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Abstract  

 

Bioinformatic analysis on 

pathological association of human 

aminoacyl - tRNA synthetases and 

their protein network with 

neurological diseases  
 

Dong- Jin Han  

Department of Molecular Medicine and Biopharmaceutical Science,  

The Graduate School  of Convergence Science and Technology,  

Seoul National University  

 

Aminoacyl - tRNA synthetase s (ARS s) are essential enzymes 

ligating  specific a mino acid s to their  cognate tRNA  for protein 

biosynthesis . It  is reported that they  are also involved in many 

signaling pathways as crucial mediators . In  these multiple activities, 

they are associated with various human diseases. Many mutations 

of ARS s have been found to be associated with  various neurological 

diseases. Here , we systematically investigated the statistical  

association of ARSs and their associated factors such as ARS -

interacting multi - functional proteins (AIMPs) with various 

neurological diseases. A total  netwo rk of ARSs/AIMPs  and their 
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interacting factors was constructed using three protein p˾rotein 

interaction (PPI) databases. In this network, 586 factors were  

identified as first - neighb ors  that are suggested to be directly linked 

to ARSs/AIMPs and 13,539 factor s were identified as second -

neighbors  that are  indirectly linked to ARSs/AIMPs via the first -

neighbors . Among the first -  and second - neighbors, we selected 

1,772 genes associated with 27 neurological diseases 

( neurological - disease - associated genes; NAGs) from public 

databases and the literature  and identified 86 and 687 factors as the 

first -  and second - neighbor NAGs , respectively.   

We retrieved  67 gene expression datasets of 24 

neurological diseases from Gene Expression Omnibus (GEO) and 

ArrayExpress. The gene expression profiles of ARSs/AIMPs  and 

their neighbor ing  NAGs were compared with negative control s 

( non- NAGs ) . We obtained  P values for each dataset and combined 

them for each  disease. Then , the  P values for each disease were 

combined into  a value  repr esenting the whole set  of 24 neurological 

diseases. Additionally, we created a subnetwork representing 

biological processes  and P values  using the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID).  

 Quite a few ARSs/AIMPs and  first -  and second - neighbor 

NAGs were differentially expressed genes (DEGs) in 

neurodegenerative diseases such as Alzheimer s̃ disease and 

Parkinson s̃ disease. In summary, 20 human cytosolic  ARSs  and 3 

AIMPs  are strongly  connected to  diverse NAGs and are 
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different ially expressed in neurological diseases, indicating their 

implication in these diseases.  

 

Keywords: ARS , Neurological disease, mRNA expression profile , 

DEG, PPI , Network, Gene o ntology biological process, NAG  
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Introduction  

 

Aminoacyl - tRNA synthetases (ARSs) are enzyme s necessary  for 

aminoacylation of tRNA  and their catalytic activities are 

indispensable for protein biosynthesis . In particular, mammalian 

ARSs form the multi - tRNA synthetase complex (MSC) with three 

ARS- interact ing multifunctional proteins (AIMPs) 1,2 ; this complex  

serves as a molecular repository for the control of diverse signaling 

pathways .3,4  

Many diseases including neurological and  immune - system -

related diseases  and cancers  are associated with ARSs/AIMPs .3 We 

have previously suggested the association of ARSs/AIMPs with 

various  type s of cancer  through the systematic analysis of their 

expression, copy number variation s, and mutation s in conjunction 

with their interacting factors .5,6  Nonetheless , systematic 

investigati on of the potential implication  of ARSs/AIMPs in 

neurological diseases and gene expression profiling studies on both 

ARSs  and AIMPs ha ve not yet been conducted. Furthermore , many 

cytosolic ARS  and AIMP mutations have been found in various 

neurological diseases (Table 1).  Although  some of the mutations 

are associated with reduced catalytic activity of ARSs, other 

mutations are not related to  catalytic activity. 7 Therefore, non -

canonical functions (not related to  protein biosynthesis) of ARSs 

can be implicated in neurological diseases. Here, we tested  whether 



 

 

 

ARSs/AIMPs are implicated in neurological diseases via aberrant 

expression or  interactions with neurological - disease - associated 

factors.  

Several experiment al results have shown these possibilities . 

For instance, AIMP2  overexpress ing transgenic mice  show  a loss of  

dopaminergic neuron s: the  major cause of Parkinson s̃ disease .8 

Moreover , mutant forms of soluble superoxide dismutase 1 ( SOD1) , 

found in amyotrophic la teral sclerosis (ALS)  patients ,9 interact with 

lysyl - tRNA synthetase ( KARS ) , implying its potential association 

with ALS .3 In a study  on metabolites collected from  the  plasma  of 

patients with Alzheimer s̃ disease (AD) , metabolomic profil es that  

were  associated with the aminoacyl - tRNA biosynthesis pathway 

were significantly different between the disease group and the 

cognitively healthy  group .10  Moreover, impairment of the canonical 

function of ARSs by  oxidative stress can contribute to 

mistranslation. 11,12  If APP or tau protein is mistranslated, these 

proteins can be misfolded due to  a change of amino acid sequence . 

In the end, misfolded A  or tau proteins  can be propagated by a 

mechanism similar to that of prions in Creutzfeldt J˾akob disease .13  

In this study, we examined mRNA expr ession profiles of 20 

cytoplasmic ARSs and 3 AIMPs, and their neighboring factors 

known to be associated with 24 neurological diseases,  including 

both peripheral nerv ous sy stem diseases and central nerv ous 

system diseases. Additionally, we create d a hypothetical network of  

differentially expressed genes (DEGs) and gene ontology biological 



 

 

 

processes (GOBPs).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Methods  

 

The s ource of NAGs and non - NAGs  

Because  we needed genes both linked to ARSs/AIMPs and 

associated with a neurological disease, we collected neurological 

disease - associated genes (NAGs) and protein - protein interaction 

(PPI) data. Before selectin g the  NAGs, we needed to consider 

which neurological diseases are most related to  ARSs/AIMPs . We 

selected 27 neurolog ical diseases based on the prevalence of 

diseases and review articles .3,14  We then  used four  databases , 

PharmDB 15 , DisGeNET 16 , ClinVar 17 , and NECTAR 18 , to select the 

genes that are likely to be involved in these  neurological diseases. 

Additionally,  the  genes that were not included in these four 

databases were retrieved  from the literature .9,19 - 68  The genes 

involved in at least one of the 27 diseases were labeled  as NAGs. 

BioGRID 69 , intAct 70 , and PharmDB PPI data were used to classify 

NAGs into the first - neighbor  NAGs (direct interactors of 

ARSs/AIMPs) and second - neighbor  NAGs (direct interactors of the 

first neighbors) . Among  the  total of 1,772 NAGs, 86 and 687 were 

identified as the first -  and second - neighbor NAGs, respectively . 

Non- NAGs were  selected from PharmDB genes that are not 

associated with any diseases or drug actions . From the remaining 

set , all genes in DisGeNET and all NAGs we re excluded , and thus 



 

 

 

the final number of non- NAGs was  881 . 

 

Normalization of gene expression datasets and 

calculation of a combined P value  

A total  of  67 mRNA expression datasets were retrieved  from Gene 

Expression Omnibus (GEO) 71  and ArrayExpress 72 . We normalized 

59 Affymetrix microarray gene expression datasets using the GC -

RMA normalization method 73  and PLIER algorithm 74 . The other four  

Agilent  platforms , three  Illumina  platforms , and one custom 

microarray platform were normalized using the quantile 

normalization method 75 . Each dataset was normalized as previously 

described .6 In brief, all the genes were subdivided into two  groups , 

expressed group and non - expressed group , based on a specific 

threshold intensity value. Student s̃ t- test, the Wilcoxon  rank - sum 

test, and the log 2- median - ratio test were applied to  genes included 

in the expressed group. In the log 2- median - ratio test, random 

permutations of samples were needed to create empirical 

distributions of the hypothesis. Then, the empirical distrib ution s 

were used to  calculat e the  P value for each gene. Finally,  the  P 

values from the three tests were combined by Stouffer s̃ method 76 . 

Again, we combine d the  P values calculated from different datasets 

using Stouffer s̃ method. Therefore, the  P values for each gene of 

the 67 datasets for the 24 neurological diseases were  combined into 

a single P value.  



 

 

 

Orthologous gene mapping  

The o rganisms of the gene expression datasets used for this study 

were  humans, mice, rat s, and gray mouse lemur s. Nevertheless , a 

human microarray chip was used for the gray mouse lemur dataset. 

Therefore, we needed to change the mouse or rat Entrez gene ID s 

to their corresponding human Entrez gene ID s using the Mouse 

Genome Database (MGD) 77 . 

 

Gene ontology  analysis by means of the  DAVID 

functional annotation tool  

A hypothetical subnetwork  of AD  was created  by means of  the 

DAVID  functional annotation tool. All  the input genes were DEGs of 

at least one AD  dataset of the five, and all of them were first -  or 

second - neighbor NAGs. After running DAVID, we selected an 

appropriate gene ontology biological process ( GOBP)  term whose  

false discovery rate (FDR)  was  less than 0.05 . I f a gene ha d two or 

more GOBP term s, we selected the most appropriate term  for  the 

gene. Finally, 108  genes were selected, each of which  had a single 

GOBP term.  

 

Network and heat map visualization  and calculation of 

average shortest path s 

Cytoscape 3.3.0 78  was used for constructing the whole network 



 

 

 

including ARSs/AIMPs with the first -  and second - neighbors 

(Figure 6) and a hypothetical ARSs/AIMPs subnetwork of  AD  

(Figure 9B ). In addition, MATLAB R2008b was employed  for heat 

map visualization. We generated  Figure 8A using  the  imagesc  

function. The heat map of ARSs/AIMP s mRNA expression (Figure 

8B) was generated  using the clustergram  function and the complete 

linkage cluster algorithm. The heat map of ARSs/AIMP s biolog ical 

process es (Figure 9C ) was created  by the pcolor  function.  

 To calculate  an average shortest path , we set up  a 

symmetric n  Ø n sparse matrix  s. If nodes i and j  are connected 

directly,  s ij  equals one. If not, s ij  equals zero.  We filled out the 

sparse matrix and calculate d the shortest path of every node to the 

other nodes using MATLAB . Because  we calculated the shortest 

path between each node involved in 13 biological processes and 

each ARS, we could calculate mean s of the shortest path between 

nodes involved in the same biological process and each ARS  (Figure 

9C) . 

 

 

 

 

 

 

 



 

 

 

Results  

 

ARSs are related to neurological diseases  

Because  there were  too many neurological diseases , we selected 

the  diseases that are known for their relation to ARSs/AIMPs .3,14  

Besides, we included AD , bipolar disease, and schizophrenia  for the 

disease list a lthough there is no clear  evidence for the involvement 

of  ARSs/AIMPs  in these diseases . It is important to note  that the 

disease list used for the selection of NAGs  differ s from the disease 

list us ed for the gene expres sion dataset collection (Table 2) 

because there are many disease s not present  in GEO or 

ArrayExpress.  Instead, the disease list used for the gene 

expression dataset was compiled  based on five papers 79 - 83  on 

central nerv ous system diseases.  

 In the present  study, we show  that ARSs/AIMPs  are 

associated with ne urological diseases when view ed from four 

perspectives (Figure 1). Gene expression datasets were used for 

calculating P values, and DEGs were selected using these P values. 

Not only ARSs but also their neighbor genes can play a role in the 

pathophysiology or pathogenesis of neurological disease s. 

Therefore, we created  an ARS/AIMP  network using public PPI data. 

In addition, we collected NAGs to see the expression pattern s of 

genes known for their association  with neurological diseases. Lastly, 



 

 

 

gene ontology (G O) analysis was performed using  DAVID, because  

we need ed to know which  genes are involved in a specific biological 

process. All these results support the notion that ARSs/AIMPs  and 

their neighbor genes a re differentially expressed in neurological 

diseases, specifically neurodegenerative diseases (Figure s 8 and 9).  

 

The c ombined P value of each gene in 24 neurological 

diseases  

After selectin g the  neurological diseases for the gene expression 

dataset collec tion, we retrieved  the gene expression data from GEO 

and ArrayExpress. Although we compiled  a limited disease list, 

there were still too many datasets in these two databases. 

Therefore, we needed to narrow the datasets  down by the following  

criteria: (i ) samples in the dataset should be subdivided into healthy 

controls and disease group s; (ii) only Homo sapiens , Mus musculus , 

and Rattus norvegicus  can be included in the datasets (Figure 2). 

As an e xception, GSE21779, which used the gray mouse lemur as 

an experiment al organism, was  included in our datasets. Each 

dataset was normalized as specified in Table 3. To identify which 

gene was  differentially expressed, we calculated the P value of each 

probe. Student s̃ t- test, the Wilcoxon rank - sum test, and the log2-

median - ratio test were performed to obtain a combined P value of 

these three tests (Figure 3). Because  multiple probes correspond ed 

to a single gene in some cases, we chose the  probe with  the 



 

 

 

smallest P value. Each dataset ha d different number s of samples 

and probes. In addition, some P values were  not available , because  

some datasets did  not have the probe for a specific gene. Therefore, 

we used  only  P values available in at least 10 datasets.  We want ed 

to know the general expression profiles o f each of the 24 

neurological diseases  and the combined profile for all . Therefore, 

we combined the P values of the same disease for each gene . Then , 

the P values of each disease were combined into a single P value 

that represent ed the  significance of a ge ne in  all  24 neurological 

diseases (Figure 4).  

 

Construction of a network of ARSs/AIMPs  and their 

neighbor NAGs  

Because  ARSs/AIMPs may  be involved in neurological diseases  

directly or  indirectly (via their neighboring factors) , we retrieved  

PPI data from BioGRID, intAct, and PharmDB. These PPI data were 

merged  into a total of  229,765 PPIs  (Figure 5). Using these PPI 

data, we constructed the network of 23 ARSs/AIMPs with 586 first 

neighbors, and 13,539 second neighbors (Figure 6, red, yellow and 

black circl es, respectively).  We selected a limited number of genes 

associated with neurological diseases according to  public databases 

and the  literature (Figure 7A). The numbers of genes involved in 

each d isease are summarized in Table 4 . The non - NAGs were 

obtained  by removing the genes associated with drugs or diseases 



 

 

 

from the total set of PharmDB genes (Figure 7B).  

 

Differentially expressed ARSs and their neighbor 

NAGs were the most  numerous  in Alzheimer s̃ disease  

We surveyed the proportion s of DEGs of four groups ( ARSs/AIMPs , 

first -  and second - neighbor NAGs, and non - NAGs) in 24 

neurological diseases (Figure 8A). As expected, the DEG 

proportions of ARSs/AIMPs and  first -  and second - neighbor NAGs 

were  higher than th ose of non - NAGs in the 24 neu rological 

diseases. The DEG proportions of the three groups were 

particularly high in neurodegenerative diseases such as AD  and 

Parkinson s̃ disea se. The P values of each gene included in the 

ARS/AIMP  group are  presented as a he at map (Figure 8B). It is 

not eworthy  that all  the ARSs/AIMPs  were differentially expressed 

( P value < 0.05) in AD  excep t for glutaminyl -  ( QARS), threonyl -  

( TARS ), and cysteinyl - tRNA synthetase ( CARS). Moreover, 

AIMP2 , which has a pathological connection with Parkinson s̃ 

disease, 3 was differentially expressed in Parkinson s̃ disease . 

 

A hypothetical subnetwork shows proximity betw een 

ARSs/AIMPs and AD- related genes  

Because the  DEG proportion  of the ARS/AIMP  group was  the 

highest in AD  among the  24 neurological diseases, we wanted to 



 

 

 

find out  which  biological processes are involved both in 

ARSs/AIMPs  neighbor genes  and in AD . Therefore, we used the 

DAVID functional annotation tool with 3 79  input genes composed of 

first -  and second - neighbor NAGs. In addition , these 3 79  input 

genes are DEGs  in at least one AD  dataset  among the five datasets  

(Figure 9A) . Given that  protein interaction s can be depicted as a 

network, 84  the result of the DAVID analysis can be  presented  as a 

hy pothetical subnetwork (Figure 9B ). We calculated  a P value for 

each of  the  24 ne urological diseases ; thus,  we used node size to 

represent  the AD  P value . Colors of each node mean  the  number of 

datasets. For example, glutamyl - prolyl - tRNA synthetase ( EPRS) 

is  downregulated in GSE1297 and  at the same time  upregulated in 

GSE5281. As a result, EPRS has a zero - fold change because one 

minus one equals zero . 

Many features  of a network can be quantified , and one of 

them is  the  shortest path between two nodes. 84  We prioritize d these 

13 biological processes on  the basis of an  average shortest path 

between ARSs/AIMPs and genes involved in each biological process.  

Among  the  13 biological processes, the M̆APK cascade  ̇ and 

R̆esponse to oxidative stress  ̇ were  the nearest  to ARSs/AIMPs 

except for t̆RNA aminoacylation  ̇according to the  average shortes t 

path (Figure 9C ) . Consequently, we need ed to verify whether  

ARSs/AIMPs are related to  these two biological processes  and 

whether  the  relation  is associated with AD . 



 

 

 

 



 

 

 

Figure 1. Four perspectives  on the relation  between ARSs/AIMPs  

and neurological diseases. This figure shows how we analyze d the  

relation between ARSs/AIMPs  and neurological diseases. DEGs 

were selected based on the combined P values from multiple 

datasets. PPI data were used for constructi ng an ARS/AIMP  

network consist ing  of first -  and second - neighbors. The l imited  

number of  genes known for their relation s with neurological 

diseases were collected from public databases and the literature. 

Finally, we conducted  a DAVID GO analysis to identify  biological 

processes  related to  these genes.  



 

 

 

Figure 2. Selection criteria for  gene expression datasets.  First , 24 

neurological diseases associated with gene expression datasets 

were found  in GEO and ArrayExpress. Then, we chose datasets 

with both healthy controls and disease groups. In addition, all the  

mRNA expression datasets used for this study included only t hree 

organisms (except for one dataset): H. sapiens , M. musculus , and R. 

norvegicus . Finally, 67 datasets were selected.  



 

 

 

Figure 3. The d ata preprocessing method.  We normalized 59 

Affymetrix platform microarray data using the GC- RMA or PLIER 

algorithm. The other eight gene expression datasets were 

normalized by  the quantile normalization method. Student s̃ t- test, 

the Wilcoxon rank - sum test, and the log 2- median - ratio test were 

carried out . After that, P values from these three t ests were 

combined by Stouffer s̃ method. Therefore, a single dataset ha d a 

single P value for each gene.  

 

 

 

 

 

 

 



 

 

 

 

Figure 4. Combining P values by Stouffer s̃ method.  P values of 

dataset for the same disease (purple color) were combined by 

Stouffer s̃ method. For example, five P values of Gene_1 were 

combined in AD  (red color). Thus, a gene ha d a single P value in a 

disease. Once again, we combine d all the P values of the 24 

neurological diseases by Stouffer s̃ method (orange color).  

 

 

 

 

 



 

 

 

Figure 5. Collection of  the  protein p˾rotein interaction  (PPI)  data. All 

the  PPI data were retrieved  from three PPI databases: intAct, 

BioGRID, and PharmDB. PharmDB PPI data came from DIP, Entrez 

Gene Interactions, MINT, and PharmGKB PPI data. The total  PPI 

data were  composed of 17,126 nodes and 229,765 PPIs.  

 

 

 

 

 

 

 



 

 

 

 

Figure 6. The w hole network of ARSs/AIMPs  and their neighbors.  

This network shows ARSs/AIMPs and  first -  and second - neighbor 

genes linked to ARSs/AIMPs  either directly or indirectly. The 

innermost, middle, and outermost nodes represent 23 ARSs/AIMPs , 

586 first - neighbor genes , and 13,539 second - neighbor genes , 

respectively.  

 

 

 


