of structure factors at ¢ = 7.

CsNiClj

In CsNiCls, Ni?* ions also has a S = 1 spin moment and constitute chains as
the crystal structure is shown in Fig. 2.10. This material is described by a set of
antiferromagnetically interacting chains in which the strength of the interchain
interaction is very weak (J'/J ~ 0.02 and J = 2.28meV [106]). It correspondingly

shows the excitations with the Haldane gap above the Néel temperature Ty ~
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Figure 2.9: Schematic representation of the AKLT state when substituted by
an impurity taken from Ref. 84. From the AKLT state described in Fig. 2.2, one
of singlet bonds is broken by a S = 1/2 Cu?" ion. Resulting three S = 1/2 spins
will interact.

4.8K by using the technique of neutron scattering [89, 90, 92, 92]. The fitting
result gives the Haldane gap of 0.54(2).J = 0.124(4) meV [92] which higher than
the theoretically predicted value, possibly due to an additional renormalization
from the weak interchain coupling. The enhancement of the gap shows that the
interchain is coupling of CsNiCl; is weaker than that of NENP. The Ni-ions has
its spin structure with 7 phase along the chain direction Its spin-spin correlation
length was obtained as 5-8 sites at 9K [90] and 4.0(2) sites at 6.2K [92], which
is explained by the weakly coupled spin-1 chains. Above the Haldane gap, the
well-defined excitation is observed as multiparticle continuum which resemble the

spinon continuum from the spin-1/2 antiferromagnetic chains [92].

Other compounds

The compound NaV(WO,), has been considered to be a system of zigzag spin

chains with the exchange interaction of J ~ 15.5meV [93]. It manifests a spin
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Figure 2.10:  Structure of CsNiCls taken from Ref. 92. Ni-ions compose the
spin-1 chains along the c-axis.

gap in the magnetic susceptibility. The antiferromagnetic fluctuation from S =
1 spins gives a broad maximum in the data and a minimum value at 7" ~10
K, signifying that the paramagnetic region appears. The fitting result without
consideration of anisotropy shows that the values of the gap is ~ 0.14J (J ~
15.5 meV) which is smaller than the prediction from the theory. They suggest
that this is attributed by weak couplings between the chains presumably. Inelastic
neutron scattering experiments on Y,BaNiOs shows that it is also one of quantum
spin-1 chains with the Haldane gap [95, 96]. Like other Haldane chain materials,
S = 1/2 spins induced from nonmagnetic impurities are also confirmed by NMR
experiments [97]. They are also found in the form of singlets and triplets [94].
When there are many Haldane chain segments at high doping concentrations,
the resulting triplet modes exist inside the Haldane gap with a Friedel oscillation

under magnetic field [98]. Its exponential decay length is 8(1) sites which is
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similar to that of the exponential spin-spin correlation in the AKLT state as is
pointed out in Ref. [40].

Measurements of magnetic properties of ANisV,0g have shown that it is de-
scribed as the Haldane gapped phase without long-range order. The inter-chain
exchange interaction is small enough that the systems can not have 3D magnetic
ordering at low temperature. Doping non-magnetic impurities to PbNiyVoOg [99]
and SrNi;V,0g [107] induces a magnetically ordered state due to the strong in-
terchain interactions. It is shown that SrNiyV,Og is in the paramagnetic state
down to 3.75 K [102] and that the material is in the Haldane phase by considering
the anisotropic effect with other materials of BaNiyV,0g and CaNiyV,Og [103].
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Chapter 3

Methods

3.1 Density-matrix renormalization-group (DMRG)

Since White suggested a method to obtain thermodynamic ground state by using
density-matrix and improved the renormalization group approach [9, 10], this
method, so-called the “density-matrix renormalization-group (DMRG)” method
has been one of the powerful tools in the strongly correlated systems.

In many-particle systems, we may take a Hilbert space of very large dimension
which is about % (z is the number of degrees of freedom of a particle). It is
impossible to treat all vectors of the huge Hilbert space in the thermodynamic
limit. We have, however, known the fact that many of these vectors do not play
an important role in determining properties of systems. What we want to know
in condensed matter physics is mainly related to their ground state(s) and low-
lying states which take a relatively small part of the Hilbert space. The DMRG
method gives us the ground state(s) (and a few low-lying states) in a spirit of

coarse-graining the irrelevant degrees of freedom as in the RG approach.
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Let me give a brief overview on the DMRG. We first take and keep a part of
a basis which contributes to a ground state dominantly from small size to large.
We then add two sites to the system and construct the Hamiltonian matrix of
the enlarged system by combining the kept and the additional basis states. From
this Hamiltonian, we obtain a ground state of the enlarged system and iterate the
above procedure until the system gets a size that we want to calculate. As a result,
we have a ground state of very large size of the system with approximation. More
details about the DMRG calculation will be explained in the following sections.

(See also Ref. 108-111 for more information.)

3.1.1 Ground state and Truncation

As we mentioned above, we start with a small system of size L which can be
calculated exactly instead of large size of system. We give an example of the
system of its size L = 4 in Fig. 3.2. From the Hamiltonian Hj of this small
system, we can obtain its exact ground state |¢g; L) or low-lying states by using
the exact diagonalization or the Lanczos method etc. The resulting ground state

is expressed by a linear combination of direct products of single-site states as

|0) = Cor o, [51)[82) -+ [51) 5 (3.1)

$1,52,"*SL
where |s;) can be any single-particle state at ith site and we consider it as a spin
state. In spirit of the renormalization group approach, we want to truncate the

Hilbert space of the system and take the relevant part of the thermodynamic

ground state. The DMRG, however, will use only the ground state of the small

42



size system to obtain that of large size systems without the excited states. In
order to do this, we first need to partition the system into two segments with
equal size in order to perform the truncation. We call each segment “a block”,
especially, the segment on the left is called the “system” block and the other is
called the “environment” block as shown in Fig. 3.2. The Hamiltonian can also

be divided into three parts as
Hy =My +HY? + Hop (3.2)

where S and E denotes the system and environment blocks, respectively, and

HsE is the interaction term between them. The ground state is then rewritten as

[b0) =D > [ @ligislis)lin) (3.3)

is im
where |ig) = |s1,-+,51/2) and |ig) = |[spja41,- -+, 51). The DMRG concentrates
only on the system block and its states relevant to the ground state. If you trace
out the environment block states, you can obtain and choose the basis states of the
system block which are more contributing to the ground state. More specifically,
you need to construct a density matrix of the ground state p from the density

operator p as

p= o) (b0l = _[plis|i) (j] (3.4)

4]
where |i) = |ig) ® |ig). It shows that how the ground state is decomposed in the

|i —-basis states. But we want to know the contribution of the system block.

This can be accomplished by just tracing out the environment block states from
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the density matrix so that the basis state of the system block remains. We call
the resulting density matrix the reduced density matrix of the system block pg.

The reduced density matrix is written as

ps =Trg p= Z ig|plip) = Z lis) ps)ij (Js| - (3.5)

i 15,J8

It is now expressed in terms of the system block states |is —. Now we have to
extract the relevant part and truncate the Hilbert space. Diagonalization of pg
with a unitary transformation and a unitary matrix U gives eigenstates (good

basis states), i.e.

ps =D > Ukl o) sl (pwr| [U e (3.6)

k.k' 15,35
Ms Mg

=2 D U os Uk 1) (3.7)

Z | 1) (P | (3.8)

k=1

where |py) denotes an eigenstate of pg with eigenvalue pp and Mg is the dimen-
sion of the Hilbert space of the system block. The eigenvalues represent the
probability of the eigenstates on the ground state. Listing these eigenstates and
sorting them by descending order of their eigenvalues, we choose and keep the
first m eigenstates as basis vectors. We will neglect the other eigenstates, since
the eigenstates with large probability value p (g, > 0) play a more crucial role in
constructing the ground state. The remaining basis vectors span a m-dimensional

subspace. The truncation procedure will be completed after projecting all matri-
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Figure 3.1: Sketch of obtaining the truncation matrix 7" from the unitary matrix
U. We show the matrices transposed for the sake of convenience, and each column
vector denotes one of eigenvectors of the reduced density matrix pg. We keep the
first m column vectors with large eigenvalue py of pg (or large probability pi)
and decimate the others from U when m < Mg. Finally, we have the m x Mg
truncation matrix 7.

ces of the local operators of the system block including the Hamiltonian onto the
resulting subspace.

In the actual calculations, we need to consider a truncation matrix 7" to rep-
resent the projection (or the truncation) It will be obtained from the Mg x Mg
matrix U which represents the transformation of {|ig)} to {|px)}. Taking only
the m basis vectors means that only m row-vectors with large py in U are taken

and gives the (m x Mg)-dimensional matrix T as
m Mg
T=Y > [Tylsi) s - (3.9)

i=1 j=1

This is schematically illustrated in Fig. 3.1. All we have to do is to project all the
matrices of the system block that we are interested in into the truncated Hilbert

space as in the following way :
0O—-0=TOT". (3.10)

The truncation can be interpreted that we approximate the Hilbert space of the
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system block by only taking the relevant basis states to the ground state
After the truncation procedure, we can have the Hamiltonian matrix 7—2? 2
from Hé/ %, Similarly, the environment block can also be obtained by tracing out
the system block’s states and truncating it as in Eq. (3.8). We now add two more
sites to the total system with the truncation. It gives a new total system of size
L + 2 (which is usually called “a superblock”). This procedure is illustrated in
Fig. 3.2. The rectangular box in Fig. 3.2 means that we deal with the enclosed

sites in the truncated Hilbert space. We can construct the Hamiltonian operator

of the new superblock as follows :
7:[L+2 - ﬁgﬂ + 7:[5'01 + 7:[0102 + 7:[0215 + ?:[éﬂ (3'11>

in which o; and oy denote the two additional sites, and H,g is an interaction
term between « block (or site) and 5 block (or site). In fact, each term of the
Hamiltonian will be represented in the direct product of the truncated states and
the inserted spin states

157) @ o) @ |o2) @ |57) (3.12)

1.e.

ﬁé/Q — 7:[5/2 ® ]I0102jE

w0
—_
B

7:[]];«7/2 — Hisﬂloz ® 7_25/2

HSFH — HS(H ® ]Idsz

w
—_
D

,}:l0'10'2 — ]Iis ® 7120102 ® ]IjE

~—~~ o~ o~
w
—_
ot

~—  ~— ~— ~—

HO'QE — Hisoj & 7-[0'2E
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Figure 3.2: Partitioning of total systems of size L. = 4, 6, and 8 for the truncation
step in the DMRG. Each rectangular box is come from the sites of the above
system block and means that irrelevant parts of the Hilbert space are removed.
The environment block is also truncated, but we will copy the system block into
the environment block as long as the Hamiltonian has reflection symmetry.

where I, is an identity matrix in the space spanned by {|a)}, and ig(g) denotes
ﬁf(E). Finally we calculate the ground state(s) of the superblock and its energy.
We will iterate the above procedure by substituting L for L' = L + 2 until we
get the system size that we want as shown in Fig. 3.2. The DMRG method
sometimes does not need to calculate the truncation of the environment block as
we explained. Instead, it can be accomplished by copying the system block to
the environment one as long as the total system keeps the reflection symmetry
in one-dimensional system. This will also reduce the cost to the DMRG process.

The thermodynamic ground state and its energy can be approximated to the

obtained ground state when L — oo.
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The truncation basically has an error estimated by

551—2@. (3.18)

We have 0 < ¢ < 1 by the definition of Eq. (3.8). (When we take m = Mg, we get
e=0. Zf\isl pi; = 1) If the error becomes zero for every system size, we then have
exact ground state in the thermodynamic limit. In this case, we will treat the
entire Hilbert space i.e. Mg = s where s is the number of degrees of freedom of
a site. (Here, s is the spin number.) However, It is nearly impossible to calculate
the ground state or the low-lying states in the thermodynamic limit because Mg
becomes so large. The strategy of the DMRG method is now to increase m and
extrapolate € to 0 as possible as we can.

The approximated ground state has its energy with an error which is pro-
portional to the truncation error €. You must consider these errors and their
extrapolations as well as the convergence of the iterations with increasing the
system size. In order to have more accurate results, you need to first improve the

precision of the ground state (or excited states which will be discussed later in

Sec. 3.1.4.

3.1.2 Exact diagonalization

In the previous section, we mentioned that the Hamiltonian can be diagonalized
and its ground state(s) (or a few low-lying states) can be obtained. We explain in
this section that how we obtain them numerically in detail. We use one of diago-

nalization methods, the Lanczos method [112]. This helps us to find eigenstates
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of the smallest (or the largest) eigenvalue of some operators approximately. We
focus on the smallest eigenvalues because we are interested in the ground state.

If you know the Hilbert space of the system and construct the Hamiltonian
matrix you first choose the target space and its states. This target space can
be reduced or more specified by symmetries or boundary conditions, which will
be discussed later in Sec. 3.1.5. Once you choose its basis states, you need to
consider an initial guess of the ground state. Its probability amplitudes and their

signs are determined by random numbers. We can express this as :
po =Y Ciliy) (3.19)
J

where [1);) is the basis states and C} is its probability amplitude. The normaliza-
tion condition is also necessary, . |Cj|* = 1. This state is not the same as the
exact ground state of the system, |¢g) indeed i.e. |pg) # |¢o). We next operate
the Hamiltonian to the initial state |pg). It produces a new state different from

the initial state as

|£1) = Hlwo) (3.20)
= ZC]’-IW (3.21)

where ('} = E;Cj and Ej is the energy eigenvalue of |¢);). Note that 1), however,
includes the components of |py) and does not have a unit norm. We subtract the

component parallel to |¢g) by the Gram-Schmidt decomposition as

|01) = 1) — lpo){@olh) - (3.22)
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After a normalization we have a new orthogonal state

oy = l©1) — |o) {wol¥h)
(p1leh)

(3.23)

You can expand a Hilbert space by these orthogonal states, which is a kind of
so-called the Krylov subspace. We choose only two states - |¢g) and |p;) - as
basis states. This is the modified Lanczos method. In this subspace spanned by
two basis vectors, you will have the Hamiltonian as

Hy H
H= oo (3.24)
Hy H

where

Ho =(ip0| H|p0) (3.25)
Hoy = (ol H| 1) (3.26)

— I, (3.27)
Hy =(p1|H|p1) . (3.28)

You can find its eigenstates with eigenvalues exactly and choose one eigenstate
with the lowest eigenvalue. This state has an amplified component of the exact
ground state. We then set the new state as the initial state | and iterate the
above procedure. You will finally have a state converging to the exact ground
state after a lot of or some iterations. We take a criterion for convergence as
overlaps and energy differences between the ground states of the iteration steps,

which means that you find the invariant subspace of the Hilbert space and its
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basis.

Generally, you can make the Krylov subspace of n-dimension ( n > 3 ). It is
called the band Lanczos method. Obtaining a new orthonormal state ¢; can be
generalized from Eq. (3.23) as

e =225 i leilen)
(ilh) '

(3.29)

%

One can obtain the following relation :

Hepi = Bi1lpi-1) + ailei) + Bilwir) - (3.30)

A set of these orthonormal states forms a basis and has a tridiagonalized Hamil-

tonian matrix as

ar B
B s B
H == 52 Qa3 - . (331)
. . ﬁnfl
/8n—1 Oy,

This Hamiltonian matrix can be diagonalized by the QR decomposition (which is
omitted in this dissertation). The band Lanczos method will reduce the number
of iterations and to deal with degeneracy of the low-lying states well at a cost of

obtaining the enlarged basis and diagonalizing their Hamiltonian matrix.
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3.1.3 Physical quantities

After the ground state is obtained in the way described in Sec. 3.1.1, we need to
proceed to analyze physical properties of the system. We discussed only one of
them, the energy value in the previous section which is just followed by updat-
ing the Hamiltonian and calculating the ground state. Most operators that we
want to study are projected as we explained in Eq. 3.10. Onsite terms such as
(O;) or matrices O; = > 05l0ilas = (a|0;|8) which are defined at ith-site can
be applied and projected easily. The iteration procedure will give their matrix

transformations as

On the other hand, there is a caution on the transformation of other operators
composed of multiple sites, for example, 0,0y For these operators, their matrix
should be transformed as a whole, not separately. Namely, if we define VHI =

CA)z-OAi/, its matrix V;; follows

Vig = Vig = Z[W,i/]a,ﬁ (3.33)
a,B
and
0,00 — (0,0) . (3.34)
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Note that

If you use the transformation as in Eq. (3.35), it gives a wrong answer which
becomes close to zero almost. This is because 7' is not unitary (T'T is not the
identity matrix).

In addition to the above examples, you may also consider new operators in-
cluding a site(s) with truncation and the added site(s). These operators shows a

matrix transformation as follows :

—_——

6;\0/1'/01‘// — (6;\0/1‘/01'//> . (336)
Here, each matrix should also be projected as a whole.

3.1.4 Excited states

So far, we have focused only on the ground state calculation. If you, however,
want to calculate low-lying states (or excited states around the ground states),
two additional steps are needed from the DMRG procedure we explained above.
One is that when you calculate the ground state ¢q for a given system size at
first, you should also calculate more and find excited states as many as you
want. Secondly, constructing a reduced density matrix from these excited states
as well as from the ground state, you have to take its relevant basis vectors with
large probability. A transformation matrix to the truncated Hilbert space can

be obtained as in Eq. (3.9). The resulting reduced density matrix is written as
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follows :

ps — ZCJ@)(@\ (3.37)

where ¢; (i > 1) denotes the excited states and ¢; is their probability (>, ¢; = 1).
It is known that there is no optimal choice of ¢;. However, equally-weighted
probability distribution is regarded as reasonable one empirically. If you consider
only a few excited states without ground state and project them separately, it

may give best results for each states.

3.1.5 Physical considerations

When you calculate the ground state(s) (or excited states) and truncate the
Hilbert space, some informations will help you to obtain more accurate results
efficiently, for example, symmetry, degeneracy, boundary condition, etc. They
reduce the computational cost of the calculations. As a result, it allows us to get
larger values of m and higher accuracy of the states. In the followings, we will
discuss about how symmetry can be applied to the DMRG calculation and how
boundary conditions can affect the calculation in detail, which is expected to give

better results.

Symmetry

We first consider symmetry in the Hamiltonian for given system. Symmetry
can give informations about the Hilbert space of the system. If we know what

symmetry lies in the Hamiltonian, we can classify its subspaces according to the
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Figure 3.3: Schematic representations of the AKLT state adopted in our model.
The filled circles, the dashed lines, the solid lines, and the shaded regions denote
the S = 1/2 spins, the antiferromagnetic couplings, the ferromagnetic couplings,
and the singlet bonds, respectively. (a) The usual open boundary condition gives
rise to the edges containing the free spins which do not participate in the singlet
bond. Its free spins cause the degeneracy that we are not interested in. (b)
The modified open boundary condition we employed excludes the above free spin
problem. Each ferromagnetic coupling between the two end sites is replaced by
the antiferromagnetic one. This gives a marked improvement in the cost of the

DMRG.
good quantum numbers which are separated with each other. It helps us to
restrict the target subspace to the smaller one. We are then able to focus more
efficiently on the subspace we are actually interested in. The ground state and
the excited states will be determined after a comparison of the energy for each
subspace.

For instance, let us consider a system with a rotational symmetry or a gauge
symmetry which preserves the total angular momentum or the particle number,

respectively. We can take operators such as S, S% or N, etc. which commute
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Figure 3.4: (Color online.) Total spin of ground states of the antiferromagnetic
spin-1 chains for the mOBC (square) and the sOBC (triangle). The sOBC shows
finite total spin value resulted from the fractionalized edge spins while the mOBC
has zero total spin. It means that the degeneracy is lifted and we can focus only
on the bulk state efficiently.

with the Hamiltonian. Each operator shows the conservation law in the trunca-
tion process. The eigenstates of the density matrix (Eq. (3.5)) have eigenvalues
of these conserved quantities. In the reduced density matrix, its eigenstates also
remains these conserved quantities as eigenvalues because tracing out the envi-
ronment is taken by their eigenstates. Let us consider the ground state which has
S? (or Nparticle), it then satisfies S* = Sg+S7,. After tracing out the environment
states, there are still the eigenstates of S with eigenvalues S%. Therefore, the

block diagonalized density and Hamiltonian matrices is kept in all the DMRG
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Figure 3.5: (Color online.) Number of iterations for the antiferromagnetic spin-1
chains with the mOBC (squares) and the sOBC (circles). Much more iterations
are needed for the sOBC than for the mOBC. It causes the high computational
cost problem in the DMRG.

steps.

Boundary condition

There is another efficient way to calculate the ground state more accurately and
quickly. This is an employment of appropriate boundary conditions to systems
We give an example of the antiferromagnetic spin-1 chain systems that we will
discuss in Sec. 4. Within the Heisenberg exchange model the system is known to
have a unique ground state in the thermodynamic limit. However, it has gapless

edge excitations from the standard open boundary conditions (sOBC). Following
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Figure 3.6: (Color online.) Difference between the ground state energies and the
converged value for the antiferromagnetic spin-1 chains with the mOBC (squares)
and the sOBC (circles).

the AKLT description adopted suitably to the ground state in our system, we
expect that there are singlet bonds between sites by antiferromagnetic couplings.
If we use the sSOBC shown in Fig. 3.3(a), the edges have free spins which are not
participating in the singlet bond with one of neighboring sites. They make the
gapless excitation. Each DMRG step considers the finite-size systems, so we will
encounter a problem from degeneracy. It increases the cost of the calculations and
gives relatively inaccurate results. To solve this problem, we lift the degeneracy
from the edge by a modified open boundary condition (mOBC) as shown in
Fig. 3.3(b). It arises that the edge free spins form singlets artificially and the

final ground state will show zero total spin. We plot the data of the total spin
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of the ground state for each OBCs in Fig. 3.4. The mOBC shows total spin zero
while the sOBC has finite total spin value. In the sOBC, the four edge S = 1/2
spins (Fig. 3.3(a)) will be represented by a direct product of the spin states and
the angular momentum addition : @1 ®1®i=001)®(0®1) - 001®2,
This is because the ground state for the sSBOC has to show the total spin in the
range between 0 and 2. It confirms that the edge free spins are participating
in the ground state for the sOBC and we suitably lift the degeneracy with the
mOBC. We thus can focus only on the bulk state for the mOBC efficiently.

In order to check if the mOBC allows us to calculate and obtain the ground
state in an efficient way, we compare the number of iterations of finding the
ground state in the Lanczos procedure. The sOBC has much more iterations
than the mOBC has as shown in Fig. 3.5. The computational cost of the DMRG
is proportional to the number of the Lanczos iterations significantly and becomes
much larger for the sOBC than for the mOBC. We also show that the accuracy
of the calculation varies. We plot differences between the ground states energy
and the converged one as a function of the system size in Fig. 3.6. The difference
for the mOBC shows a rapid decrease at first small size and becomes close to the
converged value. On the other hand, the sOBC shows the difference two orders
of magnitude larger than that of the mOBC. For fixed system sizes, not only the
number of iterations surges, the accuracy of the ground state is also reduced. The
computational cost problem is much more compounded for the SOBC. It is thus
important to reduce the degeneracy and the subspace by appropriate boundary
conditions as well as symmetry considerations It will help us to concentrate on

what we have an interest in and examine the systems more efficiently, accurately,
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and energetically.

3.1.6 Optimizations

Accurate ground state and its energy can be obtained by increasing m (the num-
ber of kept states in the truncation process) with its extrapolation of m — co.
Furthermore, we have to iterate the calculation until the system gets a size suf-
ficiently large that we are interested in. You, however, may have a problem of
long-time calculations for obtaining high accuracy or treating a large number of
data from large system sizes. It means that we need to utilize all computing re-
sources in an efficient way during the DMRG calculations. In this section, we will
explain technical details in our numerical calculations which improve performance

of the DMRG calculations to solve the above problem.

Memory-efficient algorithms

Generally, it is impossible to increase m excessively because of our limited com-
puting resources. Particularly, if we take large m, the matrix will have a large
number of components proportional to m*, and we need more memory resources.
In order to use memory more efficiently, we have used two ways of reducing the
memory-use in the DMRG method. One is the sparse-matrix algorithm which
allocate memory only for nonzero components of matrices. While the standard
memory-allocation routines use memory addresses as indices of matrices (or ar-
rays), the spare-matrix algorithm saves values of the nonzero components with
their indices in the memory. It cuts down the memory requirements dramat-

ically. In facts, more than 50% of the memory we have to access is reduced
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in our calculations within the sparse-matrix algorithm. Additionally, it also re-
moves unnecessary multiplications and additions of zero components and gives
less round-off errors and more correct answers.

The other one is the matrix-product representations of operators [113]. In the
DMRG process, the Hamiltonian of each block is projected and collected to form
the superblock Hamiltonian. Instead of calculating the superblock Hamiltonian
matrix in the basis of Eq. 3.12, keeping the representations in the form of the
direct product and their order (or indices) will reduce the memory-usage and
even computing time. Let us consider Eq. (3.11) as an example. After some
DMRG iterations, we may see that 7:[5/2 is a m X m matrix and acts as 7:[§/2 ®
Is,00j; Which is in fact (m?s?) x (m?s?)-dimensional superblock matrix. But the
superblock matrix is composed of just four copied blocks of 7:[§/ 2t 7:[@/ ? has
a components, the superblock matrix will have 4a components, occupying more
memory redundantly. So we need to keep the operator matrices in the form of
the direct product which is called the “matrix-product operator”. It helps us to
increase m more and obtain more accurate results with its small truncation errors

and better extrapolations.

Parallelization

Recent computer systems with multi-cores enable the parallelization of algorithms
which divides a task and executes allocated parts of the code in each thread at
the same time. It also cuts down the computing time substantially. Its ability
is boosted by the number of cores, depending on an algorithm. We use one of

the parallelization method, the OpenMP (open multi-processing) [114], in which
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Figure 3.7: (Color online.) Computation time of one of our results (in Sec. 4)
with the parallelization. It is plotted as a function of the inverse number of cores
for the hexa-core machine (squares) and for the quad-core machine (circles). The
linear reduction of the computation time is clearly shown as we the number of
cores is increased.

each thread shares system memory in a node. In our codes, the parallelization
is applied to divide the calculation of the superblock Hamiltonian into each sub-
block part which is the most time-consuming process in the DMRG. We confirm
that the total computation time of the code decreases and it is proportional to
about 1/n (n: number of cores). You have to be careful about if you partition
your tasks in a proper way and if each thread is running without idle processors.
We plot one of our results of parallelization in Fig. 3.7. It clearly shows that
the computation time reduces linearly as we increase the number of cores for two

kinds of machines.
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Eigenstate prediction

When performing the DMRG iterations with adding the new sites in between
the blocks, it is useful to exploit the previous eigenstates of the system of small
size in order to obtain eigenstates of the enlarged system [109, 115, 116]. This
is because the resulting states tend to converge and resemble with states in the
thermodynamic limit. The details are as follows. We use the system-block basis
states with their probabilities after tracing out the environment block (Eq. (3.8).
They are used to construct an initial guess of the new ground state of which
composition is rarely changed and is expected to be very close to the new ground

state. The new ground state is expected to be

6672 ~ A/ 3RS PEC, Coy |53 01)2) 11 ) - (3.38)

The signs of their probability amplitudes are determined randomly. The coeffi-
cients C,, and C,, can also be obtained up to the sign by tracing out the previous

environment and system blocks from the density matrix of the ground state as
TI'SL/2EL/2|SO’10’2E><SO’10’2E| . (339)

It enables the exact diagonalization to start with an initial state close to the
ground state and reduce the number of the Lanczos iterations. The total compu-

tation time also decreases consequently.
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3.2 Hartree-Fock approximation

We use another numerical method to treat the interaction between the particles
in many-body systems. It is the Hartree-Fock approximation, one of the mean-
field approaches, which turns out to yield the effective Hamiltonian of a single
particle. As a result, it allows us to solve the problem rather easily and calculate
the ground state. We apply the Hartree-Fock approximation to the Hubbard

interaction of electrons (S = 1/2 fermions) as follows :
HU = UZ?”LZ‘TTLQ (340)

= UZ chci¢cI¢ci¢

7
~UY [(CITCMCL% + (clyen)chen = (e (el e)
7

—(chew)el e — (el en)elien + (che) (] en) (3.41)
= UZ <—%'lnZ : Zc;raaa@cw> (3.42)
i aB
=Hy" (3.43)
where m; = (34 cjaaa/gci@ denotes the local magnetization of ith site and
o = (0,,0y,0,) is the Pauli matrices vector. We will use a set of the local

magnetizations as a mean-field. We can now construct the effective Hamiltonian,

for example, the Hubbard model becomes

H= —tz (c;-rcj + H.c.) + UZ (—%ml : ZCZao-aﬁciﬁ> : (3.44)
(i) i of
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The number of mean-field parameters is determined by the system. It depends
on the size of the unit cell, boundary conditions, and even the symmetry con-
siderations. If we consider an unit cell composed of n-site, it has basically 4n
mean-field parameters. Some symmetry considerations may give constraints on
the parameters, and the number of parameters we have to deal with is reduced.

Because we do not know the values of mean-field parameters, diagonalizing the
Hamiltonian is itself meaningless. We need to find self-consistent mean-field pa-
rameters. First, take an initial guess of the mean-field values. Insert these values
to the effective Hamiltonian and solve the problem. The resulting ground state
gives a new set of mean-field parameters (which here are magnetizations). We
then compare the previous and the new parameters. If two sets are inconsistent,
go back to the first step and iterate solving the Hamiltonian with new mean-field
parameters. Otherwise, if they are consistent, it provides us a self-consistent
ground state. This process is schematically represented in Fig. 3.2.

On the other hand, you can also obtain the ground state by minimizing the
(free) energy functional with the mean-field. Finding its minimum energy and its
solution numerically or analytically gives the ground state. The self-consistent
mean-field solutions are equivalent to this method. When the number of the
mean-field parameters is very large, it is more convenient and faster to calculate
the iterative calculations of the mean-field.

We consider the Hubbard model in the honeycomb lattice. We employ two
kinds of boundary conditions which represents the bulk system and the ribbon

of a finite width. The bulk calculation is performed with a unit cell composed
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Figure 3.8: The procedure of the self-consistent loop.

of two atoms. At half-filling, the electronic number density (n;) = 1 and the
additive constant energy can be neglected in the Hamiltonian. After the Fourier

transformation of the creation and annihilation operators,

1 —ik-r; T 1 ikr;
Cip = VAN Z e R NG Z e i ep (3.45)

66



The Hamiltonian can then be rewritten as

,HI;JIF,bulk _ Z \IILFISF,bqu(k>\IJk

k

UN

+— A < Z mf;f + miz - <n1>2) + const. (3.46)
a=x,y,z

where U] = (CﬁTT, CETT, cﬁj, c{fﬁ), N, is the number of lattice sites, and H;;"™"™ (k)

is a 4 X 4 matrix given by

- M4
M2><2
We defined
(A/B) (A/B) _ . (A/B)
M(A/B) = my, My, — tmy, (348)
ml({z;ic/B) +im§{2/3) ml(:zl/B)

where 0 = A, B which denote the atoms in the unit cell. Combining this result
with other Hamiltonian terms, we can calculate and obtain the ground state with
its energy.

Since the honeycomb lattice has the bipartite structure we can expect anti-
ferromagnetic ordering. Accordingly, we take my, = miL, = —m . It actually
comes from the symmetry considerations that the system does not break the sub-
lattice symmetry. If the system break the symmetry, we need to reconsider which
the mean-field parameters are used. Also, if other Hamiltonian terms has a rota-
tional symmetry (SU(2) for spin-1/2 particle) we can take only one component of

the local magnetization, say m,, without loss of generality. In fact, the calcula-

tion will find without these symmetry considerations, but the convergence occurs
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more slowly. The KM model has only axial symmetry, so we need to consider
two components, mxy = m, = m, and m,.

The nanoribbon geometry does not have translational symmetry in one direc-
tion (sublattice symmetry breaks) and accordingly, we need to take the enlarged

basis state
\I/T(k) = (CJ{A’ CIB? CgAv CEB’ - 7CJ1rLAv CTLB)' (3'49>

where £ is a momentum in the direction of the ribbon length. The Hamiltonian
of the system can also be extended with this basis and rewritten as a 4L x 4L
matrix as follows :
My,

M7,
HFrPhor () = " . (3.50)

LA
M2><2

LB
M2><2

Fortunately, the ribbon system has the reflection symmetry across the ribbon.

(A/B) _ _ L=1-ny

5 o AB) to reduce the number of self-

We thus take a relation m;,

consistent mean-field variables.
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Chapter 4

Frustrated Spin-1 Chains

In this chapter, we investigate ferromagnetically frustrated spin-1 chain systems.
They are described by a combination of the antiferromagnetic and the ferromag-
netic couplings between spins that has not been explored so far while another
frustrated system discussed in Sec. 2.1.5 is composed of antiferromagnetic cou-
plings only, We examine how the DH phase changes with the ferromagnetic in-
teractions. We then show that there is no other phase between the ferromagnetic
phase and the DH phase. The spin-spin correlation function and its structure fac-
tor are analyzed in the DH phase. The string order parameters and the absence

of chirality are also discussed.

4.1 Model

The Hamiltonian of our model is

H: les’i'gi+1+t]2zgi'gi+2 (41)
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where S; = (Sf , S'f” , S’f) is a spin-1 operator vector at i-th site. The exchange in-
teraction strengths of nearest-neighbors (NN) and next-nearest-neighbors (NNN)
are denoted by J; and Js, respectively. We also denote the total number of sites
in a chain V. We investigate the Hamiltonian (Eq. (4.1)) with ferromagnetic NN
couplings (J; < 0) and antiferromagnetic couplings (J; > 0) at zero temperature.
We adopt slightly modified open boundary conditions (Fig. 3.3(a)) in which the
last two NN spins interact with J;. This was explained in detail in Sec. 3.1.5.
It leads to an effective finite-size calculation in the DH phase. We performed
comparative computation in the standard open boundary conditions and found
no significant qualitative difference in the bulk state. Henceforth, we will denote

the energy and the length in units of J, and of the lattice constant, respectively.

4.2 Results

In this work, we use the DMRG method with infinite algorithm (Sec. 3) in chains
up to L = 200. The spin-spin correlations in different sizes turn out to convolute
to a single curve in a wide range of coupling parameters, as will be shown later. We
estimate the uncertainty in the data by the maximum deviation from the average
value for the systems with size L > 50. and mark the error bars when they are
larger than the size of symbols. We have also checked out the convergence of the
data with respect to m, where m is the number of states per block after truncation,
by increasing m consecutively. The truncation errors in our calculations with
m = 200 are of the order of 107® to 107 for the DH phase, in which the main

interest of this work lies. They are larger in the central region of the DH phase
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Figure 4.1: (Color online.) Spin-spin correlation functions as a function of the
separation 1 between the spins (defined in Eq. (4.2)) for (a) J; = 0, (b) —0.5,
(¢) =1, and (d) —2. from top to bottom. The period of the oscillation is 4
(i.e. k =7/2) at J; = 0 and becomes incommensurate as .J; decreases. Their
amplitudes seems to decay without any long-range order.
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due to the increase in frustration. In the region of the ferromagnetic phase the
truncation errors decrease significantly below 107!5. We have performed the
calculation with m up to 250, and found that most physical results do not depend
significantly on m. Some m-sensitive physical quantities such as the correlation
length are presented together with the extrapolation value to m = 1, and relevant
error bars are marked when they are larger than the size of the symbols.

We first calculate the spin-spin correlation function Cg(l) which is defined as
Cs(l) = (S;- Siy) . (4.2)

This correlation function considers the rotational symmetry of spins which exists
in the Hamiltonian of Eq. (4.1). In order to minimize finite-size effects, we take
site ¢ such that both sites ¢ and ¢ + 1 are as far from the boundaries as possible.

Figure 4.1(a) shows the spin-spin correlation function for J; = 0. The ground
state for J; = 0 can be simply understood in terms of the two completely de-
coupled chains, resulting in finite spin-spin correlations only for even-integer sep-
arations [ with vanishing correlations for odd-integer separations. Within each
subchain the system lies in the Haldane phase, which exhibits short-range an-
tiferromagnetic correlations. Such spin-spin correlations are in good agreement
with those plotted in Fig. 4.1(a). The correlations decay exponentially with the
separation [, superposed by the oscillating correlations with a period of 4.

We also plot the spin-spin correlations for various ferromagnetic NN couplings
Jp in Fig. 4.1. When J; is finite, the two subchains are no longer decoupled and

finite correlations show up for odd-integer separations. Interestingly, the corre-
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lations still display oscillating behavior apparently with a single period, which is
different from 4, the value for J; = 0; it increases monotonously with the increase
of |J1|. It is also of interest to note that the oscillating period does not always ap-
pear commensurate with the lattice period. Another conspicuous feature is that
the decay of the correlations becomes slower as the ferromagnetic NN coupling
becomes stronger. While the correlations become negligible around [ ~ 30 for
J1 = 0, we can observe clear oscillations for [ 2 60 at J; = —2. Until J; reaches
the value J. = —4 the system does not show any abrupt change in the correla-
tions, which implies that in the region of J. < J; < 0 the system remains in the
double Haldane phase. For J; < J., the spin-spin correlation function takes just
the constant value of unity, independent of [, and the total spin of the ground
state turns out to be Syt = L, signifying that the system is in the ferromagnetic
phase. The critical value in the ferromagnetic phase for S = 1 is the same as that
in the case of classical spin systems [55] and S = 1/2 spin systems [117-121], as
pointed out in Ref. 122.

For a quantitative analysis of the evolution of the states with J; varied, we

examine the spin structure factor
S(k) =) e*Cs(l) (4.3)
!

which is the Fourier transform of Cg(l). We have used fast Fourier transform
algorithms for Cs(1) to obtain S(k) and plot the resulting spin structure factor in
Fig. 4.2 for various values of J;. For J; = 0 we have broad peaks at k = +2, which

reflects oscillations with period 4. The peak broadens due to the exponentially
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Figure 4.2: (Color online.) Spin structure factor S(k) for various NN couplings

J1. The data for J; = 0, -0.5, -1, and -2 with various lengths L = 40 to 100 are
marked by red squares, green circles, blue triangles, and purple inverted trian-
gles. The structure factor has two peaks in the DH phase, which are not divergent
in the thermodynamic limit. This implies the spontaneous magnetization is ab-
sent. As J; is reduced, the peaks move closer to k = 0 and the system exhibits

incommensurate short-ranged correlations.

decaying correlations. As |.J;| increases, the positions of two peaks move towards
k = 0. It is also clear that the peak gradually becomes narrower with the increase
of Ji. This result for S(k) gives quantitative support to all the observations on
the spin-spin correlation function Cg(l) mentioned above. The structure factor

remains finite even when L is increased indefinitely, and the system does not

exhibit long-range spin order in this region.
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Figure 4.3: (Color online) The pitch angle £* as a function of the NN couplings
Ji1. The pitch angles, which are determined by the maximum position in the
structure factor, are marked by green solid circles. The pure NNN-AKLT state
(J1 = 0) has k* = /2 reflecting the short-ranged antiferromagnetic correlation
in each subchain. The antiferromagnetic correlation becomes incommensurate at
finite J; in the DH phase. We also plot the results of the classical spin system,
arccos(—.J;/4) (dot-dashed line), and those of the spin-1/2 system from Ref. 120
(triangles) and Ref. 123 (diamonds) for comparison. The data marked by a solid
line as well as the transition point to the Haldane phase are quoted from Ref. 62.
The inset shows the pitch angle in a log-log plot for J; — J. > 0 with J. = —4 and
the dashed line represents the best power-law fit to the data. The data points
without error bars have errors not larger than the size of the symbols.

75



We can determine the pitch angle k* of the spin correlations by the position
of the maximum in S(k) on the side of positive k. For J; = 0, the peak is located
at k* = m/2 which is consistent with the NNN AKLT state, the prototype state
in the double Haldane phase. In Fig. 4.3 we plot k* as a function of J;. As |.Jj]
increases, k* decreases monotonously from k* = 7/2 for J; = 0 to k* = 0 for
J1 = J., and the ground state connects smoothly with the FM state at J; = J..
The decreasing curve corresponds to a convex-up function.

Such behavior is reminiscent of the spiral state which shows up in the classical
spin system. In the presence of NN ferromagnetic couplings (J; < 0) and NNN
antiferromagnetic couplings (J; > 0), the classical spins exhibit a spiral state for
—J. < Ji < J., with the wave number given by ¢ = arccos(—J;/4) [55]. Similar
behaviors of the pitch angle were also reported in previous numerical studies of
the spin-1/2 chains via the transfer-matrix DMRG method [120] and the infinite
time-evolving block-decimation algorithm method [123, 124]. For comparison,
we have also plotted the data for classical and spin-1/2 chains with a dot-dashed
line and open symbols, respectively, in Fig.4.3. In all three systems the pitch
angle k* reduces with the increase of |Jj| starting from k* = 7/2 at J; = 0,
and approaches £* = 0 continuously at the transition into the FM phase. In the
case of the spin-1/2 chains, the plateau-like region persists near J; = 0 up to
J1 = —2. On the other hand, the classical spin system displays a rather gradual
decrease even near J; = 0. The curve of £* for the spin-1 chain locates between
the classical and spin-1/2 systems, which may be attributed to the reduction of
quantum fluctuations in spin-1 systems in comparison with spin-1/2 systems. It

would be interesting to study variations of the pitch angle for higher spins, which
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Figure 4.4:  (Color online) Semi-log plot of the spin-spin correlation function
Cs(1) divided by cos(k*l) for several values of L and (a) J; = —1 and (b) J; = —2.
The pitch angle £* is determined by the maximum position of the structure factor
for each J;. The data denoted by red squares, green circles, blue triangles, and
pink inverted triangles correspond to L = 50, 100, 150, and 200, respectively.

should reflect the effects of both the changes in quantum fluctuations and the
alternating behavior of integer and half-integer spins.
In the inset of Fig. 4.3, we plot k* as a function of J; — J. in the log-log scale.

Near the critical point the pitch angle displays the power-law behavior

K~ (= ) (4.4)
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Figure 4.5: (Color online.) Semi-log plot of the spin-spin correlation function
Cs(l) divided by cos(k*x) for several values of m and (a) J; = —1 and (b)
J1 = —2. The pitch angle £* is determined in the same way as in Fig. 4.4.
The data denoted by green circles, blue triangles, and pink inverted triangles
correspond to m = 50, 100, and 150, respectively, and the solid lines are the best
linear fits.

The best fit in the range —3.9 < J; < —3.0 gives the exponent a = 0.47(3).
Although the best-fit value of « is a bit smaller than a, = 0.5 for the classical
spiral state, the two values are consistent within numerical errors. Numerical
errors in the exponent are mainly due to the large relative errors near J.. It is
also notable that the curve of £* versus J; — J. is slightly convex up in the log-log

plot, which tends to give an additional underestimate of a in the power-law fit

over a finite window of Jj.
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In Fig. 4.3 we also plot the pitch angle in the case of J; > 0: The solid line
represents the data from an earlier study [62] for S = 1, and the data points
denoted by solid circles are obtained from our calculation. The double Haldane
phase in this region gives pitch angles in the range 7/2 < k* < m [61, 62]. The
pitch angle increases with J; and becomes commensurate with £* = 7 around
J1 = 2.67. Remarkably, the incommensurate spin correlations persist even in the
region of the Haldane phase, which sets in at J; ~ 1.34. This is in contrast to
the fact that the pitch angle reduces to k* = 0 exactly at the transition to the
FM phase for J; < 0.

In order to examine the correlation length, we divide the spin correlation func-
tion Cg (1) by the oscillating factor cos(k*l) and estimate the correlation length &
by fitting it to the exponential decay ~ exp —[/£. In Figs. 4.4 and 4.5 one can
see that Cs(l)/ cos(k*l) for J = —1 and —2 decays exponentially in a wide range
of [. Figure 4.4 also demonstrates that the quantities in different sizes exhibit
almost the same exponentially-decaying behavior except for near the edges. The
decay tends to become slower as the number m of the kept states is increased. In
Fig. 4.6 we plot the correlation length £ estimated from the best fit as a function
of J; for various values of m as well as in the limit m — oco. We have also repro-
duced the data for J; > 0 from an earlier work [61]. For J; > 0 our numerical
results are consistent with the peak associated with the transition between the
Haldane and the DH phases. For J; < 0 the correlation length is enhanced as
J1 approaches J.. We also note that there exists a small bump around J; = 0,

which signifies stronger spin fluctuations near the decoupled subchains.
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Figure 4.6: Correlation length as a function of the NN coupling J; for m =100
(green squares), 150 (blue triangles), 200 (pink inverted triangles), and its ex-
trapolation to m = oo [(red) circles|. As we approach the phase boundary to the
ferromagnetic phase the correlation length becomes very large and is expected to
diverge at J = —4. Solid lines denote the data quoted from Ref. 61. The data
points without error bars have errors not larger than the size of the symbols.

We also examine string order and double-string order for J; < 0, which can

be probed by the use of the following nonlocal correlators [11-13, 60]

O(1,1") = — (57 [exp ( Z_: waj)]] S5 (4.5)

j=l+1
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Figure 4.7:  (Color online) String order parameters as a function of the NN
coupling J;. We represent O; and O, by red solid circles and green empty circles,
respectively. The inset displays the semi-log plot of Oy. The data points without
error bars have errors not larger than the size of the symbols.

and

-2
Oy(1,1') = (5757, [exp ( > ms;)]] Si_.SE) . (4.6)

=142

The string order parameters O; and O, can then be defined by

O1= lm O0:(1) (4.7)
OQ = lim Og(l, l/) (48)
[l—U'| =00
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in the limit of infinite separations. Figure 4.7 shows string order parameters Oy
and Oy versus J;. For J; = 0, we have nonzero O, with vanishing Oy, which is
a typical characteristic of the DH phase. On the other hand, in the FM phase
(J1 < J.) both Oy and O, vanish. As J; decreases from zero, O, also reduces. It
reflects that the singlet bonds on the double chain which we consider here is not
captured by the single string order. The double string order becomes finite in
the perturbed NNN-AKLT state, capturing the connectivity of two intertwined
AKLT states [60]. We have to examine carefully the string order because it cannot
distinguish the AKLT state from the magnetically ordered states [78].

It is remarkable that O, is significantly reduced for J; < —2, while the tran-
sition into the ferromagnetic phase occurs at J; = —4. Such an abrupt reduction
may suggest the possible existence of an emergent phase between the double
Haldane phase and the ferromagnetic phase. However, a detailed analysis has
revealed that the string nonlocal correlator Oz (l,1") shows quite distinct behavior
for —4 < J; < —2 from that of the ferromagnetic phase where the string order is
absent. In the ferromagnetic phase (J; < J.) Oa(l,1') shows a clear exponential
decay with |l — !’[, implying that the corresponding string order parameter O,
vanishes in the thermodynamic limit. For —4 < J; < —2, in contrast, Os(l,1')
remains finite although its values are very small. The semi-log plot of Oy, which
is presented in the inset of Fig. 4.7, also supports a direct transition from the
double Haldane phase to a ferromagnetic one. It demonstrates that the decreas-
ing behavior is rather consistent with the transition at J; = —4 although a rapid

decrease of O, starts around J; ~ —2.
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Figure 4.8:  (Color online) Semi-log plot of the chirality correlation function
Cy(l) for J; = —3. The data denoted by red squares, green circles, blue triangles,
and pink inverted triangles correspond to m = 50, 100, 150, and 200, respectively.

It is also worth while to examine whether a chiral phase is present between
the double Haldane phase and the ferromagnetic phase. In the spin-1/2 case
the chiral phase has been reported in close vicinity to the region [123, 124], and
accordingly, it is a strong candidate for a new phase if it emerges also in the

spin-1 case. We have thus computed the chirality correlation function defined by
Cu(l) = (RIRL) (4.9)

with
(i x Sip1) = gfgzyﬂ — Y Afﬂ. (4.10)

)

x>
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Il
Q>
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Figure 4.8 presents C,(l) for J; = —3, where O, is significantly reduced. The
chirality correlation function exhibits an apparent exponential decrease, which
indicates the absence of a chiral phase. This also implies that the emergence
of a new phase is less probable. We presume that the great reduction in O,
for —4 < J; < —2 is caused by the large ferromagnetic fluctuations which are

enhanced markedly in that region, as can be seen in Fig. 4.6.

4.3 Summary

We have investigated the one-dimensional spin-1 system frustrated by the combi-
nation of the spin exchange interactions: the ferromagnetic one between NN spins
and the antiferromagnetic one between NNN spins. Via the DMRG calculations
we have confirmed explicitly that the ferromagnetic phase transition for S = 1 oc-
curs at J; = —4(= J,) [122, 125], below which the spin-spin correlation function
becomes constant. The robustness of J. suggests that quantum fluctuations due
to the quantum nature of the spin do not affect significantly the ferromagnetic
phase transition; this is in sharp contrast to the fact that other phase boundaries
of the frustrated spin chains exhibit strong dependence on S and a variety of
distinct phases [126]. Such interesting results may be tested through experiments
on ultracold atoms [127-129].

In the double Haldane phase, on the other hand, the system shows short-
ranged antiferromagnetic spin-spin correlations. Such behavior remains robust
in a wide range of the NN ferromagnetic interaction strength J; up to J.. The

pitch angle of the incommensurate spin-spin correlations decreases from 7 /2 as
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J1 approaches J., vanishing at J; = J.. Similar behaviors were also reported in
earlier works on the classical and spin-1/2 systems. It has been revealed that the
results of the spin-1 system are closer to the classical results than those of the
spin-1/2 one. We have also discussed the behavior of string order parameters in
the double Haldane phase in the presence of ferromagnetic NN couplings. It has
been found that the string order parameter O, undergoes a substantial reduction
far above J.. However, detailed analysis has suggested that a new phase is less
likely to emerge in that region. It is presumed that the enhancement in the

ferromagnetic fluctuations gives rise to such substantial reduction in Os.
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Chapter 5

Anisotropy in spin chains

It has been known that systems with anisotropic interactions can have a lot
of phases such as the Ising FM, the Ising antiferromagnet or the XY (critical)
phases as we reviewed in Sec. 2.1.6. In a combination of the frustration and
the anisotropy, while it is shown that the spin-1/2 chains display chirality or
other more phases, a complete understanding of the combination of ferromagnetic
frustration and anisotropy is still lacking in the spin-1 chain In this chapter,
we examine the effects of the anisotropic exchange interaction on the frustrated
Heisenberg spin chain. Various correlation functions are calculated and we obtain
a full phase diagram. In contrast to the isotropic frustrated model in Sec. 4 we
found various phases, continuous/discontinuous phase transitions between them,
and even a new intermediate phase with the nonzero string order parameter

appearing in a wide region.
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5.1 Model

The Hamiltonian of the spin-1 chain with anisotropic exchange interaction and

frustration is

H = J1 Zz (Six f+1 + Siyszyﬂ + stf iz—l—l)

+J2 27, (Szx f+2 + Szysiyﬂ + JzSz‘Z f+2) ) (5-1)

where S? (a = z,y,2) denotes a spin-1 operator at site i. We take the fer-
romagnetic NN interaction (J; < 0) and the antiferromagnetic NNN interac-
tion (Jo > 0), which results in frustration of the system. The strength of the
anisotropic exchange interaction is denoted by J, and is taken for 0 < J, < 1.
We will also denote the energy and the length in units of J, and of the lattice

constant, respectively, throughout this work.

5.2 Results

We perform the DMRG calculation for various values of J, and J; to investigate
how ground state of the system changes as the anisotropic interaction varies. We
also adopt and compare the two kinds of open boundary conditions - the standard
and the modified ones as discussed in Sec. 3.1.5 (see Fig. 3.3). The comparative
computation also shows no significant qualitative difference in the bulk state just
as we introduced only the frustration, not anisotropy.

In this work, we keep m in the range between 50 and 100 in chains up to

L = 200. The truncation errors are of the order of magnitude 10~° to 1078,
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For maximum values of m, the highest error corresponds to the DH phase while
the XY phase and the other ordered phases have the order of 10=7 and 1078,
respectively.

We use the following spin-spin correlation functions

Call) = (S052%)) (0 =1.2) (5.2)

(2

and the chirality correlation Cy(l) which was defined in Eq. (4.9) and Eq. (4.10).
The spin-spin correlation functions along the z- and z-directions should be con-
sidered because the system is no longer isotropic. Similarly, we also introduce

two kinds of string correlators along the z- and z-directions. as follows :

j—1
Cera(i,7) = — (S} [eXp( Z 5;?‘)] S5 (5.3)
k=i+1
and
=
Car2(4,7) = (S S lexp( > 51‘3)] S5 1S5) (5.4)
k=i+2

where a = z and z. We take the site ¢ such that both the sites ¢ and ¢ 4+ [ are
as far from the boundaries as possible in order to minimize the finite-size effects.

The two string order parameters is defined as

Oof = limCg, (D) (5.5)
l—o00 ’

O = lim Cg, ,() (5.6)
l—o00 ’

where we divide it by (—1)! factor for the intermediate phase. They help us to
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Figure 5.1:  (Color online.) Phase diagram on the J;-J, plane. There are
three additional phases in comparison with the case of J, = 1 - chiral phase,
ferromagnetic XY phase, and single string phase.

check whether the hidden Z5 x Z, symmetry is broken or not.

Figure 5.1 shows a phase diagram in the J;-J, plane. We obtain four distinct
phases - the double Haldane (DH) phase, the chiral phase, the single string phase,
and the ferromagnetic-XY phase - for 0 < J, < 1. The areas of these phases
are determined by whether they show long-range orders, exponential decays, or
power-law decays from the correlation functions.

The DH phase from the noninteracting limit still remains in wide range of J;
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even if the anisotropic interaction is introduced (0 < J, < 1). There is still no
qualitatively significant difference in the properties of the DH phase from those
from in the previous chapter (Sec. 2.1.5). The anisotropic interaction affects the
value of the Haldane gap and double string order parameters. The Haldane gap
decreases monotonically as the value of J, decreases. There exists a difference
between the double string order parameters along the z- and the x- directions
although they still have finite values. While the string order parameters along the
z-direction decreases monotonically and rapidly as J, decreases, the x-direction’s
shows a convex-up shape and larger values than that of the z-direction [68]. In
addition, the ground state no longer shows nonzero values of S;ot in this region.
Nevertheless, there is no magnetic order in the system, and the DH phase which
is similar to the NNN-AKLT state still remains. If J, is close enough to zero, the
system undergoes a phase transition to the antiferromagnetic XY phase where
the correlation functions change to the power-law distribution. Its correlation
length increases greatly and continuously, and the gap is expected to vanish by
the diverging correlation length in this phase though we did not show it by the
calculation.

We analyzed how the system changes for fixed .J, values smaller than 1 as
decreasing J; from 0. It is found that the double string order reduces as J;
decreases in the DH phase. In addition, the chirality correlation starts to be
enhanced gradually and become constant with diverging its correlation length at
certain values. We plot the chirality correlation functions for fixed J, = 0.2 in

Fig. 5.3. The values of J., are larger than the ferromagnetic phase transition
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Figure 5.2: (Color online.) Double string order parameters as a function of J,
for J; = 0 and m = 85 from various system-size. The order parameter along
the z- and z-directions are denoted by filled and open symbols, respectively, with
L = 40 (squares), 80 (circles), 120 (triangles), 160 (inverse triangles). There
exists a monotonic decrease in the z-direction’s, but not in the z-direction’s. The
value for the z-direction around J, = 0 is finite but shows the power-law behavior,
vanishing in the thermodynamic limit.

point J. = —4 for J, = 1 which is obtained in the isotropic model in Sec. 4. It
shows that for sufficiently large values of J; (J; < J.,) the system attains the
chirality long-range order with the breaking of Z; symmetry. We also plot the
chirality & for various lengths defined as x = 1/C, (1) for I = N/2 from Eq. (4.9)
in Fig. 5.4. We find that the chirality shows up continuously and increases very

rapidly after the double Haldane phase disappears. From this point, we determine

91



10" F— '
B 0 000666 eering
10_1 ¥ o g 1
= 107} b\
<
NARTEN. ¥
— J;=0.1
J;=0.2 i
wrt s Jj==0.4
. J=05 :
0 1 2
10 10 10
[

Figure 5.3:  (Color online.) Log-Log plot of the chirality correlation function
Ck(l) for m = 100 and various values of J; at J, = 0.2. The data is plotted
for J; = —0.1 (squares), -0.2 (circles), -0.4 (triangles), -0.5 (inverted triangles),
and -0.6 (diamonds). The correlation is strongly enhanced as J; decreases until
it becomes J.,. A rapid decrease of correlation at large distance is attributed to
the finite size effect and is neglected as we increase the system-size.

the phase boundary between the chiral phase and the double Haldane phase as
in Fig. 5.1. It is interesting to note that although the critical point at which
the chiral order begins to occur becomes larger as .J, decreases, the width of the
region of finite chirality seems to be unchanged for fixed J,. This aspect differs
markedly from the result of the spin-1/2 frustrated systems in the previous studies
where the chirality phase mainly has a large chirality around J, ~ 0.7 [123, 124].

The spin-1/2 results also shows a narrow region of the chiral phase for strong
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(Color online.) Chirality order parameter at J, = 0 as a function

Figure 5.4:

of J; for various lengths The chirality appears for —2.5 < J; < —0.5. As we
decrease J; the system undergoes the discontinuous phase transition to the single
string phase. The chirality is reduced for J < J.,, resulting in the exponential

decay.

anisotropy (J, < 0.5). We also confirmed that the spin-spin correlation functions
are decaying exponentially in the chiral phase. This fact implies that the system

has a gap and is different from the gapless chiral phase [78] which shows a power-

law decaying spin-spin correlation.

When the ferromagnetic NN coupling is further increased in the chiral phase,

it induces two distinct phase transitions depending on the value of J,. First, for

weak anisotropy of J, > 0.8 the system undergoes the phase transition to the
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critical phase from the chiral phase. This critical phase is kind of the ferromag-
netic XY phase where the correlation functions show the power-law distribution
with divergent correlation length.

On the other hand, for sufficiently large anisotropy (J, < 0.5), there is an
intermediate phase between the chiral phase and the ferromagnetic XY phase.
The chirality decreases and disappears when J, becomes J.,, and then the long
range order of the single string correlator appears in the system immediately.
This new intermediate phase for J, < J., shows that all the spin-spin correlation
functions decay exponentially as well as the double string correlator does. We
call this phase the ”single string” phase which has a difference from the ordinary
string (AKLT) state. The single string correlators at the intermediate phase for
J1 = —3 and J, = 0.2 is plotted in Fig. 5.5. It is very interesting not only that
the string correlations are enhanced by the ferromagnetic couplings, but also that
the single string correlator along the x-direction clearly oscillates with period of
2. The oscillation of the string correlator defined in Eq. (5.4) can usually be
shown in the ferromagnetic order phase. This indicates that the intermediate
single string phase reflects the ferromagnetic nature of the spin state without any
ferromagnetic order. We can also see that a difference between the amplitudes of
the x- and z-directions is kept.

The single string order parameters for J, = 0.2 are plotted together with the
pitch angle from the spin-spin correlation function (Eq. 4.3) and the chirality as
a function of J; in Fig. 5.6. The finite amplitudes of the string order parameters

survives in a wide range of J;. Meanwhile, the previous research proved that the
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Figure 5.5: (Color online.) Single string correlators in the intermediate phase
between the chiral and ferromagnetic-XY phases for J; = —3 and J, = 0.2. The
data for the z- and z-directions is marked by (red) circles and (purple) triangles,
respectively. Both correlator remain finite as L increases, but the correlator for
the x-direction oscillates with the period of 2.

Haldane phase can be understood in terms of soliton in the AKLT state [60].
They showed a solitonic excitation appears with frustration and change the sign
of the string correlator when a soliton gets inside the string correlator. From this
point of view, the single string phase can be described by a soliton-condensate
state where the string correlation function oscillates with its separation. In a way
of explaining the AKLT state by the matrix product state (MPS) [6, 7], we also
try to explain this intermediate state by the MPS with different symmetry, which

will be discussed in the next section. We find the qualitatively similar behavior
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Figure 5.6:  (Color online.) Single string orders, chirality, and pitch angle as

a function of J; for J, = 0.2. The string order parameters for the z- and z-
directions, the chirality, and the pitch angle from the spin-spin correlation func-
tion are marked by (green) filled squares, (green) open squares, (red) filled circles,
and (blue) triangles, respectively.

in our MPS state and call this resulting MPS state the “triplet-AKLT” state.
When we decreases J; smaller from the intermediate phase, there is another
phase transition to the ferromagnetic-XY phase. All the correlation functions
starts to increase their correlation length and shows a power-law decay conse-
quently, signifying the BK'T transition. This phase is adiabatically connected to

that of the ferromagnetic XY model. It is also expected that its gap vanishes as
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the correlation length increases

Matrix Product States

In this section, in order to explain the new single string phase which comes from
the ferromagnetic interaction in our numerical result we introduce a new matrix
product state (MPS). The previous research gives the AKLT state as a MPS state
which describes the singlet bonds of spin-1/2 sites with the projection into the
spin-1 state on a chain [6, 7] as we explained in Sec. 2.1.1. This gives a good
explanation of the ground state in the spin-1 Heisenberg chain model and the
gap which Haldane conjectured. The AKLT state can be captured by the string
correlator describing the connectivities between the sites without magnetic order.
We take a variation in the AKLT state and change the singlet bonds to the triplet
bonds between the spin-1/2 sites which can be expected to have a ferromagnetic
correlation. We first set and parametrize the triplet state between the s = 1/2

spins on different sites as follows

|iie1) = (|¢R>|¢R>)< . %)<'“L“>> (5.7)
e ' ' \% Y |¢iL+1> .

where |a|? + |B> + |7|> = 1 and {| Tf(L)H Lf(L)ﬂ are the spin-1/2 states on the
right (left) side at ith site. Following the construction of the matrix product state

in a chain, we obtain the wavefunction of the triplet-bonds of spins as

[wps) = Y TX[C7'C7 - - C7H]|o) (5.8)
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where |0) = |o1)|og) - - - |or) and C7 is given by

B 8
00 Va2 v

We simplify the MPS state of Eq. (5.8) into two cases satisfying the time-
reversal symmetry : (a) 8 #0,a=v=0, (b) =0, a #0, v # 0. In case (b),
we additionally take (bl) o = v and (b2) o = —7 separately. The most general
case can presumably be obtained and explained by the superposition of the above
states. To compare the physical properties of them with our numerical results,
we calculate the spin-spin correlation functions and the string correlators of each
MPS. The detailed calculation method is the same as explained in Sec. 2.1.4. The
result is shown in Table. 5.1. While the singlet MPS (or the AKLT state) shows
a positive constant of the string correlators at infinite distance [, the triplet MPS
shows an alternating the sign of the string correlators with same constant. It
gives a remarkably good agreement with the intermediate phase of our numerical
result. The well-known antiferromagnetic spin-spin correlation is reproduced in
the singlet MPS for all directions. The triplet MPS shows that one of the spin-
spin correlations has an ferromagnetic correlation without oscillating correlation
functions. In our numerical result, the spin-spin correlation functions show both
the ferromagnetic and antiferromagnetic correlations in the intermediate phase,
depending on the direction. This difference may be attributed to the composition
of the triplet states, that is a linear combination of the triplet MPSs. For more
quantitative comparison of their physical properties, we need to consider excita-

tions such as the soliton excitations or magnon excitations and set an effective
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Table 5.1: Single string correlator and the spin-spin correlation functions with
the bond-types of the MPS as [ — oo in the thermodynamic limit

Oitr,l sg,ctr,l Cx
singlet 9 9 (=3 ~(=3)
triplet (a) DT~ )
triplet (b1) EIC Lt TC L (Ly! ~ (L)
triplet (b2) s(=p—t 2 (1) ~ (—1)

model of solitons [60]. It will helps us to understand about our numerical results,

the triplet-AKLT state, and their connection.

5.3 Summary

We have investigated the spin-1 chain of anisotropic exchange interactions with

frustration from the ferromagnetic and antiferromagnetic couplings by the DMRG

method. We have obtained the phase diagram on the J;-J, plane through the

analysis of the various correlation functions. There is the chiral phase in a wide

region when anisotropy is introduced as well as the double Haldane phase re-

mains. Besides, the new intermediate phase, so-called the triplet-AKLT state,

emerges between the ferromagnetic XY and the chiral phase, showing the oscil-

lating string order parameter. We have suggested that the triplet-AKLT state

can be understood by the MPS where the triplet bonds are formed rather than

the singlet bonds of the ordinary AKLT state. It gives a good agreement with
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the oscillating string order in the z-direction. For a clearer comparison, we need

to consider more quantitative analysis of energy, gaps, excitations, etc.
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Chapter 6

Kane-Mele-Hubbard model

In this chapter, we study the interplay of the spin-orbit interactions and the
electron-electron interactions on the honeycomb lattice. The edge state in the
honeycomb lattice has the magnetization by the electron-electron interactions in
the bulk while the spin-orbit interactions make the edge topologically nontrivial
for finite size. We focus on large nanoribbon geometry in the Kane-Mele-Hubbard
model. Magnetic properties of the system and its phase diagram are obtained
in the thermodynamic limit by using a mean-field approach. The decay of the
numerical magnetization from the edge to center is characterized in each phase

and shows critical behavior in phase boundary.

6.1 Introduction

Topological distinction to classify materials has been hugely concerned in the
sold state physics communities [130]. Unlike an ordinary insulator regarded as

having a trivial topological invariant, there exists an insulating phase having
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gapless current-flowing states on the boundary, so called a topological insulator.
Recent studies of such topological insulators were initiated by the discovery of
quantum spin Hall (QSH) insulators, which are induced by the intrinsic spin-
orbit (SO) interactions and exhibits a quantized Hall conductance and gapless
edge-localized states. [16, 17, 131]. This novel phase which had been predicted
theoretically was generalized in three dimensions [18], and experimental results
proved this theoretical results right after [19, 20].

On the other hand, the Hubbard model which considers the on-site Coulomb
repulsive interaction between electrons with different spins has also been studied
on the honeycomb lattice [21, 22]. This repulsive interaction tends to localize
the electrons and yields a Mott gap above some critical value of the interaction
strength. In addition to this, it also gives rise for the system to have the antifer-
romagnetic order with spontaneous symmetry breaking [21]. The local magneti-
zations of the honeycomb lattice have been shown to display peculiar properties
at the open boundary [22]. Recently, it has been also reported that there exists a
quantum spin liquid (QSL) phase before the system attains the finite charge gap
[23].

Within the interplay of the SO interaction and the Hubbard interaction, many
studies are achieved in various methods on the honeycomb lattice. [24-28, 132,
133]. The mean-field study revealed that the phase transition from the QSH
insulating phase to an antiferromagnetic Mott insulating (AFMI) phase occurs

[24, 132] and even the finite system has been shown to have distinguished phases
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Figure 6.1: Nanoribbon in the 2D honeycomb lattice along the zigzag direction.
The unit cell which contains 2L atoms is shown by the shaded rectangle where L
denotes the number of zigzag lines. The open boundary condition is applied in
the vertical axis and the periodic boundary in horizontal axis.

in between [28, 132, 134]. It is also shown in the quantum Monte Carlo (QMC)
[25, 27, 133]. and the variational cluster approach (VCA) [26]. that the QSH

insulating phase can also exist in the existence of the Hubbard interaction. When
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Figure 6.2: Phase diagram of the nanoribbon with L = 24 in the Kane-Mele-
Hubbard model in the plain spanned by the Hubbard interaction strength U and
the spin-orbit coupling strength A\. We use the strengths in a unit of the hopping
integral ¢.

the SO interaction is considered with the correlation effects, the QSL phase can
still survive [25, 26, 133], and a finite edge magnetism of a power-law correlation
with a paramagnetic bulk state appears [27].

Beyond graphene, recent studies have shown that many materials are de-
scribed by the 2D honeycomb lattice and that there exists a gap from the SO
interaction. We list those materials with their hopping strengths and methods

calculating them in Tab. 6.1. They show the materials to be in the QSH phase
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Figure 6.3: Edge magnetization of the nanoribbon (|m; = 1|or|m,; = L|), over
A =0 (0), 0.005 (o), and 0.01 (A). The data from L = 12 to L = 192 are plotted
with the inverse of the width and shows that the magnetization remains finite as
increasing L.

and their gaps are large enough for applications.

6.2 Model

Our model is described by the Hamiltonian of the KMH model,

H = —tz CIJCja‘l’HSO‘f’HU, (61)
(i.j)o
where
Hgo = i) Z I/Z-jcjaazcjg (6.2)
((i,3))o
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Table 6.1:  Hopping strength and band gap of 2D honeycomb materials from
previous studies. The gaps of silicene and germanene are also significantly affected
by the Rashba SO interaction while stanene’s is negligible. We specify methods
of the data: DFT and TB denotes the density functional theory and the tight-
binding method, respectively.

Material t Gap Method, etc.
Graphene 2.7 eV ~ 1072 meV TB [135], DFT
[136]

Silicene 1.5 eV 7.9 meV TB [137]

1.55 meV DFT [138]
Germanene 1.4 eV 93 meV TB [137]

23.9meV DFT [138]
Stanene 1.3 eV 129 meV TB [137]

73.5 meV DFT [13§]

~100 meV DFT [139]

~300 meV DFT [139]; fluori-

nated (i.e. SnF)

and

Hy =U ngni . (6.3)

Here ¢! (c;,) is an electron creation (annihilation) operator of spin o at site i,
Nig = c;.rgcw, (1,7) denotes nearest-neighbor (NN) pair, ((7,7)) denotes next-
nearest-neighbor (NNN) pair, o, is the Pauli matrix, and v;; = (d; - d;)/|d; x d;]
in which d; is the lattice vector between the NN pair. The parameters ¢, A\, and U
represent the hopping parameter, the SO coupling strength, and the on-site

Coulomb repulsion strength, respectively. We use t as a unit of energy in this
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Figure 6.4: (Color online). Magnetization at the center (i = L) of the nanorib-
bon, with L=12 (), 24 (A), and 48 (V) as a function of A for U = 2.5. We
also plot the bulk magnetization from infinite lattice system with solid circles for
comparison.

paper and consider the half-filling system at zero temperature. In our model we
assume the 2D honeycomb lattice with a periodic boundary along z-axis and a
open boundary along y-axis which is shown with the lattice vectors in Fig. 6.1.
The unit cell depicted as a shaded box in Fig. 6.1 consists of 2L atoms and L
zigzag chains. The length of the nanoribbon along the direction of the periodic
boundary makes no difference in our method. so we consider the nanoribbon only

with an unit length in this dissertation.
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Figure 6.5:  Absolute value of the enhanced magnetization, |[Am, |, from the
edge (1 = 1) to center (i = L) with U=2.5 (), 3 (o), and 3.5 (A) for A = 0. By
semi-log plotting of |Am, |, it shows exponential decay above the critical point
U, ~ 2.23, in which some deviations occur around both ends of the data. The
data are plotted for L =12, 24, and 48. For clarity, the larger symbol size of the
data represents the narrower systems henceforth.

6.3 Results

We calculate the ground state of the Hamiltonian with the Hartree-Fock approx-
imation (Sec. 3.2)

Three distinct phases exist in our result, and a phase diagram with those states
is obtained as shown in Fig. 6.2. The resulting phases are nonmagnetic and
metallic state (NM-ME), antiferromagnetic and insulating edge state (AF-IE),
and the AFMI state. From the limit of very large A, we have the NM-ME state
which is adiabatically connected to the QSH phase. Even if U is finite, the gapless

edge state of the Dirac fermions still exists with a wide range of U. The other
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Figure 6.6: Characteristic length & of the exponentially decaying magnetization
when the system has the bulk magnetization in AFMI for A = 0. In the presence
of bulk magnetic order, we plot the enhanced magnetization |Am, ;| and fit the
data to obtain £ as U is close to the critical point U.. We do not fit the data in
the region of U < U, since ¢ is divergent and not well-defined.

bands extended to the lattice shows the gap induced by and proportional to A [16].
Further increasing of U from the NM-ME state turns out that the phase transition
to the AF-IE state occurs with a ferrimagnetic structure. The edge-localized band
which is gapless and nonmagnetic in the NM-ME state becomes gapped and spin-
polarized continuously. The spins in the system have an order along the plane of
the lattice and rotate because of the U(1) symmetry as mentioned in the above,
which agrees well with the other results [132, 133]. We thus consider only one
component of magnetization in the plane, say m, ,, without loss of generality.
Its magnetizations on the edge site are computed for U = 1 as a function of the

width L with an increase of A from zero in Fig. 6.3. We can see that the increase
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Figure 6.7:  Log-log plot of absolute value of the magnetization, |m, |, with
L =12 24 48 | and 96 from the edge (i = 1) to center (i = L). The data of
U=1 (A) and 2 (O) for A = 0 has the power law in the absence of bulk magnetic

order beyond the critical point U, Some deviations around both ends of the data
are also shown as in the exponential decay.

of the SO interaction suppresses slightly the magnetization and that its behavior
holds for the large width. Despite of that suppression, the edge magnetizations
still saturate to finite values as an increase of L, and are even enhanced for some
values of A\. The extrapolation in Fig. 6.3 demonstrates that the edge magnetism
is maintained even in the thermodynamic limit.

The existence of the AFMI state represented by the bulk magnetic order and
gap is verified in our model. Figure 6.4 shows the convergence of the magnetiza-
tion of the central site to that of the bulk system. For A = 0, the central magne-

tization of the nanoribbon follows that of the bulk for small width of nanoribbon
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Figure 6.8: Semi-log plot of the magnetizations at finite A for U > U.. The AFMI
phase where the bulk magnetic order exists is still exists for A =0.02 (diamond)
and 0.06 (A) smaller than the critical value of A. and shows the exponential decay
of the enhanced magnetization. As the AF-IE phase with A =0.07 (o) and 0.09
(O) above A. appears, the exponentially decreasing behavior is also shown.

[22]. It is also shown that the magnetization caused by the Hubbard interaction
tends to diminish as A increases. We can identify the critical point \., where the
bulk magnetization vanishes and the continuous phase transition occurs from the
AFMI to AF-IE states. The central part of the nanoribbon for sufficiently large
width is close to the bulk system very well, while in the region of the AF-IE state
there is rather large deviations. These deviations from the bulk diminish at large

A and are also suppressed by the increase of L. Consequently, we show that the
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Figure 6.9: Fitting results of characteristic length ¢ for finite \. With an increase
of A\, the bulk magnetization of the system becomes suppressed and zero at A,
above which the system goes to the AF-IE state. It is shown that & increases
rapidly around the transition point.

large width nanoribbon can be treated as the infinite lattice system.

In order to examine how the magnetic edge state is connected to the bulk mag-
netization, we compute the decay of the local magnetization across the nanorib-
bon of the ferrimagnetic structure for the AF-IE and AFMI state. In the AFMI
state where the bulk magnetization exists, we consider the enhanced magne-
tization, Am; = m; — mpyk. The monotonically decreasing of Am,;, from
the edge (i = 1) toward the center (i = L) for A = 0 with various widths is
shown in Fig. 6.5. It turns out to be an exponential decay, which is expressed
by Am; ~ e "/, The enhanced magnetization decreases with an increase of U
while the bulk magnetization becomes larger. Some apparent deviations from

the exponential decay are due to finite-size effects in the nanoribbon geometry.
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Table 6.2:  Exponents of the power-law decay, n, by fitting the plot of {m,;}
with ;7 for U < U, in the region of A = 0.

U 1 1.5 2
" 2.008(2) 2.072(1) 2.067(1)

One of the deviations occurs around the edge site of which the magnetization is
larger than that of the other sites. Another type of deviations is observed around
the center where the decay of magnetization is rather suppressed. Both regions
of the deviations become wider as the system is near the critical point U, for
a given width. We also find that the characteristic length & of the exponential
decay decreases as U increases, which means less correlation between the edge
and the center of nanoribbon. The best fit of £ is estimated as function of U
in Fig. 6.6. It is indicated that & grows very rapidly as U approaches U, from
above. The divergence of the characteristic length is expected to be related to a
critical behavior around U, in the bulk phase transition. In the region of U < U.
with A = 0, it is shown that ¢ is not well-defined. We plot the magnetization for
this region in logarithmic scales which is shown in Fig. 6.7. The profile exhibits
a power-law decay, m; ~ r; " instead of the exponential decay. This decay to the
bulk occurs very slower than the exponential decay, and the bulk magnetization,
however, is still expected to be completely zero in the thermodynamic limit. We
fit the data up to L = 384 and obtain the exponent of the power-law decay, n, as
shown in Tab. 6.2.
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Figure 6.10: Absolute values of the magnetizations |Am, ;| for fixed values of
U =23 (A) and 3 (o) with finite As which are very close to each critical point
Ae(U). The data are plotted on a log-log scale, giving the power law decay
much slower than the exponential decay. On the boundary its critical exponent
1 depends on A, and the large deviations occurs around the edge and the center.
The data for U = 2.3 are shifted by the amount of —0.2 in the log scale.

The best fit gives the exponent 7 is very close to 2 and independent of U for
U<U..

If we consider finite A for U < U,, the system lies in the AF-IE state. The
introduction of the SO interaction not only suppresses the magnetic order, partic-
ularly around the center, also transforms the power-law decay into the exponential
decay in which the central magnetization at a large-width nanoribbon has less
correlation with the edge magnetizations. Above the critical point U, the system
lying in the AFMI state with A = 0 has a phase transition into the AF-IE state
at a critical point A\, with an increase of A as shown in Fig. 6.4. The response

of m,; to the increase of X is found to be different from that for fixed values of
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Table 6.3: Best fitting values of the exponent of the power-law decay, 7, at
A = A, for the fixed values U > U..

U 2.3 3
Ao 0.014755 0.1924456
0.804(2) 0.953(4)

U < U.. Although X\ diminishes the bulk magnetization in the AFMI state, the
decay of Am,; becomes slower for large A as shown in Fig. 6.8. We can see that
the exponential decay in the AFMI state still remains for all finite A\. Above the
critical point \., the system obtains the AF-IE state of which the magnetization
follows the exponential decay.

In order to understand further the decaying behavior around the transition
point, we fit the exponential decay to obtain £ and plot it as a function of A
in Fig. 6.9 It is shown that ¢ diverges in the critical point A, as similar to that
of the region of A = 0. This behavior of £ ascertains that with the magnetic
ordering the phase transition occurs in the nanoribbon system. In this critical
point A\, where £ is not well-defined, we plot the magnetization in the log-log scale
as shown in Fig. 6.10. It gives the power-law decay, however, with the different
exponent from what we have in the region of A = 0. In addition, the power-law
exponent 1 computed by fitting the data depends on the value of U in this phase
boundary as shown in Tab. 6.3. The slopes representing the value of n are quite

different for U.
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6.4 Summary

We have investigated the collective magnetic properties of the half-filled Kane-
Mele-Hubbard model with nanoribbon geometry. By means of the Hartree-Fock
approximation we have analyzed the ground state and shown that the magnetic
order on the edge persists in the thermodynamic limit. This edge magnetization
can survive in the absence of magnetic order in the bulk between the TBI and the
AFI. The characteristic length of the magnetization signifies the phase transition
between the TBI and the AFI. It has been found to be enhanced as we approach
the phase boundary and become divergent at the phase transition point or the

(semi-)metallic phase.
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