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Abstract

For integers a, b, ¢, the homogeneous quadratic polynomial f(z,y) = ax? +
bry+cy? is called a binary quadratic form. In this thesis, we will give a closed
formula on the number of integral solutions of 22 4+ 27y? = n for any integer
n. To do this, we follow the framework given by Min and Oh in [4], where
they considered the binary form 22 + 32y2. In section 2, we briefly survey on
the theory of binary quadratic forms and give some lemmas which are needed
in the later. In section 3, we consider the case when n is a prime power. In
section 4, we consider the case when n is any integer relatively prime to 6.
In section 5, we summarize everything and give a complete formula on the
number of solutions of the above equation.
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Representations by a binary quadratic form
with class number 3

1 Introduction

For an integral binary quadratic form f(x,y) = az?+ bxy + cy?, it is quite an
old problem to find the number of integer solutions of the equation f(z,y) =
n for some integer n. If the class number of f is one, then the answer of this
problem is completely known. However there is no known general method on
this problem when the class number of f is arbitrary.

In 2006, Sun and Williams [5] considered this problem when the class
number of f is less than or equal to 4. Recently, Min and Oh [4] introduced a
different method on the case when f(z,y) = 2 + 32y? and gave a closed for-
mula on the number of solutions under the assumption that the set of primes
that are represented by each form having same discriminant is completely
known.

In this thesis, we consider the case when f(z,y) = 2% + 27y%. Note that
the class number of 2% + 32y*(x? + 27y?) is 4(3, respectively). The method
adopted in this thesis is quite similar to [4].

In section 2, we introduce some notations and terminologies. Unexplained
notations and terminologies will follow that of Hua’s book [2].

In section 3, we consider the case when n is a prime power. In most cases,
we consider the form 22 + 3y? instead of 22 + 27y2. Since the class number of
22 + 312 is one, everything is quite well known. Furthermore x2 + 3y? = n has
an integer solution such that y is divisible by 3 if and only if 22 + 27y? = n
has an integer solution.

In section 4, we consider the case when n is any integer relatively prime to
the discriminant. In many cases, we use an induction and all results obtained
from Section 3 will be crucially used in this section as a first step of the
induction.

Finally in section 5, we summarize everything and provide a complete
closed formula on the number of solutions of the above equation.

Throughout this thesis, we assume that the set of primes that are repre-
sented by each form of discriminant —108 is completely known.



2 Some Technical Lemmas

In this section, we briefly survey on the theory of binary quadratic forms and
give some lemmas which are needed in the later.

Let f(z,y) = ar®+bry+cy? be a positive definite integral binary primitive
form of discriminant d, that is, ged(a,b,c) = 1, a > 0, d = b* — 4ac < 0.
Then we briefly define f = {a,b, c}.

We define h(d) the number of equivalence classes of primitive forms with
discriminant d. For a precise definition of the class number, see [2].

From each class of primitive positive definite forms we select a represen-
tative giving a representative system which we denote by

Fi, - Fyay-

Theorem 2.1. Let k be a positive integer such that (k,d) = 1, and denote
by ¥(k) the total number of solutions to

k= Fl(x7y)7"' 7k = Fh(d)(‘r)y)

Then p
vl =X (5)
nlk
where
2 ifd< —4,
w=<1 4 ifd=—4,
6 ifd=—-3.

Proof. See [[2], 12.4.1].

If h(d)=1, then we may give an exact formula for the number of solutions
of the binary form with discriminant d.

Corollary 2.2. Let m be any positive integer relatively prime to 6. Then,
for any non negative integers a and b, we have

Hop) e 2 2+ = 23m) =0 3 (),

klm
where
2 if a 1s 0,
t=< 0 if a 1s odd,
6 otherwise.
2



Proof. See [[3], 2.2.17].

For any integers n, we define

R(n, f) = {(z,y) € Z* | f(z,y) = n}, and r(n, f) = |R(n, f)|.
Clearly, d({1,0,27}) = —108 and one may easily check that A(—108) = 3.
Furthermore if ged(n, —108) = 1, then we have
—108
23 (55 = o )+ vl )+ 7l £
kin

by Theorem 2.1. Here

fi = 2* + 2707, fo = 42° + 22y + Ty, f3 = 42° — 22y + Ty*.

We first consider the case when ged(n, —108) # 1.

Lemma 2.3. Let m be any positive integer relatively prime to 6. For any
positive integer a or b, we have

r(2°3Pm, 2 + 27y?) = tz (%) :

k|m

where
2 ifa=0andb>=2 ora=>=2 andb =0,
t =46 ifais a positive even integer and b = 2,
0  otherwise.

Proof. If b = 1, then we can easily check that there is no integer solution of
this equation.

Suppose that 22 + 27y = 223*m for b = 2. Then z should be divisible by
3. If we put & = 31, then we obtain an equation 22 + 3y? = 2¢3*~2m. Hence

-3
r(23"m, a® + 27y%) = #{(x,y) € 2% | &® + 3y> = 23" Pm} =t )| <?) ,
klm
where
2 if ais 0,
t=<0 if a is odd,
6

otherwise.

-':rx I 'kl:l- 1_-“



by Corollary 2.2.

Now suppose that b = 0. If a = 1, then we can easily show that there is
no solution of this equation.

Next, suppose that 22 + 27y? = 2%m for a > 2. Then clearly x —y is even.
If we put y = —2y;, then we obtain an equation 7z*—27zy; +27y? = 2°?m.
Note that there is a bijection from {(z,y) € Z? | T2® —27xy, + 27y7 = 2°%m}
o {(z,y) € Z* | T2* + xy + y* = 2°?m} given by (o, 8) — (a — 28, 3).
Clearly, d({7,1,1}) = —27 and one may easily check that h(—27) = 1. Since
(—27,2%2m) = 1,

Hwy) e 22 | 0 + 2Ty = 2°m) = t{(w,y) € 27 | 7o + 2y + y* = 2°m}.

Hence we have

o) e 22 7 vy o7 = 27} <23 ().

klm

The lemma follows from this. OJ

Now we consider the case when ged(n, —108) = 1 for any integer n.

Lemma 2.4. Let n = p'---perri ---r{" be any positive integer relatively
prime to 6, where p;,ry are primes such that p; = 1 (mod 3) and rp = 2
(mod 3) for any i,j. Then we have

r(n, 2? + 27y%) = 0 . i z:f g 1s odd for some k,
r(py' - pir, 2’ +27y%)  if g, g0 are all even.

Proof. First, we assume that 22 + 27y? = 0 (mod p) for some prime p such
that p =2 (mod 3). Note that

(—_3) )1 if p=1 (mod 3),
p) |-1 if p=2 (mod3).
2\ 2
If £ 0 (mod p), then y # 0 (mod p) and —3 = (3—) (mod p). This is a
Y

contradiction. Hence = y = 0 (mod p). This implies that ord,(z?+27y*) =
0 (mod 2). Therefore, if (z,y) is an integer solution of this equation such that
z,y # 0 (mod p), then p=1 (mod 3).

Assume that gy = 1 (mod 2). Since rp = 2 (mod 3), z,y = 0 (mod ry).
Furthermore since x2 + 27y* # 2 (mod 3), for any x,y € Z,

Hzy) € 2% | 2427y = n} = t{(,y) € Z° | &*+2Ty* = p* -1y} = 0.

4



Assume that gy =0 (mod 2) for any k. Then we have
t{(z,y) € 22 | &® + 27y* = n} = #{(x,y) € Z° | &® + 27y* = p* - - pi7}.
The lemma follows from this. O

From now on, we consider the case when x? + 27y* = p§' - - - p&, where p;
is a prime such that p; = 1 (mod 3) for any i.

Lemma 2.5. For any prime p, the equation x* + 27y* = p has an integer
solution if and only if p=1 (mod 3) and 2 is a cubic residue modulo p.

Proof. See [[1], 1.D.22].
From now on,
P:={p: prime |p=1 (mod 3), r(p,z*+ 27y*) # 0}
and
Q:={p: prime |p=1 (mod3), r(p,z*+27y*) = 0}.

Example 2.6. By Lemma 2.5, we have P = {31,43,109, 127,157, -- - }.

Definition 2.7. For two solutions (x1, 1), (72, y2) of the equation z2 + ky? =
n for k > 2, we say they are essentially different if

(w2,92) # (w1,91), (1, —y1), (=21, y1) and (=21, —y1).

If 22 + ky?> = n has no pair of essentially different solutions, then the
number of solutions is zero, two or four.

Theorem 2.8. Let (z1,y1), (T2, ya) be solutions of x? + ky? = n and (s1,1,),
(82,t2) be solutions of x* + ky* = m for k > 2. Assume that (k,nm) = 1,
(n,m) = 1, y1tys1 # 0. If at least one pair of two equations is essentially

different, then both

(151 + kyaty, oty — yis1), (x1s1 — kyity, o1ty + y151)

and
(x181 £ kyity, x1ty Fy1s1), (wasy £ kyota, Toty F yots)

are all essentially different solutions of the equation x* + ky* = nm.

Proof. See [4].



3 Prime Power Cases

In this section, we consider the case when n is a prime power.

Lemma 3.1. Let n be an any positive integer relatively prime to 6. Then
H(z,y) € 22 | 22+27y* = n} = t{(z,y) € 22 | a?+3y* —=n, y=0 (mod 3)}.

Proof. One may easily show that the map form {(x,y) € Z* | 2* + 27y* = n}
to {(z,y) € Z* | 2* + 3y*> = n, y =0 (mod 3)} given by (a, 3) — (,30) is
bijective. O

Lemma 3.2. Assume that p is a prime such that p=1 (mod 3) and e is a
positive integer. Then the equation x* + 3y* = p° has a solution (z,y) such
that (zy,p) = 1.

Proof. We will use an induction on e.

When e = 1, we can easily check that every integer solution (z,y) of
r?+3y? = psatisfies (zy, p) = 1. Let (a,b) be an integer solution of 22+ 3y? =
p such that (ab,p) = 1. Suppose that the equation z? + 3y? = p°~! has a
solution (s,t) such that (st,p) = 1. Then

(as + 3bt,at F bs)

are solutions of x? + 3y? = p°. Assume that at F bs = 0 (mod p). Then
(at — bs) + (at + bs) = 2at = 0 (mod p), which is a contradiction. So p
doesn’t divide one of at + bs and at — bs. Therefore there is a solution (z,y)
of 22+ 3y? = p° such that (zy, p) = 1. By induction, the lemma is proved. [

Lemma 3.3. Let p be a prime in P and e be any non negative integer.
For any solution (x,y) of #* + 3y* = p°, y is divisible by 3. Furthermore,
r(pt 2%+ 27y%) = 2(e + 1).

Proof. Since r(p®, 2%+ 3y?) = 2(e+1), it suffices to show that for any integers
x,y such that 22 + 3y? = p°, y is divisible by 3.

We will use an induction on e. If e = 1, then the lemma follows from the
fact p € P. Assume that the lemma holds for e — 1. Suppose that there are
integers ¢, d such that ¢ + 3d? = p® and d # 0 (mod 3). Let a, b be integers
such that a® + 3b* = p. Note that b = 0 (mod 3). Then (ac + 3bd)* + 3(ad F
be)? = p°*L. Since

(ad — be)(ad + be) = a*d* — b*c® = —3b*d*> — b*(—3d*) =0 (mod p),



we may assume, without loss of generality, that ac + 3bd = ad — bc = 0

(mod p). Hence
ac + 3bd\? ad — be\ o1
— ] +3 =p“ .
p D

d
— « # 0 (mod 3). This is a contradiction to the induc-
p p
tion by hypothesis. Therefore d = 0 (mod 3), and

Note that ad — be

r(p¢, 2?4+ 27y%) = r(p®, 2* + 3y*) = 2(e + 1).

The lemma follows from this. O

Lemma 3.4. Let q be a prime in Q). For any positive integer e, there is a
unique essentially different solution (a,b) of x> +3y? = q’ such that (ab, q) =
1. Furthermore b =0 (mod 3) if and only if f =0 (mod 3).

Proof. Assume that (a;,b;) be an integer solution of z? + 3y? = ¢’ such that
(a;b;,q) = 1. Note that such an integer solution always exists (see. Lemma
3.2). If f =2k, then

(a0q",0), (a2q" ", b2g" "), -+, (a2k, bor)
are all essentially different solutions of 22 4+ 3y% = ¢/. If f = 2k + 1, then
(alqu blqk)a <a3qk717 b3qk71)7 Ty (a2k+17 b2k+1)

are all essentially different solutions of 22 +3y? = ¢/. Therefore only (agy, box)
or (asgks1,box+1) is the solution satisfying the condition. This proves the first
statement. Assume that a? + 303 = ¢. Then (a1b1,q) = 1 and b; # 0 (mod 3)
for ¢ € Q. Note that (a? — 302, 2a1b;), (a? +3b%,0) are all essentially different
solutions of 2% + 3y = ¢*. Hence we may let (ag, by) = (a} — 3b%,2a,b;), by
changing the sign suitably. Furthermore

((a] — 3b3)ay £ 3(2a1b)by, (a] — 3b3)by F 2aiby),
are all essentially different solutions of 22 4+ 3y? = ¢*. Note that

(a? — 3b1)by + 2a2b; = 3by(a? — b?) =0  (mod 3)
and

(a? — 3b?)by + 2a2b; = 3by(a? — b?) = 3by(—4b?) 0 (mod q).

7



Therefore we may let ag = (a3 —3b3)a; —3(2a1b1)by, by = (a? —3b%)b; + 2a3b;.
More generally,

(py3 = Apas + 3bpbs, byis = a,bs — byas

or
(py3 = Gnpaz — 3bybs, b,z = a,bs + bas.
Therefore
b2 =02 (mod 3).
This completes the proof. O

Corollary 3.5. Let q be a prime in Q.

(2
SN ff=1 (mod3),
2

r(q’, @® + 27y%) = < g(f + 1) if f=2 (mod 3),

2 :
§(f+3) if f=0 (mod 3).

\

Proof. The corollary follows directly from the above lemma. O

4 General Cases

In this section, we consider the general case. We will prove a complete formula
for the number of solutions of 2% 4 27y? = n for any positive integer n.

Lemma 4.1. Let A, B be positive integers such that (A, B) = 1 and (AB,6) =
1. For any integers a,b such that a®> + 3b* = AB, there are integers c,d, e, f
such that ¢ + 3d*> = A, e* + 3f* = B and

(a,b) = £(ce + 3df,cf —de) or =+ (ce—3df,cf + de).

Proof. Since all the other cases can be done in similar manner, we only
provide the proof of the case when A is a perfect square and B is not a
perfect square. Let

(aOv 0)7 (ah bl)v B (as7 bS)

be all essentially different solutions of 22 + 3y? = A and
(Cla dl)a Ty (Cta dt)

8



be all essentially different solutions of 2% + 3y* = B. Since B is not a perfect
square, d; is not zero for any j. Then

(acl, adl), (akcl + 3bkdl, akdl + bkcl)

are all essentially different solutions of 22+ 3y? = AB by Theorem 2.8. Hence
the number of solutions that are not essentially different from the above is
4t + 8st. Furthermore the total number of solutions of 2% + 3y? = N is

-3
22 (?) for any integer N such that (N,6) = 1. Since (A, B) = 1, we

:5(0) 25 E)

have
2 ) <_—3> = l(2 + 45)(4t) = 4t + 8st.
k 2
k|AB

Hence

Therefore every solution of 2 + 3y?> = AB is not essentially different from
one of solutions given above. The lemma follows from this. O

Lemma 4.2. Let py, -+, p. be primes in P. Then for any non negative
ntegers e;,

r(p oo e+ 27y%) = 2| (e + 1),
i=1

Proof. The proof of this lemma is almost same to that of Lemma 3.3. Hence
we omit the proof. O

Lemma 4.3. Let qq,...,qs be primes in Q). If n = q{l - qls for some non
negative integers f;, then

r S

;H(fj+1) if H(fj+1) =0 (mod 3),
rinat+om?) = L[+ 0+2) i [[+0=1 (mod3)
g(As (1) —2) if ﬁ(fj+1)52 (mod 3).



Proof. We will use an induction on s. We already proved the case when s = 1.
s—1

Assume that s > 2. Let A = H(fj +1)and B = f, + 1.
=1
Casel IfA=0 (mod 3)and B=0 (mod 3), then AB = n(fj +1)=0
=1
(mod 3). So it suffices to show that

2
r(n,z® + 27y%) = §AB.

First, assume that fq, ---, fs are all even. Let
(Cl, 0)7 (&1, bl)) Ty (aom ba)

be all essentially different solutions of 2% +3y? = q{l e qfi‘ll such that b, = 0
(mod 3) and

(Ca O)a (Ch d1)7 Ty (Cﬁa d,@)
be all essentially different solutions of z? + 3y? = ¢/* such that d; = 0

2 2
(mod 3). Here 2 + 4o = §A’ 2440 = gB by induction hypothesis. Then by
Theorem 2.8,

(CLC, 0), (CLCl, CLdl), (akc, bkc), (akcl i 3bkdl, CLkdl 1 bkCl>
are all essentially different solutions of 22 + 3y® = ¢/* - - - ¢/* such that
0, (ldl, bkC, akdl F bkCl =0 (mod 3)

If (a/,V) is a solution of 22 + 3y2 = ¢/*---¢/*}' and (¢, d') is a solution of
2?2 + 3y? = ¢/ such that ¥',d # 0 (mod 3), then 3 divides exactly one of
a'd Fbd. Let

(alla bll)? T (afw bi/)
be all essentially different solutions of 22 +3y? = q{l e qfs_‘f such that b/, # 0
(mod 3) and

(6/17 dll)v T (C:;, d:S)
be all essentially different solutions of 2? + 3y?> = ¢/* such that d,, # 0

2 2

(mod 3). Here 4y = 2A — §A and 40 = 2B — §B. Then

(al,c, +3b.d, a..d, Fb c)

mn?

10



are all essentially different solutions of x? + 3y? = q{l - qls. Here 3 divides
exactly one of a,,d,, F b,,c,. Therefore

2
r(n,z® +27y%) = 2 + 4o + 48 + 8aB + 476 = §AB'

Assume that f; is odd for some j and f, is even. Then every solution of

2
22 + 3y = ¢' - ¢/*7" is not of the form (a,0). Hence 4a = §A' Therefore

2
r(n,z® + 27y*) = da + 8aff + 475 = §AB‘

Assume that fi, ---, fs_1 are all even and f; is odd. Then every solution

2
of 2% + 3y? = ¢/* is not of the form (c,0). Hence 43 = §B. Therefore

2
r(n,z* + 27y%) = 48 + 8aB + 476 = §AB'

Finally, assume that f; is odd for some j and fs is odd. Then every

' is not of the form (a,0) and every solution

solution of 22 +3y2 = ¢f* - - - ¢/*7
2 2
of %+ 3y* = ¢/* is also not of the form (c, 0). Hence 4o = §A and 4 = §B.

Furthermore 5
r(n,2* + 27y*) = 8af + 470 = §AB’

Case 2 If A=0 (mod 3) and B=1 (mod 3), then AB = H(fj +1)=0
j=1
(mod 3). So it suffices to show that

2
r(n,x* + 27y%) = §AB'

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +

4a=§Aand2+4ﬁ=;(B+2),4’Y:2A—§Aa45:28_§(B+2) by

induction hypothesis. Hence

2
r(n, 2 +27y?) = 2+ da + 46 + 8aff + 476 = §AB‘

2
Assume that f; is odd for some j and f; is even. Similarly, 4o = §A’

Hence 5
r(n,z? + 27y*) = da + 8aff + 475 = §AB‘

11



Assume that fi, ---, f,_1 are all even and f, is odd. Similarly, 45 =
2
§(B + 2). Hence

2
r(n,z* + 27y%) = 48 + 8aB + 4v6 = §AB'

2
Finally, assume that f; is odd for some j and f; is odd. Similarly, 4o = §A

2
and 45 = §<B + 2). Hence

2
r(n,x* + 27y*) = 8aB + 4y = §AB’

Case 3 If A=0 (mod 3) and B =2 (mod 3), then AB = [ [(f;+1) =0
j=1
(mod 3). So it suffices to show that

2
r(n,z* + 27y°%) = §AB.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +

4a=§Aand2+4B=;(8—2)74fy=2A—§A,45=2B—§(B—2) by

induction hypothesis. Hence
2
r(n,x® + 27y*) = 2 + da + 48 + 8afB + 4y = §AB‘

2
Assume that f; is odd for some j and f; is even. Similarly, 4o = §A'

Hence 9
r(n, 2% + 27y%) = 4o + 8aff + 4y = §AB‘

Assume that f, ---, fs_1 are all even and f, is odd. Similarly, 45 =
2
§<B — 2). Hence

2
r(n,z* + 27y%) = 48 + 8afB + 476 = §AB'

2
Finally, assume that f; is odd for some j and f; is odd. Similarly, 4o = §A

2
and 45 = §<B — 2). Hence

2
r(n,z* + 27y*) = 8aB + 470 = §AB’

12



Case4 If A=1 (mod 3)and B=0 (mod 3), then AB = H(fj +1)=0
j=1
(mod 3). So it suffices to show that

2
r(n,x? + 27y%) = §AB'

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +

2 2 2 2
4oz=§(A+2) and2—|—4ﬁ=§B,47=2A—§(A+2),45=2B—§Bby

induction hypothesis. Hence

2
r(n,x® + 27y%) = 2 + 4a + 48 + 8af + 470 = §AB‘

2
Assume that f; is odd for j and f, is even. Similarly, 4o = §(A + 2).

Hence 9
r(n, 2% + 27y%) = 4o + 8aff + 4y = §AB‘

2
Assume that fi, ---, fs_1 are all even and f, is odd. Similarly, 43 = §B'
Hence 5
r(n,z® + 27y%) = 48 + 8aB + 476 = gAB.

2
Finally, assume that f; is odd for j and f; is odd. Similarly, 4a = g(A—l—2)

2
and 40 = §B' Hence

2
r(n,2* + 27y*) = 8aB + 470 = §AB’

Case 5 If A=2 (mod 3) and B =0 (mod 3), then AB = n(fj +1)=0
j=1
(mod 3). So it suffices to show that

2
r(n,z* + 27y°%) = §AB.

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +

13



4a=§(A—2) and2+4ﬁ=gB,éLfy:2A—§(A—2),45=2B—§Bby

induction hypothesis. Hence
2
r(n,x® +27y%) = 2 + 4a + 48 + 8af + 470 = §AB'

Assume that f; is odd for some j and f; is even. Similarly, 4o = %(A— 2).
Hence

2
r(n, 2% + 27y%) = 4o + 8aff + 4y = §AB‘

2
Assume that fi, ---, fs_1 are all even and f; is odd. Similarly, 48 = §B.
Hence 5
r(n,z® + 27y%) = 48 + 8aB + 476 = §AB.

Finally, assume that f; is odd for some j and f; is odd. Similarly, 4o =

2 2
§(A —2) and 45 = gB. Hence

2
r(n,2? + 27y*) = 8afB + 4y = gAB.

Case 6 If A=1 (mod 3)and B=1 (mod 3), then AB = [ [(f;+1) =1
j=1
(mod 3). So we it suffices to show that

2
r(n, 2 + 27y%) = g(AB + 2).

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +

2 2 2 2
by induction hypothesis. Hence

2
r(n,2® + 27y*) = 2 + da + 48 + 8af + 4y0 = §(AB + 2).

2
Assume that f; is odd for some j and f; is even. Similarly, 4a = g(A—l—Z).
Hence 9
r(n,2? + 27y*) = da + 8af + 4y5 = §(AB + 2).
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Assume that fi, ---, f,_1 are all even and f, is odd. Similarly, 45 =
2
§(B + 2). Hence

2
r(n,x* + 27y*) = 48 + 8afB + 476 = g(AB +2).

Finally, assume that f; is odd for some j and f; is odd. Similarly, 4o =
2 2
g(A +2) and 48 = g(B + 2). Hence

2
r(n,z* + 27y%) = 8afB + 4y = g(AB + 2).

Case 7 If A=2 (mod 3) and B =2 (mod 3), then AB = n(fj +1)=1
j=1
(mod 3). So it suffices to show that

2
r(n, 2 + 27y%) = E(AB + 2).

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +

2 2 2 2
by induction hypothesis. Hence

2
r(n,2® +27y*) = 2 + da + 48 + 8af + 4y0 = §(AB +2).

2
Assume that f; is odd for some j and f; is even. Similarly, 4o = 5(A—2).
Hence 5
r(n,x® + 27y*) = da + 8af + 4y5 = g(AB + 2).

Assume that fi, ---, fs_1 are all even and f, is odd. Similarly, 45 =
2
§<B — 2). Hence
2
r(n,2® + 27y%) = 43 + 8aff + 4§ = §(AB +2).

Finally, assume that f; is odd for some j and f is odd. Similarly, 4o =

2 2
§(A —2) and 45 = §<B —2). Hence

2
r(n,x* + 27y%) = 8aB + 470 = §(AB + 2).

15



Case 8 If A=1 (mod 3) and B =2 (mod 3), then AB = H(fj +1)=2
j=1
(mod 3). So it suffices to show that

2
r(n, 2 + 27y%) = §(AB —2).

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +

2 2 2 2
do = §<A+2> and 2+43 = 5(3—2), 4y = 2A—§(A+2), 46 = 23—5(3—2)
by induction hypothesis. Hence

2
r(n,2® +27y*) = 2 + 4a + 48 + 8af + 470 = g(AB —2).

2
Assume that f; is odd for some j and f; is even. Similarly, 4a = g(A—FQ).
Hence 9
r(n,2? + 27y?) = da + 8af + 4y5 = g(AB —2).

Assume that fi, ---, fs_1 are all even and f, is odd. Similarly, 4o =
2
g(A + 2). Hence

r(n,x* + 27y*) = 48 + 8afB + 476 = §<AB —2).

Finally, assume that f; is odd for some j and f; is odd. Similarly, 4o =
2 2
§<A +2) and 45 = g(B —2). Hence

2
r(n,2* + 27y%) = 8afB + 4y = g(AB —2).

Case 9 If A=2 (mod 3) and B=1 (mod 3), then AB = | |(fj+].) =2
=1
(mod 3). So it suffices to show that

2
r(n,x* + 27y%) = §(AB —2).

Similarly to the case 1, we divide this case into 4 subcases and prove the
lemma separately. First, assume that f;, ---, fs are all even. Similarly, 2 +
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da = g(A—Q) and 2446 %(B+2), 4y = 2A—§(A—2), 45 - 2B—§(B+2)

by induction hypothesis. Hence

2
r(n,2® + 27y*) = 2 + da + 48 + 8af + 4y0 = g(AB —2).

2
Assume that f; is odd for some j and f; is even. Similarly, 4o = g(A—Z).
Hence 9
r(n,2® + 27y*) = da + 8af + 4y5 = §(AB —2).

Assume that f, -+, fs_1 are all even and f, is odd. Similarly, 45 =
2
§<B + 2). Hence

r(n,2? + 27y?) = 43 + 8aff + 45 = g(AB —2).

Finally, assume that f; is odd for some j and f; is odd. Similarly, 4o =
2
3(A 2) and 4 = (B + 2). Hence

2
r(n,x* + 27y%) = 8aB + 470 = g(AB —2).
Hence the lemma is proved. O

Theorem 4.4. Let P1,- -, pr be primes in P and q1,- - -, qs be primes in Q).
If n =pi*---pir q - qls, then for any non negative integers €'s, fis,

r(n, z+27y%) = { —]_[ e; + 1)( ]‘[ L+D+2) if [[(fi+1)=1 (mod3),
j=1

7j=1

ol

7j=1

Proof. By lemma 4.2, we have

T

r (pr@f + 27y2> =2 |(e; +1).
i=1

i=1

17
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Also by lemma 4.3, we have

r (E g o+ 27y2) = ;(H(fj +1) +a),

Jj=1

I8 2 S
where a = 0,2, —2. Let QH(ei +1) = E, and §(H(fﬂ +1)+a)=F,.

i=1 Jj=1

Case 1 Assume that e, --,e, and f1, ---, f, are all even. Let

(a’0)7 (ahbl)v ) (asvbS)

be all essentially different solutions of 2% + 3y? = pr such that b, = 0
i=1

(mod 3) and
(Cv 0)7 (Ch dl)v ) (Ct> dt)

be all essentially different solutions of 2% + 3y* = quj such that d; = 0
j=1
(mod 3), where 2 + 4s = E, and 2 + 4t = F;. Then by Theorem 2.8,
(ac,0), (acy, ady), (age, bie), (ape; £ 3brdy, apd; F brc;)

are all essentially different solutions of 22 + 3y% = n such that

0, ady, b, apd; F brc;, =0 (mod 3)
Note that for every solution (a’,V’) of 2 + 3y* = H p§* such that v =
i=1

(mod 3). If (¢, d') is a solution of x? +3y* = H q;’ such that d’ # 0 (mod 3),
=1

then a'd’ F b'¢ # 0 (mod 3). Therefore
1
r(n,z% + 27y?*) = 2 + 4s + 4t + 8st = S ErFs.

Case 2 Assume that fi,---,fs are all even and e; is odd for some 7. Then

every solution of 2% + 3y = pr is not of the form (a,0). Hence 4s = E,..
i=1

Therefore we have

1
r(n,z® + 27y?) = 4s + 8st = 5 ErFs.

18
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Case 3  Assume that e, -- e, are all even and f; is odd for some j. Then
every solution of z? + 3y? = H q;’ is not of the form (c,0). Hence 4t = F.

j=1
Therefore we have

1
r(n, 2 + 27y*) = 4t + 8st = 3 ErFs.

Case 4 Assume that e; is odd for some ¢ and f; is odd for some j. Then

.
every solution of 22 + 3y? = pr is not of the form (a,0) and also every
i=1

solution of 2% + 3y? = quj is not of the form (c,0). Hence 4t = F; and
j=1
4s = E,.. Therefore we have

1
r(n,x® + 27y*) = 8st = §ETFS.

Thus the theorem is proved. O

5 Summary

In this section, we summarize all results proved in the previous sections.
We give a closed formula for the number of representations of the equation
22+ 27y% = n.

Let n be a positive integer. Assume that ged(n, —108) # 1. Let n = 293%
for some integers k, a and b such that (k,6) =1 and some a > 1 or b > 1.

rin,a® + 27 =Y (%’) |

mlk
where
2 ifa=0andb>2o0ra=>2andb=0,
t=46 if a is a positive even integer and b > 2,
0 otherwise.

Assume that ged(n, —108) = 1. Let n = p<t-.-perglt .. qlsrd ... p9,
where p;, gj, 7, are all primes such that p; € P and ¢; € ), 1, = 2 (mod 3)

19



and e;, f;, g, are all positive integers. If g, is odd for some k, then

r(n,x* + 27y*) = 0.

If gy is even for any k, then

r(n, :172+27y2) =

-
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