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Abstract

Strong Demand Operator and the Dutta-Kar Rule
for Minimum Cost Spanning Tree Problems

We study the strong demand operator introduced by Granot and Hu-
berman (1984) for minimum cost spanning tree problems. First, we
review the strong demand operator. Next, we study the irreducible
minimum cost spanning tree games and the irreducible core. Finally,
we define a procedure with tie-breaking rule which generates an al-
location from given initial allocation. In our procedure, a cost matrix
is changed to its irreducible matrix before the operator is applied.
We show that the Dutta-Kar allocation is obtained by applying the
strong demand operator from any allocation in irreducible core.

Keywords: minimum cost spanning tree problems, strong de-
mand operator, irreducible matrix, irreducible core, Dutta-Kar
rule, Prim algorithm.
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1 Introduction
In this paper, we study minimum cost spanning tree problems (mcstp). Consider
the situation there is a common supplier (denoted by 0) which can supply anyone
who is connected to it. Demanding agents (denoted by N ) are located at distinct
geographical places. Each agents will be served through connections which entail
some cost. They do not bother whether they are connected directly or indirectly
with the source. They are going to cooperate to minimize their total cost to con-
struct a network which connects every agent to the source.

In this situation, two big questions arise. First, how can we construct the ef-
ficient network? And how to allocate the total cost? For the first question, Prim
(1957) introduced prominent algorithms. For the second question, there are many
studies about mcstp after Claus and Kleitman (1973) initiated the problem and
Bird (1976) adopted cooperative game theoretic approach (Claus and Kleitman,
1973; Bird, 1976; Feltkamp et al., 1994; Kar, 2002; Dutta and Kar, 2004; Berganti-
nos and Vidal-Puga, 2007; Chun and Lee, 2012).

We investigate the allocation problem using strong demand operator intro-
duced by Granot and Huberman (1984). First, we review the strong demand op-
erator. Next, we study the irreducible minimum cost spanning tree problem and
the irreducible core. Finally, we define a procedure with tie-breaking rule which
generates an allocation from given initial allocation. In our procedure, a cost ma-
trix is changed to its irreducible matrix before the operator is applied. We show
that the Dutta-Kar allocation is obtained by applying the strong demand operator
from any allocation in irreducible core.

Bird (1976) considers the irreducible matrix and the irreducible core. The ir-
reducible matrix is the minimal cost matrix without reducing the total cost of the
network. To understand this idea, suppose that a physical network is given. In the
network formation model, costs of all possible link play important role. But in
real world, a link cost of outside-network may have no meaning after a network
is constructed. Thus one may insist that an allocation of a minimum cost span-
ning tree should only depend on the costs on the minimum cost spanning tree and
that is the Fair allocation rule (Bergantinos and Vidal-Puga (2007)) which is the
Shapley value based on irreducible matrix.

The irreducible core is a set of cost allocations such that each coalition has
non-negative excess in terms of irreducible matrix. Irreducible core is convex hull
of some extreme points. Aarts and Driessen (1993) and Tijs et al. (2004) show
how to determine these extreme points.

Bird (1976) introduced an allocation rule for minimum cost spanning tree
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problems, now called the Bird rule. With the Bird rule, each agent connects se-
quentially to the source by using the Prim algorithm and pays the additional cost.
We call a rule a core selection if no coalition of agents can be better off by build-
ing their own network. The Bird rule is a core selection but fails to satisfy cost
monotonicity. Cost monotonicity requires that the cost allocated to agent i does
not increase if the cost of a link involving i goes down, nothing else changing.
Dutta and Kar (2004) suggested DK rule which is a core selection and also satis-
fies cost monotonicity.

This paper proceeds as follows. In section 2, we introduce minimum cost span-
ning tree problems, allocation rules for the problems. In section 3, we review the
strong demand operator. In section 4, we study irreducible minimum cost span-
ning tree problem. We introduce partition by irreducible matrix in order to study
the irreducible core. In section 5, we suggest iteration of the strong demand op-
erator. We show the coincidence between the DK allocation and the iteration the
strong demand operator from any allocation in the irreducible core.

2 Preliminaries

2.1 Minimum cost spanning tree problem
Let N = {1, 2, · · · } be a (finite or infinite) universe of all potential agents and
N be the collection of non-empty, finite subsets of N. A typical element of N is
denoted by N ≡ {1, ..., n} and 0 is a special node called the source. We call each
element of N0 ≡ N ∪ {0} a node, and N0 ≡ {N0|N ∈ N}.

Given N0 ∈ N0, a cost matrix C = (cij)i,j∈N0 represents the cost of direct
links between any pair of nodes. For all i, j ∈ N0, we assume that cij ≥ 0 if i 6= j
and cij = 0 if i = j. Also, we assume that for all i, j ∈ N0, cij = cji. The set of
all cost matrices for N0 is denoted by CN0 and C ≡ ∪N0∈N0CN0 .

A minimum cost spanning tree problem (mcstp) is a pair (N0, C) where N ∈
N is a finite set of agents, 0 is the source, and C ∈ CN0 is the cost matrix.

A network g over N0 is a subset of a complete graph GN0 ≡ {(i, j)|∀i, j ∈
N0, i 6= j}, whose element is an arc. Given a cost matrix C, we define the cost
associated with g as c(C, g) ≡

∑
(i,j)∈g cij .

Given a network g over N0 and i, j ∈ N0 such that i 6= j, a path from i to j
in g is a sequence of different arcs {(ik−1, ik)}Kk=1 that satisfies (ik−1, ik) ∈ g for
all k ∈ {1, 2, · · · , K}, i = i0 and j = iK . Two distinct nodes i and j ∈ N0 are
connected in g if there exists a path from i to j. A network g over N0 is connected
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if for all i, j ∈ N0, i and j are connected in g.
A tree is a network with a unique path from any node to another node. We

denote the set of all trees over N0 as TN0 and T ≡ ∪N0∈N0TN0 . For any t ∈ TN0 ,
let tij be the unique path from i to j in t.

Given t ∈ TN0 and i, j ∈ N0, i is a predecessor of j in t if there exist k ∈ N0

such that (i, k) ∈ t0j . Let P (j|t) be the set of all predecessors of j in t. Agent i
is the immediate predecessor of j in t if (i, j) ∈ t0j . Let p(j|t) be the immediate
predecessor of j in t. j is a follower of i in t if i ∈ Pre(j|t). Let F (i|t) be the set
of all followers of i in t. Agent j is an immediate follower of i if p(j|t) = i. Let
f(i|t) be the set of all immediate followers of i in t.

For all N0 ∈ N0 and all C ∈ CN0 , a minimum cost spanning tree (mcst) over
N0, denoted by tN0 , is defined to be argmint∈TN0

∑
(i,j)∈t cij .

Letm(N0, C) be the minimum cost for the mcstp (N0, C). That is,m(N0, C) ≡∑
(i,j)∈t cij , where t is an mcst for the mcstp (N0, C).
Let C|S0 be the restriction of the cost matrix C to the coalition S0 ⊆ N0. Bird

(1976) associated a cooperative game (N, c) with each mcstp (N0, C) where c(S)
= m(S0, C|S0) for each S ⊂ N .

When there is no ambiguity, we use P (i), p(i), F (i), f(i), t, and (S0, C) in-
stead of P (i|t), p(i|t), F (i|t), f(i|t), tN0 , and (S0, C|S0), respectively.

The core of the cooperative game (N, c) is defined by

Core(N, c) ≡
{
x ∈ RN

∣∣∣∑
i∈N

xi = c(N) and
∑
i∈S

xi ≤ c(S),∀S ⊂ N
}
.

2.2 Prim algorithm
To find an mcst t, we can use the the Prim algorithm (Prim (1957)) defined as
follows:

Step 0 : Let A0 ≡ {0} and g0 ≡ ∅.
Step 1 : Choose an ordered pair (a1, b1) such that

(a1, b1) = argmin
(i,j)∈A0×(A0)c

cij,

where (A0)c ≡ N \ A0. Let A1 ≡ A0 ∪ {b1} and g1 ≡ g0 ∪ {(a1, b1)}.
Step k : Choose an ordered pair (ak, bk) such that

(ak, bk) = argmin
(i,j)∈Ak−1×(Ak−1)c

cij.
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The algorithm terminates at step n. Then, the mcst t for the mcstp (N0, C) is
gn.

From now on, for a given mcstp, we assume that all agents are named by the
Prim algorithm, i.e., agent 1 is chosen in the first step of the Prim algorithm and
agent i is chosen in the ith step. In fact, the Prim algorithm does not choose a
unique agent in each step generally. Later, we will control this problem by re-
stricting the domain of the cost matrices.

2.3 Rules
For each N ∈ N , a cost allocation rule, or a rule, is a function ψ such that
ψ : CN0 → RN

+ . Let R be the family of all rules. Given N0 ∈ N0, C ∈ CN0 , and
ψ ∈ R, the ith element of ψ(C), ψi(C), is the cost allocation to agent i.

We introduce two rules for mcstp, the Bird rule and the Dutta-Kar rule (DK
rule). Before we study these rules, we impose a domain restriction on the permis-
sible cost matrices.

C3N0
≡{C ∈ CN0|C induces a unique agent in each step of the Prim algorithm},

C3 ≡
⋃

N0∈N0

C3N0
.

An mcst t does not have to be unique on C3. For example, let N = {1, 2, 3} and
c01 = 6, c12 = 2, c13 = c23 = 3 and other costs be larger than 6. Note that mcst
t is not unique but a unique agent can be chosen in each step of the Prim algorithm.

The Bird rule charges each agent the additional cost incurred by his inclusion
in the network.

Bird rule, ψB : For all N0 ∈ N0, all C ∈ C3N0
, and all i ∈ N , ψBi (N0, C) = cp(i)i.

With the Bird rule, each agent connects sequentially to the source by using
the Prim algorithm and pays the additional cost. We call a rule a core selection if
no coalition of agents can be better off by building their own network. The Bird
rule is a core selection but fails to satisfy cost monotonicity. Cost monotonicity
requires that the cost allocated to agent i does not increase if the cost of a link
involving i goes down, nothing else changing.

Dutta and Kar (2004) proposed the DK rule which is a core selection and also
satisfies cost monotonicity. Dutta and Kar (2004) defined the DK rule, ψDK , by
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using the following algorithm.

Step 0 : Let A0 ≡ {0}, g0 ≡ ∅, t0 ≡ 0.
Step 1 : Choose the ordered pair (a1, b1) such that

(a1, b1) = argmin
(i,j)∈A0×A0

c

cij

Define

t1 ≡ max(t0, ca1b1), A
1 ≡ A0 ∪ {b1}, g1 ≡ g0 ∪ {(a1, b1)}.

Step k : Choose the ordered pair

(ak, bk) = argmin
(i,j)∈Ak−1×Ak−1

c

cij

Define

tk ≡ max(tk−1, cakbk), A
k ≡ Ak−1, ∪{bk}, gk ≡ gk−1 ∪ {(ak, bk)}

ψDKk−1 ≡ min(tk−1, cakbk).

The algorithm terminates at step n. Then, ψDKn ≡ tn.
If C /∈ C3, the DK rule considers strict orderings over N which can be used

as a tie-breaking rule. The DK rule takes the simple average of the cost allocation
obtained for each ordering. But on the domain C3, we choose a unique agent in
each step; therefore we do not need a tie-breaking rule.

Because we name the agent who is chosen in the ith step i, the node bi in
each step of the Prim algorithm is the agent i, and the node ai is the agent p(i).
Thus, caibi = cp(i)i in each step. Therefore, on the domain C3, the DK rule can be
rewritten as

ψDKk = min{max
l≤k
{cp(l)l}, cp(k+1)k+1}, 1 ≤ k < n,

and ψDKn is the remaining cost.

3 Strong demand operator
Granot and Huberman (1984) introduced weak demand operator (wdo) and strong
demand operator (sdo). In this chapter, we deal with the sdo.1

1Kim (2011) deals with the weak demand operator case. He criticized the definition of the wdo
and suggested the modified weak demand operator.
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Let the mcst t be given. Let agent i be the immediate predecessor of agent j
in t. Suppose they are assigned with the initial cost allocation y. Agent i wants
to transfer some of his costs to j. In this case, how much can be transferred? If
agent i transfers too much cost, agent j will disconnect the arc (i, j) and form his
own tree. Therefore, agent i may transfer costs as long as it does not violate the
participation constraints of agent j.

Before we formalize the sdo, we introduce a notation TR1,R2 . ForR1, R2 ⊂ N ,
define a coalition set TR1,R2 as

TR1,R2 = {S|R1 ⊆ S,R2 ∩ S = ∅}.

For convenience, if both R1 and R2 are singleton; say R1 = {i} and R2 = {j},
we will use the notation Ti,j for T{i},{j}.

Strong Demand Operator (Granot and Huberman(1984)) : When agent i ∈ N
performs a sdo it gives a cost transfer to each j in his immediate follower set f(i).

To find the optimal value of the cost transfer, agent i first solves the optimiza-
tion problem,

max{
∑
j∈f(i)

zj}

s.t. ex(R, z) ≥ 0 for all R ∈ Tf(i),{i} ∪ (TS,f(i)\S : S ⊂ f(i)),

zk = yk for all k /∈ {i} ∪ f(i),∑
i∈N

zi =
∑
i∈N

yi,

where ex(R, z) ≡ c(R)−
∑

i∈R zi.
Then the sdo is defined by

sdij(y) =


zk if j = k, k ∈ f(i);
yi −

∑
k∈f(i)(zk − yk) if j = i;

yj otherwise.

We call the first constraints of the optimization problem participation con-
straints. Note that if y is in the core then the constraints of the strong demand
operator ensure that all cost allocations x, x ∈ {sdi(y)}, are also contained in the
core.

The sdo draws the maximal amount of transfers that agent i can afford as long
as the remains in the problem.
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4 Irreducible minimum cost spanning tree problem

4.1 Irreducible matrix
The irreducible matrix is the minimal cost matrix obtainable without reducing the
total cost of the network. Bird (1976) introduced the minimal spanning network
(N0, C

∗) associated with t as follows. For given mcstp (N0, C) and its mcst t, c∗ij ≡
max(k,l)∈tij{ckl}. Bird (1976) used this minimal network to define the irreducible
core of an mcstp, which is a subset of the core.

The characteristic function and the core of the irreducible games are similar to
those of the mcstp. That is, m(N0, C

∗) =
∑

(i,j)∈t c
∗
ij , where c∗ij is each element

of irreducible matrix C∗ and t is a mcst of the mcstp (N0, C
∗). Let C∗|S0

be the
restriction of the irreducible matrix C∗ to the coalition S0 ⊆ N0. We use c∗(S) as
the characteristic function where c∗(S) ≡ m(S0, C

∗
|S0

).
When there is no ambiguity, we use (S0, C

∗) instead of (S0, C
∗
|S0

).
We denote the irreducible core of mcstp (N0, C) as Core(N, c∗) which is de-

fined by

Core(N, c∗) =
{
x ∈ RN

∣∣∣∑
i∈N

xi = c∗(N) and
∑
i∈S

xi ≤ c∗(S), ∀S ⊂ N
}
.

4.2 Partition by irreducible matrix
We introduce a partition by irreducible matrix (PIM), which is a partition of N .
We call each element of the PIM a cell. To define the cells of the PIM, we define
a cell leader and cell followers.

Given an irreducible matrix C∗ of cost matrix C, we call an agent l ∈ N a
cell leader (CL) of C∗ if c∗0l = cp(l)l. Given a CL l, we denote the set of all cell
followers of l as CF (l) which is defined by

CF (l) ≡ {j ∈ N |c∗lj < c∗0j, c
∗
0j = c∗0l}.

Partition by Irreducible Matrix (PIM) : Given an irreducible matrix C∗ of cost
matrix C, the PIM of C∗ is a partition of N , which is defined by

PIM(C∗) ≡
{
{l} ∪ CF (l)

∣∣∣ l is an CL of C∗
}
.

From now on, we denote the cell which agent i belongs to as cell(i) and the
CL of cell(i) as α(cell(i)).
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Next, we introduce induced tree which is a transformation of a mcst.
Induced tree : Given a tree t, an induced tree ti is a tree transformed from t in

which:

(i) Each CL directly connects to the source,

(ii) CF of each CL conserve their own tree structure.

Note that any cell in t is an cell in ti.
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Figure 1.
Arbitrary t
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Figure 2. Transformation.
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Figure 3. Induced tree ti from t.

Lemma 1. For all N0 ∈ N0 and all C ∈ C3N0
, the mcst t and its induced tree ti

has the same irreducible matrix.
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Proof. All we have to check is that for any agent i and j, they have the same
irreducible cost c∗ij in t and ti.
• Case I. (cell(i) = cell(j))

Because each IGFol conserves its structure in ti, for any i and j in the same cell,
t and ti have the same unique paths from i to j. Therefore, from the definition of
c∗ij , c

∗
ij|t = c∗ij|ti .
• Case II. (cell(i) 6= cell(j))

For any i and j with cell(i) 6= cell(j), c∗ij = max{k,l}∈tij ckl
= max{c0α(IG(i)), c0α(IG(j))}. We know that any IG in t is also IG in ti. Therefore,
c∗ij|t = c∗ij|ti .

We can conclude that t and its induced tree ti have the same irreducible matrix.
Therefore, ti is a mcst t for the irreducible form.

Check that the induced tree is the mcst for irreducible game (N0, C
∗) with the

maximum components, where the number of components of a tree is |F (0)|, and
each component is a cell of the PIM . From the definition of induced tree, it is
easy to see that the partition {cell1, · · · , cellp} of N satisfies

m(N0, C
∗) =

p∑
i=1

m((celli)0, C
∗),

where p is the number of cells of the PIM(C∗).

Cell-wise efficiency : For all N0 ∈ N0, all C ∈ CN0 and all y ∈ Y , an allocation
y is cell-wise efficient if∑

j∈celli

yj =
∑
j∈celli

cP (j)j, for all 1 ≤ i ≤ p,

where p is the number of cells of the PIM(C∗).

Lemma 2. If a cost allocation y is in Core(N, c∗), it satisfies cell-wise efficiency.

Proof. From the definition of induced tree and Lemma 1,
∑

j∈IGi
cP (j)j

= m((celli)0, C
∗) = c∗(celli) for all 1 ≤ i ≤ p. Of course,

∑
j∈N yj = m(N0, C

∗)
First, suppose that there exists an cell such that

∑
j∈celli yj >

∑
j∈celli cP (j)j .

It means that
∑

j∈celli yj > c∗(celli) thus violates the core constraint. Therefore, y
is not in Core(N, c∗).

9



Second, suppose that there exists an cell such that
∑

j∈celli yj <
∑

j∈celli cP (j)j .
It means that

∑
j∈IGi

yj < c∗(celli). In this case, since
∑

j∈N yj = m(N0, C
∗)

and m(N0, C
∗) =

∑p
i=1m((celli)0, C

∗), there should be at least one cell such
that

∑
j∈cellk yj >

∑
j∈cellk cP (j)j . Therefore, y is not in Core(N, c∗) for the same

reason.
Consequently, any cost allocation y in Core(N, c∗) satisfies cell-wise effi-

ciency.
We define component-wise efficiency, which will be used in our main results.

Component-wise efficiency For all N0 ∈ N0, all C ∈ CN0 , all i ∈ F (0), and all
y ∈ Y , an allocation y is component-wise efficient if∑

j∈F (i)∪{i}

yj =
∑

j∈F (i)∪{i}

cP (j)j.

Cell-wise efficiency implies component-wise efficiency from the definition of
induced tree.

5 Main results
In this section, we define a procedure using the sdo and show that the outcome
coincides with the DK rule.

5.1 Procedure with tie-breaking rule
In our procedure, we use irreducible matrix C∗ instead of cost matrix C. This is
based on two reasons. First, as mentioned, a link cost of outside-tree may have no
meaning after a network is constructed. Second, if we use C, the sdo can gener-
ate a negative allocation for the operator. With these reasons, we use irreducible
matrix C∗ instead of cost matrix C.

Next we assume that the operator should leave the game after the sdo is ap-
plied to him so that the others cannot use that node. When the operator leaves
the game, we need alternative tree for the remaining people. In this case, we need
tie-breaking rule ρ because we do not have unique alternative tree since we use
the irreducible matrix. We define the tie-breaking rule ρ as follows.

Tie-breaking rule, ρ : For all N0 ∈ N0, all C ∈ C3N0
, and all i ∈ N , choose the

alternative mcst (ta) for (N0 \ {i}, C∗) as follows.
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• Connect r ∈ F (i) \ {i+1} to agent i+1. If agent i+1 is not connected to
the source, connect to the source.

Now we are ready to define a procedure using the strong demand operator. The
procedure is defined as below.

Iteration of the strong demand operator on the irreducible matrix
Given N0 ∈ N0 and C ∈ C3N0

,

(i) Let y be the initial cost allocation.

(ii) Transform the cost matrix into irreducible matrix.

(iii) Apply the sdo with the tie-breaking rule ρ to each agent sequentially fol-
lowing the numbering of agents.

5.2 Separability
Separability : For all N0 ∈ N0, all C ∈ CN0 , and all S ⊂ N satisfying
m(N0, C) = m(S0, C) +m((N \ S)0, C), a rule is separable if

ψi(N0, C) =

{
ψi(S0, C) if i ∈ S,
ψi((N\S)0, C) if i /∈ S.

We show that DK-rule is separable.

Lemma 3. For all N0 ∈ N0 and all C ∈ C3N0
, ψDK(·) is separable.

Proof. Let N0 ∈ N0, C ∈ C3N0
. Let |f(0)| = m and

G = {G1
1, ..., G

1
q1
, G2

1, ..., G
2
q2
, Gm

1 , ..., G
f
qf
} be the partition of N where each Gi

j

is an cell and for all i ∈ {1, · · · ,m}, Gi
1 is directly connected to the source. Let

c0Gi
j
≡ c0α(Gi

j)
.

By the definition of Dutta-Kar allocation rule, for all i ∈ {1, · · · ,m} and all
l − 1 ∈ N ,

ψDKl−1 (N0, C) = min{max
k≤l−1

{cp(k)k}, cp(l)l}.

Since each Gi
j is an cell, for all Gi

1,

ψDKl−1 (N0, C) = min{c0Gi
j
, cp(l)l}.

11



Thus,

ψDKl−1 (N0, C) =

{
cp(l)l if l ∈ Gi

1

c0Gi
j

if l /∈ Gi
1.

Let cp(Gi
j)G

i
j
≡ cp(α(Gi

j))α(G
i
j)

. Similarly, for all i ∈ {1, · · · ,m}, all j ∈ {1, · · · , qi},
and all l − 1 ∈ Gi

j ,

ψDKl−1 (N0, C) =

{
cp(l)l if l ∈ Gi

j

cp(Gi
j)G

i
j

if l /∈ Gi
j.

Thus, for all i ∈ {1, · · · ,m} and all l − 1 ∈ S = ∪j∈{1,··· ,qi}Gi
j , ψ

DK
l−1 (N0, C)

assigns some internal link cost regardless of N\S which implies ψDKl−1 (N0, C) =
ψDKl−1 (S0, C).

5.3 Coincidence
If an allocation y is contained in irreducible core, it satisfies cell-wise efficiency
by Lemma 2. From the definition of induced tree, we know that cell-wise effi-
ciency implies component-wise efficiency. Therefore, if an cost allocation y is in
irreducible core, it satisfies component-wise efficiency.

Since the sdo is a transfer between an operator and his immediate followers,
it is a operation within a component. Therefore, if y satisfies component-wise
efficiency, sdi(y) also satisfies component-wise efficiency.

Lemma 4. For all N0 ∈ N0, all C ∈ C3N0
, all i ∈ N , if y is component-wise

efficient, then sdi(y) is component-wise efficient.

Proof. It is easy to check from the definition of the strong demand operator.

We check how much cost is allocated to agent 1, if the sdo is applied to agent
1.

Lemma 5. For all N0 ∈ N0, all C ∈ C3N0
, if the cost allocation y is contained in

Core(N, c∗) and we use the irreducible matrix, then sd11(y) = min{c01, c12}.

Proof. Let y0 be the initial allocation and y1 be the allocation after the sdo is
applied to agent 1. That is, y1 ≡ sd1(y0) = (sd11(y

0), sd12(y
0), · · · , sd1n(y0)).

Since y0 is contained in the irreducible core, we know that y1 is also contained in
the irreducible core from the definition of the sdo.

Check that c∗(N \ {1}) = c∗(N)−min{c01, c12}.

12



First, suppose that y11 < min{c01, c12}.

ex(N \ {1}, y1) = c∗(N \ {1})−
∑

i inN\{1}

y1i

=
(
c∗(N)−min{c01, c12}

)
− (
∑
i∈N

y1i − y11)

=
(
c∗(N)−min{c01, c12}

)
− (
∑
i∈N

y0i − y11)

= y11 −min{c01, c12}
< 0 (∵ y11 < min{c01, c12} by assumption).

From the definition of the sdo, y1 is a core allocation, therefore every coalition
has non-negative excess under y1. Contradiction.

Second, suppose that y11 > min{c01, c12}.
Let d ≡ y11 − min{c01, c12} > 0. Check that for all S ⊆ N , ex(S, y1) ≥ 0

holds since y1 is a core allocation from the definition of the sdo.
We consider a new allocation ŷ such that agent 1 transfers d to agent 2 from

y1. We divide R ⊂ N into four cases, R ∩ {1, 2} = ∅, R ∩ {1, 2} = {1},
R ∩ {1, 2} = {2} and R ∩ {1, 2} = {1, 2}.

(i) For every coalition R such that R ∩ {1, 2} = ∅, ex(R, ŷ) ≥ 0 since
∀i ∈ N \ {1, 2}, ŷi = y1i .

(ii) For every coalition R such that R ∩ {1, 2} = {1}, ex(R, ŷ) ≥ 0 since
∀i ∈ N \ {1, 2}, ŷi = y1i and ŷ1 < y11 .

(iii) For every coalition R such that R ∩ {1, 2} = {1, 2}, ex(R, ŷ) ≥ 0 since∑
i∈R ŷi =

∑
i∈R y

1
i .

(iv) For every coalition R such that R ∩ {1, 2} = {2}, let R+1 ≡ R ∪ {1}.
We know that ex(R+1, y1) ≥ 0 since y1 = sd1(y0) is a core allocation. Check that
c∗(R) = c∗(R+1)−min{c01, c12}.

13



ex(R, ŷ) = c∗(R)−
∑
i∈R

ŷi

= c∗(R+1)−min{c01, c12} − {
∑
i∈R+1

y1i − ŷ1}

= c∗(R+1)−
∑
i∈R+1

y1i −min{c01, c12}+ ŷ1

≥ −min{c01, c12}+ ŷ1 (∵ ex(R+1, y1) ≥ 0)
= −min{c01, c12}+ y11 − d
= −min{c01, c12}+min{c01, c12} = 0.

Therefore agent 1 can transfer d to agent 2 without violating any participation
constraint by checking (i), (ii), (iii), and (iv). It means that y11 is not an solution
for the optimization problem of the sdo. Contradiction.

To sum up, y11 = sd11(y
0) > min{c01, c12} cannot happen, and y11 = sd11(y

0) <
min{c01, c12} also cannot happen, as desired.

Lemma 5 means that sd11(y) is always unique, whereas sd1(y) may be a set of
allocations, as mentioned.

Since the other agents cannot use the node 1 after the sdo is applied to agent
1, we consider the alternative mcstp related with the alternative tree ta which is
made according to tie-breaking rule ρ after the sdo is applied to agent 1.

We denote the irreducible mcstp using the alternative tree ta as (N0\{i}, C∗∗).

Lemma 6. For any mcstp (N0, C) and its irreducible mcstp (N0, C
∗),

(N0 \ {1}, C∗) and (N0 \ {1}, C∗∗) are the same mcstps.

Proof. We will show that C∗ restricted on N0 \ {1} is equal to C∗∗.
• Case I. f(1) = {2}.

First, we check costs between agents. Since tie-breaking rule ρ requires that N \
({1} ∪ f(1)) keep their tree structure, for all i, j ∈ N \ {1}, i 6= j, tij = taij .
Therefore for all i, j ∈ N \ {1}, i 6= j, c∗ij = c∗∗ij from the definition of the
irreducible matrix.

Next, we check costs between agents and the source. In case I, we know that
c∗02 = max{c01, c12} = c∗∗02. Since c∗0i = max(j,k)∈t0i cjk, max{c01, c12, · · · , cp(i)i} =
max{max{c01, c12}, · · · , cp(i)i} = max{c∗∗02, · · · , cp(i)i} = c∗∗0i . Therefore for all
i ∈ N \ {1}, c∗0i = c∗∗0i from the definition of the irreducible matrix.

14



Therefore, C∗ restricted on N0 \ {1} is equal to C∗∗ in Case I.

• Case II. {2} $ f(1).
Before we prove, we first need to show that for any i ∈ f(1)\{2}, c∗1i = c∗2i = c∗∗2i .
Since Prim algorithm chooses i later than 2, we know that c12 < c1i. And from the
definition of irreducible matrix, c∗2i = max{c12, c1i} = c1i = c∗1i.

Tie-breaking rule ρ requires us that c∗∗2i = c∗2i. Therefore, c∗1i = c∗2i = c∗∗2i .

First, we check costs between agents, that is, we want to show that for any
i, j ∈ N \ {1} and i 6= j, c∗ij = c∗∗ij

If agent 1 is not on the unique path tij , c∗ij = c∗∗ij , because tie-breaking rule ρ
requires that N \ ({1} ∪ F (1)) keep their tree structure.

If agent 1 is on the unique path tij , we define agent k, l as k ∈ f(1), i ∈
F (k) and l ∈ f(1), j ∈ F (l).2 The only difference between tij and taij is that
{(k, 1), (1, l)} ⊂ tij whereas {(k, 2), (2, l)} ⊂ taij .

3 We already showed c∗1k = c∗2k
and c∗1l = c∗2l which implies the costs on the path tij is equal to taij .4 Therefore
c∗ij = c∗∗ij for any i, j ∈ N \ {1} and i 6= j.

Next, we check costs between agents and source. Let i ∈ N \ {1} and k be an
agent such that k ∈ f(1) and i ∈ F (k). 5

If k = 2 (that is, i ∈ F (2)), the tie-breaking rule ρ requires agent 2 con-
nects to the source. In this case, the only difference between t0i and ta0i is that
{(0, 1), (1, 2)} ⊂ tij whereas {(0, 2)} ⊂ taij . We can check that c∗∗02 = max{c01, c02}
= c∗02. Therefore, c∗0i = c∗∗0i if 2 is on t0i.

If k 6= 2 (that is, i /∈ F (2)), we have to check the unique paths t0i and ta0i.
The only difference between t0i and ta0i is that {(0, 1), (1, k)} ⊂ t0i whereas
{(0, 2), (2, k)} ⊂ taij . We already know that c∗1k = c∗2k = c∗∗2k. We also know
that c∗∗02 = max{c∗01, c∗12}. Therefore, max{c∗01, c∗1k} = max{c∗∗02, c∗∗0k}. Thus, the
maximum costs on the path t0i and ta0i are the same. It implies that c∗0i = c∗∗0i if 2
is not on the path toi.

2We define k = i if i ∈ F (1) and we define l = j if j ∈ F (1).
3If k = 2, {(k, 1), (1, l)} ⊂ tij whereas {(2, l)} ⊂ taij . It means that the length of the path

changes, if we define the length of any path as the number of links on the path. We have the same
result if l = 2.

4If k = 2, the ck1 < c1l for any l. It implies that max{ck1, c1l} = c1l = c∗1l = c∗2l. That is,
even though the length of the path changes, we have the same maximum cost on the path tij and
taij . We have the same result if l = 2.

5We define k = i if i ∈ f(1).
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Therefore, C∗ restricted on N0 \ {1} is equal to C∗∗ in Case II.

We can conclude that (N0 \{1}, C∗) and (N0 \{1}, C∗∗) are the samemcstps.

The interpretation of Lemma 6 is that ta is (one of) mcsts for (N0 \ {1}, C∗).

Theorem 1. For all N0 ∈ N0, and all C ∈ C3N0
, if an initial allocation y is in

Core(N, c∗), the allocation obtained by iterating the sdo using the irreducible
matrix from y coincides with the DK allocation.

Proof. Let N0 ∈ N0, C ∈ C3N0
and y0 be an allocation in Core(N, c∗).

Because ψDK satisfies separability by Lemma 3, it suffices to consider the case
that |f(0)| = 1. Since each agent is numbered by the Prim algorithm, f(0) = {1}.

At 1st stage, agent 1 applies the sdo and gets y11 = min{c01, c12} by Lemma
5. After that, N \ {1} form an alternative tree according to the tie-breaking rule
ρ such that the costs of the alternative trees are c02 = max{c01, c12} and for all
j ∈ F (1) \ {2}, c2j = cP (j)j . From the definition of the sdo, we know that y1 is in
Core(N, c∗). y1|N\{1} is the projection of y1 onto RN\{1}.

We need to show that y1|N\{1} is in Core(N \ {1}, c∗∗).
We first check the excess conditions. Since y0 is in Core(N0, c

∗), the sdo
ensures that y1 is in Core(N0, c

∗). So, we know that ex(R, y1|N\{1}) ≥ 0 for
all R ⊆ N \ {1} in the mcstp (N0 \ {1}, C∗). By Lemma 6, we know that
(N0 \ {1}, C∗) = (N0 \ {1}, C∗∗). Therefore, in the mcstp (N0 \ {1}, C∗∗), every
coalition has non-negative excess under cost allocation y1|N\{1}.

Next we check the efficiency condition. Since y0 satisfies component-wise
efficiency and sdo is also efficient by Lemma 4, we know that that m(N0, C

∗) =∑
(i,j)∈t c

∗
ij =

∑
i∈N y

1. From the tie-breaking rule ρ,
∑

(i,j)∈t c
∗
ij =

∑
(i,j)∈ta c

∗∗
ij +

min{c01, c12} and
∑

i∈N y
1 =

∑
i∈N\{1} y

1
|N\{1} + y11

=
∑

i∈N\{1} y
1
|N\{1} +min{c01, c12} by Lemma 5.

Thus,
∑

(i,j)∈ta c
∗∗
ij =

∑
i∈N\{1} y

1(N \ {1}) which implies the efficiency condi-
tion. Therefore, y1|N\{1} is in Core(N \ {1}, c∗∗)=Core(N \ {1}, c∗) by excess
conditions and efficiency condition.

Next stage, the sdo is applied to agent 2 and same thing happens. That is,
y22 = min{c02, c23} and y2|N\{1,2} is in Core(N \ {1, 2}, c∗).

Check that c03 = max{c02, c23} = max{c01, c12, cp(3)3}.
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At kth stage (k < n), the sdo is applied to agent k and he gets
ykk = min{c0k, ck(k+1)}.

Check that c0k = max{c01, c12, · · · , cP (k)k}=maxj≤k{cP (j)j} and yk|N\{1,··· ,k}
is in Core(N \ {1, · · · , k}, c∗).

Therefore, in each stage, the operator k < n gets
ykk = min{maxl≤k{cP (l)l}, cP (k+1)k+1} which coincides with ψDKk .

6 Concluding remark
In this paper we study the relation between the sdo and the DK rule. Our main
result shows the coincidence between our procedure using the strong demand op-
erator and the DK rule.

Granot and Huberman (1984) also suggested the weak demand operator. Kim
(2011) criticized weak demand operator and suggested a modified weak demand
operator.

Modified weak demand operator is related with follower’s opportunity cost.
Compared to modified weak demand operator, strong demand operator usually
transfers more than modified weak demand operator does. But in irreducible form,
the amount of the transfer is limited since participation constraints of irreducible
matrix C∗ are more tighter than the participation constraints of cost matrix C.

More precisely, if the sdo is applied to agent 1 in irreducible form, the partici-
pation constraint for coalitionN\{1} coincides with the constraint of the modified
weak demand operator, so we face more constraints compared with modified weak
demand operator. Therefore if we proceed with weak demand operator, we have
more initial allocation that can possibly generate DK allocation. Kim (2011) uses
modified weak demand operator and shows that procedure using modified weak
demand operator generates DK allocation if the initial allocation is component-
wise efficient. Irreducible core is subset of component-wise efficient allocations,
therefore the condition of modified weak demand operator is weaker than our
condition.
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Appendix: An example
Example 1. Let N = {1, 2, 3, 4} and the cost matrix C be as below.

C =


0 6 7 8 10
6 0 1 3 6
7 1 0 7 4
8 3 7 0 2
10 6 4 2 0


The unique mcst t is illustrated as follows.

0
6

1
1 3

2 3
2

4

The irreducible matrix C∗ is

C∗ =


0 6 6 6 6
6 0 1 3 3
6 1 0 3 3
6 3 3 0 2
6 3 3 2 0


Let the initial cost allocation be y0 = ψB = (6, 1, 3, 2).
At 1st step, sdo is applied to agent 1. Let y1 ≡ (10−x− y, x, y, 2) be the allo-

cation after the sdo is applied to agent 1. In this case, coalition set to be considered
is T{2,3},{1} ∪ T2,3 ∪ T3,2 = {{2, 3}, {2, 3, 4}} ∪ {{2}, {1, 2}, {2, 4}, {1, 2, 4}} ∪
{{3}, {1, 3}, {3, 4}, {1, 3, 4}}.
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coalition (S) cost (c∗(S)) allocation participation constraint
{2, 3} 9 x+ y 9− x− y ≥ 0
{2, 3, 4} 11 x+ y + 2 9− x− y ≥ 0
{2} 6 x 6− x ≥ 0
{1, 2} 7 10− y y − 3 ≥ 0
{2, 4} 9 x+ 2 7− x ≥ 0
{1, 2, 4} 10 12− y y − 2 ≥ 0
{3} 6 y 6− y ≥ 0
{1, 3} 9 10− x x− 1 ≥ 0
{3, 4} 8 y + 2 6− y ≥ 0
{1, 3, 4} 11 12− x x− 1 ≥ 0

Agent 1 chooses maximum x+ y under these participation constraints. There-
fore, x + y = 9 and sd1(y0) = (1, 9 − t, t, 2) where 3 ≤ t ≤ 6. In this case,
sd1(y0) is a set of allocations and agent 1 can choose any allocation in this set.
For example, suppose that agent 1 chooses t = 5, then y1 = (1, 4, 5, 2).

At 2nd step, sdo is applied to agent 2. Let y2 ≡ (1, 9−z, z, 2) be the allocation
after the sdo is applied to agent 2. In this case, coalition set to be considered is
T3,2 = {{3}, {1, 3}, {3, 4}, {1, 3, 4}}.

coalition (S) cost (c∗(S)) allocation participation constraint
{3} 6 z 6− z ≥ 0
{1, 3} 9 1 + z 8− z ≥ 0
{3, 4} 8 z + 2 6− z ≥ 0
{1, 3, 4} 11 3 + z 8− z ≥ 0

Agent 2 chooses maximum z under these participation constraints. Therefore,
z = 6 and y2 = (1, 3, 6, 2).

At 3rd step, sdo is applied to agent 3. Let y3 ≡ (1, 3, 8−w,w) be the allocation
after the sdo is applied to agent 3. In this case, coalition set to be considered is
T4,3 = {{4}, {1, 4}, {2, 4}, {1, 2, 4}}.

coalition (S) cost (c∗(S)) allocation participation constraint
{4} 6 w 6− w ≥ 0
{1, 4} 9 1 + w 8− w ≥ 0
{2, 4} 9 3 + w 6− w ≥ 0
{1, 2, 4} 10 4 + w 6− w ≥ 0

Agent 3 chooses maximum w under these participation constraints. Therefore,
w = 6 and y3 = (1, 3, 2, 6).
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At 4th step, the sdo is applied to agent 4, but in this time nothing changes since
f(4) = ∅. Therefore, y4 = (1, 3, 2, 6).

Each figure below shows the alternative tree which is made when sdo is ap-
plied to agent 1 to agent 4.

0

6

2

3

3
2

4

Figure 1-1.

0

6

3
2

4

Figure 1-2.

0

6

4

Figure 1-3.

0

Figure 1-4.
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국문초록

최소신장가지문제에서의
강요구연산자와두타-카규칙

한창용

경제학부경제학전공
서울대학교대학원

본 논문은 최소신장가지문제(Minimum Cost Spanning Tree Problem)에서의
비용 배분에 대해 논의한다. 그 중에서도 버드 규칙 (Bird Rule)의 (i) 분배
상태에대한비판을하고있는강요구연산자 (Strong Demand Operator)와 (ii)
특성에 대한 비판을 하고 있는 두타-카 규칙 (Dutta-Kar Rule)간의 관계를
연구한다.우선,최소신장가지문제가무엇인지에대해정의한다.다음으로
기존에 정의된 강요구연산자를 복습한다. 다음으로 강요구연산자를 적용
시키는새로운과정을정의한다.최종적으로초기비용배분상태가축약불
가코어에속해있다면,이새로운과정의결과는두타-카규칙과일치한다는
것을확인하여,강요구연산자와두타-카규칙간의관계를밝힌다.

주요어:최소신장가지문제,강요구연산자,축약불가행렬,축약불가코어,두
타-카규칙,프림알고리듬

학번: 2011-20197
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