ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

약학석사 학위논문

Dual-targeting 전략을 이용한 잠재적 항암 활성 물질의 개발

Toward the development of potent anti-cancer agents using dual targeting strategies

2016 년 8 월

서울대학교 대학원
약학과 약품제조화학 전공
Phuong Chi Pham

ABSTRACT

Phuong Chi Pham
College of Pharmacy
Seoul National University

The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in various human cancers, such as lung cancer, breast cancer, prostate cancer and colorectal cancer. Several compounds targeting IGF-1R have been discovered but rapidly acquired resistance in patients. The resistance to IGF-1R inhibitors is thought to be related to the high activation of Src. However, the combination therapy of IGF-1R and Src inhibitors may lead to toxicity problems.

In this study, a new class of 3-substituted-pyrazolo[3,4-d]pyrimidin-4-amine derivatives was designed and synthesized toward the development of dual-targeting anti-cancer agents. In addition, their anti-proliferative activities on A549 and MCF7 cancer cell lines were evaluated using cell viability test. Structure-activity relationship of this series was explored based on the modification of linkers as well as substituents. Several compounds containing triazole or alkyne linker exhibited significant inhibitory effects on both cell lines.

Our results demonstrated that dual targeting Src/IGF-1R compounds offered the advantages over individual treatment of Src or IGF-1R inhibitor. In particular, linker modification was found to play an important role in the design of dual-targeting anticancer agents. Further biochemical and in vivo studies need to be followed, but this study provided valuable design strategies toward the development of dual targeting inhibitors, which may be used to overcome anti-cancer drug resistance.

Keywords: dual target, anti-cancer, resistance
Student Number: 2014-25215

TABLE OF CONTENTS

ABSTRACT i
TABLE OF CONTENTS ii
LIST OF FIGURES iv
LIST OF TABLES v
LIST OF SCHEMES vi
LIST OF ABBREVIATIONS vii
INTRODUCTION 1
RESULTS 7

1. Design 7
2. Synthesis 9
3. Preliminary in vitro cytotoxic assay 16
4. Structure activity relationship (SAR) 18
CONCLUSION 20
EXPERIMENTAL SECTION 21
5. General method 21
1.1. Solvents and reagents 21
1.2. Chromatography 21
1.3. Spectra data 21
6. General procedure 22
2.1. General procedure for the copper(I)-catalyzed alkyne-azide cycloaddition between alkyne 26a-c and azide 16a-d/18. 22
2.2. General procedure for the N-alkylation between 12a-e and 25 29
2.3. General procedure for the copper(I)-catalyzed alkyne-azide cycloaddition between alkyne 24 a-e and azide 29 a-d 31
2.4. General procedure for Sonogashira cross-coupling reaction between 30a-b and alkyne 24a-e 43
2.5. General procedure for synthesis of Src module 49
2.6. General procedure for efficient synthesis of Src module 60
2.7. General procedure for synthesis of IGF-1R module I 62
2.8. General procedure for synthesis of IGF-1R module II 65
REFERENCES 70
APPENDIX 75
논문초록 122

LIST OF FIGURES

Figure 1. Crystal structure of IGF-1R 2
Figure 2. Schematic model of adaptive primary resistant responses by tumors to anti-IGF-1R monoclonal antibodies 3
Figure 3. Structure of several multi-kinase inhibitors 5
Figure 4. Design strategy of dual-targeting Src/ IGF-1R inhibitors 8
Figure 5. Structure of several PKI containing alkyne linker 9

LIST OF TABLES

Table 1. Structure of target compounds 1-2 ... 14
Table 2. Anti-proliferation efficacies against cancer cell lines of compounds 3-7 16
Table 3. IC_{50} value of selected compounds .. 18

LIST OF SCHEMES

Scheme 1. Synthesis of 3-substituted-pyrazolopyrimidine 10
Scheme 2. Synthesis of IGF-1R module I (substituted-quinoline) 10
Scheme 3. Synthesis of IGF-1R module I (2-azido-N-(2-methylquinolin-4- yl)acetamide) 11
Scheme 4. Synthesis of IGF-1R module II 12
Scheme 5. Synthesis of target compounds 13
Scheme 6. Efficient synthetic scheme for Src module 15

LIST OF ABBREVIATIONS

DCM	Dichloromethane
DIEA	N, N-Diisopropylethylamine
DMSO	Dimethyl sulfoxide
DMF	N, N-dimethylformamide
Et	Ethyl
i-Pr	isopropyl
MsCl	Methanesulfonyl chloride
NaAsc	Sodium ascorbate
NMR	Nuclear magnetic resonance
rt	room temperature
$t \mathrm{BuOH}$	$t e r t$-butyl alcol
THF	tetrahydrofuran
TLC	thin layer chromotography

sou wom wesan

INTRODUCTION

Cancer is a major public health problem worldwide. There were 14.1 million new cancer cases, 8.2 million cancer deaths and 32.6 million people living with cancer (within 5 years of diagnosis) in 2012 worldwide. ${ }^{1}$ Cancer is also the second leading cause of death in the United States. ${ }^{2}$ Lung, prostate, colorectal, stomach, and liver cancer are the most common types of cancer in men, while breast, colorectal, lung, uterine cervix, and stomach cancer are the most common among women. ${ }^{1}$

The era of chemotherapy for treatment of cancer began in the 1940s with the uses of nitrogen mustards, antifolate drugs, alkylating agents and antimetabolites, etc. ${ }^{3}$ This type of therapy which is based on the different cell division rate between normal and cancer cells is associated with significant negative side-effects including nausea, vomiting, hair loss, loss of appetite, peripheral neuropathy and anemia. It may also disrupt central nervous system function such as memory loss, decreased information processing speed, reduced attention, anxiety, depression and fatigue. ${ }^{4}$

In the late 1980s, the targeted-therapy revolution has been developed against specific signalling pathways driving tumor growth with limited side effects. Phosphorylation by protein kinase is one of the most common and important mechanism in signal transduction pathways. Many protein kinases (PKs) have been found to be intimately involved in the processes leading to tumour cell proliferation and survival. ${ }^{5}$

At the beginning of the development of protein kinase inhibitors (PKI), the highly selective agents targeting a single PK was identified as promising therapy. However, recent studies suggested that multi-targeted PKI may exhibit more effective than single target molecules. ${ }^{6,7,8}$ Because individual molecular targets cannot usually combat multigenic diseases such as cancer. ${ }^{9}$ For specific cancer types which several
kinases are frequently overexpressed, multi-kinase inhibitors will show better efficacy than single targeted molecule. The use of PKI may associate with significant problem in drug resistance. Because tumor cells rapidly develop resistance to individual inhibitors through mutation of PK which decrease the affinity of PK to the inhibitor or activation of other signalling pathways. To create effective therapy that overcomes or avoids drug resistance, it would be better to use multi-kinase targeting inhibitors. ${ }^{10}$

The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in various human cancers such as breast cancer, lung cancer, colorectal cancer and prostate cancer. ${ }^{11}$ IGF-1R consists of two extracellular α-subunits disulphide-bonded to two transmembrane-spanning β-subunits containing cytoplasmic tyrosine kinase activity (Figure 1). ${ }^{12}$

Figure 1. Crystal structure of IGF-1R

Several compounds targeting IGF-1R have been developed but rapidly acquired resistance in patients. ${ }^{13,14,15,16}$ The resistance to IGF-1R inhibitors is thought to be related to the high activation of Src. ${ }^{17,18}$ In particular, IGF-1 which failed to bind to IGF-1R due to the IGF-1R blockade by cixutumumab - a monoclonal antibody against IGF-1R, bound to integrin $\beta 3$ and induced concomitant activation of integrin
signalling through FAK and Src and subsequent stimulation of EGFR and Akt (Figure 2). ${ }^{19}$

Figure 2. Schematic model of adaptive primary resistant responses by tumors to anti-IGF-1R monoclonal antibodies.

The non-receptor tyrosine kinase Src plays a vital role in cell division, motility, adhesion and survival. ${ }^{20}$ Also, combined inhibition of Src and IGF-1R has been demonstrated to enhance anti-tumour effects in several cancers. ${ }^{17,21}$ However, the combination therapy of two inhibitors may lead to toxicity problems because the biological systems need to compensate for the simultaneous action of two drugs. ${ }^{9}$

Moreover, the multi-targeted single agent has more advantages than combination therapy based on pharmacokinetics. The pharmacokinetics of a drug is defined by its absorption, distribution, metabolism and excretion. Single molecule has greater clinical benefits than combination therapy if one of the two drugs is a substrate for a drug transport pump or is metabolised. The administration of two inhibitors depends on their clearance metabolism. Possible problem is that the metabolism of the one drug can interfere with the metabolism of the other. Although the pharmacokinetics of PKI are known but it can be changed in particular patients. It is not possible to predict which types of inhibitor will show the optimal pharmacokinetics in
combination. In addition, to identify and compare the pharmacokinetic properties of two molecules are difficult in clinical trials because of the impact of other factors like smoking, dietary habits, etc. Thus, combination therapy might need to align pharmacokinetics or pharmacodynamics of component agents in co-formulated product. In addition, compared to combination therapy, multi-targeted single agent approach has the advantage of no risks related to drug-drug interactions and simplifies clinical trial design. Furthermore, manufacture and formulation of an individual active molecule are easier than a mixture. ${ }^{9,10}$

Recently, various multi-targeted protein kinase inhibitors have also been developed (Figure 3). Nordihydroguaiaretic acid (NDGA or INSM18) is a phenolic compound isolated from the creosote bush Larrea divaricatta that effectively inhibit the function of IGF-1R and the c-erbB2/HER2/neu receptor in in vitro and tumor in vivo. NDGA is in clinical trials and may represent a potential new class of agents for the treatment of breast and other cancers where the IGF-1R and/or HER2/neu play a role in the oncogenic process. ${ }^{22}$ XL228 is a protein kinase inhibitor targeting IGF1R, the Aurora kinases, FGFR1-3, Abl and Src family kinases. This compound is derived from a 2,4-disubstituted pyrimidine series and is in phase I clinical trials. ${ }^{23}$ RBx10080307 was discovered as a dual Epidermal growth factor receptors (EGFR)/IGF-1R kinase inhibitor to limit the resistance development of selective EGFR inhibitor. The xenograft study with RBx10080307 showed significant tumor growth inhibition that was comparable to erlotinib - a selective EGFR inhibitor. RBx 10080307 has also been found to be effective in the EGFR mutant cell line. ${ }^{24}$

In 2004, Bristol-Myers Squibb discovered Dasatinib (BMS-354825) as a dual Src/Abl inhibitor. Dasatinib can inhibit Bcr-Abl activation loop mutations that are found in some chronic myelogenous leukemia (CML) patients with acquired clinical resistance to imatinib. ${ }^{25,26}$ In 2010, Dasatinib has been approved by FDA for
treatment of newly diagnosed adult patients with CML. ${ }^{27}$ In 2011, Stefanie Schmidt et al. established dual IGF-1R/Src inhibitors with the efforts to interfere with two targets of the same signalling axis and lower the resistance development. In particular, the cell growth of A549/ATCC in the presence of $10 \mu \mathrm{M}$ of the most potent compound is about $7.38 \%{ }^{28}$ In 2013, Kristin S. Ko et al. developed chimeric $\mathrm{c}-\mathrm{Src}$ and HDAC inhibitors on the basis of their synergism. HDAC inhibitor and Src inhibitor were appended by varied hydrophobic linkers using click chemistry. The most active compound has improved efficacy in cellular experiments compared to two individual inhibitors while not possessing significant toxicity to primary human cells. ${ }^{29}$

NDGA (INSM18)

RBx10080307

Dasatinib (BMS-354825)

c-Src/ HDAC inhibitor

Figure 3. Structure of several multi-kinase inhibitors

In this study, we described the design strategy and synthesis of single molecules that could serve as Src and IGF-1R inhibitor. We also discussed the structure-activity relationship (SAR) of synthesized compounds based on the growth inhibition against cancer cell lines.
soll waow intian

RESULTS

1. Design

The 4-aminopyrazolo[3,4-d]pyrimidines PP1 and PP2 were the first Src family kinase (SFK) inhibitors and were reported by Pfizer researchers in 1996. In vitro kinase assays showed that these compounds inhibit SFK members with IC_{50} values in the low nanomolar range. ${ }^{30}$

A diaryl urea compound PQ401 inhibited autophosphorylation of the IGF-1R in cultured human MCF-7 cells with an IC_{50} of $12 \mu \mathrm{M} \cdot{ }^{31}$ More importantly, through a mouse xenograft model, administration of PQ401 on mice led to suppression of glioma tumour growth. At lower doses, PQ401 in large inhibits cell migration, while at higher doses, PQ 401 synergistically suppresses cell migration and proliferation. ${ }^{32}$

A new class of multi-target compounds 1-2 was synthesized by linking Src inhibitor PP1/PP2 to an IGF-1R inhibitor (PQ401) (Figure 4). The biological evaluation showed that these kinds of compounds have K_{d} value range from 1.9-2.3 $\mu \mathrm{M}$ against $\mathrm{Src} / \mathrm{Abl}$ respectively. However, they displayed very weak inhibitory activity against A549 and MCF-7 cell lines in WST assay.

Figure 4. Design strategy of dual-targeting Src/ IGF-1R inhibitors

To enhance potency toward IGF-1R protein, we attempted to incorporate 2-arylamino-1,3-pyrimidine into quinoline ring to get second IGF-1R module. We conjugated the IGF-1R and Src modules directly via N-alkylation reaction to give a series of compounds $\mathbf{3}$. To establish the structure-activity relationship (SAR) and optimize the potency, we primarily focused our modifications on the linker. Triazolebased derivatives have been known as one of the most active areas in the developments of new drugs with strong pharmacological activity, low toxicity, fewer multi-drug resistances, high bioavailability, good pharmacokinetic property. ${ }^{33}$ Hence, the copper(I)-catalyzed alkyne-azide cycloaddition was applied to get triazole linker compounds 4-5. Based on SAR study of second IGF-1R module, pyrimidine and quinoline ring were not modified to maintain the highest potency. ${ }^{34}$ However, we introduce different functional groups to aminophenol ring at R_{3} to determine the substituent effects. Surprisingly, this modification resulted in significant loss of potency, suggesting those substituents caused steric clash. We hypothesized that slim
linker as alkyne may avoid steric clash. This linker is the key factor for ponatinib a Bcr-Abl inhibitor to prevent steric clash. ${ }^{35}$ Recently, alkyne linker has applied successfully in several PKI (Figure 5). ${ }^{36,37}$ Therefore, a new series of compounds 67 were synthesized by Sonogashira cross-coupling reaction. Interestingly, addition of any groups, especially methoxy to the aminophenol ring increased overall potency on A549 cancer cell line compared to unsubstituted compounds.

Ponatinib

Src/Abl inhibitor

Src inhibitor

Figure 5. Structure of several PKI containing alkyne linker

2. Synthesis

Initially, the scaffold of pyrazolo[3,4-d]pyrimidine from Src inhibitor (PP1, PP2) was obtained from the reported procedure with modified conditions (Scheme 1). ${ }^{38}$ Various commercial reagents 8a-e reacted with malononitrile in the presence of sodium hydride in anhydrous THF gave 9a-e. Subsequent methylation with dimethyl sulfate in the presence of sodium bicarbonate in dioxane-water mixtures afforded 10a-e, which were cyclized by treatment with hydrazine hydrochloride in the presence of triethylamine generated 11a-e. Reaction of 11a-e with formamide at 160 ${ }^{\circ} \mathrm{C}$ for 12 h afforded key intermediates 12a-e.

Scheme 1. Synthesis of 3-substituted-pyrazolopyrimidine

Reagents and conditions: a) Malononitrile, NaH, THF anhydrous, $0^{\circ} \mathrm{C}$ to rt, 1 h , $65-93 \%$; b) $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}, 1,4$-dioxane: $\mathrm{H}_{2} \mathrm{O}=5: 1,80{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 50-65 \%$; c) $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}, \mathrm{TEA}, \mathrm{EtOH}, 120^{\circ} \mathrm{C}, 30 \mathrm{~min}, 75-83 \%$; d) $\mathrm{HCONH}_{2}, 160{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 36-$ 83\%.

Next, the synthesis of the first IGF-1R module is illustrated in Scheme 2 based on the previously described route. ${ }^{39,40}$ As shown in this scheme, 14a-d were synthesized starting from the commercially available substituted anilines 13a-d and ethylacetoacetate in the presence of polyphosphoric acid. Subsequent chlorination using phosphoryl chloride produced 15a-d which was easily transformed to the corresponding azide $\mathbf{1 6 a} \mathbf{- d}$ by the addition of sodium azide.

Scheme 2. Synthesis of IGF-1R module I (substituted-quinoline)

Reagents and conditions: a) Ethylacetoacetate, Polyphosphoric acid, $120^{\circ} \mathrm{C}, 16 \mathrm{~h}$, $80-94 \%$; b) POCl_{3}, Acetone $105^{\circ} \mathrm{C}, 3 \mathrm{~h}, 86-96 \%$; c) $\mathrm{NaN}_{3}, 100^{\circ} \mathrm{C}$, DMF, $4 \mathrm{~h}, 79-$ 92%.

In order to have an extended linkage with acetyl group, the commercially available 2 -methylquinolin- 4 -amine $\mathbf{1 7}$ was transformed to $\mathbf{1 8}$ by adding 2-
azidoacetic acid in the presence of 1-ethyl-3-(3 dimethylaminopropyl)carnodiimide hydrochloride (EDC) and N, N-diisopropylethylamine (DIEA). (Scheme 3).

Scheme 3. Synthesis of IGF-1R module I (2-azido-N-(2-methylquinolin-4yl)acetamide)

Reagents and conditions: a) 2-azidoacetic acid, EDC, DIEA, DMF:DCM, $60^{\circ} \mathrm{C}, 8$ h, 66\%.

The synthesis of the second IGF-1R module is depicted in Scheme 4. Reaction of 2,4-dichloropyrimidine $\mathbf{1 9}$ with 3-aminoquinoline $\mathbf{2 0}$ in the presence of DIEA produced 21, which reacted with the commercially available aminophenol derivatives 22a-e to form 23a-e. O-alkylation of phenol with propargyl bromide or 1,2-dibromoethane under basic conditions gave 24a-e or $\mathbf{2 5}$ respectively.

Scheme 4. Synthesis of IGF-1R module II

Reagents and conditions: a) DIEA, $i-\mathrm{PrOH}$, refluxed $100^{\circ} \mathrm{C}, 24 \mathrm{~h}, 70 \%$; b) DMSO, $90^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88-99 \%$; c) Propargyl bromide, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, rt, $2 \mathrm{~h}, 59-67 \%$; d) 1,2dibromoethane, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, $12 \mathrm{~h}, 49 \%$.

As shown in Scheme 5, key intermediates 12a-e were N-alkylated using propargyl bromide or 2-bromoethanol, 2-iodopropane, iodoethane in the presence of base in DMF to give 26a-c or 27a-d, 30a, 30b respectively. Subsequent mesylation of $27 \mathbf{a}-\mathbf{d}$ with mesylate chloride in pyridine, followed by addition of sodium azide provided 29a-d.

Scheme 5. Synthesis of target compounds

Reagents and conditions: a) Propargyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $\mathrm{rt}, 3 \mathrm{~h}, 45-61 \%$; b) 16a-d, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, NaAsc, $t \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 43-94 \%$; c) $\mathbf{1 8}, \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, NaAsc, $t \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 45-55 \%$; d) 25, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 36-48 \%$; e) 2-bromoethanol, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 50-63 \%$; f) MsCl, Pyridine, rt, 5 h , $45-76 \%$, g) $\mathrm{NaN}_{3}, \mathrm{DMF}, 6{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}, 80-88 \%$; h) 24a-e, $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$, NaAsc, $t \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{DMF}, 8{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 39-80 \%$; i) $\mathrm{R}_{2} \mathrm{I}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 51-56 \%$; j) 24a-e, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, CuI, TEA, DMF, rt, 3 h, $40-71 \%$.

Next, the first series of compounds $\mathbf{1 a - k}$ and $\mathbf{2 a - c}$ were synthesized by copper(I)catalyzed alkyne-azide cycloaddition between 26a-c and 16a-d/18 (Table 1). N alkylation reaction gave direct linker compounds 3a-c. The cycloaddition between alkyne containing quinoline 24a-e and various azide containing pyrazolopyrimidine 29a-d under copper(I) catalyst afforded the triazole linker compounds 4a-l, 5a-h.

Finally, the Sonogashira cross-coupling of N -substitued pyrazolopyrimidine derivatives 30a-b with various alkyne 24a-e yielded 6a-f and 7a-d possessing alkyne linker.

Table 1. Structure of target compounds 1-2

Compd	R_{1}	\mathbf{R}_{4}	L (linker)
1a	Me	H	$\left\{\begin{array}{c} T_{N}^{N} \\ N^{N} \\ \hline \end{array}\right.$
1b	H	H	
1c	Cl	H	
1d	Me	F	
1e	H	F	
$1 f$	Me	I	
1 g	H	I	
1h	Cl	I	
1 i	Me	OMe	
1j	H	OMe	
1k	Cl	OMe	
2a	Me	H	
2b	H	H	
2 c	Cl	H	

In order to obtain pyrazolo[3,4-d]pyrimidin-4-amine as a common intermediate which will be subsequently derivatized to furnish aryl analogs with R_{1}, we also established the more efficient synthetic scheme starting from the common commercial reagents based on the previously described route (Scheme 6). . ${ }^{41,42}$

Scheme 6. Efficient synthetic scheme for Src module

Reagents and conditions: a) $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}, \mathrm{TEA}, \mathrm{EtOH}, 100{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 57 \%$; b) $\mathrm{HCONH}_{2}, 160{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 80 \%$; c) NIS, DMF, $60^{\circ} \mathrm{C}, 12 \mathrm{~h}, 80 \%$; d) 2-bromoethanol, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 60 \%$; e) 36a-b, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}: \mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}$, 3h, 81-92\%.

Condensation of 2-(ethoxymethylene)malononitrile 31 with hydrazine hydrochloride gave 32, followed by treatment with formamide to generate 33. Iodination of $\mathbf{3 3}$ with N -iodosuccinimide produced $\mathbf{3 4}$ which was subsequently N alkylated with 2-bromoethanol in the presence of base afforded key intermediate $\mathbf{3 5}$. $\mathbf{3 5}$ was coupled with 36a-b under Suzuki coupling reaction condition to yield $\mathbf{2 7 c} \mathbf{c} \mathbf{d}$. In the case of Iodine at R_{1} position, Suzuki coupling was not successful. However, we were able to obtain compound $\mathbf{2 7} \mathbf{c}$-d as common intermediates in a large scale.

3. Preliminary in vitro cytotoxic assay

In order to provide a broader assessment of cytotoxicity, all compounds were tested in WST assay for growth inhibitory activity against human non-small cell lung cancer A549 and human breast cancer cell MCF-7. Bosutinib was also included in the assay as a control. To identify whether the dual targeting compounds would be better than single targeting molecule, two key intermediates 12a, 23a were also examined in WST assay. (Table 2)

Table 2. Anti-proliferation efficacies against cancer cell lines of compounds 3-7

B

C
D

Compd	Structure	$\mathbf{R}_{1} / \mathbf{R}_{2}$	\mathbf{R}_{3}	L (linker)	\% cells growth at $10 \mu \mathrm{M}$	
					A549	MCF-7
3a		Me	H		98	108
3b	A	H	H		96	100
3c		Cl	H		82	95
4a		Me	H		82	74
4b		H	H		20	21
4c		Cl	H		6.4	1.3
4d		CF_{3}	H		26	13
4e		Me	Cl	N	101	99
4 f	A	H	Cl	N-1/	103	86
4 g	A	Cl	Cl		99	96
4h		CF_{3}	Cl		27	37
4i		Me	F		88	90
4j		H	F		96	71
4k		Cl	F		94	61
41		CF_{3}	F		47	18
5a		Me	H		68	51
5b		H	H		35	70
5 c		Cl	H	$\mathrm{N}=\mathrm{N}$	52	38
5d	B	CF_{3}	H	N_{1}^{\prime}	76	77
5e	B	Me	OMe		65	47
5 f		H	OMe		91	55
5g		Cl	OMe		100	100
5h		CF_{3}	OMe		106	100
6a		$i-\mathrm{Pr}$	H		34	27
6 b		$i-\mathrm{Pr}$	Cl		16	53
6 c	C	$i-\mathrm{Pr}$	F		28	58
6d	C	Et	H		87	84
6 e		Et	Cl		95	94
6 f		Et	F		99	90
7a		i-Pr	H		68	71
7b	D	$i-\mathrm{Pr}$	OMe		9.7	15
7c	D	Et	H		87	82
7d		Et	OMe		6.2	6.4
Bosutinib					46	75
12a					98	92
23a					69	60

Several active compounds were selected to determine IC_{50} value against two cancer cell lines A549 and MCF-7. (Table 3)

Table 3. IC_{50} value of selected compounds

Compd	$\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu M})$	
	$\mathbf{A 5 4 9}$	$\mathbf{M C F - 7}$
$\mathbf{4 b}$	5.77	8.07
$\mathbf{4 c}$	2.59	2.16
$\mathbf{4 d}$	4.87	3.00
$\mathbf{4 l}$	8.24	2.51
$\mathbf{5 b}$	5.51	6.79
$\mathbf{5 c}$	7.15	5.73
$\mathbf{6 a}$	3.69	4.62
$\mathbf{6 b}$	5.06	7.57
$\mathbf{6 c}$	7.25	7.87
$\mathbf{7 b}$	3.57	3.98
$\mathbf{7 d}$	4.28	3.54

4. Structure activity relationship (SAR)

Our preliminary screening results showed that 12a from Src module did not exhibit inhibitory effects on both cancer cell lines while 23a from IGF-1R module showed weak inhibition. Likewise, three compounds with direct linker 3a-c did not show any inhibition on two cell lines at $10 \mu \mathrm{M}$. In contrast, several target compounds with triazole linker $\mathbf{4 b} \mathbf{- d}, \mathbf{4 h}, \mathbf{4 l}, \mathbf{5 b} \mathbf{- c}$ or alkyne linker $\mathbf{6 a - c}, \mathbf{7 b}, \mathbf{7 d}$ displayed significant anticancer activity. These findings suggested that: 1) Dual targeting $\mathrm{Src} / \mathrm{IGF}-1 \mathrm{R}$ compounds offered the advantages over the individual treatment of Src or IGF-1R inhibitor and 2) Linker modification played an important role in design of potent anti-cancer agents.

About unsubstituted compounds, para isomers 4b-d showed greater potency against both cell lines than meta isomers $\mathbf{5 b}$-d.

To determine whether functional groups are more critical for activities, chlorine, florine, methoxy groups were introduced to the phenol ring and the compounds $\mathbf{4 e}$ $\mathbf{1}, \mathbf{5 e - h}, \mathbf{6 b}-\mathbf{c}, \mathbf{6 e - f}, \mathbf{7 b}, 7 d$ were tested. Changes made to this ring in triazole linker compounds resulted in significant loss of potency, implying that the large substituents caused steric clash. In contrast, in the case of alkyne linker compounds, this modification maintained high potency on A549 6b-c, 7b, 7d. These data are consistent with our hypothesis. We concluded that 1) Slim alkyne linker can avoid steric clash caused by substituents, 2) Substituent on phenol ring are critical for activity.

We further analysed the influences of substituents at R_{2} on bioactivities. Replacement of isopropyl in 6a-c, 7a-b with an ethyl group 6d-f, 7c led to the decrease of inhibitory effects indicating that bulky group at R_{2} is required for cytotoxicity. This requirement has been previously recognized and appears to be a general feature for kinase inhibition with this pyrazolopyrimidine scaffold. ${ }^{43,44,45,46}$ However, in the presence of methoxy group on phenol ring, compound 7d containing ethyl at R_{2} also showed good cytotoxicity. This suggested that optimal activity of alkyne linker compounds is achieved with methoxy group.

CONCLUSION

In this study, we have developed novel pyrazolopyrimidine-based inhibitors which showed good inhibitory effects on two human cancer cell lines, A549 and MCF-7. The structure-activity relationship of dual-targeting inhibitors was also established based on cell viability assay.

Our results demonstrated that dual targeting Src/IGF-1R compounds offered the advantages over individual treatment of Src or IGF-1R inhibitor. In particular, linker modification was found to play an important role in the design of dual-targeting anticancer agents. Triazole linker and alkyne linker compounds displayed greater inhibitory effects on cancer cell lines than direct linker. While substituent on aminophenol ring is not important for triazole linker compounds because of steric clash, it exhibited promising activity in alkyne linker compounds. This suggested that alkyne linker may avoid the steric clash caused by substituents.

Our cell viability assay showed that the most potent compound in triazole linker series $\mathbf{4 c}$ has IC_{50} value of 2.59 and $2.16 \mu \mathrm{M}$ against A 549 and MCF-7 respectively. Also, compound 7b containing alkyne linker and methoxy group on aminophenol ring has IC_{50} value of 3.57 and $3.98 \mu \mathrm{M}$ against A549 and MCF-7 respectively.

Further biochemical and in vivo studies need to be followed, but this work provided valuable design strategies toward the development of dual targeting inhibitors, which may be used to overcome anti-cancer drug resistance.

EXPERIMENTAL SECTION

1. General method

1.1. Solvents and reagents

All reagents and solvents were purchased from commercial suppliers and used without further purification.

1.2. Chromatography

TLC analyses were performed using Merck precoated TLC plate (silica gel $60 \mathrm{~F}_{254}$). Column chromatography was carried out on Zeochem silica gel (Zeo prep 60, 40-63 $\mu \mathrm{m})$

1.3. Spectra data

${ }^{1} \mathrm{H}$ NMR spectra were acquired on a $300,400,500,600,800 \mathrm{MHz}$ spectrometer, and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on $75,100,125,150,200 \mathrm{MHz}$ spectrometer. Chemical shift (δ) are reported in parts per million (ppm) and coupling constants (J) are given in hertz (Hz).

All ESI-MS were undertaken on 6130 Single Quadrupole LC/MS (Agilent Technologies, CA, USA). High-resolution mass spectra (HRMS) were acquired under fast atom bombardments (FAB) condition on a JMS-700 MStation (JEOL, Germany).

2. General procedure

2.1. General procedure for the copper(I)-catalyzed alkyne-azide cycloaddition between alkyne 26a-c and azide 16a-d/18

1-((1-(2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1a)

To a solution of 16a ($21 \mathrm{mg}, 0.11 \mathrm{mmol}$) and an alkyne 26a (30 $\mathrm{mg}, 0.11 \mathrm{mmol})$ in $t \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1,5 \mathrm{~mL})$ were added sodium ascorbate ($4.5 \mathrm{mg}, 0.022 \mathrm{mmol}$) and copper(II) sulfate pentahydrate ($2.8 \mathrm{mg}, 0.011 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The resulting mixture was concentrated in vacuo and then extracted with DCM (3 X 100 mL). The organic phase was dried with anhydrous sodium sulfate, the solvent was evaporated, and the crude product was purified using silica gel chromatography with $\mathrm{DCM} /$ methanol gradient to give a white solid ($28 \mathrm{mg}, 0.063 \mathrm{mmol}$, yield $=54.9 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 159.44,158.15,155.99,154.36,148.53,144.32,143.35,140.23$, $138.14,130.52,129.91,129.69$ (2C), 128.73, 128.17 (2C), 127.36, 125.97, 122.67, 120.21, 117.71, 97.37, 41.59, 24.77, 20.92 ppm. LC-MS (ESI) $m / z 448.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 448.1920$, found: 448.1994.

1-((1-(2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1b)

This compound was synthesized using a similar procedure, yield $=46 \% .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.71-$ $7.45(\mathrm{~m}, 7 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 159.43,158.15,155.99,154.42,148.53$, 144.30, 143.31, 140.22, 132.73, 130.51, 129.10 (2C), 128.72, 128.25 (2C), $127.34,125.99,122.67,120.19,117.69,97.40,41.63,24.76$ ppm. LCMS (ESI) $m / z 434.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{9}[\mathrm{M}+\mathrm{H}]^{+}$: 434.1763, found: 434.1843.

3-(4-chlorophenyl)-1-((1-(2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1c)

This compound was synthesized using a similar procedure, yield $=89 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.71$ (s, 1H), $7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 159.42,158.17,156.02,154.52,148.55$, $143.24,140.22,133.41,131.52,130.49,130.06$ (2C), 129.06 (2C), $128.72,127.33,125.96,122.64,120.19,117.65,97.38,41.65,24.71 \mathrm{ppm}$. LCMS (ESI) $m / z 468.10[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClN} 9[\mathrm{M}+\mathrm{H}]^{+}$: 468.1374, found: 468.1446.

1-((1-(6-fluoro-2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1d)

This compound was synthesized using a similar procedure, yield $=86 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H})$, 8.31 ($\mathrm{s}, 1 \mathrm{H}$), 8.16 (dd, $J=9.15 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75$ (m, $2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), 5.79 (s, 2H), 2.71 (s, 3H), 2.37 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $\left.d_{6}\right) \delta 161.76,158.98\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.55 \mathrm{~Hz}\right), 158.50$, $158.15,155.93,154.36,145.83,144.32,143.48,139.83\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{F}=5.4 \mathrm{~Hz}), 138.14,131.80\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.625 \mathrm{~Hz}\right), 129.89,129.66(2 \mathrm{C}), 128.15(2 \mathrm{C})$, $125.85,120.75\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.2 \mathrm{~Hz}\right), 120.37,118.20,97.38,41.59,24.61,20.91 \mathrm{ppm}$. LC-MS (ESI) $m / z 466.11[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FN} 9[\mathrm{M}+$ $\mathrm{H}]^{+}: 466.1826$, found: 466.1911 .

1-((1-(6-fluoro-2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1e)

This compound was synthesized using a similar procedure, yield $=58 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H})$, $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.45(\mathrm{~m}, 4 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H})$, 2.71 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) δ 161.75, $158.98\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.55 \mathrm{~Hz}\right), 158.49,158.14,155.96,154.41$, $145.82,144.30,143.43,139.83\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.4 \mathrm{~Hz}\right), 132.71,131.80$ (d), 129.09 (2C), $128.70,128.24(2 \mathrm{C}), 125.85,120.75\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.125 \mathrm{~Hz}\right), 120.37,118.22,97.397$, 41.63, 24.61 ppm . LC-MS (ESI) $m / z 452.10[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{FN}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 452.1669$, found: 452.1742 .

1-((1-(6-iodo-2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1f)

This compound was synthesized using a similar procedure, yield $=94 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H})$, $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}) 7.35(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.37$ (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 160.22, 158.15, 155.97, 154.37, 147.45, 144.34, 143.50, 138.85 (2C), 138.13, $131.14,130.61,129.89,129.66$ (2C), 128.16 (2C), 125.89, 121.74, 118.13, 97.40, 93.68, 41.57, 24.74, 20.85 ppm . LC-MS (ESI) $m / z 574.10[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{IN}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 574.0886$, found: 574.0966.

1-((1-(6-iodo-2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-phenyl-

 1H-pyrazolo[3,4-d]pyrimidin-4-amine (1g)

This compound was synthesized using a similar procedure, yield $=89 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.79(\mathrm{~s}, 1 \mathrm{H})$, $8.33(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 160.24,158.16,156.01,154.43$, 147.46, 144.33, 143.46, 138.87, 132.72, 131.13, 130.63, 129.10 (2C), 128.69, 128.26 (2C), 125.93, 121.77, 118.18, 97.42, 93.70, 41.61, 24.75 ppm. LC-MS (ESI) $m / z 560.10[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{IN} 9[\mathrm{M}$ $+\mathrm{H}]^{+}: 560.0730$, found: 560.0802.

3-(4-chlorophenyl)-1-((1-(6-iodo-2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-

yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1h)

This compound was synthesized using a similar procedure, yield $=44 \% .^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H})$, $8.33(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 160.24,158.17,156.07$, $154.50,147.44,143.43,143.27,138.86$ (2C), 133.42, 131.50, $131.11,130.64,130.09$ (2C), 129.09 (2C), 125.94, 121.75, 118.21, 97.38, 93.83, 41.67, 24.80 ppm . LC-MS (ESI) $m / z 594.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClIN}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 594.0340$, found: 594.0417.

1-((1-(6-methoxy-2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-(p-

 tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1i)

This compound was synthesized using a similar procedure, yield $=77 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H})$, $8.30(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (dd, $J=9.3 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $2.67(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 158.15,157.77,156.43,155.94,154.37,144.72,144.32$, $143.39,139.22,138.14,130.43,129.91,129.65$ (2C), 128.13 (2C), 125.77, 122.60, 121.04, 117.79, 100.61, 97.40, 55.23, 41.597, 24.30, 20.85 ppm . LC-MS (ESI) m / z $478.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 478.2026$, found: 478.2097.

1-((1-(6-methoxy-2-methylquinolin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1j)

This compound was synthesized using a similar procedure, yield $=93 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.31(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=6.78 \mathrm{~Hz}$, $2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=2.76 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 158.16,157.76,156.45,155.99,154.42$, $144.72,144.32,143.38,139.22,132.74,130.45,129.12$ (2C), $128.72,128.25$ (2C), 125.86, 122.68, 121.04, 117.86, 100.57, 97.41, 55.25, 41.67, 24.37 ppm . LC-MS (ESI) $m / z 464.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 464.1869$, found: 464.1946 .

3-(4-chlorophenyl)-1-((1-(6-methoxy-2-methylquinolin-4-yl)-1H-1,2,3-triazol-

 4-yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1k)

This compound was synthesized using a similar procedure, yield $=62 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.31(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 2.67 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 158.17$, $157.77,156.43,156.01,154.51,144.72,143.30,143.23$, $139.21,133.40,131.53,130.43,130.04$ (2C), 129.05 (2C), 128.79, 125.78, 122.60, 121.03, 117.79, 100.63, 55.23, 41.69, 24.31 ppm . LC-MS (ESI) m/z $498.10[\mathrm{M}+$ $H]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClN}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 498.1479$, found: 498.1551.

2-(4-((4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methylquinolin-4-yl)acetamide (2a)

This compound was synthesized using a similar procedure, yield $=54 \% .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 10.62(\mathrm{brs}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ $(\mathrm{t}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 2.57$ $(\mathrm{s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 165.86,158.98$, 158.13, $155.91,154.18,144.14,142.53,138.12,129.92,129.67$ (3C), 128.53, 128.12 (3C), $125.37,125.20,121.99,119.04,112.36,97.30,52.34,41.71,24.98,20.85 \mathrm{ppm}$. LCMS (ESI) $m / z 505.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 505.2135, found: 505.2218.

2-(4-((4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-1H-1,2,3-

 triazol-1-yl)-N-(2-methylquinolin-4-yl)acetamide (2b)

This compound was synthesized using a similar procedure, yield $=44 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.71$ (brs, 1 H), 8.37 (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.93$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-$ $7.61(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 165.78,158.98$, 149.65, 148.15, 144.74, 140.74, 132.77, 129.51, 129.08 (3C), 128.67 (2C), 128.19 (3C), 125.14, 121.94, 52.41, 41.72, 25.07 ppm. LC-MS (ESI) $m / z 491.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 491.1978$, found: 491.2053.

2-(4-((4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methylquinolin-4-yl)acetamide (2c)

This compound was synthesized using a similar procedure, yield $=43 \% .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 10.61$ (brs, 1 H), $8.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 165.84,159.02,158.14,154.30$, 148.19 , 143.03, 142.41, 140.73, 133.37, 131.52, 130.02 (2C), 129.53, 129.08 (2C), 128.74, $125.41,125.16,121.99,119.05,112.36,97.27,52.35,41.80,25.15 \mathrm{ppm}$. LC-MS (ESI) $m / z 525.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 525.1588, found: 525.1673.

2.2. General procedure for the N-alkylation between 12a-e and 25

$\mathbf{N}^{\mathbf{2}}$-(4-(2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-
yl)ethoxy)phenyl)- \mathbf{N}^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (3a)

To a solution of 12a ($10 \mathrm{mg}, 0.044 \mathrm{mmol}$) and $25(19.4 \mathrm{mg}, 0.044 \mathrm{mmol})$ in anhydrous DMF (2 mL) under a N_{2} atmosphere was added cesium carbonate $(57.9 \mathrm{mg}, 0.178$
mmol) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The resulting mixture was partitioned between water and ethyl acetate (3 X 100 mL). The organic layer was dried with sodium sulfate and evaporated in vacuo. The crude product was purified using silica gel chromatography with ethyl acetate/methanol gradient to afford the desired product as a white solid ($12.4 \mathrm{mg}, 0.021 \mathrm{mmol}, 48.1 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{brs}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}$,
$1 \mathrm{H}), 8.05(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ $(\mathrm{d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{t}, J=5.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}$) ppm. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 581.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 581.2448, found: 581.2522.
\mathbf{N}^{2}-(4-(2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethoxy)phenyl)-\mathbf{N}^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (3b)

This compound was synthesized using a similar procedure, yield 46.6%. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.79$ (s, 1H), 9.08 ($\mathrm{s}, 1 \mathrm{H}$), 8.91 (brs, 1 H), 8.87 ($\mathrm{s}, 1 \mathrm{H}$), 8.29 (s , $1 \mathrm{H}), 8.05(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.41$ $(\mathrm{m}, 7 \mathrm{H}), 6.84(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.47(\mathrm{t}, J=4.95 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 567.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 567.2291$, found: 567.2365.

\mathbf{N}^{2}-(4-(2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-

yl)ethoxy)phenyl)- \mathbf{N}^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (3c)

This compound was synthesized using a similar procedure, yield 35.6%. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}) $\delta 9.79$ (s, 1H), 9.08 (s, 1H), 8.90 (brs, 1H), 8.88 (s, 1H), 8.28 (s, $1 \mathrm{H}), 8.05(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 4 \mathrm{H})$, $6.83(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 601.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{ClN}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 601.1901$, found: 601.1974.

2.3. General procedure for the copper(I)-catalyzed alkyne-azide cycloaddition between alkyne 24a-e and azide 29a-d

\mathbf{N}^{2}-(4-((1-(2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-

1,2,3-triazol-4-yl)methoxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine

(4a)

To a solution of 29 ($15 \mathrm{mg}, 0.051 \mathrm{mmol}$) and 24 a ($18.7 \mathrm{mg}, 0.051 \mathrm{mmol}$) in a mixture of DMF, $t \mathrm{BuOH}$ and water (2:2:1, 5 mL) were added sodium ascorbate (2.0 $\mathrm{mg}, 0.010 \mathrm{mmol}$) and copper(II) sulfate pentahydrate $(1.2 \mathrm{mg}, 0.005 \mathrm{mmol})$. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 h . The resulting mixture was concentrated in vacuo and then extracted with DCM (3 X 100 mL). The organic phase was dried with anhydrous sodium sulfate, the solvent evaporated, and the crude product was purified using silica gel chromatography with $\mathrm{DCM} /$ methanol gradient to give a white solid ($18.5 \mathrm{mg}, 0.028 \mathrm{mmol}, 54.9 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.82$ (s, 1H), 9.09 (s, 1H), 8.93 (brs, 2H), 8.19 (s, $1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=5.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $6.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=7.96 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.88 \mathrm{~Hz}$, 2H), $6.94(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=5.76 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=$ $5.48 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=5.46 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 160.39,159.85,158.04,156.43,155.73,154.58,153.15,145.06,144.16$, $143.25,142.82,138.06,134.01,133.98,129.84,129.61$ (2C), 128.47, 128.15, 128.08 (2C), 127.25, 126.88, 126.76, 124.69, 121.69, 121.08, 114.59 (2C), 98.69, 97.29, 61.32, 48.52, 46.26, 20.82 ppm . LC-MS (ESI) $\mathrm{m} / \mathrm{z} 662.30[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 662.2775$, found: 662.2849

\mathbf{N}^{2}-(4-((1-(2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-

1,2,3-triazol-4-yl)methoxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine

(4b)

This compound was synthesized using similar procedure, yield $=66.6 \%$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.82$ (s, 1H), 9.11 ($\mathrm{s}, 1 \mathrm{H}$), 8.92 (brs, 2H), 8.21 ($\mathrm{s}, 1 \mathrm{H}$), 8.14 (s , $1 \mathrm{H}), 8.08(\mathrm{~d}, J=5.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $8.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.54-6.51$ $(\mathrm{m}, 3 \mathrm{H}), 7.46(\mathrm{t}, J=7.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=5.94 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=5.73 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{t}, J=5.73 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta 160.39,159.86,158.05,156.45,155.77,154.64,153.17$, $145.06,144.15,143.25,142.82,134.00,132.68,129.05$ (3C), 128.65, 128.49, 128.20 (3C), 128.16, 127.26, 126.91, 126.78, 124.74, 121.72, 121.09, 114.60 (2C), 98.72, 97.31, 61.32, 48.54, 46.32 ppm. LC-MS (ESI) $m / z 648.30[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 648.2618$, found: 648.2701 .

\mathbf{N}^{2}-(4-((1-(2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-

 yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (4c)

This compound was synthesized using similar procedure, yield $=49.4 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.82$ ($\mathrm{s}, 1 \mathrm{H}$), 9.11 ($\mathrm{s}, 1 \mathrm{H}$), 8.93 (brs, 1H), 8.91 ($\mathrm{s}, 1 \mathrm{H}$), 8.19 (s , $1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 8 \mathrm{H}), 6.93(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.29(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=5.1 \mathrm{~Hz}$, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 162.90,160.43,159.85,158.09,156.40$,
$155.84,154.75,153.19,145.08,143.27,143.09,142.85,134.04,133.98,133.40$, $131.48,129.99$ (2C), 129.06 (2C), 128.51, 128.19, 127.30, 126.95, 126.82, 124.79, 121.74, 121.13, 114.64 (2C), 98.77, 97.30, 61.31, 48.56, 46.39 ppm . LC-MS (ESI) $m / z 682.22[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{ClN}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 682.2228, found: 682.2305.
$\mathbf{N}^{\mathbf{2}}$-(4-((1-(2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-N ${ }^{4}$-(quinolin-3-yl)pyrimidine-2,4-diamine (4d)

This compound was synthesized using similar procedure, yield $=73.3 \%$. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 9.11$ (s, 1H), 8.94 (brs, 1H), $8.92(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}$, $1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=5.52 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (s, 1H), 7.59-7.53 (m, 4H), $6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$, $4.93(\mathrm{t}, J=5.73 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{t}, J=5.73 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO$\left.d_{6}\right) \delta 160.42,159.87,158.09,156.46,155.89,154.88,153.17,145.07,143.26,142.85$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=3.59 \mathrm{~Hz}\right), 136.58,134.03\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.03 \mathrm{~Hz}\right), 128.96(3 \mathrm{C}), 128.78,128.57$, $128.49,128.18,127.28,126.91,126.80,125.88\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 125.16,124.79$, 123.36, 121.71, $121.09,114.61$ (3C), $98.76,97.38,61.31,48.56,46.48$ ppm. LC-MS (ESI) $m / z 715.98[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 716.2492, found: 716.2572.

\mathbf{N}^{2}-(4-((1-(2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-

 1,2,3-triazol-4-yl)methoxy)-3-chlorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4diamine (4e)

This compound was synthesized using similar procedure, yield $=49.5 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 9.27$ (s, 1H), $8.94(\mathrm{~s}, 1 \mathrm{H}), 8.92$ (brs, 1H), 8.17 (s, $1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H})$, $7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{t}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 160.46,159.38,158.09,156.38,155.79,154.63$, $148.05,145.20,144.23,143.39,142.48,138.12,135.07,133.98,129.88,129.69$ (2C), $128.53,128.18,128.14$ (2C), 127.48, 127.10, 126.87, 124.94, 121.31, 121.24, 120.91, 119.65, 119.11, 99.45, 97.30, 62.43, 48.61, 46.32, 20.92 ppm. LC-MS (ESI) m / z $696.20[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{ClN}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 696.2385, found: 696.2468 .
$\mathbf{N}^{\mathbf{2}}$-(4-((1-(2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-chlorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4diamine (4f)

This compound was synthesized using similar procedure, yield $=71.5 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.86$ (s, 1H), 9.27 ($\mathrm{s}, 1 \mathrm{H}$), $8.96(\mathrm{~s}, 1 \mathrm{H}), 8.92$ (brs, 1H), 8.19 $(\mathrm{s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=5.94 \mathrm{~Hz}$, $1 \mathrm{H}, 7.93(\mathrm{~d}, J=8.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{brs}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $7.59 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$
$(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=5.46 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.94(\mathrm{t}, J=5.73 \mathrm{~Hz}, 2 \mathrm{H})$, $4.84(\mathrm{t}, J=5.73 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 160.43,159.36$, 158.04, 156.34, 155.77, 154.66, 148.05, 145.19, 144.17, 143.38, 142.45, 135.06, $133.92,132.68,129.04$ (2C), 128.66, 128.48, 128.19 (2C), 128.13, 127.42, 127.03, $126.79,124.86,121.34,121.27,120.92,119.11,114.84,99.36,97.31,62.48,48.54$, 46.31 ppm . LC-MS (ESI) $m / z 681.97[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{ClN}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 682.2228$, found: 682.2310.
N^{2}-(4-((1-(2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-chlorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (4g)

This compound was synthesized using similar procedure, yield $=39.2 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.86$ (s, 1H), 9.26 ($\mathrm{s}, 1 \mathrm{H}$), 8.94 ($\mathrm{s}, 1 \mathrm{H}$), 8.91 (brs, 1H), 8.18 (s , $1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.93-7.88 (m, 2H), $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 7 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{t}, 2 \mathrm{H}), 4.81(\mathrm{t}, 2 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) m/z 715.90 $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 716.1839$, found: 716.1920.
$\mathbf{N}^{\mathbf{2}}$-(4-((1-(2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-
d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-chlorophenyl)- N^{4} -(quinolin-3-yl)pyrimidine-2,4-diamine (4h)

This compound was synthesized using similar procedure, yield $=68.1 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.86$ (s, 1H), 9.26 (s , $1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{brs}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$,
$8.16(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$
$(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 5 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{t}, 2 \mathrm{H})$ ppm. LC-MS (ESI) $m / z 749.90[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{ClF}_{3} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 750.2102$, found: 750.2174 .
\mathbf{N}^{2}-(4-((1-(2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-fluorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4diamine (4i)

This compound was synthesized using similar procedure, yield $=72.2 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 9.32$ $(\mathrm{s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{brs}, 1 \mathrm{H}), 8.18$ (s, $1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=5.72 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=7.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.49 (d, $J=7.92 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (s, 1H), 7.31 (d, $J=8.04 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (t, $J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.35(\mathrm{~d}, J=5.72 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.35 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 160.42,159.35,158.07$, $156.38,155.75,154.59,152.66,150.26,145.20,144.18,143.38,142.45,140.04$, 138.07, 135.05, 134.96, 133.90, 129.85, 129.64 (2C), 128.51, 128.13, 128.10 (2C), $127.33,127.07,126.86,124.98,121.33,116.04,115.09,97.29,62.53,48.58,46.29$, 20.87 ppm . LC-MS (ESI) $m / z 680.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{FN}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 680.2680$, found: 680.2755 .

\mathbf{N}^{2}-(4-((1-(2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-

1,2,3-triazol-4-yl)methoxy)-3-fluorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4diamine (4j)

This compound was synthesized using similar procedure, yield $=74.5 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.88$ ($\mathrm{s}, 1 \mathrm{H}$), 9.31 ($\mathrm{s}, 1 \mathrm{H}$), $8.96(\mathrm{~d}, \mathrm{~J}=2.32 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{~s}$, $1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=$ $5.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.64 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.63-$ $7.57(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=8.64 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{t}, J=5.54 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{t}, J=5.48 \mathrm{~Hz}$, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 160.42,159.35,158.56,156.37$, 155.77, 154.64, 152.66, 150.26, 145.21, 144.16, 143.39, 142.44, 140.16 (d), 134.97 (d), 133.89, 132.68, 129.05 (2C), 128.67, 128.51, 128.20 (2C), 128.13, 127.32, 127.07, 128.86, 124.99, 121.35, $116.08\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 115.09,99.33,97.31,62.56,48.57$, 46.33 ppm . LC-MS (ESI) $m / z 666.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{FN}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 666.2524$, found: 666.2603.
\mathbf{N}^{2}-(4-((1-(2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-fluorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (4k)

This compound was synthesized using similar procedure, yield $=78.7 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}) $\delta 9.87$ (s, 1H), 9.31 (s, 1H), 8.94 (s, 1H), 8.92 (brs, 1H), 8.18 $(\mathrm{s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{t}, J=6$
$\mathrm{Hz}, 2 \mathrm{H}), 4.81(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 699.91[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{ClFN}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 700.2134$, found: 700.2217.
$\mathbf{N}^{\mathbf{2}}$-(4-((1-(2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-
d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-fluorophenyl)-N ${ }^{4}$ -(quinolin-3-yl)pyrimidine-2,4-diamine (4I)

This compound was synthesized using similar procedure, yield $=76.0 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 9.30$ (s, 1H), 8.94 (s, 1H), 8.91 (brs, 1H), 8.20 $(\mathrm{s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.74(\mathrm{~m}, 6 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, 9.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.84(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 733.91[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 734.2398$, found: 734.2463 .
\mathbf{N}^{2}-(3-((1-(2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (5a)

This compound was synthesized using similar procedure, yield $=48.1 \% .{ }^{1} \mathrm{H}$ NMR (800 MHz, DMSO- d_{6}) $\delta 9.87$ (s, 1H), 9.29 ($\mathrm{s}, 1 \mathrm{H}$), 8.99 (brs, 1H), 8.96 (d, $J=2.24 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.13$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.92 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.84 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=5.68 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{t}, J=5.84$
$\mathrm{Hz}, 2 \mathrm{H}), 4.80(\mathrm{t}, J=5.80 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (200 MHz, DMSO$\left.d_{6}\right) \delta 160.40,159.43,158.34,158.06,156.32,155.74,154.56,145.11,144.16,143.31$, $142.66,141.85,138.06,133.95,129.84,129.64$ (2C), 129.14, 128.47, 128.17, 128.08 (2C), 127.36, 126.97, 126.82, 124.68, 121.16, 112.15, 107.09, 106.09, 99.49, 97.31, 60.86, 48.52, 46.26, 20.84 ppm . LC-MS (ESI) $\mathrm{m} / \mathrm{z} 662.30[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 662.2775$, found: 662.2855 .

$\mathbf{N}^{\mathbf{2}}$-(3-((1-(2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-

1,2,3-triazol-4-yl)methoxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine

(5b)

This compound was synthesized using similar procedure, yield $=61.7 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.88$ (s, $1 \mathrm{H}), 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.96$ (d, $J=2.16 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}$, $J=5.64 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.92 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.44(\mathrm{~m}, 8 \mathrm{H}), 7.34(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=$ 8.08 Hz, 1.64 Hz, 1H), $6.36(\mathrm{~d}, J=5.68 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}) 4.89(\mathrm{t}, J=5.68 \mathrm{~Hz}$, $2 \mathrm{H}), 4.82(\mathrm{t}, J=5.52 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 648.30[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 648.2618$, found: 648.2689.

$\mathbf{N}^{\mathbf{2}}$-(3-((1-(2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-

 yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (5c)

This compound was synthesized using similar procedure, yield $=54.8 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.88$ (s, 1H), 9.31 (s, 1H), $9.00(\mathrm{~s}, 1 \mathrm{H}), 8.96$ (d, $J=2.24 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}$,
$J=5.64 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.51(\mathrm{~m}, 7 \mathrm{H}), 7.35(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=$ 8.06 Hz, $1.78 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=5.68 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{t}, J=5.18 \mathrm{~Hz}$, $2 \mathrm{H}), 4.81(\mathrm{t}, J=5.56 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 160.42$, 159.43, 158.36, 158.10, 156.33, 155.84, 154.72, 145.13, 143.32, 143.07, 142.69, 141.89, $133.98,133.39,131.46,129.98$ (2C), 129.17, 129.06 (2C), 128.49, 128.20, 127.39, $126.99,126.84,124.74,121.18,112.15,107.03,106.06,99.52,97.30,60.87,48.53$, 46.38 ppm . LC-MS (ESI) $m / z 681.95[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{ClN}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 682.2228$, found: 682.2306.

\mathbf{N}^{2}-(3-((1-(2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-

d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-N ${ }^{4}$-(quinolin-3-yl)pyrimidine-2,4-diamine (5d)

This compound was synthesized using similar procedure, yield $=57.8 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.87$ (s, $1 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 5 \mathrm{H}), 7.59-7.53(\mathrm{~m}$, 2H), $7.49(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.95 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{t}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=4.5 \mathrm{~Hz}$, 2H) ppm. LC-MS (ESI) $m / z 715.94[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 716.2492$, found: 716.2573.
$\mathbf{N}^{\mathbf{2}}$-(3-((1-(2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-
1,2,3-triazol-4-yl)methoxy)-4-methoxyphenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (5e)

This compound was synthesized using similar procedure, yield $=79.4 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.83$ (s, 1H), 9.09 ($\mathrm{s}, 1 \mathrm{H}$), 8.96 ($\mathrm{s}, 1 \mathrm{H}$), 8.94 (s , $1 \mathrm{H}), 8.19$ (s, 1H), 8.09 (d, $J=5.64 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}$, 2H), 7.49 (d, $J=7.96 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.30(\mathrm{~d}, J=5.68 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{t}, J=5.44$ $\mathrm{Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 160.38$, $159.77,158.08,156.45,155.78,154.58,147.26,145.06,144.27,144.19,143.23$, $142.53,138.08,134.08,129.85,129.65$ (3C), 128.50, 128.18, 128.10 (3C), 127.29, 126.91, 126.78, 124.87, 121.02, 112.59, 107.47, 98.87, 97.31, 61.63, 55.87, 48.50, 46.26, 20.88 ppm . LC-MS (ESI) $m / z 692.30[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 692.2880$, found: 692.2854 .
$\mathbf{N}^{\mathbf{2}}$-(3-((1-(2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-4-methoxyphenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (5f)

This compound was synthesized using similar procedure, yield $=72.4 \%$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.81$ (s, $1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.94$ (brs, 2H), 8.21 $(\mathrm{s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.91$ $(\mathrm{d}, J=8.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{brs}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=6.87 \mathrm{~Hz}$, 1H), 7.54-7.51 (m, 3H), 7.47 (t, $J=7.35 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ ($\mathrm{s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.76 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.90(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=5.52 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{t}, J=5.73$ $\mathrm{Hz}, 2 \mathrm{H}), 4.81(\mathrm{t}, J=5.73 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO$d_{6)} \delta 160.37,159.78,158.06,156.40,155.78,154.63,147.28,145.05,144.28,144.16$, $143.24,142.55,134.08,132.67,129.04$ (3C), 128.65, 128.49, 128.19 (3C), 127.27, $126.89,126.76,124.83,121.04,112.91,112.64,107.54,98.87,97.35,61.66,55.89$, 48.46, 46.28 ppm . LC-MS (ESI) $m / z 678.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 678.2724$, found: 678.2792.

$\mathbf{N}^{\mathbf{2}}$-(3-((1-(2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-

 yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-4-methoxyphenyl)-N ${ }^{4}$-(quinolin-3-yl)pyrimidine-2,4-diamine (5g)

This compound was synthesized using similar procedure, yield $=46.5 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.82$ (s, $1 \mathrm{H}), 9.07$ ($\mathrm{s}, 1 \mathrm{H}$), 8.94 (brs, 1H), 8.93 (s, $1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) 4.94(\mathrm{~s}, 2 \mathrm{H})$, $4.86(\mathrm{t}, 2 \mathrm{H}), 4.79(\mathrm{t}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} . \operatorname{LC}-\mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 711.92[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{ClN}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 712.2334$, found: 712.2403.
$\mathbf{N}^{\mathbf{2}}$-(3-((1-(2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)-4-methoxyphenyl)- N^{4} -(quinolin-3-yl)pyrimidine-2,4-diamine (5h)

This compound was synthesized using similar procedure, yield $=80.0 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.81$ (s, $1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{brs}, 1 \mathrm{H}), 8.93(\mathrm{~s}$,
$1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.44(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} . \mathrm{LC}-$ MS (ESI) $m / z 745.93[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{13} \mathrm{O}_{2}[\mathrm{M}+$ H $]^{+}$: 746.2598, found: 746.2668 .

2.4. General procedure for Sonogashira cross-coupling reaction between 30a-b and alkyne 24a-e

\mathbf{N}^{2}-(4-((3-(4-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)prop-2-yn-1-yl)oxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4diamine (6a)

Solid components including 30a ($20 \mathrm{mg}, 0.053$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.1 \mathrm{mg}, 0.0016 \mathrm{mmol})$, and $\mathrm{CuI}(0.3 \mathrm{mg}, 0.0016 \mathrm{mmol})$ were first added to a two necks flask (10 mL) under a N_{2} atmosphere. This was followed by addition of anhydrous DMF (1 mL), alkyne 24a ($21.3 \mathrm{mg}, 0.058 \mathrm{mmol}$), TEA ($0.074 \mathrm{~mL}, 0.53 \mathrm{mmol}$) which was degassed for 15 minutes with N_{2}. The reaction flask was covered with aluminum foil, and the mixture was stirred for 3 h at room temperature. Distilled water was added and the resulted mixture was extracted with ethyl acetate (3 X 100 $\mathrm{mL})$. The organic phases were dried with anhydrous sodium sulfate, the solvent was evaporated, and the crude product was purified using silica gel chromatography with ethyl acetate/methanol gradient to give a light yellow solid ($19 \mathrm{mg}, 0.031 \mathrm{mmol}$, 58.2% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.94$ (brs, $2 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=5.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=$
$5.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.31$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.04(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 160.43,159.79,158.07,156.44,155.44,153.46,152.34,145.15$, $143.31,142.40,134.48,134.01,133.47,132.14$ (3C), 128.52, 128.44 (3C), 128.18, $127.28,126.97,126.82,121.48,121.23,115.04$ (2C), $98.82,97.42,86.34,86.06$, 56.43, 48.18, $21.73 \mathrm{ppm} . \operatorname{LC-MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 619.01[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 619.2604$, found: 619.2675 .

$\mathbf{N}^{\mathbf{2}}$-(4-((3-(4-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-

yl)phenyl)prop-2-yn-1-yl)oxy)-3-chlorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-

2,4-diamine (6b)

This compound was synthesized using similar procedure, yield $=71 \%$. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO-d d_{6}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=$ $2.28 \mathrm{~Hz}, 1 \mathrm{H}), 8.92$ (brs, 1H), $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.13$ (d, $J=5.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.28 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.22 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64$ (dd, $J=8.91 \mathrm{~Hz}, 2.55 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61-7.55 $(\mathrm{m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, J=9.18 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=5.52$
$\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{sep}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 160.45,159.31,158.05,156.31,155.42,153.44,147.23,145.26$, $143.42,142.37,135.60,133.88,133.56,132.17$ (2C), 128.49, 128.44 (2C), 128.13, 127.40, 127.07, 126.78, 121.70, 121.45, 121.31, 120.84, 118.90, 115.48, 99.43 , 97.41, 86.54, 85.76, 57.59, 48.17, 21.70 (2C) ppm. LC-MS (ESI) $m / z 653.00[\mathrm{M}+$ $\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{ClN}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 653.2214$, found: 653.2297.

\mathbf{N}^{2}-(4-((3-(4-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-

yl)phenyl)prop-2-yn-1-yl)oxy)-3-fluorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-

2,4-diamine (6 c)

This compound was synthesized using similar procedure, yield $=45.7 \% .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.92$ (brs, 1H), 8.23 (s, 1H), 8.17 (d, J $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.80$ (m, 2H), 7.66 (d, J=8.4 Hz, 2H), 7.62-7.56 (m, 4H), $7.40(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.07-5.03(\mathrm{~m}$, 1H), 1.47 (d, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 637.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{FN}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 637.2510, found: 637.2578.

$\mathbf{N}^{\mathbf{2}}$-(4-((3-(4-(4-amino-1-ethyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)prop-

 2-yn-1-yl)oxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (6d)

This compound was synthesized using similar procedure, yield $=60.4 \% \cdot{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 2 \mathrm{H})$, $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.55$ (m, 4H), 7.01 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, 1H), 5.05 (s, 2H), 4.36 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.39$ (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 605.00[\mathrm{M}+$ $\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 605.2448$, found: 605.2526.

$\mathbf{N}^{\mathbf{2}}$-(4-((3-(4-(4-amino-1-ethyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)prop-

 2-yn-1-yl)oxy)-3-chlorophenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (6e)

This compound was synthesized using similar procedure, yield $=57.1 \% .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H})$, $8.91(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, 1 \mathrm{H}), 7.67-7.56(\mathrm{~m}$, $7 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 638.99$ [M $+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{ClN}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 639.2058$, found: 639.2137.
$\mathbf{N}^{\mathbf{2}}$-(4-((3-(4-(4-amino-1-ethyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)prop-2-yn-1-yl)oxy)-3-fluorophenyl)-N ${ }^{4}$-(quinolin-3-yl)pyrimidine-2,4-diamine (6f)
 This compound was synthesized using similar procedure, yield $=50 \% .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{brs}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.80$ (m, 2H), $7.66(\mathrm{~d}, ~ J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 4 \mathrm{H})$, $7.40(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.35 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 623.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{FN}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 623.2353$, found: 623.2435 .

\mathbf{N}^{2}-(3-((3-(4-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-

yl)phenyl)prop-2-yn-1-yl)oxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-
diamine (7a)

This compound was synthesized using similar procedure, yield $=51.1 \% .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J$ $=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=2.52 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}$, $1 \mathrm{H}), 8.14(\mathrm{~d}, ~ J=5.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.86(\mathrm{~m}, 2 \mathrm{H})$, 7.67 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.36$ (dd, $J=8.12 \mathrm{~Hz}, 1.04 \mathrm{~Hz}, 1 \mathrm{H}$), $7.23(\mathrm{t}, J=8.12$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.04 \mathrm{~Hz}, 2.24 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=5.72 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{sep}$, $1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=6.68 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ $160.44,159.46,158.08,157.73,156.36,155.45,153.46,145.12,143.34,142.42$, 141.94, 133.94, 133.47, 132.16 (2C), 129.21, 128.50, 128.43 (2C), 128.20, 127.43, 127.04, 126.87, 121.49, 121.20, 112.63, 107.27, 106.43, 99.56, 97.42, 86.17, 86.04, 55.98, 48.18, 21.75 (2C) ppm. LC-MS (ESI) $m / z 619.01[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 619.2604$, found: 619.2683.
$\mathbf{N}^{\mathbf{2}}$-(3-((3-(4-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)prop-2-yn-1-yl)oxy)-4-methoxyphenyl)- \mathbf{N}^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (7b)

This compound was synthesized using similar procedure, yield $=58.5 \% .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.79$ ($\mathrm{s}, 1 \mathrm{H}$), 9.14 ($\mathrm{s}, 1 \mathrm{H}$), 8.94 (s , $1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=5.94$ $\mathrm{Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.51$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.96(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=5.52 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{sep}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.42 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) δ $160.38,159.88,158.06,156.41,155.42,153.45,146.51,144.99,144.73,143.21$, $142.38,134.03,133.39,132.08$ (2C), 128.46, 128.32 (2C), 128.17, 127.29, 126.89, $126.73,121.47,121.06,113.91,112.58,108.70,98.86,97.39,86.15,86.11,57.00$, 55.92, 48.16, 21.71 (2C) ppm. LC-MS (ESI) $m / z 649.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{10} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 649.2710$, found: 649.2795 .

$\mathbf{N}^{\mathbf{2}}$-(3-((3-(4-(4-amino-1-ethyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)prop-

 2-yn-1-yl)oxy)phenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (7c)
$2.28 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=5.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.39$ (t, $J=7.14 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 605.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 605.2448$, found: 605.2518 .
\mathbf{N}^{2}-(3-((3-(4-(4-amino-1-ethyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)phenyl)prop-2-yn-1-yl)oxy)-4-methoxyphenyl)- N^{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (7d)

This compound was synthesized using similar procedure, yield $=42.9 \% .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.95$ (brs, $1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=5.52$ $\mathrm{Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.51$ (d, $J=8.22 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.18 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.35 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 160.40$, 159.91, 158.11, 156.45, 155.65, 153.84, 146.50, 144.99, 144.72, 143.20, 142.63, $134.05,134.03,133.25,132.10$ (2C), 128.47, 128.30 (2C), 128.19, 127.31, 126.89, $126.75,121.52,121.05,113.91,112.57,108.71,98.87,97.27,86.14,56.99,55.92$, 41.42, 14.64 ppm . LC-MS (ESI) $m / z 635.00[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 635.2553$, found: 635.2625.

2.5. General procedure for synthesis of Src module

2-(hydroxy(p-tolyl)methylene)malononitrile (9a)

Sodium hydride $57-63 \%$ oil dispersion ($1.55 \mathrm{~g}, 38.8 \mathrm{mmol}$) was dried in vacuum for 15 minutes and then suspended in dry THF $(4 \mathrm{~mL})$ and the mixture was cooled to $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere. Malononitrile ($1.47 \mathrm{~g}, 22.3 \mathrm{mmol}$) was dissolved in dry THF (15 mL) and added dropwise to the stirring sodium hydride mixture in THF over 20 minutes. p-Toluoyl chloride ($3 \mathrm{~g}, 19.4 \mathrm{mmol}$) was dissolved in dry THF (15 mL) and added dropwise to the stirring mixture over 30 minutes. The reaction was allowed to warm to room
temperature and stirred for an additional 30 minutes. Isopropanol was added slowly to quench sodium hydride and the reaction mixture was evaporated. The mixture was extracted with ethyl acetate (3 X 200 mL) and dried over anhydrous sodium sulfate. The ethyl acetate was evaporated under reduced pressure and the compound was purified by silica gel column chromatography using ethyl acetate as the eluent to afford a white solid ($3.1 \mathrm{~g}, 16.8 \mathrm{mmol}$, yield $=86.7 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

2-(hydroxy(phenyl)methylene)malononitrile (9b)

This compound was synthesized by using benzoyl chloride, yield $=64.5 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.64(\mathrm{dd}, J=8.4 \mathrm{~Hz}$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

2-((4-chlorophenyl)(hydroxy)methylene)malononitrile (9c)

 This compound was synthesized using 4-chlorobenzoyl chloride, yield $=74.4 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.63$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

2-(hydroxy(4-(trifluoromethyl)phenyl)methylene)malononitrile (9d)

This compound was synthesized using 4(trifluoromethyl)benzoyl chloride, yield $=90.3 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz, CD 3 OD) $\delta 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=$
$8.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

2-(hydroxy(4-iodophenyl)methylene)malononitrile (9e)

This compound was synthesized using 4-iodobenzoyl chloride, yield $=92.5 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.86(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

2-(methoxy(p-tolyl)methylene)malononitrile (10a)

To a solution of $\mathbf{9 a}(1 \mathrm{~g}, 5.4 \mathrm{mmol})$ in dioxane $(10 \mathrm{~mL})$ and water (2 mL) was added sodium bicarbonate ($3.6 \mathrm{~g}, 43.4 \mathrm{mmol}$) slowly. Dimethyl sulfate ($3.0 \mathrm{~mL}, 32.5 \mathrm{mmol}$) was then added to the reaction mixture and the solution was refluxed at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled, diluted with water and extracted with ethyl acetate (3 X 200 mL). The organic layer was dried with anhydrous sodium sulfate and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using hexane/ethyl acetate to afford a light yellow solid $(0.7 \mathrm{~g}, 3.5 \mathrm{mmol}$, yield $=65.1 \%)$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.87 ($\mathrm{s}, 3 \mathrm{H}$), $2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

2-(methoxy(phenyl)methylene)malononitrile (10b)

This compound was synthesized using 9b, yield $=62.8 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.46(\mathrm{~m}, 5 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

2-((4-chlorophenyl)(methoxy)methylene)malononitrile (10c)

This compound was synthesized using 9c, yield $=50.1 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47 (dd, $J=8.7 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.97 (s, 3H) ppm.

2-(methoxy(4-(trifluoromethyl)phenyl)methylene)malononitrile (10d)

This compound was synthesized using 9d, yield $=58.3 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$
(d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (s, 3H) ppm.

2-((4-iodophenyl)(methoxy)methylene)malononitrile (10e)

This compound was synthesized using $\mathbf{9 e}$, yield $=57 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (dd, $J=8.7 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23(\mathrm{dd}, J=6.9 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

5-amino-3-(p-tolyl)-1H-pyrazole-4-carbonitrile (11a)

To a solution of $\mathbf{1 0 a}(2.1 \mathrm{~g}, 10.6 \mathrm{mmol})$ in ethanol $(15 \mathrm{~mL})$ were added triethylamine ($4.4 \mathrm{~mL}, 31.8 \mathrm{mmol}$) and hydrazine hydrochloride ($0.76 \mathrm{~g}, 11.1 \mathrm{mmol}$) and the mixture was refluxed at $120{ }^{\circ} \mathrm{C}$ for 30 minutes. Ethanol was evaporated and the residue was purified by silica gel column chromatography with ethyl acetate/ hexane gradient to give a yellow solid ($1.74 \mathrm{~g}, 8.8 \mathrm{mmol}$, yield $=82.9 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.07(\mathrm{brs}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 199.10[\mathrm{M}+\mathrm{H}]^{+}$.

5-amino-3-phenyl-1H-pyrazole-4-carbonitrile (11b)

This compound was synthesized using 10 b , yield $=77.8 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.15$ (brs, 1 H), 7.78 (d, $J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.

5-amino-3-(4-chlorophenyl)-1H-pyrazole-4-carbonitrile (11c)

This compound was synthesized using $\mathbf{1 0 c}$, yield $=79.8 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.23(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.54$ (brs, 2 H$) \mathrm{ppm}$.

5-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole-4-carbonitrile (11d)

This compound was synthesized using 10d, yield $=75 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.35$ (brs, 1H), 8.00 (d, $J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.57$ (brs, 2H) ppm.

5-amino-3-(4-iodophenyl)-1H-pyrazole-4-carbonitrile (11e)

This compound was synthesized using $\mathbf{1 0 e}$, yield $=79.6 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.53$ (brs, 1 H), 7.82 (d, $J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.53$ (brs, 2H) ppm.

3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (12a)

Compound $11 \mathbf{1 a}(1.74 \mathrm{~g}, 8.8 \mathrm{mmol})$ was suspended in formamide $(8 \mathrm{~mL})$ and heated at $160{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was cooled to rt , water was added and the resulting precipitate was filtered and dried to give a sand color solid ($1.65 \mathrm{~g}, 7.3 \mathrm{mmol}$, yield $=83.4 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.49$ (brs, 1 H), $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), 7.34 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $\mathrm{m} / \mathrm{z} 226.10[\mathrm{M}+\mathrm{H}]^{+}$.

3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (12b)

This compound was synthesized using 11b, yield $=52.9 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.61$ ($\mathrm{s}, 1 \mathrm{H}$), 8.21 ($\mathrm{s}, 1 \mathrm{H}$), 7.66 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.

3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (12c)

This compound was synthesized using 11c, yield $=35.6 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.65$ (brs, 1H), 8.21 (s, 1H), 7.67 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 246.00[\mathrm{M}+\mathrm{H}]^{+}$.

3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (12d)

 This compound was synthesized using 11d, yield $=67.7 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.75$ (brs, 1H), 8.23 (s, 1H), 7.87 ($\mathrm{s}, 4 \mathrm{H}$) ppm.

3-(4-iodophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (12e)

This compound was synthesized using 11e, yield $=64.4 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.65$ (s, 1H), 8.20 ($\mathrm{s}, 1 \mathrm{H}$), 7.88 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

1-(prop-2-yn-1-yl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (26a)

To a solution of $\mathbf{1 2 a}(400 \mathrm{mg}, 1.78 \mathrm{mmol})$ in anhydrous DMF $(5 \mathrm{~mL})$ were added potassium carbonate $(614 \mathrm{mg}, 4.4 \mathrm{mmol})$ and propargyl bromide ($0.17 \mathrm{~mL}, 1.95 \mathrm{mmol}$). The mixture was stirred at rt for 3 h . DCM was added and the mixture was filter to remove potassium carbonate and partitioned between water and DCM (3 X 150 mL). The organic layer was dried with sodium sulfate and evaporated in vacuo. The crude product was purified using silica gel chromatography with $\mathrm{DCM} /$ methanol gradient to afford the desired product as a yellow solid ($250 \mathrm{mg}, 0.95 \mathrm{mmol}, 53.5 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}$,
$J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{brs}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{t}, J=$ $2.55 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 264.10[\mathrm{M}+\mathrm{H}]^{+}$.

3-phenyl-1-(prop-2-yn-1-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (26b)

This compound was synthesized using $\mathbf{1 2 b}$, yield $=44.7 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.95 \mathrm{~Hz}$, $1.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 5.57$ (brs, 2H), $5.25(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

3-(4-chlorophenyl)-1-(prop-2-yn-1-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (26c)

This compound was synthesized using 12c, yield $=60.7 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{brs}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.39(\mathrm{t}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethan-1-ol (27a)

To a solution of 12a ($1 \mathrm{~g}, 4.4 \mathrm{mmol}$) in anhydrous DMF (7 $\mathrm{mL})$ under a N_{2} atmosphere were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.1 \mathrm{~g}, 6.6$ $\mathrm{mmol})$ and 2-bromoethanol ($0.47 \mathrm{~mL}, 6.6 \mathrm{mmol}$) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was extracted with ethyl acetate (3 X 200 mL). The combined organic phase was separated, dried over anhydrous sodium sulfate, filtered, and the filtrate was evaporated to dryness under reduced pressure. The crude product was purified using silica gel chromatography with ethyl acetate/methanol gradient to afford the desired product as a white solid ($0.6 \mathrm{~g}, 2.2 \mathrm{mmol}, 50.2 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $8.23(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethan-1-ol (27b)

This compound was synthesized using $\mathbf{1 2 b}$, yield $=50.3 \%$. ${ }^{1} \mathrm{H}$
NMR (300 MHz, DMSO- d_{6}) $\delta 8.24$ (s, 1H), 7.67 (dd, $J=8.4$
$\mathrm{Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{t}, J=5.55 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethan-1-ol (27c)

This compound was synthesized using 12c, yield $=62.7 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.24$ (s, 1H), 7.67 (d, $J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{t}, J=5.55 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}$, $J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethan-1-ol (27d)

This compound was synthesized using 12d, yield $=53 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (s, 4H), 4.90 $(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{q}, J=5.8 \mathrm{~Hz}$, 2H) ppm.

2-(4-amino-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl methanesulfonate (28a)

To a suspension of $\mathbf{2 7 a}(600 \mathrm{mg}, 2.2 \mathrm{mmol})$ in pyridine (3 mL) under a N_{2} atmosphere was added methanesulfonyl chloride $(0.2 \mathrm{~mL}, 2.6 \mathrm{mmol})$ and the mixture was stirred at rt for 12 h . The resulting mixture was concentrated in vacuo and then partitioned between water and ethyl acetate. The organic layer was dried with sodium sulfate and evaporated under reduced pressure. The crude product was purified using
silica gel chromatography with ethyl acetate/methanol gradient to afford the desired product as a white solid ($405 \mathrm{mg}, 1.17 \mathrm{mmol}, 52.3 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.59$ (brs, 2H), 4.79-4.73 (m, 4H), 2.94 (s, 3H), 2.44 (s, 3H) ppm.

2-(4-amino-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl methanesulfonate (28b)

This compound was synthesized using 27b, yield $=75.8 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36$ (s, 1H), 7.69-7.67 (m, 2H), 7.57-7.46 (m, 3H), 5.90 (brs, 2H), 4.77-4.73 (m, 4H), 2.93 (s, 3H) ppm.

2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl methanesulfonate (28c)

This compound was synthesized using 27c, yield $=45.1 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=6.9 \mathrm{~Hz}$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.55$ (brs, 2 H), 4.79-4.73 (m, 4H), 2.95 (s, 3H) ppm.

2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1yl)ethyl methanesulfonate (28d)

This compound was synthesized using 27d, yield $=68.5 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 4 \mathrm{H})$, 5.53 (brs, 2H), 4.82-4.74 (m, 4H), $2.96(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

1-(2-azidoethyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (29a)

To a solution of $\mathbf{2 8 a}(405 \mathrm{mg}, 1.17 \mathrm{mmol})$ in anhydrous DMF (4 mL) under a N_{2} atmosphere was added sodium azide (152 $\mathrm{mg}, 2.3 \mathrm{mmol}$) and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 8 h . The mixture was extracted with ethyl acetate (3 X 150 mL). The combined organic phase was separated, dried over anhydrous sodium sulfate, filtered, and the filtrate was evaporated to dryness under reduced pressure. The crude product was purified using silica gel chromatography with ethyl acetate/methanol gradient to afford the desired product as a white solid $(300 \mathrm{mg}, 1.02 \mathrm{mmol}$, yield $=87.4 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H})$, 7.59 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.49$ (brs, 2H), 4.62 (t, $J=6 \mathrm{~Hz}$, 2H), $3.85(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) m/z: $295.10[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-azidoethyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (29b)

This compound was synthesized using 28b, yield $=83.8 \%$. ${ }^{1} \mathrm{H}$
NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42$ (s, 1H), 7.71 (dd, $J=8.4 \mathrm{~Hz}$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (m, 3H), 5.55 (brs, 2H), 4.63 (t, $J=5.85 \mathrm{~Hz}$, $2 \mathrm{H}), 3.86(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

1-(2-azidoethyl)-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (29c)

This compound was synthesized using 28c, yield $=80.3 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=6.9 \mathrm{~Hz}$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (dd, $J=8.55 \mathrm{~Hz}, 1.65 \mathrm{~Hz}, 2 \mathrm{H}$), 5.84 (brs, $2 \mathrm{H}), 4.62(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

1-(2-azidoethyl)-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-4amine (29d)

This compound was synthesized using $\mathbf{2 8 d}$, yield $=88.3 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{q}, J=8.7 \mathrm{~Hz}$, $4 \mathrm{H}), 5.48(\mathrm{br}, 2 \mathrm{H}), 4.65(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(J=5.85 \mathrm{~Hz}$, 2H) ppm.

3-(4-iodophenyl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine (30a)

To a solution of 12e ($400 \mathrm{mg}, 1.19 \mathrm{mmol}$) in anhydrous DMF (5 mL) under a N_{2} atmosphere were added potassium carbonate (656 $\mathrm{mg}, 4.7 \mathrm{mmol})$ and 2-iodopropane $(0.13 \mathrm{~mL}, 1.3 \mathrm{mmol})$ and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . The mixture was diluted with ethyl acetate and filtered. The filtrate was then partitioned between water and ethyl acetate. The organic layer was dried with sodium sulfate and concentrated in vacuo. The crude product was purified using silica gel chromatography with ethyl acetate/methanol gradient to afford the desired product as a yellow solid ($250 \mathrm{mg}, 0.66 \mathrm{mmol}, 55.6 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.38(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 2 \mathrm{H})$, 5.44 (brs, 2H), 5.18 (sep, 1H), 1.59 (dd, $J=6.6 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.

1-ethyl-3-(4-iodophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (30b)

This compound was synthesized using iodoethane, 50.8% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 2H), 7.45 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.49$ (brs, 2H), $4.50(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.54(\mathrm{t}, J=7.35 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

2.6. General procedure for efficient synthesis of Src module

5-amino-1H-pyrazole-4-carbonitrile (32)

To a solution of 2-(ethoxymethylene)malononitrile 31 ($5 \mathrm{~g}, 40.9$ $\mathrm{mmol})$ in ethanol $(8 \mathrm{~mL})$ were added hydrazine monohydrochloride $(2.86 \mathrm{~g}, 41.7 \mathrm{mmol})$ and triethylamine $(0.34 \mathrm{~mL}, 122.8 \mathrm{mmol})$ and the mixture was refluxed at $100{ }^{\circ} \mathrm{C}$ for 30 minutes. The resulting mixture was evaporated and the crude product was purified using silica gel chromatography with hexane/ethyl acetate gradient to afford the desired product as a yellow solid (2.6 g , 24.1 mmol , yield $=58.7 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.94($ brs, 1 H$), 7.48$ (s, 1H), 6.30 (brs, 2H) ppm. LC-MS (ESI) $m / z 109.10[\mathrm{M}+\mathrm{H}]^{+}$.

1H-pyrazolo[3,4-d]pyrimidin-4-amine (33)

$32(2.6 \mathrm{~g}, 24.1 \mathrm{mmol})$ was mixed with formamide $(5 \mathrm{~mL})$ and heated to $160{ }^{\circ} \mathrm{C}$ overnight under N_{2}. The mixture was cooled to rt and distilled water was added, the resulting precipitate was filtered to give 33 as sand colour solid ($2.575 \mathrm{~g}, 19.1 \mathrm{mmol}$, yield $=79.2 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.32$ (brs, 1H), 8.12 (s, 1H), 8.05 (s, 1H), 7.58 (brs, 2H) ppm.

3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine (34)

To a solution of $\mathbf{3 3}(2.575 \mathrm{~g}, 19.1 \mathrm{mmol})$ in anhydrous DMF (10 mL) was added N -iodosuccinimide $(6.43 \mathrm{~g}, 28.6 \mathrm{mmol})$ and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was cooled to rt and DCM was added and the precipitate was filtered to give yellow solid ($4.8 \mathrm{~g}, 18.4$ mmol, yield $=96.5 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 13.79$ (brs, 1 H), 8.16 (s , 1H) ppm. LC-MS (ESI) $m / z 261.80[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethan-1-ol (35)

To solution of $\mathbf{3 4}(2 \mathrm{~g}, 7.7 \mathrm{mmol})$ in anhydrous DMF (8 mL) under N_{2} atmosphere were added 2-bromoethanol $(0.81 \mathrm{~mL}$, 11.5 mmol) and cesium carbonate ($3.7 \mathrm{~g}, 11.5 \mathrm{mmol}$) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The resulting mixture was cooled to rt and distilled water was added and the resulting precipitate was filtered to give yellow solid ($1.4 \mathrm{~g}, 4.6 \mathrm{mmol}$, yield $=59.9 \%) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{q}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

2-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethan-1-ol

 (27c)

Solid components including $35(1 \mathrm{~g}, 3.3 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) ($189 \mathrm{mg}, 0.16 \mathrm{mmol}$), cesium carbonate ($1.6 \mathrm{~g}, 4.9 \mathrm{mmol}$) were first added to a flask under N_{2}. This was followed by addition of 4chlorophenylboronic acid ($768 \mathrm{mg}, 4.9 \mathrm{mmol}$) and a mixture of DMF:water (2:1, 6 mL). The mixture was then refluxed at $100{ }^{\circ} \mathrm{C}$ for 3 h and extracted with EA and water. The crude product was purified using silica gel chromatography with ethyl acetate/methanol gradient to afford the desired product as a white solid $(770 \mathrm{mg}, 2.7 \mathrm{mmol}$, yield $=81.1 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{t}, J=5.55$ $\mathrm{Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

2-(4-amino-3-(4-(trifluoromethyl)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-

 yl)ethan-1-ol (27d)

This compound was synthesized by using 4(trifluoromethyl)phenylboronic acid, yield $=92.1 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 4 \mathrm{H}), 4.89(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$ ppm.

2.7. General procedure for synthesis of IGF-1R module I

2-methylquinolin-4-ol (14a)

Aniline ($100 \mathrm{mg}, 1 \mathrm{mmol}$) and polyphosphoric acid (6 mL) was heated to $80^{\circ} \mathrm{C}$, ethylacetoacetate ($0.15 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added drop wise and heated to $120^{\circ} \mathrm{C}$ for 16 h . The mixture was poured over crushed ice and neutralized with aqueous ammonia, the resulting precipitate was filtered, washed with diethyl ether and to give a solid ($140 \mathrm{mg}, 0.9 \mathrm{mmol}, 81.9 \%$ yield).

4-chloro-2-methylquinoline (15a)

To the solution of $\mathbf{1 4 a}(50 \mathrm{mg}, 1.0 \mathrm{mmol})$ in acetone $(0.15 \mathrm{~mL})$, was added phosphorous oxycholoride (5 mL) carefully and the mixture was heated to $105^{\circ} \mathrm{C}$ for 3 h . The excess of phosphorous oxycholoride was removed under reduce pressure. The residue was quenched into crushed ice. The reaction mixture was neutralized using saturated sodium bicarbonate and the resulting precipitate was filter to give a yellow solid (48 mg , $0.27 \mathrm{mmol}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H})$, 2.72 (s, 3H) ppm.

4-chloro-6-fluoro-2-methylquinoline (15b)

This compound was synthesized using 14b, yield $=96 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67 (dd, $J=9.3 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=8.1 \mathrm{~Hz}, 2.7 \mathrm{~Hz}$, 1H), $7.29(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 196[\mathrm{M}+\mathrm{H}]^{+}$.

4-chloro-6-iodo-2-methylquinoline (15c)

This compound was synthesized 14c, yield $=87 \% .^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 1.8$ Hz, 1H), 7.83 (brs, 1H), 7.42 (s, 1H), 2.74 (s, 3H). LC-MS (ESI) $m / z 303[\mathrm{M}+\mathrm{H}]^{+}$.

4-chloro-6-methoxy-2-methylquinoline (15d)

This compound was synthesized using 14d, yield $=89 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38$ (m, 2H), $7.36(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) $m / z 208.10[\mathrm{M}+\mathrm{H}]^{+}$.

4-azido-2-methylquinoline (16a)

To a solution of $\mathbf{1 5 a}(48 \mathrm{mg}, 0.27 \mathrm{mmol})$ in DMF was added sodium azide ($88 \mathrm{mg}, 1.35 \mathrm{mmol}$) and the mixture was heated to $100^{\circ} \mathrm{C}$ for 4 h . The resulting mixture was cooled to rt , extracted with DCM and brine. The organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was evaporated to dryness under reduced pressure. The crude product was purified using silica gel chromatography with hexane/ethyl acetate gradient to afford the desired product as a brown solid ($44 \mathrm{mg}, 0.24 \mathrm{mmol}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8$ Hz, 1H), 6.96 (s, 1H), 2.70 (s, 3H) ppm. LC-MS (ESI) $m / z 185.10[\mathrm{M}+\mathrm{H}]^{+}$.

4-azido-6-fluoro-2-methylquinoline (16b)

This compound was synthesized using 15b, yield $=92 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ (brs, 1H), $7.63(\mathrm{dd}, J=9.3 \mathrm{~Hz}$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=10.8 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 2.59$ (s, 3H) ppm. LC-MS (ESI) $m / z 203.00[\mathrm{M}+\mathrm{H}]^{+}$.

4-azido-6-iodo-2-methylquinoline (16c)

This compound was synthesized using $15 \mathbf{c}$, yield $=79 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J$ $=9.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 2.69$ ($\mathrm{s}, 3 \mathrm{H}$). LC-MS (ESI) $m / z 311.00[\mathrm{M}+\mathrm{H}]^{+}$.

4-azido-6-methoxy-2-methylquinoline (16d)

This compound was synthesized using 15d, yield $=81 \%$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}$, $J=9.3 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, 3.92 (s, 3H), 2.70 (s, 3H).

2-azido-N-(2-methylquinolin-4-yl)acetamide (18)

To a solution of 4-aminoquinaldine $17(100 \mathrm{mg}, 0.63 \mathrm{mmol})$ in a mixture of DMF and DCM (4 mL) under a N_{2} atmosphere were added 2-azidoacetic acid ($0.05 \mathrm{~mL}, 0.63 \mathrm{mmol}$), 1-ethyl-3-(3 dimethylaminopropyl)carnodiimide hydrochloride (EDC) $(182 \mathrm{mg}, 0.95 \mathrm{mmol})$, DIEA $(0.17 \mathrm{~mL}, 0.95 \mathrm{mmol})$ and the mixture was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 8 h . The mixture was partitioned with DCM, water and the crude product was purified using silica gel chromatography with hexane/ethyl acetate gradient to afford the desired product as a brown solid ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$, yield $=65.6 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99$ (brs, 1H), $8.22(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}$,
$J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H})$, 2.80 (s, 3H) ppm. LC-MS (ESI) $m / z 242.10[\mathrm{M}+\mathrm{H}]^{+}$.

2.8. General procedure for synthesis of IGF-1R module II

N -(2-chloropyrimidin-4-yl)quinolin-3-amine (21)

To a solution of 2,4-dichloropyrimidine $19(1 \mathrm{~g}, 6.71$ $\mathrm{mmol})$ and 3-aminoquinoline $20(968 \mathrm{mg}, 6.71 \mathrm{mmol})$ in 2-propanol (12 mL) under a N_{2} atmosphere was added DIEA ($1.75 \mathrm{~mL}, 10.07 \mathrm{mmol}$) and the mixture was refluxed for 24 h . The reaction mixture was concentrated in vacuo and methanol was added, the resulting precipitate was filtered and dried to give a white solid ($1.2 \mathrm{~g}, 4.67 \mathrm{mmol}, 69.6 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.47$ (brs, 1 H), $8.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.63(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

4-((4-(quinolin-3-ylamino)pyrimidin-2-yl)amino)phenol (23a)

To a solution of $\mathbf{2 1}(500 \mathrm{mg}, 1.9 \mathrm{mmol})$ in $\mathrm{DMSO}(1 \mathrm{~mL})$ was added 4 -aminophenol 22a ($233 \mathrm{mg}, 2.1 \mathrm{mmol}$) and the mixture was stirred at $90{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere for 2 h . The mixture was cooled to rt , and DCM was added, the resulting precipitate was filtered and dried to give a grey solid ($580 \mathrm{mg}, 1.8 \mathrm{mmol}, 90.4 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{brs}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=$ $5.7 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

2-chloro-4-((4-(quinolin-3-ylamino)pyrimidin-2-yl)amino)phenol (23b)

This compound was synthesized using 2-chloro-4aminophenol 22b (yield $=98.8 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6}) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.92$ $(\mathrm{s}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78 (d, 1H), 7.72 (s, 1H), 7.61-7.55 (m, 2H), 7.42 (dd, J $=8.85 \mathrm{~Hz}, 2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

2-fluoro-4-((4-(quinolin-3-ylamino)pyrimidin-2-yl)amino)phenol (23c)

This compound was synthesized using 4-amino-2fluorophenol 22c, yield $=96 \%$. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.92$ $(\mathrm{s}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=9.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

3-((4-(quinolin-3-ylamino)pyrimidin-2-yl)amino)phenol (23d)

This compound was synthesized using 3-aminophenol 22d, yield $=87.5 \%$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ $9.85(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H})$, $8.92(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8$
$\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.95 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$ ppm.

2-methoxy-5-((4-(quinolin-3-ylamino)pyrimidin-2-yl)amino)phenol (23e)

This compound was synthesized using 2-methoxy-5aminophenol 22e, yield $=95.7 \% .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{~s}, 1 \mathrm{H})$, $8.97(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ $(\mathrm{d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}$, 1H), $6.96(\mathrm{~d}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$ ppm.
\mathbf{N}_{2}-(4-(prop-2-yn-1-yloxy)phenyl)- \mathbf{N}_{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (24a)

To a solution of 23a ($200 \mathrm{mg}, 0.6 \mathrm{mmol}$) in anhydrous DMF (3 mL), were added cesium carbonate (396 mg , $1.2 \mathrm{mmol})$ and propargyl bromide $(0.06 \mathrm{~mL}, 0.7 \mathrm{mmol})$. The reaction mixture was stirred at rt for 2 h . The distilled water was added and the precipitate was filtered and washed with water to give a grey solid ($150 \mathrm{mg}, 0.4 \mathrm{mmol}, 67.2 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.94$ (brs, 1H), 8.91 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.62-$ $7.53(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.56(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. LC-MS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 368.14, found: 368.20.

\mathbf{N}_{2}-(3-chloro-4-(prop-2-yn-1-yloxy)phenyl)-N4-(quinolin-3-yl)pyrimidine-2,4diamine (24b)

This compound was synthesized by using 23b, yield $=$ $59 \% .^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H})$, $9.30(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.92$ (brs, 1H), $8.11(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=2.25 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

\mathbf{N}_{2}-(3-fluoro-4-(prop-2-yn-1-yloxy)phenyl)- \mathbf{N}_{4}-(quinolin-3-yl)pyrimidine-2,4diamine (24c)

This compound was synthesized by using 23c, yield $=$ 61%. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H})$, $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.11$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.75$ (m, 2H), 7.62-7.54 (m, 2H), 7.37 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.14(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

\mathbf{N}_{2}-(3-(prop-2-yn-1-yloxy)phenyl)-N4-(quinolin-3-yl)pyrimidine-2,4-diamine

 (24d)

This compound was synthesized by using 23d, yield $=62.8 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $9.87(\mathrm{~s}, 1 \mathrm{H}), 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.94-7.83 (m, 2H), 7.62-7.54 (m, 2H), $7.46(\mathrm{~s}, 1 \mathrm{H})$,
$7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.36(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

\mathbf{N}_{2}-(4-methoxy-3-(prop-2-yn-1-yloxy)phenyl)-N4-(quinolin-3-yl)pyrimidine-2,4diamine (24e)

This compound was synthesized by using 23e, yield $=60.3 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $9.81(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J$ $=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H})$, $7.32(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{t}, J=2.25 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
\mathbf{N}_{2}-(4-(2-bromoethoxy)phenyl)- \mathbf{N}_{4}-(quinolin-3-yl)pyrimidine-2,4-diamine (25)

To a solution of 23a ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) in anhydrous DMF (3 mL), were added potassium carbonate $(300 \mathrm{mg}, \quad 1.5 \mathrm{mmol})$ and 1,2dibromoethanol ($0.029 \mathrm{~mL}, 0.33 \mathrm{mmol}$) and the mixture was stirred at rt for 12 h . The resulting mixture was diluted with ethyl acetate and filtered. The filtrate was then extracted with ethyl acetate (3 X 100 mL) and water. The combined organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was evaporated under reduced pressure. The crude was purified by column chromatography with ethyl acetate/methanol gradient give $\mathbf{2 5}$ as a white solid ($65 \mathrm{mg}, 0.15 \mathrm{mmol}, 49 \%$ yield). ${ }^{1} H$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.83$ (s, 1H), 9.14 (s, 1H), 8.90 (d, 2H), 8.07 (d, J $=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.28(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

REFERENCES

1. Ferlay J, S. I., Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F., Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. GLOBOCAN 2012 v1.1 2013.
2. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2016. CA Cancer J Clin 2016, 66 (1), 7-30.
3. Chabner, B. A.; Roberts, T. G., Chemotherapy and the war on cancer. Nature reviews. Cancer 2005, 5 (1), 65-72.
4. Kayl, A. E.; Meyers, C. A., Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current opinion in obstetrics \& gynecology 2006, 18 (1), 24-8.
5. Zhang, J.; Yang, P. L.; Gray, N. S., Targeting cancer with small molecule kinase inhibitors. Nature reviews. Cancer 2009, 9 (1), 28-39.
6. Hopkins, A. L., Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008, 4 (11), 682-90.
7. Petrelli, A.; Giordano, S., From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 2008, 15 (5), 422-32.
8. Gossage, L.; Eisen, T., Targeting multiple kinase pathways: a change in paradigm. Clin Cancer Res 2010, 16 (7), 1973-8.
9. Zimmermann, G. R.; Lehar, J.; Keith, C. T., Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug discovery today 2007, 12 (1-2), 34-42.
10. Broekman, F.; Giovannetti, E.; Peters, G. J., Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World Journal of Clinical Oncology 2011, 2 (2), 80-93.
11. Pollak, M. N.; Schernhammer, E. S.; Hankinson, S. E., Insulin-like growth factors and neoplasia. Nature reviews. Cancer 2004, 4 (7), 505-18.
12. Wu, J.; Li, W.; Craddock, B. P.; Foreman, K. W.; Mulvihill, M. J.; Ji, Q. S.; Miller, W. T.; Hubbard, S. R., Small-molecule inhibition and activation-loop transphosphorylation of the IGF1 receptor. The EMBO journal 2008, 27 (14), 1985-94.
13. Pappo, A. S.; Patel, S. R.; Crowley, J.; Reinke, D. K.; Kuenkele, K. P.; Chawla, S. P.; Toner, G. C.; Maki, R. G.; Meyers, P. A.; Chugh, R.; Ganjoo, K. N.; Schuetze, S. M.; Juergens, H.; Leahy, M. G.; Geoerger, B.; Benjamin, R. S.; Helman, L. J.; Baker, L. H., R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol 2011, 29 (34), 4541-7.
14. Ramalingam, S. S.; Spigel, D. R.; Chen, D.; Steins, M. B.; Engelman, J. A.; Schneider, C. P.; Novello, S.; Eberhardt, W. E.; Crino, L.; Habben, K.; Liu, L.; Janne,
P. A.; Brownstein, C. M.; Reck, M., Randomized phase II study of erlotinib in combination with placebo or R1507, a monoclonal antibody to insulin-like growth factor-1 receptor, for advanced-stage non-small-cell lung cancer. J Clin Oncol 2011, 29 (34), 4574-80.
15. Reidy, D. L.; Vakiani, E.; Fakih, M. G.; Saif, M. W.; Hecht, J. R.; GoodmanDavis, N.; Hollywood, E.; Shia, J.; Schwartz, J.; Chandrawansa, K.; Dontabhaktuni, A.; Youssoufian, H.; Solit, D. B.; Saltz, L. B., Randomized, phase II study of the insulin-like growth factor-1 receptor inhibitor IMC-A12, with or without cetuximab, in patients with cetuximab- or panitumumab-refractory metastatic colorectal cancer. J Clin Oncol 2010, 28 (27), 4240-6.
16. Schmitz, S.; Kaminsky-Forrett, M. C.; Henry, S.; Zanetta, S.; Geoffrois, L.; Bompas, E.; Moxhon, A.; Mignion, L.; Guigay, J.; Knoops, L.; Hamoir, M.; Machiels, J. P., Phase II study of figitumumab in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck: clinical activity and molecular response (GORTEC 2008-02). Ann Oncol 2012, 23 (8), 2153-61.
17. Min, H.-Y.; Yun, H. J.; Lee, J.-S.; Lee, H.-J.; Cho, J.; Jang, H.-J.; Park, S.H.; Liu, D.; Oh, S.-H.; Lee, J. J.; Wistuba, I. I.; Lee, H.-Y., Targeting the insulinlike growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Molecular Cancer 2015, 14 (1), 1-16.
18. Wan, X.; Yeung, C.; Heske, C.; Mendoza, A.; Helman, L. J., IGF-1R Inhibition Activates a YES/SFK Bypass Resistance Pathway: Rational Basis for CoTargeting IGF-1R and Yes/SFK Kinase in Rhabdomyosarcoma. Neoplasia 2015, 17 (4), 358-366.
19. Shin, D. H.; Lee, H. J.; Min, H. Y.; Choi, S. P.; Lee, M. S.; Lee, J. W.; Johnson, F. M.; Mehta, K.; Lippman, S. M.; Glisson, B. S.; Lee, H. Y., Combating resistance to anti-IGFR antibody by targeting the integrin beta3-Src pathway. J Natl Cancer Inst 2013, 105 (20), 1558-70.
20. Thomas, S. M.; Brugge, J. S., Cellular functions regulated by Src family kinases. Annual review of cell and developmental biology 1997, 13, 513-609.
21. Dayyani, F.; Parikh, N. U.; Varkaris, A. S.; Song, J. H.; Moorthy, S.; Chatterji, T.; Maity, S. N.; Wolfe, A. R.; Carboni, J. M.; Gottardis, M. M.; Logothetis, C. J.; Gallick, G. E., Combined Inhibition of IGF-1R/IR and Src family kinases enhances antitumor effects in prostate cancer by decreasing activated survival pathways. PloS one 2012, 7 (12), e51189.
22. Youngren, J. F.; Gable, K.; Penaranda, C.; Maddux, B. A.; Zavodovskaya, M.; Lobo, M.; Campbell, M.; Kerner, J.; Goldfine, I. D., Nordihydroguaiaretic acid (NDGA) inhibits the IGF-1 and c-erbB2/HER2/neu receptors and suppresses growth in breast cancer cells. Breast cancer research and treatment 2005, 94 (1), 37-46.
23. D. C. Smith, C. B., D. O. Clary, L. T. Nguyen, P. Woodard, H. I. Hurwitz, A phase 1 study of XL228, a potent IGF-1R/AURORA/SRC inhibitor, in patients with solid tumors or hematologic malignancies. J Clin Oncol 2009, 27 (Abstract 3512).
24. Tandon, R.; Senthil, V.; Nithya, D.; Pamidiboina, V.; Kumar, A.; Malik, S.; Chaira, T.; Diwan, M.; Gupta, P.; Venkataramanan, R.; Malik, R.; Das, B.; Dastidar, S. G.; Cliffe, I.; Ray, A.; Bhatnagar, P. K., RBx10080307, a dual EGFR/IGF-1R inhibitor for anticancer therapy. European journal of pharmacology 2013, 711 (1-3), 19-26.
25. Lombardo, L. J.; Lee, F. Y.; Chen, P.; Norris, D.; Barrish, J. C.; Behnia, K.; Castaneda, S.; Cornelius, L. A. M.; Das, J.; Doweyko, A. M.; Fairchild, C.; Hunt, J. T.; Inigo, I.; Johnston, K.; Kamath, A.; Kan, D.; Klei, H.; Marathe, P.; Pang, S.; Peterson, R.; Pitt, S.; Schieven, G. L.; Schmidt, R. J.; Tokarski, J.; Wen, M.-L.; Wityak, J.; Borzilleri, R. M., Discovery of N-(2-Chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5carboxamide (BMS-354825), a Dual Src/Abl Kinase Inhibitor with Potent Antitumor Activity in Preclinical Assays. Journal of medicinal chemistry 2004, 47 (27), 66586661.
26. Schittenhelm, M. M.; Shiraga, S.; Schroeder, A.; Corbin, A. S.; Griffith, D.; Lee, F. Y.; Bokemeyer, C.; Deininger, M. W.; Druker, B. J.; Heinrich, M. C., Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer research 2006, 66 (1), 473-81.
27. Kantarjian, H.; Shah, N. P.; Hochhaus, A.; Cortes, J.; Shah, S.; Ayala, M.; Moiraghi, B.; Shen, Z.; Mayer, J.; Pasquini, R.; Nakamae, H.; Huguet, F.; Boque, C.; Chuah, C.; Bleickardt, E.; Bradley-Garelik, M. B.; Zhu, C.; Szatrowski, T.; Shapiro, D.; Baccarani, M., Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. The New England journal of medicine 2010, 362 (24), 2260-70.
28. Schmidt, S.; Preu, L.; Lemcke, T.; Totzke, F.; Schächtele, C.; Kubbutat, M. H. G.; Kunick, C., Dual IGF-1R/SRC inhibitors based on a N'-aroyl-2-(1H-indol-3-yl)-2-oxoacetohydrazide structure. European Journal of Medicinal Chemistry 2011, 46 (7), 2759-2769.
29. Ko, K. S.; Steffey, M. E.; Brandvold, K. R.; Soellner, M. B., Development of a Chimeric c-Src Kinase and HDAC Inhibitor. ACS medicinal chemistry letters 2013, 4 (8), 779-783.
30. Hanke, J. H.; Gardner, J. P.; Dow, R. L.; Changelian, P. S.; Brissette, W. H.; Weringer, E. J.; Pollok, B. A.; Connelly, P. A., Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. The Journal of biological chemistry 1996, 271 (2), 695-701.
31. Gable, K. L.; Maddux, B. A.; Penaranda, C.; Zavodovskaya, M.; Campbell, M. J.; Lobo, M.; Robinson, L.; Schow, S.; Kerner, J. A.; Goldfine, I. D.; Youngren, J. F., Diarylureas are small-molecule inhibitors of insulin-like growth factor I receptor signaling and breast cancer cell growth. Mol Cancer Ther 2006, 5 (4), 107986.
32. Zhou, X.; Zhao, X.; Li, X.; Ping, G.; Pei, S.; Chen, M.; Wang, Z.; Zhou, W.; Jin, B., PQ401, an IGF-1R inhibitor, induces apoptosis and inhibits growth, proliferation and migration of glioma cells. Journal of chemotherapy (Florence, Italy) 2016, 28 (1), 44-9.
33. Zhou, C. H.; Wang, Y., Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 2012, 19 (2), 239-80.
34. Buchanan, J. L.; Newcomb, J. R.; Carney, D. P.; Chaffee, S. C.; Chai, L.; Cupples, R.; Epstein, L. F.; Gallant, P.; Gu, Y.; Harmange, J. C.; Hodge, K.; Houk, B. E.; Huang, X.; Jona, J.; Joseph, S.; Jun, H. T.; Kumar, R.; Li, C.; Lu, J.; Menges, T.; Morrison, M. J.; Novak, P. M.; van der Plas, S.; Radinsky, R.; Rose, P. E.; Sawant, S.; Sun, J. R.; Surapaneni, S.; Turci, S. M.; Xu, K.; Yanez, E.; Zhao, H.; Zhu, X., Discovery of 2,4-bis-arylamino-1,3-pyrimidines as insulin-like growth factor-1 receptor (IGF-1R) inhibitors. Bioorganic \& medicinal chemistry letters 2011, 21 (8), 2394-9.
35. Zhou, T.; Commodore, L.; Huang, W. S.; Wang, Y.; Thomas, M.; Keats, J.; Xu, Q.; Rivera, V. M.; Shakespeare, W. C.; Clackson, T.; Dalgarno, D. C.; Zhu, X., Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chemical biology \& drug design 2011, 77 (1), 1-11.
36. Liu, X.; Kung, A.; Malinoski, B.; Prakash, G. K.; Zhang, C., Development of Alkyne-Containing Pyrazolopyrimidines To Overcome Drug Resistance of BcrAbl Kinase. Journal of medicinal chemistry 2015, 58 (23), 9228-37.
37. Zhang, C. H.; Zheng, M. W.; Li, Y. P.; Lin, X. D.; Huang, M.; Zhong, L.; Li, G. B.; Zhang, R. J.; Lin, W. T.; Jiao, Y.; Wu, X. A.; Yang, J.; Xiang, R.; Chen, L. J.; Zhao, Y. L.; Cheng, W.; Wei, Y. Q.; Yang, S. Y., Design, Synthesis, and Structure-Activity Relationship Studies of 3-(Phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine Derivatives as a New Class of Src Inhibitors with Potent Activities in Models of Triple Negative Breast Cancer. Journal of medicinal chemistry 2015, 58 (9), 3957-74.
38. Kumar, A.; Wang, Y.; Lin, X.; Sun, G.; Parang, K., Synthesis and Evaluation of 3-Phenylpyrazolo[3,4-d]pyrimidine-Peptide Conjugates as Src Kinase Inhibitors. ChemMedChem 2007, 2 (9), 1346-1360.
39. Engen, W.; O'Brien, T. E.; Kelly, B.; Do, J.; Rillera, L.; Stapleton, L. K.; Youngren, J. F.; Anderson, M. O., Synthesis of aryl-heteroaryl ureas (AHUs) based on 4-aminoquinoline and their evaluation against the insulin-like growth factor receptor (IGF-1R). Bioorganic \& medicinal chemistry 2010, 18 (16), 5995-6005.
40. Gopinath, V. S.; Pinjari, J.; Dere, R. T.; Verma, A.; Vishwakarma, P.; Shivahare, R.; Moger, M.; Kumar Goud, P. S.; Ramanathan, V.; Bose, P.; Rao, M. V.; Gupta, S.; Puri, S. K.; Launay, D.; Martin, D., Design, synthesis and biological evaluation of 2-substituted quinolines as potential antileishmanial agents. Eur J Med Chem 2013, 69, 527-36.
41. Apsel, B.; Blair, J. A.; Gonzalez, B.; Nazif, T. M.; Feldman, M. E.; Aizenstein, B.; Hoffman, R.; Williams, R. L.; Shokat, K. M.; Knight, Z. A., Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 2008, 4 (11), 691-699.
42. Todorovic, N.; Awuah, E.; Shakya, T.; Wright, G. D.; Capretta, A., Microwave-assisted synthesis of N1- and C3-substituted pyrazolo[3,4-d]pyrimidine libraries. Tetrahedron Letters 2011, 52 (44), 5761-5763.
43. Dar, A. C.; Lopez, M. S.; Shokat, K. M., Small molecule recognition of cSrc via the Imatinib-binding conformation. Chemistry \& biology 2008, 15 (10), 1015-22.
44. Tandon, M.; Johnson, J.; Li, Z.; Xu, S.; Wipf, P.; Wang, Q. J., New pyrazolopyrimidine inhibitors of protein kinase d as potent anticancer agents for prostate cancer cells. PloS one 2013, 8 (9), e75601.
45. Murphy, R. C.; Ojo, K. K.; Larson, E. T.; Castellanos-Gonzalez, A.; Perera, B. G.; Keyloun, K. R.; Kim, J. E.; Bhandari, J. G.; Muller, N. R.; Verlinde, C. L.; White, A. C., Jr.; Merritt, E. A.; Van Voorhis, W. C.; Maly, D. J., Discovery of Potent and Selective Inhibitors of Calcium-Dependent Protein Kinase 1 (CDPK1) from C. parvum and T. gondii. ACS medicinal chemistry letters 2010, 1 (7), 331-335. 46. Yoon, H.; Kwak, Y.; Choi, S.; Cho, H.; Kim, N. D.; Sim, T., A Pyrazolo[3,4-d]pyrimidin-4-amine Derivative Containing an Isoxazole Moiety Is a Selective and Potent Inhibitor of RET Gatekeeper Mutants. Journal of medicinal chemistry 2016, 59 (1), 358-73.

APPENDIX

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 a}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 a}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 b}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 b}$ (75 MHz , DMSO- d_{6})

서울대학교
SEOUL NATONAL LINNERSTY
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 c}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 c}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 d}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 e}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
(
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 f}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 f}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 g}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 g}$ (75 MHz , DMSO- d_{6})

서울대학교
SEOUL NATONAL LNNERSITY
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 h}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 h}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

서울대학교
soll wionl unnean
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 i}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 i}\left(75 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1} \mathbf{j}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1} \mathbf{j}$ (75 MHz , DMSO- d_{6})

서울대학교
SEOUL NATONAL LINVERSITY
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 k}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 k}$ (75 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 a}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 b}$ (300 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 c}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 b}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 c}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 a}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 a}$ (100 MHz , DMSO- d_{6})

[^0]서울대학교
SEOUL NATONAL LNNVERSTY
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 b}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 b}$ (150 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 c}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 c}$ (125 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 d}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 d}$ (150 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 e}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 f}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 f}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 g}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 h}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
(
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 i}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 i}$ (100 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4} \mathbf{j}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4} \mathbf{j}$ (100 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 k}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 I}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 a}\left(800 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a}$ (200 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 b}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 c}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13}$ C NMR of compound $\mathbf{5 c}$ (100 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 d}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 e}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 e}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 f}\left(600 \mathrm{MHz}\right.$, DMSO $\left.-d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 f}\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 g}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 h}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 a}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 a}$ (150 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 b}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{6 b}$ (150 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 c}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 d}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 e}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{6 f}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $7 \mathbf{7 a}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{7 a}$ (100 MHz , DMSO- d_{6})

서울대학교
SEOUL NATONAL LINVERSITY
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{7 b}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{7 b}$ (150 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $7 \mathrm{c}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $7 \mathbf{d}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR of compound 7d (150 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2 a}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2 b}$ (300 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2 c}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2 d}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 4 a}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 4 b}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 4 c}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 4 d}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 4 e}$ (300 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 6 a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 6 b}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 6 c}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 9 a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 9 b}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 9 c}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 9 d}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 0 a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 0 b}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

논문초록

Dual-targeting 전략을 이용한

잠재적 항암 활성 물질의 개발

팜푸옹치
약학과 약품제조화학 전공
서울대학교 대학원

Insulin-like growth factor 1 receptor (IGF-1R) 은 폐암, 유방암, 전 립선암, 그리고 직장암 등에서 과발현 된 membrane receptor tyrosine kinase이다. IGF-1R을 타겟으로 합성된 여러 약물을 처리한 환자에게서 획득 저항성이 발견되었다. 이와 같은 IGF-1R 저항성이 생기는 이유는 Src 의 높은 활성 때문과 관련이 되어있다고 생각된다. 그러나, IGF -1 R 과 Src 저해제를 병용투여 하는 경우 독성 문제를 야기할 수 있다.

본 연구에선, dual-target 항암제로서 새로운 3-substitutedpyrazolo $[3,4-\mathrm{d}]$ pyrimidin-4-amine 유도체를 디자인하고 합성하였다. 합성된 약물의 항암세포 증식억제 효과를 A549와 MCF-7 암세포주에서 확인하였다. 합성된 물질의 구조-활성 상관관계를 분석한 결과 triazole 또 는 alkyne linker를 가지는 물질이 두 가지 cell line에서 뛰어난 저해 활성 을 보였다.

본 연구의 결과는 합성된 dual-targeting 물질이 Src와 IGF-1R 단일

저해제를 능가하는 장점을 보여주고 있다. 또한, dual-targeting anticancer 물질을 디자인하는데 있어서 linker의 다양화가 중요한 역할을 한다 는 것도 밝혀졌다. 앞으로 추가적인 in vivo 연구들이 필요하겠지만, 본 연구 는 기존의 단일 저해제의 저항성을 극복 할 수 있는 dual-targeting 저해제 를 개발하는데 있어서 중요한 디자인 전략을 제공한다는 것에 가치가 있다.

주 요 어 : dual target, anti-cancer (항암), resistance (저항성, 내성)
학 번: 2014-25215

[^0]: $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

