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Abstract 

Effect of Environmental Conditions on Fermentation Pattern of 

Lactobacillus fermentum G7 Showing Acetic acid-Ethanol 

Production Switch by Aerobic-anaerobic Conversion 

 

Sanghun Gwon 

Department of Food and Nutrition 

Graduate School 

Seoul National University 

 

  Lactobacillus fermentum G7 is a bacterium extracted from the feces of a healthy 

human that produces carbon dioxide. In this study, the physiological characteristics of 

this bacterium were examined when cultured under various temperature, sugar, and gas 

conditions through analysis of the concentrations of its typical fermentation products, 

including carbon dioxide, acetic acid, ethanol, and lactic acid. The strain showed the 

greatest growth when maltose was added to the culture medium, regardless of 

temperature and gas conditions. Neither aerobic nor anaerobic conditions greatly 
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influenced the amount of acetic acid and ethanol production when more than 4% 

glucose was added to the medium. The optimum growth temperature for both the 

growth and the fermentation product profiles of the strain was found to be 37 °C.  

  L. fermentum G7 produced ethanol in anaerobic conditions but not in aerobic 

conditions. However, the bacterium produced a greater amount of acetic acid in aerobic 

conditions than in anaerobic conditions, instead of producing ethanol. Moreover, in 

anaerobic conditions, the highest concentration of ethanol was produced when lactose 

was added to the medium compared with other sugars. By contrast, no ethanol was 

produced when fructose was added to the culture medium, even in anaerobic conditions.  

  When the bacterium was cultured in a milk medium supplemented with the sugars 

glucose, fructose, maltose, and sucrose, significantly reduced amounts of fermentation 

products were produced in comparison to those detected in MRS broth culture. The 

production of lactic acid by L. fermentum G7 was lower than that of homofermentative 

bacteria, but high levels of acetic acid were produced, with an approximately 3-times 

higher level than that of other acetic acid-producing strains. 

  Moreover, L. fermentum G7 produced approximately 1,000 times the amount of 

carbon dioxide produced by the homofermentative bacteria, and also produced more 

carbon dioxide than another heterofermentative bacterium, L. reuteri. 

  Therefore, this bacterium shows great potential for applications as an acetic acid-

producing strain in the production of dairy products, and is also expected to play a 

significant role as a carbon dioxide-producing strain in the production of soft drinks.  
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1. Introduction 

  Lactobacillus fermentum is not only found in the intestines of humans and animals, 

but also in food such as sourdough (Vrancken, Rimaux, De Vuyst, & Leroy, 2008), kefir 

(Angulo, Lopez, & Lema, 1993), kumis (Wang, Chen, Liu, Yang, Airidengcaicike, & 

Heping, 2008), and yogurt (Jayashree, et al., 2013). L. fermentum has been used for the 

fermentation of various foods. Recently, several researchers reported that L. fermentum 

can be used as probiotics, due to its capacity for repressing harmful bacteria (Bao, et al., 

2010) such as Escherichia coli O157, Salmonella typhimurium, Shigella flexneri, 

Staphylococcus aureus, and Listeria monocytogenes, which cause harmful effects in the 

human body. Moreover, L. fermentum alleviated colonic inflammation in rat model 

(Peran, et al., 2006). In addition, it was also reported that a strain of L. fermentum was 

able to lower concentration of serum lipids in subjects with elevated serum cholesterol 

(Simons, Amansec, & Conway, 2006). 

  Lactic acid bacteria(LAB) can use glucose in either the homofermentative or 

heterofermentative pathway. A molecule of glucose is degraded into two molecules of 

lactate by homofermentation, while a molecule of glucose is degraded into a molecule 

of lactate and a molecule of ethanol or acetic acid by heterofermentation depending in 

the presence of external electron acceptors (Zaunmüller, Eichert, Richter, & Unden, 

2006). According to a report, maltose can be also used as an energy source by LAB 

(Egloff, Uppenberg, Haalck, & Herman, 2001). A molecule of maltose can be converted 

to two molecules of glucose by a maltose phosphorylase. 
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  L. fermentum is known to belong to heterofermentation LAB. Heterofermentation is 

the process of fermentation by which bacteria produce more than one product, as the 

term ‘hetero’ means ‘other’ and/or ‘different’. Heterofermentative LAB produce ethanol, 

acetic acid (Zaunmüller, Eichert, Richter, & Unden, 2006), and lactic acid. Some 

heterofermentative LAB can convert a molecule of fructose a molecule of mannitol 

(Pilone, Clayton, & Robert, 1991). 

  A strain of L. fermentum isolated from sourdough fermentation was able to utilize 

glucose, fructose, sucrose, and maltose respectively in the simulated sourdough broth at 

the pH of 5.5 (Vrancken, Rimaux, De Vuyst, & Leroy, 2008). It showed diverse 

fermentation profile depending on the sugar added in the broth. A strain of 

heterofermentative bacteria belonging to L. plantarum cultured in MRS broth at 30, 37, 

and 45℃ under both aerobic and anaerobic conditions showed difference in producing 

lactic acid, acetic acid and ethanol depending on the temperature and aeration 

(Smetankova, et al., 2012) 

  In the case of fermented food, fermentative bacteria play a critical role on affecting 

the taste of food, since the substances that they spend and produce are sugars, organic 

acids, sugar alcohols, and alcohols - all of which are important factors of the distinctive 

tastes of food (Thiele, Gänzle, & Vogel, 2002). Thus it is important to control the 

concentration of sugar, organic acid, and ethanol in accordance with the purpose of 

fermentation. 

  In this experiment, we cultured L. fermentum G7, which was isolated from fecal 

sample of healthy Chinese, in MRS broth with 2, 4, and 6 % glucose under aerobic and 
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anaerobic conditions to investigate the maximum amount of glucose which the bacteria 

are able to use, and how L. fermentum G7 metabolizes glucose differently depending on 

the presence of oxygen. 

  Additionally, different sugars were added to MRS broth without glucose in order to 

characterize the fermentation pattern of L. fermentum G7. The experimental groups 

were cultured in two different temperatures and two gas conditions to figure out how 

the temperature and aeration can affect growth and fermentation process of L. 

fermentum G7. Substrates and products of fermentation were measured by High 

performance liquid chromatography (HPLC). 

  Next, L. fermentum G7 was inoculated into milk which was supplemented with four 

different sugars independently – glucose, fructose, maltose, and sucrose. The inoculated 

milk was fermented at 37℃ under anaerobic conditions. 

  Lastly, the concentration of carbon oxide produced by L. fermentum G7 was 

measured to figure out which sugar the bacteria is able to use most effectively to 

produce carbon oxide. 
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2. Materials and Methods  

2.1 Bacterial strains and cultures 

  L. fermentum G7 was stored at -70℃ in MRS broth (BD, New Jersey, USA), 

supplemented with 50% of glycerol as cryoprotectant. It was inoculated into a 15 ml 

falcon tube (Corning, New York, USA) which contained MRS broth and cultured for 18 

h under aerobic conditions. After being activated, it was centrifuged at the conditions of 

8,000×g for 5 min. The supernatant was removed, and the cell pellet was re-suspended 

in 15 mL of PBS buffer. The composition of the PBS buffer is shown in Table 2. 
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Table 1. Composition of MRS broth medium 

Component Amount 

Proteose Peptone No. 3 10.0 g 

Beef Extract 10.0 g 

Yeast Extract 5.0 g 

Dextrose 20.0 g 

Polysorbate 80 1.0 g 

Ammonium Citrate 2.0 g 

Sodium Acetate 5.0 g 

Magnesium Sulfate 0.1 g 

Manganese Sulfate 0.05 g 

Dipotassium Phosphate 2.0 g 

D.W. The final volume was adjusted to 1L 

 

Table 2. Composition of Phsphate Buffered Saline 

Ingredients Contents 

NaCl 8.0 g 

KCl 0.2 g 

Na2HPO4 1.42 g 

KH2PO4 0.24 g 

D.W. The final volume was adjusted to 1L 

HCl was added to adjust pH to 7 
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2.2 Preparation of the media 

  The 2% (w/v) glucose, fructose, sucrose, maltose, and lactose were added 

respectively, to MRS broth without glucose (KisanBio, Seoul, South Korea). All sugars 

were obtained from Sigma-Aldrich (Missouri, USA). All broths were steam-sterilized 

under 121℃ for 15 min and cooled down to 4 ℃ in refrigerator afterwards. 

  The milk used in this experiment was Seoul milk (Seoul dairy cooperative, Seoul, 

South Korea), and 99% of the bacteria were already sterilized during the process in the 

factory. It was stored for 65 minutes for 30 minutes for further sterilization purposes. 
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Table 3. Composition of MRS broth supplemented with sugar 

 MRS with 

glucose 

MRS with 

fructose 

MRS with 

sucrose 

MRS with 

maltose 

MRS with 

lactose 

Sugar 20 g of sugar respectively 

Peptone (Peptospecial) 10.0 g 

Beef Extract 10.0 g 

Yeast Extract 5.0 g 

Triammonium citrate 2.0 g 

Sodium Acetate 5.0 g 

Magnesium Sulfate 0.2 g 

Manganese Sulfate 0.05 g 

Di-Potassium Phosphate 2.0 g 

D.W. The final volume was adjusted to 1 L 
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2.3 Characterization of cultivation of L. fermentum G7 in MRS broth. 

2.3.1. Measurement of bacterial cell growth 

  The 200 μl of each broth, each with a different sugar added, were pipetted into three 

wells of 96 micro well plates (Corning, New York, USA) for triplication. The 2 μl of 

PBS solution containing activated L. fermentum G7 was inoculated into the wells. The 2 

well plates were incubated in incubator at 37℃, and the others were in incubator at 

30℃. One of two plates in each incubator was kept in anaerobic jar. OD600 was 

measured by ELISA reader (Bio-rad, California, USA) at 0, 3, 6, 9, 12, 18, 24, 30 h 

respectively 

 

2.3.2. HPLC analysis of sugars and fermentation products  

  The 500μL of the cell suspension in PBS was inoculated into 50 ml of each broth 

added with different sugars. They were cultured with 4 replicates under 4 different 

conditions described in Table 4. The 100μl of each sample was regularly withdrawn 

from the broths and used for further analysis.  

  The concentration of sugars was determined by HPLC. YL9100 HPLC system 

(Younglin, Anyang, South Korea) was used, which was equipped with a YL9101 

vacuum degasser, a YL9110 quaternary pump, a YL9131 column department, a 9170 RI 

detector, and a 9150 Autosampler. 

  An Aminex HPX-87H column, 300 x 7.8 mm column (Bio-rad, California, USA) was 
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used with 5 mM H2SO4 as mobile phase at a flow rate of 0.6ml/min. The column 

temperature was constant at 26 ℃. All samples were filtered by a PVDF Acrodisc 

syringe filter with 0.2 μm, 13 mm (Pall Corporation, Michigan, USA), and injected (5 

μL). Calibration was carried out with external standards calculated by sugar solutions of 

which the concentration is known. Samples were analyzed in a triplicate manner and the 

results are described as the average of three independent measurements. 

  The concentration of organic acids and ethanol was also determined by HPLC. The 

same HPLC machine as above was used, with a YMC-packTM Polyamine IITM 250 x 

4.6 mm I.D. (Younglin, Anyang, South Korea). 75 % of acetonitrile solution(v/v) was 

used as mobile phase at a flow rate of 1ml/min. The column temperature was kept at 26℃ 

constantly. The same samples were filtered the same way as above, and injected (5 μL). 

  Calibration was carried out with external standards of organic acids and ethanol 

solution of which the concentration is known. Samples were analyzed in the same 

manner as above. 
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Table 4. Culture conditions of Lactobacillus fermentum G7 

Gas conditions Temperature Sugar 

Aerobic conditions 

37℃ 

Glucose 

Fructose 

Maltose 

Sucrose 

Lactose 

30℃ 

Glucose 

Fructose 

Maltose 

Sucrose 

Lactose 

Anaerobic conditions 

37℃ 

Glucose 

Fructose 

Maltose 

Sucrose 

Lactose 

30℃ 

Glucose 

Fructose 

Maltose 

Sucrose 

Lactose 
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Table 5. Conditions nof HPLC for analysis of organic acids and ethanol 

Instrument YL9100 HPLC system 

Column Aminex HPX-87H column 300 x 7.8 mm 

Mobile phase 5 mM H2SO4 

Flow rate 0.6 ml/min 

Temperature 26 ℃ 

Detection Refractive Index(RI) 

Injection volume 5 μL 

 

Table 6. Conditions of HPLC for analysis of sugars 

Instrument YL9100 HPLC system 

Column YMC-packTM Polyamine IITM 250 x 4.6 mm I.D. 

Mobile phase 75 % of Acetonitrile solution(v/v) 

Flow rate 1 ml/min 

Temperature 26 ℃ 

Detection Refractive Index(RI) 

Injection volume 5 μL 
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2.4 Analysis of milk fermented by L. fermentum G7  

  The 500μL of the cell suspension in PBS was inoculated into 50 ml of each milk 

added with 2% glucose, fructose, maltose, and sucrose. The tubes which contained the 

milk were airtight. The tubes were in 37℃ for 60 h. 

  The concentration of lactic acid, ethanol and acetic acid was determined by HPLC the 

same way as 2.3.2. 

 

2.5 Monitoring the concentration of carbon dioxide emitted by L. fermentum G7 

  The 500μL of the cell suspension was inoculated into 50ml of MRS broth. MRS 

broth with added glucose, fructose, and maltose respectively was contained in 50ml 

falcon tubes. The lid of the tube was loosely closed and the tube was put in an airtight 

box with portable digital carbon dioxide meter (Inparo, Gwang-Myeong, South Korea). 

Then, the airtight box was sealed completely and incubated at 37℃ for 24 h. The 

concentration of carbon dioxide was measured at every 20 minutes automatically. 
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3. Results and discussion 

3.1. Analysis of the growth, glucose, and products of fermentation in MRS broth with 

additional 2, 4, 6% glucose 

3.1.1. Growth curve of L. fermentum G7 cultured in the MRS broth 

  The growth curve of L. fermentum G7 in MRS broth is shown in Figure 1. L. 

fermentum G7 was cultivated in MRS broth with 2, 4, and 6% glucose concentration 

under aerobic and anaerobic conditions. 

  The greatest growth was observed in the culture medium including 2% glucose under 

anaerobic conditions. Growth during the exponential phase was observed in the culture 

medium with 2% glucose regardless of the gas conditions. Of particular note, the 

growth rate decreased in the exponential phase as the concentration of glucose added 

increased. The growth rate in the exponential phase for the culture medium with 2%, 

4%, and 6% glucose was 0.18, 0.16, and 0.15, indicating a decrease in growth at the 

exponential phase with an increasing sugar concentration.  
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Figure 1. Growth curve of L. fermentum G7 in MRS broth with 2, 4, and 6% concentration of 

glucose at 37℃ under (a) aerobic and (b) anaerobic conditions 
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Table 7. Growth rate of L. fermentum G7 in MRS broth with added 2%, 4%, and 6% glucose 

(unit : OD600/h) 

Group Growth rate in exponential phase(between 4 and 8 h) 

MRS with 2% glucose,  

aerobic 

0.18 

MRS with 4% glucose,  

aerobic 

0.16 

MRS with 6% glucose,  

aerobic 

0.15 

MRS with 2% glucose, 

anaerobic 

0.17 

MRS with 4% glucose, 

anaerobic 

0.15 

MRS with 6% glucose, 

anaerobic 

0.14 
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  A previous study reported that the growth rates for certain yeasts decreased when the 

sucrose concentration of grape juice was increased from 2% to 3% (Charoenchai, Fleet, 

& Henschke, 1998). However, the growth rate of the bacterium L. monocytogenes was 

shown to increase when cultured in a soymilk medium with the addition of glucose and 

fructose at concentrations ranging from 0.5% to 10% each (Ariahu, Micheal, & Umeh, 

2010). Therefore, conflicting results have been observed for different species of 

cultured bacteria. However, the growth rates of probiotics such as Lactobacillus and 

Bifidobacterium with respect to variations in different sugar concentrations have been 

scarcely reported. Thus, when considering developing products for which the bacterial 

number is significant, such as probiotics, further research is needed to clarify the 

relationship between the sugar concentration and growth rate of the bacterium. 
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3.1.2. HPLC analysis of glucose, and the products of fermentation 

  L. fermentum G7 was able to completely consume the existing sugar in a culture 

medium with the addition of 2% glucose. However, in the culture media with 4% and 6% 

glucose, only 3% of the glucose could be consumed.  

  Among the three culture media tested, L. fermentum G7 consumed the most lactic 

acid (1.63%) and ethanol (0.87%) in the medium with the addition of 4% glucose, 

representing a 0.27% and 0.38% increase compared to the lowest amount of lactic acid 

(1.25%) and ethanol (0.47%) produced from the 2% glucose culture medium. 

Importantly, although the sugar concentration doubled, the amount of fermentation 

products did not double in direct proportion. Moreover, in the culture medium with the 

addition of 6% glucose, lactic acid and ethanol were produced at 1.61% and 0.61%, 

respectively, which are even lower values than those produced from the culture medium 

with 4% glucose. In a previous experiment in which various concentrations of glucose 

were added to tea and tea fungus was utilized for fermentation, the levels of acid 

production tended to remain stable or even decreased with an increase in sugar 

concentration (Mi Ae, Jeong Ok, & Kyung Ho, 1996). However, this result is not 

transferable for bacteria that can be used as probiotics such as Lactobacillus. Therefore, 

further research is needed to examine the fermentation products from bacteria approved 

as probiotics processed with various sugars at different concentrations.  
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Figure 2. (a) Growth rate and production of (b) acetic acid (c) ethanol, and (d) lactic acid of L. 

fermentum G7 in MRS broth at 37℃ under anaerobic condition 
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3.2. Analysis of the growth, sugar and fermentation production under various sugar, 

temperature and gas conditions 

3.2.1. Growth curve of L. fermentum G7 under the various conditions 

  L. fermentum G7 was capable of utilizing all of the sugar sources used in this 

experiment for its growth. It reached the peak point fastest at 37 ℃ under anaerobic 

conditions, around 9 h. However, the Cell density of L. fermentum G7 started to 

decrease right after it reached the peak under anaerobic conditions, whereas it retained 

the cell density of L. fermentum G7 after it reached the peak under aerobic conditions. 

Probably the bacteria which had been cultured under aerobic conditions was able to 

produce more energy via electron transport system.  

  Irrespective of the temperature and aerobic conditions, it was observed that the 

groups which had been cultured with added maltose and sucrose reached the highest cell 

density. Thus, L. fermentum G7 can utilize maltose and sucrose most efficiently for its 

rapid growth. 

  All of the groups which had lactose as their sole sugar source showed the lowest 

growth rate. This might be explained by the Leloir pathway, in which lactic acid 

bacteria spend 1 molecule of ATP to convert 1 molecule of α-D-galactose to 1 molecule 

of galactose-1-phosphate which turns into glucose. Since the bacteria spend extra time 

and energy converting galactose to glucose in order to create ATP, it may take more 

time to reproduce and reach the peak point. 

  Regardless of the temperature and aerobic conditions, the bacteria which used 
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maltose and sucrose as their sugar source showed the highest growth rate in the 

exponential phase. (Table 8) Those two groups showed very similar growth rate at both 

temperatures under aerobic and anaerobic conditions. This implies that there is a 

similarity between the pathway in which L. fermentum G7 utilizes maltose and the 

pathway in which L. fermentum G7 utilizes sucrose. 
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Figure 3. Cell density of L. fermentum G7 cells in MRS broth at 37℃ under (a) aerobic, and (b) 

anaerobic conditions 

 

 

Figure 4. Cell density of L. fermentum G7 cells in MRS broth at 30℃ under (a) aerobic, and (b) 

anaerobic conditions 
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Table 8. Growth rate of L. fermentum G7 in MRS broth with different sugars in the exponential 

phase at 37℃ and 30℃ under aerobic and anaerobic conditions (unit : OD600/h) 

Group 

37℃ 

aerobic 

37℃ 

anaerobic 

30℃ 

aerobic 

30℃ 

anaerobic 

MRS with 2% added glucose 0.098 0.167 0.124 0.122 

MRS with 2% added fructose 0.176 0.167 0.139 0.147 

MRS with 2% added maltose 0.213 0.201 0.169 0.158 

MRS with 2% added sucrose 0.217 0.205 0.170 0.157 

MRS with 2% added lactose 0.067 0.068 0.053 0.051 
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3.2.2. HPLC analysis of the sugars and products of fermentation 

  All of the fermented products identified in the bacteria culture in the two aerobic and 

anaerobic gas conditions with the temperature maintained at 37 °C or 30 °C with the 

addition of five different sugars to the MRS broth are shown in Figure 5. The bacterium 

produced more acetic acid, ethanol, and lactic acid when cultured at 37 °C than at 30 °C 

in the same sugar and gas conditions. One possible reason for the increased enzymatic 

activity of L. fermentum G7 at 37 °C than at 30 °C is that it was obtained from human 

feces. A strain of another LAB, Lactococcus lactis, which has been traditionally used in 

flour fermentation, was shown to more actively produce lactic acid at 37 °C than at 

30 °C when other conditions were maintained (Å kerberg, Hofvendahl, Zacchi, & Hahn-

Hagerdal, 1998). However, L. fermentum Ogi E1, obtained from maize sourdough 

(fermented dough of Nigerian bread), showed higher amylase activity at 40 °C than at 

37 °C (Agati, Guyot, Morlon-Guyot, Talamond, & Hounhouigan, 1998)Experiments 

with L. fermentum 450 obtained from milk showed that the pH value, which is strongly 

correlated with acid production, decreased most rapidly at 40 °C (Han, Park, & Lim, 

2015) 
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Figure 5. Concentrations of acetic acid, lactic acid, and ethanol produced by L. fermentum G7 

during fermentation for 30 h of cultivation under various sugar, temperature, and gas conditions 
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  Fermentation using L. fermentum in soymilk broth revealed the most rapid growth at 

30 °C, but the highest production levels of lactic acid and acetic acid at 37 °C (Garro, de 

Valdez, & de Giori, 2004). Thus, when the temperatures for optimum growth and 

maximum fermentation production differ, the temperature must be set according to the 

purpose of culturing the bacterium. However, in the present study, as described in 

section 3.2.1, the optimum growth and maximum fermentation products of the 

bacterium matched, indicating that 37 °C is the most suitable condition to culture the 

bacterium in regards to maximizing both factors.  

  Generally, LAB are categorized as facultative anaerobic bacteria, reflecting the fact 

that they can grow well in an environment without oxygen but can also grow in the 

presence of a minimal amount of oxygen. Recent research has revealed gene expression 

changes of LAB grown in the presence or absence of oxygen and depending on the 

oxygen concentration within the environment. For a strain of Lactococcus lactis subsp. 

lactis, expression of genes related to pyruvate metabolism was shown to change at the 

point in which all of the oxygen was consumed, resulting in a change in the type of acid 

produced (Larsen, et al., 2016). Moreover, a strain of Lactobacillus plantarum was 

shown to produce a greater amount of acetic acid in aerobic conditions than in 

anaerobic conditions (Zotta, et al., 2012). This effect was attributed to changes in the 

expression level of CcpA protein, which regulates the genes related to fermentation 

according to the presence of oxygen. This result corresponds to the determination of the 

fermentation products of L. fermentum G7 identified in this thesis. Similarly, a 

fermentation experiment with three strains of L. plantarum showed that the amount of 

fermentation products varied according to gas conditions; moreover, while less lactic 
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acid was produced in anaerobic conditions than in aerobic conditions, slightly more 

ethanol was produced in anaerobic conditions (Smetankova, et al., 2012). However, 

more detailed analyses at the gene and protein levels are necessary to elucidate the 

fundamental causes of these observed patterns. By contrast, although L. plantarum C17 

produced more acetic acid in aerobic conditions than in anaerobic conditions, it 

produced less lactic acid (Zotta, Guidone, Ianniello, Parente, & Ricciardi, 2013). 

Unfortunately, direct comparison between prior studies and the present results is not 

possible because this is the first study to investigate changes in the fermentation 

products of L. fermentum according to gas conditions. However, previous research 

collectively suggests that L. fermentum G7 has a unique characteristic compared to 

other LAB by actively producing acetic acid in aerobic conditions and not ethanol, 

whereas in anaerobic conditions, it produces ethanol and less acetic acid.   

  L. fermentum G7 produced the highest concentration of ethanol when it was with 

added lactose under anaerobic conditions. In this case, the temperature did not affect 

production of ethanol at the point the samples were collected (30 hours). 

  Fructose was the only sugar source with which L. fermentum G7 was not able to 

produce ethanol. The group which used fructose also produced only small amounts of 

acetic acid and lactic acid when it was compared to the other sugar groups which used a 

different sugar. The fact that less total fermentative products were produced can be 

attributed to the conversion of fructose into a substance which was detected by HPLC, 

but not yet identified.  

  According to researchers (von Weymarn, Hujanen, & Leisola, 2002), certain strains 
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have been recognized as good producers of mannitol. Further research is required to 

identify the unknown substance.  

  Comparing the groups cultivated under anaerobic conditions with the groups 

cultivated under aerobic conditions, the former were able to produce ethanol. The latter 

showed no production of alcohol, but they were able to produce more acetic acid than 

those cultivated under anaerobic conditions. Both ethanol and acetic acid are made from 

acetyl phosphate. Ethanol is created by reducing acetyl CoA made from acetyl 

phosphate, and acetic acid is created by de-phosphorylate acetyl phosphate. Whereas the 

bacteria are able to utilize both pathways under anaerobic conditions (the product being 

acetic acid and ethanol), it appears that the bacteria shut down the ethanol-producing 

pathway under aerobic conditions, and thus acetic acid was the only product made from 

acetyl phosphate. However, since both acetic acid and ethanol are made from one 

substance, less acetic acid is made under anaerobic conditions than under aerobic 

conditions. Acetic acid production is promoted in the presence of oxygen according to 

researchers (Martínez-Anaya, Llin, Pilar Macías, & Collar, 1994). Our results are 

consistent with the aforementioned research, even though the bacteria used in the 

experiment are different. In earlier research (Kandler, 1983), it was found that the ratio 

acetate/ethanol depends on the oxidation-reduction potential of the system. If an 

additional hydrogen acceptor, e.g. O2 is available, no ethanol is formed, but O2 is 

reduced to H2O2 or H2O. 

  Aerobic conditions did not significantly affect the production of lactic acid. The 

groups which were with the same added sugar produced very similar amounts of lactic 
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acid under both aerobic and anaerobic conditions. This suggests that the enzymes 

involved in producing lactic acid are independent of oxygen, unlike the enzymes 

involved in ethanol. 
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3.3. HPLC analysis of milk fermented by L. fermentum G7 

  The final concentrations of fermentative metabolites produced by L. fermentum G7 in 

milk at 37℃ under anaerobic conditions are shown in Figure 6. 

  Generally, there were fewer total fermentative metabolites produced in milk than 

those produced by the groups which were cultured in MRS broth at 37℃ under 

anaerobic conditions. In particular, there was a noticeable difference in the production 

of lactic acid. None of the groups cultured in milk produced more than 0.2% of lactic 

acid, whereas the lowest amount of lactic acid was 0.83%, which was produced by the 

group in MRS broth with fructose.  

  Ethanol production of L. fermentum G7 was less active in milk than in MRS broth. 

The bacteria grown in the MRS broth produced approximately two times more ethanol 

than the medium grown in milk media. 

  None of the groups showed aggregation of protein within 60 hours, meaning that the 

milk was not acidified enough to make proteins aggregate themselves. Rather, the 

fermented milk was liquid, and was slightly sticky. 
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Figure 6. The final concentrations of fermentative metabolites produced by L. fermentum G7 in 

milk media at 37℃ under anaerobic conditions 
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  Skim milk fermented with the homofermentative bacteria Streptococcus thermophilus, 

Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus acidophilus produced a 

minimum of 0.5%(w/v) and maximum of 1.17%(w/v) lactic acid according to different 

types of added sugars, whereas Bifidobacterium bifidum produced a minimum of 

0.05%(w/v) and maximum of 0.09%(w/v) of lactic acid, and also produced acetic acid 

at a minimum of 0.1%(w/v) and maximum of 0.18%(w/v) according to different types 

of added sugar (Chick, Shin, & Ustunol, 2001). Moreover, a probiotic strain of 

Bifidobacterium longum that can produce acetic acid was also shown to produce 

approximately 0.15%(w/v) acetic acid from fermented milk (Samona, Robinson, & 

Marakis, 1996). 

  The production of lactic acid by L. fermentum G7 was low compared to those of 

homofermentative bacteria mentioned above, but was high compared to that of B. 

bifidum (Samona, Robinson, & Marakis, 1996). Moreover, the production of acetic acid 

by L. fermentum G7 detected in the present study was approximately 3-times higher 

than that of B. bifidum and B. longum, at a minimum of 0.39%(w/v) and maximum of 

0.52%(w/v). Therefore, this strain is expected to be more valuable as an acetic acid-

producing bacterium than a lactic acid-producing bacterium for comestibles production 

using milk as the core ingredient.  
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3.4. Carbon dioxide production of L. fermentum G7 in MRS broth 

  L. fermentum G7 was cultured with different sugars in an airtight container for 24 h. 

The concentration curve of carbon dioxide produced during its growth and its 

differential curve is shown in Figures 7. 

  The highest concentration of carbon dioxide at the end point was shown when L. 

fermentum G7 was cultivated in MRS with glucose, followed by when it was cultivated 

in MRS with sucrose, and in MRS with fructose. We also confirmed that the highest 

concentration of ethanol was shown when L. fermentum G7 was cultivated in MRS with 

lactose, followed by in MRS with glucose, in MRS with sucrose, in MRS with maltose, 

and in MRS with lactose. Accordingly, it is suggested that the concentration of carbon 

dioxide which L. fermentum G7 produces is in proportion to the concentration of 

ethanol which L. fermentum G7 produces. This result corresponds to the findings about 

the fermentation pathway in which LAB utilize sugar. Carbon dioxide is produced when 

pyruvate is converted into acetyl CoA, which in turn is converted into ethanol or acetate. 

Thus there is a correlation between carbon dioxide and ethanol produced during 

fermentation. 
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Figure 7. Concentration curves of carbon dioxide produced by L. fermentum G7 in MRS 

broth with (a) glucose, (b) fructose, (c) maltose, (d) sucrose, and (e) lactose in an airtight 

container and their differential curves 
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  It was observed that the differential curve of carbon dioxide produced in MRS with 

monosaccharide had one peak, whereas the differential curve of carbon dioxide 

produced in MRS with disaccharide had two peaks. Disaccharide needed to be 

converted into monosaccharides in order to be utilized by bacteria. The first peak means 

that L. fermentum G7 degraded disaccharide into monosaccharides and used one that is 

preferable. The differential curve starts to go down as the preferable sugar gradually 

becomes depleted. Then the curve ascends again because L. fermentum G7 began to use 

the other sugar that is less preferred. This tendency was not found in the curves of 

monosaccharide, because L. fermentum G7 had only one kind of sugar it could utilize in 

MRS broth. 

  It was shown that that only 40 ppm of carbon dioxide was produced by the 

homofermentative bacterium Lactobacillus acidophilus within a 24-hour period, 

whereas 4000 ppm of carbon dioxide was produced by the heterofermentative bacterium 

Lactobacillus reuteri in 0.5% (w/v) tryptone milk within a 24-hour period. Similarly, 

when L. fermentum G7 was cultured in milk, approximately 4,100 ppm of carbon 

dioxide was produced (Ø stlie, Helland, & Narvhus, 2003). It Direct comparison to 

previous findings is difficult because the culturing conditions and environment are 

slightly different; however, considering that carbon dioxide production will be slightly 

lower without the addition of tryptone, it can be deduced that the amount of carbon 

dioxide produced by L. fermentum G7 is greater than that produced by L. reuteri. 
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4. Conclusion 

  In this study, Lactobacillus fermentum G7 isolated from Chinese human feces was 

cultivated under various conditions in order to investigate the fermentation profile of the 

strain. The maximum concentration of glucose that the bacteria were able to utilize is 3% 

in MRS broth. Adding glucose above 4% into MRS broth does not significantly affect 

the production of ethanol, lactic acid, and acetic acid. The bacteria were cultivated at 37℃ 

and 30℃, under aerobic and anaerobic conditions, in MRS broth with glucose, sucrose, 

maltose, sucrose, and lactose. It was found that the bacteria created more lactic acid, 

ethanol, and acetic acid in 37℃ than in 30℃. The bacteria produced ethanol under 

anaerobic conditions. The bacteria showed no production of alcohol under anaerobic 

conditions, but they were able to produce more acetic acid than those cultivated under 

anaerobic conditions. The bacteria produced more lactic acid, ethanol, and acetic acid in 

MRS broth with lactose, than in MRS broth with the other sugars. The bacteria 

cultivated in MRS broth with fructose did not produce ethanol under both aerobic and 

anaerobic conditions within 24 h. The bacteria cultivated in milk media produced less 

lactic acid, ethanol, and acetic acid than the bacteria cultivated in MRS broth. However, 

the fermentation products in milk were in an adequate range for fermented dairy 

products.  

  L. fermentum G7 has a distinctive fermentation feature compared to other LAB by 

actively producing acetic acid in aerobic conditions and not ethanol, whereas in 

anaerobic conditions, it produces ethanol and less acetic acid. 
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  This bacterium shows great potential for applications as an acetic acid-producing 

strain in the production of dairy products, and is also expected to play a significant role 

as a carbon dioxide-producing strain in the production of soft drinks. 
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국문초록 

중국인의 변에서 분리된 균주가 활발한 기체를 생산 하는 것을 

발견하였다. 이형발효 균으로 동정된 Lactobacillus fermentum G7 의 생장 

및 발효대사 특성을 확인하기 위해 여러 가지 조건에서 배양을 시도 하였다. 

2%, 4%, 그리고 6% 포도당 농도에서 균을 배양해 본 결과, 이 균의 최대 

포도당 활용 농도가 3%이고, 4% 포도당 농도 이상의 배지에서는 당을 더 

이상 사용하지 않는 것으로 나타났다. 

두 가지 온도조건, 혐기와 호기, 그리고 5 개의 당 조건에서 균을 

배양하였다. 혐기조건에서는 에탄올을 생산했지만, 호기조건에서는 에탄올을 

생산하지 않고, 대신 혐기조건에서 보다 더 많은 아세트산을 생산하였다.  

젖당을 첨가해준 배지에서 기른 균이 다른 배지에서 기른 균들보다 에탄올 

및 다른 대사산물을 더 많이 생산하였다. 과당을 첨가해준 배지에서는 균이 

에탄올을 생산하지 않았다. 

우유배지에서 균을 배양한 결과, MRS 배지보다 대체적으로 발효산물의 

생산량이 적었다. 하지만 여러 동형발효균들, 그리고 이형발효 균주인 

Bifidobacterium 과는 구분되는 독특한 발효 산물 생산 비율을 보여주었다. . 

이산화탄소 생산량 측정결과, 동형발효균과 비교하였을 때 1,000 배 정도 

더 많은 이산화탄소를 생산했고, 이형발효균인 L. reuteri 와 비교하였을 

때도 비슷하거나 더 많은 이산화탄소를 생산하였다. 

이러한 발효 특징을 근거로 판단할 때, Lactobacillus fermentum G7 은 

유제품 생산 시 acetic acid 생산균주로서의 사용이 기대되고, 또한 

이산화탄소가 필요한 탄산 유제품 음료의 생산균주로서의 역할도 기대된다. 

 

주요어: Lactobacillus fermentum G7, 이형발효, 우유 발효, 당, 가스 생산 

학번: 2015-23322 
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