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Abstract 
 

α-Mn2O3 nanowires coated with conductive polymer for 

Li-ion battery anode materials : 

Synthesis, characterization, and applications 

 

Seong-Jun Kim 

Department of Chemistry, Inorganic Chemistry 

The Graduate School 

Seoul National university 

 

Transition metal oxides have been considered as promising lithium 

storage materials that undergo a conversion reaction with Li ion, exhib-

iting high specific capacity. Among them, manganese oxides have high 

capacity compared to other metal oxides, and also their costs are inex-

pensive. However, capacity fading during cycling is the most serious 

obstacle for their commercialization. To slove the problems, poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was 

coated onto α-Mn2O3 nanowires while maintaining the structure of α-

Mn2O3. PEDOT:PSS on the α-Mn2O3 reduced the resistance of the sur-
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face and protected the surface electron channels from the pulverization 

effect of the charge–discharge operation. α-Mn2O3/PEDOT:PSS 

showed excellent cyclability with a reversible capacity of 1450 mAh·g-

1 after 200 cycles at a current density of 100 mA·g-1. An increase in ca-

pacity was observed with continuous cycling, which may be attributed 

to further oxidation of the manganese species and a reversible reaction 

of the gel-like polymer on the manganese surface. The results demon-

strate that PEDOT:PSS enhances the electrochemical activity by 

providing electron channels and prevents pulverization caused by the 

charge and discharge process. 

Keywords : manganese oxide, PEDOT:PSS, capacity increasing, 

abnormal capacity, lithium ion battery 
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1. Introduction 

 

Interest on electric vehicles (EVs) and energy storage systems is con-

tinuously increasing because of the depletion of fossil fuels and in-

creasing environmental pollution [1-2]. Thus, many researchers have 

investigated a variety of energy storage devices such as lithium ion bat-

teries (LIBs) [3-5], sodium ion batteries (NIBs) [6-8], and electrochem-

ical capacitors [9]. There are three types of mechanisms reacting with 

Li ion according to anode materials. (1) An intercalation reaction, in 

which lithium ions are inserted to/removed from the host materials dur-

ing charge–discharge cycles. For example, lithium ions are inserted 

to/removed from between a graphite lattice [Li+ + C6 + e- ↔ LiC6], (2) 

a reaction resulting from the alloying of Li metal with metal elements 

such as Sn, Ge, Sb, Zn, In, Bi, and Cd (LixM) , and (3) a “conversion” 

reaction (or redox reaction). Many transition metal oxides react with 

lithium ions (MOx + 2xLi+ + 2xe- ↔ M + xLi2O) [10]. 

Many transition metal oxides can be easily prepared with various 

nanoscale morphologies and structures [11-15]. Moreover, these mate-

rials can exhibit even beyond the theoretical capacity calculated based 

on conversion reaction mechanism [11-13, 16-28]. It is reported that it 

can be explained by conjugate charge storage reactions which involve 
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space charge layer between lithium salts and metal surface [27-28], fur-

ther oxidation of Mn2+ to Mn4+ in manganese oxides [19] and reversible 

formation of gel-like polymer [16].  

Manganese-based oxides are considered promising anode materials 

for LIBs due to their high specific capacity, low toxicity, and low cost, 

and lower operating voltage than that of other conversion reaction-

based materials such as Fe-, Co-, and Ni-based oxides [29]. Manganese 

oxides have various phases such as MnO, Mn3O4, MnO2, and Mn2O3 

[30]. Among the various morphologies, one-dimensional (1D) manga-

nese oxide nanostructures such as nanowires (NWs) and nanotubes 

(NTs) have been studied for many energy applications. 1D nanostruc-

tured materials have advantages on facilitating electrical transport, and 

also effectively accommodates volume expansion. Also, they have short 

ion diffusion pathway, which enhances rate capability [31]. However, 

1D nanostructured Mn2O3 has been rarely investigated in spite of its 

high theoretical capacity (1018 mAh·g-1) and many other advantages. 

Because intrinsic low electric conductivity of manganese oxides reduc-

es its electrochemical performance. Thus, many advanced studies have 

been carried out to overcome these intrinsic problems. For example, 

Ma et al. doped copper into Mn2O3 [32] and Liu et al. coated carbon 

onto MnO particles to enhance conductivity of materials [33]. Wang et 
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al. controlled morphology by synthesizing Mn2O3 nanoplates [34]. Also, 

Yang et al. synthesized Ag–Si core–shell nanowall arrays using Ag 

cores as electron-conducting pathways, which enhanced the stability 

and conductivity of Si anodes [35].  

Herein, a new composite of Mn2O3 nanowires and Poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). PE-

DOT:PSS is a conductive polymer mixture. The PSS part carries a neg-

ative charge due to the deprotonated sulfonyl group and the PEDOT 

part has conjugated rings that carry a positive charge. PEDOT:PSS has 

very high conductivity (ca. 300 S·cm-1) and high stability [36]. Previ-

ously research shows that PEDOT:PSS coating on the cathode material 

can improve electronic conductivity of the electrode and electrochemi-

cal stability [51-53]. Her at al. and Arbizzani et al. prepared cathode 

materials using electrosynthesis of PEDOT and Yue et al. made nano-

silicon/PEDOT:PSS composites for Li ion battery anode materials, but 

they have complex process to obtain their products due to polymeriza-

tion step [51,52,54]. PEDOT:PSS also applied to 3DOM FeF3 which 

reacts through a conversion reaction. The novel 3DOM/PEDOT com-

posite was synthesized by in-situ polymerization of 3,4-

Ethylenedioxythiophene (EDOT) which secured both electron and ion 

channels [55]. Composite of carbonaceous materials/metal oxides de-
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signed to improve the conductivity is usually synthesized in too reduc-

tive condition for maintaining structure of metal oxides. However, in 

our composite of α-Mn2O3 nanowires and PEDOT:PSS, α-Mn2O3 nan-

owires maintained its structure by virtue of a mild condition for PE-

DOT:PSS coating process. The nanosized metal oxides particles ag-

glomerate together to stabilize their surface energy, which lead to poor-

ly dispersed active materials during preparing slurry, while the nan-

owires is well distributed within the electrode. Thus, keeping the mor-

phology of Mn2O3 NWs is important to enhance the electrochemical 

performance for the lithium ion battery. The PEDOT:PSS coated one-

dimensional manganese oxides had improved the electronic conductivi-

ty, and enhanced stability of the electrochemical active sites.  

 

2. Experimental Section 

 

2.1 Synthesis of α-Mn2O3 nanowires 

The synthesis method for α-MnO2 nanowires was similar to the reported hy-

drothermal method [37]. Followed by, 7.35 g of Mn(CH3COO)2·4H2O (0.03 

mol) was dissolved in 80 mL of deionized water in a Teflon container, fol-

lowed by the addition of 6.85 g of (NH4)2S2O8 (0.03 mol) and 7.94 g of 

(NH4)2SO4 (0.06 mol). After thorough mixing, the solution was heated in an 

autoclave at 140 °C for 12 h. The resulting α-MnO2 nanowires were collected 
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by centrifugation and washed three times with water and ethanol. The prod-

ucts were calcinated at 550 °C for 1.5 h. 

 

2.2 Coating PEDOT:PSS onto α-Mn2O3 nanowires 

300 mg of as-prepared α-Mn2O3 nanowires were dispersed in a co-solvent (27 

mL of water and 270 mL of ethanol) in a round-bottom flask, followed by the 

addition of 3 mL of PEDOT:PSS solution (CLEVIOS™ P). The mixture was 

sonicated for 1 h at room temperature. After sonication, we collected the black 

precipitate by several rinse-centrifugation cycles. The precipitate was fully 

dried in vacuum for characterization. 

 

2.3 Materials characterization 

Mn(CH3COO)2·4H2O, (NH4)2S2O8 and (NH4)2SO4 were purchased from 

SAMCHUN. PEDOT:PSS was purchased from Clevious™. Ethanol was pur-

chased by J.T. Baker. The morphologies of α-Mn2O3 nanowires and α-

Mn2O3/PEDOT:PSS were confirmed by transmission electron microscopy 

(TEM, Hitachi-7600) and field emission scanning electron microscopy 

(FESEM, Hitachi S-4300). The crystallographic phase of α-Mn2O3 was identi-

fied by X-ray diffractometer (XRD, D-MAX2500-PC). The diffraction data 

was collected in the 2 θ range of 10˚ ~ 80˚. Energy dispersive spectroscopy 

(EDS) mapping of α-Mn2O3/PEDOT:PSS was performed by high-resolution 

transmission electron microscopy (HRTEM, JEM-2100F, JEOL Ltd.). Ther-

mogravimetric analysis (TGA, SDT-Q600, TA Instruments) and Fourier trans-
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form infrared spectroscopy (FT-IR, Nicolet™ iS™10, Thermo scientific) were 

used to characterize the amount and presence of PEDOT:PSS, respectively. 

The shift of binding energy was assigned by X-ray photoelectron spectrosco-

py (XPS, AXIS-HIS, Kratos Inc.). X-ray absorption spectroscopy (XAS) 

analyses were performed at the 8C beam beamline of the Pohang Light Source 

(PLS). The cycled electrodes for XAS analyses were prepared by disassem-

bling of the cells, washing them with diethyl carbonate, and drying them. Fi-

nally, the electrodes were sealed with Kapton® tape. All preparation processes 

were carried out in an argon-filled glove box. 

 

2.4 Electrochemical measurements 

The working electrode was prepared by coating a slurry containing active ma-

terial (70 wt%), Super P (as a conductive agent, 20 wt%), and polyvinylidene 

fluoride (PVDF, 10 wt%) onto copper foil. The coated electrodes were dried 

under vacuum at 120 °C for 12 h and then pressed. The electrochemical per-

formance of the active material was examined using CR2032 button cells con-

sisting of the as-prepared electrode, a polypropylene separator, lithium foil as 

the counter electrode, and 1 M LiPF6 in a mixture of ethylene carbonate (EC) 

and ethyl carbonate (DEC) (v/v = 50:50) as the electrolyte. The cells were 

assembled in an argon atmosphere glove box. A WBCS3000 cycler (WonA 

Tech, Korea) was employed for the galvanostatic charge–discharge experi-

ment in a voltage range of 0.01–3 V versus Li+/Li and for cyclic voltammetry 

(CV) measurements from 3 to 0.01 V versus Li+/Li at a scan rate of 0.1 mV·s-1 
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at room temperature. Electrochemical impedance spectroscopy (EIS) was 

conducted in the frequency range from 100 kHz to 0.01 Hz with an AC signal 

amplitude of 5 mV (Autolab, PGSTAT128N) 

 

3. Result and discussion 

 

3.1 Synthesis and characterization of materials 

 

 

Figure 1. Schematic representation of the synthesis of α-Mn2O3/PEDOT:PSS. 

 

α-MnO2 nanowires were synthesized through a cation template-assisted 

hydrothermal method. These α-MnO2 nanowires transformed into α-Mn2O3 at 

550 °C or more in air. Fig. 1 shows the process of coating PEDOT:PSS onto 

the α-Mn2O3 nanowires. After heat treatment of as-prepared α-Mn2O3 nan-

owires at 550 °C in air, PEDOT:PSS was added to the nanowires via soni-

cation. α-Mn2O3/PEDOT:PSS was obtained after 1 h in sonication. 

Cosolvent of DI waterand ethhanol should be used for this process. α-Mn2O3 

nanowires have good dispersibility in ethanol but they don’t in water because 

most hydroxyl groups on surface were eliminated during calcination. Howev-
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er, PEDOT:PSS cannot disperse in ethanol but in water. So, Mn2O3 nanowires 

and PEDOT:PSS need proper ratio of two solvent. Therefore, the ratio 9 : 1 

(ethanol : water, v/v) was identified as ideal ratio from dispersibility test. (Fig. 

2)  

 

 

Figure 2. Dispersibility of α-Mn2O3 nanowires according as Ethanol/H2O 

ratio. 

 

The morphology of bare α-Mn2O3 nanowires are shown in TEM and 

SEM images (Fig. 3a-c). The prepared α-MnO2 nanowires have 1D 

nanostructure with a diameter of 20 nm. The obtained α-Mn2O3 nan-

owires after heat treatment at 550 °C (or higher temperature) main-

tained their morphology even though the structures are changed. Fur-

thermore, the morphology of α-Mn2O3 was still maintained after the 

coating process. Unlike a carbon-coating process, the PEDOT:PSS-

coating process can omit heat treatment at high temperature, which 
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causes morphology change with a phase transition. The mild conditions 

of the PEDOT:PSS coating process has a significant advantage for ap-

plying conductive coatings onto electric materials.  

 

Figure 3. (a) FE-SEM and (b) TEM image of bare α-Mn2O3 nanowires. (c) 

TEM image (first picture) and EDS-mapping of bare α-Mn2O3 nanowires 

(scale bar is 200 nm) 
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The existence of PEDOT:PSS was characterized after the coating 

process by SEM, TEM, and EDS mapping (Fig. 4a-c) It is clearly seen 

that the diameter of α-Mn2O3/PEDOT:PSS nanowires is thicker than 

that of α-Mn2O3 nanowires (Fig. 4a). In addition, the coating of PE-

DOT:PSS on α-Mn2O3 nanowires is observed in TEM and EDS map-

ping (Fig. 4b and c). The XRD patterns of α-MnO2 and the α-Mn2O3 

nanowires were well matched with α-MnO2 phase (PDF#44-0141) and 

α-Mn2O3 phase (PDF#24-508), respectively (Fig. 4d)  
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Figure 4. (a) FE-SEM and (b) TEM image of α-Mn2O3/PEDOT:PSS (c) EDS-

mapping of α-Mn2O3/PEDOT:PSS (d) XRD patterns of α-MnO2, bare α-

Mn2O3 and α-Mn2O3/PEDOT:PSS.  

 

According to TGA, approximately 23 % PEDOT:PSS was contained in α-

Mn2O3/PEDOT:PSS nanowires (Fig. 5a). Also, the weight of bare α-

Mn2O3 decreased because of its phase transition from α-Mn2O3 to 

Mn3O4, the removal of water from the surface hydroxyls, and the de-

composition of a slight amount of SO4
2- species on the surface [38]. 

The surface chemical species of α-Mn2O3/PEDOT:PSS and bare α-

Mn2O3 were verified by FT-IR. α-Mn2O3/PEDOT:PSS exhibited unique 

peaks of PEDOT:PSS from 3500 to 3000 cm-1 and from 1700 to 750 

cm-1 (Fig. 5b) [39]. Peaks indicating SO4
2- anions (1260 to 900 cm-1) 

and –OH groups from the adsorbed water and surface hydroxyls (~3400 

and ~1600 cm-1) were also found [40]. Both spectra showed peaks cor-

responding to the vibration of the Mn-O bond in Mn2O3 [41]. 

We further analyzed the chemical and oxidation states on surface of 

both materials by XPS. Binding energy shifts to lower appeared in both 

Mn 2p and O 1s spectra after coating (Fig. 5c and d, respectively). In 

addition, Messmer et al. reported that the electrostatic contribution af-

fects binding energies [42]. The electrostatic interaction reduced the 
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binding energies of the Mn-O bond in the α-Mn2O3 nanowires. After 

addition of PEDOT:PSS, the two peaks of Mn 2p shifted to lower bind-

ing energy about 0.4 eV (642.4 → 642.0 eV and 654.4 → 654.0 eV, re-

spectively) and the peaks of O 1s shifted 0.4 and 0.1 eV (530.8 → 

530.4 eV and 532.2 → 532.1 eV), respectively. These O 1s peaks were 

caused by the presence of the S-O bond in the SO4
2- anion and the ad-

sorbed water on the surface [43]. 

 

Figure 5. (a) TG analysis before and after treatment of PEDOT:PSS. (10 ℃

/min, Air condition) (b) FT-IR spectra before and after treatment of PE-

DOT:PSS. XPS spectras of the (c) Mn and (d) O atoms in materials before 

and after treatment of PEDOT:PSS. 
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Polythiophene group of PEDOT has positive charge that may help to at-

tach on surface of α-Mn2O3 nanowires because surface charge of α-Mn2O3 

nanowires is negative charge. (Fig 6) Two materials were attached by electro-

static interaction. Besides, sulfate anions on the surface interacted with PE-

DOT:PSS and they also help to stick between them. 

 

 

Figure 6. Illustration of PEDOT:PSS structure.  

 

The surface potential of bare α-Mn2O3 nanowires is approximately -38.6 

mV. After adding PEDOT:PSS, their surface charge shifts positive a little 

about -10.5 mV. (Table 1) PEDOT:PSS could lower the surface charge of bare 

α-Mn2O3 nanowires.  
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 Bare α-Mn2O3 NWs α-Mn2O3 NW/PEDOT:PSS 

1st -41.0 mV -9.99 mV 

2nd -37.5 mV -11.0 mV 

3rd -37.4 mV -10.6 mV 

Average -38.6 mV -10.5 mV 

Table 1. Zeta potential of bare α-Mn2O3 nanowires and α-Mn2O3/PEDOT:PSS. 

 

3.2 Electrochemical performance in Li ion battery 

The electrochemical performance was evaluated by galvanostatic charge 

and discharge measurements. Fig. 7a shows the cycle performance of α-

Mn2O3/PEDOT:PSS and α-Mn2O3 at current density of 100 mA·g-1 in a poten-

tial range between 0.01 and 3 V. The specific capacities of α-

Mn2O3/PEDOT:PSS and α-Mn2O3 decreased during initial several cycles [23]. 

However, the capacity of α-Mn2O3/PEDOT:PSS gradually increased after 25 

cycles. The capacity reached a maximum value of 1450 mAh·g-1 after 200 

cycles, whereas the capacity of α-Mn2O3 still under 400 mAh·g-1 after 200 

cycles even though the capacity continuously increases after about 40 cycles. 

At higher current density, fluctuation on cycle performance was also observed. 

The capacity of α-Mn2O3/PEDOT:PSS decreased up to the 50th cycle and then 

started to rebound at 500 mA·g-1. These abnormal trends of increasing capaci-

ty after decreasing were further investigated through charge-discharge voltage 

profiles. Fig. 7c and d show the charge and discharge curves of α-

Mn2O3/PEDOT:PSS and α-Mn2O3, respectively. Both α-Mn2O3/PEDOT:PSS 

and α-Mn2O3 show the typical lithiation and delithiation profiles of manga-
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nese oxide. The first lithiation curves can be explained by dividing it into 

three distinct regions [44]. The first region was caused by the insertion of lith-

ium ions into Mn2O3 to form LiMn2O3, followed by the diffusion of oxygen 

and lithium ions out of LiMn2O3 to form MnO, resulting in two quasi-plateaus 

above 0.3 V. The second region is an extended plateau near 0.3 V, resulting in 

the largest charge. The second region is related to the transformation from 

MnO into Mn metal and Li2O. Finally, the third region is a sloping voltage 

below 0.3 V, which can be explained by interfacial insertion (or space charg-

es). In the subsequent delithiation process, the oxidation of metallic manga-

nese to MnO (not to Mn2O3) and the diffusion of lithium ions out of Li2O oc-

curred, which resulted in a plateau near 1.25 V. In the second lithiation pro-

cess, the extended plateau near 0.3 V corresponding to the reduction of MnO 

to Mn0 shifted to 0.45 V. This indicated that the obstacle of second lithiation is 

lower than that of the first lithiation as a result of formation of nanoscale met-

al cluster (<5 nm) imbedded in Li2O matrix during the first lithiation [19]. In 

the lithiation curves of α-Mn2O3/PEDOT:PSS, main reaction occurs at plateau 

(0.45 V), which is related to the transformation of MnO to Mn up to 50 cycles. 

After 50 cycles, however, the plateau near 0.45 V gradually disappears, 

whereas the slope below 0.45 V gradually expands. It seems that the reaction 

in end of lithiation (below 0.45 V) is related to formation of gel-like polymer 

which is caused by pulverized nano-metal particles [16]. EIS analysis was 

introduced to investigate the effect of the PEDOT:PSS coating (Fig. 7e). The 

proposed equivalent circuits are a simplification of the real situation based on 
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several assumptions [45,46]. Although the α-Mn2O3/PEDOT:PSS electrode 

did not perfectly agree with the assumptions, the experimental values were 

consistent with the calculated data. Fig. 7e shows the Nyquist plots of α-

Mn2O3 after 50 cycles and α-Mn2O3/PEDOT:PSS after 50 and 100 cycles. The 

equivalent circuits is presented in Fig. 7e, where Ro indicates ohmic resistance 

and Rf and Cf indicate the resistance of the SEI film and the capacity of the 

surface-passivating layer, respectively. The resistance of the charge transfer 

reaction and the capacitance of the double layer are represented by Rc and Cc, 

respectively. The values of Ro and Rf for α-Mn2O3/PEDOT:PSS (1.02 and 

24.77 Ω, respectively) after 50 cycles were lower than the those of α-Mn2O3 

(2.25 and 84.56 Ω, respectively). Furthermore, Ro and Rf of α-

Mn2O3/PEDOT:PSS after 100 cycles displays lower values. This improvement 

is due to the coating of conductive PEDOT:PSS onto the α-Mn2O3 nanowire 

surface, which provided electron channel and served as a favorable binder 

agent for electrochemical microstructure reconstruction. However, the Rc val-

ue of α-Mn2O3 (29.78 Ω) is slightly increased after the coating (38.23 Ω for α-

Mn2O3/PEDOT:PSS). As shown in Fig. 7f, rate performance of α-

Mn2O3/PEDOT:PSS nanowires is also higher than that of α-Mn2O3 nanowires.  
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Figure 7. Cycle performances of bare α-Mn2O3 and α-Mn2O3/PEDOT:PSS at 

a current density of (a) 100 mAˑg-1 and (b) 500 mAˑg-1. Voltage profiles of (c) 

α-Mn2O3/PEDOT:PSS and (d) α-Mn2O3. (e) AC impedance of α-

Mn2O3/PEDOT:PSS and α-Mn2O3 with equivalent circuit. (f) Rate properties 

of α-Mn2O3/PEDOT:PSS. 
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Figure 8. Cyclic voltammograms of α-Mn2O3/PEDOT:PSS (a) during initial 3 

cycles and (c) during 3 cycles after 100 cycles at 100mAˑg-1. Cyclic voltam-

mograms of bare α-Mn2O3 (b) during initial 3 cycles and (d) during 3 cycles 

after 100 cycles at 100mAˑg-1. 

 

The cyclic voltammetry analysis showed detailed information on the elec-

trochemical reaction of PEDOT:PSS. As shown in Figs. 8a and b, two strong 

cathodic peaks at 0.7 V and 0.25 V are observed in the first lithiation curves, 

corresponding to irreversible solid electrolyte interphase (SEI) formation and 

the electrochemical reduction of Mn2O3 with Li, respectively [21]. During the 

first delithiation step, one peak near 1.25 V corresponds to the oxidation of 
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manganese metal. The cathodic peak located at 0.25 V shifted to 0.35 V in the 

subsequent two scans, resulting from reconstruction which similarly occurred 

in the galvanostatic charge and discharge voltage profiles [21]. In the CV 

curves of α-Mn2O3/PEDOT:PSS, an obvious cathodic peak at 0.12 V and an 

anodic peak at 0.55 V might be assigned to the reversible formation of an SEI 

layer due to PEDOT:PSS; This SEI layer disappeared after 10 cycles [47,48]. 

Fig. 8b and d show CV curves of α-Mn2O3/PEDOT:PSS and α-

Mn2O3/PEDOT:PSS after 100 cycles, respectively. For α-Mn2O3/PEDOT:PSS, 

there is reaction in the low voltage region as compared to the CV curves of α-

Mn2O3 and another anodic peak at 2.1 V, which corresponds to the oxidation 

of Mn2+ to Mn4+, which increases with repeating charge and discharge cycles 

[19,49].  

Fig. 9a shows the XPS spectrum of Mn 2p for α-Mn2O3/PEDOT:PSS after 

100 cycles. Two peaks at 643.87 and 655.27 eV are observed, which is char-

acteristic of Mn4+[19]. The X-ray absorption near-edge structure (XANES) 

spectra of the 10 cycled and 100 cycled α-Mn2O3/PEDOT:PSS electrode are 

shown in Fig. 10b, as well as a reference for manganese oxides. The corre-

sponding XANES data are sensitive to the chemical and structural conditions 

of the material. Considering only the chemical condition, the XANES spectra 

indicate that the oxidation state of manganese in cycled α-Mn2O3/PEDOT:PSS 

is Mn2+ [50]. The oxidation states of both 100 cycled α-Mn2O3/PEDOT:PSS 
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and α-Mn2O3 nanowires is between +3 and +4. This further oxidation on cy-

cling might contribute to increase capacity during cycling. 
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Figure 9. (a) XPS spectrum of 100 cycled α-Mn2O3/PEDOT:PSS at Mn 2p 

after washing with acetonitrile, (b) normalized Mn K-edge XANES spectrum 

of α-Mn2O3/PEDOT:PSS with reference spectra (MnO2, Mn2O3 and MnO 

powder). 

 

4. Conclusion 

α-Mn2O3/PEDOT:PSS nanowires were prepared by synthesizing α-MnO2 

nanowire and coating PEDOT:PSS on the as-synthesized α-MnO2 nanowire 

followed by heat treatment at 550 °C. α-Mn2O3/PEDOT:PSS nanowires 

showed significantly enhanced electrochemical performance in aspect of cycle 

stability and rate capability after coating PEDOT:PSS. In addition, α-

Mn2O3/PEDOT:PSS nanowires exhibited much higher specific capacity than 

that of bare Mn2O3 nanowires and the capacity of Mn2O3/PEDOT:PSS nan-

owires reached about 1450 mAh·g-1 after 200 cycles at current density of 100 

mA·g-1. The abnormal capacity increase on cycling might be due to multiple 

reasons such as reversible gel-like polymer layer growth on the surface and 

further oxidation of manganese oxide on cycling. 
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6. Abstract (in Korean) 

컨버젼 반응을 통해 리튬 이온을 저장하는 전이금속 산화물은 

리튬 이온 배터리의 저장 물질로 널리 연구되고 있다. 하지만, 

전이 금속은 충/방전 사이클을 거치면서 용량이 감소하는 데, 

이러한 현상은 이 물질을 산업화 하는 데 걸림돌이 된다. 본 

논문에서는 이러한 용량 감소를 해결하기 위해서, Mn2O3 

나노와이어 물질에 전도성 고분자인 PEDOT:PSS (poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate)를 

코팅하였다. 코팅된 PEDOT:PSS 는 표면의 저항을 

감소시켰고, 충/방전 사이클을 거치면서 붕괴된 물질의 표면 

사이에서 전자 경로를 제공하여 배터리 성능을 높였다.  

α-Mn2O3/PEDOT:PSS 는 전류 밀도가 100 mA·g-1 일 때, 

200 사이클  이후에도 1450 mAh·g-1 의 가역 용량을 보일 

만큼 우수한 사이클 안정성을 보였다. 사이클에 다른 용량 

증가는 다양한 산화수의 망간 산화물들과 망간 산화물 

표면에서 생성된 겔과 같은 형태의 고분자의 가역적 반응에 

의한 것으로 여겨진다. 이러한 결과는 PEDOT:PSS 가 전자 
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경로를 제공하고 충/방전 과정에 의해 생긴 물질의 붕괴를 

막아주면서 전기화학적 활성을 증가 시킨 것을 설명해준다. 

주요 핵심어 : 망간 산화물, PEDOT:PSS, 용량 증가, 컨버젼 

반응, 리튬 저장 물질 
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Appendix 

 

Fabrication of Three-Dimentionally Ordered 

Nickel Cobalt Sulfide Electrodes for Pseudocapac-

itor 
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1. Abstract 

Three dimensionally ordered nickel cobalt sulfide electrode has been 

fabricated directly on stainless steel substrates as a current collector 

without binder or conducting agent. First, 350 nm silica nanoparticles 

dispersion is spin-coated on the stainless steel substrate to obtain three-

dimensionally ordered silica template. And then SiO2@nickel cobalt 

silicate core-shell structure was synthesized in aqueous solution of 

Ni(NO3)2·6H2O, Co(NO3)2·6H2O and urea. The nickel cobalt silicate 

shell was converted into nickel cobalt sulfide through a hydrothermal 

reaction in the presence of Na2S, where silica core are etched at the 

same time. The thickness of nickel cobalt silicate shell was changed by 

the concentration of nickel and cobalt precursor. Also, three-

dimensional structure nickel cobalt sulfide was synthesized by proper 

quantity of sodium sulfide. The obtained nickel cobalt sulfide was 

characterized by Scanning Electron Microscopy (SEM), X-ray diffrac-

tion (XRD) and Electron dispersive spectroscopy (EDS).  
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2. Introduction 

With the increase of the environment pollution, there are large development of 

field relating energy such as renewable energy, energy storage system (ESS), 

and so on. Besides, ESS is spotlighted because of development of electric ve-

hicles (EVs). In recent, many researchers have been interested in electrochem-

ical double layer capacitor (EDLC) or electrochemical supercapacitor (ES) 

due to high power density, long lifecycle, etc.  

 

Figure A1. Principles of (a) EDLC (b) pseudocapacitor 

There are two types of supercapacitor; (1) EDLC : Carbon based materials 

generally are used as electrode for EDLC. EDLC store energy in the electro-

lyte interfaces. Two electrolyte layer called “Helmholtz” double layer separate 

the charges between electrode materials and solvated opposite charged ions. 

The two opposite charged layer store the energy like conventional capacitor 
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and there is no charge transfer between electrode and adsorbed ion because 

they have only physical adsorption/desorption caused by electrostatic force 

not chemical bond. (2) Pseudocapacitor : unlike EDLC, pseudocapacitor 

stores electrical energy by reversible faradaic redox reaction. They have 

charge transfer between specific adsorbed ions and electrode materials. Tran-

sition metal oxides like RuO2, IrO2, and MnO2 are used as electrode for pseu-

docapacitor. Normally, pseudocapacitor has larger capacitance than EDLC 

because they undergo faradaic redox reaction [1-3]. However, pseudocapaci-

tor has poor structure and cycling stability comparing with EDLC because of 

the redox reaction of the electrode. Also, the poor conductivity of binder re-

duce performance, so many researchers challenge to fabricate binder-free su-

percapacitor electrode. For example, Huang et al. reported binder-free nickel 

based superpercapcitor electrode [4], and Lou et al. also made NiCo2O4 

nanoneedle as binder-free supercapacitor electrode [5]. Especially, the three 

dimensional structure electrode attracted many interests as binder-free elec-

trode [6]. Tang et al. and Liu et al. synthesized three-dimensionally ordered 

macroporous materials for supercapacitor [7-8]. In earliest pseudocapacitor 

research, RuO2 is most actively studied but they are expensive and toxic. So, 

other transition metal oxides such as MnO2, NixOy and CoxOy are rised as 

promising candidates for pseudocapacitor [1]. However the low intrinsic con-

ductivity of metal oxide is still limitation as electrode for pseudocapacitor. To 

solve the problems things, doped-metal oxide or metal sulfide has been car-

ried out recently due to their higher conductive characters [9-11]. Among 
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them, NiCo2S4 was attracted the researcher’s interest because they have higher 

conductivity than other transition metal oxides and rich redox reaction [12-13]. 

And three-dimensionally structured materials have high surface area and ef-

fective ion diffusion path, so they have high rate capability, and excellent 

long-term cycle stability [14]. 

Here, we synthesized three-dimensional ordered structure NiCo2S4 and it did 

not use binder and any conductive agent. They have a tendency to vary thick-

ness of shell by controlling amount of metal source. Furthermore, we found 

that the proper amount of sulfur source was needed for maintaining three-

dimensional structure and the product has good potential to be material for 

supercapacitor.     

 

3. Experimental section 

Materials and Instruments 

Ni(NO3)2·6H2O, Co(NO3)2·6H2O and Na2S purchased from Sigma-Aldrich. 

Tetraethyl orthosilicate (TEOS) purchased from TCI. And urea and NH4OH 

purchased from Samchun Chemical Co. The morphologies of SiO2, Ni-Co 

silicate and NiCo2S4 were confirmed by field emission scanning electron mi-

croscopy (FESEM, Hitachi S-4300). And the crystallographic phase of Ni-

Co2S4 was identified by X-ray diffractometer (XRD, BRUKER MILLER Co., 

D8-Advance). 
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Synthesis of 350 nm SiO2 nanoparticles 

First, 10 mL of TEOS and 15 mL deionized water were mixed with 460 mL of 

2-propanol. After 15 min stirring, 15 mL of NH4OH was added dropwise and 

stirred overnight. Then, the white precipitation was washed with mixed sol-

vent (H2O : EtOH = 1 : 9, v/v) three times. And the precipitation was concen-

trated 800 mg/mL in the mixed solvent. 

Spin coating on stainless steel (SUS) substrate 

The circle stainless steel substrate with 1 cm diameter was attached with 

square glass. Then, the concentrated SiO2 solution was dropped on the sub-

strate and spun it 4,000 rpm for 1 min in spin coater. The coated substrates 

were annealed at 300 °C for 2 h due to more dense packing and better struc-

ture maintenance.  

Synthesis of nickel cobalt silicate 

The SiO2 coated SUS substrate and 50 mg of urea were added in 5 mL of de-

ionized water in glass vial. And nickel and cobalt mixture (Ni2+ : Co2+ = 1 : 2, 

n/n) was dissolved with three times weight of SiO2 on substrate. Then, they 

were heated at 100 ºC for 12 h. After cooling, the substrate was washed with 

de-ionized water several times, and then nickel cobalt silicate on SUS sub-

strate was obtained for next reaction. 

Synthesis of nickel cobalt sulfide 
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The nickel cobalt silicate on SUS substrate was put in 5 mL of de-ionized wa-

ter in Teflon-lined container. And Na2S was dissolved 25 times more weight 

of nickel cobalt silicate on substrate. Then, they were reacted at 160 °C for 12 

h in autoclave. The SUS substrate coated with dark-gray colored NiCo2S4 was 

washed with de-ionized water several times. 
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4. Result and Discussion 

 

Scheme A1. Schematic illustrations of preparation of three-dimensionally or-

dered nickel cobalt sulfide. (a) Synthesis of nickel cobalt silicate shell on sili-

ca nanoparticles; (b) conversion to nickel cobalt sulfide with Na2S. 

In order to fabricate three-dimensionally ordered nickel cobalt sulfide directly 

on stainless steel substrate(SUS) as a current collector, first silica nanoparti-

cles having diameters of 350 nm with a good size distribution were spin-

coated on the SUS. And well-ordered template make more channel between 

particles and produce the stable electrodes. Therefore, the hexagonal packing 

was needed for ordered structure. The packing type was affected by viscosity 

and vapor pressure of solvent [15]. So, silica nanoparticles were dispersed in 

three types of solvent; (1) Type 1 (Only ethanol) (2) Type 2 (Butanol : eth-

ylene glycol = 7 : 3, v/v), and (3) Type 3 (Ethanol : H2O = 9 : 1, v/v). They 

showed different ordering trends by solvent type after spin coating. 
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Figure A2. FE-SEM image of packing of SiO2 nanoparticles in Type 1 (only 

ethanol) solvent. Inset is picture after spin coating. 

SiO2 nanoparticles formed cubic packing when they are in Type 1 solvent. 

Because ethanol solvent has low vapor pressure and ethanol was vaporized so 

fast, SiO2 nanoparticles have no time to array hexagonal form. If SiO2 nano-

particles have enough time to array, they would array hexagonal structure be-

cause the form is the most stable . But ethanol solvent had good affinity to 

SUS substrate, so SiO2 nanoparticles were spin coated very well on SUS sub-

strate.(Inset of Fig. A2a) 

 

Figure A3. FE-SEM image of packing of SiO2 nanoparticles in Type 2 (buta-

nol : ethylene glycol = 7 : 3, v/v) solvent. Inset is picture after spin coating. 
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In Type 2 solvent, SiO2 nanoparticles had hexagonal structure. Because buta-

nol and ethylene glycol have low vapor pressure so they give enough time to 

array to SiO2 nanoparticles. However, they also have high viscosity and poor 

adhesion with SUS substrate. As a result, SiO2 nanoparticles were not spin 

coated well on SS substrate when they are in Type 2 solvent.(Inset of Fig. A3a)  

 

 

Figure A4. FE-SEM image of packing of SiO2 nanoparticles in Type 3 (etha-

nol : H2O = 9 : 1, v/v) solvent. Inset is picture after spin coating. 

Considered packing and spin coating on substrate, proper vapor pressure, vis-

cosity and adhesion with substrate are needed to make effective hexagonal 

ordered structure. When SiO2 nanoparticles were dispersed in Type 3 solvent, 

they were spin coated very well and had perfect hexagonal packing. (Fig.A4a)  
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 Type I 
(Only EtOH) 

Type II 
(BuOH : EG = 7:3) 

Type III 
(EtOH : H2O = 9:1) 

packing Cubic Hexagonal Hexagonal 

Uniformity O X O 

 

Table A1. Packing and uniformity by solvent types. 

 

 

Figure A5. The morphologies of nickel cobalt silicate varying with nickel 

cobalt cation source. (a) FE-SEM top view (b) cross section view of nickel 

cobalt silicate when the ratio is 3 : 5 (SiO2 : Ni/Co). (c) FE-SEM top view (d) 

cross section view of nickel cobalt silicate when the ratio is 3 : 9 (SiO2 : 

Ni/Co). Scale bar of inset picture is 500 nm. 
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SiO2 nano spheres were dissolved by urea to silicate anion, which produce 

nickel cobalt silicate through metal-ligand formation. SiO2 nano spheres were 

activated by alkaline solution generated by the hydrolysis of urea [16-17]. 

Thickness nickel cobalt silicate shell was varied by the amount of nickel co-

balt cation source. In Figure A5, the more the quantity of nickel and cobalt 

cation source, the thicker the nickel cobalt silicate shell.  

 

 

Figure A6. The trend of NCS varying with the amount of Na2S. FE-SEM top 

view after reaction when the quantity of Na2S is (a), (b) same (c), (d) 25 times 

(e), (f) 50 times. 

In order to convert nickel cobalt silicate to nickel cobalt sulfide, SiO2@nickel 

cobalt silicate was react with varying amount of Na2S which serves as sulfu-

rizing agent and silica template etching agent by generating basic environment 

[15]. When the amount of Na2S is the same with nickel cobalt silicate, the sul-
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fur substitution didn’t happen because sulfur anion was running short to react 

sufficiently. Adding Na2S with 25 times amount of nickel cobalt silicate, nick-

el cobalt sulfide were synthesized without structure decay. However, the struc-

ture was collapsed when the amount of Na2S is 50 times. In water, Na2S is 

decomposed to SH- and OH-; Na2S + H2O ↔ 2Na+ + SH- + OH- [15]. There-

fore, excessive quantity of Na2S made solvent too much basic and they etched 

SiO2 core so fast before forming NiCo2S4 shell. (Fig. A6) The crystallinity of 

synthesized product was not good and they have CoSO4·6H2O because sulfur 

substitution was undergone in water. And the peak intensity of stainless steel 

is too high, so other peaks showed low intense, relatively. Although their crys-

tallinity was not good, NiCo2S4 was well-synthesized. (Fig. A7) 
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Figure A7. XRD patterns of synthesized NCS. 
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5. Conclusions 

Three-dimensionally ordered nickel cobalt sulfide was successfully fabricated 

on stainless steel substrate for electrode of pseudocapacitor. Silica nano-

spheres (nanoparticles?) were used as template for three-dimensionally or-

dered structures. The SiO2 nanoparticles dispersions were spin-coated on 

stainless steel substrate and their packing morphology of nanoparticles was 

affected by the types of solvent that silica nano-spheres were arrayed hexago-

nal form in solvent consisting of water and ethanol. SiO2@nickel cobalt sili-

cate was obtained by reacting SiO2 template with Ni(NO3)2·6H2O and 

Co(NO3)2·6H2O. The thickness of nickel cobalt silicate increased with 

increasing the amount of metal ion sources. Nickel cobalt silicate were 

converted into nickel cobalt sulfide (NiCo2S4) in presence of Na2S, and 

silica core was removed at the same time. Three-dimensional structure 

of NiCo2S4 was maintained by adjusting the amount of Na2S. It is ex-

pected that this NiCo2S4 has high supercapacitive performance for pseu-

docapacitor.  
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Abstract 
 

α-Mn2O3 nanowires coated with conductive polymer for 

Li-ion battery anode materials : 

Synthesis, characterization, and applications 

 

Seong-Jun Kim 

Department of Chemistry, Inorganic Chemistry 

The Graduate School 

Seoul National university 

 

Transition metal oxides have been considered as promising lithium 

storage materials that undergo a conversion reaction with Li ion, exhib-

iting high specific capacity. Among them, manganese oxides have high 

capacity compared to other metal oxides, and also their costs are inex-

pensive. However, capacity fading during cycling is the most serious 

obstacle for their commercialization. To slove the problems, poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was 

coated onto α-Mn2O3 nanowires while maintaining the structure of α-

Mn2O3. PEDOT:PSS on the α-Mn2O3 reduced the resistance of the sur-
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face and protected the surface electron channels from the pulverization 

effect of the charge–discharge operation. α-Mn2O3/PEDOT:PSS 

showed excellent cyclability with a reversible capacity of 1450 mAh·g-

1 after 200 cycles at a current density of 100 mA·g-1. An increase in ca-

pacity was observed with continuous cycling, which may be attributed 

to further oxidation of the manganese species and a reversible reaction 

of the gel-like polymer on the manganese surface. The results demon-

strate that PEDOT:PSS enhances the electrochemical activity by 

providing electron channels and prevents pulverization caused by the 

charge and discharge process. 

Keywords : manganese oxide, PEDOT:PSS, capacity increasing, 

abnormal capacity, lithium ion battery 

  

2 

 



Contents 

Abstract . …………………………………………………………...1 

Contents . ……………………………………………………………3 

List of figures, scheme and tables . ………………………5 

Charpter 1. ɑ-Mn2O3 nanowires coated with conductive 

polymer for Li-ion battery anode materials ; Synthesis, 

Characterization, and Application ……………………8 

1. Introduction ............................................................................. 9 

2. Experimental section ............................................................. 12 

2.1 Synthesis of α-Mn2O3 nanowires .......................................... 12 

2.2 Coating PEDOT:PSS onto α-Mn2O3 nanowires ................... 13 

2.3 Materials characterization ..................................................... 13 

2.4 Electrochemical measurements ............................................. 14 

3. Result and discussion ............................................................ 15 

3.1 Synthesis and characterization of materials .......................... 15 

3.2 Electrochemical performance in Li ion battery..................... 22 

4. Conclusions ........................................................................... 29 

5. References ............................................................................. 30 

6. Abstract (in Korean) ............................................................. 40 

 

 

3 

 



Appendix. Fabrication of Three-Dimensionally Ordered 

Nickel Cobalt Sulfide Electrodes for Pseudocapacitor …42 

1. Abstract........................................................................................... 43 

2. Introduction .................................................................................... 44 

3. Experimental Section ..................................................................... 46 

4. Results and Discussion ................................................................... 49 

5. Conclusions .................................................................................... 56 

6. References ...................................................................................... 57 

 

 

 

 

 

 

 

 

 
4 

 



List of figures scheme and tables 

Figures 
Figure 1. Schematic representation of the synthesis of α-

Mn2O3/PEDOT:PSS.........................................................................................15 

Figure 2. Dispersibility of α-Mn2O3 nanowires according to ethanol/H2O 

ratio…………………………………………………………………………..16 

Figure 3. (a) FE-SEM and (b) TEM image of bare α-Mn2O3 nanowires. (c) 

EDS-mapping of bare α-Mn2O3 nanowires (scale bar is 200 nm).................. 17 

Figure 4. (a) FE-SEM and (b) TEM image of α-Mn2O3/PEDOT:PSS. (c) 

EDS-mapping of α-Mn2O3/PEDOT:PSS. (d) XRD patterns of α-MnO2, bare 

α-Mn2O3, and α-Mn2O3/PEDOT:PSS………………………………………...18  

Figure 5. (a) TG analysis before and after treatment of PEDOT:PSS. (10 

ºC/min, Air condition) (b) FT-IR spectra before and after treatment of PE-

DOT:PSS. XPS spectra of the (c) Mn and (d) O atoms in materials before and 

after treatment of PEDOT:PSS……………………………………………... 20 

Figure 6. Illustration of PEDOT:PSS structure…………………………….. 21  

Figure 7. Cycle performances of bare α-Mn2O3 and α-Mn2O3/PEDOT:PSS at 

a current density of (a) 100 mAˑg-1 and (b) 500 mAˑg-1. Voltage profiles of (c) 

α-Mn2O3/PEDOT:PSS and (d) α-Mn2O3. (e) AC impedance of α-

Mn2O3/PEDOT:PSS and α-Mn2O3 with equivalent circuit. (f) Rate properties 

of α-Mn2O3/PEDOT:PSS…………………………………………………… 25 

5 

 



Figure 8. Cyclic voltammograms of α-Mn2O3/PEDOT:PSS (a) during initial 3 

cycles and (c) during 3 cycles after 100 cycles at 100mAˑg-1. Cyclic voltam-

mograms of bare α-Mn2O3 (b) during initial 3 cycles and (d) during 3 cycles 

after 100 cycles at 100mAˑg-1………………………………………………. 26 

Figure 9. (a) XPS spectrum of 100 cycled α-Mn2O3/PEDOT:PSS at Mn 2p 

after washing with acetonitrile, (b) normalized Mn K-edge XANES spectrum 

of α-Mn2O3/PEDOT:PSS with reference spectra (MnO2, Mn2O3 and MnO 

powder…………………………………………………………………….... 28  

Figure A1. Principles of (a) EDLC and (b) pseudocapacitor…………….... 44 

Figure A2. FE-SEM image of packing of SiO2 nanoparticles in Type 1 (only 

ethanol) solvent. Inset is picture after spin coating………………………….50 

Figure A3. FE-SEM image of packing of SiO2 nanoparticles in Type 2 (buta-

nol : ethylene glycol = 7 : 3, v/v) solvent. Inset is picture after spin coating 

……………………………………………………………………………….50 

Figure A4. FE-SEM image of packing of SiO2 nanoparticles in Type 3 (etha-

nol : H2O = 9 : 1, v/v) solvent. Inset is picture after spin coating…………...51 

Figure A5. The morphologies of nickel cobalt silicate varying with nickel 

cobalt cation source. (a) FE-SEM top view and (b) cross section view of nick-

el cobalt silicate when the ratio is 3 : 5 (SiO2 : Ni/Co). (c) FE-SEM top view 

and (d) cross section view of nickel cobalt silicate when the ratio is 3 : 9 

(SiO2 : Ni/Co). Scale bar of inset is 500 nm………………………………... 52 

6 

 



Figure A6. The trend of NCS varying with the amount of Na2S. FE-SEM top 

view after reaction when the quantity of Na2S is (a), (b) same (c), (d) 25 times 

(e), (f) 50 times………………………………………………………………53  

Figure A7. XRD patterns of synthesized NCS…………………………….. 55 

Scheme 

Scheme A1. Schematic illustrations of preparation of three-dimensionally or-

dered nickel cobalt sulfide. (a) Synthesis of nickel cobalt silicate shell on sili-

ca nanoparticles; (b) conversion to nickel cobalt sulfide with Na2S………..49 

Tables 
Table 1. Zeta potential of bare α-Mn2O3 nanowires and α-

Mn2O3/PEDOT:PSS…………………………………………………………22 

Table A1. Packing and coating state by solvent types………………………52 

 

 

 

 

 

 
7 

 



 

 

Chapter 1. 

α-Mn2O3 nanowires coated with conductive poly-

mer for Li-ion battery anode materials : 

Synthesis, Characterization, and Applications 
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1. Introduction 

 

Interest on electric vehicles (EVs) and energy storage systems is con-

tinuously increasing because of the depletion of fossil fuels and in-

creasing environmental pollution [1-2]. Thus, many researchers have 

investigated a variety of energy storage devices such as lithium ion bat-

teries (LIBs) [3-5], sodium ion batteries (NIBs) [6-8], and electrochem-

ical capacitors [9]. There are three types of mechanisms reacting with 

Li ion according to anode materials. (1) An intercalation reaction, in 

which lithium ions are inserted to/removed from the host materials dur-

ing charge–discharge cycles. For example, lithium ions are inserted 

to/removed from between a graphite lattice [Li+ + C6 + e- ↔ LiC6], (2) 

a reaction resulting from the alloying of Li metal with metal elements 

such as Sn, Ge, Sb, Zn, In, Bi, and Cd (LixM) , and (3) a “conversion” 

reaction (or redox reaction). Many transition metal oxides react with 

lithium ions (MOx + 2xLi+ + 2xe- ↔ M + xLi2O) [10]. 

Many transition metal oxides can be easily prepared with various 

nanoscale morphologies and structures [11-15]. Moreover, these mate-

rials can exhibit even beyond the theoretical capacity calculated based 

on conversion reaction mechanism [11-13, 16-28]. It is reported that it 

can be explained by conjugate charge storage reactions which involve 
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space charge layer between lithium salts and metal surface [27-28], fur-

ther oxidation of Mn2+ to Mn4+ in manganese oxides [19] and reversible 

formation of gel-like polymer [16].  

Manganese-based oxides are considered promising anode materials 

for LIBs due to their high specific capacity, low toxicity, and low cost, 

and lower operating voltage than that of other conversion reaction-

based materials such as Fe-, Co-, and Ni-based oxides [29]. Manganese 

oxides have various phases such as MnO, Mn3O4, MnO2, and Mn2O3 

[30]. Among the various morphologies, one-dimensional (1D) manga-

nese oxide nanostructures such as nanowires (NWs) and nanotubes 

(NTs) have been studied for many energy applications. 1D nanostruc-

tured materials have advantages on facilitating electrical transport, and 

also effectively accommodates volume expansion. Also, they have short 

ion diffusion pathway, which enhances rate capability [31]. However, 

1D nanostructured Mn2O3 has been rarely investigated in spite of its 

high theoretical capacity (1018 mAh·g-1) and many other advantages. 

Because intrinsic low electric conductivity of manganese oxides reduc-

es its electrochemical performance. Thus, many advanced studies have 

been carried out to overcome these intrinsic problems. For example, 

Ma et al. doped copper into Mn2O3 [32] and Liu et al. coated carbon 

onto MnO particles to enhance conductivity of materials [33]. Wang et 

10 

 



al. controlled morphology by synthesizing Mn2O3 nanoplates [34]. Also, 

Yang et al. synthesized Ag–Si core–shell nanowall arrays using Ag 

cores as electron-conducting pathways, which enhanced the stability 

and conductivity of Si anodes [35].  

Herein, a new composite of Mn2O3 nanowires and Poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). PE-

DOT:PSS is a conductive polymer mixture. The PSS part carries a neg-

ative charge due to the deprotonated sulfonyl group and the PEDOT 

part has conjugated rings that carry a positive charge. PEDOT:PSS has 

very high conductivity (ca. 300 S·cm-1) and high stability [36]. Previ-

ously research shows that PEDOT:PSS coating on the cathode material 

can improve electronic conductivity of the electrode and electrochemi-

cal stability [51-53]. Her at al. and Arbizzani et al. prepared cathode 

materials using electrosynthesis of PEDOT and Yue et al. made nano-

silicon/PEDOT:PSS composites for Li ion battery anode materials, but 

they have complex process to obtain their products due to polymeriza-

tion step [51,52,54]. PEDOT:PSS also applied to 3DOM FeF3 which 

reacts through a conversion reaction. The novel 3DOM/PEDOT com-

posite was synthesized by in-situ polymerization of 3,4-

Ethylenedioxythiophene (EDOT) which secured both electron and ion 

channels [55]. Composite of carbonaceous materials/metal oxides de-
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signed to improve the conductivity is usually synthesized in too reduc-

tive condition for maintaining structure of metal oxides. However, in 

our composite of α-Mn2O3 nanowires and PEDOT:PSS, α-Mn2O3 nan-

owires maintained its structure by virtue of a mild condition for PE-

DOT:PSS coating process. The nanosized metal oxides particles ag-

glomerate together to stabilize their surface energy, which lead to poor-

ly dispersed active materials during preparing slurry, while the nan-

owires is well distributed within the electrode. Thus, keeping the mor-

phology of Mn2O3 NWs is important to enhance the electrochemical 

performance for the lithium ion battery. The PEDOT:PSS coated one-

dimensional manganese oxides had improved the electronic conductivi-

ty, and enhanced stability of the electrochemical active sites.  

 

2. Experimental Section 

 

2.1 Synthesis of α-Mn2O3 nanowires 

The synthesis method for α-MnO2 nanowires was similar to the reported hy-

drothermal method [37]. Followed by, 7.35 g of Mn(CH3COO)2·4H2O (0.03 

mol) was dissolved in 80 mL of deionized water in a Teflon container, fol-

lowed by the addition of 6.85 g of (NH4)2S2O8 (0.03 mol) and 7.94 g of 

(NH4)2SO4 (0.06 mol). After thorough mixing, the solution was heated in an 

autoclave at 140 °C for 12 h. The resulting α-MnO2 nanowires were collected 
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by centrifugation and washed three times with water and ethanol. The prod-

ucts were calcinated at 550 °C for 1.5 h. 

 

2.2 Coating PEDOT:PSS onto α-Mn2O3 nanowires 

300 mg of as-prepared α-Mn2O3 nanowires were dispersed in a co-solvent (27 

mL of water and 270 mL of ethanol) in a round-bottom flask, followed by the 

addition of 3 mL of PEDOT:PSS solution (CLEVIOS™ P). The mixture was 

sonicated for 1 h at room temperature. After sonication, we collected the black 

precipitate by several rinse-centrifugation cycles. The precipitate was fully 

dried in vacuum for characterization. 

 

2.3 Materials characterization 

Mn(CH3COO)2·4H2O, (NH4)2S2O8 and (NH4)2SO4 were purchased from 

SAMCHUN. PEDOT:PSS was purchased from Clevious™. Ethanol was pur-

chased by J.T. Baker. The morphologies of α-Mn2O3 nanowires and α-

Mn2O3/PEDOT:PSS were confirmed by transmission electron microscopy 

(TEM, Hitachi-7600) and field emission scanning electron microscopy 

(FESEM, Hitachi S-4300). The crystallographic phase of α-Mn2O3 was identi-

fied by X-ray diffractometer (XRD, D-MAX2500-PC). The diffraction data 

was collected in the 2 θ range of 10˚ ~ 80˚. Energy dispersive spectroscopy 

(EDS) mapping of α-Mn2O3/PEDOT:PSS was performed by high-resolution 

transmission electron microscopy (HRTEM, JEM-2100F, JEOL Ltd.). Ther-

mogravimetric analysis (TGA, SDT-Q600, TA Instruments) and Fourier trans-
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form infrared spectroscopy (FT-IR, Nicolet™ iS™10, Thermo scientific) were 

used to characterize the amount and presence of PEDOT:PSS, respectively. 

The shift of binding energy was assigned by X-ray photoelectron spectrosco-

py (XPS, AXIS-HIS, Kratos Inc.). X-ray absorption spectroscopy (XAS) 

analyses were performed at the 8C beam beamline of the Pohang Light Source 

(PLS). The cycled electrodes for XAS analyses were prepared by disassem-

bling of the cells, washing them with diethyl carbonate, and drying them. Fi-

nally, the electrodes were sealed with Kapton® tape. All preparation processes 

were carried out in an argon-filled glove box. 

 

2.4 Electrochemical measurements 

The working electrode was prepared by coating a slurry containing active ma-

terial (70 wt%), Super P (as a conductive agent, 20 wt%), and polyvinylidene 

fluoride (PVDF, 10 wt%) onto copper foil. The coated electrodes were dried 

under vacuum at 120 °C for 12 h and then pressed. The electrochemical per-

formance of the active material was examined using CR2032 button cells con-

sisting of the as-prepared electrode, a polypropylene separator, lithium foil as 

the counter electrode, and 1 M LiPF6 in a mixture of ethylene carbonate (EC) 

and ethyl carbonate (DEC) (v/v = 50:50) as the electrolyte. The cells were 

assembled in an argon atmosphere glove box. A WBCS3000 cycler (WonA 

Tech, Korea) was employed for the galvanostatic charge–discharge experi-

ment in a voltage range of 0.01–3 V versus Li+/Li and for cyclic voltammetry 

(CV) measurements from 3 to 0.01 V versus Li+/Li at a scan rate of 0.1 mV·s-1 
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at room temperature. Electrochemical impedance spectroscopy (EIS) was 

conducted in the frequency range from 100 kHz to 0.01 Hz with an AC signal 

amplitude of 5 mV (Autolab, PGSTAT128N) 

 

3. Result and discussion 

 

3.1 Synthesis and characterization of materials 

 

 

Figure 1. Schematic representation of the synthesis of α-Mn2O3/PEDOT:PSS. 

 

α-MnO2 nanowires were synthesized through a cation template-assisted 

hydrothermal method. These α-MnO2 nanowires transformed into α-Mn2O3 at 

550 °C or more in air. Fig. 1 shows the process of coating PEDOT:PSS onto 

the α-Mn2O3 nanowires. After heat treatment of as-prepared α-Mn2O3 nan-

owires at 550 °C in air, PEDOT:PSS was added to the nanowires via soni-

cation. α-Mn2O3/PEDOT:PSS was obtained after 1 h in sonication. 

Cosolvent of DI waterand ethhanol should be used for this process. α-Mn2O3 

nanowires have good dispersibility in ethanol but they don’t in water because 

most hydroxyl groups on surface were eliminated during calcination. Howev-
15 

 



er, PEDOT:PSS cannot disperse in ethanol but in water. So, Mn2O3 nanowires 

and PEDOT:PSS need proper ratio of two solvent. Therefore, the ratio 9 : 1 

(ethanol : water, v/v) was identified as ideal ratio from dispersibility test. (Fig. 

2)  

 

 

Figure 2. Dispersibility of α-Mn2O3 nanowires according as Ethanol/H2O 

ratio. 

 

The morphology of bare α-Mn2O3 nanowires are shown in TEM and 

SEM images (Fig. 3a-c). The prepared α-MnO2 nanowires have 1D 

nanostructure with a diameter of 20 nm. The obtained α-Mn2O3 nan-

owires after heat treatment at 550 °C (or higher temperature) main-

tained their morphology even though the structures are changed. Fur-

thermore, the morphology of α-Mn2O3 was still maintained after the 

coating process. Unlike a carbon-coating process, the PEDOT:PSS-

coating process can omit heat treatment at high temperature, which 
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causes morphology change with a phase transition. The mild conditions 

of the PEDOT:PSS coating process has a significant advantage for ap-

plying conductive coatings onto electric materials.  

 

Figure 3. (a) FE-SEM and (b) TEM image of bare α-Mn2O3 nanowires. (c) 

TEM image (first picture) and EDS-mapping of bare α-Mn2O3 nanowires 

(scale bar is 200 nm) 
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The existence of PEDOT:PSS was characterized after the coating 

process by SEM, TEM, and EDS mapping (Fig. 4a-c) It is clearly seen 

that the diameter of α-Mn2O3/PEDOT:PSS nanowires is thicker than 

that of α-Mn2O3 nanowires (Fig. 4a). In addition, the coating of PE-

DOT:PSS on α-Mn2O3 nanowires is observed in TEM and EDS map-

ping (Fig. 4b and c). The XRD patterns of α-MnO2 and the α-Mn2O3 

nanowires were well matched with α-MnO2 phase (PDF#44-0141) and 

α-Mn2O3 phase (PDF#24-508), respectively (Fig. 4d)  
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Figure 4. (a) FE-SEM and (b) TEM image of α-Mn2O3/PEDOT:PSS (c) EDS-

mapping of α-Mn2O3/PEDOT:PSS (d) XRD patterns of α-MnO2, bare α-

Mn2O3 and α-Mn2O3/PEDOT:PSS.  

 

According to TGA, approximately 23 % PEDOT:PSS was contained in α-

Mn2O3/PEDOT:PSS nanowires (Fig. 5a). Also, the weight of bare α-

Mn2O3 decreased because of its phase transition from α-Mn2O3 to 

Mn3O4, the removal of water from the surface hydroxyls, and the de-

composition of a slight amount of SO4
2- species on the surface [38]. 

The surface chemical species of α-Mn2O3/PEDOT:PSS and bare α-

Mn2O3 were verified by FT-IR. α-Mn2O3/PEDOT:PSS exhibited unique 

peaks of PEDOT:PSS from 3500 to 3000 cm-1 and from 1700 to 750 

cm-1 (Fig. 5b) [39]. Peaks indicating SO4
2- anions (1260 to 900 cm-1) 

and –OH groups from the adsorbed water and surface hydroxyls (~3400 

and ~1600 cm-1) were also found [40]. Both spectra showed peaks cor-

responding to the vibration of the Mn-O bond in Mn2O3 [41]. 

We further analyzed the chemical and oxidation states on surface of 

both materials by XPS. Binding energy shifts to lower appeared in both 

Mn 2p and O 1s spectra after coating (Fig. 5c and d, respectively). In 

addition, Messmer et al. reported that the electrostatic contribution af-

fects binding energies [42]. The electrostatic interaction reduced the 
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binding energies of the Mn-O bond in the α-Mn2O3 nanowires. After 

addition of PEDOT:PSS, the two peaks of Mn 2p shifted to lower bind-

ing energy about 0.4 eV (642.4 → 642.0 eV and 654.4 → 654.0 eV, re-

spectively) and the peaks of O 1s shifted 0.4 and 0.1 eV (530.8 → 

530.4 eV and 532.2 → 532.1 eV), respectively. These O 1s peaks were 

caused by the presence of the S-O bond in the SO4
2- anion and the ad-

sorbed water on the surface [43]. 

 

Figure 5. (a) TG analysis before and after treatment of PEDOT:PSS. (10 ℃

/min, Air condition) (b) FT-IR spectra before and after treatment of PE-

DOT:PSS. XPS spectras of the (c) Mn and (d) O atoms in materials before 

and after treatment of PEDOT:PSS. 
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Polythiophene group of PEDOT has positive charge that may help to at-

tach on surface of α-Mn2O3 nanowires because surface charge of α-Mn2O3 

nanowires is negative charge. (Fig 6) Two materials were attached by electro-

static interaction. Besides, sulfate anions on the surface interacted with PE-

DOT:PSS and they also help to stick between them. 

 

 

Figure 6. Illustration of PEDOT:PSS structure.  

 

The surface potential of bare α-Mn2O3 nanowires is approximately -38.6 

mV. After adding PEDOT:PSS, their surface charge shifts positive a little 

about -10.5 mV. (Table 1) PEDOT:PSS could lower the surface charge of bare 

α-Mn2O3 nanowires.  
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 Bare α-Mn2O3 NWs α-Mn2O3 NW/PEDOT:PSS 

1st -41.0 mV -9.99 mV 

2nd -37.5 mV -11.0 mV 

3rd -37.4 mV -10.6 mV 

Average -38.6 mV -10.5 mV 

Table 1. Zeta potential of bare α-Mn2O3 nanowires and α-Mn2O3/PEDOT:PSS. 

 

3.2 Electrochemical performance in Li ion battery 

The electrochemical performance was evaluated by galvanostatic charge 

and discharge measurements. Fig. 7a shows the cycle performance of α-

Mn2O3/PEDOT:PSS and α-Mn2O3 at current density of 100 mA·g-1 in a poten-

tial range between 0.01 and 3 V. The specific capacities of α-

Mn2O3/PEDOT:PSS and α-Mn2O3 decreased during initial several cycles [23]. 

However, the capacity of α-Mn2O3/PEDOT:PSS gradually increased after 25 

cycles. The capacity reached a maximum value of 1450 mAh·g-1 after 200 

cycles, whereas the capacity of α-Mn2O3 still under 400 mAh·g-1 after 200 

cycles even though the capacity continuously increases after about 40 cycles. 

At higher current density, fluctuation on cycle performance was also observed. 

The capacity of α-Mn2O3/PEDOT:PSS decreased up to the 50th cycle and then 

started to rebound at 500 mA·g-1. These abnormal trends of increasing capaci-

ty after decreasing were further investigated through charge-discharge voltage 

profiles. Fig. 7c and d show the charge and discharge curves of α-

Mn2O3/PEDOT:PSS and α-Mn2O3, respectively. Both α-Mn2O3/PEDOT:PSS 

and α-Mn2O3 show the typical lithiation and delithiation profiles of manga-
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nese oxide. The first lithiation curves can be explained by dividing it into 

three distinct regions [44]. The first region was caused by the insertion of lith-

ium ions into Mn2O3 to form LiMn2O3, followed by the diffusion of oxygen 

and lithium ions out of LiMn2O3 to form MnO, resulting in two quasi-plateaus 

above 0.3 V. The second region is an extended plateau near 0.3 V, resulting in 

the largest charge. The second region is related to the transformation from 

MnO into Mn metal and Li2O. Finally, the third region is a sloping voltage 

below 0.3 V, which can be explained by interfacial insertion (or space charg-

es). In the subsequent delithiation process, the oxidation of metallic manga-

nese to MnO (not to Mn2O3) and the diffusion of lithium ions out of Li2O oc-

curred, which resulted in a plateau near 1.25 V. In the second lithiation pro-

cess, the extended plateau near 0.3 V corresponding to the reduction of MnO 

to Mn0 shifted to 0.45 V. This indicated that the obstacle of second lithiation is 

lower than that of the first lithiation as a result of formation of nanoscale met-

al cluster (<5 nm) imbedded in Li2O matrix during the first lithiation [19]. In 

the lithiation curves of α-Mn2O3/PEDOT:PSS, main reaction occurs at plateau 

(0.45 V), which is related to the transformation of MnO to Mn up to 50 cycles. 

After 50 cycles, however, the plateau near 0.45 V gradually disappears, 

whereas the slope below 0.45 V gradually expands. It seems that the reaction 

in end of lithiation (below 0.45 V) is related to formation of gel-like polymer 

which is caused by pulverized nano-metal particles [16]. EIS analysis was 

introduced to investigate the effect of the PEDOT:PSS coating (Fig. 7e). The 

proposed equivalent circuits are a simplification of the real situation based on 
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several assumptions [45,46]. Although the α-Mn2O3/PEDOT:PSS electrode 

did not perfectly agree with the assumptions, the experimental values were 

consistent with the calculated data. Fig. 7e shows the Nyquist plots of α-

Mn2O3 after 50 cycles and α-Mn2O3/PEDOT:PSS after 50 and 100 cycles. The 

equivalent circuits is presented in Fig. 7e, where Ro indicates ohmic resistance 

and Rf and Cf indicate the resistance of the SEI film and the capacity of the 

surface-passivating layer, respectively. The resistance of the charge transfer 

reaction and the capacitance of the double layer are represented by Rc and Cc, 

respectively. The values of Ro and Rf for α-Mn2O3/PEDOT:PSS (1.02 and 

24.77 Ω, respectively) after 50 cycles were lower than the those of α-Mn2O3 

(2.25 and 84.56 Ω, respectively). Furthermore, Ro and Rf of α-

Mn2O3/PEDOT:PSS after 100 cycles displays lower values. This improvement 

is due to the coating of conductive PEDOT:PSS onto the α-Mn2O3 nanowire 

surface, which provided electron channel and served as a favorable binder 

agent for electrochemical microstructure reconstruction. However, the Rc val-

ue of α-Mn2O3 (29.78 Ω) is slightly increased after the coating (38.23 Ω for α-

Mn2O3/PEDOT:PSS). As shown in Fig. 7f, rate performance of α-

Mn2O3/PEDOT:PSS nanowires is also higher than that of α-Mn2O3 nanowires.  
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Figure 7. Cycle performances of bare α-Mn2O3 and α-Mn2O3/PEDOT:PSS at 

a current density of (a) 100 mAˑg-1 and (b) 500 mAˑg-1. Voltage profiles of (c) 

α-Mn2O3/PEDOT:PSS and (d) α-Mn2O3. (e) AC impedance of α-

Mn2O3/PEDOT:PSS and α-Mn2O3 with equivalent circuit. (f) Rate properties 

of α-Mn2O3/PEDOT:PSS. 
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Figure 8. Cyclic voltammograms of α-Mn2O3/PEDOT:PSS (a) during initial 3 

cycles and (c) during 3 cycles after 100 cycles at 100mAˑg-1. Cyclic voltam-

mograms of bare α-Mn2O3 (b) during initial 3 cycles and (d) during 3 cycles 

after 100 cycles at 100mAˑg-1. 

 

The cyclic voltammetry analysis showed detailed information on the elec-

trochemical reaction of PEDOT:PSS. As shown in Figs. 8a and b, two strong 

cathodic peaks at 0.7 V and 0.25 V are observed in the first lithiation curves, 

corresponding to irreversible solid electrolyte interphase (SEI) formation and 

the electrochemical reduction of Mn2O3 with Li, respectively [21]. During the 

first delithiation step, one peak near 1.25 V corresponds to the oxidation of 
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manganese metal. The cathodic peak located at 0.25 V shifted to 0.35 V in the 

subsequent two scans, resulting from reconstruction which similarly occurred 

in the galvanostatic charge and discharge voltage profiles [21]. In the CV 

curves of α-Mn2O3/PEDOT:PSS, an obvious cathodic peak at 0.12 V and an 

anodic peak at 0.55 V might be assigned to the reversible formation of an SEI 

layer due to PEDOT:PSS; This SEI layer disappeared after 10 cycles [47,48]. 

Fig. 8b and d show CV curves of α-Mn2O3/PEDOT:PSS and α-

Mn2O3/PEDOT:PSS after 100 cycles, respectively. For α-Mn2O3/PEDOT:PSS, 

there is reaction in the low voltage region as compared to the CV curves of α-

Mn2O3 and another anodic peak at 2.1 V, which corresponds to the oxidation 

of Mn2+ to Mn4+, which increases with repeating charge and discharge cycles 

[19,49].  

Fig. 9a shows the XPS spectrum of Mn 2p for α-Mn2O3/PEDOT:PSS after 

100 cycles. Two peaks at 643.87 and 655.27 eV are observed, which is char-

acteristic of Mn4+[19]. The X-ray absorption near-edge structure (XANES) 

spectra of the 10 cycled and 100 cycled α-Mn2O3/PEDOT:PSS electrode are 

shown in Fig. 10b, as well as a reference for manganese oxides. The corre-

sponding XANES data are sensitive to the chemical and structural conditions 

of the material. Considering only the chemical condition, the XANES spectra 

indicate that the oxidation state of manganese in cycled α-Mn2O3/PEDOT:PSS 

is Mn2+ [50]. The oxidation states of both 100 cycled α-Mn2O3/PEDOT:PSS 
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and α-Mn2O3 nanowires is between +3 and +4. This further oxidation on cy-

cling might contribute to increase capacity during cycling. 
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Figure 9. (a) XPS spectrum of 100 cycled α-Mn2O3/PEDOT:PSS at Mn 2p 

after washing with acetonitrile, (b) normalized Mn K-edge XANES spectrum 

of α-Mn2O3/PEDOT:PSS with reference spectra (MnO2, Mn2O3 and MnO 

powder). 

 

4. Conclusion 

α-Mn2O3/PEDOT:PSS nanowires were prepared by synthesizing α-MnO2 

nanowire and coating PEDOT:PSS on the as-synthesized α-MnO2 nanowire 

followed by heat treatment at 550 °C. α-Mn2O3/PEDOT:PSS nanowires 

showed significantly enhanced electrochemical performance in aspect of cycle 

stability and rate capability after coating PEDOT:PSS. In addition, α-

Mn2O3/PEDOT:PSS nanowires exhibited much higher specific capacity than 

that of bare Mn2O3 nanowires and the capacity of Mn2O3/PEDOT:PSS nan-

owires reached about 1450 mAh·g-1 after 200 cycles at current density of 100 

mA·g-1. The abnormal capacity increase on cycling might be due to multiple 

reasons such as reversible gel-like polymer layer growth on the surface and 

further oxidation of manganese oxide on cycling. 
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6. Abstract (in Korean) 

컨버젼 반응을 통해 리튬 이온을 저장하는 전이금속 산화물은 

리튬 이온 배터리의 저장 물질로 널리 연구되고 있다. 하지만, 

전이 금속은 충/방전 사이클을 거치면서 용량이 감소하는 데, 

이러한 현상은 이 물질을 산업화 하는 데 걸림돌이 된다. 본 

논문에서는 이러한 용량 감소를 해결하기 위해서, Mn2O3 

나노와이어 물질에 전도성 고분자인 PEDOT:PSS (poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate)를 

코팅하였다. 코팅된 PEDOT:PSS 는 표면의 저항을 

감소시켰고, 충/방전 사이클을 거치면서 붕괴된 물질의 표면 

사이에서 전자 경로를 제공하여 배터리 성능을 높였다.  

α-Mn2O3/PEDOT:PSS 는 전류 밀도가 100 mA·g-1 일 때, 

200 사이클  이후에도 1450 mAh·g-1 의 가역 용량을 보일 

만큼 우수한 사이클 안정성을 보였다. 사이클에 다른 용량 

증가는 다양한 산화수의 망간 산화물들과 망간 산화물 

표면에서 생성된 겔과 같은 형태의 고분자의 가역적 반응에 

의한 것으로 여겨진다. 이러한 결과는 PEDOT:PSS 가 전자 
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경로를 제공하고 충/방전 과정에 의해 생긴 물질의 붕괴를 

막아주면서 전기화학적 활성을 증가 시킨 것을 설명해준다. 

주요 핵심어 : 망간 산화물, PEDOT:PSS, 용량 증가, 컨버젼 

반응, 리튬 저장 물질 

 

 

 

 

 

 

 

 
41 

 



 

 

Appendix 

 

Fabrication of Three-Dimentionally Ordered 

Nickel Cobalt Sulfide Electrodes for Pseudocapac-

itor 
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1. Abstract 

Three dimensionally ordered nickel cobalt sulfide electrode has been 

fabricated directly on stainless steel substrates as a current collector 

without binder or conducting agent. First, 350 nm silica nanoparticles 

dispersion is spin-coated on the stainless steel substrate to obtain three-

dimensionally ordered silica template. And then SiO2@nickel cobalt 

silicate core-shell structure was synthesized in aqueous solution of 

Ni(NO3)2·6H2O, Co(NO3)2·6H2O and urea. The nickel cobalt silicate 

shell was converted into nickel cobalt sulfide through a hydrothermal 

reaction in the presence of Na2S, where silica core are etched at the 

same time. The thickness of nickel cobalt silicate shell was changed by 

the concentration of nickel and cobalt precursor. Also, three-

dimensional structure nickel cobalt sulfide was synthesized by proper 

quantity of sodium sulfide. The obtained nickel cobalt sulfide was 

characterized by Scanning Electron Microscopy (SEM), X-ray diffrac-

tion (XRD) and Electron dispersive spectroscopy (EDS).  
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2. Introduction 

With the increase of the environment pollution, there are large development of 

field relating energy such as renewable energy, energy storage system (ESS), 

and so on. Besides, ESS is spotlighted because of development of electric ve-

hicles (EVs). In recent, many researchers have been interested in electrochem-

ical double layer capacitor (EDLC) or electrochemical supercapacitor (ES) 

due to high power density, long lifecycle, etc.  

 

Figure A1. Principles of (a) EDLC (b) pseudocapacitor 

There are two types of supercapacitor; (1) EDLC : Carbon based materials 

generally are used as electrode for EDLC. EDLC store energy in the electro-

lyte interfaces. Two electrolyte layer called “Helmholtz” double layer separate 

the charges between electrode materials and solvated opposite charged ions. 

The two opposite charged layer store the energy like conventional capacitor 
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and there is no charge transfer between electrode and adsorbed ion because 

they have only physical adsorption/desorption caused by electrostatic force 

not chemical bond. (2) Pseudocapacitor : unlike EDLC, pseudocapacitor 

stores electrical energy by reversible faradaic redox reaction. They have 

charge transfer between specific adsorbed ions and electrode materials. Tran-

sition metal oxides like RuO2, IrO2, and MnO2 are used as electrode for pseu-

docapacitor. Normally, pseudocapacitor has larger capacitance than EDLC 

because they undergo faradaic redox reaction [1-3]. However, pseudocapaci-

tor has poor structure and cycling stability comparing with EDLC because of 

the redox reaction of the electrode. Also, the poor conductivity of binder re-

duce performance, so many researchers challenge to fabricate binder-free su-

percapacitor electrode. For example, Huang et al. reported binder-free nickel 

based superpercapcitor electrode [4], and Lou et al. also made NiCo2O4 

nanoneedle as binder-free supercapacitor electrode [5]. Especially, the three 

dimensional structure electrode attracted many interests as binder-free elec-

trode [6]. Tang et al. and Liu et al. synthesized three-dimensionally ordered 

macroporous materials for supercapacitor [7-8]. In earliest pseudocapacitor 

research, RuO2 is most actively studied but they are expensive and toxic. So, 

other transition metal oxides such as MnO2, NixOy and CoxOy are rised as 

promising candidates for pseudocapacitor [1]. However the low intrinsic con-

ductivity of metal oxide is still limitation as electrode for pseudocapacitor. To 

solve the problems things, doped-metal oxide or metal sulfide has been car-

ried out recently due to their higher conductive characters [9-11]. Among 
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them, NiCo2S4 was attracted the researcher’s interest because they have higher 

conductivity than other transition metal oxides and rich redox reaction [12-13]. 

And three-dimensionally structured materials have high surface area and ef-

fective ion diffusion path, so they have high rate capability, and excellent 

long-term cycle stability [14]. 

Here, we synthesized three-dimensional ordered structure NiCo2S4 and it did 

not use binder and any conductive agent. They have a tendency to vary thick-

ness of shell by controlling amount of metal source. Furthermore, we found 

that the proper amount of sulfur source was needed for maintaining three-

dimensional structure and the product has good potential to be material for 

supercapacitor.     

 

3. Experimental section 

Materials and Instruments 

Ni(NO3)2·6H2O, Co(NO3)2·6H2O and Na2S purchased from Sigma-Aldrich. 

Tetraethyl orthosilicate (TEOS) purchased from TCI. And urea and NH4OH 

purchased from Samchun Chemical Co. The morphologies of SiO2, Ni-Co 

silicate and NiCo2S4 were confirmed by field emission scanning electron mi-

croscopy (FESEM, Hitachi S-4300). And the crystallographic phase of Ni-

Co2S4 was identified by X-ray diffractometer (XRD, BRUKER MILLER Co., 

D8-Advance). 
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Synthesis of 350 nm SiO2 nanoparticles 

First, 10 mL of TEOS and 15 mL deionized water were mixed with 460 mL of 

2-propanol. After 15 min stirring, 15 mL of NH4OH was added dropwise and 

stirred overnight. Then, the white precipitation was washed with mixed sol-

vent (H2O : EtOH = 1 : 9, v/v) three times. And the precipitation was concen-

trated 800 mg/mL in the mixed solvent. 

Spin coating on stainless steel (SUS) substrate 

The circle stainless steel substrate with 1 cm diameter was attached with 

square glass. Then, the concentrated SiO2 solution was dropped on the sub-

strate and spun it 4,000 rpm for 1 min in spin coater. The coated substrates 

were annealed at 300 °C for 2 h due to more dense packing and better struc-

ture maintenance.  

Synthesis of nickel cobalt silicate 

The SiO2 coated SUS substrate and 50 mg of urea were added in 5 mL of de-

ionized water in glass vial. And nickel and cobalt mixture (Ni2+ : Co2+ = 1 : 2, 

n/n) was dissolved with three times weight of SiO2 on substrate. Then, they 

were heated at 100 ºC for 12 h. After cooling, the substrate was washed with 

de-ionized water several times, and then nickel cobalt silicate on SUS sub-

strate was obtained for next reaction. 

Synthesis of nickel cobalt sulfide 
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The nickel cobalt silicate on SUS substrate was put in 5 mL of de-ionized wa-

ter in Teflon-lined container. And Na2S was dissolved 25 times more weight 

of nickel cobalt silicate on substrate. Then, they were reacted at 160 °C for 12 

h in autoclave. The SUS substrate coated with dark-gray colored NiCo2S4 was 

washed with de-ionized water several times. 
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4. Result and Discussion 

 

Scheme A1. Schematic illustrations of preparation of three-dimensionally or-

dered nickel cobalt sulfide. (a) Synthesis of nickel cobalt silicate shell on sili-

ca nanoparticles; (b) conversion to nickel cobalt sulfide with Na2S. 

In order to fabricate three-dimensionally ordered nickel cobalt sulfide directly 

on stainless steel substrate(SUS) as a current collector, first silica nanoparti-

cles having diameters of 350 nm with a good size distribution were spin-

coated on the SUS. And well-ordered template make more channel between 

particles and produce the stable electrodes. Therefore, the hexagonal packing 

was needed for ordered structure. The packing type was affected by viscosity 

and vapor pressure of solvent [15]. So, silica nanoparticles were dispersed in 

three types of solvent; (1) Type 1 (Only ethanol) (2) Type 2 (Butanol : eth-

ylene glycol = 7 : 3, v/v), and (3) Type 3 (Ethanol : H2O = 9 : 1, v/v). They 

showed different ordering trends by solvent type after spin coating. 
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Figure A2. FE-SEM image of packing of SiO2 nanoparticles in Type 1 (only 

ethanol) solvent. Inset is picture after spin coating. 

SiO2 nanoparticles formed cubic packing when they are in Type 1 solvent. 

Because ethanol solvent has low vapor pressure and ethanol was vaporized so 

fast, SiO2 nanoparticles have no time to array hexagonal form. If SiO2 nano-

particles have enough time to array, they would array hexagonal structure be-

cause the form is the most stable . But ethanol solvent had good affinity to 

SUS substrate, so SiO2 nanoparticles were spin coated very well on SUS sub-

strate.(Inset of Fig. A2a) 

 

Figure A3. FE-SEM image of packing of SiO2 nanoparticles in Type 2 (buta-

nol : ethylene glycol = 7 : 3, v/v) solvent. Inset is picture after spin coating. 
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In Type 2 solvent, SiO2 nanoparticles had hexagonal structure. Because buta-

nol and ethylene glycol have low vapor pressure so they give enough time to 

array to SiO2 nanoparticles. However, they also have high viscosity and poor 

adhesion with SUS substrate. As a result, SiO2 nanoparticles were not spin 

coated well on SS substrate when they are in Type 2 solvent.(Inset of Fig. A3a)  

 

 

Figure A4. FE-SEM image of packing of SiO2 nanoparticles in Type 3 (etha-

nol : H2O = 9 : 1, v/v) solvent. Inset is picture after spin coating. 

Considered packing and spin coating on substrate, proper vapor pressure, vis-

cosity and adhesion with substrate are needed to make effective hexagonal 

ordered structure. When SiO2 nanoparticles were dispersed in Type 3 solvent, 

they were spin coated very well and had perfect hexagonal packing. (Fig.A4a)  
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 Type I 
(Only EtOH) 

Type II 
(BuOH : EG = 7:3) 

Type III 
(EtOH : H2O = 9:1) 

packing Cubic Hexagonal Hexagonal 

Uniformity O X O 

 

Table A1. Packing and uniformity by solvent types. 

 

 

Figure A5. The morphologies of nickel cobalt silicate varying with nickel 

cobalt cation source. (a) FE-SEM top view (b) cross section view of nickel 

cobalt silicate when the ratio is 3 : 5 (SiO2 : Ni/Co). (c) FE-SEM top view (d) 

cross section view of nickel cobalt silicate when the ratio is 3 : 9 (SiO2 : 

Ni/Co). Scale bar of inset picture is 500 nm. 

52 

 



SiO2 nano spheres were dissolved by urea to silicate anion, which produce 

nickel cobalt silicate through metal-ligand formation. SiO2 nano spheres were 

activated by alkaline solution generated by the hydrolysis of urea [16-17]. 

Thickness nickel cobalt silicate shell was varied by the amount of nickel co-

balt cation source. In Figure A5, the more the quantity of nickel and cobalt 

cation source, the thicker the nickel cobalt silicate shell.  

 

 

Figure A6. The trend of NCS varying with the amount of Na2S. FE-SEM top 

view after reaction when the quantity of Na2S is (a), (b) same (c), (d) 25 times 

(e), (f) 50 times. 

In order to convert nickel cobalt silicate to nickel cobalt sulfide, SiO2@nickel 

cobalt silicate was react with varying amount of Na2S which serves as sulfu-

rizing agent and silica template etching agent by generating basic environment 

[15]. When the amount of Na2S is the same with nickel cobalt silicate, the sul-
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fur substitution didn’t happen because sulfur anion was running short to react 

sufficiently. Adding Na2S with 25 times amount of nickel cobalt silicate, nick-

el cobalt sulfide were synthesized without structure decay. However, the struc-

ture was collapsed when the amount of Na2S is 50 times. In water, Na2S is 

decomposed to SH- and OH-; Na2S + H2O ↔ 2Na+ + SH- + OH- [15]. There-

fore, excessive quantity of Na2S made solvent too much basic and they etched 

SiO2 core so fast before forming NiCo2S4 shell. (Fig. A6) The crystallinity of 

synthesized product was not good and they have CoSO4·6H2O because sulfur 

substitution was undergone in water. And the peak intensity of stainless steel 

is too high, so other peaks showed low intense, relatively. Although their crys-

tallinity was not good, NiCo2S4 was well-synthesized. (Fig. A7) 
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Figure A7. XRD patterns of synthesized NCS. 
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5. Conclusions 

Three-dimensionally ordered nickel cobalt sulfide was successfully fabricated 

on stainless steel substrate for electrode of pseudocapacitor. Silica nano-

spheres (nanoparticles?) were used as template for three-dimensionally or-

dered structures. The SiO2 nanoparticles dispersions were spin-coated on 

stainless steel substrate and their packing morphology of nanoparticles was 

affected by the types of solvent that silica nano-spheres were arrayed hexago-

nal form in solvent consisting of water and ethanol. SiO2@nickel cobalt sili-

cate was obtained by reacting SiO2 template with Ni(NO3)2·6H2O and 

Co(NO3)2·6H2O. The thickness of nickel cobalt silicate increased with 

increasing the amount of metal ion sources. Nickel cobalt silicate were 

converted into nickel cobalt sulfide (NiCo2S4) in presence of Na2S, and 

silica core was removed at the same time. Three-dimensional structure 

of NiCo2S4 was maintained by adjusting the amount of Na2S. It is ex-

pected that this NiCo2S4 has high supercapacitive performance for pseu-

docapacitor.  
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