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Abstract

For integers a, b, c, the homogeneous quadratic polynomial fpx, yq “ ax2 `
bxy`cy2 is called a binary quadratic form. In this thesis, we will give a closed
formula on the number of integral solutions of x2 ` 27y2 “ n for any integer
n. To do this, we follow the framework given by Min and Oh in [4], where
they considered the binary form x2` 32y2. In section 2, we briefly survey on
the theory of binary quadratic forms and give some lemmas which are needed
in the later. In section 3, we consider the case when n is a prime power. In
section 4, we consider the case when n is any integer relatively prime to 6.
In section 5, we summarize everything and give a complete formula on the
number of solutions of the above equation.
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Representations by a binary quadratic form
with class number 3

1 Introduction

For an integral binary quadratic form fpx, yq “ ax2`bxy`cy2, it is quite an
old problem to find the number of integer solutions of the equation fpx, yq “
n for some integer n. If the class number of f is one, then the answer of this
problem is completely known. However there is no known general method on
this problem when the class number of f is arbitrary.

In 2006, Sun and Williams [5] considered this problem when the class
number of f is less than or equal to 4. Recently, Min and Oh [4] introduced a
different method on the case when fpx, yq “ x2` 32y2 and gave a closed for-
mula on the number of solutions under the assumption that the set of primes
that are represented by each form having same discriminant is completely
known.

In this thesis, we consider the case when fpx, yq “ x2 ` 27y2. Note that
the class number of x2 ` 32y2(x2 ` 27y2) is 4(3, respectively). The method
adopted in this thesis is quite similar to [4].

In section 2, we introduce some notations and terminologies. Unexplained
notations and terminologies will follow that of Hua’s book [2].

In section 3, we consider the case when n is a prime power. In most cases,
we consider the form x2` 3y2 instead of x2` 27y2. Since the class number of
x2`3y2 is one, everything is quite well known. Furthermore x2`3y2 “ n has
an integer solution such that y is divisible by 3 if and only if x2 ` 27y2 “ n
has an integer solution.

In section 4, we consider the case when n is any integer relatively prime to
the discriminant. In many cases, we use an induction and all results obtained
from Section 3 will be crucially used in this section as a first step of the
induction.

Finally in section 5, we summarize everything and provide a complete
closed formula on the number of solutions of the above equation.

Throughout this thesis, we assume that the set of primes that are repre-
sented by each form of discriminant ´108 is completely known.
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2 Some Technical Lemmas

In this section, we briefly survey on the theory of binary quadratic forms and
give some lemmas which are needed in the later.

Let fpx, yq “ ax2`bxy`cy2 be a positive definite integral binary primitive
form of discriminant d, that is, gcdpa, b, cq “ 1, a ą 0, d “ b2 ´ 4ac ă 0.
Then we briefly define f “ ta, b, cu.

We define hpdq the number of equivalence classes of primitive forms with
discriminant d. For a precise definition of the class number, see [2].

From each class of primitive positive definite forms we select a represen-
tative giving a representative system which we denote by

F1, ¨ ¨ ¨ , Fhpdq.

Theorem 2.1. Let k be a positive integer such that pk, dq “ 1, and denote
by ψpkq the total number of solutions to

k “ F1px, yq, ¨ ¨ ¨ , k “ Fhpdqpx, yq.

Then

ψpkq “ ω
ÿ

n|k

ˆ

d

n

˙

,

where

ω “

$

&

%

2 if d ă ´4,
4 if d “ ´4,
6 if d “ ´3.

Proof. See [[2], 12.4.1].

If hpdq=1, then we may give an exact formula for the number of solutions
of the binary form with discriminant d.

Corollary 2.2. Let m be any positive integer relatively prime to 6. Then,
for any non negative integers a and b, we have

7tpx, yq P Z2
| x2 ` 3y2 “ 2a3bmu “ t

ÿ

k|m

ˆ

´3

k

˙

,

where

t “

$

&

%

2 if a is 0,
0 if a is odd,
6 otherwise.
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Proof. See [[3], 2.2.17].

For any integers n, we define

Rpn, fq :“ tpx, yq P Z2
| fpx, yq “ nu, and rpn, fq “ |Rpn, fq|.

Clearly, dpt1, 0, 27uq “ ´108 and one may easily check that hp´108q “ 3.
Furthermore if gcdpn,´108q “ 1, then we have

2
ÿ

k|n

ˆ

´108

k

˙

“ rpn, f1q ` rpn, f2q ` rpn, f3q

by Theorem 2.1. Here

f1 “ x2 ` 27y2, f2 “ 4x2 ` 2xy ` 7y2, f3 “ 4x2 ´ 2xy ` 7y2.

We first consider the case when gcdpn,´108q ‰ 1.

Lemma 2.3. Let m be any positive integer relatively prime to 6. For any
positive integer a or b, we have

rp2a3bm,x2 ` 27y2q “ t
ÿ

k|m

ˆ

´3

k

˙

,

where

t “

$

’

&

’

%

2 if a “ 0 and b ě 2 or a ě 2 and b “ 0,

6 if a is a positive even integer and b ě 2,

0 otherwise.

Proof. If b “ 1, then we can easily check that there is no integer solution of
this equation.

Suppose that x2` 27y2 “ 2a3bm for b ě 2. Then x should be divisible by
3. If we put x “ 3x1, then we obtain an equation x21` 3y2 “ 2a3b´2m. Hence

rp2a3bm,x2 ` 27y2q “ 7tpx, yq P Z2
| x2 ` 3y2 “ 2a3b´2mu “ t

ÿ

k|m

ˆ

´3

k

˙

,

where

t “

$

’

&

’

%

2 if a is 0,

0 if a is odd,

6 otherwise.
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by Corollary 2.2.
Now suppose that b “ 0. If a “ 1, then we can easily show that there is

no solution of this equation.
Next, suppose that x2`27y2 “ 2am for a ě 2. Then clearly x´y is even.

If we put y “ x´2y1, then we obtain an equation 7x2´27xy1`27y21 “ 2a´2m.
Note that there is a bijection from tpx, yq P Z2 | 7x2´27xy1`27y21 “ 2a´2mu
to tpx, yq P Z2 | 7x2 ` xy ` y2 “ 2a´2mu given by pα, βq ÞÝÑ pα ´ 2β, βq.
Clearly, dpt7, 1, 1uq “ ´27 and one may easily check that hp´27q “ 1. Since
p´27, 2a´2mq “ 1,

7tpx, yq P Z2
| x2 ` 27y2 “ 2amu “ 7tpx, yq P Z2

| 7x2 ` xy ` y2 “ 2a´2mu.

Hence we have

7tpx, yq P Z2
| 7x2 ` xy ` y2 “ 2a´2mu “ 2

ÿ

k|m

ˆ

´3

k

˙

.

The lemma follows from this.

Now we consider the case when gcdpn,´108q “ 1 for any integer n.

Lemma 2.4. Let n “ pe11 ¨ ¨ ¨ p
er
r r

g1
1 ¨ ¨ ¨ r

gt
t be any positive integer relatively

prime to 6, where pi, rk are primes such that pi ” 1 pmod 3q and rk ” 2
pmod 3q for any i, j. Then we have

rpn, x2 ` 27y2q “

#

0 if gk is odd for some k,

rppe11 ¨ ¨ ¨ p
er
r , x

2 ` 27y2q if g1,¨ ¨ ¨ ,gt are all even.

Proof. First, we assume that x2 ` 27y2 ” 0 pmod pq for some prime p such
that p ” 2 pmod 3q. Note that

ˆ

´3

p

˙

“

#

1 if p ” 1 pmod 3q,

´1 if p ” 2 pmod 3q.

If x ı 0 pmod pq, then y ı 0 pmod pq and ´3 ”

ˆ

x

3y

˙2

pmod pq. This is a

contradiction. Hence x ” y ” 0 pmod pq. This implies that ordppx
2`27y2q ”

0 pmod 2q. Therefore, if px, yq is an integer solution of this equation such that
x, y ı 0 pmod pq, then p ” 1 pmod 3q.

Assume that gk ” 1 pmod 2q. Since rk ” 2 pmod 3q, x, y ” 0 pmod rkq.
Furthermore since x2 ` 27y2 ı 2 pmod 3q, for any x, y P Z,

7tpx, yq P Z2
| x2`27y2 “ nu “ 7tpx, yq P Z2

| x2`27y2 “ pe11 ¨ ¨ ¨ r
1
k ¨ ¨ ¨ r

gt
t u “ 0.
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Assume that gk ” 0 pmod 2q for any k. Then we have

7tpx, yq P Z2
| x2 ` 27y2 “ nu “ 7tpx, yq P Z2

| x2 ` 27y2 “ pe11 ¨ ¨ ¨ p
er
r u.

The lemma follows from this.

From now on, we consider the case when x2` 27y2 “ pe11 ¨ ¨ ¨ p
er
r , where pi

is a prime such that pi ” 1 pmod 3q for any i.

Lemma 2.5. For any prime p, the equation x2 ` 27y2 “ p has an integer
solution if and only if p ” 1 pmod 3q and 2 is a cubic residue modulo p.

Proof. See [[1], 1.D.22].

From now on,

P :“ tp : prime | p ” 1 pmod 3q, rpp, x2 ` 27y2q ‰ 0u

and
Q :“ tp : prime | p ” 1 pmod 3q, rpp, x2 ` 27y2q “ 0u.

Example 2.6. By Lemma 2.5, we have P “ t31, 43, 109, 127, 157, ¨ ¨ ¨ u.

Definition 2.7. For two solutions px1, y1q, px2, y2q of the equation x2`ky2 “
n for k ě 2, we say they are essentially different if

px2, y2q ‰ px1, y1q, px1,´y1q, p´x1, y1q and p´x1,´y1q.

If x2 ` ky2 “ n has no pair of essentially different solutions, then the
number of solutions is zero, two or four.

Theorem 2.8. Let px1, y1q, px2, y2q be solutions of x2` ky2 “ n and ps1, t1q,
ps2, t2q be solutions of x2 ` ky2 “ m for k ě 2. Assume that pk, nmq “ 1,
pn,mq “ 1, y1t1s1 ‰ 0. If at least one pair of two equations is essentially
different, then both

px1s1 ` ky1t1, x1t1 ´ y1s1q, px1s1 ´ ky1t1, x1t1 ` y1s1q

and
px1s1 ˘ ky1t1, x1t1 ¯ y1s1q, px2s2 ˘ ky2t2, x2t2 ¯ y2t2q

are all essentially different solutions of the equation x2 ` ky2 “ nm.

Proof. See [4].
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3 Prime Power Cases

In this section, we consider the case when n is a prime power.

Lemma 3.1. Let n be an any positive integer relatively prime to 6. Then

7tpx, yq P Z2
| x2`27y2 “ nu “ 7tpx, yq P Z2

| x2`3y2 “ n, y ” 0 pmod 3qu.

Proof. One may easily show that the map form tpx, yq P Z2 | x2` 27y2 “ nu
to tpx, yq P Z2 | x2 ` 3y2 “ n, y ” 0 pmod 3qu given by pα, βq ÞÝÑ pα, 3βq is
bijective.

Lemma 3.2. Assume that p is a prime such that p ” 1 pmod 3q and e is a
positive integer. Then the equation x2 ` 3y2 “ pe has a solution px, yq such
that pxy, pq “ 1.

Proof. We will use an induction on e.
When e “ 1, we can easily check that every integer solution px, yq of

x2`3y2 “ p satisfies pxy, pq “ 1. Let pa, bq be an integer solution of x2`3y2 “
p such that pab, pq “ 1. Suppose that the equation x2 ` 3y2 “ pe´1 has a
solution ps, tq such that pst, pq “ 1. Then

pas˘ 3bt, at¯ bsq

are solutions of x2 ` 3y2 “ pe. Assume that at ¯ bs ” 0 pmod pq. Then
pat ´ bsq ` pat ` bsq ” 2at ” 0 pmod pq, which is a contradiction. So p
doesn’t divide one of at` bs and at´ bs. Therefore there is a solution px, yq
of x2`3y2 “ pe such that pxy, pq “ 1. By induction, the lemma is proved.

Lemma 3.3. Let p be a prime in P and e be any non negative integer.
For any solution px, yq of x2 ` 3y2 “ pe, y is divisible by 3. Furthermore,
rppe, x2 ` 27y2q “ 2pe` 1q.

Proof. Since rppe, x2`3y2q “ 2pe`1q, it suffices to show that for any integers
x, y such that x2 ` 3y2 “ pe, y is divisible by 3.

We will use an induction on e. If e “ 1, then the lemma follows from the
fact p P P . Assume that the lemma holds for e ´ 1. Suppose that there are
integers c, d such that c2 ` 3d2 “ pe and d ı 0 pmod 3q. Let a, b be integers
such that a2 ` 3b2 “ p. Note that b ” 0 pmod 3q. Then pac˘ 3bdq2 ` 3pad¯
bcq2 “ pe`1. Since

pad´ bcqpad` bcq ” a2d2 ´ b2c2 ” ´3b2d2 ´ b2p´3d2q ” 0 pmod pq,
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we may assume, without loss of generality, that ac ` 3bd ” ad ´ bc ” 0
pmod pq. Hence

ˆ

ac` 3bd

p

˙2

` 3

ˆ

ad´ bc

p

˙2

“ pe´1.

Note that
ad´ bc

p
”
ad

p
ı 0 pmod 3q. This is a contradiction to the induc-

tion by hypothesis. Therefore d ” 0 pmod 3q, and

rppe, x2 ` 27y2q “ rppe, x2 ` 3y2q “ 2pe` 1q.

The lemma follows from this.

Lemma 3.4. Let q be a prime in Q. For any positive integer e, there is a
unique essentially different solution pa, bq of x2`3y2 “ qf such that pab, qq “
1. Furthermore b ” 0 pmod 3q if and only if f ” 0 pmod 3q.

Proof. Assume that pai, biq be an integer solution of x2 ` 3y2 “ qi such that
paibi, qq “ 1. Note that such an integer solution always exists (see. Lemma
3.2). If f “ 2k, then

pa0q
k, 0q, pa2q

k´1, b2q
k´1
q, ¨ ¨ ¨ , pa2k, b2kq

are all essentially different solutions of x2 ` 3y2 “ qf . If f “ 2k ` 1, then

pa1q
k, b1q

k
q, pa3q

k´1, b3q
k´1
q, ¨ ¨ ¨ , pa2k`1, b2k`1q

are all essentially different solutions of x2`3y2 “ qf . Therefore only pa2k, b2kq
or pa2k`1, b2k`1q is the solution satisfying the condition. This proves the first
statement. Assume that a21` 3b21 “ q. Then pa1b1, qq “ 1 and b1 ı 0 pmod 3q
for q P Q. Note that pa21´3b21, 2a1b1q, pa

2
1`3b21, 0q are all essentially different

solutions of x2 ` 3y2 “ q2. Hence we may let pa2, b2q “ pa
2
1 ´ 3b21, 2a1b1q, by

changing the sign suitably. Furthermore

ppa21 ´ 3b21qa1 ˘ 3p2a1b1qb1, pa
2
1 ´ 3b21qb1 ¯ 2a21b1q,

are all essentially different solutions of x2 ` 3y2 “ q3. Note that

pa21 ´ 3b21qb1 ` 2a21b1 ” 3b1pa
2
1 ´ b

2
1q ” 0 pmod 3q

and

pa21 ´ 3b21qb1 ` 2a21b1 ” 3b1pa
2
1 ´ b

2
1q ” 3b1p´4b21q ı 0 pmod qq.

7



Therefore we may let a3 “ pa
2
1´3b21qa1´3p2a1b1qb1, b3 “ pa

2
1´3b21qb1`2a21b1.

More generally,

an`3 “ ana3 ` 3bnb3, bn`3 “ anb3 ´ bna3

or
an`3 “ ana3 ´ 3bnb3, bn`3 “ anb3 ` bna3.

Therefore
b2n`3 ” b2n pmod 3q.

This completes the proof.

Corollary 3.5. Let q be a prime in Q.

rpqf , x2 ` 27y2q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

2

3
pf ´ 1q if f ” 1 pmod 3q,

2

3
pf ` 1q if f ” 2 pmod 3q,

2

3
pf ` 3q if f ” 0 pmod 3q.

Proof. The corollary follows directly from the above lemma.

4 General Cases

In this section, we consider the general case. We will prove a complete formula
for the number of solutions of x2 ` 27y2 “ n for any positive integer n.

Lemma 4.1. Let A, B be positive integers such that pA,Bq “ 1 and pAB, 6q “
1. For any integers a, b such that a2 ` 3b2 “ AB, there are integers c, d, e, f
such that c2 ` 3d2 “ A, e2 ` 3f 2 “ B and

pa, bq “ ˘pce` 3df, cf ´ deq or ˘ pce´ 3df, cf ` deq.

Proof. Since all the other cases can be done in similar manner, we only
provide the proof of the case when A is a perfect square and B is not a
perfect square. Let

pa0, 0q, pa1, b1q, ¨ ¨ ¨ , pas, bsq

be all essentially different solutions of x2 ` 3y2 “ A and

pc1, d1q, ¨ ¨ ¨ , pct, dtq

8



be all essentially different solutions of x2` 3y2 “ B. Since B is not a perfect
square, dj is not zero for any j. Then

pacl, adlq, pakcl ˘ 3bkdl, akdl ¯ bkclq

are all essentially different solutions of x2`3y2 “ AB by Theorem 2.8. Hence
the number of solutions that are not essentially different from the above is
4t ` 8st. Furthermore the total number of solutions of x2 ` 3y2 “ N is

2
ÿ

k|N

ˆ

´3

k

˙

. for any integer N such that pN, 6q “ 1. Since pA,Bq “ 1, we

have

2
ÿ

k|AB

ˆ

´3

k

˙

“ 2
ÿ

k|A

ˆ

´3

k

˙

ÿ

k|B

ˆ

´3

k

˙

.

Hence

2
ÿ

k|AB

ˆ

´3

k

˙

“
1

2
p2` 4sqp4tq “ 4t` 8st.

Therefore every solution of x2 ` 3y2 “ AB is not essentially different from
one of solutions given above. The lemma follows from this.

Lemma 4.2. Let p1, ¨ ¨ ¨ , pr be primes in P. Then for any non negative
integers ei,

rppe11 ¨ ¨ ¨ p
er
r , x

2
` 27y2q “ 2

r
ź

i“1

pei ` 1q.

Proof. The proof of this lemma is almost same to that of Lemma 3.3. Hence
we omit the proof.

Lemma 4.3. Let q1, . . . , qs be primes in Q. If n “ qf11 ¨ ¨ ¨ q
fs
s for some non

negative integers fj, then

rpn, x2 ` 27y2q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

2

3

s
ź

j“1

pfj ` 1q if
s
ź

j“1

pfj ` 1q ” 0 pmod 3q,

2

3
p

s
ź

j“1

pfj ` 1q ` 2q if
s
ź

j“1

pfj ` 1q ” 1 pmod 3q,

2

3
p

s
ź

j“1

pfj ` 1q ´ 2q if
s
ź

j“1

pfj ` 1q ” 2 pmod 3q.

9



Proof. We will use an induction on s. We already proved the case when s “ 1.

Assume that s ě 2. Let A “
s´1
ź

j“1

pfj ` 1q and B “ fs ` 1.

Case 1 If A ” 0 pmod 3q and B ” 0 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 0

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
AB.

First, assume that f1, ¨ ¨ ¨ , fs are all even. Let

pa, 0q, pa1, b1q, ¨ ¨ ¨ , paα, bαq

be all essentially different solutions of x2`3y2 “ qf11 ¨ ¨ ¨ q
fs´1

s´1 such that bk ” 0
pmod 3q and

pc, 0q, pc1, d1q, ¨ ¨ ¨ , pcβ, dβq

be all essentially different solutions of x2 ` 3y2 “ qfss such that dl ” 0

pmod 3q. Here 2` 4α “
2

3
A, 2` 4β “

2

3
B by induction hypothesis. Then by

Theorem 2.8,

pac, 0q, pacl, adlq, pakc, bkcq, pakcl ˘ 3bkdl, akdl ¯ bkclq

are all essentially different solutions of x2 ` 3y2 “ qf11 ¨ ¨ ¨ q
fs
s such that

0, adl, bkc, akdl ¯ bkcl ” 0 pmod 3q.

If pa1, b1q is a solution of x2 ` 3y2 “ qf11 ¨ ¨ ¨ q
fs´1

s´1 and pc1, d1q is a solution of
x2 ` 3y2 “ qfss such that b1, d1 ı 0 pmod 3q, then 3 divides exactly one of
a1d1 ¯ b1c1. Let

pa11, b
1
1q, ¨ ¨ ¨ , pa

1
γ, b

1
γq

be all essentially different solutions of x2`3y2 “ qf11 ¨ ¨ ¨ q
fs´1

s´1 such that b1m ı 0
pmod 3q and

pc11, d
1
1q, ¨ ¨ ¨ , pc

1
δ, d

1
δq

be all essentially different solutions of x2 ` 3y2 “ qfss such that d1n ı 0

pmod 3q. Here 4γ “ 2A´
2

3
A and 4δ “ 2B ´

2

3
B. Then

pa1mc
1
n ˘ 3b1md

1
n, a

1
md

1
n ¯ b

1
mc
1
nq

10



are all essentially different solutions of x2 ` 3y2 “ qf11 ¨ ¨ ¨ q
fs
s . Here 3 divides

exactly one of amdn ¯ bmcn. Therefore

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
AB.

Assume that fj is odd for some j and fs is even. Then every solution of

x2 ` 3y2 “ qf11 ¨ ¨ ¨ q
fs´1

s´1 is not of the form pa, 0q. Hence 4α “
2

3
A. Therefore

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
AB.

Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Then every solution

of x2 ` 3y2 “ qfss is not of the form pc, 0q. Hence 4β “
2

3
B. Therefore

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
AB.

Finally, assume that fj is odd for some j and fs is odd. Then every

solution of x2` 3y2 “ qf11 ¨ ¨ ¨ q
fs´1

s´1 is not of the form pa, 0q and every solution

of x2`3y2 “ qfss is also not of the form pc, 0q. Hence 4α “
2

3
A and 4β “

2

3
B.

Furthermore

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
AB.

Case 2 If A ” 0 pmod 3q and B ” 1 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 0

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
AB.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `

4α “
2

3
A and 2 ` 4β “

2

3
pB ` 2q, 4γ “ 2A ´

2

3
A, 4δ “ 2B ´

2

3
pB ` 2q by

induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
AB.

Assume that fj is odd for some j and fs is even. Similarly, 4α “
2

3
A.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
AB.

11



Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4β “
2

3
pB ` 2q. Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
AB.

Finally, assume that fj is odd for some j and fs is odd. Similarly, 4α “
2

3
A

and 4β “
2

3
pB ` 2q. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
AB.

Case 3 If A ” 0 pmod 3q and B ” 2 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 0

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
AB.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `

4α “
2

3
A and 2 ` 4β “

2

3
pB ´ 2q, 4γ “ 2A ´

2

3
A, 4δ “ 2B ´

2

3
pB ´ 2q by

induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
AB.

Assume that fj is odd for some j and fs is even. Similarly, 4α “
2

3
A.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
AB.

Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4β “
2

3
pB ´ 2q. Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
AB.

Finally, assume that fj is odd for some j and fs is odd. Similarly, 4α “
2

3
A

and 4β “
2

3
pB ´ 2q. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
AB.

12



Case 4 If A ” 1 pmod 3q and B ” 0 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 0

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
AB.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `

4α “
2

3
pA ` 2q and 2 ` 4β “

2

3
B, 4γ “ 2A ´

2

3
pA ` 2q, 4δ “ 2B ´

2

3
B by

induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
AB.

Assume that fj is odd for j and fs is even. Similarly, 4α “
2

3
pA ` 2q.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
AB.

Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4β “
2

3
B.

Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
AB.

Finally, assume that fj is odd for j and fs is odd. Similarly, 4α “
2

3
pA`2q

and 4β “
2

3
B. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
AB.

Case 5 If A ” 2 pmod 3q and B ” 0 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 0

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
AB.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `

13



4α “
2

3
pA ´ 2q and 2 ` 4β “

2

3
B, 4γ “ 2A ´

2

3
pA ´ 2q, 4δ “ 2B ´

2

3
B by

induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
AB.

Assume that fj is odd for some j and fs is even. Similarly, 4α “ 2
3
pA´2q.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
AB.

Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4β “
2

3
B.

Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
AB.

Finally, assume that fj is odd for some j and fs is odd. Similarly, 4α “
2

3
pA´ 2q and 4β “

2

3
B. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
AB.

Case 6 If A ” 1 pmod 3q and B ” 1 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 1

pmod 3q. So we it suffices to show that

rpn, x2 ` 27y2q “
2

3
pAB ` 2q.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `

4α “
2

3
pA`2q and 2`4β “

2

3
pB`2q, 4γ “ 2A´

2

3
pA`2q, 4δ “ 2B´

2

3
pB`2q

by induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
pAB ` 2q.

Assume that fj is odd for some j and fs is even. Similarly, 4α “
2

3
pA`2q.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
pAB ` 2q.
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Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4β “
2

3
pB ` 2q. Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
pAB ` 2q.

Finally, assume that fj is odd for some j and fs is odd. Similarly, 4α “
2

3
pA` 2q and 4β “

2

3
pB ` 2q. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
pAB ` 2q.

Case 7 If A ” 2 pmod 3q and B ” 2 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 1

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
pAB ` 2q.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `

4α “
2

3
pA´2q and 2`4β “

2

3
pB´2q, 4γ “ 2A´

2

3
pA´2q, 4δ “ 2B´

2

3
pB´2q

by induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
pAB ` 2q.

Assume that fj is odd for some j and fs is even. Similarly, 4α “
2

3
pA´2q.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
pAB ` 2q.

Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4β “
2

3
pB ´ 2q. Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
pAB ` 2q.

Finally, assume that fj is odd for some j and fs is odd. Similarly, 4α “
2

3
pA´ 2q and 4β “

2

3
pB ´ 2q. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
pAB ` 2q.
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Case 8 If A ” 1 pmod 3q and B ” 2 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 2

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
pAB ´ 2q.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `

4α “
2

3
pA`2q and 2`4β “

2

3
pB´2q, 4γ “ 2A´

2

3
pA`2q, 4δ “ 2B´

2

3
pB´2q

by induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Assume that fj is odd for some j and fs is even. Similarly, 4α “
2

3
pA`2q.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4α “
2

3
pA` 2q. Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Finally, assume that fj is odd for some j and fs is odd. Similarly, 4α “
2

3
pA` 2q and 4β “

2

3
pB ´ 2q. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Case 9 If A ” 2 pmod 3q and B ” 1 pmod 3q, then AB “
s
ź

j“1

pfj ` 1q ” 2

pmod 3q. So it suffices to show that

rpn, x2 ` 27y2q “
2

3
pAB ´ 2q.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f1, ¨ ¨ ¨ , fs are all even. Similarly, 2 `
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4α “
2

3
pA´2q and 2`4β “

2

3
pB`2q, 4γ “ 2A´

2

3
pA´2q, 4δ “ 2B´

2

3
pB`2q

by induction hypothesis. Hence

rpn, x2 ` 27y2q “ 2` 4α ` 4β ` 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Assume that fj is odd for some j and fs is even. Similarly, 4α “
2

3
pA´2q.

Hence

rpn, x2 ` 27y2q “ 4α ` 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Assume that f1, ¨ ¨ ¨ , fs´1 are all even and fs is odd. Similarly, 4β “
2

3
pB ` 2q. Hence

rpn, x2 ` 27y2q “ 4β ` 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Finally, assume that fj is odd for some j and fs is odd. Similarly, 4α “
2

3
pA´ 2q and 4β “

2

3
pB ` 2q. Hence

rpn, x2 ` 27y2q “ 8αβ ` 4γδ “
2

3
pAB ´ 2q.

Hence the lemma is proved.

Theorem 4.4. Let p1, ¨ ¨ ¨ , pr be primes in P and q1, ¨ ¨ ¨ , qs be primes in Q.
If n “ pe11 ¨ ¨ ¨ p

er
r q

f1
1 ¨ ¨ ¨ q

fs
s , then for any non negative integers e1is, f

1
js,

rpn, x2`27y2q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

2

3

r
ź

i“1

pei ` 1q
s
ź

j“1

pfj ` 1q if
s
ź

j“1

pfj ` 1q ” 0 pmod 3q,

2

3

r
ź

i“1

pei ` 1qp
s
ź

j“1

pfj ` 1q ` 2q if
s
ź

j“1

pfj ` 1q ” 1 pmod 3q,

2

3

r
ź

i“1

pei ` 1qp
s
ź

j“1

pfj ` 1q ´ 2q if
s
ź

j“1

pfj ` 1q ” 2 pmod 3q.

.

Proof. By lemma 4.2, we have

r

˜

r
ź

i“1

peii , x
2
` 27y2

¸

“ 2
r
ź

i“1

pei ` 1q.
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Also by lemma 4.3, we have

r

˜

s
ź

j“1

q
fj
j , x

2
` 27y2

¸

“
2

3
p

s
ź

j“1

pfj ` 1q ` aq,

where a “ 0, 2,´2. Let 2
r
ź

i“1

pei ` 1q “ Er and
2

3
p

s
ź

j“1

pfj ` 1q ` aq “ Fs.

Case 1 Assume that e1,¨ ¨ ¨ ,er and f1, ¨ ¨ ¨ , fs are all even. Let

pa, 0q, pa1, b1q, ¨ ¨ ¨ , pas, bsq

be all essentially different solutions of x2 ` 3y2 “
r
ź

i“1

peii such that bk ” 0

pmod 3q and
pc, 0q, pc1, d1q, ¨ ¨ ¨ , pct, dtq

be all essentially different solutions of x2 ` 3y2 “
s
ź

j“1

q
fj
j such that dl ” 0

pmod 3q, where 2` 4s “ Er and 2` 4t “ Fs. Then by Theorem 2.8,

pac, 0q, pacl, adlq, pakc, bkcq, pakcl ˘ 3bkdl, akdl ¯ bkclq

are all essentially different solutions of x2 ` 3y2 “ n such that

0, adl, bkc, akdl ¯ bkcl ” 0 pmod 3q.

Note that for every solution pa1, b1q of x2 ` 3y2 “
r
ź

i“1

peii such that b1 ” 0

pmod 3q. If pc1, d1q is a solution of x2`3y2 “
s
ź

j“1

q
fj
j such that d1 ı 0 pmod 3q,

then a1d1 ¯ b1c1 ı 0 pmod 3q. Therefore

rpn, x2 ` 27y2q “ 2` 4s` 4t` 8st “
1

2
ErFs.

Case 2 Assume that f1,¨ ¨ ¨ ,fs are all even and ei is odd for some i. Then

every solution of x2 ` 3y2 “
r
ź

i“1

peii is not of the form pa, 0q. Hence 4s “ Er.

Therefore we have

rpn, x2 ` 27y2q “ 4s` 8st “
1

2
ErFs.
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Case 3 Assume that e1,¨ ¨ ¨ ,er are all even and fj is odd for some j. Then

every solution of x2 ` 3y2 “
s
ź

j“1

q
fj
j is not of the form pc, 0q. Hence 4t “ Fs.

Therefore we have

rpn, x2 ` 27y2q “ 4t` 8st “
1

2
ErFs.

Case 4 Assume that ei is odd for some i and fj is odd for some j. Then

every solution of x2 ` 3y2 “
r
ź

i“1

peii is not of the form pa, 0q and also every

solution of x2 ` 3y2 “
s
ź

j“1

q
fj
j is not of the form pc, 0q. Hence 4t “ Fs and

4s “ Er. Therefore we have

rpn, x2 ` 27y2q “ 8st “
1

2
ErFs.

Thus the theorem is proved.

5 Summary

In this section, we summarize all results proved in the previous sections.
We give a closed formula for the number of representations of the equation
x2 ` 27y2 “ n.

Let n be a positive integer. Assume that gcdpn,´108q ‰ 1. Let n “ 2a3bk
for some integers k, a and b such that pk, 6q “ 1 and some a ě 1 or b ě 1.

rpn, x2 ` 27y2q “ t
ÿ

m|k

ˆ

´3

m

˙

,

where

t “

$

’

&

’

%

2 if a “ 0 and b ě 2 or a ě 2 and b “ 0,

6 if a is a positive even integer and b ě 2,

0 otherwise.

Assume that gcdpn,´108q “ 1. Let n “ pe11 ¨ ¨ ¨ p
er
r q

f1
1 ¨ ¨ ¨ q

fs
s r

g1
1 ¨ ¨ ¨ r

gt
t ,

where pi, qj, rk are all primes such that pi P P and qj P Q, rk ” 2 pmod 3q
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and ei, fj, gk are all positive integers. If gk is odd for some k, then

rpn, x2 ` 27y2q “ 0.

If gk is even for any k, then

rpn, x2`27y2q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

2

3

r
ź

i“1

pei ` 1q
s
ź

j“1

pfj ` 1q if
s
ź

j“1

pfj ` 1q ” 0 pmod 3q,

2

3

r
ź

i“1

pei ` 1qp
s
ź

j“1

pfj ` 1q ` 2q if
s
ź

j“1

pfj ` 1q ” 1 pmod 3q,

2

3

r
ź

i“1

pei ` 1qp
s
ź

j“1

pfj ` 1q ´ 2q if
s
ź

j“1

pfj ` 1q ” 2 pmod 3q.

.
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국문초록

정수 a, b, c에대하여 fpx, yq “ ax2`bxy`cy2을이변수이차형식이라한다.
이 논문에서는 정수 n에 대하여 x2 ` 27y2 “ n의 정수해의 개수를 구하는
공식을제공한다.이를위해,이차형식 x2`32y2에대해Min과 Oh가제시한
체계를 따른다. 제2절에서는 이변수 이차형식에 대해 간략하게 살펴보고,
후에필요한보조정리를제시한다.제3절에서는 n이한소수에대한제곱인
경우에대해살펴본다.제4절에서는 6과서로소인 n인경우에대해살펴본
다. 제5절에서는 앞에서 살펴본 모든 경우에 대해 요약하고 x2 ` 27y2 “ n
의 정수해의 개수를 구하는 완벽한 공식을 제공한다.

주요 어휘 : 이변수 이차형식
학번: 2010-23077
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