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ABSTRACT

Previous observation has shown that there were substantial presences of
CD4/CD8 double positive (DP) T cells in peripheral blood and secondary
lymphoid organs in human and animals. These extrathymic DP T cells have
been described in multiple human diseases. Some studies reported that
peripheral DP T cells have the cytotoxic potential in diseases such as LCMV,
HIV, and cancer. Others reported that these cells have more helper functions
in systemic sclerosis and rheumatoid arthritis. However, it is not yet clearly
explained whether there are any correlations of DP T cells in peripheral blood
with transplantation, and if so, the functional characteristics of peripheral DP
T cells in nonhuman primates was examined. DP T cells were functionally
equivalent to either conventional CD4 or CD8 T cells with respect to their
helper or cytotoxic activity. DP T cells highly expressed CXCR5 and PD-1
levels, and showed equivalent secreting capacity of IFN-y, IL-4, and IL-21 as
compared to CD4 T cells. They also have highly producing capacity of
granzyme B and perforin as compared to CD8 T cells. In addition, these cells
expressed eomesodermin (Eomes) and promyelocytic leukemia zinc finger
protein (PLZF) in steady status. In islet transplantation model, it turns out that
absolute number of DP T cells were positively correlated with graft rejection,
whereas this was not the case in long-term survival group. Effector memory T
cell (TEM) subpopulations of DP T cells were significantly increased in only
the graft rejection group, unlikely TEM in CD8 T cells which revealed
increase both rejection and survival group. Taken together, peripheral DP T
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cells have dual functions in helper and cytotoxic immune responses, and also
have an innate-and memory-like phenotype. In that positive correlation with
graft survival, it suggests that DP T cells may play a crucial role in graft

rejection mechanism in organ transplantation.

Keywords: DP T cells, Innate T cells, Memory phenotype, Helper

function, Cytotoxic activity, Transplantation, Rhesus monkey

Student number: 2015-20029
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INTRODUCTION

CD4"/CD8" double positive (DP) T cells are well known as one of the T
cell developmental stages within the thymus, before differentiation into either
the CD4 single positive (SP) or CD8 single positive lineage. Lymphoid
progenitor cells that enter the thymic cortex do not express both the T cell
receptor (TCR) and the CD4 and CD8 co-receptors, so called double negative
stage of T lymphocyte maturation. Once productive TCR o and B chain
rearrangement is achieved, the affinity of TCR for the major
histocompatibility complex (MHC) is sequentially tested [1]. DP T cells
expressing TCR with appropriate affinity for self MHC—peptide complexes
presented on cortical epithelial cell are positively selected, being
differentiated into either CD4"or CD8" SP cells and finally migrate into
thymic medulla [1]. In this stage, the expression of CD4 and CD8 molecules
is regulated by a very strict transcriptional program involving the transcription

factors called Runx3 and ThPOK [2].

It is known that the expression of the CD4 and CD8 molecules by mature
T lymphocytes is mutually exclusive [3]. Early 2000™, the presence of a small
proportion of DP T cells in human peripheral blood has been reported [4-6]. In
addition, the majority of DP T cells were found in the peripheral blood and
secondary lymphoid organs of swine, monkeys, and chickens [7]. These DP T
cells in peripheral blood are presumed to be a subset from immature
thymocytes or extrathymic events. There are two hypothesis in terms of DP T

cells developmental pathway; one is that positive thymic selection fails to

1 3
I

—



induce extinction of both co-receptors and subsequently, DP T cells might
easily pass through [1]. The other one is that under certain circumstances (i.e.,
diseases) mature SP T cells might be able to get another co-receptor, CD4 or

CD8 molecule, whereas variety of inflammatory cytokines are secreted [8-12].

Molecular analysis of several innate T cell lineages has identified key
transcription factors which regulate the signature functions of each cell subset
[13-15]; both promyelocytic leukemia zinc finger protein (PLZF) and
eomesodermin (Eomes) are most prominent transcription factors. iNKT cells
and human peripheral MAIT cells are representative cell types which express
PLZF [9, 11-16]. Recent reports demonstrated that PLZF positive CD4 T cells
during the thymic development are responsible for generating Eomes positive
thymic CD8" T cells [17-19]. It has been reported that this memory-like CD8"
T cells expressing Eomes are additional subsets of innate T cells [20].
Therefore, whether DP T cells are able to express Eomes and PLZF
transcription factor is one of the key findings in this study. If DP T cells have
innate functions like Eomes™ CD8" T cells, they might play an essential role in

severe inflammatory condition such as organ transplantation.

As was well known, in a variety of auto-reactive conditions particularly
thyroiditis [21], atopic dermatitis [22], systemic sclerosis [23], and
rheumatoid arthritis (RA) [24], DP T cells seem to play a key role in disease
progression, in terms of helper functions. On the other hand, this type of cells
has another functional property which is the cytotoxic potential in viral

infections and cancer diseases by expressing high level of FasL and secreting



of IFN-y [2, 25]. In addition to these diseases, transplantation is also known to

induce potent inflammatory conditions.

In this study, the characteristics of peripheral DP T cells including
cytokines, expression markers, transcription factors, and enzymes were
analyzed, and also their correlation with graft rejection in islet transplantation

model was investigated.



MATERIALS AND METHODS

1. Subjects

Eight male and fifteen female adult rhesus macaques were used in this study.
Their ages ranged from 48 to 72 months (60.3 £ 5.1) and body weights ranged
from 3.72 to 5.7 kg (4.44 + 0.7). After being imported from China, a
guarantine process of 1 month was conducted with the subjects in a good
condition. Each monkey was housed in a single cage and had daily access to
biscuits (2050 Harlan, Teklad Diets, Madison WI, USA) with some fresh
fruits and vegetables, and unlimited access to water. Their room was

maintained at 24 + 4C at a relative humidity of 50 + 10%, with an artificial

light-dark cycle of 12:12 (7:00 AM onset) and with 13 - 18 air changes per
hour. All animals used in this study were cared in a strict accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory

Animals.

2. Sample

Heparin- or EDTA-anticoagulated whole blood was obtained from the
monkeys for a functional analysis and phenotyping. Peripheral blood
mononuclear cells (PBMCs) were separated by the gradient method with
Ficoll-Paque (GE healthcare, Uppsala, Sweden). The isolation of lymphocytes

from mesenteric lymph node (MLN), thymus, spleen, and liver was performed



after autopsy (n =5). Then, the isolated tissues were minced into a single-cell
suspension and then re-suspended in RPMI 1640 medium supplemented with

10% FBS at 4°C.

3. Cell sorting

Peripheral blood mononuclear cells (PBMCs) from the monkeys were stained
with anti-CD4 and anti-CD8 antibody. PBMCs were re-suspended in PBS
supplemented with 1% FBS. The sorting was performed with BD FACS Aria

instrument (BD Bioscience, San Diego, CA, USA).

4. Flow cytometric analysis

Fluorochrome- or biotin-labeled human monoclonal antibodies against the
following antigens: CD8o (SK1), CD4 (L200), CD3 (SP34-2), CD28
(CD28.2), CD95 (DX2), CD1b (SN13), CD8p (SIDISBEE), HLA-DR (G46-
6), CXCR5 (MU5UBEE), and PD-1 (EH12.2H7) were purchased from BD
Bioscience (San Jose, CA, USA), eBioscience (San Diego, CA, USA), and
BioLegend (San Diego, CA, USA). Single-cell suspensions were labeled with

antibodies for 30 minutes at 4C. For intracellular labeling, prepared cells

were re-suspended in a mixture of fixation and permeabilization buffers from
the Foxp3 staining buffer kit (eBioscience, San Diego, CA, USA). Labeling
was performed using Eomes (BD Bioscience, San Jose, CA, USA) and PLZF

(eBioscience, San Diego, CA, USA) antibody. Flow cytometry was performed
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on a FACS Calibur (Becton Bioscience, Mountain View, CA, USA) and LSR
Fortessa (Becton Bioscience, Mountain View, CA, USA). All data were

analyzed using the FlowJo software (TreeStar, Ashland, OR, USA).

5. Staining for cytokine analysis

For the intracellular cytokine assay, peripheral CD4, CD8, and DP T cells
from the monkeys’ whole blood were sorted and stimulated with 50 ng/mL
phorbol 12-myristate 13-acetate (PMA), 1.5 uM ionomycin (Sigma-Aldrich,
St Louis, MO, USA), and 6.7 ug/mL monensin (Sigma-Aldrich, St Louis, MO,

USA) for 6 hours at 37 C in a CO, incubator. After the cell culture, they were

washed with complete media (RPMI and 10% FBS) and re-suspended with
staining buffers (PBS, 0.5% BSA, and 0.5 mM EDTA). Then, these cells were
fixed, permeabilized, and labeled with anti-1L-4 (BioLegend, San Diego, CA,
USA), anti-IL-21 (BioLegend, San Diego, CA, USA), and anti-IFN-y

(BioLegend, San Diego, CA, USA).

6. Staining of granzyme B and perforin

Peripheral CD4, CD8, and DP T cells from the rhesus monkeys were sorted.
These cells are stimulated with PMA (50 ng/ml), ionomycin (1.5 uM), and
monensin (6.7 pg/ml) and cultured for 6 hours at 37°C in a CO, incubator.

After the cell culture, they were washed with complete media (RPMI and 10%

FBS) and re-suspended with staining buffers (PBS, 0.5% BSA, and 0.5 mM
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EDTA). These cells were fixed, permeabilized, and then stained with primary-
conjugated anti-granzyme B (BioLegend, San Diego, CA, USA) and anti-

perforin (Mabtech, Nacka Strand, Sweden).

7. DP T cells analysis in islet transplantation models

After type | diabetic induction by streptozotocin (STZ; Sigma -Aldrich, USA),
xenogenic (n = 5) and allogenic (n = 3) islets were transplanted intraportally
in 8 rhesus monkeys. The population of DP T cells in peripheral blood was
monitored before transplantation, and on days, 3, 7, 14, 28 post-
transplantation and monthly for the following 6 months, and then bimonthly

after islet transplantation.

8. Statistical analysis

All data were analyzed using the Prism program (GraphPad Software, Inc.,
LaJolla, CA, USA). The difference was determined via t-testing in all cell

analysis data. p value < 0.05 was considered significant.



RESULTS

DP T cells in peripheral blood are differ from thymic DP T cells

To determine that peripheral DP T cells are differ from the immature DP
thymocytes, cell surface markers were observed in CD4 SP, CD8 SP, and DP
T cells from the peripheral blood and the thymus of naive rhesus monkeys

using flow cytometry (Fig. 1).

First, since there is a possibility that thymic precursors might be
released from the thymus to peripheral blood without further differentiation,
the expression of CD8 receptor chains on DP T cells in the peripheral blood
and the thymus was identified. DP T cells in thymus expressed 85.0% of
CDB8B chain on their surface (Fig. 1A), whereas DP T cells in the peripheral
blood expressed only 4.01% of CD8p chain (Fig. 1B). That is, DP T cells in
thymus have heterodimer types expressing both CD8 a and B chains like CD8
T cells, while peripheral DP T cells have homodimer types with only CDS a

chain.

In addition, peripheral lymphocytes and thymocytes were stained with
CD1b antibody, which is known to express only on the surface of thymocytes
and dendritic cells (DC). 94.1% of DP thymocytes expressed CD1b molecule
on their cell surface (Fig. 1A), but it was not expressed on peripheral DP T
cells (Fig. 1B). These findings demonstrated that peripheral DP T cells are

fundamentally differ from thymic DP T cells.
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The peripheral DP T cells expressed Eomes and PLZF

Eomesodermin (Eomes) and promyelocytic leukaemia zinc finger protein
(PLZF) transcription factors were stained on CD4, CD8, and DP T cells,
respectively (Fig. 2). 16.83% of CD8 T cells expressed Eomes positive,
followed by DP T cells which expressed at 7.18%. CD4 T cells showed only
1.22% of Eomes positive cells (Fig. 2A). In PLZF expression levels, DP T
cells showed very high PLZF positive at 14.68%, whereas CD8 and CD4 T

cells showed 4.78% and 1.57%, respectively (Fig. 2B).
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The proportion of DP T cells in peripheral blood and tissues

The proportion of DP T cells in peripheral blood, spleen, MLN, and liver
tissue was analyzed in adult rhesus monkeys. In the peripheral blood, the
proportion of CD4, CD8, and DP T cells was 51.27%, 40.81%, and 3.84%,
respectively (Fig. 3A). These proportions were comparable to those of all
tissues as follows; 3.31% in spleen, 3.13% in MLN, and 3.76% in liver,

respectively (Fig. 3B).

For phenotyping of natve and memory cell in peripheral blood, cell
analysis was performed with CD28 and CD95 antibodies (Fig. 3C). The
percentage of natve cell (CD28'CD95) in DP T cells was lower than that of
CD4 and CD8 T cells. It was found that most of DP T cells have central
memory (CD28'CD95") and effector memory (CD28"CD95") phenotypes (Fig.
3D). In spleen, the phenotype of DP T cells was mostly central/effector
memory phenotype like liver tissue (Fig. 3D). However, DP T cells of MLN

showed mostly central memory phenotype about 57%.
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Figure 3. The proportion of DP T cells in peripheral blood and tissues. (A)
The proportion of CD4, CD8, and DP T cells in peripheral blood (n = 23; age,
48 - 72 months), and (B) that of DP T cells in spleen, MLN, and liver (n =5
age, 48 - 54 months) in rhesus monkeys were examined. The phenotypic
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analyzed with CD28 and CD95 antibodies (C). The bars indicate means + SD.
(MLN : Mesenteric lymph node, TN : Naive T cell, TCM : Central memory T

cell, TEM : Effector memory T cell)
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DP T cells have a helper function and cytotoxic activity in vitro

To determinate that DP T cells in peripheral blood have a helper function,
CD4, CD8 and DP T cells were stimulated with PMA/ionomycin and stained
with IFN-y, IL-4, and IL-21. IFN-y production of DP T cells was equivalent to
CD8 T cells, but it was significantly higher than CD4 T cells (p = 0.0234; Fig.
4A). IL-4 production of DP T cells was 2.3% and it was as much as CD4 T
cells (Fig. 4B). The level of IL-21 in DP T cells was similar to that of CD4 T
cells (Fig. 4C). Moreover, the expression of HLA-DR, T cell activation
marker [26], was twice as higher in DP T cells than that of CD4 and CD8 T
cells (Fig 4D). CXCR5 and PD-1 known as biomarkers of T follicular helper
cells were determined. The expression level of CXCR5'PD-1" cells of DP T

cells was higher than that of CD4 T cells (Fig. 4E).

Granzyme B and perforin that are known to be predominant in cytotoxic T
lymphocytes were observed in each T cell subset (Fig. 5). When they were
stimulated with PMA/ionomycin, a significant amount of granzyme B and
perforin were produced in DP T cells as much as in CD8 T cells (p = 0.0104

and p < 0.0001, respectively; Fig. 5A, B).
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Figure 4. DP T cells in peripheral blood have a helper function in vitro.
After sorting of T cells, CD4, CD8, and DP T cells were stimulated with
PMA/lonomycin and stained with cytokine antibodies including (A) IFN-y, (B)
IL-4, and (C) IL-21 (n = 5; age, 48 - 54 months). The percentage of T cells
positive for (D) HLA-DR and (E) CXCR5/PD-1 in T cell populations is
indicated (n = 3; age, 48 - 54 months). Representative data from one
independent experiment (left panel) and cumulative data (right panel) are

shown; bars indicate means + SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Peripheral DP T cells of the monkeys that failed to graft survival

markedly increased in islet transplantation models

The population of DP T cells in peripheral blood significantly increased in
a rejected group which showed an increase of blood glucose levels and lack of
C-peptide levels (Fig. 6B). On the contrary, the monkeys of long term graft
survival group showed no change or suppression in the population of DP T

cells during the period of survival (Fig. 6A).

The subpopulations of CD4, CD8, and DP T cells were analyzed before
and after the islet transplantation. When the graft was rejected, CD8 T cells as
well as DP T cells were significantly increased (p = 0.0001; Fig. 7). Especially,
the increased population was effector memory T cells both CD8 T cells and
DP T cells. However, effector memory CD8 T cells increased in long term
survival group, unlike DP T cells (Fig. 7). There were no distinctive changes

in CDA4 T cell subsets in both groups (Fig. 7).

To investigate which subpopulation increases at the rejection point, DP T
cells were divided into CD4"CD8" and CD4"°CD8" subpopulations (Fig. 8A).
As a result, only CD4"CD8" DP T cells were markedly increased at the
rejection point (Fig. 8B, D), but CD4°CD8" DP T cell populations were not

changed (Fig. 8C).
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Figure 6. Peripheral DP T cells increased in the monkeys that failed to
long term graft survival in islet transplantation models. (A) The
population of DP T cells in peripheral blood has no change or suppression in
long term survival group (n = 4; age, 54 - 72 months). (B) In graft rejection
group, the population of DP T cells in peripheral blood significantly increased

(n = 4; age, 54 - 72 months). (BGL: Blood glucose level)
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indicate means + SD. * p < 0.05, *** p < 0.001. (TN: Nawe T cell, TCM:

Central memory T cell, TEM: Effector memory T cell)

19



A Pre-transplantation B Rejection point
Y D4KiCD8H
1 214
10* 3 CcD4lvCcDghi

Comp-PE-Cy7-A :: CD4
Comp-PE-Cy7-A:: CD4

3 3 4 5
-0 0 10 10 10

Comp-APC-Cy7-A :: CD8 Comp-APC-Cy7-A:: CD8

C CD4'°CD8M DP T cells D cparicpseDP T cells

1.5 157

S S

2 10 = 101

3 S

g g /

£ 0.5 E 5

g g _—
0.0

G L) T
Pre Post

Pre Post

Figure 8. CD4"CD8" DP T cells are increased in graft rejection group.
The subpopulations of DP T cells at the rejection point (B) were compared to
the point of pre-transplantation (A). The subpopulations of DP T cells were

divided into (C) CD4"°CD8" DP T cells and (D) CD4"CD8" DP T cells.

20



DISCUSSION

Immature DP T cells originating in the thymus have been well known
and characterized. However, DP T cells’ functions and roles in peripheral
blood are not clearly known because of the contradicted view on their origin
and function [27, 28]. In this study, cellular functions of DP T cells were
determined via in vitro assay including cytokines, enzymes, and transcription
factors. In addition, it was investigated how these cells are associated with

graft rejection in islet transplantation model of nonhuman primate.

The CD1b molecules are similar to MHC class |, but rather than
presenting peptide antigens to T cell receptor (TCR), they present lipid and
glycolipid antigens which are derived from themselves as well as from
mycobacteria. Thymic DP T cells expressed 95.1% of the CD1b molecule,
which is normally expressed only on thymic cell-surface but not on
extrathymic cell surface, but the peripheral DP T cells did not express. These
results demonstrated that peripheral DP T cells did not express CD1b
molecules in the rhesus monkeys, and it also matches with the result reported

previously in cynomolgus monkeys [29].

In the expression of CD8 receptor chains on peripheral and thymic DP T
cells, peripheral DP T cells have CD8aa homodimer on their surfaces, while
thymic DP T cells have CD8af heterodimer. In terms of having different
phenotypic makers, it suggests that the peripheral DP T cells are

fundamentally differ from DP thymocytes.
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Some T cells have a memory like phenotype in the thymus and
immediately respond to antigen stimulation [30]. These T cells, called innate
CD8 SP T cells, include NKT cells, T-T CD4 (or T-CD4) T cells, H2-M3

specific T cells, mucosal-associated invariant T (MAIT) cells, CD8aa"

intraepithelial T cells, and innate CD8 T cells expressing Eomes [30]. Jacomet
et al. recently, reported that there is a strong evidence of the existence of
innate-like CD8 T cells in human, and they are Eomes positive cells [31].
Interestingly, around 7.18% of peripheral DP T cells in rhesus monkeys were
highly existed as Eomes positive cells, even though it was less than 16.83% of
the Eomes expressing CD8 T cells. PLZF" innate T cells are known to allow
both effector and regulatory T cells to be activated in the thymus prior to their
exit to the periphery [17-19]. In this study, a larger portion of PLZF" innate T
cells was found in peripheral DP T cells than CD4 or CD8 T cells. Based on
these results, it was confirmed that peripheral DP T cells in rhesus monkeys

have properties such as memory like innate T cells.

As previously described [1], a very high proportion of DP T cells in
peripheral blood is found in neonate rhesus macaques. In cell analysis of adult
monkey tissue, it was found that a good number of DP T cells present in the
secondary lymphoid organs such as spleen and MLN. Moreover, 3.76% of DP
T cells are in the liver tissue as well. Out of the 3.76% of DP T cells in the

liver tissue, 53.20% of DP T cells showed central memory phenotype.

In RA patients, peripheral DP T cells have helper functions and promote

the inflammatory process through their capacity to produce a variety of
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cytokines including IL-4, 1L-21, and IFN-y [10]. On the other hand, Nam et al.
reported that the cytotoxic activity of DP T cells was similar to that of CD8 T
cells, although the helper activity was lower than that of CD4 T cells [32].
Therefore, in this study, it was found that DP T cells in peripheral blood have
a producing capacity of various cytokines in response to mitogen stimulation.
DP T cells in peripheral blood produced IFN-y (16.07%) much more than
CD8 T cells (9.91%) and CD4 T cells (1.30%) did. They also produce IL-4
(3.32%) and IL-21 (7.67%) as much as CD4 T cells (2.73% and 3.85%,
respectively) did. There is one more important thing that it seems peripheral
DP T cells have helper functions. CXCR5 and PD-1 are known to help
antibody producing of B cells [10, 33-35]. On chemokine and receptor
analysis, it was found that peripheral DP T cells substantially expressed 3.52%
of CXCR and PD-1 positive cells. In addition, they also expressed a high
amount of granzyme B (29.05%) and perforin (19.38%) enzyme as much as
CD8 T cells (32.90% and 19.27%, respectively) in response to mitogen
stimulation. Consequently, it suggests that peripheral DP T cells have both
functions in vitro; helper/inducer functions like CD4 T cells and
cytotoxic/cytolysis activity like CD8 T cells. Based on these properties of
cytokine and transcription factors, it is found that peripheral DP T cells are
associated with helper and cytotoxic immune response, and also have a role of

innate immunity.

In various diseases including LCMV, HIV, and cancer, it was reported that
because peripheral DP T cells express a high level of FasL and secret of IFN-y,

they have cytotoxic potential [2, 25]. On the other hand, it was reported that
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DP T cells have helper functions through the high secretion of IL-4 in some

diseases such as systemic sclerosis and rheumatoid arthritis [10, 23].

In islet transplantation model of rhesus monkeys, significant differences
between long-term graft survival group and rejected group were observed in
peripheral DP T cell population. That is, DP T cells in peripheral blood were
markedly increased in the graft rejected group, but not in the long-term
survival group. TEM subpopulation of CD8 T cells that contributed
prominently in organ graft rejection, was significantly increased during the
rejection period. In parallel, TEM subpopulation of DP T cells was highly
increased at the same period as well. However, interestingly, TEM population
of DP T cells was increased only in graft rejected monkeys, unlike CD8 TEM
showed an increase in both long-term survival and rejected group. Therefore,
DP T cells are very important biomarker in islet transplantation model with

CD8 T cell subpopulations.

Several authors have proposed that DP T cells might be originated
extrathymically from CD4 SP T cells and acquired the ability to express CD8
receptor [36-39]. On the contrary, DP T cells have also been proposed to arise
from the activated CD8 SP T cells that have up-regulated the surface
expression of CD4 receptor [7, 40, 41]. In this study, CD4"CD8" and
CD4"CD8" sub-population of DP T cells were examined to identify the major
role population in islet transplantation. It showed that CD4"CD8" DP T cells
were increased in graft rejection group, but CD4°CD8"™ DP T cells were not

changed. This data indicates that CD4"CD8" DP T cells are the major sub-
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population in islet graft rejection. But it needs further study for the rejection

mechanism related with these cell sub-population.

In conclusion, peripheral DP T cells in rhesus monkeys have dual
functions such as helper and cytotoxic activity in vitro analysis. In addition, it
is confirmed that these cells play a crucial role in graft rejection in islet

transplantation model.
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