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Abstract

Strong Demand Operator and the Dutta-Kar Rule
for Minimum Cost Spanning Tree Problems

We study the strong demand operator introduced by Granot and Hu-
berman (1984) for minimum cost spanning tree problems. First, we
review the strong demand operator. Next, we study the irreducible
minimum cost spanning tree games and the irreducible core. Finally,
we define a procedure with tie-breaking rule which generates an al-
location from given initial allocation. In our procedure, a cost matrix
is changed to its irreducible matrix before the operator is applied.
We show that the Dutta-Kar allocation is obtained by applying the
strong demand operator from any allocation in irreducible core.

Keywords: minimum cost spanning tree problems, strong de-
mand operator, irreducible matrix, irreducible core, Dutta-Kar
rule, Prim algorithm.

Student Number: 2011-20197
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1 Introduction

In this paper, we study minimum cost spanning tree problems (mcstp). Consider
the situation there is a common supplier (denoted by 0) which can supply anyone
who is connected to it. Demanding agents (denoted by /) are located at distinct
geographical places. Each agents will be served through connections which entail
some cost. They do not bother whether they are connected directly or indirectly
with the source. They are going to cooperate to minimize their total cost to con-
struct a network which connects every agent to the source.

In this situation, two big questions arise. First, how can we construct the ef-
ficient network? And how to allocate the total cost? For the first question, Prim
(1957) introduced prominent algorithms. For the second question, there are many
studies about mcstp after Claus and Kleitman (1973) initiated the problem and
Bird (1976) adopted cooperative game theoretic approach (Claus and Kleitman,
1973; Bird, 1976; Feltkamp et al., 1994; Kar, 2002; Dutta and Kar, 2004; Berganti-
nos and Vidal-Puga, 2007; Chun and Lee, 2012).

We investigate the allocation problem using strong demand operator intro-
duced by Granot and Huberman (1984). First, we review the strong demand op-
erator. Next, we study the irreducible minimum cost spanning tree problem and
the irreducible core. Finally, we define a procedure with tie-breaking rule which
generates an allocation from given initial allocation. In our procedure, a cost ma-
trix is changed to its irreducible matrix before the operator is applied. We show
that the Dutta-Kar allocation is obtained by applying the strong demand operator
from any allocation in irreducible core.

Bird (1976) considers the irreducible matrix and the irreducible core. The ir-
reducible matrix is the minimal cost matrix without reducing the total cost of the
network. To understand this idea, suppose that a physical network is given. In the
network formation model, costs of all possible link play important role. But in
real world, a link cost of outside-network may have no meaning after a network
is constructed. Thus one may insist that an allocation of a minimum cost span-
ning tree should only depend on the costs on the minimum cost spanning tree and
that is the Fair allocation rule (Bergantinos and Vidal-Puga (2007)) which is the
Shapley value based on irreducible matrix.

The irreducible core is a set of cost allocations such that each coalition has
non-negative excess in terms of irreducible matrix. Irreducible core is convex hull
of some extreme points. Aarts and Driessen (1993) and Tijs et al. (2004) show
how to determine these extreme points.

Bird (1976) introduced an allocation rule for minimum cost spanning tree



problems, now called the Bird rule. With the Bird rule, each agent connects se-
quentially to the source by using the Prim algorithm and pays the additional cost.
We call a rule a core selection if no coalition of agents can be better off by build-
ing their own network. The Bird rule is a core selection but fails to satisfy cost
monotonicity. Cost monotonicity requires that the cost allocated to agent ¢ does
not increase if the cost of a link involving 7 goes down, nothing else changing.
Dutta and Kar (2004) suggested DK rule which is a core selection and also satis-
fies cost monotonicity.

This paper proceeds as follows. In section 2, we introduce minimum cost span-
ning tree problems, allocation rules for the problems. In section 3, we review the
strong demand operator. In section 4, we study irreducible minimum cost span-
ning tree problem. We introduce partition by irreducible matrix in order to study
the irreducible core. In section 5, we suggest iteration of the strong demand op-
erator. We show the coincidence between the DK allocation and the iteration the
strong demand operator from any allocation in the irreducible core.

2 Preliminaries

2.1 Minimum cost spanning tree problem

Let N = {1,2,---} be a (finite or infinite) universe of all potential agents and
N be the collection of non-empty, finite subsets of N. A typical element of N is
denoted by N = {1, ...,n} and 0 is a special node called the source. We call each
element of Ny = N U {0} anode, and Ny = {Nog|N € N'}.

Given Ny € Ny, a cost matrix C = (c;5)i jen, represents the cost of direct
links between any pair of nodes. For all 7, j € Ny, we assume that ¢;; > 0if ¢ # j
and ¢;; = 01if ¢ = j. Also, we assume that for all 7, j € Ny, ¢;; = c;;. The set of
all cost matrices for NNy is denoted by Cy, and C = Upn,en,, Cn, -

A minimum cost spanning tree problem (mcstp) is a pair (Ny, C') where N €
N is a finite set of agents, 0 is the source, and C' € C N, 1s the cost matrix.

A network g over Ny is a subset of a complete graph Gy, = {(¢,)|Vi,j €
No, i # j}, whose element is an arc. Given a cost matrix C, we define the cost
associated with g as ¢(C, g) = >, ; ¢, Cij-

Given a network g over Ny and ¢, j € Ny such that i # j, a path from i to j
in g is a sequence of different arcs {(i;_1,iz)}_, that satisfies (i,_1,4;) € g for
all k € {1,2,--- K}, i =g and j = ix. Two distinct nodes ¢ and j € N, are
connected in g if there exists a path from 7 to j. A network g over Ny is connected



if for all ¢, 7 € Ny, 7 and j are connected in g.

A tree is a network with a unique path from any node to another node. We
denote the set of all trees over Ny as Ty, and 7 = Upn,en, T, Forany t € Ty,
let ¢;; be the unique path from i to j in ¢.

Givent € Ty, and i, j € Ny, i is a predecessor of j in t if there exist k£ € Ny
such that (i, k) € to;. Let P(j|t) be the set of all predecessors of j in ¢. Agent i
is the immediate predecessor of j in t if (i, ) € t(;. Let p(j|t) be the immediate
predecessor of j in t. j is a follower of i in t if i € Pre(j|t). Let F'(i|t) be the set
of all followers of 7 in ¢. Agent j is an immediate follower of i if p(j|t) = i. Let
f(i|t) be the set of all immediate followers of ¢ in t.

For all Ny € Ny and all C' € Cy,, a minimum cost spanning tree (mcst) over
Ny, denoted by ty,, is defined to be argminteTNO Z(m)et Cij-

Let m(Ny, C) be the minimum cost for the mcstp (Ny, C). Thatis, m(Ny, C) =
> (i.jyet Cij» Where ¢ is an mest for the mestp (No, C').

Let C|s, be the restriction of the cost matrix C' to the coalition Sy € Ny. Bird
(1976) associated a cooperative game (/V, ¢) with each mcstp (Ny, C') where ¢(.5)
=m(Sy, Cls,) foreach S C N.

When there is no ambiguity, we use P(i), p(i), F'(i), f(i), t, and (Sp, C) in-
stead of P(i|t), p(i|t), F(i|t), f(i|t), tn,. and (Sp, C\s, ), respectively.

The core of the cooperative game (IV, ¢) is defined by

Core(N,c) = {x € RN‘ le = ¢(N) and le <¢(9),VS C N}.
1EN €8
2.2 Prim algorithm

To find an mecst t, we can use the the Prim algorithm (Prim (1957)) defined as
follows:

Step 0 : Let A = {0} and ¢° = 0.
Step 1 : Choose an ordered pair (a', b') such that

(a',b') = argmin ¢,
(i,§) EA0 X (A0)e

where (A%)¢ = N\ A% Let A = A°U {b*} and ¢' = ¢° U {(a*,b")}.
Step k : Choose an ordered pair (a*, b*) such that

(a®, b%) = argmin Cij-
(1) AR x (AR-1)e

3



The algorithm terminates at step n. Then, the mcst t for the mestp (Ny, C) is

n

g".

From now on, for a given mcstp, we assume that all agents are named by the
Prim algorithm, i.e., agent 1 is chosen in the first step of the Prim algorithm and
agent i is chosen in the " step. In fact, the Prim algorithm does not choose a
unique agent in each step generally. Later, we will control this problem by re-
stricting the domain of the cost matrices.

2.3 Rules

For each N € N, a cost allocation rule, or a rule, is a function v such that
Y Cn, = Rf. Let R be the family of all rules. Given Ny € Ny, C' € Cy,, and
¥ € R, the i'" element of ¢ (C'), 1;(C), is the cost allocation to agent i.

We introduce two rules for mcstp, the Bird rule and the Dutta-Kar rule (DK
rule). Before we study these rules, we impose a domain restriction on the permis-
sible cost matrices.

ngvo ={C € Cy,|C induces a unique agent in each step of the Prim algorithm},

C? = U CX,-

An mest t does not have to be unique on C3. For example, let N = {1,2,3} and
co1 = 6,c12 = 2,c13 = co3 = 3 and other costs be larger than 6. Note that mcst
t is not unique but a unique agent can be chosen in each step of the Prim algorithm.

The Bird rule charges each agent the additional cost incurred by his inclusion
in the network.

Bird rule, ¢)” : For all Ny € Ny, all C € G}, and all i € N, ¥7(No, C) = ¢y

With the Bird rule, each agent connects sequentially to the source by using
the Prim algorithm and pays the additional cost. We call a rule a core selection if
no coalition of agents can be better off by building their own network. The Bird
rule is a core selection but fails to satisfy cost monotonicity. Cost monotonicity
requires that the cost allocated to agent ¢+ does not increase if the cost of a link
involving 7 goes down, nothing else changing.

Dutta and Kar (2004) proposed the DK rule which is a core selection and also
satisfies cost monotonicity. Dutta and Kar (2004) defined the DK rule, /?%, by



using the following algorithm.
Step 0: Let A° = {0},¢° =0,t° = 0.
Step 1 : Choose the ordered pair (a', b') such that

(a',b') = argmin ¢
(4,§)€AOx A9

Define
t' = max(t?, cop), A= AU {b'}, ¢ =4 U {(at,b))}.

Step k : Choose the ordered pair

(aF,b") = argmin ¢
(i,j) e Ab—1x AF—1
Define
t* = max(t* 1 carr ), AF = AL UMY, oF = gF T U {(6F, 0F))

PE = min(t", corpn).
The algorithm terminates at step n. Then, 2K = ¢,

If C ¢ C3, the DK rule considers strict orderings over N which can be used
as a tie-breaking rule. The DK rule takes the simple average of the cost allocation
obtained for each ordering. But on the domain C3, we choose a unique agent in
each step; therefore we do not need a tie-breaking rule.

Because we name the agent who is chosen in the i step i, the node b’ in
each step of the Prim algorithm is the agent 4, and the node a’ is the agent p(i).
Thus, c,ip: = ¢p(s)i in each step. Therefore, on the domain C3, the DK rule can be
rewritten as

DK :
o= minmax{cnd, Cgrnrin ;. 1<k <,

and ¥ PX is the remaining cost.

3 Strong demand operator

Granot and Huberman (1984) introduced weak demand operator (wdo) and strong
demand operator (sdo). In this chapter, we deal with the sdo.!

'Kim (2011) deals with the weak demand operator case. He criticized the definition of the wdo
and suggested the modified weak demand operator.

5



Let the mcst t be given. Let agent 7 be the immediate predecessor of agent j
in t. Suppose they are assigned with the initial cost allocation y. Agent ¢ wants
to transfer some of his costs to j. In this case, how much can be transferred? If
agent 7 transfers too much cost, agent j will disconnect the arc (7, j) and form his
own tree. Therefore, agent ¢ may transfer costs as long as it does not violate the
participation constraints of agent j.

Before we formalize the sdo, we introduce a notation T, r,. For Ry, Ry C N,
define a coalition set T, r, as

TR17R2 = {S|R1 Q S, R2 N S - @}

For convenience, if both R; and R, are singleton; say Ry = {i} and Ry = {j},
we will use the notation 75 ; for T (3.

Strong Demand Operator (Granot and Huberman(1984)) : When agent i € N
performs a sdo it gives a cost transfer to each j in his immediate follower set f (7).
To find the optimal value of the cost transfer, agent ¢ first solves the optimiza-

tion problem,
max{ Z 2}
JEf(@)
S.t. ex(R, Z) >0 forall R € Tf(i),{z’} U (TS,f(z’)\S S C f(l)),
2z, =y forall k ¢ {i} U f(7),

Z%‘:Zyi,

iEN iEN
where ex(R, z) = ¢(R) — >, %
Then the sdo is defined by
2% if j =k, k€ f(i);
Sd;'(y) = Yi — Zkef(z‘)(zk - yk) if j =1;
Yj otherwise.

We call the first constraints of the optimization problem participation con-
straints. Note that if y is in the core then the constraints of the strong demand
operator ensure that all cost allocations z, z € {sd'(y)}, are also contained in the
core.

The sdo draws the maximal amount of transfers that agent ¢ can afford as long
as the remains in the problem.



4 Irreducible minimum cost spanning tree problem

4.1 Irreducible matrix

The irreducible matrix is the minimal cost matrix obtainable without reducing the
total cost of the network. Bird (1976) introduced the minimal spanning network
(No, C*) associated with ¢ as follows. For given mestp (No, C') and its mest t, ¢j; =
Max e, 1 ¢kt }- Bird (1976) used this minimal network to define the irreducible
core of an mcstp, which is a subset of the core.

The characteristic function and the core of the irreducible games are similar to
those of the mestp. That is, m(No, C*) = >, ; ¢, ¢i;» Where ¢j; is each element
of irreducible matrix C* and ¢ is a mest of the mestp (No, C*). Let C be the
restriction of the irreducible matrix C* to the coalition Sy C Ny. We use ¢*(.5) as
the characteristic function where ¢*(.5) = m(So, Cg,)-

When there is no ambiguity, we use (So, C*) instead of (:So, C[, )-

We denote the irreducible core of mestp (Ny, C) as Core(N, ¢*) which is de-
fined by

Core(N,c") = {ZE € RN’ Zm, = ¢"(N) and sz < c*(9),VS C N}.

1EN €S

4.2 Partition by irreducible matrix

We introduce a partition by irreducible matrix (PIM), which is a partition of N.
We call each element of the PIM a cell. To define the cells of the PIM, we define
a cell leader and cell followers.

Given an irreducible matrix C* of cost matrix C', we call an agent [ € N a
cell leader (CL) of C* if ¢f; = cpqy. Given a C'L [, we denote the set of all cell
followers of [ as C'F'(1) which is defined by

CF()={j € N|07j < Cojr Coj = ot

Partition by Irreducible Matrix (PIM) : Given an irreducible matrix C* of cost
matrix C, the PIM of C* is a partition of N, which is defined by

PIM(C*) = {{l} U CF(Z)’ lisan CL of C*}.

From now on, we denote the cell which agent 7 belongs to as cell(i) and the
CL of cell(i) as a(cell(i)).



Next, we introduce induced tree which is a transformation of a mcst.
Induced tree : Given a tree ¢, an induced tree ¢* is a tree transformed from ¢ in
which:

(1) Each C'L directly connects to the source,
(ii) C'F of each C'L conserve their own tree structure.

Note that any cell in ¢ is an cell in t*.

Figure 1.

Arbitrary Figure 2. Transformation.

Figure 3. Induced tree ¢* from ¢.

Lemma 1. For all Ny € Ny and all C € C3, the mest t and its induced tree t'
has the same irreducible matrix.



Proof. All we have to check is that for any agent ¢ and j, they have the same
irreducible cost ¢;; in ¢ and #'.

e Case L. (cell(i) = cell(j))
Because each IG Fol conserves its structure in ¢, for any i and j in the same cell,
t and t* have the same unique paths from i to j. Therefore, from the definition of
Cijo Cile = ¢l

e Case IL. (cell(i) # cell(y))
For any 4 and j with cell(i) # cell(j), ¢j; = max( iyer,; Cri
= max{Con(1G(1)), Con(1G(;)) }- We know thatany /G in ¢ is also /G in t'. Therefore,

C;‘kjlt = ij ti
We can conclude that ¢ and its induced tree ¢* have the same irreducible matrix.
Therefore, t' is a mest t for the irreducible form. O

Check that the induced tree is the mcst for irreducible game (Ny, C*) with the
maximum components, where the number of components of a tree is |F'(0)|, and
each component is a cell of the PIM. From the definition of induced tree, it is

easy to see that the partition {celly, - - - , cell,} of N satisfies
p
m(No, C*) =Y mi((cell;)o, C*),
i=1

where p is the number of cells of the PIM (C*).

Cell-wise efficiency : For all Ny € N, all C' € Cy, and all y € Y, an allocation
y is cell-wise efficient if

d yi= Y cpyy,  foralll <i<p,

j€Ecell; j€Ecell;

where p is the number of cells of the PIM (C*).

Lemma 2. [f a cost allocation y is in Core(N, c¢*), it satisfies cell-wise efficiency.

Proof. From the definition of induced tree and Lemma 1, ). ;4. cp(j);

= m((cell;)o, C*) = c*(cell;) forall 1 < i < p.Of course, } ;. y; = m(No, C*)
First, suppose that there exists an cell such that Y ... Y; > > icoan, CP();-

It means that ) | jecel; Yji > € (cell;) thus violates the core constraint. Therefore, y

is not in C'ore(N, c*).



Second, suppose that there exists an cell such that > i .. Y5 < X icean, CPG)i-
It means that D ;. y; < c*(cell;). In this case, since } .y y; = m(No, C¥)
and m(Ny, C*) = > m((cell;)o, C*), there should be at least one cell such
that 3 i, Yi > D jecen, CPG)j- Therefore, y is notin Core(N, c*) for the same
reason.

Consequently, any cost allocation y in Core(N, ¢*) satisfies cell-wise effi-

ciency. [

We define component-wise efficiency, which will be used in our main results.

Component-wise efficiency For all N, € N, all C' € Cy,, all i € F(0), and all
y € ), an allocation y is component-wise efficient if

Z Yj = Z CP(j)j-
JEF(H)U{i} JEF()U{i}
Cell-wise efficiency implies component-wise efficiency from the definition of
induced tree.

5 Main results

In this section, we define a procedure using the sdo and show that the outcome
coincides with the DK rule.

5.1 Procedure with tie-breaking rule

In our procedure, we use irreducible matrix C* instead of cost matrix C'. This is
based on two reasons. First, as mentioned, a link cost of outside-tree may have no
meaning after a network is constructed. Second, if we use C, the sdo can gener-
ate a negative allocation for the operator. With these reasons, we use irreducible
matrix C* instead of cost matrix C.

Next we assume that the operator should leave the game after the sdo is ap-
plied to him so that the others cannot use that node. When the operator leaves
the game, we need alternative tree for the remaining people. In this case, we need
tie-breaking rule p because we do not have unique alternative tree since we use
the irreducible matrix. We define the tie-breaking rule p as follows.

Tie-breaking rule, p : For all Ny € N, all C € 3, and all i € N, choose the
alternative mest (t*) for (Ny \ {i}, C*) as follows.

10



e Connectr € F'(i) \ {i + 1} to agent i + 1. If agent i + 1 is not connected to
the source, connect to the source.

Now we are ready to define a procedure using the strong demand operator. The
procedure is defined as below.

Iteration of the strong demand operator on the irreducible matrix
Given Ny € Ny and C € C3,,

(i) Let y be the initial cost allocation.
(i1) Transform the cost matrix into irreducible matrix.

(i11) Apply the sdo with the tie-breaking rule p to each agent sequentially fol-
lowing the numbering of agents.

5.2 Separability

Separability : For all Ny € N, all C € Cp,, and all S C N satisfying
m(Ng, C) = m(Sy,C) +m((N \ S)o, C), arule is separable if

. @b,(S(),C) ifi € S,
w0 0) ={ o) s

We show that DK-rule is separable.
Lemma 3. For all Ny € Ny and all C € C3,, YP"(-) is separable.

Proof. Let Ng € Ny, C € C¥,. Let | f(0)| = m and
G={G} . . G G% . . G% G", .., Ggf} be the partition of N where each G

q1’ q2’

is an cell and for all s € {1,--- ,m}, GY is directly connected to the source. Let
Coci = Coa(GY)-

By the definition of Dutta-Kar allocation rule, for all ¢ € {1,---,m} and all
[—1€ N,

21 (No, €) = min{ max { ey}, o}

Since each Gé- is an cell, for all G¢,

P (No, ©) = min{eacs, cpon-

11



Thus,

DK _ [ o ifLEG)

pron. 0 = { 2 g
Let cygiyi = Cpla(Gi))a()- Similarly, foralli € {1,--- ,m},allj € {1,---, ¢},
andalll —1 ¢ G},

DK _ [ IfIEG
-1 (N()?C) - { Cp(G;)G;- if ] ¢ G;

Thus, forall i € {1,--- ,m}andalll —1 € S = Ujeq,.. 413G V2K (No, O)
assigns some internal link cost regardless of N\S which implies ¥P%X (Ny, C) =
DK
-1 (SO’ C) O

5.3 Coincidence

If an allocation vy is contained in irreducible core, it satisfies cell-wise efficiency
by Lemma 2. From the definition of induced tree, we know that cell-wise effi-
ciency implies component-wise efficiency. Therefore, if an cost allocation ¥ is in
irreducible core, it satisfies component-wise efficiency.

Since the sdo is a transfer between an operator and his immediate followers,
it is a operation within a component. Therefore, if y satisfies component-wise
efficiency, sd’(y) also satisfies component-wise efficiency.

Lemma 4. For all Ny € Ny, all C € ngvo’ all v € N, if y is component-wise
efficient, then sd‘(y) is component-wise efficient.

Proof. It is easy to check from the definition of the strong demand operator. [

We check how much cost is allocated to agent 1, if the sdo is applied to agent
1.

Lemma 5. For all Ny € Ny, all C & 030, if the cost allocation vy is contained in
Core(N, c*) and we use the irreducible matrix, then sdi(y) = min{co, c12}.

Proof. Let 3/° be the initial allocation and y' be the allocation after the sdo is
applied to agent 1. That is, y' = sd'(y°) = (sd}(y°), sd3(y°),- - -, sd!(y°)).
Since 7/° is contained in the irreducible core, we know that ' is also contained in
the irreducible core from the definition of the sdo.

Check that ¢*(N \ {1}) = ¢*(N) — min{cg1, c12}-

12



First, suppose that y1 < min{co;, c12}.

ex(N\{1},y") =c(N\{1}) = > u

i inN\{1}
= (c*(N) — min{cm,clg}) - (Z yzl - y%)
= (c*(N) — min{Cm,Clz}) — (Z y? - y%)

= y% — min{cgy, 12}

<0 (. y; <min{co, c12} by assumption).

From the definition of the sdo, ' is a core allocation, therefore every coalition
has non-negative excess under y'. Contradiction.

Second, suppose that 41 > min{cyy, c12}.

Let d = yi — min{cg, c12} > 0. Check that for all S C N, ex(S,y') > 0
holds since 4 is a core allocation from the definition of the sdo.

We consider a new allocation ¢ such that agent 1 transfers d to agent 2 from
y'. We divide R C N into four cases, R N {1,2} = 0, RN {1,2} = {1},
RnN{1,2} ={2}and RN {1,2} = {1,2}.

(i) For every coalition R such that R N {1,2} = 0, ex(R,§) > 0 since
Vie N\ {1,2}, 9; = y,.

(77) For every coalition R such that R N {1,2} = {1}, ex(R,y) > 0 since
Vie N \ {172}7:&1 = yzl and @1 < y%

i11) For every coalition R such that R N {1,2} = {1,2}, ex(R,y) > 0 since
111) F y coalition R such that R N {1,2 1,2 R,y 0 si
Dier i = Dier Yi-

(iv) For every coalition R such that R N {1,2} = {2}, let R = RU {1}.

We know that ex(R™, y') > 0 since y' = sd'(y) is a core allocation. Check that
c*(R) = ¢*(R*) — min{co1, c12}-

13



ex(R,9) = ¢ (R) = Y i

i€R
= ¢*(R*™") — min{cor, e} = { Y wl — 1}
i€RT!
=c*(R™) - Z yi —min{coy, cra} + 91
ieRT!

2 — min{cm, C12} + 1)1 ( €$C<R+1, yl) Z O)
= —min{co1, c12} + 41 — d

= —min{coy, c12} + min{cor, c12} = 0.

Therefore agent 1 can transfer d to agent 2 without violating any participation
constraint by checking (), (74), (ii), and (iv). It means that y; is not an solution
for the optimization problem of the sdo. Contradiction.

To sum up, y; = sdi(y°) > min{cyy, c12} cannot happen, and y; = sdi(y°) <
min{cgy, c12} also cannot happen, as desired. O

Lemma 5 means that sd} (y) is always unique, whereas sd'(y) may be a set of
allocations, as mentioned.

Since the other agents cannot use the node 1 after the sdo is applied to agent
1, we consider the alternative mcstp related with the alternative tree t* which is
made according to tie-breaking rule p after the sdo is applied to agent 1.

We denote the irreducible mcstp using the alternative tree t* as (Ny \ {i}, C**).

Lemma 6. For any mcstp (Ny, C) and its irreducible mcstp (Ny, C*),
(No \ {1},C*) and (Ny \ {1}, C**) are the same mcstps.

Proof. We will show that C* restricted on Ny \ {1} is equal to C**.

e Case L. f(1) = {2}.
First, we check costs between agents. Since tie-breaking rule p requires that N \
({1} U f(1)) keep their tree structure, for all i,j € N \ {1},i # j, tij = t;.
Therefore for all i,j € N \ {1},i # j, ¢j; = c¢;} from the definition of the
irreducible matrix.

Next, we check costs between agents and the source. In case I, we know that
oo = max{coy, c12} = ¢j3. Since ¢f; = max(; pyeto, Cjk> MAX{Co1, Cr2, -+, Cp(iyi} =
max{max{cor, ci2}, -, o)} = max{cy3, -+, cpuyi} = ¢ Therefore for all
i€ N\ {1}, ¢;; = ¢; from the definition of the irreducible matrix.

i
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Therefore, C* restricted on Ny \ {1} is equal to C** in Case I.

e Case Il {2} G f(1).
Before we prove, we first need to show that for any ¢ € f(1)\ {2}, ¢}, = ¢b, = &7
Since Prim algorithm chooses 7 later than 2, we know that ¢;2 < ¢y;. And from the
definition of irreducible matrix, ¢j; = max{cis, c1;} = ¢1; = ;.

Tie-breaking rule p requires us that ¢ = c3,. Therefore, ¢}, = ¢35, = c5;.

First, we check costs between agents, that is, we want to show that for any
i,j € N\ {1} andi # j, cj; = ¢}

If agent 1 is not on the unique path ¢;;, ¢j; = ¢;7, because tie-breaking rule p
requires that N\ ({1} U F'(1)) keep their tree structure.

If agent 1 is on the unique path ¢;;, we define agent k,l as k € f(1),i €
F(k)and [ € f(1), j € F().> The only difference between t;; and t{; is that
{(k,1),(1,1)} C ti; whereas {(k,2),(2,1)} C tf;.> We already showed ¢}, = ¢},
and cj; = ¢ which implies the costs on the path ¢;; is equal to ¢; 4 Therefore
c;;=c;i foranyi,j € N\ {1} andi # j.

Next, we check costs between agents and source. Let i € N \ {1} and k be an
agent such that k € f(1) andi € F(k).°>

If £ = 2 (that is, ¢ € F'(2)), the tie-breaking rule p requires agent 2 con-
nects to the source. In this case, the only difference between ?(; and ¢§; is that
1(0,1),(1,2)} C t;; whereas {(0,2)} C t7;. We can check that cf; = max{cor, coz }
= ¢}, Therefore, ¢, = ¢} if 2 is on %;.

If £ # 2 (thatis, i ¢ F(2)), we have to check the unique paths t(; and ¢,.
The only difference between ¢; and t2, is that {(0,1),(1,k)} C to; whereas
{(0,2),(2,k)} C t§;. We already know that cj, = c;, = c3;. We also know
that ¢f5 = max{cj;, ¢i,}. Therefore, max{c},, cj,} = max{cs},cs;}. Thus, the
maximum costs on the path ¢; and ¢§; are the same. It implies that cj; = cf; if 2
is not on the path ¢,;.

2We define k = i if i € F(1) and we define [ = j if j € F(1).

If k=2, {(k,1),(1,0)} C t;; whereas {(2,1)} C t,. It means that the length of the path
changes, if we define the length of any path as the number of links on the path. We have the same
resultif [ = 2.

Hf k = 2, the ¢x1 < cy; for any [. It implies that max{ck1,c1;} = c1; = ¢}, = c3;. That is,
even though the length of the path changes, we have the same maximum cost on the path ¢;; and
t7;- We have the same result if [ = 2.

SWe define k = i if i € f(1).
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Therefore, C* restricted on Ny \ {1} is equal to C** in Case IL.

We can conclude that (Ng\ {1}, C*) and (N \ {1}, C**) are the same mcstps.
[]

The interpretation of Lemma 6 is that ¢* is (one of) mests for (Ny \ {1}, C*).

Theorem 1. For all Ny € Ny, and all C' € CJ?Q,O, if an initial allocation vy is in
Core(N,c*), the allocation obtained by iterating the sdo using the irreducible
matrix from y coincides with the DK allocation.

Proof. Let Ny € Ny, C' € C,, and 3 be an allocation in Core(N, c*).
Because ¢PX satisfies separablhty by Lemma 3, it suffices to consider the case
that | f(0)| = 1. Since each agent is numbered by the Prim algorithm, f(0) = {1}.

At 1% stage, agent 1 applies the sdo and gets yi = min{cyy, c12} by Lemma
5. After that, N \ {1} form an alternative tree according to the tie-breaking rule
p such that the costs of the alternative trees are coo = max{co1, c12} and for all
jeF(1)\{ 2} Coj = ;. From the deﬁmtlon of the sdo, we know that y! is in
Core(N, c*). yix 1y i the prOJectlon of y*' onto RV},

We need to show that y|1N\{1} isin Core(N \ {1}, ¢*).

We first check the excess conditions. Since y° is in Core(Ny, ¢*), the sdo
ensures that y' is in Core(Ny,c*). So, we know that ex(R, yy () > 0 for
all R € N\ {1} in the mestp (No \ {1},C*). By Lemma 6, we know that
(No\ {1},C*) = (Np \ {1}, C*). Therefore, in the mcstp (Ny \ {1}, C**), every
coalition has non-negative excess under cost allocation y‘lN\ (y

Next we check the efficiency condition. Since 7° satisfies component-wise
efficiency and sdo is also efficient by Lemma 4, we know that that m(Ny, C*) =
D ij)et Cij = Dien y'. From the tie-breaking rule p, D Gigyet G = 2(ijers G
min{cor, c12} and ),y yh = zzg]\/\g} y|1N\{1} +ui
— ZzeN\{l} y‘N\{l} + min{cgy, ¢12} by Lemma 5.

Thus, > ;e cw =>. ien(1} Y (N \ {1}) which implies the efficiency condi-
tion. ."ljherefore y|N.\{1} is in Q_ore(N \ {1}, ¢*)=Core(N \ {1}, ") by excess
conditions and efficiency condition.

Next stage, the sdo is applied to agent 2 and same thing happens. That is,

Y3 = min{cpg, o3} and y\2N\{1,2} isin Core(N \ {1, 2}, ¢*).
Check that Coz = max{cog, 023} = maX{cm, C12, Cp(g)g}.

16



At k" stage (k < n), the sdo is applied to agent k and he gets
y,’j = mm{COk, Ck(k+1)}-

Check that cop, = max{cor, c1a, - , Cppoyk f=max;<x{cp(;); } and y{“N\{L._,,k}
isin Core(N \ {1,--- ,k},c*).

Therefore, in each stage, the operator k£ < n gets
y],: = min{maxlgk{cla(l)l}, CP(k+1)k+l} which coincides with kaK

6 Concluding remark

In this paper we study the relation between the sdo and the DK rule. Our main
result shows the coincidence between our procedure using the strong demand op-
erator and the DK rule.

Granot and Huberman (1984) also suggested the weak demand operator. Kim
(2011) criticized weak demand operator and suggested a modified weak demand
operator.

Modified weak demand operator is related with follower’s opportunity cost.
Compared to modified weak demand operator, strong demand operator usually
transfers more than modified weak demand operator does. But in irreducible form,
the amount of the transfer is limited since participation constraints of irreducible
matrix C* are more tighter than the participation constraints of cost matrix C'.

More precisely, if the sdo is applied to agent 1 in irreducible form, the partici-
pation constraint for coalition N\ {1} coincides with the constraint of the modified
weak demand operator, so we face more constraints compared with modified weak
demand operator. Therefore if we proceed with weak demand operator, we have
more initial allocation that can possibly generate DK allocation. Kim (2011) uses
modified weak demand operator and shows that procedure using modified weak
demand operator generates DK allocation if the initial allocation is component-
wise efficient. Irreducible core is subset of component-wise efficient allocations,
therefore the condition of modified weak demand operator is weaker than our
condition.
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Appendix: An example

Example 1. Let N = {1,2, 3,4} and the cost matrix C' be as below.

0 6 7 8 10
6 01 3 6
C = 7T 1 07 4
8§ 3 7 0 2
10 6 4 2 0
The unique mecst t is illustrated as follows.
The irreducible matrix C* is
0 6 6 66
6 01 3 3
C*=1610 3 3
6 3 3 0 2
6 3 3 20

Let the initial cost allocation be y° = % = (6,1, 3,2).

At 1% step, sdo is applied to agent 1. Let y' = (10 —x —y, z, y, 2) be the allo-
cation after the sdo is applied to agent 1. In this case, coalition set to be considered
is Trogy 1y UThs UTso = {{2,3},{2,3,4}} U {{2},{1,2},{2,4},{1,2,4}} U
{{3},{1,3},{3,4},{1,3,4}}.
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coalition (S) cost (¢*(S5)) allocation participation constraint

{2,3} 9 r+y 9—x—y>0
{2,3,4} 11 r+y+2 9-x—-y>0
{2} 6 x 6—2>0
{1,2} 7 10—y y—3>0
(2,4} 9 x4 2 T—2>0
{1,2,4} 10 12—y y—2>0
{3} 6 y 6-y>0
{1,3} 9 0-2 2-1>0
(3,4} 8 y+ 2 6—y>0
{1,3,4} 11 12—z  2-1>0

Agent 1 chooses maximum z + y under these participation constraints. There-
fore, z +y = 9 and sd'(y°) = (1,9 — ¢,t,2) where 3 < ¢ < 6. In this case,
sd*(y°) is a set of allocations and agent 1 can choose any allocation in this set.
For example, suppose that agent 1 chooses t = 5, then y' = (1,4, 5, 2).

At 2" step, sdo is applied to agent 2. Let y2 = (1,9 — 2, 2, 2) be the allocation
after the sdo is applied to agent 2. In this case, coalition set to be considered is

T3,2 = {{3}> {17 3}7 {37 4}7 {17 37 4}}

coalition (S) cost (¢*(S)) allocation participation constraint

{3} 6 z 6—2>0
{1,3} 9 1+ 2 8—22>0
{3,4} 8 z+2 6—2>0
{1,3,4} 11 3+ 2 8—2>0

Agent 2 chooses maximum z under these participation constraints. Therefore,
z=~6andy* = (1,3,6,2).

At 37 step, sdo is applied to agent 3. Let > = (1, 3,8 —w, w) be the allocation
after the sdo is applied to agent 3. In this case, coalition set to be considered is

T4,3 = {{4}7 {17 4}7 {27 4}7 {17 27 4}}

coalition (S) cost (¢*(S)) allocation participation constraint

{4} 6 w 6—w>0
{1,4} 9 I+w 8—w >0
{2,4} 9 34w 6—w>0
{1,2,4} 10 44w 6—w>0

Agent 3 chooses maximum w under these participation constraints. Therefore,
w=6and gy = (1,3,2,6).

19



At 4" step, the sdo is applied to agent 4, but in this time nothing changes since
f(4) = 0. Therefore, y* = (1, 3,2,6).

Each figure below shows the alternative tree which is made when sdo is ap-
plied to agent 1 to agent 4.

© © @ ©

6 6
6

2 6) )

5 2 2

@ @ @
Figure 1-1. Figure 1-2. Figure 1-3. Figure 1-4.
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