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Abstract

Bioinformatic analysis on
pathological association of human
aminoacyl - tRNA synthetases and

their protein network with
neurological diseases

Dong- Jin Han

Department of Molecular Medicine and Biopharmaceutical Science,
The Graduate School of Convergence Science and Technology,

Seoul National University

Aminoacyl - tRNA synthetase s (ARSs) are essential enzymes
ligating specific a mino acid s to their cognate tRNA for protein
biosynthesis . It is reported that they are also involved in many
signaling pathways as crucial mediators . In these multiple activities,
they are associated with various human diseases. Many mutations
of ARS s have been found to be associated with various neurological
diseases. Here , we systematically investigated the statistical
association of ARSs and their associated factors such as ARS -
interacting multi - functional proteins (AIMPs) with various

neurological diseases. A total netwo rk of ARSs/AIMPs and their



interacting factors was constructed using three protein _protein
interaction (PPI) databases. In this network, 586 factors were
identified as first - neighb ors that are suggested to be directly linked

to ARSs/AIMPs and 13,539 factor s were identified as second -

neighbors that are indirectly linked to ARSs/AIMPs via the first

neighbors . Among the first - and second - neighbors, we selected
1,772 genes associated with 27 neurological diseases
(neurological - disease - associated genes; NAGs) from public
databases and the literature and identified 86 and 687 factors as the
first - and second - neighbor NAGs , respectively.

We retrieved 67 gene expression datasets of 24
neurological diseases from Gene Expression Omnibus (GEO) and
ArrayExpress. The  gene expression profiles of ARSs/AIMPs  and
their neighbor ing NAGs were compared with negative control S
(non- NAGs). We obtained P values for each dataset and combined
them for each disease. Then, the P values for each disease were
combined into a value repr esenting the whole set of 24 neurological
diseases. Additionally, we created a subnetwork representing
biological processes and P values using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID).

Quite a few ARSs/AIMPs and first - and second - neighbor
NAGs were differentially expressed genes (DEGs) in
neurodegenerative diseases such as Alzheimer "s disease and
Parkinson s disease. In summary, 20 human cytosolic ARSs and 3

AIMPs are strongly connected to diverse NAGs and are
Il



different ially expressed in neurological diseases, indicating

implication in these diseases.

Keywords: ARS , Neurological disease, mRNA expression profile
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Introduction

Aminoacyl - tRNA synthetases (ARSs) are enzyme S necessary for
aminoacylation of tRNA and their catalytic activities are
indispensable for protein biosynthesis . In particular, mammalian
ARSs form the multi - tRNA synthetase complex (MSC) with three
ARS- interact ing multifunctional proteins (AIMPSs) 2. this complex
serves as a molecular repository for the control of diverse signaling
pathways .>*

Many diseases including neurological and  immune - system -
related diseases and cancers are associated with ARSS/AIMPs .2 We
have previously suggested the association of ARSs/AIMPs with
various type s of cancer through the systematic analysis of their
expression, copy number variation s, and mutation s in conjunction

with  their interacting factors  .>°

Nonetheless ,  systematic
investigati on of the potential implication of ARSs/AIMPs in
neurological diseases and gene expression profiling studies on both
ARSs and AIMPs ha ve not yet been conducted. Furthermore , many
cytosolic ARS and AIMP mutations have been found in various
neurological diseases (Table 1). Although some of the mutations
are associated with reduced catalytic activity of ARSs, other
mutations are not related  to catalytic activity. ' Therefore, non -

canonical functions (not related to protein biosynthesis) of ARSs

can be implicated in neurological diseases. Here, we tested whether



ARSs/AIMPs are implicated in neurological diseases via aberrant
expression or interactions with neurological - disease - associated
factors.

Several experiment al results have shown these possibilities
For instance, A/MPZ2 overexpress ing transgenic mice show a loss of
dopaminergic neuron s: the major cause of Parkinson s disease .
Moreover , mutant forms of soluble superoxide dismutase 1 ( SOD1),
found in amyotrophic la teral sclerosis (ALS) patients ,° interact with
lysyl - tRNA synthetase ( KARS), implying its potential association
with ALS .2 In a study on metabolites collected from  the plasma of
patients with Alzheimer “s disease (AD) , metabolomic profil es that
were associated with the aminoacyl - tRNA biosynthesis pathway
were significantly different between the disease group and the
cognitively healthy group .*® Moreover, impairment of  the canonical
function of ARSs by oxidative stress can contribute to

mistranslation. 2

If APP or tau protein is mistranslated, these
proteins can be misfolded due to a change of amino acid sequence
In the end, misfolded A or tau proteins can be propagated by a
mechanism similar to that of prions in Creutzfeldt _Jakob disease .**
In this study, we examined mRNA expr ession profiles of 20
cytoplasmic ARSs and 3 AIMPs, and their neighboring factors
known to be associated with 24 neurological diseases, including
both peripheral nerv ous system diseases and central nerv  ous

system diseases. Additionally, we create d a hypothetical network  of

differentially expressed genes (DEGs) and gene ontology biological



processes (GOBPs).



Methods

The s ource of NAGs and non - NAGs

Because we needed genes both linked to ARSs/AIMPs and
associated with a neurological disease, we collected neurological
disease - associated genes (NAGs) and protein - protein interaction
(PPI) data. Before selectin g the NAGs, we needed to consider
which neurological diseases are most related to ARSs/AIMPs . We
selected 27 neurolog ical diseases based on the prevalence of

diseases and review articles >

We then used four databases,
PharmDB *°, DisGeNET !¢, Clinvar ', and NECTAR 8, to select the
genes that are likely to be involved in these neurological diseases.
Additionally, the genes that were not included in these four

databases were retrieved from the literature .%°

The genes
involved in at least one of the 27 diseases were labeled as NAGs.
BioGRID ®, intAct °, and PharmDB PPI data were used to classify
NAGs into the first - neighbor NAGs (direct interactors of
ARSs/AIMPs) and second - neighbor NAGs (direct interactors of the
first neighbors) . Among the total of 1,772 NAGs, 86 and 687 were
identified as the first - and second - neighbor NAGs, respectively
Non- NAGs were selected from PharmDB genes that are not

associated with any diseases  or drug actions . From the remaining

set, all genes in DisGeNET and all NAGs we re excluded , and thus



the final number of non- NAGs was 881.

Normalization of gene expression datasets and

calculation of a combined P value

A total of 67 mRNA expression datasets were retrieved from Gene

71 7

Expression Omnibus (GEO) and ArrayExpress 2. We normalized
59 Affymetrix microarray gene expression datasets using the GC -
RMA normalization method " and PLIER algorithm . The other four
Agilent platforms , three lllumina platforms , and one custom
microarray platform were normalized using the quantile
normalization method "°. Each dataset was normalized as previously
described .° In brief, all the genes were  subdivided into two groups,
expressed group and non- expressed group , based on a specific
threshold intensity value. Student s # test, the Wilcoxon rank- sum
test, and the log,- median- ratio test were applied to genes included
in the expressed group. In  the log,- median- ratio test, random
permutations of samples were needed to create empirical
distributions of the hypothesis. Then, the empirical distrib ution s
were used to calculat e the P value for each gene. Finally, the P
values from the three tests were combined by Stouffer “s method °.
Again, we combine d the P values calculated from different datasets
using Stouffer s method. Therefore, the P values for each gene of

the 67 datasets for the 24 neurological diseases were combined into

a single P value.



Orthologous gene mapping

The o rganisms of the gene expression datasets used for this study
were humans, mice, rat s, and gray mouse lemur s. Nevertheless , a
human microarray chip was used for the gray mouse lemur dataset.
Therefore, we needed to change the mouse or rat Entrez gene ID s
to their corresponding human Entrez gene ID s using the Mouse

Genome Database (MGD) .

Gene ontology analysis by means of the DAVID

functional annotation tool

A hypothetical subnetwork of AD was created by means of the
DAVID functional annotation tool.  All the input genes were DEGs of

at least one AD dataset of the five, and all of them were first - or
second - neighbor NAGs. After running DAVID, we selected an
appropriate gene ontology biological process ( GOBP) term whose
false discovery rate (FDR) was less than 0.05 . If a gene ha d two or
more GOBP term s, we selected the most appropriate term for the
gene. Finally, 108 genes were selected, each of which had a single

GOBP term.

Network and heat map visualization and calculation of

average shortest path s

Cytoscape 3.3.0 ® was used for constructing the whole network



including ARSs/AIMPs with the first - and second - neighbors
(Figure 6) and a hypothetical ARSs/AIMPs subnetwork of AD
(Figure 9B ). In addition, MATLAB R2008b was employed for heat
map Vvisualization. We  generated Figure 8A using the /magesc
function. The heat map of ARSs/AIMP s mRNA expression (Figure
8B) was generated using the clustergram function and the complete
linkage cluster algorithm. The heat map of ARSSs/AIMP s biological
process es (Figure 9C ) was created by the pcolor function.

To calculate an average shortest path , we set up a
symmetric n @ n sparse matrix s. If nodes / and j are connected
directly, s; equals one. If not, s j equals zero. We filled out the
sparse matrix and calculate d the shortest path of every node to the
other nodes using MATLAB . Because we calculated the shortest
path between each node involved in 13 biological processes and
each ARS, we could calculate mean s of the shortest path between
nodes involved in the same biological process and each ARS (Figure

9C).



Results

ARSs are related to neurological diseases

Because there were too many neurological diseases , we selected
the diseases that are known for their relation to ARSs/AIMPs .3
Besides, we included AD, bipolar disease, and schizophrenia  for the
disease list a Ithough there is no clear evidence for the involvement
of ARSs/AIMPs in these diseases . It is important to note that the
disease list used for  the selection of NAGs differ s from the disease
list us ed for the gene expres sion dataset collection (Table 2)
because there are many disease s not present in GEO or
ArrayExpress. Instead, the disease list used for the gene
expression dataset was compiled based on five papers ° ® on
central nerv ous system diseases.

In the present study, we show that ARSs/AIMPs are
associated with ne urological diseases when view ed from four
perspectives (Figure 1). Gene expression datasets were used for
calculating P values, and DEGs were selected using these P values.
Not only ARSs but also their neighbor genes can play a role in  the
pathophysiology or pathogenesis of neurological disease s.
Therefore, we created an ARS/AIMP network using public  PPI data.

In addition, we collected NAGs to see the expression pattern s of

genes known for their association with neurological diseases. Lastly,



gene ontology (G 0O) analysis was performed using DAVID, because
we need ed to know which genes are involved in a specific biological
process. All these results support the notion that ARSs/AIMPs and
their neighbor genes a re differentially expressed in neurological

diseases, specifically neurodegenerative diseases (Figure s 8 and 9).

The c ombined P value of each gene in 24 neurological

diseases

After selectin g the neurological diseases for the gene expression
dataset collec tion, we retrieved the gene expression data from GEO
and ArrayExpress. Although we compiled a limited disease list,
there were still too many datasets in these two databases.
Therefore, we needed to narrow the datasets down by the following
criteria: (i ) samples in the dataset should be subdivided into healthy
controls and disease group s; (i) only Homo sapiens , Mus musculus
and Rattus norvegicus can be included in the datasets (Figure 2).

As an e xception, GSE21779, which used the gray mouse lemur as
an experiment al organism, was included in our datasets. Each
dataset was normalized as specified in Table 3. To identify which
gene was differentially expressed, we calculated the Pvalue of each
probe. Student “s #- test, the Wilcoxon rank - sum test, and the log,-
median - ratio test were performed to obtain a combined P value of
these three tests (Figure 3). Because multiple probes correspond ed

to a single gene in some cases, we chose the probe with the



smallest P value. Each dataset ha d different number s of samples
and probes. In addition, some P values were not available , because
some datasets did not have the probe for a specific gene. Therefore,

we used only P values available in at least 10 datasets. We want ed
to know the general expression profiles o f each of the 24
neurological diseases and the combined profile for all . Therefore,

we combined the P values of the same disease for each gene . Then,
the P values of each disease were combined into a single P value
that represent ed the significance of a ge ne in all 24 neurological

diseases (Figure 4).

Construction of a network of ARSs/AIMPs and their

neighbor NAGs

Because ARSs/AIMPs may be involved in neurological diseases
directly or indirectly (via their neighboring factors) , we retrieved
PPI data from BioGRID, intAct, and PharmDB. These PPI data were
merged into a total of 229,765 PPIs (Figure 5). Using these PPI
data, we constructed the network of 23 ARSs/AIMPs with 586 first
neighbors, and 13,539 second neighbors (Figure 6, red, yellow and
black circl es, respectively). We selected a limited number of genes
associated with neurological diseases according to public databases
and the literature (Figure 7A). The numbers of genes involved in

each disease are summarized in Table 4 . The non - NAGs were

obtained by removing the genes associated with drugs or diseases



from the total set of PharmDB genes (Figure 7B).

Differentially expressed ARSs and their neighbor

NAGs were the most numerous in Alzheimer “s disease

We surveyed the proportion s of DEGs of four groups (  ARSs/AIMPs ,
first - and second- neighbor NAGs, and non - NAGs) in 24
neurological diseases (Figure 8A). As expected, the DEG
proportions of ARSs/AIMPs and first - and second - neighbor NAGs
were higher than th ose of non- NAGs in the 24 neu rological
diseases. The DEG proportions of the three groups were

particularly high in neurodegenerative diseases such as AD and
Parkinson "s disease. The P values of each gene included in the
ARS/AIMP group are presented as a he at map (Figure 8B). It is

noteworthy that all the ARSs/AIMPs were differentially expressed

(P value < 0.05) in AD except for glutaminyl - (QARS), threonyl -
(7ARS), and cysteinyl - tRNA synthetase ( CARS). Moreover,
AIMP2 , which has a pathological connection with Parkinson 7s

disease, ° was differentially expressed in Parkinson "s disease .

A hypothetical subnetwork shows proximity betw  een

ARSs/AIMPs and AD - related genes

Because the DEG proportion of the ARS/AIMP group was the

highest in AD among the 24 neurological diseases, we  wanted to



find out which Dbiological processes are involved both in
ARSs/AIMPs neighbor genes and in AD. Therefore, we used the
DAVID functional annotation tool with 3 79 input genes composed of
first - and second - neighbor NAGs. In addition , these 3 79 input
genes are DEGs in at least one AD dataset among the five datasets
(Figure 9A) . Given that protein interaction s can be depicted as a
network, 2 the result of the DAVID analysis can be presented as a
hy pothetical subnetwork (Figure 9B ). We calculated a P value for
each of the 24 neurological diseases ; thus, we used node size to
represent the AD P value. Colors of each node mean the number of
datasets. For example, glutamyl - prolyl - tRNA synthetase (EPRS)
is downregulated in GSE1297 and  at the same time upregulated in
GSE5281. As a result, EPRS has a zero- fold change because one
minus one equals zero

Many features of a network can be quantified , and one of
them is the shortest path between two nodes.  ® We prioritize d these
13 biological processes on the basis of an average shortest path
between ARSs/AIMPs and genes involved in each biological process.
Among the 13 biological processes, the “MAPK cascade =~ and
" Response to oxidative stress °~ were the nearest to ARSs/AIMPs
except for “ tRNA aminoacylation ~ according to the average shortes t
path (Figure 9C ). Consequently, we need ed to verify whether
ARSs/AIMPs are related to these two biological processes and

whether the relation is associated with AD.
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Figure 1. Four perspectives on the relation between ARSs/AIMPs
and neurological diseases. This figure shows how we analyze  d the
relation between  ARSs/AIMPs and neurological diseases. DEGs

were selected based on the combined P values from multiple

datasets. PPl data were used for constructi ng an ARS/AIMP
network consist ing of first - and second - neighbors. The | imited
number of genes known for their relation s with neurological
diseases were collected from public databases and the literature.
Finally, we conducted a DAVID GO analysis to identify biological

processes related to these genes.



L 4

24 neurological diseases
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Healthy controls Vs Disease group
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Human, Mouse, and Rat

4

Total 67 datasets

Figure 2. Selection criteria for gene expression datasets. First , 24
neurological diseases associated with gene expression datasets

were found in GEO and ArrayExpress. Then, we chose datasets

with both healthy controls and disease groups. In addition, all the
MRNA expression datasets used for this study included only t hree
organisms (except for one dataset): H. sapiens, M. musculus , and R.

norvegicus . Finally, 67 datasets were selected.



59 Affymetrix 4 lllumina, 3 Agilent, and
datasets 1 custom datasets

GC-RMA
or Quantile
PLIER

Integrative statistical hypothesis testing .

Student i-test,
Wilcoxon rank-sum test, and
log,-median-ratio test

A single dataset has a single P value for each gene. '

Figure 3. The data preprocessing method. We normalized 59

Affymetrix platform microarray data using the GC- RMA or PLIER
algorithm. The other eight gene expression datasets were
normalized by the quantile normalization method. Student “s - test,
the Wilcoxon rank - sum test, and the log,- median- ratio test were
carried out . After that, P values from these three t ests were
combined by Stouffer s method. Therefore, a single dataset ha d a

single P value for each gene.
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Figure 4. Combining P values by Stouffer “s method. P values of
dataset for the same disease (purple color) were combined by
Stouffer s method. For example, five P values of Gene_1 were
combined in AD (red color). Thus, a gene ha d a single P value in a
disease. Once again, we combine d all the P values of the 24

neurological diseases by Stouffer ~ “s method (orange color).
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Figure 5. Collection of the protein _protein interaction (PPI) data. All
the PPI data were retrieved from three PPl databases: intAct,
BioGRID, and PharmDB. PharmDB PPI data came from DIP, Entrez
Gene Interactions, MINT, and PharmGKB PPI data. The total PPI

data were composed of 17,126 nodes and 229,765 PPIs.



Figure 6. The w hole network of ARSs/AIMPs and their neighbors.

This network shows  ARSs/AIMPs and first - and second - neighbor
genes linked to ARSs/AIMPs either directly or indirectly. The
innermost, middle, and outermost nodes represent 23 ARSs/AIMPSs
586 first - neighbor genes , and 13,539 second- neighbor genes ,

respectively.



