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ABSTRACT 

 

Optimization of Microencapsulation of  

β-Lactoglobulin-Vitamin A  

 

Jiawen Tang 

Department of Food and Nutrition 

Graduate School 

Seoul National University 

 

As one of essential nutrients, vitamin A is important for growth, 

development, immune and vision system. It is widely used in various types 

of foods as a nutritional supplement. However, the functional properties of 

vitamin A are not fully exhibited by its great reactivity and low stability. 

Microencapsulation of vitamin A could increase the stability of vitamin A, 
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prevent light-induced degradation and oxidation, and disperse vitamin A in 

water-soluble compounds. β-Lactoglobulin (β-Lg) is the major whey 

protein in cow's milk and has a central cavity able to bind hydrophobic 

ligands such as vitamin A. Furthermore, using ultra-high pressure (UHP) 

treatment, which changes the conformation of β-Lg, could increase the 

binding ability of β-Lg to vitamin A. In this study, microencapsulation 

condition for vitamin A using β-Lg as a wall material was optimized using 

response surface methodology (RSM). In order to achieve a higher 

microencapsulation efficiency (MEE), β-Lg was treated by UHP before 

encapsulating vitamin A. The UHP treatment condition of β-Lg was 

optimized using orthogonal array design (OAD). The microstructures of the 

microcapsules of β-Lg-vitamin A and microcapsules of UHP treated  

β-Lg-vitamin A were observed by transmission electron microscopy 

(TEM) and Fourier transform infrared (FT-IR) spectroscopy. 

Optimal conditions for microencapsulation of β-Lg-vitamin A were 

4.74:1 of the molar ratio, 1.43 h, pH 6.87, and 48.68℃ determined by RSM. 

The MEE under the optimized condition was calculated as 82.2% and the 

experimental value was 81.5%. Optimal conditions for UHP treatment of  

β-Lg were 300 MPa, 20 min, and 20℃ determined by OAD. The 

experimental MEE under the optimized condition was 94.8%.  

The optimized microcapsules of β-Lg-vitamin A and microcapsules of 
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UHP treated β-Lg-vitamin A observed by TEM were sphere-shaped in a 

regular order. Vitamin A was observed by FT-IR to be inserted in the 

central cavity of β-Lg. These results indicate that the microencapsulation 

conditions forβ-Lg and vitamin A were optimized by RSM, the UHP 

treatment conditions forβ-Lg were optimized by OAD, and the 

microcapsules were successfully formed.  

 

Key words: β-lactoglobulin; vitamin A; microencapsulation efficiency; 

ultra-high pressure; response surface methodology; orthogonal array design 
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INTRODUCTION 

 

As one of essential nutrients, vitamin A is important for growth, 

development, immune and vision system. Thus, vitamin A is widely used in 

various types of foods as a nutritional supplement (Fennema and Owen 2008; 

Tanumihardjo 2011; Solomons and Orozco 2003). The functional properties 

of vitamin A are limited by its great reactivity and low stability, resulting in 

a significant loss during processing and storage of foods in the presence of 

oxygen and light (Xie and Huang 2011). Microencapsulation is a technology 

proposed to entrap, protect, and deliver sensitive or bioactive components 

and to improve sensory properties of functional foods. Microencapsulation of 

vitamin A could increase the stability of vitamin A during food processing 

and storage, prevent light-induced degradation and oxidation (Hogan et al. 

2001), and disperse vitamin A in water-soluble compounds (Gonnet et al. 

2010; Loveday and Singh 2008). Microencapsulation of vitamin A has been 

studied using different wall materials such as cyclodextrin, gum arabic, and 

other polysaccharides. Compared to other wall materials, β-lactoglobulin 

(β-Lg) has a very similar structure with retinol-binding proteins in plasma 

and shows a high affinity to vitamin A (Papiz et al. 1986). 
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β-Lg, the major whey protein in cow’s milk, garners an interest in food 

industry because of its nutritional and binding properties. β-Lg is a small 

globular protein with a molar mass of 18 kDa. The 3-dimensional tertiary 

structure of β-Lg displays one main α-helix, eight antiparallel β-

strands arranged in a β-barrel, and a ninth β-strand involved in dimer 

interaction (Brownlow et al. 1997; Kontopidis et al. 2002). The β-barrel 

delimitates a central cavity (or calyx) able to bind hydrophobic ligands. The 

binding properties made β-Lg itself a natural wall material for 

microencapsulation of fat-soluble compounds such as vitamin A (Kontopidis 

et al. 2002; Liang and Subirade 2012; Perez and Calvo 1995; Sawyer et al. 

1998; Sneharani et al. 2010; Wang et al. 1999). There are a few studies 

considering the effect of one or two combination conditions (such as 

temperature and pH) on vitamin A binding to β-Lg (Yaldagard et al. 2008; 

Grácia-Juliá et al. 2008; Blayo et al. 2014). However, there is no study 

about optimization of the combination condition on vitamin A binding to  

β-Lg.  

Ultra-high pressure (UHP) treatment has been recognized as a physical 

tool for the modification of macromolecular compounds, such as proteins 

(Cheftel 1992; Hayashi 1992; Balny and Masson 1993). There are studies 

involving β-Lg denaturation induced by UHP to increase its binding ability 

to vitamin A (Considine et al. 2007; Dumay et al. 2006; Funtenberger et al. 
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1997). However, there is no study about optimization of UHP treatment 

condition on β-Lg, which can be used for encapsulation of vitamin A. 

In this study, microencapsulation condition for vitamin A using β-Lg as 

wall material was optimized using response surface methodology (RSM). In 

order to achieve a higher microencapsulation efficiency (MEE), β-Lg was 

treated by UHP before encapsulating vitamin A. The UHP treatment 

condition of β-Lg was optimized using orthogonal array design (OAD). The 

microstructures of optimized β-Lg-vitamin A microcapsules and UHP 

treated β-Lg-vitamin A microcapsules were observed by transmission 

electron microscopy (TEM) and Fourier transform infrared (FT-IR) 

spectroscopy.  
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MATERIALS AND METHODS 

 

1. Chemicals and reagents 

Lyophilized bovine β-Lg and all-trans retinol were purchased from   

Sigma-Aldrich (St. Louis, MO, USA). Ethanol, methanol, potassium      

hydroxide, petroleum ether, and other chemicals were purchased from   

Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All of the      

chemicals were analytical grade. 

 

2. Microencapsulation of β-Lg-vitamin A 

β-Lg was dissolved in 10 mL distilled water at different concentrations, 

and 0.1 mg vitamin A was dissolved in 1 mL ethanol. The β-Lg and   

vitamin A solutions were mixed using an air bath oscillator (Jintan Puchen 

Electronics Co., Ltd., Jintan City, Jiangsu, China) at the different molar 

ratios of β-Lg to vitamin A (β-Lg:vitamin A = 1:1-5:1), reaction time 

(1-3 h), pH (5.5-7.5), and reaction temperature (30-70℃). After 

preparing the β-Lg-vitamin A mixture, free vitamin A that was not 

encapsulated was removed by dialysis. The mixture was transferred into 

dialysis membrane (Spectra/Por 7, Spectrum Laboratories Inc., Houston, TX, 
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USA) with molecular weight cut-off of 10 kDa, followed by placing the 

dialysis membrane in a beaker with 10% ethanol in water (replaced every 8 

h) for 24 h to remove free vitamin A. 

 

3. Determination of microencapsulated vitamin A 

First, 20 mL ethanol and 10 mL 50% potassium hydroxide solution were 

added to the microencapsulated β-Lg-vitamin A, followed by heating in 

the air bath oscillator at 50℃ for 1 h to get vitamin A released from the 

microencapsulated β-Lg-vitamin A. The released vitamin A was extracted 

with 50 mL petroleum ether 3 times and concentrated using a rotary 

evaporator (Hei-Vap, Heidolph, Instruments GmbH & Co., Schwabach, 

Germany). The content of the extracted vitamin A was determined using an 

RP-HPLC system (Agilent Technologies Co., Ltd., Palo Alto, CA, USA), 

according to the ISO method (ISO 12080-2:2009) for determination of 

vitamin A content (International Organization for Standardization, 2009). 

The RP-HPLC was equipped with a DAD detector and a C18 (4.6 mm x 250 

mm) column (Agilent Technologies Co., Ltd) held at 35±1℃. Mobile phase 

was 100% methanol. Flow rate was 1.0 mL/min and injection volume was 10 

uL. Monitoring wavelength was 325 nm. 
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4. Determination of MEE 

The microencapsulation process was monitored by MEE, which was 

calculated as follows: 

MEE (%) = microencapsulated vitamin A/ total vitamin A × 100, 

where microencapsulated vitamin A is the vitamin A content in the 

microencapsulated β-Lg-vitamin A and total vitamin A is the total amount 

of vitamin A originally added to the mixture of β-Lg and vitamin A. 

 

5. Optimization of microencapsulation condition of β-Lg-vitamin 

A 

5.1 Selection of independent variables on MEE for RSM 

Ranges of independent variables (molar ratio of β-Lg to vitamin A, 

reaction time, pH, and reaction temperature) were selected for RSM design 

by preliminary experiments. In the first step, different molar ratios of β-

Lg to vitamin A (1:1, 2:1, 3:1, 4:1, and 5:1) were compared, while other 

parameters were fixed (2 h, 50℃, and pH 6.5). In the second step, various 

reaction times (1, 1.5, 2, 2.5, and 3 h) were tested at 50℃ and pH 6.5, 

using the best molar ratio chosen in the previous step. In the third step, 

different pH of 5.5, 6.0, 6.5, 7.0, and 7.5 were tested at 50℃ using the best 



7 

 

molar ratio and reaction time chosen in the previous steps. Final step was to 

select the reaction temperature, using the best molar ratio, reaction time, 

and pH from the previous steps. 

 

5.2 RSM design and statistical analysis  

RSM was employed to investigate the effects of the independent variables 

on MEE. Based on the selected range of each of the independent variables 

on MEE, a central composite design (CCD) was employed to optimize 

microencapsulation condition of β-Lg-vitamin A. The design variables 

included molar ratio of β-Lg to vitamin A (A), time (B), pH (C), and 

temperature (D). The uncoded independent variables used in the RSM 

design are listed in Table 1.  
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Table 1. Uncoded levels for independent variables used in response surface 

methodology for microencapsulation of vitamin A with β-lactoglobulin 

Independent 

variable 
Unit Symbol -α -1 0 +1 +α 

Molar ratio   A 2:1 3:1 4:1 5:1 6:1 

Time h B 0.5 1 1.5 2 2.5 

pH  C 6 6.5 7 7.5 8 

Temprature ℃ D 30 40 50 60 70 
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The experiments were designed according to the CCD using a 24 factorial 

and star design with three central points as shown in Table 2. Individual 

experiments were carried out in a random order. Thirty experiment settings 

consisting of 6 star points (star distance is 0) and 3 central points were 

generated with 4 factors and 3 levels by RSM. A second-order polynomial 

equation was:  

MEE = a0 + a1A + a2B + a3C + a4D + a11A2 + a22B2 + a33C2 + a44D2 + 

a12AB + a13AC + a14AD + a23BC + a24BD + a34CD, 

where MEE is response variable, a0, ai, aii, and aij are constant, linear, 

quadratic, and interaction coefficients, respectively.  

Design Expert Software (version 8.05, Stat-Ease, Inc., Minneapolis, 

Minnesota, USA) was used for the statistical design of the experiments and 

data analysis. Analysis of variance (ANOVA) was used for graphical 

analyses of the data to obtain the interactions between the process variables 

and the responses. To visualize the relationships between the responses and 

the independent variables, surface response and contour plots of the fitted 

polynomial regression equations were generated. 
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Table 2. Central composite design of response surface methodology for 

microencapsulation of vitamin A with β-lactoglobulin 

Standard 

order 

Run  

order 

Factor 1 

Molar ratio (A) 

  

Factor 2 

 Time (B) 

h 

Factor 3  

 pH (C) 

 

Factor 4  

Temperature (D) 

 ℃ 

1 1 3:1 1 6.5 40 

20 2 4:1 2.5 7 50 

24 3 4:1 1.5 7 70 

14 4 5:1 1 7.5 60 

25 5 4:1 1.5 7 50 

16 6 5:1 2 7.5 60 

22 7 4:1 1.5 8 50 

23 8 4:1 1.5 7 30 

2 9 5:1 1 6.5 40 

28 10 4:1 1.5 7 50 

8 11 5:1 2 7.5 40 

12 12 5:1 2 6.5 60 

17 13 2:1 1.5 7 50 

29 14 4:1 1.5 7 50 

10 15 5:1 1 6.5 60 

4 16 5:1 2 6.5 40 

15 17 3:1 2 7.5 60 

19 18 4:1 0.5 7 50 

11 19 3:1 2 6.5 60 

7 20 3:1 2 7.5 40 

21 21 4:1 1.5 6 50 

26 22 4:1 1.5 7 50 

5 23 3:1 1 7.5 40 

18 24 6:1 1.5 7 50 

13 25 3:1 1 7.5 60 

6 26 5:1 1 7.5 40 

9 27 3:1 1 6.5 60 

30 28 4:1 1.5 7 50 

3 29 3:1 2 6.5 40 

27 30 4:1 1.5 7 50 
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6. Optimization of microencapsulation of vitamin A using UHP 

treated β-Lg 

6.1 UHP treatment 

Pressure treatment was carried out using a laboratory UHP equipment 

(Kefa Food Equipment Co., Baotou City, Neimenggu, China). The β-Lg 

samples (10 mL each) prepared with optimum pH and concentration derived 

from RSM results were filled into polyethylene packing bags (Shenzhen San 

Green Industrial Co., Ltd., Shenzhen City, Guangdong, China) and put in the 

UHP machine. Then combinations of different pressures (100-500 MPa), 

times (10-50 min), and temperatures (10-50℃) were applied. After the 

UHP treatment, the samples were taken out of the UHP machine and mixed 

with vitamin A to form microcapsules using the optimum condition from the 

RSM results. 

 

6.2 Selection of independent variables on MEE for OAD  

Ranges of independent variables (pressure, time, and temperature) for 

OAD design were selected by preliminary experiments. In the first step, 

different pressures (100, 200, 300, 400, and 500 MPa) were compared, 

while other parameters were fixed (20 min and 10℃). In the second step, 

various times (10, 20, 30, 40, and 50 min) were tested at 10℃, using the 
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best pressure chosen in the previous step. In the third step, different 

temperatures (10, 20, 30, 40, and 50℃) were tested, using the best 

pressure and time chosen in the previous steps.  

 

6.3 OAD design and statistical analysis 

OAD was employed to investigate the effects of the three variables 

(pressure, time, and temperature) on MEE. Based on the selected range of 

each of the three variables on MEE, an OAD [L9 (34)] matrix was employed 

to optimize UHP treatment condition of β-Lg. The level settings of the 

three variables and the experimental design were shown in Table 3 and 4, 

respectively. A software program for OAD (Orthogonality Experiment 

Assistant II, v 3.1.1, Beijing, China) was used for the statistical design of 

the experiments and data analysis. The results from the OAD were analyzed 

by range analysis and ANOVA. The average of MEE for each variable is 

expressed by Ki at ith (i = 1, 2, and 3) level. 
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Table 3. Level setting of ultra-high pressure treatment of β-lactoglobulin for 

orthogonal array design  

Levels 
Pressure  

(MPa) 

 Time  

 (min) 

 Temperature 

 (℃) 

1 200 20 10 

2 300 30 20 

3 400 40 30 
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Table 4. Orthogonal array experimental design for ultra-high pressure treatment 

of β-lactoglobulin 

Experimental 

No. 

Pressure 

(MPa) 

Time 

(min) 

Temperature 

(℃) 

1 200 20 10 

2 200 30 20 

3 200 40 30 

4 300 20 20 

5 300 30 30 

6 300 40 10 

7 400 20 30 

8 400 30 10 

9 400 40 20 
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7. TEM and FT-IR observations of microencapsulated β-Lg-

vitamin A  

Microstructures of the microencapsulated β-Lg-vitamin A prepared 

under the conditions optimized by RSM and OAD were observed by TEM 

and FT-IR spectroscopy. A Philips CM100 TEM (Philips Electronics N.V., 

Eindhoven, Netherlands) was operated at 60 kV. Micrographs were digitally 

recorded. Infrared spectra were measured with a Nicolette iS50 FT-IR 

spectrophotometer (Nicolet, Madison, WI, USA). The samples for FT-IR 

spectroscopy were freeze-dried and mixed with potassium bromide powder, 

followed by pressing into tablets under vacuum. For each sample, the 

spectrum was recorded in the 4000-400 cm-1 region at room temperature. 
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RESULTS AND DISCUSSION 

 

1. Optimization of microencapsulation ofβ-Lg-vitamin A  

1.1 Effects of independent variables on MEE 

Figure 1 showed the effects of molar ratio (β-Lg:vitamin A), reaction 

time, pH, and reaction temperature on MEE. The increase of molar ratio 

caused an increase of the MEE. The similar effects of molar ratio on 

microencapsulation were reported by previous studies (Lee et al. 2002; 

Shpigelman et al. 2012). The highest MEE was achieved at the reaction time 

of 1.5 h. pH 7.0 was the most suitable for microencapsulation of β-Lg-

vitamin A. Previous literatures also reported that at pH 5.5 β-Lg exists in 

a closed conformation where the hydrophobic cavity is not accessible to 

ligands to bind, while at pH 7 β-Lg has an open conformation, allowing 

ligands to bind at the hydrophobic cavity (Sneharani et al. 2010). The MEE 

decreased when the reaction temperature was higher than 50℃, suggesting 

that high temperature might cause vitamin A degraded during the 

microencapsulation process. Lešková et al. (2006) reported vitamin A 

rapidly loses its activity when heated at the temperature over 60℃. 
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Figure 1. Effects of molar ratio of β-lactoglobulin to vitamin A (A), time (B), pH 

(C), and temperature (D) on the microencapsulation efficiency (MEE) of β-

lactoglobulin-vitamin A. 
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1.2 Optimization of microencapsulation of β-Lg-vitamin A  

The experimental results were shown in Table 5. Statistical analysis of 

ANOVA was performed to find the relationship between the independent 

variables and the response MEE (Table 6). The regression model had a high 

significance (p < 0.0001) and the lack of fit was not significant (p > 0.05), 

implying the current model has a high correlation between the independent 

variables and the responses MEE. The A, C, D, CD, A2, C2, and D2 were 

highly significant at the level of p < 0.01, suggesting molar ratio (A), pH (C), 

and reaction temperature (D) had significant effects on the MEE. The 

similar effects of molar ratio, pH, and reaction temperature on the MEE 

were also reported by previous literatures (Lee et al. 2002; Ghosh et al. 

2006; Lomas et al. 2007; Shpigelman et al. 2012). The correlation 

coefficient (R2) and adjusted R2 (R2
adj) were 0.9573 and 0.9174, 

respectively, which indicate a high degree of correlation between the 

predicted and experimental data.  
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Table 5. Experimental microencapsulation efficiencies (MEE) of β-lactoglobulin-

vitamin A resulted from response surface methodology 

Standard 

order 

Run 

order 

Factor 1 

Molar ratio (A) 

  

Factor 2 

Time (B) 

h 

Factor 3 

pH (C) 

 

Factor 4 

Temperature(D) 

℃ 

MEE 

% 

1 1 3:1 1 6.5 40 65.6±0.47 

20 2 4:1 2.5 7 50 60.0±0.23 

24 3 4:1 1.5 7 70 7.6±0.49 

14 4 5:1 1 7.5 60 45.8±0.18 

25 5 4:1 1.5 7 50 79.3±0.39 

16 6 5:1 2 7.5 60 77.6±0.36 

22 7 4:1 1.5 8 50 40.1±0.46 

23 8 4:1 1.5 7 30 30.5±0.44 

2 9 5:1 1 6.5 40 67.8±0.41 

28 10 4:1 1.5 7 50 69.7±0.25 

8 11 5:1 2 7.5 40 52.0±0.36 

12 12 5:1 2 6.5 60 49.1±0.21 

17 13 2:1 1.5 7 50 30.2±0.51 

29 14 4:1 1.5 7 50 79.0±0.21 

10 15 5:1 1 6.5 60 54.0±0.65 

4 16 5:1 2 6.5 40 60.9±0.37 

15 17 3:1 2 7.5 60 24.7±0.51 

19 18 4:1 0.5 7 50 75.0±0.22 

11 19 3:1 2 6.5 60 29.7±0.34 

7 20 3:1 2 7.5 40 35.8±0.34 

21 21 4:1 1.5 6 50 66.5±0.31 

26 22 4:1 1.5 7 50 79.6±0.26 

5 23 3:1 1 7.5 40 40.4±0.36 

18 24 6:1 1.5 7 50 80.0±0.22 

13 25 3:1 1 7.5 60 29.6±0.18 

6 26 5:1 1 7.5 40 55.0±0.31 

9 27 3:1 1 6.5 60 34.9±0.27 

30 28 4:1 1.5 7 50 80.6±0.62 

3 29 3:1 2 6.5 40 54.4±0.39 

27 30 4:1 1.5 7 50 79.6±0.43 
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Table 6. Analysis of variance for the fitted quadratic polynomial model of 

microencapsulation efficiency of β-lactoglobulin-vitamin A 

Source 

 

Sum of 

squares 

Degree 

freedom  

Mean square 

 

F value 

 

p value 

 

Model 11717.72 14 836.98 23.99 < 0.0001 

Molar ratio 

(A) 
2540.59 1 2540.59 72.83 < 0.0001 

Time (B) 63.15 1 63.15 1.81 0.1985 

pH (C) 489.58 1 489.58 14.03 0.0019 

Temp (D) 725.48 1 725.48 20.8 0.0004 

AB 114.91 1 114.91 3.29 0.0896 

AC 171.82 1 171.82 4.93 0.0423 

AD 291.15 1 291.15 8.35 0.0112 

BC 141.36 1 141.36 4.05 0.0624 

BD 113.36 1 113.36 3.25 0.0916 

CD 355.35 1 355.35 10.19 0.0061 

A2 903.59 1 903.59 25.9 0.0001 

B2 189.67 1 189.67 5.44 0.0341 

C2 1051.12 1 1051.12 30.13 < 0.0001 

D2 5963.36 1 5963.36 170.94 < 0.0001 

Residual 523.28 15 34.89   

Lack of fit 439.73 10 43.97 2.63 0.1486 

Pure error 83.55 5 16.71   

R2 = 0.9573; R2
adj = 0.9174 1 
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The response surface graphs could be used to visualize the relationship 

between response MEE and interaction of two variables. Since reaction time 

had an insignificant effect on MEE, the response surface graphs used for 

analysis were generated from the molar ratio, pH, and reaction temperature 

while keeping the reaction time at 1.5 h (Figure 2). Combining the response 

surface graphs and statistical analysis data, molar ratio has a bigger effect 

on the MEE compared to pH and reaction temperature. pH and reaction 

temperature had similar effects on the MEE, but the effect of reaction 

temperature was slightly bigger than that of pH. From the three response 

surface graphs, the maximum MEE could be predicted to locate in the area 

where molar ratio was higher than 4:1, pH between 6.0 and 7.0, and reaction 

temperature between 45 and 55℃. 

The polynomial regression equation of the response MEE could be 

summarized as: 

MEE (%) = 77.94 + 10.29A - 1.62B - 4.52C - 5.50D + 2.68AB + 3.28AC 

+ 4.27AD + 2.97BC + 2.66BD + 4.71CD - 5.74A2 - 2.63B2 - 6.19C2 - 

14.74D2, 

where A is the molar ratio of β-Lg to vitamin A, B is the reaction time, C 

is the pH, and D is the reaction temperature.  
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Figure 2. Response surface graphs showing effect of molar ratio, pH, and 

temperature on microencapsulation efficiency (MEE) of β-lactoglobulin- 

vitamin A. 
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The optimized microencapsulation condition for response MEE was obtained 

at molar ratio of 4.74:1, 1.43 h, pH 6.87, and 48.68℃. The MEE under the 

optimized conditions was calculated as 82.2% and the experimental value 

was 81.5±0.35%. β-Lg has been used to microencapsulate retinol, DHA, 

epigallocatechin-3-gallate (EGCG), and vitamin D, where the maximum 

MEE were all below 70% (Zimet and Livney 2008; Shpigelman et al. 2012; 

Wang et al. 1997; Forrest et al. 2005; Blayo et al. 2014). In this study the 

MEE was above 80%, suggesting microencapsulation condition was 

successfully optimized. 

 

2. Optimization of microencapsulation of vitamin A using UHP 

treated β-Lg  

2.1 Effect of UHP treatment conditions against β-Lg on the MEE 

of β-Lg-vitamin A 

β-Lg was treated by UHP from 100 MPa to 500 MPa before 

encapsulating vitamin A. The MEE of microencapsulation of β-Lg-vitamin 

A reached the highest value when β-Lg was treated by 300 MPa, and then 

decreased when β-Lg was treated more than 300 MPa (Figure 3A). When 

β-Lg was treated under the pressure lower than 300 MPa, the pressure-

induced denaturation of β-Lg could increase its binding ability to vitamin A, 
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meaning more vitamin A could be encapsulated to β-Lg. However, the 

higher pressure than 300 MPa may cause the other structural change in β-

Lg, leading to decrease in its binding ability to vitamin A (Huppertz et al. 

2006; Aouzelleg et al. 2004; Belloque et al. 2000). Similar results have been 

reported by previous literatures (Sheng et al. 2011; Claire et al. 2014). The 

highest MEE of the microencapsulated β-Lg-vitamin A was observed 

when β-Lg was treated by 300 MPa for 30 min (Figure 3B). When β-Lg 

was treated at 300 MPa for 30 min at 10℃-50℃. The MEE of the 

microencapsulated β-Lg-vitamin A reached the highest when vitamin A 

was encapsulated with the β-Lg which was pretreated at 300 MPa for 30 

min at 20℃ (Figure 3C). 
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Figure 3. Effect of ultra-high pressure treatment conditions of β-lactoglobulin on 

the microencapsulation efficiency (MEE) of β-lactoglobulin-vitamin A 
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2.2 Optimization of microencapsulation of vitamin A using UHP 

treated β-Lg  

The experimental MEE of microencapsulation of vitamin A using the UHP 

treated β-Lg by orthogonal array design were shown in Table 7. The 

variance analysis and range analysis for the MEE of the microencapsulation 

of vitamin A using the UHP treated β-Lg were shown in Table 8 and 9, 

respectively. The significance of each variable was evaluated by calculating 

F value. The significant variables were found to be pressure and 

temperature (p < 0.05), while the time had no significant effect on the MEE 

(p > 0.05). The range analysis indicates that the influence of the three 

variables on the MEE decreased in the order of pressure > temperature > 

time. The optimum UHP treatment conditions were determined to be 300 

MPa, 20 min, and 20℃. The experimental MEE under the optimized 

condition was 94.8±0.48%, about 13% higher than the experimental MEE of 

microencapsulation of vitamin A using the β-Lg which was not treated 

under UHP.  
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Table 7. Experimental microencapsulation efficiencies (MEE) of 

microencapsulation of vitamin A using ultra-high pressure treated β-lactoglobulin 

resulted from orthogonal array design  

Experimental 

No. 

Pressure 

(MPa) 

Time 

(min) 

Temperature 

(℃) 

MEE 

(%) 

1 200 20 10 88.7±0.46 

2 200 30 20 90.1±0.42 

3 200 40 30 86.7±0.35 

4 300 20 20 94.7±0.55 

5 300 30 30 90.1±0.37 

6 300 40 10 91.5±0.43 

7 400 20 30 89.0±0.62 

8 400 30 10 89.3±0.38 

9 400 40 20 91.0±0.49 
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Table 8. Variance analysis for microencapsulation efficiencies of 

microencapsulation of vitamin A using ultra-high pressure treated β-lactoglobulin 

 
Sum of 

square 
Degree freedom F value 

Significance  

(p < 0.05) 

Pressure 20.065 2 130.292 * 

Time 1.957 2 12.708  

Temperature 16.878 2 109.597 * 

Error 0.15 2   

F0.05 = 19.00  

*p < 0.05 
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Table 9. Range analysis for microencapsulation efficiencies of microencapsulation 

of vitamin A using ultra-high pressure treated β-lactoglobulin 

 Pressure Time Temperature 

K1 88.477 90.770 89.810 

K2 92.087 89.823 91.920 

K3 89.773 89.743 88.607 

Range 3.610 1.027 3.313 
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3. Microstructures observed by TEM and FT-IR spectroscopy 

The microstructures were investigated by TEM at high magnification 

(10,000×). β-Lg was observed to be sphere-shaped in a regular order 

and its particle sizes were about 150-250 nm (Figure 4A). The morphology 

of β-Lg-vitamin A microcapsule was similar to that of β-Lg, although 

the encapsulated β-Lg-vitamin A was slightly bigger than β-Lg alone 

(Figure 4B). The UHP treated β-Lg alone and its microcapsule with 

vitamin A, whose particle sizes were less than 100 nm, were smaller than 

the untreated β-Lg alone (Figure 4C and 4D). 
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Figure 4. Transmission electron microscopy image (10,000×) of β-lactoglobulin 

(A), microcapsule of β-lactoglobulin-vitamin A (B), ultra-high pressure treated 

β-lactoglobulin (C), and microcapsule of ultra-high pressure treated β-

lactoglobulin-vitamin A (D).  
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FT-IR spectroscopic analysis was used to investigate the binding 

interactions between vitamin A and β-Lg (Figure 5). Vitamin A was 

characterized by bands of 1700-1500 (C=O stretching vibrations) and 

1300-1100 cm-1 (C-O stretching vibrations) (Figure 5A and 5B). β-Lg 

was characterized by protein amide I band at 1700-1600 cm-1 (mainly C=O 

stretch) and amide II band at 1541 cm-1 (C-N stretching coupled with N-H 

bending modes) (Michael and Heino 1986; Gunda et al. 1999). The intense 

bands observed in vitamin A disappeared in the microcapsule of β-Lg-

vitamin A, suggesting vitamin A was incorporated in the hydrophobic central 

cavity of β-Lg. The spectrum of β-Lg-vitamin A microcapsule, 

compared with that of β-Lg, showed shifts from 1643 to 1644 cm-1 and 

from 1541 to 1536 cm-1, due to vitamin A binding to proteins' C=O, C-N, 

and N-H groups (hydrophobic interaction) (Shpigelman et al. 2012). Wang 

et al. (2011) reported that the characteristic bands of garlic oil disappeared 

in the microcapsules of garlic oil and β-cyclodextrin due to formation of 

microcapsules. Shpigelman et al. (2012) also reported the characteristic 

bands of EGCG disappeared in β-Lg-EGCG nanovehicles due to formation 

of nanoencapsules. The same trend was found in the microcapsules of 

vitamin A using UHP treated β-Lg in this study. 
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Figure 5. Fourier transform infrared spectra of vitamin A (A), β-lactoglobulin (B), 

microcapsule of β-lactoglobulin-vitamin A (C), ultra-high pressure treated β-

lactoglobulin (D), and microcapsule of ultra-high pressure treated β-

lactoglobulin-vitamin A (E).  
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국문 초록 

 

Vitamin A는 성장, 발달, 면역과 시력 등 생리 기능에 큰 영향을 주는 중요한 

영양소이기 때문에 영양 강화제로 식품에 많이 첨가하고 있다. 그러나 vitamin A

는 지용성이고 산소와 빛에 의해서 쉽게 산화되는 단점이 있다. 이러한 단점을 

보완하기 위해서 식품공업에서 vitamin A를 미세캡슐화시킨다. β-

Lactoglobulin(β-Lg)은 유청단백질의 주요 성분이고 외부에 수용성 성질을 가

지고 있으며 내부에 cavity가 있어, 지용성 물질과 결합하는 능력이 있고, 특히 

vitamin A와 친화도가 높아서 미세캡슐화할 때 좋은 피복재료로 사용할 수 있다. 

그리고 β-Lg을 초고압 처리하면 vitamin A와의 결합능력을 향상시킬 수 있다. 

따라서 이번 연구에서는 vitamin A를 미세캡슐화시키기 위하여 β-Lg을 피복물

질로 사용하여 β-Lg-vitamin A의 미세캡슐화 조건을 최적화하였다. 미세캡슐

의 microencapsulation efficiency(MEE)를 향상시키기 위하여 β-Lg을 초고압 

처리하여 vitamin A와 미세캡슐화하였는데, 미세캡슐화하기 전에 β-Lg을 초고

압 전처리하는 조건을 최적화하였다. 최적화한 미세캡슐의 구조를 transmission 

electron microscopy(TEM)와 and Fourier transform infrared(FT-IR) 

spectroscopy를 통하여 확인하였다. 

β-Lg-vitamin A 미세캡슐화 조건을 최적화한 실험은 반응표면분석법을 이용

하여 진행하였고, 몰 비율, 반응시간, pH, 반응온도의 4개 인자를 사용하여, 중심

합성계획법으로 설계해서 MEE를 측정하였다. 실험 결과를 통하여 최적 조건을 
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예측하는 회귀식을 얻었고, 예측한 최적 캡슐화조건은 몰 비율 4.74:1, 반응시간 

1.43 h, 반응온도 48.68℃, pH 6.87이었으며, 이 조건에서의 예측 MEE는 82.2%

였고 실험하여 얻은 MEE는 81.5%였다. β-Lg의 초고압 전처리의 최적화 실험

은 압력, 가압시간, 가압온도 세가지 인자를 사용하여 직교분석법을 이용해서 진

행하였다. 실험에서 예측한 최적 초고압 전처리 조건은 압력 300 MPa, 가압시간 

20 min, 가압온도 20°C였고, 이 조건에서 실험하여 얻은 MEE는 94.8%였다. β

-Lg을 초고압 전처리하여 제조한 미세캡슐의 최대 MEE가 초고압 처리하지 않

은 β-Lg을 실험하여 제조한 미세캡슐의 최대 MEE보다 약 13% 높았다. 최적

화한 미세캡슐들은 TEM을 통하여 구형인 상태를 확인하였고, FT-IR을 통하여 

vitamin A가 β-Lg 내부의 cavity에 들어가는 것을 확인하였다. 이번 실험을 통

해 β-Lg-vitamin A의 최적 캡슐화 조건과 β-Lg의 초고압 전처리 최적 조건

을 확립하였다고 생각한다. 그리고 최적 조건에서 제조한 미세캡슐이 성공적으로 

형성된 것을 검증하였다. 

 

주요어: β-lactoglobulin; vitamin A; microencapsulation efficiency; 초고압; 반

응표면분석법; 직교분석법 
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