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ABSTRACT 
 

Studies on expression of eIF2α kinases in the 

mouse male germ cells 

 

Kyosun Park 

 

The mammalian male germ cells should be maintained below the core body 

temperature for their successful development. A previous study in my 

laboratory reported that eIF2α (α subunit of eukaryotic translation initiation 

factor 2) phosphorylation is one of immediate responses of male germ cells 

against heat stress. In this work, the expression of eIF2α protein was observed 

in all stages of male germ cells. However, phospho-eIF2α was detected only at 

cytoplasm of germ cell stages up to early pachytene spermatocytes by heat 

treatment. In order to identify a candidate kinase responsible for eIF2α 

phosphorylation upon heat stress in male germ cells, I examined expression of 

the four known eIF2α kinases (HRI, PKR, PERK, and GCN2) in mouse testis. 

The results showed that all four eIF2α kinases are expressed with distinct 

developmental stage-specific manners. Furthermore, a phosphorylated form of 
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PERK is detected in the testis from heat-treated mouse. These results suggest 

that PERK is the candidate kinase that phosphorylates eIF2α by sensing heat 

stress in the mouse male germ cells. 
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INTRODUCTION 

 

Generally, mammalian male germ cells are kept below the core body 

temperature during development for their optimal function (Huston et al., 1997). 

It has been reported that heat stress on mammalian testis leads to apoptosis of 

the male germ cells and, therefore, subfertility or infertility is induced (Lue et 

al., 1999; Rockett et al., 2001). In artificial cryptorchidism, one or both testes 

are experimentally forced to stay within the abdomen, and this also induces 

apoptosis of the male germ cells (Shikone et al., 1994; Yin et al., 1997). Based 

on these results, it has been proposed that mammalian male germ cells have a 

lower temperature threshold (Sarge, 1995; Sarge et al., 1995). Accordingly, the 

suitable temperature regulation in testis is essential for normal germ cell 

development. However, the precise molecular mechanisms of thermal 

regulation in male germ cells are not still clear.  

The translational control plays a crucial role in cellular gene expression 

system in response to various environmental stresses. The regulation of 

translation provides the stressed cells with ways to react immediately through 

rapid changes in protein level (Holcik and Sonenberg, 2005). Previous 

investigations reported that the level of translation is reduced in heat stressed 

male germ cells. Parallel to these findings, it has also been suggested that heat 
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can decrease the assembly of amino acids into proteins and the formation of 

polysomes (Nakamura and Hall, 1978; Nakamura et al., 1978; Cataldo et al., 

1997). Furthermore, the reduction of protein synthesis is tightly linked to the 

attenuated formation of the translation initiation complex (Nakamura and Hall, 

1980).  

Eukaryotic translation initiation factor 2 (eIF2) is one of the 

components that constructs eIF2-GTP-Met-tRNAi ternary complex, and it 

transports initiator tRNA to 43S ribosome. The typical factor that regulates 

translational initiation is GTP-bound eIF2, which is essential for the assembly 

of 43S initiation complex. The replacement of GDP to GTP on eIF2 is mediated 

by catalytic reaction of eIF2B; however, this eIF2B-mediated GTP substitution 

is inhibited by the phosphorylation of α-subunit (at Serine-51) of eIF2 

(Rowlands et al., 1988; Krishnamoorthy et al., 2001). Phosphorylation of eIF2α 

has been observed and can be generated in various types of stressful conditions 

(e.g. nutritional deprivation, viral infection, and heat etc.), and it is commonly 

followed by inhibition of global translation (Dever, 2002). The decline of 

comprehensive protein synthesis under stressful conditions is also known cell 

survival mechanism. There are experimental data that S51A (Serine substitution 

of Alanine) double-mutant mice are dead in a few hours after birth (Scheuner et 

al., 2001). In other words, phosphorylation of eIF2α has ability to cope with 
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cellular stresses by altering translational steps.  

There are four eIF2α kinases which have been studied in mammalian 

cells: (1) HRI (Heme-Regulated Inhibitor) is activated under heme-deprived 

condition in erythrocyte (Han et al., 2001; Lu et al., 2001); (2) PKR (Protein 

Kinase R or double stranded RNA dependent kinase) reacts to viral infection 

(Barber, 2005); (3) PERK (PKR-like ER Kinase) activation is occurred by the 

unfolded proteins in ER (ER stress) (Patil and Walter, 2001); and (4) GCN2 

(General Control Non-derepressible 2) is activated due to the amino acid 

deprivation and UV irradiation (Kimball, 2001; Deng et al., 2002). These four 

kinases have a conserved catalytic domain; therefore, they can share a common 

downstream event in which eIF2α is phosphorylated at Ser-51 (Dever, 2002).  

A recent study revealed that eIF2α phosphorylation is rapidly occurred 

in heat treated mouse testis, even at 37°C, that is similar to the core body 

temperature (Kim et al., 2012). Thus, eIF2α phosphorylation in heat-stressed 

testis might block the initiation step of translational pathway in male germ cells. 

This could explain the reduction of polysomes in heat-treated testis (Cataldo et 

al., 1997). Unfortunately, only handful amount of information is known about 

the heat stress-related eIF2α kinase (Lu et al., 2001; Zhan et al., 2002), thus, 

further extensive in vivo studies are required to fully understand the precise 

mechanism underlying male germ cells’ response to heat stress.  
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Here, I investigated the four known eIF2α kinases to find a candidate 

kinase that responds to heat stress in mouse testis. In order to identify a kinase 

responsible for phosphorylating eIF2α by heat stress, I examined both 

expression and phosphorylation of HRI, PKR, PERK, and GCN2 in mouse 

testis. The results showed that all four eIF2α kinases were expressed with 

distinct pattern in the mouse testis and, especially, PERK phosphorylation was 

specifically observed in heat-treated mouse testis.  
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MATERIALS AND METHODS 
 

Animals and heat treatment 

The experimental procedure using mice was granted by Institutional Animal Care 

and Use Committee at Seoul National University (SNU-110726-3). The testes were 

obtained from FVB mice on postnatal day-7, -17, and -42. The mice were used for 

heat-treatment experiment. The anesthetized male mice were placed in a water bath 

and heat treated at up to 42°C for 20 minutes. After the treatment, the mice were 

sacrificed and their testes were isolated. 

 

Reverse transcription and quantitative real-time PCR 

Total RNA was extracted from mouse testes with using Trizol reagent (Invitrogen) 

according to the manufacturer’s recommendations. 1 μg of RNA was used as a 

template for reverse transcription. Samples containing 1 μg of RNA were heat-

denatured for 10 minutes at 70°C. After chilling the mixture on ice, the RNA was 

incubated at 37°C for 1.5 hour in a total volume of 20 μl that contained 5 μM 

random hexamer, AMV reverse transcriptase, 0.5 mM dNTP mixture, RNasin, 10 

mM DTT, and RT buffer. The reaction was terminated by heating at 70°C for 15 

minutes. Then, cDNAs were stored at -20 °C until use. 

Real-time PCR was carried out with the Applied Biosystems 7300 Real 
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Time PCR System by using SYBR Green with high ROX (Enzynomics) with gene-

specific primers as listed in Table 1. Real-time PCR was performed in triplicate and 

the experiment was repeated twice. Relative gene expressions were calculated 

using the comparative Ct method and were normalized to GAPDH cDNA. 

Standard errors were determined using SigmaPlot 10.0. 

 

Antibodies 

Antibodies against eIF2α (sc-11386), PKR (sc-708), and phospho-PERK (sc-32577) 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 

Antibodies against PERK (#3192) and GCN2 (#3302) were purchased from Cell 

Signaling Technology (Beverly, MA, USA). Antibodies to HRI (#07-728), 

phospho-PKR (#44668G), phospho-GCN2 (ab75836), and phospho-eIF2α (KAP-

CP131) were purchased from Millipore (Bedford, MA, USA), Invitrogen Life 

Technology (Carlsbad, CA, USA), Abcam (Cambridge, MA, UK), and Stressgen 

(San Diego, CA, USA), respectively. 

 

Immunohistochemistry 

Mouse testes were fixed overnight at 4°C in Bouin’s solution (Sigma-Aldrich) and 

embedded in paraffin. The paraffin-embedded testes were sectioned at 5µm by 

microtome. Then, the sectioned testes were deparaffinzed and hydrated. 10mM 
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Tris-HCl (pH 9.0) or 1mM EDTA (pH 8.0) was used for antigen retrieval. The 

sectioned tissues were blocked with PBST (phosphate-buffered saline with 0.1% 

Triton X-100) containing 3% BSA (bovine serum albumin) for 30 min. Then, the 

sectioned testes incubated at 4°C for overnight with primary antibodies which were 

diluted in 3% BSA in PBST. Immunostaining with primary antibodies were 

performed in accordance with the manufacturer’s instructions. Next day, after 

washing with PBST, the sectioned testes were incubated with either fluorophore-

conjugated (Invitrogen) or biotinylated (Vector) secondary antibodies for 30 min at 

room temperature. For DAB staining, the biotinylated antibody was then incubated 

with avidin-biotin peroxidase complex (Vector) for 30 min. Subsequently, the color 

was developed with 3, 3’-diaminobenzidine tetrachloride (DAB) (Sigma-Aldrich). 

DAPI and hematoxylin were used for counterstaining for fluorescence and DAB 

staining, respectively. 

 

Immunoblot analysis 

Mouse testes were decapsulated in ice-cold PBS, followed by homogenization in 

RIPA buffer  [150mM Sodium Chloride, 1.0% NP-40, 0.5% Sodium 

Deoxycholate, 0.1% SDS, 50mM Tris (pH 8.0), 10mM Sodium Fluoride, 1mM 

Sodium Orthovanadate, 1mM EDTA (pH 8.0), 1mM EGTA (pH 8.0), and Protease 

inhibitor cocktail (Sigma)]. After ice incubation for 10 min, samples were 
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centrifuged at 12000 rpm for 10 min, and the supernatant was collected. Then, 

lysates were stored at -80 °C until use. Proteins were loaded in SDS-

polyacrylamide gels and then, resolved by electrophoresis. The resolved proteins 

were transferred to nitrocellulose membranes. The membranes were blocked in 5% 

BSA or 5% skim milk in TBST (20mM Tris, 150mM NaCl, 0.1% Tween 20) 

Immunoblot analyses with primary antibodies were performed according to the 

manufacturer’s instructions. After washing the primary antibodies with TBST, the 

membranes were incubated with peroxidase-conjugated secondary antibodies for 

30 min at room temperature. The membranes further washed with TBST, the 

protein bands were detected by peroxidase activity using an ECL reagent. 

For measurement of each eIF2α kinase levels, the relative band intensity 

measurement was performed using Image J software (NIH). The signal intensity of 

expression level of each kinase was normalized to GAPDH expression.



 9 

RESULTS 
 

Developmental stage-specific phosphorylation of eIF2α by heat stress in 

male mouse germ cells 

A previous study has shown that heat stress phosphorylates eIF2α in mouse 

testes (Kim et al., 2012). I performed immunoblot analyses with phospho-eIF2α 

antibody to make sure that a mild heat indeed induces eIF2α phosphorylation. 

The result confirmed that heat treatment at 37˚C and 42˚C for 20 min increases 

the phosphorylated form of eIF2α in mouse testes (Figure 1A). Then, I 

investigated the expression of eIF2α in mouse male germ cells. To test this, 

mouse testes were obtained from mice on postnatal days 7, 17, and 42 (adult). 

In mouse testis, spermatogenesis is initiated shortly after birth. Therefore, the 7-

day-old mouse testis consists mostly of spermatogonia, whereas 17-day-old 

mouse testis consists of spermatogonia down to pachytene spermatocytes. In 

the case of adult mouse testis, it consists of all stages of germ cells (Bellve et al., 

1977). The result implies that the eIF2α is expressed in both immature and 

mature male germ cells under normal condition, confirming eIF2α expression in 

male germ cells of all stages of development (Figure 1B). 

It was reported that phospho-eIF2α is located at the cytoplasm in cells 

under stress (Kedersha et al., 2002). Hence, I examined the phosphorylation 
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pattern of eIF2α in both heat-stressed and control adult mouse testes by 

immunofluorescence histochemistry. Because the unique developmental 

progression of spermatogenesis in the adult mouse testes has been established 

well (Oakberg, 1956), the pattern of eIF2α phosphorylation was analyzed in 

adult mouse testes. By contrast to control, phospho-eIF2α signal was detected 

in the cytoplasm by heat treatment. Surprisingly, it was also observed that the 

patterns of eIF2α phosphorylation in mouse testes may have cell type 

specificity (Figure 1C). To test this possibility, I investigated whether the 

phosphorylation of eIF2α by heat stress really occurs in a cell type-specific 

manner in mouse male germ cells. To visualize eIF2α phosphorylation patterns 

clearly, DAB staining were conducted. In normal condition, phospho-eIF2α was 

detected in the nuclei of germ cells. In heat-stressed condition, however, 

phospho-eIF2α was observed in the cytoplasm of spermatogonia, leptotene 

spermatocytes, and early pachytene spermatocytes, but not in late pachytene 

spermatocytes and post-meiotic spermatids (Figure 2A, B). This result indicates 

that the phosphorylation of eIF2α in heat-stressed male germ cells is 

developmental stage-specific, and its phosphorylation is reduced in male germ 

cells before the onset of meiosis. 

 

Expression levels of eIF2α kinases in mouse testis 
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Because the pattern of eIF2α phosphorylation had developmental stage-

specificity, I expected that its upstream kinase would also have developmental 

stage-specific expression. In order to identify a kinase responsible for eIF2α 

phosphorylation by heat stress in male germ cells, I investigated the expression 

levels of the four known eIF2α kinases (HRI, PKR, PERK, and GCN2) in 

mouse testes. There were a few studies on the expression of eIF2α kinases in 

mouse testis (Shi et al., 1998; Ladiges et al., 2000; Zhang et al., 2002); however, 

no study focused on their expression in mouse male germ cells. Therefore, I 

examined the RNA and protein expression levels of the four eIF2α kinases in 

the mouse testes. To verify the expression levels of these kinases, I firstly 

performed quantitative real-time PCR and determined the mRNA levels of 

eIF2α kinases in mouse testes of postnatal days 7, 17, and 42 (adult). The 

reason why I collected these samples is because the constitution of testicular 

germ cells is different as mice get older (Barakat et al., 2008) (Figure 3A). 

PRM1 used as a control gene which is functioning for sperm head condensation 

in developing spermatids (Wykes et al., 1995). I confirmed that PRM1 mRNA 

expression is detected only in the adult mouse testes. The mRNA expression 

level of HRI was increased with testes maturation. PKR had distinctive mRNA 

expression in mouse testes because the expression level was declined in the 17-

day-old mouse testes compared to the 7-day-old and adult mouse testes. The 
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expression level of PERK mRNA was decreased as testes maturation. In the 

case of GCN2 mRNA level, the peak level was observed in the 17-day-old 

mouse testes. Collectively, the results of qRT-PCR showed that all four eIF2α 

kinases are expressed in the mouse male germ cells. Also, the result implies 

there seems to be developmental stage-specificity in mRNA expression of each 

eIF2α kinase.  

To examine the correlation between mRNA and protein expression, I 

carried out immunoblot analyses with the antibodies of each eIF2α kinase. The 

immunoblot data show the protein expression levels of each eIF2α kinase in 

mouse testes (Figure 4A). The result represented that HRI expression level was 

raised as germ cell development. PKR expression level was slightly decreased 

in the 17-day-old mouse testes comparing the 7-day-old and adult mouse testes. 

In the case of PERK, the sudden decline of protein expression was observed in 

the adult mouse testes. The expression of GCN2 protein, the highest record of 

its level was detected at the 17-day-old mouse testes. The result indicates that 

there is also developmental stage-specific protein expression of each eIF2α 

kinase. The correlation between the expression of mRNA and protein is 

confirmed as well. 

 

Developmental stage-specificity of eIF2α kinases expression in male mouse 
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germ cells 

Continually, I performed immunohistochemistry to observe the localization 

pattern of each eIF2α kinase in the mouse testis. Adult mouse testes were 

immunostained with the antibodies specific to each eIF2α kinase for conducting 

this experiment. Then, I could observe that developmental stage-specific 

localization of the eIF2α kinases during spermatogenesis (Figure 5A). HRI was 

detected in the nuclei of all stages of male germ cells. PKR was observed in the 

nuclei and cytoplasm of spermatogonia and weakly observed in the cytoplasm 

of spermatocytes. It seemed that PKR signal was also feebly detected in the 

nuclei of round spermatids. PERK expression was detected in the nuclei and its 

level was declined as male germ cells develop up to pre-meiotic germ cells. The 

GCN2-positive signal was mainly observed in the both cytoplasm and nuclei of 

spermatogonia, leptotene spermatocytes, and early pachytene spermatocytes. 

GCN2 was also observed weakly in the nuclei of late pachytene spermatocytes 

and round spermatids (Figure 5B). This result represents that the expression of 

each eIF2α kinase has a developmental stage-specific pattern in mouse male 

germ cells. Also, the immunostaining analyses indicated consistent results with 

the qRT-PCR and immunoblot results (Figure3, 4). Accordingly, this can 

explain the results of investigating each eIF2α kinase expression level of 

mRNA and protein in the immature and mature mouse testes. From the results 
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so far, the expression features of each eIF2α kinase in mouse testes were 

characterized. However, by comparing the pattern of eIF2α phosphorylation and 

each kinase expression, I could not deduce which kinase is responsible for 

eIF2α phosphorylation by heat stress in mouse testis. 

 

Phosphorylation of PERK in heat-stressed mouse testis 

According to the previous reports, the four eIF2α kinases (HRI, PKR, PERK, 

and GCN2) can be autophosphorylated by sensing the stressful conditions. HRI 

is autophosphorylated in response to heme dissociation (Chen et al., 1995). The 

autophosphorylation of PKR is occurred by binding to viral double-stranded 

RNA (Manche et al., 1992). PERK is characterized as an endoplasmic 

reticulum-resident transmembrane protein. It also can be autophosphorylated by 

ER stress (Harding et al., 1999). Another kinase of eIF2α, GCN2, is activated 

by autophosphorylation under the amino acid deficient condition (Wek et al., 

1995). To identify the candidate kinase that responds to heat stress in the testes, 

I examined whether the specific eIF2α kinase is phosphorylated in heat-stressed 

mouse testes. Therefore, I investigated the phosphorylation levels of each eIF2α 

kinase in heat-treated mouse testes by immunoblot analyses. 

To determine the phosphorylation status of each eIF2α kinase, the heat-

treated (42°C for 20min) and untreated testes were obtained from 7-, 17-day-old, 
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and adult mice. Then, immunoblot analyses were carried out with the phospho-

antibodies specific to each eIF2α kinase, except for HRI. Detection of HRI 

phosphorylation was seen by its upshift. Interestingly, the result showed that 

PERK is phosphorylated in heat-stressed mouse testes (Figure 6). The 

phosphorylation level of PERK was increased in heat-treated mouse testes 

compared to the control. In particular, its phosphorylation was confirmed in the 

17-day-old and adult mouse testes, but not in the 7-day-old mouse testes. In 

order to exclude the possible effect of changes in the expression level, I 

examined the protein expression of the four eIF2α kinases. I confirmed that 

there were no changes in their expression levels upon heat stress (Figure 6). 

From these results, I showed that PERK is activated by heat-treated mouse 

testis, and thereby, activated PERK can contribute to eIF2α phosphorylation. 

Nonetheless, the other potential mechanisms that phosphorylate eIF2α in heat-

stressed male germ cells could be considered since the PERK phosphorylation 

was not observed in heat-stressed 7-day-old mouse testes. 

 

ER stress induction by heat stress in mouse testis 

PERK is an ER transmembrane protein kinase, and it can be phosphorylated by 

ER stress (Harding et al., 1999). So I wanted to determine whether heat stress 

can induce ER stress in the mouse testis. To assess the ER stress in heat-stressed 
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mouse testis, the expression levels of ER stress markers BiP/GRP78 (Munro et 

al., 1986) and CHOP (Wang et al., 1996) were examined. For this experiment, 

the lower bodies of the adult mice were heat-treated at 42°C for 20 minutes and 

recover at room temperature for 0, 2, 4, 6, or 8 hours. Then, immunoblot 

analyses were conducted with anti-BiP/GRP78 and anti-CHOP antibodies 

(Figure 7). BiP/GRP78 expression was increased when heat-treated mouse 

testes were recovered for 4-6 hr. The protein expression CHOP was also raised 

during recovery from heat stress. This result indicates that ER stress is induced 

by heat stress in the mouse testis.



 17 

 

 

 

 

 

 

Figure 1. eIF2α phosphorylation in heat-stressed mouse testis. 

(A) Adult mice were placed on water bath for heat treatment at 37 or 42°C for 

20 min. The testicular lysates were subjected to immunoblot analyses with the 

antibodies specific to phospho-eIF2α, eIF2α and α-tubulin. (B) Immunoblot 

analyses of eIF2α were performed with testes from postnatal day 7-, day 17-, 

and day 42-old mice. (C) Testes from control and heat-treated (42°C for 20 min) 

mice were subjected to immunohistochemical analyses with phospho-eIF2α 

antibody (red). DNA was stained with DAPI (blue). Scale bar, 10μm. 
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Figure 2. Immunohistochemical analysis of eIF2α phosphorylation in heat-

treated testis.  

(A) Testes from control and heat-treated (42°C for 20 min) adult mice were 

subjected to immunohistochemical analyses with phospho-eIF2α antibody. The 

positive signals were stained brown with DAB. The cycle of the seminiferous 

epithelium tubules were determined in accordance with Russell et al. (1990). (B) 

Magnified images of A. Representative immunotaining signals of phospho-

eIF2α in mouse male germ cells were shown. Spg, spermatogonium; L, 

leptotene; EP, early pachytene; LP, late pachytene; Rspd, round spermatids. 
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Figure 3. Quantitative RT-PCR analyses of eIF2α kinases expression in the 

mouse testes. 

(A) Total RNA were prepared from testes of immature (7- and 17-day-old) and 

adult (42-day-old) mice and subjected to quantitative RT-PCR for eIF2α kinase 

genes (HRI, PKR, PERK and GCN2). Testicular protamine-1 mRNA level 

(PRM1) was determined as a control. Experiments were repeated twice. Values 

are means and standard errors. (B) Summary table for eIF2α kinases expression 

in the mouse testis at RNA levels. Relative expression levels were presented as 

+++, ++, and + from the highest. 
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Table 1. PCR primer sets for quantitative RT-PCR analyses for eIF2α 

kinases expression. 
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Figure 4. Immunoblot analyses of eIF2α kinases expression in the mouse 

testes. 

(A) Testicular lysates were prepared from immature (7- and 17-day-old) and 

adult (42-day-old) mice. Immunoblot analyses were performed with the 

antibodies specific to each eIF2α kinases (HRI, PKR, PERK, and GCN2) and 

GAPDH. (B) Immunoblot band intensities of the eIF2α kinases were measured, 

normalized with GAPDH band intensities and shown as graphs. (C) Summary 

table for eIF2α kinases expression in the mouse testis at protein levels. Relative 

expression levels were presented as +++, ++, and + from the highest. 
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Figure 5. Localization of each eIF2α kinase in the mouse male germ cells. 

(A) The normal testes were collected from adult mice. Tissue sections were 

subjected to immunohistochemical analyses with the antibodies against each 

eIF2α kinase (HRI, PKR, PERK, and GCN2). The positive signals were stained 

brown with DAB. (B) Magnified images of A. Representative immunostaining 

signals of each eIF2α kinase at specific developmental stages in mouse male 

germ cells were shown. Spg, spermatogonium; L, leptotene; EP, early 

pachytene; LP, late pachytene; Rspd, round spermatids. 
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Figure 6. PERK is phosphorylated by heat stress in the mouse testis. 

Testicular lysates were collected from heat-treated (42°C for 20min) and 

untreated testes of immature (7- and 17-day-old) and adult (42-day-old) mice. 

Immunoblot analyses were carried out with the antibodies specific to each 

target as indicated (HRI, PKR, phospho-PKR, PERK, phospho-PERK, GCN2, 

phospho-GCN2, eIF2α, phospho-eIF2α, GAPDH).
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Figure 7. ER stress induction by heat stress in the mouse testis. 

Adult mouse testes were treated with heat stress at 42°C for 20 min and were 

recovered at room temperature for 0, 2, 4, 6, or 8 hr. Testicular lysates were 

immunoblotted with the antibodies to CHOP, GRP78/BiP, and GAPDH. 
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DISCUSSION 
 

As reported here, PERK is the candidate kinase that is responsible for eIF2α 

phosphorylation against heat stress in mouse testis. The other eIF2α kinases, 

HRI, PKR, and GCN2 may not be related to eIF2α phosphorylation in heat-

stressed mouse testis since their phosphorylation was not observed (Figure 6). 

Nevertheless, it is hard to conclude that PERK is the only kinase that 

phosphorylates eIF2α in heat-treated mouse testes. In this experiment, PERK 

phosphorylation was observed in heat-stressed 17-day-old and adult mouse 

testes. However, in the case of 7-day-old mouse testes, eIF2α phosphorylation 

level was increased independent of PERK activation (Figure 6). Taken together, 

there seems be other mechanisms that phosphorylate eIF2α in heat stressed 

male germ cells. Alternatively, there might be another unknown kinase besides 

the four known kinases. The other possibility is that PERK and unknown 

protein molecules may work cooperatively to phosphorylate eIF2α. In this work, 

I could not observe the activation of HRI in heat-stressed mouse testis. A 

previous study proved HRI-dependent eIF2α phosphorylation in heat-shocked 

erythroid cell; however, eIF2α phosphorylation was confirmed in HRI -/- cell 

(Lu et al., 2001). This means that confirming heat-sensing pathway is very 

complicated event. Additionally, further studies with PERK knockout mouse 
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model can be conducted to establish the eIF2α kinase that responds specifically 

to heat stress. 

A critical observation of developmental stage-specific eIF2α 

phosphorylation pattern in heat-stressed mouse male germ cells led me to begin 

this study (Figure 1C, 2). qRT-PCR, immunoblot, and immunochistochemical 

analyses (Figure 3, 4, 5) showed the consistent observations that each four 

eIF2α kinase has cell type- and developmental stage-specificity. Unfortunately, 

comparing the pattern of eIF2α phosphorylation and each kinase expression, I 

could not infer the exact kinase that is responsible for eIF2α phosphorylation by 

heat stress in mouse testis. These observations still indirectly provided the 

possibility of existence of the heat-response kinase in mouse testis among the 

four eIF2α kinase. 

This study is crucial in that it focuses on upstream events of the 

formation of stress granules, which allow for the cells to undergo translational 

block and improve cellular survival (Arimoto et al., 2008). There have been 

many in vivo studies that implied causal relationships between heat stress and 

male germ cells (Lue et al., 1999; Rockett et al., 2001). Those studies have 

given some significant information about the potential mechanism involved in 

heat stress response. However, there had not been a study that specifically 

investigates the precise downstream pathways that are activated upon heat 
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stress. The recent study that showed phosphorylation of eIF2α in heat-stressed 

testis provided the additional evidence to those relationships (Kim et al., 2012). 

Heat shock is a well-known factor that phosphorylates eIF2α, but heat-sensing 

mechanism is not extensively studied yet. Thus, finding this mechanism that is 

related to eIF2α phosphorylation in heat-stressed testis is important in 

understanding the metabolism of male germ cells under the heat stress.  

Recent studies showed that heat shock can activate ER stress pathway 

(Heldens et al., 2011; Liu et al., 2012; Zhu et al., 2012), and the results from 

this study also indicate that heat stress activates ER stress pathway in the mouse 

testes (Figure 7). While previous studies reported that ER stress pathway can be 

activated by PERK phosphorylation upon heat stress (Pallepati and Averill-

Bates., 2011; Zhu et al., 2012), this study showed that phosphorylation of 

PERK and eIF2α is occurred rapidly in heat-treated (42°C for 20min) mouse 

testis. This result is interesting because, different from in vivo germ cells, the 

higher temperature (43~44°C) is needed to phosphorylate eIF2α and the 

extended time (over 3h) is required to phosphorylate PERK in somatic cells.  

Mammalian testes contain not only germ cells, but also somatic cells; 

i.e., Sertoli and Leydig cells. Their roles are to support the male germ cells and 

to control steroidogenesis, respectively. Since these somatic cells offer suitable 

environment for germ cell development and maintenance, any misregulation of 
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their functions can negatively affect germ cells. Since there are some evidences 

of heat stress and its effect on the Sertoli cells and Leydig cells (Hagenas and 

Ritzen, 1975; Karpe et al 1981; Zhang et al 2004; Aktas and Kanter, 2009; 

Kanter and Aktas, 2009), it is possible that heat stress might indirectly affect 

germ cells via somatic cells. The present work could not confirm whether the 

phosphorylation of eIF2α occurred in somatic cells of the heat-stressed mouse 

testes. Hence, further careful observation of somatic cells and associated 

subcellular response in germ cells in heat-stressed testes should be conducted. 
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국문초록 
 

포유동물의 웅성생식세포는 그들의 성공적인 발달을 위하여 

체온 이하의 온도로 유지되어야 한다. 본 연구실에서의 선행 연구에 

의하면, 열 스트레스에 대한 방어 기전으로서 생쥐 웅성생식세포 내 

eIF2α (진핵 세포 번역 개시 인자 eIF2의 α 소단위체) 의 즉각적 인

산화가 보고되었다. 이번 연구에서는 eIF2α 단백질이 모든 단계의 생

쥐 웅성생식세포에서 발현되고 있음을 확인하였다. 그러나 흥미롭게

도, 열 스트레스에 의한 eIF2α 인산화는 생쥐 웅성생식세포의 이른 

태사기 정모세포 단계까지의 세포질에서만 관찰되었다. 따라서 열 스

트레스에 의해 웅성생식세포의 eIF2α 를 인산화 시키는 상위의 인산

화 효소를 찾고자, 현재까지 알려진 네 가지의 eIF2α 인산화 효소 

(HRI, PKR, PERK, 그리고 GCN2) 의 발현 정도를 생쥐 정소에서 확

인하는 실험을 수행하였고, 그 결과 각각의 eIF2α 인산화 효소들은 

발달단계에 따라 특징적인 발현이 있음을 보였다. 특히 생쥐 정소 내 

PERK 단백질이 열 스트레스에 의해 즉각적으로 인산화된다는 것이 

확인되었다. 이러한 결과들을 바탕으로, 본 연구는 PERK 단백질이 

생쥐 웅성생식세포에서 열 스트레스를 감지하여 eIF2α 를 인산화하

는 상위의 효소로서 작용할 수 있음을 제안한다. 
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