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Abstract

A homogeneous quadratic polynomial F px, yq “ ax2`bxy`cy2 pa, b, c P Zq
is called a binary quadratic form. In this thesis, we consider the binary form
F px, yq “ x2` 64y2 which has class number 4. Our aim is to give an explicit
closed formula for the equation F px, yq “ n for any integer n. To do this, we
adopt the method developed in [3]. In section 5, we collect all results proved
in the previous sections and provide a closed formula of the above equation
explicitly.
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Representations by a binary quadratic form
with class number 4

1 Introduction

A homogeneous quadratic polynomial F px, yq “ ax2`bxy`cy2 pa, b, c P Zq
is called a binary quadratic form. It is quite an old problem to find all solutions
of the diophantine equation

F px, yq “ k (1.1)

for an integer k. If

Fipx, yq “ aix
2
` bixy ` ciy

2 for i “ 1, 2, ¨ ¨ ¨ , h

are all equivalence classes of primitive binary forms of discriminant d for
any non-square integer d, then it is well known that for any integer k with
gcdpk, dq “ 1,

h
ÿ

i“1

7tpx, yq P Z2
| Fipx, yq “ ku “ w

ÿ

n|k

ˆ

d

n

˙

,

where w “

$

&

%

2 if d ă ´4,
4 if d “ ´4,
6 if d “ ´3

and
`

d
n

˘

is a Kronecker’s symbol.
Hence if the class number of F is 1 (more generally, if the number of

equivalence classes in the genus of F is 1), then we know the complete answer
on the number of solutions of the equation (1.1). If k is a prime, then we have
an effective criterion whether or not the equation (1.1) has a solution(see, for
details [1]).

Recently Sun and Williams [4] solved this problem completely when the
class number of F is less than or equal to 4 under the assumption that
7tpx, yq P Z2 | Gpx, yq “ pu is known for any prime p and any form G in the
genus of F .

Also Oh and Min [3] introduced a little bit simple method and gave a
closed formula for the number of solutions of the equation x2 ` 32y2 “ n.
Note that the class of x2 ` 32y2 “ n is 4. In this thesis, we consider the
equation x2`64y2 “ n. Our aim is to give a closed formula for the number of
solutions of the above equation. To do that, we adopt the method developed
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in [3]. Throughout this thesis, we always assume that the set of primes that
are represented by any form of discriminant -256 is completely known.

In Section 3, we introduce some notations, terminologies and prove some
lemmas. Everything is quite similar to [3].

In Section 4, we consider the case when n is a prime power. Note that

7tpx, yq P Z2
| x2`64y2 “ nu “ 7tpx, yq P Z2

| x2`4y2 “ n, y ” 0 pmod 4qu.

So we may consider the equation x2`4y2 “ n. Among solutions px, yq of this
equations, we decide the number of solutions px, yq such that y ” 0 pmod 4q.
The reason why we consider this equation instead of the original equation is
because the class number of x2 ` 4y2 is one.

In Section 5, we will consider the general case. Finally we summarize
all results in Section 6 and provide the closed formula for the number of
solutions.

2 Binary Quadratic Forms

Definition 2.1. For fixed integers a, b, c the homogeneous quadratic poly-
nomial

F “ F px, yq “ ax2 ` bxy ` cy2

is called a binary quadratic form, or simply a form, and is denoted by ta, b, cu.
The integer

d “ b2 ´ 4ac

is called the discriminant of the form. It is easy to see that

d ” 0 or 1 pmod 4q.

Definition 2.2. Let F px, yq, Gpx, yq be binary forms. If there are integers
r, s, t, u such that ru´ st “ 1 and

GpX, Y q “ F prX ` sY, tX ` uY q,

then two forms F and G are said to be equivalent. If F and G are equivalent,
we will write F – G.

We denote by hpdq the number of equivalence classes of primitive forms
with discriminant d. From now on we will always assume that every binary
form F px, yq “ ax2` bxy` cy2pa, b, c P Zq is positive definite, that is, a ą 0
and d ă 0.
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Theorem 2.3. Let k be a positive integer such that gcdpk, dq “ 1 and denote
by ψpkq the total number of solutions to

k “ F1px, yq, ¨ ¨ ¨ , Fhpdqpx, yq,

where Fi is a representative of each equivalence class of discriminant d. Then

ψpkq “ w
ÿ

n|k

ˆ

d

n

˙

, where w “

$

&

%

2 if d ă ´4,
4 if d “ ´4,
6 if d “ ´3

and
`

d
n

˘

is a Kronecker’s symbol.

Proof. See [[2], 12.4.1].

For unexplained terminology, notation and basic facts on binary forms
we refer the readers to [1] or [2].

3 Some technical lemmas

In this section, we give some technical lemmas that we need in the future.

Theorem 3.1. Let n “ 2am for some integers m and a such that m is an
odd positive integer and a ě 1. Then

7tpx, yq P Z2
| x2 ` 64y2 “ 2amu “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if a “ 1, 3, 5,

2
ÿ

k|m

ˆ

´1

k

˙

if a “ 2, 4,

4
ÿ

k|m

ˆ

´1

k

˙

otherwise.

Proof. If a “ 1, then x2 ` 64y2 “ 2m ” 2 pmod 4q. Clearly there is no
solution of this equation. Assume that a ě 2. Then x is clearly even. If we
put x “ 2s, then s2 ` 16y2 “ 2a´2m. Therefore

7tpx, yq P Z2
| x2 ` 64y2 “ 2amu “ 7tpx, yq P Z2

| x2 ` 16y2 “ 2a´2mu.

Clearly dpt1, 0, 16uq “ ´64 and one may easily check that hp´64q “ 1.
Therefore if a “ 2,

7tpx, yq P Z2
| x2 ` 16y2 “ mu “ 2

ÿ

k|m

ˆ

´64

k

˙

“ 2
ÿ

k|m

ˆ

´1

k

˙

.
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If a “ 3, then x2 ` 16y2 “ 2m ” 2 pmod 4q. Clearly there is no solution of
this equation. Suppose that a ě 4. Then the integer x is clearly even. If we
put x “ 2t, then t2 ` 4y2 “ 2a´4m. Therefore

7tpx, yq P Z2
| x2 ` 16y2 “ 2a´2mu “ 7tpx, yq P Z2

| x2 ` 4y2 “ 2a´4mu.

Clearly dpt1, 0, 4uq “ ´16 and one may easily check that hp´16q “ 1. There-
fore if a “ 4,

7tpx, yq P Z2
| x2 ` 4y2 “ mu “ 2

ÿ

k|m

ˆ

´16

k

˙

“ 2
ÿ

k|m

ˆ

´1

k

˙

.

If a “ 5, x2 ` 4y2 “ 2m ” 2 pmod 4q. Clearly there is no solution of this
equation. Suppose that a ě 6. Then the integer x is even again. Hence

7tpx, yq P Z2
| x2 ` 4y2 “ 2a´4mu “ 7tpx, yq P Z2

| x2 ` y2 “ 2a´6mu.

Note that the class number of x2 ` y2 is one. Therefore if a “ 6,

7tpx, yq P Z2
| x2 ` y2 “ mu “ 4

ÿ

k|m

ˆ

´4

k

˙

“ 4
ÿ

k|m

ˆ

´1

k

˙

.

Suppose that a ě 7 and ps, tq is an integer solution to x2`y2 “ 2a´6m. Then

ˆ

s` t

2

˙2

`

ˆ

s´ t

2

˙2

“
1

2

`

s2 ` t2
˘

“ 2a´7m.

Hence
`

s`t
2
, s´t

2

˘

is an integer solution of x2 ` y2 “ 2a´7m.
Conversely, suppose that ps, tq is an integer solution of x2 ` y2 “ 2a´7m.

Then
ps` tq2 ` ps´ tq2 “ 2ps2 ` t2q “ 2a´6m.

Hence ps` t, s´ tq is an integer solution of x2 ` y2 “ 2a´6m. Therefore

7tpx, yq P Z2 | x2 ` y2 “ 2a´6mu “ 7tpx, yq P Z2 | x2 ` y2 “ 2a´7mu
“ 7tpx, yq P Z2 | x2 ` y2 “ mu

“ 4
ÿ

k|m

ˆ

´1

k

˙

.

This completes the proof.
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Now we consider the case when n is odd. For a binary quadratic form F
and a positive integer n, we define

Rpn, F q :“ tpx, yq P Z2
| F px, yq “ nu and rpn, fq :“ |Rpn, F q|.

We can easily show that dp1, 0, 64q “ ´256 and hp´256q “ 4. Note that the
reduced forms of the classes of discriminant ´256 are

F1 “ t1, 0, 64u, F2 “ t4, 4, 17u, F3 “ t5, 2, 13u and F4 “ t5,´2, 13u.

Then by Theorem 2.3, we have

rpn, F1q ` rpn, F2q ` rpn, F3q ` rpn, F4q “ 2
ÿ

k|n

ˆ

´1

k

˙

.

Note that F1px, yq ” 0, 1, 4 pmod 8q. Hence if n ‰ 1 pmod 8q, then rpn, F1q “

0. Now suppose that n ” 1 pmod 8q. Then rpn, F3q “ rpn, F4q “ 0. Hence

rpn, F1q ` rpn, F2q “ 2
ÿ

k|n

ˆ

´1

k

˙

.

Lemma 3.2. Let n “ pe11 ¨ ¨ ¨ p
et
t q

f1
1 ¨ ¨ ¨ q

fu
u s

h1
1 ¨ ¨ ¨ s

hw
w , where pi, qj and sl are

primes such that pi ” 5 pmod 8q, qj ” 1 pmod 8q and sl ” 3 pmod 4q and ei,
fj and hl are positive integers. If hl is odd for some l, then rpn, x2`64y2q “ 0.
If hl is even for any l, then

7tpx, yq P Z2
| x2`64y2 “ nu “ 7tpx, yq P Z2

| x2`64y2 “ pe11 ¨ ¨ ¨ p
et
t q

f1
1 ¨ ¨ ¨ q

fu
u u.

Proof. Assume that p is a prime such that p ” 3 pmod 4q. Since -2 is a
quadratic non-residue modulo p, for any integers x and y satisfying x2 `
64y2 ” 0 pmod pq, they are divisible by p.

Now assume that x and y are integers such that x2 ` 64y2 “ n. Since
sl ” 3 pmod 4q, both x and y are divisible by sl by the above observation.
Hence there are integers m and n such that

m2
` 64n2

“ pe11 ¨ ¨ ¨ p
et
t q

f1
1 ¨ ¨ ¨ q

fu
u s

h1
1 ¨ ¨ ¨ s

δ
l ¨ ¨ ¨ s

hw
w ,

where δ is 0 or 1 such that δ ” hl pmod 2q. The lemma follows directly from
this.

Lemma 3.3. For any positive integer n such that n ” 1 pmod 8q,

rpn, F1q “ 7tpx, yq P Z2
| x2 ` 4y2 “ n, y ” 0 pmod 4qu.

5



Proof. Suppose that ps, tq is an integer solution of x2 ` 64y2 “ n. Then

s2 ` 4p4tq2 “ n.

Hence ps, 4tq is an integer solution of x2 ` 4y2 “ n.
Conversely, suppose that ps, tq is an integer solution of x2` 4y2 “ n such

that t ” 0 pmod 4q. Then

s2 ` 64

ˆ

t

4

˙2

“ n.

Hence ps, t
4
q is an integer solution of x2 ` 64y2 “ n.

Lemma 3.4. For any positive integer n such that n ” 1 pmod 8q,

rpn, F2q “ 7tpx, yq P Z2
| x2 ` 4y2 “ n, y ” 2 pmod 4qu.

Proof. Suppose that ps, tq is an integer solution of 4x2 ` 4xy ` 17y2 “ n.
Then

p2s` tq2 ` 4p2tq2 “ n.

Hence p2s` t, 2tq is an integer solution of x2 ` 4y2 “ n.
Conversely, suppose that ps, tq is an integer solution of x2` 4y2 “ n such

that t ” 2 pmod 4q. Then

4

ˆ

2s´ t

4

˙2

` 4

ˆ

2s´ t

4

˙ˆ

t

2

˙

` 17

ˆ

t

2

˙2

“ n.

Since 2s ´ t is divisible by 4, p2s´t
4
, t
2
q is an integer solution of 4x2 ` 4xy `

17y2 “ n.

Definition 3.5. Two solutions px1, y1q, px2, y2q of the equation x2` 4y2 “ n
are called essentially different if

px1, y1q ‰ px2, y2q, px2,´y2q, p´x2, y2q and p´x2,´y2q.

Lemma 3.6. Let k,m, n be positive integers such that k ą 1, gcdpk,mnq “
1, and gcdpm,nq “ 1. Assume that px1, y1q, px2, y2q are the solutions of
x2` ky2 “ n and ps1, t1q, ps2, t2q are the solutions of x2` ky2 “ m such that
s1t1y1 ‰ 0.

If at least one pair of the above two equations is essentially different, then
both

px1s1 ` ky1t1, x1t1 ´ y1s1q, px1s1 ´ ky1t1, x1t1 ` y1s1q

6



and
px1s1 ˘ ky1t1, x1t1 ¯ y1s1q, px2s2 ˘ ky2t2, x2t2 ¯ y2t2q

are all essentially different solutions of the equation x2 ` ky2 “ nm.

Proof. Suppose that

px1s1 ` ky1t1, x1t1 ´ y1s1q, px1s1 ´ ky1t1, x1t1 ` y1s1q

are not essentially different solutions of x2`ky2 “ nm. Then we may assume
that, for example,

px1s1 ` ky1t1, x1t1 ´ y1s1q “ px1s1 ´ ky1t1, x1t1 ` y1s1q.

Thus ky1t1 “ 0, which is a contradiction. By considering all the other cases
similarly to this, we may conclude that both px1s1 ` ky1t1, x1t1 ´ y1s1q and
px1s1 ´ ky1t1, x1t1 ` y1s1q are essentially different.

Suppose that

px1s1 ` ky1t1, x1t1 ´ y1s1q, px2s2 ` ky2t2, x2t2 ´ y2t2q

are not essentially different solutions of x2 ` ky2 “ nm. Then, for example,
we have

„

x1 ky1
´y1 x1

 „

s1
t1



“

„

x2 ky2
´y2 x2

 „

s2
t2



.

Since x22 ` ky
2
2 “ n,

1

n

„

x2 ´ky2
y2 x2

 „

x1 ky1
´y1 x1

 „

s1
t1



“

„

s2
t2



.

If we define α “ x1x2 ` ky1y2 and β “ x1y2 ´ x2y1, then we have
„

α ´kβ
β α

 „

s1
t1



“

„

ns2
nt2



.

Thus αs1 ” kβt1 pmod nq and βs1 ” ´αt1 pmod nq,

αps21 ` kt
2
1q ” αm ” 0 pmod nq.

Since gcdpn,mq “ 1, α “ ˘n and β “ 0. Therefore

x1 “ ˘x2 and y1 “ ˘y2

which is a contradiction. All other cases can be done in a similar manner.
Therefore

px1s1 ˘ ky1t1, x1t1 ¯ y1s1q, px2s2 ˘ ky2t2, x2t2 ¯ y2t2q

are essentially different.
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4 Prime power case

Lemma 4.1. Let e be a positive integer and p be a prime such that p ” 5
pmod 8q. The equation x2`4y2 “ p2e has an integer solution px, yq such that
gcdpxy, pq “ 1.

Proof. We will use an induction on e.
Assume that e “ 1. Let a and b be integers such that a2 ` 4b2 “ p. Note

that such an integer solution always exists. Then pa2´4b2, 2abq is the solution
of x2 ` 4y2 “ p2. Clearly gcdppa2 ´ 4bq ¨ 2ab, pq “ 1.

Assume that s and t be integers such that s2`4t2 “ p2e and gcdpst, pq “ 1.
Then

pspa2 ´ 4b2q ˘ 4tp2abq and sp2abq ¯ tpa2 ´ 4b2qq

are all solutions of the equation x2` 4y2 “ p2pe`1q. Since 4sab is not divisible
by p, at least one of sp2abq´tpa2 ´ 4b2q and sp2abq`tpa2 ´ 4b2q is not divisible
by p. Hence at least one of pspa2 ´ 4b2q ` 4tp2abq, sp2abq ´ tpa2 ´ 4b2qq and
pspa2 ´ 4b2q´4tp2abq, sp2abq`tpa2 ´ 4b2qq is the solution of x2`4y2 “ p2pe`1q

satisfying the hypothesis.

Lemma 4.2. For any positive integer e and a prime p such that p ” 5
pmod 8q,

7tpx, yq P Z2
| x2 ` 64y2 “ p2eu “

#

2e` 2 if e ” 0 pmod 2q,

2e if e ” 1 pmod 2q.

Proof. Let psi, tiq be a pair of integer solution of x2` 4y2 “ p2pe´iq such that
gcdpsiti, pq “ 1. Note that such a solution always exists by the above lemma.
Then

ppisi, p
itiq for i “ 0, 1, ¨ ¨ ¨ , e´ 1 and ppe, 0q

are all pairs of mutually essentially different solutions of the equation x2 `
4y2 “ p2e. Furthermore for any solution ps, tq of x2 ` 4y2 “ p2e, ps, tq is not
essentially different to exactly one of the above solutions. Among all these
solutions, we can count the number of solutions such that the y-coordinate
is divisible by p.

First, note that te´1 “ 2ab for integers a and b such that a2 ` 4b2 “ p.
Hence te´1 ” 2 pmod 4q. From the proof of the above lemma, we know that

te´k´1 “ se´kp2abq ¯ te´kpa
2
´ 4b2q.

In any cases,
te´k´1 ´ te´k ” 2 pmod 4q.

8



Then the number of solutions of x2 ` 4y2 “ p2e such that y ” 0 pmod 4q is

$

&

%

4 ¨
e

2
` 2 “ 2e` 2 if e ” 0 pmod 2q,

4 ¨
e´ 1

2
` 2 “ 2e if e ” 1 pmod 2q.

Therefore the lemma directly follows from Lemma 3.3.

5 General case

In this section we consider the general case. Recall that n is an integer such
that n ” 1 pmod 8q.

Lemma 5.1. Assume that n “ pe11 ¨ ¨ ¨ p
et
t , where pi is a prime such that

pi ” 5 pmod 8q and ei is a positive integer for any i. Then

rpn, F1q “

$

’

’

’

’

&

’

’

’

’

%

t
ź

i“1

pei ` 1q ` p´1qw if ei ” 0 pmod 2q for any i,

t
ź

i“1

pei ` 1q otherwise,

where w “ 7ti | ei ” 2 pmod 4qu.

Proof. Since n ” 1 pmod 8q, e1 ` ¨ ¨ ¨ ` et is even.
First assume that there is an i such that ei ” 1 pmod 2q. Note that

the number of such i’s is even. Without loss of generality we assume that
e1 ” e2 ” 1 pmod 2q. Let

pa1, b1q, ¨ ¨ ¨ , pau, buq

be all essentially different solutions of x2 ` 4y2 “ pe1 and

pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ pe22 ¨ ¨ ¨ p
et
t . Since pe11 ”

pe22 ¨ ¨ ¨ p
et
t ” 5 pmod 8q, aibicjdj ” 1 pmod 2q for any i and j. Furthermore

since 4u p4vq is the number of solutions of x2`4y2 “ pe11 (x2`4y2 “ pe22 ¨ ¨ ¨ p
et
t ,

respectively),

u “
1

2
pe1 ` 1q and v “

1

2
pe2 ` 1q ¨ ¨ ¨ pet ` 1q.

9



Now
paicj ` 4bidj, aidj ´ bicjq and paicj ´ 4bidj, aidj ` bicjq

are all essentially different solutions of x2 ` 4y2 “ n by Lemma 3.6. Hence
we have at least 2uv essentially different solutions of x2 ` 4y2 “ n. Since

4 ¨ 2uv “ 2pe1 ` 1q ¨ ¨ ¨ pet ` 1q,

those 2uv solutions are exactly all essentially different solutions of x2`4y2 “
n. Since

paidj ` bicjq ´ paidj ´ bicjq “ 2bicj ” 2 pmod 4q,

the number of solutions of x2 ` 4y2 “ n with y ” 0 pmod 4q is exactly half
of the number of all solutions. This completes the proof.

Now assume that ei ” 0 pmod 2q for any i. We will use an induction
on t. We already proved the lemma when t “ 1. Assume that the formula
holds on the case when n has t different prime factors. Consider the equation
x2 ` 4y2 “ pe11 ¨ ¨ ¨ p

et
t p

et`1

t`1 . Let

pa1, b1q, ¨ ¨ ¨ , pau, buq

be all essentially different solutions of x2 ` 4y2 “ pe11 ¨ ¨ ¨ p
et
t and

pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ p
et`1

t`1 . Note that every
solution of x2`4y2 “ pe11 ¨ ¨ ¨ p

et
t p

et`1

t`1 is not essentially different to exactly one
of

paicj ` 4bidj, aidj ´ bicjq and paicj ´ 4bidj, aidj ` bicjq.

We assume that b1 “ d1 “ 0. Then clearly bi ą 0 and dj ą 0 for any i, j ě 2.
We define ε “ 1 if et`1 ” 2 pmod 4q, ε “ 0 otherwise. Furthermore we define

Φ :“
t
ź

i“1

pei ` 1q ` p´1qw, where w “ 7ti | ei ” 2 pmod 4qu.

Then

α :“ 7ti | bi ” 0 pmod 4qu “
1

4
pΦ´ 2q ` 1

and

α1 :“ 7ti | dj ” 0 pmod 4qu “
1

4
pet`1 ` 1` p´1qε ´ 2q ` 1.

10



Now the number of solutions of x2`4y2 “ pe11 ¨ ¨ ¨ p
et
t p

et`1

t`1 with y ” 0 pmod 4q
is

T :“ 8pα ´ 1qpα1 ´ 1q ` 4pα ´ 1q ` 4pα1 ´ 1q ` 2` 8pu´ αqpv ´ α1q.

Since

2
t
ź

i“1

pei ` 1q “ 2` 4pu´ 1q and 2pet`1 ` 1q “ 2` 4pv ´ 1q,

T “
t
ź

i“1

pei ` 1q ` p´1qw`ε.

The lemma follows directly from this.

Let Q be the set of all primes that are represented by x2 ` 64y2 and R
be the set of all primes that are represented by 4x2 ` 4xy ` 17y2.

Lemma 5.2. For any prime p, the equation x2 ` 64y2 “ p has an integer
solution if and only if p ” 1 pmod 8q and 2 is biquadratic residue modulo p.

Proof. See [[1],1.4.23].

Example 5.3. Note that

Q “ t17, 41, 97, 137, 193, 241, 313, 401, 409, 433, 449, 457, 521, 569, 641 ¨ ¨ ¨ u.

Lemma 5.4. Let n “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v , where qj P Q and rk P R for any

j, k. Then

rpn, F1q “

$

’

’

’

&

’

’

’

%

0 if
v
ÿ

k“1

gk ” 1 pmod 2q,

2
u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q if
v
ÿ

k“1

gk ” 0 pmod 2q.

Proof. We will use an induction on
ř

fj `
ř

gk.
Assume that

ř

fj`
ř

gk “ 1. If fj “ 1 for some j, then the lemma follows
from the fact qj P Q. If gk “ 1 for some k, then the lemma follows from the
fact rk P R. Assume that the formula holds on the case when

ř

fj`
ř

gk “ m.
Assume that

ř

fj `
ř

gk “ m` 1. Note that one of fj or gk is greater than

11



or equal to 1. Without loss of generality, we assume that f1 ě 1. Let pa, bq be
the solution of x2 ` 4y2 “ q1. Note that a ” 1 pmod 2q and b ” 0 pmod 4q.

Case 1. Assume that
v
ÿ

k“1

gk ” 0 pmod 2q.

Let pc, dq be the solution of x2 ` 4y2 “ n such that d ” 2 pmod 4q. Note
that c ” 1 pmod 2q. Then

pac` 4bd, ad´ bcq and pac´ 4bd, ad` bcq

are solutions of x2 ` 4y2 “ qf1`11 ¨ ¨ ¨ qfuu r
g1
1 ¨ ¨ ¨ r

gv
v . Since

pac` 4bdqpac´ 4bdq ” pacq2 ´ p4bdq2 ” 0 pmod q1q,

we may assume, without loss of generality, that ac ` 4bd ” ad ´ bc ” 0
pmod q1q. Hence

ˆ

ac` 4bd

q1

˙2

` 4

ˆ

ad´ bc

q1

˙2

“ qf1´11 ¨ ¨ ¨ qfuu r
g1
1 ¨ ¨ ¨ r

gv
v .

Note that ad ´ bc ” 2 pmod 4q. Since f1 ´ 1 ` f2 ` ¨ ¨ ¨ ` fu `
ř

gk “ n
and

ř

gk ” 0 pmod 2q, this is contradiction to the induction hypothesis.
Therefore

rpn, x2 ` 4y2q “ rpn, x2 ` 64y2q.

The lemma follows from this.

Case 2. Assume that
v
ÿ

k“1

gk ” 1 pmod 2q.

Let pc1, d1q be the solution of x2`4y2 “ n such that d1 ” 0 pmod 4q. Note
that c1 ” 1 pmod 2q. Then

pac1 ` 4bd1, ad1 ´ bc1q and pac1 ´ 4bd1, ad1 ` bc1q

are solutions of x2 ` 4y2 “ qf1`11 ¨ ¨ ¨ qfuu r
g1
1 ¨ ¨ ¨ r

gv
v . Since

pac1 ` 4bd1qpac1 ´ 4bd1q ” pac1q2 ´ p4bd1q2 ” 0 pmod q1q,

we may assume, without loss of generality, that ac1 ` 4bd1 ” ad1 ´ bc1 ” 0
pmod q1q. Hence

ˆ

ac1 ` 4bd1

q1

˙2

` 4

ˆ

ad1 ´ bc1

q1

˙2

“ qf1´11 ¨ ¨ ¨ qfuu r
g1
1 ¨ ¨ ¨ r

gv
v .

12



Note that ad1 ´ bc1 ” 0 pmod 4q. Since f1 ´ 1` f2 ` ¨ ¨ ¨ ` fu `
ř

gk “ n and
ř

gk ” 1 pmod 2q, this is impossible by induction hypothesis. Therefore

rpn, x2 ` 4y2q “ rpn, 4x2 ` 4xy ` 17y2q and rpn, x2 ` 64y2q “ 0.

The lemma follows from this.

Theorem 5.5. Let n “ pe11 ¨ ¨ ¨ p
et
t q

f1
1 ¨ ¨ ¨ q

fu
u r

g1
1 ¨ ¨ ¨ r

gv
v , where pi, qj, rk are all

primes such that qj P Q, rk P R and pi ” 5 pmod 8q and ei, fj, gk are all
positive integers. If e1 ` ¨ ¨ ¨ ` et ” 1 pmod 2q, then rpn, x2 ` 64y2q “ 0. If
e1 ` ¨ ¨ ¨ ` et ” 0 pmod 2q, then

7tpx, yq P Z2 | x2 ` 64y2 “ nu “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q

˜

t
ź

i“1

pei ` 1q ` p´1qw`1

¸

if (˚) holds,

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q

˜

t
ź

i“1

pei ` 1q ` p´1qw

¸

if (˚˚) holds,

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q
t
ź

i“1

pei ` 1q otherwise,

where w “ 7tei | ei ” 2 pmod 4qu,

p˚q ei ” 0 pmod 2q for any i and
v
ÿ

k“1

gk ” 1 pmod 2q and

p˚˚q ei ” 0 pmod 2q for any i and
v
ÿ

k“1

gk ” 0 pmod 2q.

Proof. First assume that there is an i such that ei ” 1 pmod 2q. Note that
the number of such i’s is even. Without loss of generality we assume that
e1 ” e2 ” 1 pmod 2q. Let

pa1, b1q, ¨ ¨ ¨ , pau, buq

be all essentially different solutions of x2`4y2 “ pe11 ¨ ¨ ¨ p
et
t . Since the number

of solutions of x2 ` 4y2 “ pe11 ¨ ¨ ¨ p
et
t is 4u, we have

u “
1

2

t
ź

i“1

pei ` 1q.

13



By Lemma 5.1, we have

α :“ 7ti | bi ” 0 pmod 4qu “
1

2
u.

Now we consider the following three subcases.

Case 1. Assume that
v
ÿ

k“1

gk ” 1 pmod 2q.

Let
pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v . Note

that dj ” 2 pmod 4q for any j by Lemma 5.4. Since the number of solutions

of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v is 4v, we have

v “
1

2

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q.

Then

paicj ` 4bidj, aidj ´ bicjq and paicj ´ 4bidj, aidj ` bicjq

are all essentially different solutions of x2`4y2 “ n by Lemma 3.6. Note that
aidj ¯ bicj ” 0 pmod 4q for any i, j when bi ” 2 pmod 4q for any i. Hence

rpn, F1q “ 8pu´ αqv

“

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q
t
ź

i“1

pei ` 1q.

Case 2. Assume that
v
ÿ

k“1

gk ” 0 pmod 2q and fj and gk are even for all j, k.

Let
pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v . Note

that dj ” 0 pmod 4q for any j by Lemma 5.4. We assume that d1 “ 0. Then
clearly dj ą 0 for any j ě 2. Since the number of solutions of x2 ` 4y2 “

qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v is 4v ´ 2, we have

v “
1

2

˜

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q ` 1

¸

.
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Then

paicj ` 4bidj, aidj ´ bicjq, paicj ´ 4bidj, aidj ` bicjq and paic1,¯bic1q

are all essentially different solutions of x2 ` 4y2 “ n by Lemma 3.6. Note
that aidj ¯ bicj ” 0 pmod 4q for any i, j and ¯bic1 ” 0 pmod 4q for any i
when bi ” 0 pmod 4q for any i. Hence

rpn, F1q “ 8αpv ´ 1q ` 4α

“

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q
t
ź

i“1

pei ` 1q.

Case 3. Assume that
v
ÿ

k“1

gk ” 0 pmod 2q and fj or gk is odd for some j or

k. Let

pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v . Note

that dj ” 0 pmod 4q for all j by Lemma 5.4. Since the number of solutions

of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v is 4v, we have

v “
1

2

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q.

Then

paicj ` 4bidj, aidj ´ bicjq and paicj ´ 4bidj, aidj ` bicjq

are all essentially different solutions of x2`4y2 “ n by Lemma 3.6. Note that
aidj ¯ bicj ” 0 pmod 4q for any i, j when bi ” 0 pmod 4q for any i. Hence

rpn, F1q “ 8αv

“

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q
t
ź

i“1

pei ` 1q.

This completes the proof.

Now assume that ei ” 0 pmod 2q for any i. Let

pa1, b1q, ¨ ¨ ¨ , pau, buq

15



be all essentially different solutions of x2 ` 4y2 “ pe11 ¨ ¨ ¨ p
et
t . We assume that

b1 “ 0. Then clearly bi ą 0 for any i ě 2. Since the number of solutions of
x2 ` 4y2 “ pe11 ¨ ¨ ¨ p

et
t is 4u´ 2, we have

u “
1

2

˜

t
ź

i“1

pei ` 1q ` 1

¸

.

Furthermore by Lemma 5.1, if we define

Φ :“
t
ź

i“1

pei ` 1q ` p´1qw, where w “ 7ti | ei ” 2 pmod 4qu,

then

α :“ 7ti | bi ” 0 pmod 4qu “
1

4
pΦ´ 2q ` 1.

Now we consider the following three subcases.

Case 1. Assume that
v
ÿ

k“1

gk ” 1 pmod 2q.

Let
pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v . Note

that dj ” 2 pmod 4q for any j by Lemma 5.4. Since the number of solutions

of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v is 4v, we have

v “
1

2

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q.

Then

paicj ` 4bidj, aidj ´ bicjq, paicj ´ 4bidj, aidj ` bicjq and pa1cj,¯a1djq

are all essentially different solutions of x2 ` 4y2 “ n by Lemma 3.6. Note
that aidj ¯ bicj ” 0 pmod 4q for any i, j when bi ” 2 pmod 4q for any i and
¯a1dj ” 2 pmod 4q for any j. Hence

rpn, F1q “ 8pu´ αqv

“

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q

˜

t
ź

i“1

pei ` 1q ` p´1qw`1

¸

.

Case 2. Assume that
v
ÿ

k“1

gk ” 0 pmod 2q and fj and gk are even for all j, k.
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Let
pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v . Note

that dj ” 0 pmod 4q for any j by Lemma 5.4. We assume that d1 “ 0. Then
clearly dj ą 0 for any j ě 2. Since the number of solutions of x2 ` 4y2 “

qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v is 4v ´ 2, we have

v “
1

2

˜

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q ` 1

¸

.

Then

paicj ˘ 4bidj, aidj ¯ bicjq, pa1cj,¯a1djq, paic1,¯bic1q and pa1c1, 0q

are all essentially different solutions of x2 ` 4y2 “ n by Lemma 3.6. Note
that aidj ¯ bicj ” 0 pmod 4q and ¯bic1 ” 0 pmod 4q for any i, j when bi ” 0
pmod 4q for any i and ¯a1dj ” 0 pmod 4q for any j. Hence

rpn, F1q “ 8pα ´ 1qpv ´ 1q ` 4pα ´ 1q ` pv ´ 1q ` 2

“

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q

˜

t
ź

i“1

pei ` 1q ` p´1qw

¸

.

Case 3. Assume that
v
ÿ

k“1

gk ” 0 pmod 2q and fj or gk is odd for some j or

k.

Let
pc1, d1q, ¨ ¨ ¨ , pcv, dvq

be all essentially different solutions of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v . Note

that dj ” 0 pmod 4q for any j by Lemma 5.4. Since the number of solutions

of x2 ` 4y2 “ qf11 ¨ ¨ ¨ q
fu
u r

g1
1 ¨ ¨ ¨ r

gv
v is 4v, we have

v “
1

2

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q.

Then

paicj ` 4bidj, aidj ´ bicjq, paicj ´ 4bidj, aidj ` bicjq and pa1cj,¯a1djq
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are all essentially different solutions of x2 ` 4y2 “ n by Lemma 3.6. Note
that aidj ¯ bicj ” 0 pmod 4q for any i, j when bi ” 0 pmod 4q for any i and
¯a1dj ” 0 pmod 4q for any j. Hence

rpn, F1q “ 8pα ´ 1qv ` 4v

“

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q

˜

t
ź

i“1

pei ` 1q ` p´1qw

¸

.

The theorem follows directly from this.

6 Summary

In this section, we summarize all results proved in the previous sections and
give a closed formula for the number of solutions of the equation x2`64y2 “
n.

Assume that n is even. Let n “ 2am for some integers m and a such that
m is an odd positive integer and a ě 1. Then

7tpx, yq P Z2
| x2 ` 64y2 “ nu “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if a “ 1, 3, 5,

2
ÿ

k|m

ˆ

´1

k

˙

if a “ 2, 4,

4
ÿ

k|m

ˆ

´1

k

˙

otherwise.

Assume that n is odd. Let n “ pe11 ¨ ¨ ¨ p
et
t q

f1
1 ¨ ¨ ¨ q

fu
u r

g1
1 ¨ ¨ ¨ r

gv
v s

h1
1 ¨ ¨ ¨ s

hw
w ,

where pi, qj, rk, sl are all primes such that qj P Q, rk P R and pi ” 5 pmod 8q,
sl ” 3 pmod 4q and ei, fj, gk, hl are all positive integers. If hl is odd for some
l, then rpn, x2 ` 64y2q “ 0. If hl is even for any l, then

7tpx, yq P Z2
| x2`64y2 “ nu “ 7tpx, yq P Z2

| x2`64y2 “ pe11 ¨ ¨ ¨ p
et
t q

f1
1 ¨ ¨ ¨ q

fu
u u.

If e1 ` ¨ ¨ ¨ ` et ” 1 pmod 2q, then rpn, x2 ` 64y2q “ 0. If e1 ` ¨ ¨ ¨ ` et ” 0
pmod 2q, then

18



7tpx, yq P Z2 | x2 ` 64y2 “ nu “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q

˜

t
ź

i“1

pei ` 1q ` p´1qw`1

¸

if (˚) holds,

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q

˜

t
ź

i“1

pei ` 1q ` p´1qw

¸

if (˚˚) holds,

u
ź

j“1

pfj ` 1q
v
ź

k“1

pgk ` 1q
t
ź

i“1

pei ` 1q otherwise,

where w “ 7tei | ei ” 2 pmod 4qu,

p˚q ei ” 0 pmod 2q for any i and
v
ÿ

k“1

gk ” 1 pmod 2q and

p˚˚q ei ” 0 pmod 2q for any i and
v
ÿ

k“1

gk ” 0 pmod 2q.
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국문초록

동차이차방정식 F px, yq “ ax2`bxy`cy2을이변수이차형식이라한다.이
논문에서는 류수가 4인 이차형식 F px, yq “ x2` 64y2 을 다룬다. 이 논문의
목적은 임의의 정수 n에 대하여 F px, yq “ n의 해의 개수에 대한 명확한
공식을 제공하는 것이다. 그러기 위해서 S.-Y. Min와 B.-K. Oh가 증명하
는 방법을 채택한다. 제5절에서는 앞 절에서 증명된 모든 결과를 정리하고
앞에서 언급한 이차형식의 해의 개수에 대한 공식을 명확하게 제시한다.

주요 어휘 : 류수4, 이변수 이차형식
학번: 2011-20265
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