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Abstract

Study on the microstructures and seismic anisotropy of
blueschist and eclogite from Ring Mountain and Jenner
in California

Yoonhae Ha

School of Earth and Environment Sciences
The Graduate school

Seoul National University

Seismic anisotropy has been observed in many subduction zones. During
subduction of slab, the oceanic crust changes to blueschist and eclogite. Since
minerals in blueschist are very anisotropic elastically, seismic properties in
the subducting slab can be attributed to the lattice preferred orientation (LPO)
of these minerals. We studied microstructures and seismic properties of
blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist
samples are mainly composed of glaucophane, epidote and phengite. Eclogite
samples are mostly composed of omphacite, glaucophane, epidote and garnet.
We determined LPOs of minerals using SEM/EBSD and calculated seismic
properties of minerals and whole rocks.

LPOs of glaucophane showed [001] axes are aligned subparallel to
lineation, and both (110) poles and [100] axes subnormal to foliation.
Glaucophane in samples from Jenner, however, exhibited [001] axes forming
a girdle subparallel to lineation. Seismic anisotropy of glaucophane was
stronger in samples from Ring Mt. than those from Jenner. Epidote showed
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[001] axes are aligned subnormal to foliation and (110) and (010) poles
subparallel to lineation. LPOs of phengite were characterized by a maximum
of [001] axes normal to foliation, with (110) and (010) poles and [100] axes
aligning in a girdle parallel to foliation. Phengite showed the strongest seismic
anisotropy among major minerals. LPOs of omphacite showed that [010] axes
subnormal to foliation and [001] axes are aligned subparallel to lineation and
foliation with a girdle in eclogites and blueschist, respectively. Seismic
anisotropy of omphacite was very weak. Blueschist from Ring Mt. showed
stronger seismic anisotropy than those from Jenner because samples from
Jenner included high contents of garnet £ omphacite. Especially, blueschist
including abundant phengite showed very strong seismic anisotropy (AVp =
30%, max.AVs = 23%). Eclogite showed much weaker seismic anisotropy
(AVp = 5-6%, max.AVs = 4-6%) than blueschist (AVp = 12-30%, max.AVs =
9-23%). Therefore, strong seismic anisotropy observed in subduction zone

can be more affected by blueschist than eclogite.

Keywords: blueschist, eclogite, phengite, lattice preferred orientation,
seismic anisotropy, Franciscan complex

Student Number: 2014-20322
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Chapter 1. Introduction

In many subduction zones, strong seismic anisotropy has been observed
(e.g., Fouch and Fischer, 1996; Currie et al., 2004; Long and van der Hilst,

2005; Pozgay et al., 2007). Agostinetti and Miller (2014) suggested it would

be associated with metamorphism in the subducting oceanic plate and
dehydration process in the mantle. During subduction, the oceanic crust
changes to diverse metamorphic facies such as blueschist according to P-T

conditions resulting in eclogite facies (Hacker et al., 2003). Blueschist is a

metamorphic facies rock existing at high pressure and low temperature
conditions in subducting oceanic crust and forms the major proportion of the
top of slab. The transformation blueschist-to-eclogite is a common process
during subduction and blueschist overprinting is occurred during exhumation.
Blueschist is dominated by hydrous minerals such as glaucophane, lawsonite,
epidote, and chlorite. Since these minerals are very anisotropic elastically

(Schmidt and Poli, 1998; Mao et al., 2007; Bezacier et al., 2010), seismic

velocity and anisotropy in subduction zone can be attributed to the lattice
preferred orientations (LPO) of these minerals. Therefore, investigations of
microstructures of blueschist are important to understand seismic velocity and

anisotropy of the subducting oceanic crust.

A few previous studies have been conducted about deformation

microstructures and seismic properties of the deformed natural blueschist



(Bezacier et al., 2010; Fujimoto et al., 2010:; Teyssier et al., 2010; Cao et al.,

2011; Cao et al., 2013; Kim et al., 2013a, 2013b; Cao et al., 2014). Based on

these studies, they showed that the major forming minerals of blueschist
(glaucophane, lawsonite, and epidote) have strong LPOs. They showed slip
systems of glaucophane are (100)[001] and {110}[001], and slip systems of
epidote were (001)[010] and {101}[010]. Seismic anisotropy of blueschist
(AVp > 10%) is generally stronger than that of eclogite (AVe < 3%) and

surrounding mantle rocks (Bascou et al., 2001; Fujimoto et al., 2010). On the

other hand, eclogite (Vp = 8.0-8.6 km/s) shows significantly higher seismic

velocities than blueschist (Vep= 7.3-7.6 km/s) (Rudnick and Fountain, 1995;

Fujimoto et al., 2010).

Phengite is magnesium-bearing muscovite, and can develop very strong
LPO when it is deformed. Besides, seismic anisotropy of muscovite single

crystal is very strong (AVe = 44.2%, AVs = 50.7%) (Ji et al., 2002). In this

study, we present the deformation microstructures and seismic properties of
the naturally deformed epidote-blueschists with high content of phengite and
eclogites collected from Ring Mountain and Jenner Headlands of the

Franciscan Complex, Western California.



Chapter 2. Geological background

The Franciscan Complex of the California Coast Ranges is the classic
accretionary prism (Figure 1). It was formed during the eastward dipping
subduction of the Farallon plate beneath the North American plate from Late-

Jurassic thorough Tertiary (Hamilton, 1969; Bailey et al., 1970; Ernst, 1970;

Berkland et al., 1972; Blake et al., 1988). However, most exposed rocks are

accreted between ca.120 and 32 Ma (e.g. Blake et al., 1988; Wakabayashi,
1992; Wakabayashi and Dumitru, 2007; Ernst, 2011). About a fourth of them
are blueschist formed under the high pressure and low temperature conditions
or higher grade metamorphic rocks. High grade rocks, however, developed
the initiation of subduction during 165-135 Ma, that is the oldest metamorphic

rocks in the Franciscan (Ross and Sharp, 1986, 1988; Anczkiewicz et al.,

2004; Wakabayashi and Dumitru, 2007; Shervais et al., 2011). Many

Franciscan metamorphic rocks lack a post-subduction thermal overprint
suggesting exhumation to near the surface prior to subduction termination

(Ernst, 1988). The Franciscan Complex is divided into three northwest

trending belts by lithologic character, age, and degree of deformation; the
Coastal (Western) Belt, the Central (mélange) Belt, and the Eastern Belt

(Bailey et al., 1964; Ernst, 1970). Metamorphic temperature and age increase

from west to east. The sample location in this study, Ring Mountain and

Jenner, are both located in Central Belt. The detailed geology maps of both
8 -":Ix_! -'%|: - 1_._
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areas and sample localities are shown in Figure 2A (Ring Mountain) and 2B
(Jenner). The Central Belt is characterized as a serpentinite or mud-matrix
mélange containing isolated blocks originated from both down-going and

overriding plates (Bailey et al., 1964; Ernst, 1970; Cloos, 1983, 1986; Blake

et al., 1988; Shervais et al., 2011). High-pressure and low-temperature
metamorphic rocks of blueschist, eclogite, and amphibolite are found chiefly

as this isolated small blocks (Cloos, 1986). These blocks are called “high-

grade blocks” meaning mafic blocks metamorphosed at high pressure and

concentrated in the Central belt (Coleman and Lanphere, 1971). P-T

conditions of them inferred to counterclockwise P-T path (Oh and Liou, 1990;

Wakabayashi, 1990; Krogh et al., 1994) suggest that prograde eclogitization

of a subducting slab and later exhumation and blueschist facies overprinting

by decreasing geothermal gradient (Tsujimori et al., 2006). The exhumation

of high-grade blocks occurred in a serpentinite matrix (Wakabayashi, 2015)

and the rinds which are composed of actinolite, chlorite are formed by
chemical reaction between the blocks and serpentinite during retrograde

process (Coleman and Lanphere, 1971). However, overprinting of lower—

grade blueschist developed along the margin of blocks. Pseudomorphs of high
pressure minerals and preservation of cavities suggest alterations caused by
retrograde process and transport to crustal levels occurred without penetrative

deformation of the interior of many blocks (Cloos, 1986). High-grade

blueschist and eclogite samples in this study, therefore, show prograde

subduction deformation structures.
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Chapter 3. Sample description

We selected five samples from Ring Mountain (2100, 2097, 2099-1, 2425,
and 2099-2) and four samples from Jenner Headlands (2091, 2089, 2090, and
2088). The modal compositions of samples are shown in Table 1. Two
samples from each locations are eclogites which are mostly composed of
omphacite, epidote, glaucophane and garnet. A sample from Ring Mountain
(2099-2) show a mineral assemblage of omphacite (51%) + epidote (33%) +
glaucophane (8%) + garnet (5%) + sphene (3%). The other eclogite sample
from Jenner (2088) includes very high content of glaucophane (amphibole)
showing a mineral assemblage of glaucophane (40%) + omphacite (25%) +
sphene (12%) + garnet (8%) + phengite (7%) with minor chlorite and epidote.
Most blueschist samples are epidote-blueschist close to eclogite. They show
compositional layering of eclogite and blueschist facies in mm to cm scale.

Coleman et al. (1965) interpreted that the interlayered high grade blocks may

have been formed contemporaneously. The sample 2099 collected from Ring
Mountain shows relatively thicker alternative layering, therefore, we
subdivided into blueschist (2099-1) and eclogite parts (2099-2). Epidote-
blueschist are relatively coarse grained and strongly deformed. Epidote-
blueschist show a mineral assemblage of glaucophane (37-58%) + epidote

(1-49%) + phengite (0-40%) + sphene (0-15%) % (chlorite, omphacite,



garnet). Some blueschist samples show very high content of phengite (18-
40%). Blueschist closer to eclogite facies exhibit higher content of omphacite
and garnet up to 10% and 16%, respectively. Although blueschist from two
study areas show similar mineral assemblages, samples from Jenner include
much higher content of garnets (8-16%) than the samples from Ring

Mountain (<2%).

Chapter 4. Analytical methods

4.1. Determination of chemical compositions of minerals

We analyzed chemical compositions of major minerals (glaucophane,
epidote, phengite, omphacite, garnet, and chlorite) in the samples from Jenner
(2089 and 2090) and from Ring Mountain (2097) by using electron probe
micro-analyzer (EPMA, SHIMADZU 1600) at Korea Basic Science Institute
(KBSI), Jeonju, Korea. The working conditions were accelerating voltage of
15 kV, beam current of 20 nA, and beam size of 1 um for Si, Ti, Al, Cr, Fe,
Mn, Mg, Ca, Na, Ni, and K. We treated the results shown as oxide weight

percentages with Minpet 2.02 to identify chemical formula of each minerals.
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4.2. Measurement of LPOs of minerals

We determined the foliation of samples by well-develope4.3d schistosity
and made thin sections of the foliation plane to determine the lineation. The
lineation was determined by measuring grain shape of elongated minerals on

the foliation using the projection-function method (Panozzo, 1984). We made

thin-sections (30~50pm) of XZ plane (X: lineation-parallel and Z: foliation-
normal) for each samples and polished under 1 um diamond paste and
SYTON (0.06 um colloidal silica) to clean surface. Afterwards, thin-sections
were coated with carbon to prevent charging in the operation of scanning
electron microscope (SEM). LPO of minerals were measured using electron
backscattered diffraction (EBSD) system with channel 5 software. The device
Is attached to scanning electron microscope (SEM, JEOL JSM-6380) in Seoul
National University (SNU). The LPO measurements were conducted with an
accelerating voltage of 20kV, a working distance of 15mm and spot size of 60

with 70° specimen tilt.
Fabric strength of minerals in each samples is shown as misorientation
index (M-index, Skemer et al., 2005). It is defined as M = %l RT(0) — R9(9) |

d0, where RT(0) is the theoretical distribution of misorientation angles with
random fabric and R9(0) is the distribution of observed misorientation angles.

Individual misorientation angles were calculated from EBSD results.

11 ’



4.3. Calculation of rock seismic properties

The P-wave seismic anisotropy (AVp) is defined as 200 (Vpmax — VPmin) /
(Vemax + Vemin). Similarly, the maximum S-wave seismic anisotropy
(max.AVs) is described using this formula 200 (Vs1 — Vs2) / (Vs1 + Vs2). Vs1
and Vs, two orthogonally polarized S-waves, are fast and slow velocities,
respectively. In this study, seismic properties of glaucophane, epidote,
phengite, omphacite and whole rocks were calculated based on the single
crystal elastic constants, LPOs, crystal density, and mineral modal
proportions using the Voigt-Reuss-Hill (VRH) averaging scheme and David

Mainprice’s petro-physical software (Mainprice, 1990). | used the single

crystal elastic constants (Cij) of glaucophane (Bezacier et al., 2010), epidote

(Ryzhova et al., 1966), phengite (Vaughan and Guggenheim, 1986), garnet

(Jiang et al., 2004) and omphacite (Bhagat et al., 1992) respectively.

Chapter 5. Results

5.1. Microstructure

The blueschist samples from Ring Mountain and Jenner are relatively

12 M E-1)



coarse grained which is a representative character of Franciscan high grade
blocks included in blocks-in-mélange and strongly deformed resulting in
well-developed foliation and lineation (Figure 3A). Anhedral glaucophane
has a grain size ranging from 100 to 700 um in length. Very elongated epidote
has subhedral to euhedral grain shape and large grain size (up to 1500um),
commonly forming layers (Figure 3A). Phengite-rich blueschist is shown in
Figure 3B. Most phengites which are flaky mineral show needle shape and
are aligned sub-parallel to lineation in matrix. Some phengites fill the pressure
shadow of garnet grains with chlorite and the garnet grains are partially or
completely chloritized. Phengites are also observed as inclusion in garnets.
Therefore, phengite in the studied blocks may be occurred during prograde
and retrograde process. Garnet-rich blueschist collected from Jenner,
therefore, showed relatively weaker lineation than the blueschist from Ring
Mountain. Two samples from Jenner Headlands (#2089, 2090) show bimodal
grain size distribution showing distinct layers, therefore, we subdivided these
thin-sections into large grain size layer (2089L, 2090L) and small grain size
layer (2089S, 2090S). In large grain size layer, grain size of garnets ranges up
to 2000 um while that of garnet and glaucophane are both 100200 um in
small grain size layer. The core of large garnet grains contain a lot of
inclusions of most minerals comprising epidote-blueschist such as
glaucophane, rutile, titanite, epidote, omphacite, and phengite. The rim of
large garnet grains and small garnets, however, show no inclusions. Small

grain size layers include higher content of garnet than large grain size layers.
13 :,% Y =]



The area proportion of small grain size layers are 5% and 13% for sample
2089 and 2090, respectively, in each thin sections. Eclogite samples are
mainly composed of greenish omphacite, garnet and epidote or glaucophane
(Figure 3C). Omphacite showed diverse range of grain size up to 3000 pum.
The other minerals such as glaucophane and epidote showed similar
microstructures in blueschist. Therefore, compositional layers of blueschist
and eclogite occurred as not only distinction of colors between blue and green,

but also distinction of grain size between glaucophane and omphacite.

5.2.  Chemical compositions of minerals

We analyzed mineral chemical compositions of glaucophane, garnet,
epidote, phengite, chlorite and omphacite in the three samples (2089 and 2090
from Jenner, 2097 from Ring Mountain) using the EPMA. The results of
chemical compositions of each minerals are shown in Table 4A-F.
Glaucophane, a sodic amphibole, was previously defined by (Na + K)a < 0.50,

Mg / (Mg + Fe?*) > 0.5, and ®Al > Fe®* (Hawthorne et al., 1997). Some

analyzed spots were identified as glaucophane (9 for 20 points). Other spots
were located in the sodic-calcic amphibole field (barroisite and
magnesiokatophorite) and the calcic amphibole field (actinolite and
magnesiohornblende) (Table 4A). Some grains showed different amphibole

14 ’
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composition from core to rim. Ferric iron was calculated according to the
charge-balance method described by Robinson et al. (1982). Both ferric and
ferrous iron are assigned so that the total cation charge is 46. As shown in
Table 4B, almandine (Fe**-rich garnet) was the highest content in all spots of
garnets (52—65%). Fe*" and endmembers of garnet are calculated according

to the method suggested by Knowles (1987) and by Rickwood (1968),

respectively. FeO of epidote group minerals was converted to Fe,Osz (Table
4C). We calculated mole fraction (X) of the representative end members
(tawmawite, clinozoisite, and epidote; Franz, 2004). Some Fe**-rich grains in
samples from Jenner were epidote (Ps = 0.2) and analyzed spots in a sample
from Ring Mountain were close to clinozoisite (Ps = 0.1). The euhedral
porphyroblastic grains in chloritized garnet of sample 2089 from Jenner also
plotted in Mg?*-rich clinozoisite field. Omphacite in sample from Jenner
showed higher FeO content (6.48-7.79 %) than in sample from Ring
Mountain (4.51-5.03 %; Table 4D). Fe** was estimated by charge balance
method. Chlorite and phengite showed higher Mg# in the samples from Ring

Mountain (69-81) than the samples from Jenner (50-74; Table 4E and F).
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Table 4B.

Chemical composition of garnet in samples

Jenner

Sample 589

2089

2089

2089 !

2080

2080

2080

2080

2090

2090

2090

2090

Mineral

Garnet

Si0; 37.68
TO, 008
AlLOs; 21.07
CryO3 001
FeO 2751
MnO 063
MgO 275
Ca0 961
Na;O 001
Total 99.34

Numbers of ions
Si 2.999
T 0.004
Al 3.950
Cr 0.001

Fe** 0.091
Fel* 1740
Mn 0042
Mg 0326
Ca 0820
Na 0002
Cations 8

Alm 59435
And 4691
Gross 23.263
Pyrope 11.13
Spess 1439
Uvaro 0.042
Xeagnt 028
Kfaem 0.594
Xneen: 0111
Fe Mg

5.337
ant

37.59
0.03
21.10
26.93
034
259
10.06
0.01
98.64

37.66
022
20.93
0.03
27.87
3.99
1.61
9.03
0.03
10136

37.68 !
0.08 !
2122
0.03 !
27311
0.57
2.66
9.47
0.03
99.04

on the basis of 12 O

3.010
0.002
3978

0.090
1.713
0.023
0.309
0.863
0.001

2974
0.013
3.892
0.002
0.092
1.749
0.267
0.190
0.764
0.004
8

58.894
4.648
20985
6.392
§.98
0.101
0.257
0.589
0.064

9.205

3.007 !
0.005 !
3988 !
0.002 !
0.091
1731
0.039
0.317
0.810 !
0.005 !

g

37.24
0.26

| 20.64

0.04
2408
6.30
1.45
94
0.01
99.45

2993
0.015
3.908
0.002
0.081
1.537
0.429
0.174
0.813
0.001

59.773152.059

4717

4.109

37.66
0.10
21.16
26.24
0.89
322
947
0.02
98.77

3.002
0.006
3974

0.087
1.662
0.060
0.382
0.809
0.004

57.057
4.503

23.163:23.304 23.248

10.929:
1.332
0.085
0.28
0.598
0.109

5461 ;

5.887
14.528
0.113
0275
0.52
0.059

8.833

13.124
2.061
0.006
0278
0.571
0.131

4.351

3742
0.06
21.28
0.01
27.25
0.42
0.69
945

96.56

3.092
0.004
4.142

0.094
1.789
0.029
0.085
0.836

21.047

37.71
0.06
21.22
0.04
26.83
0.69
294
9.66
0.03
99.18

4.857

3741
0.09
20.81
0.01
2643
1.00
299
940
0.09
98.23

3.003
0.006
3.936
0.001
0.089
1.685
0.068
0.358
0.808
0.014

37.62
0.14
21.15
0.08
2598
0.79
275
10.41
0.01
98.93

2.999
0.008
3.970
0.005
0.086
1.645
0.053
0.327
0.839
0.002

56.446
4455

3748
0.14

21.01
0.02

26.84
1.28
224

10.11

99.11

2997
0.008
3.058
0.001
0.090
1.705
0.087
0.267
0.866

5831
4.602

25783 24.945

11.216
1.828
0272
0305
0.565
0.112

5.031

9.122
2962
0.058
0.296
0.583
0.091

6.386

37.56
0.13
20.85

26.58
135
2.26
992
0.02

98.68

3.016
0.008
3.944

0.089
1.696
0.092
0.271
0.854
0.004

58242
4.597

24715
9.291
3.156

0

0.293
0.582
0.093

6.258

Fe* and endmembers of garnet are calculated according to the method

suggested by Knowles (1987) and by Rickwood (1968), respectively.
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Table 4D. Chemical composition of omphacite in samples

Sample . Jenner Ring Mountain
2089 2089 ! 2090 2090 2090 2090 : 2097 2097
Mineral Omphacite
Si0: 5443 54.11 ! 54.14 5457 5628 5647 5580 55.87
TiO, 0.08 0.03 | 0.08 004 0.07 0.07 | 004  0.07
AbO: 943 852 | 927 919 935 865 | 6.70 10.77
FeO 764 757 | 7.79 648 656 771 | 503 451
Cr0:  0.01 - 0 - 003 003 005 005 -
MnO 0.02 022 | 002 0.3 - 0.03 | 0.17 0.14
NiO - 0.04 | - 0.01 - - - 0.03
MgO 749 757 | 746 792 787 746 1 10.85 840
CaO 12.83 14.60 13.00 13.53 13.55 13.52 i 17.70 13.67
NaxO 734 649 : 724 701 721 7.06 | 494 7.17
K:0 - - - - - - - .
Total 9927 99.15: 99.00 98.81 100.92 100.99;101.26 100.62
Si 1.959 1964 | 1.956 1970 1991 2.008 1.979 1.968
AlY  0.041 0.036 0.044 0.030 0.009 - 0.021 0.032
Al"" 0358 0.328 1 0.350 0361 0380 0.362 | 0.258 0.414
Ti 0.002 0.001 0.002 0.001 0.002 0.002:0.001 0.002
Cr - - - 0.001 0.001 0.001 : 0.001 -
Fe’ 0.189 0.163 | 0.195 0.156 0.118 0.103 | 0.099 0.103
Fe¥™ 0.040 0.067 | 0.040 0.039 0.076 0.126 1 0.050 0.030
Mn 0.001 0.007 | 0.001 0.001 - 0.001 , 0.005 0.004
Ni - 0001 - ; ; -1 - 0001
Mg 0402 0410 0402 0426 0415 0.395 0.573 0.441
Ca 0495 0.568 0.503 0.523 0.514 0.515 0.673 0.516
Na 0512 0457 0.507 0491 0495 0486 0.340 0.490
K - - - - . -
Cations 4 4 4 4 4 4 4 4
Ferric iron was estimated by charge-balance method
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5.3. LPOs of minerals

In this study, LPOs of glaucophane showed different patterns between
Ring Mountain and Jenner (Figure 4). Glaucophane in samples from Ring
Mountain showed that [001] axes are aligned sub-parallel to lineation and
both (110) pole and [100] axes are aligned normal to foliation with or without
a girdle sub-normal to lineation. In contrast, samples from Jenner exhibited
that [001] axes form a girdle sub-parallel to lineation except one sample,
2090S. It showed that [001] axes are aligned sub-perpendicular to lineation
in the foliation. (110) pole and [100] axes display similar patterns to those of
Ring Mountain, but more scattered. The fabric strength of samples from Ring
Mountain (M=0.117-0.208) was stronger than that from Jenner (M=0.061—

0.096). The M-index values are shown in Table 2.

As shown in Figure 5, The LPO of omphacite in eclogite showed similar
patterns to glaucophane. The longest [001] axes were aligned sub-parallel to
lineation. (110) and (010) poles are aligned normal to foliation with and
without girdle sub-normal to lineation, respectively. The fabric strength of
this mineral was also stronger in the sample from Ring Mountain (M= 0.124)
than that of Jenner (M= 0.088). The LPO of omphacite in blueschist showed
that [001] axes have a maxima aligning sub-normal to lineation with a girdle

parallel to foliation. (110) and (010) poles also were aligned normal to

22 ’



foliation, and [100] axes were very scattered.

Contrary to glaucophane, LPO patterns and fabric strength of epidote
were similar in two study areas (Figure 6). They showed that [001] axes are
aligned sub-normal to foliation, and both (110) and (010) poles are aligned
sub-parallel to lineation, with or without a girdle parallel to foliation. The M-

index values were 0.148-0.171.

The LPOs of phengite were characterized by a maximum of [001] axes
normal to the foliation, with (110) and (010) poles, and [100] axes aligning in
a weak girdle parallel to foliation (Figure 7). Samples from Jenner showed
weaker fabric strength (M-index=0.072-0.193) than sample from Ring
Mountain (M-index = 0.202), and sample 2090S, especially, showed the

lowest fabric strength among phengite.

Samples from Jenner (garnet-rich blueschist) and eclogite included
abundant garnet grains. The LPOs of garnet showed nearly random fabric in

all samples (Figure 8).
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(100)

Jenner

Figure 8. LPOs of garnet. They are plotted in the lower hemisphere using
an equal area projection.
(half scatter width =20°, S: foliation, L: lineation, N: number of grains)

29 i x‘:] —1_%- EH -;l‘



5.4. Seismic velocity and anisotropy of minerals

In this study, we calculated seismic properties for major minerals such as
glaucophane, epidote, phengite, omphacite, and garnet. For calculating of
whole rocks, we used normalized mineral assemblages of GIn + Ep (or Phg)

for Ring Mountain epidote-blueschist, GIn + Phg (or Ep) + Grt £ Omp for

Jenner garnet-rich blueschist, and Omp + Ep (or GIn) + Grt for eclogite (Table

3).

As shown in Figure 9, seismic anisotropy of glaucophane, likewise fabric
strength, was stronger in the samples from Ring Mountain (AVp=17-22%,
max.AVs=9-12%) than those from Jenner (AVp=11-15%, max.AVs=7-9%).
The slowest P-wave velocities of glaucophane in both area are sub-normal to
foliation. Faster Vp show lower angles to foliation. Similarly, stronger
polarization anisotropies were aligned at lower angles to the foliation than
weaker polarization anisotropies. When the shear wave propagates normal to
foliation, the direction of Vs; polarization showed diverse directions in the
foliation according to LPOs of [001] axes. Therefore, glaucophane of samples
from Ring Mountain generally showed that the polarization direction of fast
shear wave is aligned sub-parallel to the lineation. On the other hand, samples
from Jenner which showed foliation-parallel [001] axes with a girdle

exhibited the directions between X and Y (X: lineation-parallel direction, Y:
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normal to X direction in foliation). Among them, the sample 2090S
showed that V1 direction is normal to lineation. The fast S-wave polarization,
however, was sub-parallel to foliation when the S-wave propagates low

angles to foliation in all samples.

We calculated seismic properties of omphacite in eclogite samples from
both study areas and a blueschist sample (#2089L) close to eclogite facies
(transitional facies) from Jenner (Figure 10). Omphacite in eclogite samples
from Ring Mountain showed very low seismic anisotropy (AVp = 3.2%,
max.AVs= 1.91%). The fastest and slowest P-wave velocities are sub-parallel
and sub-normal to foliation, respectively. The polarization anisotropy patterns
were very complicated. The min.Vp and max.Vp of this mineral in eclogite
from Jenner are parallel and normal to lineation, respectively. Seismic
anisotropy (AVp = 2.4%, max.AVs = 1.74%) was weaker in both P- and S-
waves than that of sample from Ring Mountain. Omphacite in transitional
facies blueschist from Jenner showed the strongest seismic anisotropy (AVp
= 3.2%, max.AV;s = 3.06%). The pattern of P-wave contours was similar to

the sample from Ring Mountain.

Seismic anisotropy of epidote was in the range of 8-9% for P-wave and
10-13% for maximum polarization anisotropy (Figure 11). Anisotropy
patterns were similar to those of glaucophane. The fastest and slowest P-wave
velocities are sub-parallel to lineation and sub-normal to foliation,
respectively. The strong shear-wave anisotropy was aligned at low angles to
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foliation, and the weak AVs were sub-normal to foliation.

Seismic anisotropy of phengite was much stronger than those of above
minerals. P-wave anisotropy was in the range of 20-42% and the maximum
polarization anisotropy was in the range of 18-43% (Figure 12). The lowest
seismic anisotropy was in 2090S which showed very weak fabric LPO.
Anisotropic patterns of this mineral were also similar to glaucophane and
epidote. The slowest Vp are normal to foliation and the fastest Vpare in the
foliation. The maximum P-wave velocity of 2090S was parallel to Y-direction.
The strong and weak polarization anisotropies were aligned at low and high
angles to foliation, respectively. The Vs; polarization showed similar patterns
to the fastest Vp when the incident ray propagates normal to foliation.
Therefore, the direction of Vs polarization is normal to lineation in sample
2090S. Whereas, the polarization direction of fast shear wave was normal to

lineation when shear waves propagate at low angle to foliation in all samples.

The garnets in garnet-rich blueschist (Jenner samples) and eclogite
showed much weaker seismic anisotropy (AVp = 0.0-0.1 %, max.AVs = 0.06—
0.23 %) due to random LPO patterns and weak anisotropy of garnet single
crystal (Figure 13). Seismic anisotropy for P-wave, especially, showed nearly
isotropic patterns. The maximum shear-wave anisotropy was stronger in
eclogite sample from Ring Mountain than those from Jenner. Among samples
from Jenner, eclogite sample showed weaker polarization anisotropy than
garnet-rich blueschist.
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Jenner

2090S
Blueschist
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Blueschist

Anisotropy =0.0%

2091
Blueschist

Anisotropy =0.1%
Figure 13. Seismic anisotropy and velocity of garnet. E-W direction:
lineation, center of a stereographic projection: normal to foliation.
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As shown in Figure 14, seismic anisotropy patterns of whole rocks
resembled to mineral showing relatively higher seismic anisotropy such as
glaucophane or phengite for blueschist, and glaucophane or epidote for
eclogite. Faster P-wave velocity and stronger polarization anisotropy were
sub-parallel to foliation, and the slowest Vp and weaker AVs were aligned
high angle to foliation in all samples. Fast shear wave polarization directions
were diverse between X and Y direction when incident ray propagates normal
to foliation, and normal to lineation direction when waves propagates nearly
parallel to foliation, respectively. Eclogite including a lot of omphacite and
garnet showed the lowest seismic anisotropy (AVp = 4.9-5.9 %, max.AVs =
3.95-5.58 %) among the samples. Blueschist samples, whereas, including
high content of phengite showed very strong seismic anisotropy (13.4-29.8%
for P-wave and 9.37-23.4% for S-wave). Seismic anisotropy of the other
epidote-blueschist was 10.7-22.3% for P-wave and 7.85-12.44% for shear-
wave. Epidote- and phengite-rich blueschist from Jenner showed weaker
seismic anisotropy than those from Ring Mountain due to lower seismic

anisotropy of glaucophane and composition of garnet = omphacite.

We calculated seismic properties of glaucophane, phengite and whole
rock of sample 2425 considering subducting angle from 0° to 70° (Figure
15A-C). When the dipping angle of subducting slab increases, polarization
directions of fast shear wave changed to trench-parallel direction (Y) and

seismic anisotropy of shear wave (AVs) also changed from weak to strong in
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Anisotropy =13.4%

Figure 14. Seismic anisotropy and velocity of whole rocks. E-W direction: linea-
tion, center of a stereographic projection: normal to foliation.
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both minerals when the incident ray propagates vertically. Glaucophane
and phengite showed weak AVs, ~4% and ~2.9%, respectively, for the
horizontal flow (6 = 0°). When dipping angle of slab becomes 6 = 30, 45, 60,
and 70°, glaucophane showed the AVs ~7.5%, ~9.0% ~9.9%, and 9.0%,
respectively (Figure 15A). Seismic anisotropy of phengite also increased with
higher dipping angle. The AVs was nearly 16%, 26%, 35%, and 37% when
subducting angle is 6 = 30, 45, 60, and 70° (Figure 15B). We calculated
seismic anisotropy of whole rock using the bi-mineralogical assemblages of
glaucophane and phengite considering the modal composition 49.9% and
50.1%, respectively. Anisotropy patterns of whole rock according to variable
dipping angle showed similar signature to both minerals. When slab is
subducted nearly flat (6 = 0°), AVs of whole rock was weak (~3%) for
vertically propagating incident ray. The AVs became stronger with increasing
dipping angle from 0° to 70° (~10.5% at 8 = 30°, ~17% at 6 = 45°, ~22% at
0 = 60°) and was proximate to the max.AVs when the subducting angle

became 70° (~23.5%); Figure 15C).
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Glaucophane

Vp Contours (km/s) AVs Contours (%) Vs1 polarization Planes
=8.42
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Figure 15A. Effect of dip angle (6) on the seismic anisotropy of
glaucophane in sample 2425. The X and Z directions indicate the
lineation and the normal to foliation direction, respectively.
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Phengite
Vp Contours (kmis) AVs Contours (%) Vs1 polarization Planes
"7.45 37.47

©04.87 0.40
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37.44
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"7.44 37.49

©4.86 0.33

Anisotropy =42.0 %

Figure 15B. Effect of dip angle (0) on the seismic anisotropy of
phengite in sample 2425. The X and Z directions indicate the linea-
tion and the normal to foliation direction, respectively.
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Whole rock

Vp Contours (km/s) AVs Contours (%) Vs1 polarization Planes
: 23.49

0.50

23.51
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23.53
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23.55

0.45

23.55

\ osss 3 L~ N WY o
Anisotropy =29.8%
Figure 15C. Effect of dip angle (8) on the seismic anisotropy of
whole rock considering the modal proportion of glaucophane and
phengite in sample 2425. The X and Z directions indicate the linea-
tion and the normal to foliation direction, respectively.
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Chapter 6. Discussion

6.1. LPO variations of minerals

6.1.1. LPO of glaucophane

The LPOs of glaucophane in samples from Ring Mountain showed that
[001] axes were aligned parallel to lineation and (110) poles and [100] axes
were aligned sub-normal to foliation. This LPO pattern has been reported in

several previous studies (Bezacier et al., 2010; Fujimoto et al., 2010; Teyssier

etal., 2010; Kim et al., 2012; Cao et al., 2013; Kim et al., 2013a, 2013b; Cao

et al., 2014). Glaucophane in samples from Jenner, however, showed unusual

LPO patterns in naturally deformed blueschist which is foliation-parallel [001]
axes with a girdle. These glaucophanes also showed noticeable weaker fabric
strength than those from Ring Mountain. The differences of fabric strength
and LPO type in glaucophane are likely due to much higher content of garnet
in samples from Jenner. Rigid garnet grains could affect the LPOs of soft
glaucophane significantly. The LPO randomization effect of garnet has been

reported in previous study of Cao et al. (2013). In that study, the LPOs of

glaucophane showed that (110) poles, [100] and [010] axes were aligned

normal to foliation with a girdle, and [001] axes were parallel to lineation
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without a girdle. This type also showed weaker fabric strength than another
usual type (SL-type). Although the LPOs of glaucophane in garnet-rich
blueschist are different to the results of this study, abundant garnets could
randomize [001] axes of glaucophane on the foliation plane and weaken the
fabric. Most other minerals except for epidote and omphacite in blueschist
from Jenner also showed weaker fabric strength than those from Ring
Mountain. Uncommon LPO type of glaucophane in garnet-rich blueschist in
this study also may be developed by pure shear deformation. Undergone
coaxial deformation, the longest axes, [001] axes, of glaucophane in samples

from Jenner were aligned relatively random on the foliation.

Small grain size layer in sample 2090 from Jenner which includes the
highest content of garnet showed the LPO of glaucophane characterized by a
maximum of [001] axes normal to the lineation with a girdle parallel to
foliation. Bimodal grain size distribution with layers is considered at least two
deformation events. Large grain size of garnets showed textural discontinuity
between core and rim suggesting at least two growth stages. The core of large
garnets included a lot of inclusions such as omphacite, rutile, phengite, and
glaucophane, whereas, rim had no inclusions. Garnets in small grain size layer
showed also clean core and rim without any inclusions. The rim of large
garnet grains and small grain size of garnet, therefore, are crystallized in
second growth stages after first growth of core of large garnet grains. In first

stage, samples from Jenner deformed and developed the LPO patterns of
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glaucophane consistent with samples from Ring Mountain. After that,
deformation directions changed and developed small grain size layers
showing LPO of glaucophane which [001] axes subnormal to lineation on the
foliation in second growth stage. Meanwhile, large glaucophane which had
been shown lineation-parallel [001] axes developed foliation-parallel [001]

axes with a girdle.

6.1.2. LPO of omphacite

We measured LPOs of omphacite for two eclogite samples and one
blueschist sample. The LPOs of omphacite showed different patterns among
them (Figure 5). The LPO of omphacite in eclogite sample 2099-2 from Ring
Mountain showed that (010) poles are aligned normal to foliation and [001]
axes are aligned parallel to lineation which is called the ‘SL-type’ in several

previous studies (e.g., Godard and van Roermund, 1995; Mauler et al., 2001;

Brenker et al., 2002; Zhang et al., 2006). This type occurs under the simple

shear deformation (Bascou et al., 2001; Zhang et al., 2006). The LPO of

omphacite in transitional facies blueschist (sample 2089L) from Jenner,
however, showed a maxima of (010) poles aligning normal to foliation and a
maxima of [001] axes sub-normal to lineation in the foliation with a girdle

parallel to foliation which is called the ‘S-type or flattening fabric. In several
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previous studies of experiment and modeling, this LPO type of omphacite
occurs when they undergone axial compression or transpression deformation

(Bascou et al., 2001; Zhang et al., 2006). The omphacite in eclogite sample

(2088) from Jenner showed relatively weak fabric strength (M = 0.088) and
intermediate LPO type between sample 2099-2 and 2089L. Therefore, the
omphacite also may be deformed by different deformation geometry in two

study areas.

6.1.3. LPO of epidote and phengite

Epidote showed similar fabric strength between Ring Mountain and
Jenner. The LPO of epidote in a sample from Jenner showed that both (110)
and (010) poles are aligned parallel to foliation with a girdle (Figure 6).
Samples from Ring Mountain, however, showed both (110) and (010) poles
are aligned parallel to lineation, and some (010) poles form a girdle parallel
to foliation. In several previous studies, epidote showed slip systems of

(001)[010] (Bezacier et al., 2010; Cao et al., 2011; Cao et al., 2013; Kim et

al., 2013b) and {101}[010] (Fujimoto et al., 2010; Cao et al., 2011; Cao et al.,

2013). Subhedral to euhedral grain shape of epidote may be deformed slightly

as a nearly rigid body in a relatively soft glaucophane matrix (Kim et al.

2013a; Cao et al., 2014). Phengite showed similar LPO type and fabric
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strength between Ring Mountain and Jenner. Because phengite are observed
near the garnet grains, the LPO of phengite is considered to be affected by
rigid garnet mostly. Phengite in small grain size layer (2090S) showed the
weakest fabric strength (M = 0.072) and [001] axes are aligned normal to
foliation with a very weak girdle. Small grain size layer, therefore, may be
formed with a different deformation direction and/or affected randomization

by garnets.

6.2. Seismic anisotropy of epidote blueschist and eclogite

in the subducting slab

Glaucophane, similarly to fabric strength, showed stronger seismic

anisotropy in samples from Ring Mountain than in samples from Jenner.
Garnet-rich blueschist from Jenner, also, included higher content of garnet +

omphacite which make much lower seismic anisotropy. Comparing seismic
anisotropy with similar mineral assemblage, epidote- and phengite-rich
blueschist, therefore, showed stronger seismic anisotropy in samples from

Ring Mountain than those from Jenner.

Phengite, especially, showed the strongest seismic anisotropy and similar
anisotropy patterns to glaucophane. As a result, blueschist including high

content of phengite showed much stronger seismic anisotropy. Phengite-rich
49 H = TH



blueschist from Ring Mountain which is mainly composed of glaucophane
and phengite showed the strongest seismic anisotropy in both P-wave and S-
wave (AVp = 29.8%, max.AVs = 23.43%). Although blueschist from Jenner
included garnet and omphacite, samples including high content of phengite
showed quite strong seismic anisotropy (AVpe = 14.2-18.3 %, max.AVs =
9.37-16.8%). When we calculated seismic anisotropy of blueschist from
Jenner using the mineral assemblage excluded garnet ant omphacite to
confirm the effect of phengite, phengite-rich samples showed much stronger
seismic anisotropy (AVpe = 16.8-18.3 %, max.AVs = 11.48-19.42%) than
epidote-blueschist (AVp = 11.8-15.0 %, max.AVs = 9.24-9.48%). Therefore,

phengite can affect seismic anisotropy of whole rock significantly.

Omphacite and garnet showed much weaker seismic anisotropy. Since
eclogite is mainly composed of these minerals, eclogite showed much weaker
seismic anisotropy (AVp = 4.9-5.9%, max.AVs = 3.95-5.58) than blueschist.
When we added garnet = omphacite for calculating seismic anisotropy of
whole rocks from Jenner, it decreased about 1-3% for both P-wave and S-
wave. Therefore, strong seismic anisotropy observed in most subduction zone

can be more affected by blueschist rather than eclogite.

In many subduction zones, the delay times of 0.1-0.3 s and 1-2 s caused
by anisotropic layers are naturally observed (e.g., Polet and Kanamori, 2002;

Nakajima and Hasegawa, 2004; Anglin and Fouch, 2005; Nakajima et al.,

2006; Long and van der Hilst, 2006). The delay times of 1- 1.5 s have been
50 ] 2



observed in California including Ring Mountain and Jenner (Polet and

Kanamori, 2002) and we cannot rule out the anisotropy induced by remnants

of Farallon plate beneath the North American plate in this area. We, therefore,
calculated the delay time of an oceanic crust using the equation suggested by

Pera et al. (2003)

D is the thickness of an anisotropic layer and assumed 7 km thick of
homogeneous oceanic crust in this study, dt is the delay times, and <Vs> is
the average velocity of shear wave. The average Vpr and Vs were calculated
as (Mpmax + Vpmin)/2 and (Vsimax + Vsimin + Vs2max + Vsomin)/4, respectively
(Table 5). We applied max.AVs for AVs, therefore, actual delay time would be
smaller according to subducting angle in subduction zone. Eclogite samples
showed too small delay times of 0.08-0.06 s to interpret naturally observed
delay times. Whereas, blueschist showed the delay times of 0.1-0.4 s that can
make a considerable effect to observed delay times in the fore-arc region.
Blueschist, especially phengite- rich blueschist, can affect seismic anisotropy

in subduction zones significantly with deformed mantle rocks.

Phengite-rich blueschist showed very strong seismic anisotropy in
this study and oceanic crust is subducted downward with variable dipping
angle in subduction zones. We, therefore, considered the subducting angle of
phengite-rich blueschist (sample 2425) from flat to high angle subduction (0—

70°; Figure 16A-E). Glaucophane and phengite showed oblique fast shear
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wave polarization direction between X and Y when the shear waves propagate
normal to foliation considering the flat subduction and seismic anisotropy of
S-wave was very weak (Figure 16A). If the subducting angle of the slab
increases the polarization direction changed to the trench-parallel direction
(Y) and AVs became stronger for vertically propagating S-waves (Figure
16B-E). Combining glaucophane (50%) and phengite (50%), whole rock
showed similar changes of polarization direction of S-wave and AVs since
both minerals showed similar anisotropy patterns. Therefore, phengite-rich
blueschist in subducting slab can contribute to strong trench-parallel seismic
anisotropy depending on the dipping angle of subducting slab in subduction

Zones.
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Y (A) Horizontal flow

X Vp Contours (km/s) AVs Contours (%) Vs1 polarization Planes
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Figure 16. Effect of dip angle (6) on the seismic anisotropy of glaucophane,
phengite and whole rock of sample 2425. (A) horizontal flow. (B) flow dipping
at 30°. (C) flow dipping at 45°. (D) flow dipping at 60°. (E) flow dipping at 70°.
the X and Z directions indicate the lineation and the normal to foliation direc-
tion, respectively.
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Y (B) Flow diping at 8 = 30°
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Figure 16. Continued.
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Y (C) Flow diping at 8 = 45°
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Figure 16. Continued.
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Y (D) Flow diping at 8 = 60°
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Figure 16. Continued.

(E) Flow diping at 8 = 70°
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Chapter 7. Conclusion

We studied microstructures and seismic properties of naturally deformed
blueschist and eclogite from Jenner and Ring Mountain to understand the
seismological implications of subducting oceanic crust which is transformed
to blueschist or eclogite at the high pressure and low temperature conditions.
In this study, we determined lattice preferred orientations (LPOs) of minerals
and calculated seismic properties of major minerals and whole rocks.
Glaucophane showed different LPO patterns in two study areas, and LPOs of
this mineral in the samples from Jenner have not been observed in previous
studies. [001] axes of glaucophane were aligned parallel to lineation in the
samples from Ring Mountain, but parallel to foliation with a girdle in the
samples from Jenner, and normal to lineation on the foliation in the small
grain size layer. The LPO of omphacite in a sample from Ring Mountain
(2099-2) showed that [001] axes are aligned parallel to lineation and (110),
(010) poles are aligned normal to foliation with and without a girdle,
respectively. Omphacite in a blueschist sample from Jenner, however, showed
different LPO pattern characterized by a maximum of [001] axes normal to
lineation on the foliation in a girdle parallel to foliation, with (110), (010)
poles aligning normal to foliation. Omphacite in an eclogite sample from
Jenner showed the LPO in the midway of above two LPO patterns and much

weaker fabric strength. The LPOs of epidote showed that [001] axes are
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aligned normal to foliation, and (110), (010) poles are aligned parallel to
lineation with or without girdle parallel to foliation. The LPOs of phengite
were characterized by a maximum of [001] axes normal to foliation, with
(110), (010) poles, and [100] axes aligning parallel to foliation with a weak
girdle. Phengite in the small grain size layer showed much weaker LPO fabric.

The LPOs of garnets showed nearly random fabric in all analyzed samples.

The seismic anisotropy of blueschist showed much stronger than eclogite.
Blueschist from Jenner which were including high content of garnet *

omphacite showed weaker seismic anisotropy than blueschist from Ring
Mountain. Therefore, omphacite and garnet weaken the seismic anisotropy of
whole rock significantly. The phengite, whereas, showed very strong seismic
anisotropy, and whole rocks including abundant phengite showed much
stronger seismic anisotropy than the other epidote-blueschist and eclogite.
Therefore, strong seismic anisotropy observed in subduction zone can be
affected by blueschist rather than eclogite. Phengite-rich blueschist,

especially, can develop significant seismic anisotropy in subducting slab.
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Figure 12. Seismic anisotropy and velocity of phengite. E-W direction:
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