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Abstract

A homogeneous quadratic polynomial F(z,y) = az®+ bxy +cy® (a, b, c€ Z)
is called a binary quadratic form. In this thesis, we consider the binary form
F(x,y) = x* 4+ 64y* which has class number 4. Our aim is to give an explicit
closed formula for the equation F'(x,y) = n for any integer n. To do this, we
adopt the method developed in [3]. In section 5, we collect all results proved
in the previous sections and provide a closed formula of the above equation
explicitly.
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Representations by a binary quadratic form
with class number 4

1 Introduction

A homogeneous quadratic polynomial F(z,y) = ax? +bry+cy? (a, b, c€ Z)
is called a binary quadratic form. It is quite an old problem to find all solutions

of the diophantine equation
Fla,y) - k (1.1)

for an integer k. If
Fi(z,y) = a;x® + biwy + c;y* for i=1,2,---, h

are all equivalence classes of primitive binary forms of discriminant d for
any non-square integer d, then it is well known that for any integer k£ with
ged(k,d) =1,

iﬁ{(w,y) e Z’ | Fi(z,y) =k} =w ), <%) ,

i=1 nlk
2 ifd < —4,
where w =< 4 ifd= —4,
6 ifd=-3

and (%) is a Kronecker’s symbol.

Hence if the class number of F' is 1 (more generally, if the number of
equivalence classes in the genus of F'is 1), then we know the complete answer
on the number of solutions of the equation (1.1). If k is a prime, then we have
an effective criterion whether or not the equation (1.1) has a solution(see, for
details [1]).

Recently Sun and Williams [4] solved this problem completely when the
class number of F' is less than or equal to 4 under the assumption that
#{(z,y) € Z* | G(x,y) = p} is known for any prime p and any form G in the
genus of F.

Also Oh and Min [3] introduced a little bit simple method and gave a
closed formula for the number of solutions of the equation 22 + 32y? = n.
Note that the class of 22 + 32y?> = n is 4. In this thesis, we consider the
equation x? + 64y? = n. Our aim is to give a closed formula for the number of
solutions of the above equation. To do that, we adopt the method developed
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in [3]. Throughout this thesis, we always assume that the set of primes that
are represented by any form of discriminant -256 is completely known.

In Section 3, we introduce some notations, terminologies and prove some
lemmas. Everything is quite similar to [3].

In Section 4, we consider the case when n is a prime power. Note that

(e, y) € 22 | 46497 = n} = H(z,y) € Z2 | a®+4y? =, y=0 (mod 4)}.

So we may consider the equation 2 +4y* = n. Among solutions (x,y) of this
equations, we decide the number of solutions (z,y) such that y = 0 (mod 4).
The reason why we consider this equation instead of the original equation is
because the class number of 22 + 42 is one.

In Section 5, we will consider the general case. Finally we summarize
all results in Section 6 and provide the closed formula for the number of
solutions.

2 Binary Quadratic Forms

Definition 2.1. For fixed integers a,b, ¢ the homogeneous quadratic poly-
nomial
F = F(z,y) = az® + by + cy?

is called a binary quadratic form, or simply a form, and is denoted by {a, b, c}.
The integer
d =b* — dac

is called the discriminant of the form. It is easy to see that

d=0 or 1 (mod4).

Definition 2.2. Let F(z,y), G(x,y) be binary forms. If there are integers
r, s, t, u such that ru — st = 1 and

G(X,)Y) = F(rX + sY,tX + uY),

then two forms F' and G are said to be equivalent. If F' and G are equivalent,
we will write F' =~ G.

We denote by h(d) the number of equivalence classes of primitive forms
with discriminant d. From now on we will always assume that every binary
form F(z,y) = ax?® + bzy + cy*(a, b, c € Z) is positive definite, that is, a > 0
and d < 0.



Theorem 2.3. Let k be a positive integer such that ged(k,d) = 1 and denote
by ¥(k) the total number of solutions to

k:Fl(xay)a 7Fh(d)(x7y)a

where F; is a representative of each equivalence class of discriminant d. Then

d 2 ifd < —4,
(k) = wZ (—> : where w =< 4 ifd=—4,
ke N 6 ifd=—3
and (%) 1s a Kronecker’s symbol.
Proof. See [[2], 12.4.1]. O

For unexplained terminology, notation and basic facts on binary forms
we refer the readers to [1] or [2].
3 Some technical lemmas
In this section, we give some technical lemmas that we need in the future.

Theorem 3.1. Let n = 2°m for some integers m and a such that m is an
odd positive integer and a = 1. Then

-

0 ifa=1,3,5,
-1
2 (—) ifa = 2,4,
(o) < 22| 4 + 64y = 2oy = | 222\ T
-1
42(7) otherwise.
k|m

\

Proof. If a = 1, then 2% + 64y?> = 2m = 2 (mod 4). Clearly there is no
solution of this equation. Assume that a > 2. Then z is clearly even. If we
put x = 2s, then s 4+ 16y? = 24 2m. Therefore

t{(z,y) € 22| 2® + 64y* = 2°m} = #{(z,y) € Z° | 2° + 16y° = 2°*m}.

Clearly d({1,0,16}) = —64 and one may easily check that h(—64) = 1.
Therefore if a = 2,

e ez | 2o - mp =23 (1) 2% ()



If a = 3, then 22 + 16y = 2m = 2 (mod 4). Clearly there is no solution of
this equation. Suppose that a = 4. Then the integer x is clearly even. If we
put x = 2¢t, then t* + 4y? = 29~*m. Therefore

Hz,y) € 27| 2 +16y" = 2 "m} = f{(2,y) € 2% | 2° +4y” = 2" "'m}.

Clearly d({1,0,4}) = —16 and one may easily check that h(—16) = 1. There-
fore if a = 4,

Hiwy) e 2] o+ 47 _m}_2§< 16)_2%( )

If a =5, 22 + 4y*> = 2m = 2 (mod 4). Clearly there is no solution of this
equation. Suppose that a > 6. Then the integer x is even again. Hence

H(wy) e 22| 2® +4y* = 227 'm} = t{(w,9) € 27 | 2”+y” = 2"m}.
Note that the class number of 2% 4 32 is one. Therefore if a = 6,
tH{(z,y) e Z% | 2* + 3> —m}—42< ) _42( )
klm klm

Suppose that a > 7 and (s, t) is an integer solution to 2%+ y* = 2 %m. Then

2 2
s+t s—t 1,5 _7
+ == +t7) =2°

Hence (£ $=1) is an integer solution of 22 + y? = 2 ™m
2 0 2

Conversely, suppose that (s,t) is an integer solution of 22 + y? = 2¢7"m
Then

(s+t)?+ (s —1)* =2(s* + 1?) = 2 %m.

Hence (s +t,s — t) is an integer solution of z? + y* = 297%m. Therefore

t(z,y) e Z | 2® +y* =2%m} = f{(z,y) e Z?| 2° +y* = 2" "m}
= H{(z,y) e Z?| 2> +y*> =m}

- 2E)

klm

This completes the proof. n



Now we consider the case when n is odd. For a binary quadratic form F
and a positive integer n, we define

R(n,F) :={(x,y) € Z* | F(z,y) =n} and r(n,f):=|R(n, F)|.

We can easily show that d(1,0,64) = —256 and h(—256) = 4. Note that the
reduced forms of the classes of discriminant —256 are

Fy ={1,0,64}, Fy = {4,4,17}, F3 = {5,2,13} and F, = {5,—2,13}.

Then by Theorem 2.3, we have

1
r(n, Fy) +r(n, Fy) + r(n, F3) + r(n, Fy) = 2 — .
< (%)

Note that Fy(z,y) =0, 1, 4 (mod 8). Henceifn # 1 (mod 8), then r(n, F}) =
0. Now suppose that n =1 (mod 8). Then r(n, F3) = r(n, F;) = 0. Hence

r(n, Fy) +r(n, F) =2 ) (%) .

kln

Lemma 3.2. Let n = p{' -- -pftqfl = ~q£“s?1 <o sl where p;, q; and s; are

primes such that p; =5 (mod 8), ¢; =1 (mod 8) and s; = 3 (mod 4) and e;,
f; and hy are positive integers. If hy is odd for some 1, then r(n, 2*+64y?) = 0.
If hy is even for any L, then

t{(2,y) € Z* | 2?+64y* = n} = t{(x,y) € Z* | 2°+64y® = p§* - piralt - - gl ).

Proof. Assume that p is a prime such that p = 3 (mod 4). Since -2 is a
quadratic non-residue modulo p, for any integers x and y satisfying 2% +
64y? = 0 (mod p), they are divisible by p.

Now assume that z and y are integers such that 22 + 64y?> = n. Since
s; = 3 (mod 4), both z and y are divisible by s; by the above observation.
Hence there are integers m and n such that

m2 + 64n2 = pil .. -pftqlfl .. .qius?l . S? ..SZ)w’
where ¢ is 0 or 1 such that 6 = h; (mod 2). The lemma follows directly from
this. ]

Lemma 3.3. For any positive integer n such that n =1 (mod 8),

r(n, 1) = t{(z,y) e Z® | 2> + 4y> =n, y=0 (mod 4)}.



Proof. Suppose that (s,t) is an integer solution of x? + 64y* = n. Then
s+ 4(4t)? = n.

Hence (s, 4t) is an integer solution of x? + 4y* = n.
Conversely, suppose that (s,t) is an integer solution of 2 + 4y* = n such

that ¢ =0 (mod 4). Then
2 t)*
5+ 64 (Z) =n.
¢

Hence (s, £) is an integer solution of 2? + 64y* = n. ]

Lemma 3.4. For any positive integer n such that n =1 (mod 8),
r(n, Fy) = #{(z.y) e Z° | 2® + 4y* = n, y=2 (mod 4)}.

Proof. Suppose that (s,t) is an integer solution of 4z? + 4xy + 17y*> = n.
Then
(25 + 1) + 4(2t)* = n.

Hence (2s + t,2t) is an integer solution of z? + 4y* = n.
Conversely, suppose that (s,t) is an integer solution of 2 + 4y* = n such
that ¢ =2 (mod 4). Then

(R () -

Since 2s — t is divisible by 4, (2%, L) is an integer solution of 4z% + 4zy +

17y% = n. O

Definition 3.5. Two solutions (z1,y1), (72, y2) of the equation x? +4y* = n
are called essentially different if

(Ihyl) 7 (x27y2)7 <I27_y2>7 (_$27y2> and (—xza—yz)

Lemma 3.6. Let k,m,n be positive integers such that k > 1, gcd(k, mn) =
1, and ged(m,n) = 1. Assume that (z1,y1), (z2,y2) are the solutions of
22+ ky? = n and (s1,11), (s2,t2) are the solutions of x> + ky? = m such that
51t1y1 # 0.

If at least one pair of the above two equations is essentially different, then

both
(w151 + kyity, oty — yis1), (x1s1 — kyity, o1ty + y151)
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and
(x181 £ kyity, x1t1 Fy1s1), (wasay £ kyota, Tota F yots)

are all essentially different solutions of the equation x* + ky* = nm.
Proof. Suppose that
(z181 + kyity, 21ty — yis1), (z1s1 — kyity, 21ty + 4181)

are not essentially different solutions of 22 + ky? = nm. Then we may assume
that, for example,

(13181 + kyltl, .Cllltl — y151> = (I181 — k’yltl,ﬂfltl + y181).

Thus kyit; = 0, which is a contradiction. By considering all the other cases
similarly to this, we may conclude that both (z1s1 + kyit1, x1t1 — y151) and
(x181 — kyaty, x1t1 + y151) are essentially different.

Suppose that

(z151 + kyity, 21ty — y181), (0252 + kyata, Tots — yata)
are not essentially different solutions of z? + ky? = nm. Then, for example,
we have

1 ky St _ | %2 kys S2
Y1 T th —Y2 X2 ty |
Since 23 + ky3 = n,
l Ty —kys Ty ky [ St | S2
nl| Y2 T2 -y 21 ||t ty |
If we define o = 129 + ky1y2 and = z1ys — x2y1, then we have
a kB[ s ] [ nsa
ﬁ « tl - | nt2 ’

Thus as; = kft; (mod n) and fs; = —at; (mod n),

alsi +kt})=am=0 (mod n).
Since ged(n,m) = 1, « = £n and [ = 0. Therefore
r1=txy and y; = tys

which is a contradiction. All other cases can be done in a similar manner.
Therefore

(w151 + kyity, o1ty F y151), (2252 £ kyata, Tats F yato)

are essentially different. O



4 Prime power case

Lemma 4.1. Let e be a positive integer and p be a prime such that p =5
(mod 8). The equation x* + 4y? = p*® has an integer solution (x,y) such that

ged(zy, p) = 1.

Proof. We will use an induction on e.

Assume that e = 1. Let @ and b be integers such that a? + 46> = p. Note
that such an integer solution always exists. Then (a*—4b?, 2ab) is the solution
of 2% + 4y* = p?. Clearly ged((a® — 4b) - 2ab, p) = 1.

Assume that s and ¢ be integers such that s?+4t* = p?® and gcd(st,p) = 1.
Then

(s(a® — 4b%) + 4t(2ab) and s(2ab) F t(a® — 4b%))

are all solutions of the equation z2 + 4y? = p*¢*1. Since 4sab is not divisible

by p, at least one of s(2ab)—t(a® — 4b*) and s(2ab)+t(a® — 4b?) is not divisible
by p. Hence at least one of (s(a? — 4b%) + 4t(2ab), s(2ab) — t(a* — 4b*)) and
(s(a® — 4b*) —4t(2ab), s(2ab) +t(a® — 4b?)) is the solution of 22 +4y? = p?+l)
satisfying the hypothesis. O

Lemma 4.2. For any positive integer e and a prime p such that p = 5
(mod 8),

2¢+2 if e=0 (mod 2)

z,y) € L2 | 2® + 64y* = p*} = ’
H@y) | v =r 2e if e=1 (mod 2).
Proof. Let (s;,t;) be a pair of integer solution of 22 + 4y? = p?(¢~ such that
ged(sit;, p) = 1. Note that such a solution always exists by the above lemma.
Then ' .

(p'si, p't;) fori=0,1,---  e—1 and (p%0)

are all pairs of mutually essentially different solutions of the equation z? +
4y* = p?®. Furthermore for any solution (s,t) of 2% + 4y* = p*¢, (s,t) is not
essentially different to exactly one of the above solutions. Among all these
solutions, we can count the number of solutions such that the y-coordinate
is divisible by p.

First, note that t._; = 2ab for integers a and b such that a? + 4b* = p.
Hence t._1 = 2 (mod 4). From the proof of the above lemma, we know that

te_p_1 = se_k(Qab) + te_k(a2 — 4b2)

In any cases,
tep-1—ter =2 (mod 4).

8



Then the number of solutions of z? + 4y? = p* such that y = 0 (mod 4) is

4-542=2+2 if e=0 (mod2),

2
—1
4~€2 +2=2 if e=1 (mod 2).
Therefore the lemma directly follows from Lemma 3.3. [

5 (General case

In this section we consider the general case. Recall that n is an integer such
that n =1 (mod 8).

Lemma 5.1. Assume that n = p{'---pi*, where p; is a prime such that
pi =5 (mod 8) and e; is a positive integer for any i. Then

t
H(ei + 1)+ (=) if =0 (mod2) for any i,
r(n, Fy) =< 5t
H(ei +1) otherwise,

i=1
where w = #{i | ¢; =2 (mod 4)}.

Proof. Since n =1 (mod 8), e; + -+ + ¢ is even.

First assume that there is an ¢ such that e¢; = 1 (mod 2). Note that
the number of such i’s is even. Without loss of generality we assume that
e =ey; =1 (mod 2). Let

(alabl)y 7(au7bu)

be all essentially different solutions of z? + 4y? = p** and

(Cl7d1)7 7(C’Uyd1)>

be all essentially different solutions of z? + 4y* = p5?---pi*. Since p{' =
p5’ - pit =5 (mod 8), a;bicjd; = 1 (mod 2) for any ¢ and j. Furthermore
since 4u (4v) is the number of solutions of x? +4y? = p{* (x?+4y? = p3* - - pi*,

respectively),

1 1
u=§(61+1) and U=§<€2+1>-~(6t+1).



Now
(a;c; + 4bidj, a;d; — bicj) and  (a;c; — 4bid;, a;dj + bic))

are all essentially different solutions of z? + 4y*> = n by Lemma 3.6. Hence
we have at least 2uv essentially different solutions of 2% + 4y? = n. Since

4-2uv =2(e; +1) -+ (e, + 1),

those 2uv solutions are exactly all essentially different solutions of a2 +4y? =
n. Since
(aid]’ + biCj) - (CLidj — biCj) = 2biCj =2 (HlOd 4),

the number of solutions of 2% + 4y? = n with y = 0 (mod 4) is exactly half
of the number of all solutions. This completes the proof.

Now assume that e; = 0 (mod 2) for any i. We will use an induction
on t. We already proved the lemma when ¢t = 1. Assume that the formula
holds on the case when n has ¢ different prime factors. Consider the equation
w? +4y® = pit Py Let

(aflab1>7 7(CLU7bu>

be all essentially different solutions of 2 + 4y* = pi' - - pf* and

(Cl7d1)7 7(Cv7dv>

€t+1

be all essentially different solutions of z? + 4y* = p;"'. Note that every

solution of 2% +4y* = pi* - - - py'py i is not essentially different to exactly one

of
((ZZ'C]' + 4bidj, aid]— — bicj) and (G,Z'Cj — 4bidj, aidj + bicj)'

We assume that b; = d; = 0. Then clearly b; > 0 and d; > 0 for any 4, j > 2.
We define € = 1 if ¢;,1 =2 (mod 4), € = 0 otherwise. Furthermore we define

t
1_[ ei+ 1)+ (=1)", where w=148{i| e¢,=2 (mod 4)}.
i=1

Then .
a:=t{i| ;=0 (mod4)}=1(<b—2)+1

and

o = #{i| d;j=0 (mod 4)} = i(et+1 (1) —2) 1

10



Now the number of solutions of 2?4+ 4y* = p{* - - p{'p;t}' with y = 0 (mod 4)
1s

T:=8a—1)(a/ —1)+4(a—1)+4(a/ — 1) + 2+ 8(u — a)(v — ).

Since

t
QH(ei +1)=244(u—-1) and 2(ey1+1)=2+4(v—1),

i=1

t
T = H e; + 1)+ (—1)“*e.
=1
The lemma follows directly from this. O

Let @ be the set of all primes that are represented by z? + 64y? and R
be the set of all primes that are represented by 422 + 4y + 17y2.

Lemma 5.2. For any prime p, the equation x* + 64y* = p has an integer
solution if and only if p=1 (mod 8) and 2 is biquadratic residue modulo p.

Proof. See [[1],1.4.23]. O

Example 5.3. Note that

Q = {17,41,97, 137,193, 241, 313, 401, 409, 433, 449, 457, 521, 569, 641 - - - }.

Lemma 5.4. Let n = q{ cqlerdt g

9o, where q; € Q) and ry € R for any
7, k. Then

0 if ngzl (mod 2),
T‘(TL, Fl) = u v

H(fg )H9k+1 if Egk—o (mod 2).

]:

Proof. We will use an induction on » f; + > gx-

Assume that Y] f;+> gx = 1. If f; = 1 for some j, then the lemma follows
from the fact ¢; € Q. If g, = 1 for some k, then the lemma follows from the
fact rj, € R. Assume that the formula holds on the case when ), f;+> g = m
Assume that )] f; + >, gv = m + 1. Note that one of f; or gj is greater than

11



or equal to 1. Without loss of generality, we assume that f; > 1. Let (a,b) be
the solution of 2% + 4y* = ¢;. Note that a =1 (mod 2) and b= 0 (mod 4).

Case 1. Assume that Z gr =0 (mod 2).

Let (¢, d) be the solutlon of 22 + 4y* = n such that d =2 (mod 4). Note
that ¢ =1 (mod 2). Then

(ac + 4bd,ad — bc) and (ac — 4bd, ad + bc)

are solutions of x? + 4y? = q{1+1 qfurdt - 79, Since

(ac + 4bd)(ac — 4bd) = (ac)* — (4bd)* =0 (mod q1),

we may assume, without loss of generality, that ac + 4bd = ad — bc = 0
(mod ¢;). Hence

2 2
(ac—l— 4bd) 4 (ad— bc) _ q{l_ -
q1 q1

Note that ad — bc = 2 (mod 4). Since fi — 1+ fo+ -+ fu+D9r = n
and Y gr = 0 (mod 2), this is contradiction to the induction hypothesis.
Therefore

r(n, 2+ 4y2) = r(n, 2+ 64y2).
The lemma follows from this.
Case 2. Assume that Z gr =1 (mod 2).
k=1

Let (¢, d’) be the solution of 2%+ 4y? = n such that d = 0 (mod 4). Note
that ¢ =1 (mod 2). Then

(ac’ + 4bd',ad’ — b)) and (ac — 4bd', ad’ + bc')

are solutions of 22 + 4y = ¢['*' .- gfer? ... 19 Since
(ac’ + 4bd')(ac’ — 4bd') = (ac')* — (4bd')* =0 (mod ¢, ),

we may assume, without loss of generality, that ac’ + 4bd’ = ad’ — b = 0
(mod ¢ ). Hence

ac + 4bd'\ * ad — b \? _
() (M) =l

12



Note that ad’ — b’ =0 (mod 4). Since f1 — 1+ fo+ -+ fu+ > gr = n and
> gr =1 (mod 2), this is impossible by induction hypothesis. Therefore

r(n,2® + 4y*) = r(n,42® + 4oy + 17y*) and 7(n, 2> + 64y?) = 0.

The lemma follows from this. O

Theorem 5.5. Let n = p$* - pctglt - - qford - .r9 | where Di» qj, Tk are all

primes such that g; € Q,r, € R and p; = 5 (mod 8) and e;, f;, g are all
positive integers. If e; + -+ + e, = 1 (mod 2), then r(n,z* + 64y*) = 0. If
e1+ -+ +e =0 (mod 2), then

H(z,y) € 27 | 2 + 64y® = n} =

ﬁ(fj + 1 gk +1) (]_[ (e; +1) 1)w+1> if () holds,

j=1 i=1

~

u

STIC+ D] [+ 1) ]_[ e+ 1) 1)“’) if (+) holds,
ﬁ(fj +1) ﬁ(gk + ) + 1) otherwise,
\Jj=1 k=1 i=1

where w = f{e; | e, =2 (mod 4)},

() =0 (mod?2) foranyi and Z ge=1 (mod 2) and
k=1

(xx) e, =0 (mod2) foranyi and Z g =0 (mod 2).
k=1

Proof. First assume that there is an i such that e; = 1 (mod 2). Note that
the number of such i’s is even. Without loss of generality we assume that
e1 =ey =1 (mod 2). Let

(a17b1)7 7(a’lubu>

be all essentially different solutions of 22 +4y? = p{* - - - p{*. Since the number

of solutions of x? + 4y* = pi* - - - p§* is 4u, we have

t

u= %H(ei—k 1).

i=1

13



By Lemma 5.1, we have

o:=t{i| b;=0 (mod4)} =1

Now we consider the following three subcases.

Case 1. Assume that 2 gr =1 (mod 2).

Let
(Cl7d1)7 7(Cv7dv>

be all essentially different solutions of 2% + 4y? = coqlerdt - 190 Note
that d; = 2 (mod 4) for any j by Lemma 5.4. Since the number of solutions
of 22 + 4y? = ¢I* - qfer? .. .19 is 4v, we have

:—Hfj Hgk+1)-

Then
(aicj + 4bidj7 aidj — bicj) and (CZZ’Cj — 4bidj, aidj + biCj)

are all essentially different solutions of 22 +4y? = n by Lemma 3.6. Note that
a;d; F bjc; =0 (mod 4) for any ¢, j when b; = 2 (mod 4) for any i. Hence

r(n,F1) = 8(u—av

u

v t
= 1]+ [+ D] [(er +1).
k=1 i=1

J=1

Case 2. Assume that Z gr =0 (mod 2) and f; and g are even for all j, k.
k=1
Let
(Clyd1)7 7(C’Uadv)

be all essentially different solutions of 22 + 4y? = ¢f* - - gfr9 ... 1% Note
that d; = 0 (mod 4) for any j by Lemma 5.4. We assume that d; = 0. Then
clearly d; > 0 for any j > 2. Since the number of solutions of z? + 4y?

q1 : q{j“r <19 is 4v — 2, we have

(ﬁ fi+1)
j=1
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gk+1)+1>.

k=1



Then
(aicj + 4bidj, aid]’ — b,’Cj), (CLZ'C]' — 4bid]’, aidj + bl'Cj) and (aicl, 1[)1‘01)

are all essentially different solutions of 22 + 4y?> = n by Lemma 3.6. Note
that a;d; F byc; = 0 (mod 4) for any 4, j and Fb;c; = 0 (mod 4) for any i
when b; =0 (mod 4) for any ¢. Hence

r(n,F1) = 8a(v—1)+ 4«

u

v t
= 11+ [ae+ D] [(es +1).
k=1 i=1

j=1

Case 3. Assume that Z gr = 0 (mod 2) and f; or g is odd for some j or

k=1
k. Let

(Cl7d1)7 7(C’Uad1}>

be all essentially different solutions of 22 + 4y? = ¢f* .- gfr9 ... 1% Note
that d; = 0 (mod 4) for all j by Lemma 5.4. Since the number of solutions
of 2% + 4y? = q{l cooqlerdt o or9 is 4v, we have

v

1 H(fj DT (o +1).

] 1 k=1
Then
(aicj + 4bidj, CLidj - biC]’) and (aicj — 4bidj, CLZ‘d]‘ + bl'Cj)

are all essentially different solutions of 22 +4y* = n by Lemma 3.6. Note that
a;d; F bic; =0 (mod 4) for any 4, j when b; = 0 (mod 4) for any 7. Hence

r(n,F1) = 8awv
v t

= H(fj+1)l_[(gk+1 Hez+1.

k=1
This completes the proof.

Now assume that e; = 0 (mod 2) for any 7. Let

(alab1)7 )(a’lubu)
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be all essentially different solutions of 2% + 4y? = p{* - - - p*. We assume that
by = 0. Then clearly b; > 0 for any ¢ > 2. Since the number of solutions of
22+ 4y? = pit -+ pit is 4u — 2, we have

UZ%(Q(ei-i-l)-i-l).

Furthermore by Lemma 5.1, if we define
¢
1_[ ei+ 1)+ (=1)", where w=4{i| ¢,=2 (mod 4)},
i=1

then .
a:=8{i] =0 (mod4)}:1(q>—2)—|—1.

Now we consider the following three subcases.

Case 1. Assume that 2 gr =1 (mod 2).
k=1

Let
(Cl7d1)7 7(Cv7dv>

be all essentially different solutions of 22 + 4y? = ¢f* - - gfr9 ... 1% Note
that d; = 2 (mod 4) for any j by Lemma 5.4. Since the number of solutions
of 22 +4y? = q{* - - qler{" - - - r9 is 4v, we have

:_Hfj Hgk+1).

Then
(aicj + 4bidj, aidj - biCj), (CLZ‘C]‘ — 4bidj, (lidj + biCj) and (a10j7 $a1dj)

are all essentially different solutions of 22 + 4y®> = n by Lemma 3.6. Note
that a,d; F b;c; =0 (mod 4) for any ¢, j when b; = 2 (mod 4) for any ¢ and
Faid; = 2 (mod 4) for any j. Hence

r(n,F1) = 8(u—a)v t
[T+ [+ 1) (H(ei +1) + (—1)“’“) .
j=1 k=1 i=1

Case 2. Assume that Z gr =0 (mod 2) and f; and g; are even for all j, k.
k=1

16



Let
Gﬁ7d1% e 7&%7dv>

be all essentially different solutions of z? + 4y* = q{l cooqlerdt - r9e. Note
that d; = 0 (mod 4) for any j by Lemma 5.4. We assume that d; = 0. Then
clearly d; > 0 for any j > 2. Since the number of solutions of z? + 4y? =
gt gl 9 s 4u — 2, we have

Then
(a;c; £4bidj, a;dj F bicj), (arcj, Fard;), (acq, Fbicr) and (aicq,0)

are all essentially different solutions of 22 + 4y?> = n by Lemma 3.6. Note
that a;d; T bic; =0 (mod 4) and Fb;c; =0 (mod 4) for any 4, j when b; =0
(mod 4) for any ¢ and Fa;d; =0 (mod 4) for any j. Hence

r(n,F) = 8a—1w—-1)+4a-1)+(wv—-1)+2

= ﬁ(fj +1) ﬁ(gk +1) (H(ei +1)+ (—1)”) .

j=1 k=1 i=1

Case 3. Assume that 2 gr = 0 (mod 2) and f; or g is odd for some j or
k=1

k.

Let
Gﬁ7d1% e 7&%7dv>

be all essentially different solutions of z? + 4> = q{l cooqlerdt - r9e. Note
that d; = 0 (mod 4) for any j by Lemma 5.4. Since the number of solutions

of 22 + 4% = q{l coeqlerdt . r90is 4v, we have
o= T+ 0] Jloe + 1)
21
j=1 k=1
Then

(GZ'C]' + 4bidj, aidj — biCj), (@icj — 4bidj, Clidj + biCj) and (alcj, $a1dj)

17



are all essentially different solutions of 22 + 4y?> = n by Lemma 3.6. Note
that a;,d; F b;c; =0 (mod 4) for any ¢, j when b; =0 (mod 4) for any ¢ and
Faid; =0 (mod 4) for any j. Hence

r(n,F1) = 8(a—1)v+4v
= [+ [ +1) (H(ei +1) + (—1)”) :
j=1 k=1 i=1

The theorem follows directly from this. m

6 Summary

In this section, we summarize all results proved in the previous sections and
give a closed formula for the number of solutions of the equation 22 + 641% =
n.

Assume that n is even. Let n = 2°m for some integers m and a such that
m is an odd positive integer and a > 1. Then

-

0 ifa=1,3,5,

2> (%) if a =24,

H(xy) e Z? |2 +64y" =n} = { i

-1
42 <7> otherwise.
\

k|m

Assume that n is odd. Let n = pSt---pftglt - qlurd o pgoght o ghe

where p;, ¢;, Tk, s are all primes such that ¢; € Q,r, € R and p; =5 (mod 8),
s; =3 (mod 4) and e;, f;, g, by are all positive integers. If i; is odd for some
[, then r(n,z? + 64y*) = 0. If h; is even for any [, then

tH{(2,y) € Z2 | 2?+64y* = n} = t{(x,y) € Z* | 2°+64y® = p§* - pfralt - - gl ).

Ife; + -+ e =1 (mod 2), then r(n,z? + 64y*) = 0. If e; + - + ¢, =0
(mod 2), then

18



tH{(z,y) € Z% | 22 + 64y* = n} =

( u t
H(fj gk +1) H e; +1) 1)w+1) if () holds,
j=1 =1
u ¢
3 H(fg gk +1) (€; +1) 1)w> if (+) holds,
j=1 =1
H(fj 1) H(Qk + 1 61 +1) otherwise,
\j=1 k=1 i=1

where w = f{e; | e, =2 (mod 4)},

(x) e =0 (mod 2) for any ¢ and Z gr=1 (mod 2) and
k=1

(#x) ;=0 (mod 2) for any ¢ and Z g =0 (mod 2).

k=1
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