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Abstract

Modern development of design techniques and material science in architectural en-

gineering contributes to increase in demand for buildings with longer span and light

weight structure. In spite of its advantageous aspects, such advances in technologies

often leads to problems with undesired discomfort caused by excessive vibration. In

order to help dampen the unwanted excessive vibration, a variety of relevant tech-

niques have been investigated, among which tuned mass damper (TMD) is one of the

most widely used techniques so as to control the problematic vibration.

This study first investigates the optimal solution of linear multiple tuned mass

dampers (linear MTMDs, LMTMDs) of various configurations. The configurations

considered in this study include the cases where the frequency ratios are linearly

distributed, the damping coefficients are uniformly distributed, the mass distributions

are linearly distributed, or these constraints are combined in some ways. Two different

optimization techniques are employed: Nominal Performance Optimization (NPO)

and Robust Performance Optimization (RPO). The NPO searches a solution that

minimizes the objective function deterministically, while the RPOminimizes the mean

value of the objective function, assuming that the associated structural parameters

are probabilistic rather than deterministic. Further, this study provides contour maps

for the root-mean-square (RMS) displacement of main structure and the largest RMS

displacement of LMTMDs, which can be useful in the design process.

Next, this study seeks the optimal solution of frictional multiple tuned mass

dampers (FMTMDs) in which the Coulomb-type frictional force is incorporated in

either purposefully or unintentionally. In this study, four of the feasible FMTMD con-

figurations are formulated and comparably analyzed. The investigated configurations
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involve: 1) no constraint on either the frequency ratios or the coefficient of friction

(COF) is imposed; 2) the frequency ratios are linearly distributed and equally spaced;

3) the COFs are identically distributed; 4) the frequency ratios are equally spaced and

the COFs are identical. In order to cope with the difficulties inherent in nonlinearity

of the problem, this study adopts a statistical linearization technique, which enables

the complicated nonlinear force terms to be linearized in a statistical sense. Some

miscellaneous considerations such as stroke limitations and design procedure are also

aptly included.

This study mainly addresses RMS responses and extreme value distributions for

the frictional multiple tuned mass dampers (FMTMDs). In designing of optimal

FMTMD, the original nonlinear system arising from the frictional elements is re-

placed with an equivalent linear system by means of statistical linearization. In order

to improve the accuracy for the estimation of peak distribution of MTMDs, this study

exploits a statistical nonlinearization technique which replaces the nonlinear system at

hand with a class of other nonlinear systems whose exact solution has been already

explicitly derived. A correction factor that defines the ratio of RMS displacement

between nonlinear and linear system is derived based on the results of statistical non-

linearization technique. This study also provides an explicit formula for evaluating a

peak factor for frictional TMDs. The correction factor and the peak factor proposed

are validated with Monte Carlo Simulation.

Several application examples of MTMDs are included in this thesis. of multiple

tuned mass dampers (MTMDs). In the first section, a mechanism-based frictional

pendulum tuned mass damper (FPTMD) is proposed, which contributes to overcome

some shortcomings of conventional translational TMDs with viscous damping. In the

second section, a numerical study is carried out to provide a design procedure of MT-

MDs, which covered modal analysis based on finite element method, optimal design of

tuned mass dampers, and evaluating their control performance and robustness under
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the frequency-perturbed states. The final section presents a project in an attempt to

mitigate an excessive vibration of a problematic structure. The overall process of the

project includes the vibration performance evaluation, modal analysis based on finite

element method and optimal design and manufacturing of tuned mass dampers.

Keywords: Tuned mass damper, Multiple tuned mass damper, Friction mechanism,

Vibration control, Statistical linearization, Statistical nonlinearization

Student Number: 2011-30173
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Chapter 1

Introduction

1.1 Background

In recent years, there have been many important developments in constuction fields,

including numerical techniques, material science, and associated design techniques.

These developments enables building industries to satisfy the recent trend towards

great heights, longer span, and lightweight floor system. In spite of its positive aspects,

such a tendency to reduce the weight and cost of structures sometimes brought a

problematic vibration which yields undesired discomfort for building occupants. In

order for bulidings to satisfy the necessary vibration performance, various design

techniques and control schemes have been discussed up to now.

Tuned mass damper (TMD) is a passive control device which help dampen the

dynamic response of the structure efficiently. The basic concept of employing a TMD

is to attract vibration energy of the main structure by resonance into itself, and to

dissipate the transferred energy through built-in energy dissipation devices. Owing

to their simple mechansim and novel functionality, enormous applications for TMDs
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Figure 1.1: The number of footbridges with TMDs installed by GERB Engineering

and Maurer Söhne, taken from Van Nimmen et al. (2016).

has been made over the past few decades. For instance, one of the statistics reported

by Van Nimmen et al. (2016) indicates that the total use of TMDs in footbridges was

consistently increasing from 30 years ago to the present (see Figure 1.1). Considering

the increases of current demands for lightweight and highrise bulidings, the demand

for TMDs is expected to increase continuously in the future.

One of the simplest and most widely concerned configurations is the single linear

TMD which consists of unit moving mass, a viscous dashpot and a spring. Many

researchers have been investigated the optimal values of relevant parameters such as

optimal frequency ratio and optimal damping ratio of the single linear TMDs. For in-

stances, Den Hartog (1956) and Warburton (1982) proposed the optimal parameters,

which are still widely used in the academic area as well as in the application fields.

Various applications have been consistently reported, confirming that the single linear

TMDs are quite efficient in mitigating excessive vibrations.

Although their efficiency, however, the single linear TMDs have also some draw-

backs. One of crucial drawbacks may be so-called detuning effect. When a main

structure is subjected to floor mass variations from sources other than human pres-

ence, the natural frequency of the structure would be deviated from the predicted
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level, resulting in the performance degradation of the TMD. Not only a fluctuation

in the natural frequency of the structure, but also the liquid leakage of the viscous

dampers may also be a drawback causing performance degradation of TMDs. With

repetitive operations during a long lifetime, the dashpot employed in TMDs can be

degraded due to aging and they also have a risk of leakage.

Multiple tuned mass damper (MTMD) is a system consists of multiple units of

TMDs, often referred to as the case where each of TMDs has different dynamic char-

acteristics. In the early stage of research, MTMD configurations with simplified and

limited conditions were discussed so as to reduce the number of associated design

variables. For instance, the MTMD of large numbers of units with equally spaced

natural frequencies and each of which having equal damping constant was studied by

Xu and Igusa (1992) based on an asymptotic analysis, and it was shown that such a

MTMD is effective in reducing the response of the main structure. For a finite num-

ber of MTMDs with similar constraints, Joshi and Jangid (1997) and Jangid (1999)

found the optimal parameters of the MTMD for undamped and damped primary

structure, respectively. MTMDs with equal damping ratios and equally spaced natu-

ral frequencies were also investigated by various researchers including Yamaguchi and

Harnpornchai (1993), Abé and Fujino (1994), and Kareem and Kline (1995).

Until recently, various studies have been conducted for the MTMDs with relaxed

constraints, for example, Igusa and Xu (1994), Li (2002), Hoang, Fujino, and War-

nitchai (2008), Zuo and Nayfeh (2005), Li and Ni (2007), and Yang, Sedaghati, and

Esmailzadeh (2015a). The main differences in these studies involve 1) considered exci-

tation, such as harmonic forcing function and the ground acceleration, 2) the objective

function, such as the RMS response of the primary structure or the maximum of the

frequency response and 3) employed optimization strategies.

Existing studies, however, only conducted a comparison with other configurations

in a limited way. Li and Ni (2007), for instance, only compared the performance
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between their non-uniformly distributed MTMD and the one with equal frequency

spacing and damping ratio on the basis of frequency response function. Li (2002), one

of the comparative studies on various configurations, provided the optimal parameters

only for the case where the natural frequencies are equally spaced. Hoang, Fujino, and

Warnitchai (2008) also conducted a similar study. Li and Liu (2002) also conducted.

Meanwhile, incorporating dry fiction mechanism can be another viable solution

to eliminate the detrimental effects of employing viscoud dashpots. Some researchers

tried to incorporate the Coulomb-type force into the TMD as an energy dissipative

mechanism. Inaudi and Kelly (1995) proposed a nonlinear TMD that uses friction

dampers acting transversely to the direction of the motion of the mass damper as

a means for energy dissipation. Based on the statistical linearization procedure that

can effectively simplify for computing the RMS response of the system, they showed

that, when appropriately designed, the nonlinear system achieves the same level of

performance that an ideally linear TMD would provide.

1.2 Scope and Objectives

The main objective of this thesis is principally to provide a framework for the design

of MTMDs. Firstly, this thesis revisited the design of linear MTMDs (LMTMDs), of

which optimal conditions are well-established by various researchers. For six of prac-

tial configurations of LMTMDs, the characteristics of optimal solutions and control

performances are discussed in detailed. Specifically for one of the considered con-

figurations that composed of identical stiffnesses and viscous damper, and linearly

distributed frequency ratios, a set of approximate design formula are provided.

Based on the conclusions for the optimal solutions of LMTMDs, the sequel chapter

proposed the concept of frictional MTMDs (FMTMDs), in which the viscous dashpots

are replaced with nonlinear elements with the Coulomb-type frictional force. Such a
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nonlinearity, however, provokes difficulties in solving the governing equations com-

pared to their linear counterparts. In order to circumvent the difficulties, this study

exploited a statistical linearization technique, which replaces the original nonlinear

forces with statistically equivalent linear ones.

The statistical properties of the response of FMTMDs and associated peak factor

are then discussed. The discrepancy of RMS response of FMTMDs between the origi-

nal nonlinear system and the statistically equivalent system is significant. In order to

correct the discrepancy, this study exploited the statistical nonlinearization, which re-

places the original nonlinear forces with statistically equivalent nonlinear ones where

the probability of their response is mathematically well-established. Followed by de-

riving a correction factor that corrects the RMS displacement of FMTMDs, the peak

factor that allows to predict the peak displacement is also provided.

The applicability of the proposed MTMDs are examined with both numerical

and experimental ways. Based on the design procedure proposed by the previous

chapters, this study provides detailed steps, which includes field measurements, finite

element analyses and field applications. This study also covers vibration performance

evaluation and corresponding modeling procedure of the structure, as well as design

of MTMDs in order to attenuate the problematic level of footfall-induced vibration.

1.3 Outline of Dissertation

This thesis is categorized into three parts. The first part of this thesis is intended to

provide a literature review of recent results in both theoretical development and appli-

cation of TMDs. The literalture review covers a wide range of relevant research areas

including existing optimization criteria and techniques, design schemes, the char-

acteristics of multiple tuned mass dampers (MTMDs), nonlinear TMDs and various

applications. Some miscellanies associated with designing of TMDs are also discussed,
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which include the issue on the stroke limitations and reliability based optimization

schemes.

The second and main part of this thesis provides a framework for the design of

LMTMDs and FMTMDs. Chapter 3 presents optimal design and analysis of linear

multiple tuned mass dampers with various configurations. Two different optimiza-

tion techniques are employed: Nominal performance optimization (NPO) and Robust

performance optimization (RPO). The NPO minimizes the objective function that is

deterministic, whereas the RPO minimizes the mean value of the objective function,

assuming that the associated structural parameters are probabilistic. Six of feasible

configurations are formulated and comparably analyzed, each of which is constrained

in a way of linearly distributed frequency ratios, uniformly distributed damping coeffi-

cients, linearly distributed mass ratios, and/or combinations thereof. An approximate

design formula is developed for LMTMDγζ configuration, which is as efficient as the

best optimal configuration. Further, this study provides contour maps that enables

designer to consider the maximum stroke of LMTMDs, which may be of importance

in its housing design.

Chapter 4 investigates optimal design and analysis of frictional multiple tuned

mass dampers, in which the Coulomb-type frictional force is incorporated in ei-

ther purposefully or unintentionally. Four of the feasible FMTMD configurations

are formulated and comparably analyzed, each of which is constrained in a way

of linearly distributed frequency ratios, uniformly distributed coefficients of friction

(COFs), and/or combinations thereof. An approximate design formula is developed

for FMTMDγτ configuration utilized under the constraint of frequency ratios and

COFs. In order to cope with the difficulties inherent in nonlinearity of the system,

this study adopted a statistical linearization technique, which enables the complicated

nonlinear force terms to be linearized in a statistical sense.

Chapter 5 addresses RMS responses and extreme value distributions for the fric-
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tional multiple tuned mass dampers (FMTMDs). In designing of optimal FMTMD,

the nonlinear system arising from the frictional elements were replaced into an equiv-

alent linear system by means of statistical linearization. However, a discrepancy of

RMS response between those two systems arises in nature. In order to improve an

accuracy for the estimation of peak distribution of MTMDs, this study exploits a sta-

tistical nonlinearization technique, which replaces nonlinear systems with a class of

other nonlinear systems of which exact solution has been explicitly derived. A correc-

tion factor that defines the ratio of RMS displacement between nonlinear and linear

system was derived, based on the result of statistical nonlinearization technique. This

study further derived an explicit formula for evaluating a peak factor for the fric-

tional TMD. Those correction factor and formula for the peak factor are examined

with Monte Carlo Simulation.

The third and final part of this thesis deals with the applicability of the MTMDs.

Section 1 shows development of frictional pendulum tuned mass damper. Section

2 develops TMD to suppress human-induced vibration on an indoor footbridge. The

hallway at the 5th floor of Building 39 of Seoul National University was selected as the

example floor. This study covers vibration performance evaluation and corresponding

modeling procedure of the structure, as well as design of MTMDs in order to attenuate

the problematic level of footfall-induced vibration.
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Chapter 2

Literature Review

This chapter is concerned with a literature review of recent results in the theoretical

development and applications of tuned mass dampers (TMDs). In Section 2.1, ex-

isting optimization criteria and techniques are reviewed, which are widely accepted

optimization schemes in the design of TMDs. Section 2.2 discusses design schemes and

the characteristics of multiple tuned mass dampers (MTMDs). Section 2.3 deals with

nonlinear TMDs, particularly the theoretical investigation and applications. Section

2.4 provides various applications of TMDs including mitigation of wind excitation,

reduction of seismic risks, and floor vibration attenuation. Robustness issue is dis-

cussed in details. Some miscellanies associated with TMDs are discussed in Section

2.5, which include the issue on the stroke limitations and reliability based optimiza-

tion schemes. Diverse optimization criteria and techniques have been proposed until

now, and three typical optimization techniques are of importance in the historical

manner.
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2.1 Optimization Criteria and Techniques

In this section, some of representative optimization criteria and relevant techniques

are briefly reviewed: H2, H∞ optimization, and stability maximization. H∞ opti-

mization aims to minimize the maximum of the frequency responses under harmonic

excitations. H2 optimization seeks to minimize the H2 norm defined as a quantity

evaluated by integrating the frequency response over the whole frequency domain,

thus it also has physical interpretation as the root mean square (RMS) value of the

output in response to white noise excitation. Stability maximization tries to identify

the optimal conditions such that all poles of the transfer function of the system are

far from the imaginary axis in the left-half system, by which the transient vibration

of the system can be attenuated as soon as possible.

2.1.1 H∞ optimization

H∞ optimization is the first strategy appeared in the history of the designing of TMD,

which seeks to find the relevant parameters within all admissible frequency range such

that the maximum of the amplitude of the frequency responses (called H∞ norm) is

minimized. One classical solution that is yet widely used in the field was proposed

by Den Hartog (1956) for viscously damped TMDs under harmonic loading, which is

now called the fixed-point theory.

The fixed-point theory seeks to find the optimal parameters by controlling the

intersection point of the frequency response curves of the main structure, A and B,

which are independent of the damping value of TMDs (see Figure 2.1). If these points

can be appropriately located, and since the purpose of adding a TMD is to reduce the

resonant peak of the main system to its lowest possible, the most favorable response

curve is the one which passes through the higher of the two fixed points with a

horizontal tangent.
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Figure 2.1: Two fixed intersection points (A and B) of all response curved in the

fixed-point theory proposed by Den Hartog (µ = 5% and γt = 0.95)

Den Hartog’s optimal solution for the optimal frequency ratio γ∗t and optimal

damping ratio ζ∗t are given as a function of the ratio µ of the mass of the TMD and

the relevant modal mass of the main structure as follows:

γ∗t =
1

1 + µ
(2.1a)

ζ∗t =

√
3µ

8(1 + µ)
(2.1b)

Warburton (1982) extended this approach to obtain optimum parameters of TMDs

under various combinations of a force applied to the main mass or an acceleration

imposed on the frame for excitation parameter with an optimized response quan-

tity including structural displacement, velocity and acceleration. Optimal TMDs for

damped SDOF system were also investigated by various researchers (Halsted III and
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Taylor, 1981; Nishihara and Asami, 2002; Soom and Lee, 1983; Thompson, 1981; Tsai

and Lin, 1993). The main differences in these studies involve 1) considered excitation,

such as harmonic forcing function versus the white-noise random excitations, and 2)

employed numerical searching procedure to identify the optimal conditions.

2.1.2 H2 optimization

H2 optimization considers the H2 norm that is defined in the frequency domain as

integrating the magnitude of the transfer function over frequency. The H2 norm can

also be given another interpretation as a measure of the expected RMS value of the

output in response to white noise excitation (Skogestad and Postlethwaite, 2007).

Because of its nice mathematical and numerical properties, the H2 optimization is

accepted as the optimization criteria in the design of TMDs.

One of the first researches that applied the H2 optimization in TMD was con-

ducted by Crandall and Mark (1963). They studied a two-degree-of-freedom system

under white noise excitation, and showed that the mean square acceleration of the

primary structure can be decreased as the uncoupled natural frequency of TMD is

appropriately tuned to that of the main body. With a parametric study, McNamara

(1977) found TMD design parameters for reducing wind-induced structural response

of buildings, and presented the efficiency of TMD from wind tunnel test results. Luft

(1979) provide a simple closed form expressions for the maximum damping of the

equivalent single-degree-of-freedom system. Warburton (1982) derived the optimal

tuning parameters which minimize a various value of the output response such as

displacement, velocity and acceleration of a main structure subjected to harmonic

and white noise random excitations. For a dampened system, an exact closed-form

solution was proposed by Asami et al. (2002).

For white noise excitation of spectral density S0 the variance of a response quantity

xs, σ
2
s , is given by
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σ2s =

∫ ∞

−∞
S0|H(ω)| dω (2.2)

as the variance equals the mean square value for a random quantity with zero mean,

where H(ω) is the complex transfer function of the main structure. The optimizing

conditions can be determined by following first order necessary condition for optimal:

∂(σ2s)

∂γt
= 0 (2.3a)

∂(σ2s)

∂ζt
= 0 (2.3b)

Applying these conditions, simple expressions for γ∗t and ζ∗t .

Warburton’s optimal solution for the optimal frequency ratio γ∗t and optimal

damping ratio ζ∗t are given as a function of the ratio µ of the mass of the TMD and

the relevant modal mass of the main structure as follows:

γ∗t =
(1 + µ/2)1/2

1 + µ
(2.4a)

ζ∗t =

√
µ(1 + 3µ/4)

4(1 + µ)(1 + µ/2)
(2.4b)

2.1.3 Stability maximization

Stability maximization tries to find the optimal conditions such that all poles of the

transfer function of the system are far from the imaginary axis in the left-half system,

by which the transient vibration of the system can be attenuate as soon as possible.

Villaverde (1985) found the favorable conditions of TMD parameters with the

help of complex modal analysis, from which the author found damping ratio and

natural frequency of TMD that can balance the complex natural frequencies and
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damping ratios of two modes of the resulting structure-attachment system. Sadek

et al. (1997) showed that the TMDs according to the authors’ optimal parameters

can effectively reduce the displacement and acceleration response of the structure

subjected to seismic excitations. Recently, Krenk (2005) proposed the scheme that

the motion of the structural mass and the relative motion of the damper mass at the

frequency corresponding to free vibrations of the combined mass with the damper

locked. The proposed criterion led to an applied optimal damping ratio that is 15%

larger than the classical solution by Den Hartog (1956).

Yamaguchi’s optimal solution for the optimal frequency ratio γ∗t and optimal

damping ratio ζ∗t are given as a function of the ratio µ of the mass of the TMD and

the relevant modal mass of the main structure as follows:

γ∗t =
1

1 + µ
(2.5a)

ζ∗t =

√
µ

(1 + µ)
(2.5b)

Figure 2.2 shows various design curves and frequency response functions of the

main structure with TMDs. Note that the solutions by Den Hartog (1956), Warburton

(1982) and Sadek et al. (1997) are obtained according to the H2, H∞, and stability

maximization, respectively.

2.2 Multiple Tuned Mass Dampers

Multiple tuned mass damper (MTMD) is a system consisting of multiple units of

TMDs, often referred to as the case where each of TMDs has different dynamic

characteristics. MTMDs exhibits several advantages over a single TMD. Design of

multiple units is usually much complex than that of a single unit of TMD. In partic-

ular, the number of design parameters which must be specified in the MTMD design
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(a) Design curves

(b) Frequency responses with various optimal solutions (µ = 5%)

Figure 2.2: Design curves and frequency response functions with those optimal designs
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is typically much higher than that for single TMD. In order to reduce the relevant

design parameters, some researchers have imposed several design restraints as will be

discussed in the following section.

In the early stage of research, MTMD configurations with simplified and limited

conditions were discussed so as to reduce the number of associated design variables.

For instance, the MTMD of large numbers of units with equally spaced natural fre-

quencies and each of which having equal damping constant was studied by Xu and

Igusa (1992) based on an asymptotic analysis, and it was shown that such a MTMD

is effective in reducing the response of the main structure. For a finite number of MT-

MDs with similar constraints, Joshi and Jangid (1997) and Jangid (1999) found the

optimal parameters of the MTMD for undamped and damped primary structure, re-

spectively. MTMDs with equal damping ratios and equally spaced natural frequencies

were also investigated by various researchers including Yamaguchi and Harnpornchai

(1993), Abé and Fujino (1994), Kareem and Kline (1995).

Jangid (1999) proposed explicit expressions as follows:

ζ∗T =
3µT

8(1 + µT )(1− µT /2)
+
√
µTh1(µT )h2(N) (2.6a)

β∗γ =
√
µTh1(µT )

h3(N)√
N

(2.6b)

γ∗T =

√
1− µT /2

1 + µT
+
h1(µT )√

µT

h3(N)√
N

(2.6c)
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Table 2.1: Regression coefficients for Eq. (2.7) (Jangid, 1999)

Coefficient
Corresponding value

ζ∗T β∗γ γ∗

a1 0.5474 0.42113 -0.00241

a2 0.1038 0.04479 0.72152

a3 -0.4522 -0.38909 -0.43970

a4 0.7604 -0.73518 -0.66385

a5 0.3916 0.11866 -0.01138

a6 0.0403 4.86139 0.99522

where

h1(µT ) = a1 + a2
√
µT + a3µT (2.7a)

h2(N) = a4

(
1√
N

− 1

)
+ a5

(
1

N
− 1

)
+ a6(

√
N − 1) (2.7b)

h3(N) = a4

(
1√
N

− 1

)
+ a5(N − 1) + a6(

√
N − 1) (2.7c)

The values of coefficients in Eq. (2.7) are given in Table 2.1.

Jangid and Datta (1997) investigated the dynamic response behavior of a simple

torsionally coupled system controlled by MTMDs with equally spaced natural fre-

quencies and identical damping ratios. They found that, if MTMDs are designed for

asymmetric buildings by ignoring their torsional coupling, then the effectiveness of

MTMDs becomes worse than expected. However, for torsionally very stiff asymmetric

buildings such that the torsional frequency is twice larger than the translational fre-

quency, the design of MTMDs by ignoring the torsional mode is effective. It was also
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shown that MTMDs are more effective than single TMD even for torsionally coupled

system, but the advantage becomes decreasing with increase in the eccentricity ratio.

Until recently, various studies have been connected for the MTMDs with relaxed

constraints, such as Igusa and Xu (1994), Li (2002), Hoang, Fujino, and Warnitchai

(2008), Li and Ni (2007), Fu and Johnson (2010), and Yang, Sedaghati, and Es-

mailzadeh (2015a). The main differences in these papers involve 1) considered excita-

tion, such as harmonic forcing function and the ground acceleration, 2) the objective

function, such as the RMS response of the primary structure or the maximum of the

frequency response and 3) employed optimization strategies.

Existing research, however, has performed a comparison with other configurations

in a limited way. Li and Ni (2007), for instance, only compared the performance

between their non-uniformly distributed MTMD and the one with equal frequency

spacing and damping ratio on the basis of frequency response function. Li (2002), one

of the comparative studies on various configurations, provided the optimal parameters

only for the case where the natural frequencies are equally spaced. Hoang, Fujino, and

Warnitchai (2008) also conducted a similar study. Li and Liu (2002) also conducted.

Clark (1988) discussed the performance distinction between SDOF and MDOF

TMD systems. Considering a hypothetical eight story building with single TMD and

four TMDs that are respectively implemented at the 3rd, 5th, 6th, and 8th floor

though such two systems were designed according to the same mass ratio (total weight

of TMDs were designed to be 5% of the first modal mass) and followed by Den

Hartog’s design equation, he showed that MTMD can provide motion reductions

between 40% to 60 % whereas the reduction level was only 11% by STMD.

Zuo and Nayfeh (2004) configured minimax optimization in order to find the

optimal parameters of MDOF TMDs including series connected TMD. In formulating

their optimization scheme, they chose the maximum of the modal damping ratios as

the objective function, and applied decentralized optimization techniques.
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Lin et al. (2005) applied the MTMD in order to control the train-induced vibration

of high-speed railway bridge. In comprising the MTMD, they used a configuration in

which each of TMDs has the same mass ratio and damping ratio. And they found

the optimal parameters by which minimizes the H∞ norm. They concluded that

the proposed MTMD is more effective and reliable than a single TMD in reducing

dynamic responses during resonant speeds.

Zuo (2009) proposed MTMD in which the multiple absorber masses are connected

to the primary structure in series comprising chain-like system. Based on the numer-

ical H2 optimization, it was shown that such a series MTMD outperforms compared

to single TMD and parallel MTMD in terms of its performance and robustness. Par-

ticularly in the case of two DOF series MTMD, it was found to be optimal when the

damping of the absorber which is directly attached to the primary structure is zero.

Li et al. (2010) investigates the use of MTMD so as to minimize the crowd-induced

random vibration of footbridge. An optimization procedure based on the minimization

of maximum RMS acceleration, or H2 optimization, of footbridge was conducted.

Numerical analysis shows that the proposed MTMD can reduce the vibration response

significantly.

Many researchers have proposed MTMDs with closely distributed natural fre-

quencies including Xu and Igusa (1992), Yamaguchi and Harnpornchai (1993), Abé

and Igusa (1995), Jangid and Datta (1997). Xu and Igusa (1992) considered a spe-

cific class of MTMDs each of which natural frequencies of the natural frequencies

are equally spaced. With an asymptotic approach, they found that the equivalent

damping induced by the MTMD is proportional to the masses of MTMD, inversely

proportional to the spanning of natural frequencies, and independent of damping.

One of the remarkable comments is concerned with the damping: they showed that

the MTMDs can be facilitated significantly under low damping values.

For the configuration of MTMDs with equal damping ratios and equally-spaced
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natural frequencies, Yamaguchi and Harnpornchai (1993) found the optimal param-

eters numerically, and concluded that the optimum MTMD can be more effective

solution than the optimum single TMD. Discussing on the robustness issue, they

found a notable conclusion that the most effective MTMD is not very robust but

that is possible to design a MTMD which has almost the same effectiveness as the

optimum single TMD but is much more robust.

In determining the optimal damping ratio, they discussed the effect on the damp-

ing ratio of TMDs, particularly the existence of the optimal parameters in terms of

minimizing the maximum of the frequency function, or H2 norm. For given mass

ratio, frequency bandwidth, and the number of TMDs, they showed that there is an

optimum below which the performance decreases due to the excessive motion of the

TMDs, and above which the performance in turn also decreases due to the sticky

motion of the TMDs.

For a structure-MTMD system which consists of identical mass and damping,

and uniformly distributed natural frequencies, Abé and Fujino (1994) analytically

derived modal properties, and found a favorable condition of the MTMD using a

perturbation technique which allows robust performance by providing the tuning

frequency bandwidth of TMD exceeds a certain value. They also noted that the

damping of the MTMD is to be smaller than that of the STMD for the efficiency

as noted by Xu and Igusa (1992), though they additionally commented that such a

condition may be a drawback in certain cases of application of the TMD that enables

TMD exhibits large stroke in controlling.

Joshi and Jangid (1997) found the optimum parameters of MTMD with equally-

distributed natural frequencies and identical damping coefficient based on H2 opti-

mization under base-excited damped system. Jangid (1999) also found the optimal

parameters of MTMD for undamped primary structure.

Li (2002) conducted a study to find the optimal parameter of MTMDs for differ-
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ent combinations of the mass, damping coefficient and stiffness, all of which natural

frequencies are uniformly distributed. Based on the selective criteria such as the dis-

placement dynamic magnification factor and the acceleration dynamic magnification

factor, Li found the optimal parameters of MTMDs and demonstrated their efficacy

and robustness.

In implementing a two-objective optimization strategy that consists of effective-

ness and robustness performance criteria, Dehghan-Niri et al. (2010) considered two

different MTMD configurations: uniform MTMDs that composed of uniformly dis-

tributed natural frequencies and equal damping ratios for all TMDs; and irregular

MTMDs that only independent design parameters are to be determined. They con-

cluded that beside the performance advantage of irregular MTMD design, the prac-

tical drawback of increased complexity in manufacturing and implementation should

be considered.

It should be also precisely noted that the standard solution for this problem is to

use higher damping values than the optimal value, which makes TMDs less sensitive

to off-tuning (Fujino and Abe, 1993).This approach sacrifices some of the performance

of the TMDs to promote their robustness.

Zuo and Nayfeh (2005) proposed an optimization technique to find the individ-

ual stiffness and damping parameters of MTMD. The proposed technique treats the

MTMD system as a decentralized H2 controller, of which the control gain matrix is

composed of the spring stiffnesses and damping coefficients. The authors found that

the optimal conditions obtained by their optimization technique provide a better

performance compared to the case of uniform frequency spacing and damping.

Hoang and Warnitchai (2005) and Li and Ni (2007) investigated the optimal pa-

rameters of MTMDs of unconstrained design variables by using gradient-based meth-

ods. The key differences of those researchers are in the objective functions: Hoang and

Warnitchai (2005) investigated the optimal solution that minimize RMS responses of
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the structure; Li and Ni (2007) minimized the maximum of structural displacement.

Both researches found that the most efficient configuration of MTMDs is achieved

when the natural frequencies and damping ratios are non-uniformly-distributed, and

the configuration with uniform frequency and equal damping ratios can also be a

viable solution for practical design purposes. Moreover, by employing robustness per-

formance optimization that may be categorized into ”average method”, Hoang and

Warnitchai (2005) provided more robust solution that have higher damping ratios

and narrower frequency range compared to the nominal solution.

Fu and Johnson (2010) developed a new type of synergistic system between struc-

tural and environmental controls through integrating shading fins and mass dampers.

An example of the synergistic system proposed by the authors is depicted in Figure

2.3. In the proposed system, the rotatable shading fins act as TMDs that resonant

and dissipate energy during structural motions. By using a pattern search method,

the proposed system is optimized. It was shown that a near-optimal condition of

proposed system outperforms a single TMD system.

By summarizing those researches on MTMDs, the following conclusions can be

drawn:

1. For the same mass ratio, the optimum designed MTMD is found to be more

effective than the optimum single TMD system.

2. The optimal damping ratio for the MTMD is found to be low as compared to

that of a single TMD. The optimum damping ratio increases with an increase in

the mass ratio, being more pronounced for a single TMD system as compared

to the MTMD system.

3. The optimum frequency bandwidth of the MTMD increases with increasing of

the mass ratio.
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Figure 2.3: Example shading fin mass damper detail, excerpted from Fu and Johnson

(2010)

2.3 TMDs on Nonlinear Structures

Extreme excitation such as earthquake may deteriorate the structural performance of

the structure, and such deterioration may cause undesired off-tuning effect that affect

performance degradation of TMDs. To avoid the significant performance degradation,

several researchers conducted studies on TMD design on the nonlinear primary struc-

ture.

Zhang and Balendra (2013) investigated the feasibility of using STMD in control-

ling of bilinear hysteretic structures under narrow band seismic motions. The authors

adopted ”averaging method” that can linearize given nonlinear system in a statis-

tical sense in order to modeling the bilinear structure, and find the optimal TMD

that minimizes the maximum of the frequency response within a band of concerned

frequencies.
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2.4 Nonlinear Tuned Mass Dampers

Although theoretically well-established and show satisfactory performance in many

applications, Linear TMDs (LTMDs) are ineffective due to the following reasons.

First, LTMDs usually require a frictionless guide which enables the moving mass

facilitates the smooth movement. In general, such a guide requires high cost for not

only fabrication but also maintaining the frictionless movement. The maintenance

problem of LTMDs also should be addressed as an important issue, because such

viscous damping elements mounted in LTMDs can be degraded due to aging and

they also have a risk of liquid leakage. Moreover, LTMDs, tuned to the fundamental

frequency of the structure, could suppress little or even amplify the dynamic response

of higher modes and therefore may fail to reduce the total response under these

conditions.

In order to regard the problems, nonlinear TMDs (NTMDs) in which nonlinear

elements are incorporated into the TMDs were developed in a various ways. Regarding

the first and second problems, friction force was incorporated. As a solution for the

third problem, a power-type damping force is provided.

One of the alternative ways is to employ frictional devices or mechanism instead

of linearly viscous element. Incorporating frictional mechanism has its advantage be-

cause it is insensitive to varying temperature and not prone to be degraded under

aging and liquid leakage. Moreover if one can characterize the friction coefficient pre-

cisely rather than implementing the frictionless guide, the cost in implementing such

a frictionless guide can be saved effectively providing economic advantages.

Several researches have been carried out on the efficacy of TMDs with frictional de-

vices on the vibration response of linear structures. Inaudi and Kelly (1995) proposed

and studied a nonlinear TMD which uses friction damper. Statistical linearization

method was employed with aim to evaluate the structural response of the system.
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The study confirmed that the efficacy of their TMD is comparable to that of a linear

TMD for a wide range of excitation intensity. It is interesting to note the remarks of

them that the statistically linearized parameters, in this case, are independent of the

intensity of the excitation process and only dependent on the its frequency content.

Nonlinear TMDs that dissipates the input energy by hysteresis behavior, which in-

cludes the frictional mechanism, were developed and investigated by some researchers

(Carpineto et al., 2014; Wang, 2011). As a way of suppressing vibration and chatter

in machining operations, Wang (2011) proposed nonlinear TMD, in which Coulomb-

type frictional dissipating mechanism is accommodated, and examined its feasibility

through numerical simulations. Based on the evaluation of FRF with the harmonic

balancing method, the optimal design parameters of the nonlinear TMD are obtained

by minimizing the magnitude of the real part of the real FRF. The author concluded

that the nonlinear TMD proposed by the author can outperform a common linear

TMD in machining stability improvement. However, there still are some disadvan-

tages, among which the main disadvantage is that the friction force applied on the

friction interfaces has to be adjusted to match the amplitude of the dynamic cut-

ting force according to the optimal force. Because the cutting force amplitude varies

under different cutting condition, the optimal value of the normal force needs to be ei-

ther estimated according to the machining conditions or directly obtained by cutting

experiments.

Carpineto et al. (2014) examined the applicability of nonlinear TMDs consisted

of steel wire ropes, of which hysteretic behaviors are able to be described in terms

of Bouc-Wen constitutive law. From their theoretical investigation, it was found that

the optimal tuning condition corresponds to reaching equally controlled response

amplitudes at the resonances of the in-phase and out-of-phase modes of the modified

structure. HYS1 type of softening hysteresis exhibited a higher stiffness at a higher

frequency below the target excitation and a lower stiffness at a lower frequency above
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the target, arising a detuning in the frequency ratio. Based on the comparative study

with linear TMDs, it was found that detuning effect observed in the considered TMDs

can be found to exhibit a variation of the frequency of the order of 10 percent, which

seems to be tolerable from an engineering point of view.

Abé (1996) proposed a design method of TMDs with bilinear hysteresis that enable

the main structures with bilinearity to be efficiently controlled in a wide range of

excitation levels. The bilinearity of either main structure or TMDs, which is given in

Figure 2.4, is approximated in a linear form by means of stochastic averaging method.

The linearized stiffness and damping coefficients for the bilinear model are expressed

in terms of R as

keq = A(R)/R (2.8a)

ceq = co −B(R)/(ωR) (2.8b)

where ω is the excitation frequency, R is the amplitude of the response and

A(R) =


koR

π

[
ηθ + (1− η)π − η

2
sin(2θ)

]
if R > x0

R if R ≤ x0

(2.9a)

B(R) =


−koR

π
sin2 θ if R > x0

0 if R ≤ x0

(2.9b)

θ = cos−1
(
1− x0

2R

)
, (2.9c)

η = 1− k1
k0
. (2.9d)

By applying this linearization, the steady-state response subjected to harmonic ex-

citations is calculated by a frequency domain. The TMDs are designed to be always
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Figure 2.4: Force-displacement diagram of bilinear model

tuned to the changed dynamic properties of main structure. The author concluded

that the appropriately designed bilinear TMDs outperform linear optimal TMDs even

when the equivalent natural frequency and damping ratio of the main structure shift

by bilinearity at the higher excitation levels.

Ricciardelli and Vickery (1999) considered a TMD with linear stiffness and dry

friction damping and derived closed-form expressions for the optimum tuning and for

the optimum friction force as well as for the steady-state amplitudes of vibration of

main system. The authors also showed that the friction damper tends to be more

effective as the amplitude of the excitation becomes large.

Poovarodom et al. (2003) investigated nonlinear MTMD, in which damping force

induced by induced force of the immerse section is modeled as quadratic form. The

results from the numerical study found that their effectiveness and robustness were

similar to those of the linear MTMDs. The relevant test results were in good agreement

with the results from the numerical study.

Rüdinger (2007) investigated the effect of TMD with nonlinear viscous damping

elements. In calculating the RMS displacement of the main structure, the author
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employed statistical linearization method, which is able to provide very accurate

results. It was shown from the study that the optimal damping parameter values for

the nonlinear TMD depend on the displacement magnitude and excitation intensity,

in constrast to the case of a linear TMD. However, the response magnitude is relatively

insensitive to the exact value of the damping parameters of the mass damper, and it

is therefore not important to know the magnitude of the vibration too accurately.

Alexander and Schilder (2009) explored the performance of a nonlinear TMD,

which is modeled as a two DOF system with a cubic nonlinearity. The numerical re-

sults conducted by the authors were negative since the TMD with a cubic nonlinearity

and constant damping ratio does not provide an improvement over an optimal linear

TMD. From an engnieering perspective the cubic hardening nonlinearity reduces only

the amplitude of the higher-frequency response.

Gewei and Basu (2010) investigated the effectiveness of the nonlinear tuned mass

dampers in which dry friction force is employed. In the analysis, they adopted har-

monic solution and statistical linearization to calculate the vibrational response and

then found the optimal friction coefficient of friction TMDs. It was found from the

research that the optimal friction coefficient depends on the response of the TMD,

which is almost proportional to the intensity of the excitation.

Love and Tait (2015) employed statistical non-linearization to represent the non-

linear damping as amplitude-dependent viscous dapming and predicted the RMS

response of the structure-TMD system. They obtained probability density function

for the TMD dispacement and estimated the peak response distribution.
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2.5 Applications and Structural Implementations

2.5.1 Wind-induced vibration attenuation

In recent years, buildings have become more taller, lighter and flexible, and the wind

effect on the dynamic response of buildings has become important. With an aim of

attenuating the wind-induced response of a tall building, TMDs were widely imple-

mented as an energy dissipation devices to the building systems. Examples of TMD

applications for attenuation of wind-induced vibration are well documented in Ka-

reem, Kijewski, and Tamura (1999).

Tanaka and Mak (1983) conducted wind tunnel model tests with a small scale

of 1:1000, and showed that the TMD system was highly effective in suppressing the

dynamic response of the building. The reduction of response was significant, in the

range of 30 to 60%.

Kwok and Macdonald (1990) presented the wind-induced acceleration responses

at the top of the Sydney Tower in Australia, and compared the responses before and

after TMD installation. The results showed that both the peak along-wind and peak

cross-wind acceleration responses were attenuated significantly after the installation

of TMD.

Kawaguchi et al. (1992) simulated a time history wind force to predict the response

of a building with a TMD, and investigated the suppressing effect of a TMD. Based

on the numerical simulations, it was found that TMDs can mitigate the response of

the primary mode of a building to around 60% when the mass ratio to the primary

modal mass is 0.5%, and to around 45% with its mass ratio of 2%.

Liu et al. (2008) developed a mathematical model for predicting wind-induced

vibrations of a high-rise building with a TMD when the soil-structure interation is

involved. They found that TMDs are beneficial in reducing wind-induced vibrations

of tall buildings, particularly being more effective for the higher soil stiffness.
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Ghorbani-Tanha et al. (2009) examined the effective of TMD on the suppression

of wind-induced motion of Milad Tower with a numerical analysis. In their analyses,

the fluctuating wind speed is assumed to be a stochastic process identified by an

appropriate power spectral density function. It was shown that a TMD of 400 ton at

the sky dome connected with a spring tuned to the first natural frequency of the tower

and with a viscous damper with a 7% damping ratio reduces the dynamic responses

of the tower to around 60% of the uncontrolled case.

2.5.2 Seismic response mitigation

In seismic applications, TMDs can be utilized as an efficient apparatus that diminishes

the internal loads in the structural members by attenuating the displacement of the

building relative to the ground. Gupta and Chandrasekaran (1969) studied the seismic

response of linear singled degree of freedom systems controlled by the TMD systems

which provide elasto-plastic restoring force and viscous type of damping, and claimed

that the TMDs are not effective for seismic excitations as compared to sinusoidal

excitations.

Wirsching and Campbell (1973) determined the optimal parameters of STMD

which minimize the response of a SDOF system under a stationary white noise base

excitation, and showed that the absorber system is effective for both single- and

multi-degree-of-freedom linear systems. In addition, they appointed the required ad-

ditional studies which enables the device to be possibly implemented, including the

effect of the absorber on higher modes of a structure, the behavior of the absorber

under the nonlinear behavior of the primary structure, and the absorber with the

various damping mechanism involving non-linear absorber damping. Wirsching and

Yao (1973) demonstrated the adequacy of the TMD under a nonstationary stochas-

tic process having statistical characteristics similar to actual earthquakes and showed

that the absorber was found to be extremely effective in reducing the seismic response
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thereby the probability of failure of a multistory structure.

Sladek and Klingner (1980) investigated the efficiency of TMDs designed by three

different techniques according to Den Hartog, Wiesner, and Wirsching-Campbell un-

der a strong ground motion. They considered the prototype building of 25-story with

a mass ratio of 0.026% relative to the first-mode effective mass. It was found that

all of the considered TMDs implemented are ineffective in reducing the maximum

seismic response. They appointed such a inefficacy as the passiveness of the TMD,

because if the maximum response occurs early in the record, the TMD may not have

time to produce a significant effect.

Villaverde (1985) showed that the attachment of a small heavily-damped system

in resonance can increase the damping of a guilding and reduce thus its response to

earthquake excitation.

Clark (1988) compared the peak acceleration response of a main system without

and with the 5% mass TMD design in single and multiple configuration, where the

TMDs used in the study are designed according to Den Hartog’s procedure as well.

It was shown that single TMD is not effective in reducing response of multiple degree

of freedom main structure, but multiple TMD systems can yield reduction between

40% and 60% for a 5% increase in the mass of the building.

Several researchers more positively reported the efficiency of TMDs under seismic

excitations. Wirsching and Campbell (1973) and Wirsching and Yao (1973) showed

that the absorber system is effective in reducing the mean response of the primary

structure. Additionally, they noted that the effectiveness of the absorber may diminish

when the primary structure exhibits high intensity seismic excitation because the

natural frequency of the structure becomes smaller than the absorber frequency due

to the elasto-plastic behavior.

Tsai (1995) applied the TMD into the base-isolated structures. It was shown that

the response on base-isolated structures equipped with the TMD is quite dependent
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on the input seismic motion. It was further discussed that combining TMD with base-

isolation system can reconcile the drawbacks inherent in TMD-primary structure that

TMDs are inefficient for the short period structure, which isolated structure lengthen

the period.

Based on the optimal parameters obtained by using numerical searching procedure

in equating equal damping ratio followed by the optimal values of the frequency

ratio and the damping ratio of TMD, Sadek et al. (1997) showed that the TMDs

according to the authors’ optimal parameters can effectively reduce the displacement

and acceleration response. Additionally, they showed that it is less effective in reducing

the response when the TMDs are implemented in short period structure. They also

emphasized that TMDs with a large mass ratio must be used for structures with higher

damping ratios, implying that structures which exhibit highly nonlinear behavior

should be equipped with TMDs with a higher mass ratio.

Soto-Brito and Ruiz (1999) conducted a suite of analyses involving SDOF systems

and 22-story frame building, and concluded that the maximum roof displacements are

more significantly reduced when the frames are subjected to moderate motions, rather

than to high-intensity ones, in which the structural behavior are associated with linear

behavior.

Wong and Chee (2004) discussed the efficacy in the energy perspective, and showed

that TMDs are effective in limited condition with a moderate to long period of vibra-

tion than those for short period structures. In the similar to the discussion provided

by Sadek et al. (1997), the authors also noticed that TMD is not effective in reducing

the energy of the primary structures with the short natural period vibration of less

than 1.3 sec, but became effectively if the period of the structure is longer than 2.0

sec.

A case study conducted by Pinkaew et al. (2003) again showed that although

TMD is not effective in reducing the peak displacement of the controlled structure
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after yielding, it can significantly reduce cumulative damage to the structure. They

also emphasized that the inclusion of cumulative damage measure due to low cycle

fatigue is important in order to properly evaluate TMD effectiveness under severe

seismic excitation.

Li and Zhu (2006) tried to find the optimal parameters of the double TMDs, con-

sisting of one larger mass block and one smaller mass block attached to the larger

one, and showed that the proposed TMDs can exhibit their controllability with main-

taining its robustness and effectiveness.

Li and Qu (2006) configured multiple TMDs with identical stiffness and damp-

ing coefficient but different mass for suppressing both translational and torsional

responses. Taking into account the varying ratio of the torsional and translational

modal frequencies, they showed that optimally designed MTMDs according to their

optimization scheme can mitigate responses of both modes providing enough effec-

tiveness and robustness of the control device. In similar, Lin et al. (2000) dealt with

optimum installation location in plan and in elevation and moving direction with the

consideration of torsional mode as well as translational modes. They noted that the

floor corresponding to the tip of controlled mode shape is the optimum installed floor

of TMD.

Chen and Wu (2001) proposed the strategies for determining the optimal loca-

tion of TMDs for effectively reducing the floor acceleration of multistory building

structures under earthquake loads. With a sequential procedure proposed by the au-

thors, it was shown that MTMDs are not advantageous over a conventional TMD for

displacement control.

Hoang et al. (2008) applied a TMD with purpose of retrofitting of the first longi-

tudinal mode of Minato Bridge employing a floor deck isolation system that can be

treated as the optimally designed TMD. They showed that the characteristic ground

frequency is highly relevant to the optimal tuning frequency rather than the optimal
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damping ratio of TMD. Based on the response spectrum analyses, they showed that

the optimum TMD designed according to their scheme performs suitable for ground

motion time histories of similar frequency content.

Leung et al. (2008) optimized the key parameters of TMDs for non-stationary

random excitation applied to a linearly damped primary structure. It was shown

from their numerical simulation on the equivalent SDOF system, the performance

was satisfied.

Wong (2008) exhibits the effectiveness of emplying TMDs in terms of various

forms of energy involving kinetic, damping and input energy, and concluded that the

use of TMD can enhance the energy dissipation of the structure by accumulating a

large amount of energy when the structure is at a point near yielding, and can help

in transferring this storage energy to the structure at the less critical state. The same

approach was adopted for the usage of multiple TMD in the successive research in

Wong and Johnson (2009). It should be noted about their discussion that the inelastic

structural performance is rather insensitive to the locations of TMD placements, and

therefore either multiple TMDs placed at various levels or one TMD placed at the

roof exhibits of no different performance. They also emphasized that TMDs may be

ineffective if the earthquake ground motion is believed to cause significant inelastic

demand in the upper structures, and one way to enhance the robustness of the TMD

is to increase the member sized in the upper stories such that energy can be dissipated

more efficiently. Wong and Harris (2012) studied the fragility analysis on the primary-

TMD system, and concluded that while a TMD is ineffective in protecting a structure

at earthquake levels associated with life safety (LS), it can enhance performance of

the structure at low seismic levels where frame response can be predominantly elastic.

Recently, Sgobba and Marano (2010) carried out the optimal design of linear

STMDs for structures with nonlinear behavior which is described by the Bouc-Wen

hysteresis model. Taking into account both various mechanical situations such as the
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strength reduction factor and the hardening ratio and soil conditions including soft

and stiff soil, they investigated the optimal parameters of TMDs which minimizing

mean displacement ratio, damage induced in inelastic region, mixed criterion. They

concluded that the efficacy of STMD decreases as the strength ratio, which is the

inverse of the strength reduction factor, or the post-yielding stiffness ratio increases

because of detuning effect that occurs in the plastic region. Relevant to the obser-

vations, the use of TMD seems more effective in the case when the structure is in a

moderate to long period of vibration compared to for short period structures.

2.5.3 Floor vibration control

In recent years, many vibration problems have been reported after they occurred in

existing floors in buildings and footbridges. When the problematic situations occurred,

the vibration performance of the floor should be improved through various available

remedial measures, including reduction of vibration effects, relocation of vibration

sources, reducing mass, damping increases, and stiffening the structure.

Among the available measures, installing TMDs can be efficient and economical

for attenuating the floor vibration. One of the advantages of using TMDs is that

TMDs are versatile because of its applicability without interrupting operational or

human activities in the building. Moreover TMDs are versatile such that they can

be designed in various shapes and sizes as needed, and as required to accommodate

space limitations.

Webster and Vaicaitis (1992) implemented TMDs and demonstrated their effi-

ciency in attenuating the vibration of an existing composite floor system. With the

implemented TMDs, the floor vibrations were reduced by at least 60 percent. More-

over, the cost of the installation of TMDs was reduced to less than 15 percent of the

estimated cost for structural stiffening with constructing new columns.

Setareh and Hanson (1992) applied five pairs of TMDs to control two distinct

35



(a) Single sandwich beam TMD (b) MTMD configuration

Figure 2.5: Schematic of a viscoelastic sandwich beam-type TMD and its MTMD

configuration

modes of an existing balcony, two of which were targeted to the first mode with their

mass ratio of about 3%, and the others were for the second mode with their mass

ratio of about 1%. Results of the tests after implementation showed that the TMDs

can effectively suppress the resonant vibration response, increasing the floor damping

from the original value of 1.6% to about 8%.

Setareh et al. (2006) presented a pendulum TMD, of which mass is distributed

along the pendulum arm, viscous dampers are attached to the end of the pendulum,

and springs are designed as movable so that the natural frequency of the TMD can be

fine-tuned. Based on analytical and experimental studies, it was shown that proposed

PTMDs were effective in reducing excessive vibrations of floors due to human activi-

ties. It was also noted that TMDs may lose their efficacy due to off-tuning caused by

floor occupancy.

Casado et al. (2010) implemented TMD with a mass ratio around 1% of the

51 meters span modal mass to fulfill the vibration serviceability requirements of an

in-service lively footbridge. The field test results showed that the TMD of 1% mass

ratio was enough to improve the efficient damping of the bridge providing considerable

reduction in its acceleration response, and enabled the bridge to fulfill the comfort

criteria recommended in most codes and guidelines.
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Saidi et al. (2011) developed a cantilever-type TMD that consists of a sandwich

beam incorporated with a constrained rubber layer, of which configuration is depicted

in Figure 2.5a. The optimal parameters of the device including end mass, length

of the beam and thickness of the rubber layer were determined according to the

classical solution proposed by Den Hartog (1956). With experimental studies, it was

shown that the proposed control device can mitigate the excessive floor vibration

substantially. Nguyen et al. (2012) further developed the cantilever-type TMD in the

form of MTMDs, each of which dynamic properties such as the natural frequency

and damping ratio are identical (see Figure 2.5b). The developed TMD system is

implemented in an existing office floor, and successfully reduced the floor vibrations

by at least 40% to a level that was well within the acceptable limit for human comfort.

Through laboratory tests, Varela and Battista (2011) evaluated the performance

of the TMDs in reducing the problematic vibrations induced by people walking on

large span composite slabs. In this study, each of TMD incorporates with its mass

of only 0.5% of the modal mass of the targeted mode and its value of the damping

ratios fell in the range of 1 to 1.5%. The results showed that, for any of considered

walking scenarios, the TMD provides significant reductions in excessive vibrations.

Kashani et al. (2012) presented the application of TMDs for attenuating excessive

vibration of three large balcones at a performing arts center. Based on numerical

and experimental studies of the balconies, it was shown that the TMDs effectively

attracted oscillatory energy of the structure and dissipated it successfully.

A variety of numerical investigation on the efficiency of TMDs in floor vibration

control were also conducted. Li et al. (2010) presented the application of MTMDs in

mitigating crowd-induced vibration of footbridge. Based on the single footfall force

model and followed by the crowd-footbridge random vibration model, the vibration

prone to occur resonance can be substantially reduced. Recently, Van Nimmen et al.

(2016) applied TMDs in reducing the excessive vibration of footbridge, and showed

37



its efficacy via numerical and experiments. Lievens et al. (2016) also proposed a

design methodology by which the optimal parameters for quantifying its robustness

and efficacy can be considered. Yang et al. (2015b) designed and implemented two-

DOF TMD in mitigating of milling vibration, and Wang et al. (2003) evaluated the

applicability of TMDs to suppress train-induced vibration on bridges.

2.6 Other Issues

2.6.1 Stroke limitations

Considering the stroke limitations of TMDs is of importance when the structure is

expected to be exposed under a severe conditions such as earthquake excitation. In

order to configure the optimal TMDs within the stroke limitation constraints, some

researchers tackled the problem in the perspective of multi-objective optimization.

Wang et al. (2009) proposed a two-stage optimization, in which the structural

response is to be minimized as usual strategies at the first stage, and the RMS response

of the TMD with weighting an unknown factor is then incorporated as a part of the

objective function that is to be minimized. Later, Lin et al. (2010) extended the

optimization scheme into the case of MTMDs optimization, and verified their design

algorithm with shaking table tests of a three-story building. The test results showed

that the MTMD designed according to their approach is both effective in reducing

the structural response and successful in suppressing their stroke.

The second and final stage of the optimization procedure is of worth to discuss

more in detailed ways. In their procedure, the objective function is set as a linear

combination of two quadratic functions – RMS response of the primary structure and

of the TMD – and a factor which accounts for determining the weighting to whether

the optimization procedure would be weighting. Such an optimization procedure is a

kind of Pareto optimization, so that there can be a compromising solution.
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Also it should be stressed that the weighing factor which determines the weighting

ratio between the structural vibration response of the primary structure and the

response of the MTMDs is chosen as arbitrary rather than quantified in a deducing

way. Hence it is of importance to provide the way of determining such a weighting

factor a priori.

2.6.2 Reliability-based optimization

There are many potential reasons that detuning could occur such as change in struc-

tural properties over time, liquid leakage of damping device or inaccurate estimation

of dynamic properties. In order to overcome the risks associated with detrimental ef-

fect of detuning, researchers investigated the optimal design techniques that are able

to take account for uncertainty.

Chakraborty and Roy (2011) presented optimal TMDs that minimizes the prob-

ability of failure of the primary structure under stochastic earthquake, modeling the

associated system parameters as uncertain but bounded type parameters. First, the

authors formulated an optimization problem that involves the reliability of a me-

chanical system with a TMD. The objective function of the optimization problem is

the conditional failure probability pf (X) in a given period [0, T ] for the performance

quantity ys under the structural and the excitation model specified by X as follows:

pf (X) = 1− exp[−νβ(X)T ]

= 1− exp

[
− σẏs(X)

πσys(X)
exp

(
− β2

2σ2ys(X)

)]
(2.10)

where σys and σẏs are the RMS response of the considered quantity ys and its deriva-

tive ẏs, respectively, and β is a given threshold value in a given life time period T .

Then the sensitivity of probability of failure is explicitly obtained by differentiating

the quantity with respect to the i-th uncertain parameter xi. Thereby, the interval
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region of the probability of failure function is separated out to the upper and lower

bound puf and plf as follows:

puf = p̄f +

m∑
i=1

∣∣∣∣∂pf∂xi

∣∣∣∣ ∆xi (2.11a)

plf = p̄f −
m∑
i=1

∣∣∣∣∂pf∂xi

∣∣∣∣ ∆xi (2.11b)

where p̄f is the probability of failure under the nominally determined X, and ∆xi

represents the maximum deviation of xi from its nominal value.

Marano, Greco, and Sgobba (2010) conducted a comparative study on different

optimization criteria: conventional deterministic optimization criterion, robust single-

objective criterion and robust multi-objective criterion. As the deterministic criterion

concerns the objective function under a nominal condition, the other two robust crite-

ria consider the first two statistical moments of a predefined objective function, which

includes the first two statistical moments of the objective function. The authors inves-

tigated the optimal design of TMD with a direct perturbation method that accounts

for the uncertainty for structural parameters and soil parameters. The authors found

that under the small variation the optimal design via conventional way does not dif-

fer from the robustness considered scheme. As the uncertainty increases, however, the

conventional solution of TMD cannot guarantee the optimum of the mean response

and, further, the variance of the response would be even increases resulting the lack

of robustness. Lucchini, Greco, Marano, and Monti (2013) investigated the optimal

TMDs, considering the robust multi-objective criterion as Marano, Greco, and Sgobba

(2010) conducted but a physical interpretation is additionally considered.

Yu et al. (2013) proposed a framework for a reliability based robust optimiza-

tion and applied it into the optimal TMD design. The framework seeks to optimize

the structural RMS displacement with constraints on a prescribed threshold of the
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probability of failure of the primary structure. To improve computational efficiency,

the authors proposed a sequential strategy that decouple reliability analysis from the

optimization procedure, and succeeded in finding optimal solutions while reducing

the number of complicated reliability analysis.

Mrabet et al. (2015) presented a technique for optimization of TMD in the pres-

ence of uncertain bound structural parameters. The technique involves two stage, in

which the first stage is basically based on the stochastic response such as RMS re-

sponse or the failure probability under the stationary process, and the second stage

tries to evaluate the extreme value of the indices.

The statistics of the response indices were estimated by using direct perturbation

method, which consists in approximating the response as a polynomial of the uncer-

tain parameters (Lutes and Sarkani, 2004). However, such a way is not convenient

and contains an error when one tries to consider the asymmetric probability density.

One of the lacks is that it is not available to deal with Gumbel distribution, which is

one of the widely used distribution for extreme events.

Rathi and Chakraborty (2016) conducted a similar way to the Marano et al. (2010)

approach, except for the response surface method, one of the estimating techniques,

was adapted. Further, owing to the way of response surface method, they can find

the optimal conditions with regarding to the Gumbel distribution of the ground input

intensity.

minimize
x

J(x, y∗)

subject to Jth − (µJ + βσJ) ≤ 0 (2.12)

x ∈ Ωx y ∈ Ωy
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Chapter 3

Linear Multiple Tuned Mass
Dampers

This study presents optimal design and analysis of linear multiple tuned mass dampers

with various configurations. Two different optimization techniques are employed:

Nominal Performance Optimization (NPO) and Robust Performance Optimization

(RPO). The NPO minimizes the objective function that is deterministic, whereas the

RPOminimizes the mean value of the objective function, assuming that the associated

structural parameters are probabilistic. Six of practical configurations are formulated

and comparatively analyzed, and each of the configurations is constrained in a way

of linearly distributed frequency ratios, uniformly distributed damping coefficients,

linearly distributed mass ratios, and/or combinations thereof. An approximate design

formula is developed for LMTMDγζ configuration, which is as efficient as the best op-

timal configuration. Further, this study provides contour maps that enable designers

to accommodate the moving mass within maximum stroke limitation.
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3.1 Introduction

Tuned mass damper (TMD) is one of the fascinating vibration control devices which

dissipates the vibration energy of a main structure through an internal damping ele-

ment. Since Frahm (1911) proposed its concept through his patent, numerous studies

have been conducted on the optimal solution of TMDs in order to determine the

parameters such as optimal frequency and optimal damping ratio. The solution pro-

posed by Den Hartog (1956) is still widely used in the academic area as well as in

the application fields. The optimal conditions of Warburton (1982), which accounts

for various loading conditions and objective functions, is also popular nowadays.

Multiple tuned mass damper (MTMD) is a system consists of multiple units of

TMDs, often referred to as the case where each of TMDs has different dynamic char-

acteristics. In the early stage of research, MTMD configurations with simplified and

limited conditions were discussed so as to reduce the number of associated design

variables. For instance, the MTMD of large numbers of units with equally spaced

natural frequencies and each of which having equal damping constant was studied by

Xu and Igusa (1992) based on an asymptotic analysis, and it was shown that such a

MTMD is effective in reducing the response of the main structure. For a finite num-

ber of MTMDs with similar constraints, Joshi and Jangid (1997) and Jangid (1999)

found the optimal parameters of the MTMD for undamped and damped primary

structure, respectively. MTMDs with equal damping ratios and equally spaced natu-

ral frequencies were also investigated by various researchers including Yamaguchi and

Harnpornchai (1993), Abé and Fujino (1994), and Kareem and Kline (1995).

Until recently, various studies have been conducted for the MTMDs with relaxed

constraints, for example, Igusa and Xu (1994), Li (2002), Hoang, Fujino, and War-

nitchai (2008), Zuo and Nayfeh (2005), Li and Ni (2007), and Yang, Sedaghati, and

Esmailzadeh (2015a). The main differences in these studies involve 1) considered exci-
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tation, such as harmonic forcing function and the ground acceleration, 2) the objective

function, such as the RMS response of the primary structure or the maximum of the

frequency response and 3) employed optimization strategies.

Existing studies, however, only conducted a comparison with other configurations

in a limited way. Li and Ni (2007), for instance, only compared the performance

between their non-uniformly distributed MTMD and the one with equal frequency

spacing and damping ratio on the basis of frequency response function. Li (2002), one

of the comparative studies on various configurations, provided the optimal parameters

only for the case where the natural frequencies are equally spaced. Hoang, Fujino, and

Warnitchai (2008) also conducted a similar study. Li and Liu (2002) also conducted.

Meanwhile, in designing the optimal TMD, it is crucial to consider the perfor-

mance deterioration caused by so-called detuning effect, in which the natural fre-

quency of the TMD is deviated from that of the main structure, thus its control

performance cannot be fully attained. Several researchers proposed the methods for

the robust design of MTMDs including Lucchini, Greco, Marano, and Monti (2013),

Hoang and Warnitchai (2005), De, Wojtkiewicz, and Johnson (2017). However, the

study on the design of MTMDs considering robustness is still very limited, requiring

researches on that subject.

The primary purpose of this study is to develop a framework for design of LMT-

MDs, which can provide guidance about all aspects of the LMTMDs including the

MTMD configurations, issue on the robustness, and the stroke limitation issue. First,

this study investigates the optimal parameters of various LMTMD configurations,

of which constraints are such as the frequency ratios, damping ratios, mass distri-

butions and combinations thereof. Second, two different optimization schemes are

employed: Nominal performance optimization (NPO) and Robust performance opti-

mization (RPO). NPO searches a solution the minimizes the objective function itself,

while RPO minimizes the statistically estimated objective function, assuming that
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Figure 3.1: Structure-LMTMD system

the associated parameters are probabilistic rather than deterministic. For the RPO

problem, this study adopted Point estimation method (PEM), which is one of the sim-

ple and reasonable methods for evaluating the statistical property of a complicated

function. Third, in order to allow the designer to consider the performance evaluation

and the stroke limitations simultaneously, this study provides contour maps for the

RMS displacement of the main structure and the largest RMS displacement of the

LMTMDs that can be useful in the design process.

3.2 Model Formulation

3.2.1 Governing equations of motion

Consider a system comprised of a primary structure and N units of linear TMD (see

Figure 3.1). The equations of motion of the structure-MTMD system can be written

as

(ms +mT )ẍs +

N∑
i=1

miẍi + csẋ+ ksx = fs (3.1a)

mi(ẍs + ẍi) + ciẋi + kixi = fi i = 1, · · · , N (3.1b)
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where ms, cs and ks are the mass, damping coefficient and spring constant of the pri-

mary structure; mi, ci and ki are the mass, damping coefficient and spring constant

of the i-th TMD; N is the number of TMDs; mT is the total mass of TMDs defined

by
∑N

i=1mi; xs is the displacement of the primary structure, and xi is the relative

displacement between the i-th TMD and the primary structure; A dot notation sig-

nifies a derivative with respect to time t; The external force exerted on the primary

structure and on the i-th unit of the MTMD are denoted as fs, and fi, respectively.

When the whole system is subjected to a zero-mean white-noise base acceleration,

each force term fi is zero and the force term exerted on the primary structure is

−(ms+mT )üg, where üg is the ground acceleration with a constant spectral intensity

Süg given by

E[üg(t)üg(t+∆t)] = 2πSügδ(∆t) (3.2)

where E[·] is an expectation operator and δ(·) is the Dirac-delta function.

In order to standardize the subsequent treatment, we introduce the following

terms:

µi =
mi

ms
, (3.3a)

γi =
ωi

ωs
=

√
ki
mi

√
ms

ks
=

√
ki
ks
µ
−1/2
i , (3.3b)

ζi =
ci

2γimiωs
, (3.3c)

and let µT be the total mass ratio defined by
∑N

i=1 µi. With these terms, the equations

of motion becomes

(1 + µT )ẍs +

N∑
i=1

µiẍi + 2ζsωsẋ+ ω2
sx = −(1 + µT )üg (3.4a)
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ẍs + ẍi + 2ζiγiωsẋi + γ2i ω
2
sxi = 0 i = 1, · · · , N. (3.4b)

A suitable substituting of non-dimensional variables enables us simplify and pa-

rameterize the equations of motion. First, xs and xi can be non-dimensionalized

by normalizing them to the RMS displacement of the uncontrolled structure xref .

With the help of the theoretical results for the stochastic response of a single-degree-

of-freedom (SDOF) system excited by a white-noise stationary process (Lutes and

Sarkani, 2004), the RMS displacement of the uncontrolled system can be calculated

by

xref =

√
πSüg

2ζsω3
s

. (3.5)

Further, introducing non-dimensional displacements ys = xs/xref and yi = xi/xref ,

and a time scale to = ωst, the equations of motion can be non-dimensionalized as

follows:

(1 + µT )y
′′
s +

N∑
i=1

µiy
′
i + 2ζsy

′
s + ys = −(1 + µT )w

′′
g (3.6a)

y′′s + y′′i + 2γiζiy
′
i + γ2i yi = 0 i = 1, · · · , N (3.6b)

where a prime notation denotes the derivation with respect to the non-dimensional

time to, and w
′′
g is the non-dimensionalized ground acceleration exerted on the primary

structure with its spectral intensity Sw′′
g
given by

Sw′′
g
=

Süg

x2refω
3
s

=
2ζs
π
. (3.7)

Rearranging Eq. (3.6) into the matrix form yields the following expression:
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My′′ + Cy′ +Ky = fw′′
g (3.8)

where y = [ys, y1, · · · , yN ]T, f = [−(1+µT ), 0, · · · , 0]T and the corresponding matrices

are given by

M =


1 + µT µ1 · · · µN

1 1 · · · 0
...

...
. . .

...

1 0 · · · 1

 , (3.9a)

C =


2ζs 0 · · · 0

0 2γ1ζ1 · · · 0
...

...
. . .

...

0 0 · · · 2γNζN

 , (3.9b)

K =


1 0 · · · 0

0 γ21 · · · 0
...

...
. . .

...

0 0 · · · γ2N

 . (3.9c)

With introducing a non-dimensional state vector z = [yT, y′T]T, a first-order state-

space model can be formulated as follows:

z′ = Az +Bw′′
g (3.10)

where the corresponding matrices A and B are given by

A =

 O I

−M−1K −M−1C

 , (3.11a)
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B =

 O

−f

 . (3.11b)

If the external loading w′′
g is a steady-state stationary white noise with its spec-

tral strength Sw′′
g
as assumed previously, the covariance matrix Q = E[zzT] can be

obtained by solving the following Lyapunov equation (Lutes and Sarkani, 2004):

AQ+QAT + 2πSw′′
g
BBT = O. (3.12)
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3.2.2 LMTMD configurations

This study considers six of practical LMTMD configurations: LMTMDo is a con-

figuration on which no constraint on the frequency ratios or the damping coeffi-

cients is imposed; LMTMDγ is the case where the frequency ratios are linearly

distributed; LMTMDζ is the case where the damping constants are uniformly dis-

tributed; LMTMDγζ is the case in which the frequency ratios and the damping ratios

are distributed linearly and uniformly, respectively; LMTMDµ and LMTMDµζ are

the ones that the masses are linearly distributed, but an additional restraint of equal

damping constants is imposed upon LMTMDµζ . For all of these configurations, the

stiffness of each TMD is presumed to be identical. The constraints for the considered

LMTMD configurations are summarized in Table 3.1.

Table 3.1: Constraints for considered LMTMD configurations

Configuration
Constraints

Masses
Damping

coefficients

Spring

constants

Frequency

ratios

LMTMDo - - U† -

LMTMDγ C† - U L†

LMTMDζ - U U -

LMTMDγζ C U U L

LMTMDµ L - U C

LMTMDµζ L U U C

†: U = Uniformly distributed, C = Constrained and L = Linearly

distributed.
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Spring constants uniformly distributed

One of the practical configurations is to incorporate springs having identical stiffness.

Given that the spring constants are uniformly distributed, the mass ratio of the i-th

TMD, µi, is expressed in terms of the total mass ratio µT and the frequency ratios

γi. Suppose that the spring constant of each TMD is identical to ko. Then according

to its definition Eq. (3.3b), the mass ratio becomes

µi =
ko
ks
γ−2
i i = 1, · · · , N (3.13)

where ks is the stiffness of the primary structure. Then, adding up all the mass ratios

of Eq. (3.13) gives the following expression:

ko
ks

=
µT∑N

i=1 γ
−2
i

. (3.14)

Substituting Eq. (3.14) into Eq. (3.13) gives the expression of µi written in terms of

the frequency ratios γi and a predetermined total mass ratio µT as follows:

µi =
γ−2
i∑N

i=1 γ
−2
i

µT i = 1, · · · , N. (3.15)

Equation (3.15) implies that the mass ratios of TMDs can be completely replaced

with the terms of frequency ratios. Accordingly, if no additional constraint is imposed

upon just as LMTMDo, the associated design vector γd is given by

γd = [γ1, · · · , γN ]T. (3.16)

Frequency ratios linearly distributed

If the frequency ratios are linearly distributed (that is, those are equally spaced),

only two of those determine the whole frequency ratios. Under the constraint, the

frequency ratio of the i-th TMD is expressed as follows:
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Figure 3.2: Spatial aspects of constraint for linearly distributed frequency ratios

γi = γ1 +
i− 1

N − 1
βγ i = 1, · · · , N. (3.17)

Note that the frequency ratios can be determined by the first frequency ratio, and

the bandwidth determined as βγ = γN − γ1. Thus under the constraint for linearly-

constrained frequency ratios, the associated design vector for frequency ratios γd is

given by

γd = [γ1, βγ ]
T, (3.18)

and the remained frequency ratios can be determined by Eq. (3.17).

Accoridng to this constraint, the distribution of masses is also determined directly.

Figure 3.2 graphically represents the spatial aspects of the constraint for linearly-

constrained frequency ratios. The masses of the TMDs are found to be densely dis-

tributed in a heavy side, and sparsely in a light side. Such a distributed pattern is
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attributed to the relationship written in Eq. (3.15) that the mass ratio is inversely

proportional to the square of the frequency ratio.

Damping coefficients uniformly distributed

Given that the viscous coefficients of MTMD are uniformly distributed (that is, those

are identical), associated damping ratios yield to be proportional to the frequency

ratios. Suppose that the viscous coefficient is identical to co. Then corresponding

constraint is given by

c1 = c2 = · · · = cN = co. (3.19)

Or equivalently, Eq. (3.15) can be rewritten in terms of normalized variables as follows:

2µ1γ1ωsζ1 = 2µ2γ2ωsζ2 = · · · = 2µNγNωsζN = co/ms. (3.20)

Eliminating mass ratios µi by substituting Eq. (3.15) into Eq. (3.20), and manipulat-

ing yields the following relationship:

γ−1
1 ζ1 = γ−1

2 ζ2 = · · · = γ−1
N ζN = ζo (3.21)

or,

ζi = γiζo i = 1, · · · , N (3.22)

where ζo is a fictitious damping ratio given by

ζo =

∑N
i=1 γ

−2
i co

2µTmsωs
. (3.23)

It can be seen from Eq. (3.22) that the damping ratio is proportional to the frequency

ratio, and the only independent design variable for the damping coefficient constraint

is the fictitious damping ratio as
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Figure 3.3: Spatial aspects of constraint for equal damping coefficients

ζd = ζo. (3.24)

Figure 3.4 shows the spatial characteristics of the constraint for equal damping

coefficients. In (γ − ζ) space, feasible points (γ∗i , ζ
∗
i ) are restricted to be located on a

straight line that passes through the origin of the space. In a geometrical sense, the

fictitious quantity ζo can be read from the ζ∗ that coincides with the unity frequency

ratio, and can be interpreted as a slope of the straight line.

TMD masses linearly distributed

Figure 3.4 depicts the spatial distributions of the linearly-constrained masses. Under

this constraint, the frequency ratios are relatively attracted to the lower side, because

the mass ratios of the TMDs are distributed to be inversely proportional to the

squared frequency ratio. The frequency ratio of the i-th TMD for the constraint is
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Figure 3.4: Spatial aspects of constraint for linearly distributed masses

expressed as follows:

µi = µ1 +
i− 1

N − 1
(µN − µ1) i = 1, · · · , N. (3.25)

Substituting Eq. (3.3b) into Eq. (3.25) gives

µi =
µT∑N

i=1 γ
−2
i

[
γ−2
1 +

i− 1

N − 1
(γ−2

N − γ−2
1 )

]
i = 1, · · · , N. (3.26)

Again substituting µT /
∑N

i=1 γ
−2
i with Eq. (3.26) and eliminating µi for both hand

sides gives the following equation:

γ−2
i = γ−2

1 +
i− 1

N − 1
(γ−2

N − γ−2
1 ) i = 1, · · · , N. (3.27)

The equation implies that the mass ratios of the TMDs can be completely replaced

by the frequency ratios. Accordingly, if no additional constraint is imposed upon a

configuration just as LMTMDo, the associated design vectors γd is given as follows:
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γd = [γ1, βγ]
T (3.28)

where βγ is the frequency ratio bandwidth defined by γN−γ1. The remained frequency

ratios can be determined by Eq. (3.27).
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3.3 Optimization Strategies

This section introduces two different strategies to find the optimal solutions, which

we call Nominal performance optimization and Robust performance optimization.

Nominal performance optimization considers that the only source of randomness is in

the loading that can be aptly modeled as a stochastic process, whereas all associated

parameters are treated as deterministic. Robust performance optimization, on the

other hand, considers not only the randomness of the loading but also the uncertainty

involved in the structural parameters.

3.3.1 Nominal performance optimization

Nominal performance optimization (NPO) refers to an optimization technique that

considers all associated parameters to be deterministic. In NPO, the external loading

is modeled as a stochastic process, but the structural parameters such as the natural

frequency of primary structure are treated to be deterministic values.

The response quantities of interest is the RMS displacement of the controlled

main structure normalized to that of the uncontrolled one, σys . Due to its definition,

the non-dimensional displacement of main structure σys would be in a range of zero

to unity. Also it can be interpreted as a quantity for control efficiency such that

σys is zero if the TMD completely suppress the vibration of main structure, and is

unity when the TMD has no effect. The mathematical description of the response of

quantity can be established as follows:

σ2ys = E[y2s ] = E[(sTz)TsTz] = tr[SQ] (3.29)

where tr[·] is a trace operator, s = [1, 0, · · · , 0]T is the weighting vector corresponding

to sifting the structural displacement, and S is the weighting matrix which can be

calculated by S = ssT.
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The optimization problem is formulated as:

minimize
γd, ζd

J = σys

subject to γd ∈ Ωγ , ζd ∈ Ωζ (3.30)

where γd and ζd are the design variable vectors defined in the previous section that

corresponds to appropriate constraints, and Ωγ and Ωζ are the feasible regions for γd

and ζd, which are defined as positive orthants for the associated variables, respectively.

In the optimization process, a feasible starting point of the design variables affects

the number of function evaluations to find the solution. One can provide the initial

point by adapting the classical solutions for STMD, for example, those proposed by

Warburton (1982):

γ∗ =

√
1 + µT /2

1 + µT
, (3.31a)

ζ∗ =

√
µT (1 + 3µT /4)

4(1 + µT )(1 + µT /2)
. (3.31b)

where an asterisk in superscript (∗) after a variable signifies that the variable is at its

optimum.

The objective function is evaluated by solving Lyapunov equation, which can be

efficiently solved by the well-established algorithm proposed by Bartels and Stewart

(1972), which is implemented in a commercial program such as MATLAB®. In the

optimization procedure, this study adapted an iterative method for solving a sequence

of Quadratic Programming Sub-problems for its superior rate of convergence. At

each iteration, to make an approximation of the Hessian matrix, Broyden-Fletcher-

Goldfarb-Shanno algorithm was adopted for its effectiveness and good performance

even for non-smooth optimization problems (Coleman et al., 1999).
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3.3.2 Robust performance optimization

Robust performance optimization (RPO) is an extension of the NPO, concerning

that the associated structural parameters are uncertain. The uncertainty may arise in

various ways such as modeling error in identifying the structural properties, or random

deterioration of material or structural properties over time. Modeling the associated

as random variables gives the response quantity such as the RMS displacement also

being a random variable. In order to accommodate random variables, the uncertain

system should be distinguished from a nominal system.

Frequency-perturbed system

Here we define ωs,p as the natural frequency of primary system, which is distinguished

from the nominal one, ωs. As done earlier, we normalize the equations of motion with

respect to the displacement of the uncontrolled primary structure, but with the one of

perturbed system. Again with the theoretical results for the stochastic response of a

single-degree-of-freedom system excited by a white-noise stationary process, the RMS

displacement, or the reference displacement, of the uncontrolled system is calculated

by

xref =

√
πSüg

2ζsω3
s,p

(3.32)

Further, one can non-dimensionalize the above equations so as to simplify and stan-

dardize the problem. Introducing a nondimensionalized counterpart time scale to =

ωs,pt and nondimensional displacements ys = xs/xref and yi = xi/xref , the equations

of motion can be reformulated as follows:

(1 + µT )y
′′
s +

N∑
i=1

µiy
′
i + 2ζsκy

′
s + κ2ys = −(1 + µT )w

′′
g (3.33a)

y′′s + y′′i + 2γiζiκy
′
i + γ2i κ

2yi = 0 i = 1, · · · , N (3.33b)
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where κ = ωs/ωs,p is a factor that quantifies the extent of natural frequency perturba-

tion, and w′′
g is the non-dimensionalized ground acceleration exerted on the primary

structure with its spectral intensity of

Sw′′
g
=

Süg

x2oω
3
s,p

=
2ζs
π
. (3.34)

In comparison Eq. (3.6), the perturbation factor in Eq. (3.33) allows for consid-

ering the uncertainty of the natural frequency of the primary structure. Hence the

optimization problem defined by Eq. (3.30) can be modified in a statistical sense as

follows:

minimize
γd, ζd

J = E[σys ]

subject to γd ∈ Ωγ , ζd ∈ Ωζ (3.35)

Compared to the NPO problem formulated, the RPO problem utilizes an expecta-

tion quantity to construct the objective function. Various techniques to evaluate the

objective function can be adopted such as Monte Carlo Simulation (Yu, Gillot, and

Ichchou, 2013), Direct Perturbation Method (Lucchini, Greco, Marano, and Monti,

2013; Marano, Greco, and Sgobba, 2010), and Response Surface Method (Rathi and

Chakraborty, 2016). Among those possible techniques, this study employed point

estimation method, which is one of the simple and efficient methods in the purpose.

Point Estimation Method

Point estimation method (PEM) is a class of numerical methods for evaluating the

statistical moments of a given function that consists of random input variables. A typ-

ical work out of the method involves (1) determining specific points of input variables
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and associated weighting factors, followed by (2) evaluating the statistical moments of

the given function at the discrete points, and (3) combining all of evaluated statistical

moments with associated weighting factors for the final calculation. The numerical

answer can be treated as an approximate value of the statistical moments of the given

function.

The PEM is effective and powerful compared to several relevant techniques such

as direct integration method, Monte Carlo Simulation and Response Surface Method,

especially when the associated random variables are in a large number. Some details

on the determination of ‘points’ varies depending on the number of the specific points

per an input variable.This study dealt with 2N + 1 scheme which requires 2N + 1

specific points per an input variable. The procedure for computing the moments of

the output variables are summarized in Appendix A. More details on its theoretical

aspects can be found in the literature Rosenblueth (1975) and Hong (1998), and those

on its applications can also be found in Morales and Perez-Ruiz (2007) and Caramia

et al. (2010).

Consider the objective function of the RPO problem defined by Eq. (3.35), and

the perturbation variable of natural frequency. In this case, the perturbation factor

κ is an uncertain variable with its standard derivation σκ. Followed by the procedure

described in Appendix A, the two points and associated weighting factors are deter-

mined to be κµ = 1, κ1 = 1 +
√
3σκ, κ2 = 1 −

√
3σκ; and wµ = 2/3, w1 = w2 = 1/6,

respectively.

The mean of the objective function, hence, can be evaluated by following formula:

E[σys ] =
2∑

k=1

wkσys(κk) + wµσys(κµ) (3.36)

where σys(κk) denote the RMS displacement of main structure when the perturbation

factor is κk.
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Consequently with the help of the PEM, the expectation of the objective function

can be calculated by a linear combination of the evaluated functions for deterministic

points. Each of the functions for the deterministic points, hence, can be evaluated by

adapting the procedure described in the NPO part. In the optimization procedure,

the sequence of Quadratic Programming Sub-problems was used, which is the same

as adopted in the NPO part.

3.4 Results and Discussion

This section discusses the optimal solutions obtained by means of Nominal perfor-

mance optimization and Robust performance optimization. In the below, the main

system is characterized by a damping ratio of 1%, and the total mass ratio of the

MTMDs is predetermined to be in the range of 1% to 10% at intervals of 1%, though

in some cases the parameter is held to be 5%. The number of TMD are increased

from single unit to ten units.

3.4.1 LMTMDs designed by NPO

The nominal performance optimization provides a tool for obtaining the optimal

parameters under the condition that all of associated structural parameters are de-

terministic. In the below, the control performance for considered configurations are

compared, as well as the features of their optimal parameters and obtained frequency

responses of the configurations are discussed. In an economical sense, total amount

of damping coefficient was also compared.

Comparison of control performance

Figure 3.5 presents the non-dimensional RMS displacements of main structure (σys)

with various LMTMDs, in which the range of possible values of σys is from zero to
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Figure 3.5: Non-dimensional RMS displacement of main structure σys for considered

LMTMDs

unity, with σys tending to unity for an uncontrolled case. As for the rightmost columns

of the figure, those for LMTMDo are only depicted since there is no difference for single

TMD among considered configurations. It can be seen that, for all configurations, the

control performance improves with increasing of the total mass ratio µT . Concerning

the number of TMD, however, it does not affect the control efficiency significantly, and

the control performance becomes even worse in the case of LMTMDµ and LMTMDµζ .

Although not clearly distinguished from Figure 3.5, it was also found that the con-

trol performance is better in the order of LMTMDo, LMTMDγ , LMTMDζ , LMTMDγζ ,

LMTMDµ and LMTMDµζ , and those of the first four configurations was indistin-

guishably close. Hence in a comparative way of configurations, two main findings

can be stated: 1) LMTMDo is the best optimal while the others can be regarded as

sub-optimal; 2) LMTMDs with mass ratio constraints are ones those are inefficient.

In order to investigate further, the effective damping of the system is considered.
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Figure 3.6: Effective damping increase

By analogy with a single-degree-of-freedom system the effective damping ratio is

introduced as (Chang, 1999):

ζeffs =
πSüg

2ω3
sσ

2
xs

=
ζs
σ2ys

. (3.37)

It can be seen from Figure 3.6 that the increase of effective damping ∆ζ can be

brought with the increasing of either the mass ratio or the number of TMDs, but

its margin differs in a way that the number of TMDs is insensitive compared to the

other.

Optimal parameters

It was found that the required damping ratios decrease exponentially with increasing

the number of TMDs. Figure 3.7 shows the spatial distribution of the optimal fre-

quency ratios γ∗i and the optimal damping ratios ζ∗i in (γ − ζ) space. In this figure

the points for a single TMD coincide with the one obtained by the well-established
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solution of Warburton (1982) (γ∗t = 0.97 and ζ∗t = 0.11). From the optimal solution

for the single TMD, the bandwidth of the frequency ratios becomes wider and the

optimal damping ratios tend to decrease with increasing of the number of TMD units.

In the case of LMTMDo on which no restrictive assumption on the frequency ratios

or the damping ratios is imposed, the optimal tuning condition is achieved when the

frequency ratios are non-linearly distributed, but are densely covered around the

natural frequency of primary structure. Also it appears that TMDs located nearby

the natural frequency of primary structure have lower damping ratios than other

TMDs (see Figure 3.7a).

As for LMTMDγ , it is observed that the optimal parameters are gradually de-

viated from those of LMTMDo as the number of the TMDs increases. Due to the

constraint that the frequency ratios are evenly spaced, some TMDs are compulsory

located at the end of the frequency bandwidth (see Figure 3.7b). Under the condition,

the TMDs located at the end of the bandwidth requires relatively large damping ratio

compared to the unconstrained condition.

There is no considerable difference between LMTMDγ and LMTMDγζ except

for the distribution of the frequency ratios. However, when comparing these two

configurations to LMTMDo, the optimal damping ratios are distributed in a way

that form straight lines passing through the origin on the (γ− ζ) space. This pattern

is predictable when reminding the restraint condition defined by Eqs. (3.22).

Compared to LMTMDo, LMTMDµ and LMTMDµζ show quite different patterns.

Figure 3.7c shows the comparison between LMTMDo and LMTMDµ. Unlike the

LMTMDo, a large portion of the TMDs are located in low frequency range because

of the aspect of the constraint referred in Eq. (3.27). An odd pattern is observed,

in which the optimal damping ratios are significantly larger in the low region of the

frequency bandwidth. In order to suppress the TMDs, those with low frequency ratios

requires more damping to suppress in those region. Though the unduly patterns were

66



(a) LMTMDo (b) LMTMDo and LMTMDγ

(c) LMTMDo and LMTMDζ (d) LMTMDo and LMTMDγζ

(e) LMTMDo and LMTMDµ (f) LMTMDo and LMTMDµζ

Figure 3.7: Spatial distributions of optimal variables of LMTMDs (µT = 5%)
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not observed, the LMTMDµζ also shows clearly different pattern compared to the

optimal LMTMDo, requiring much amount of damper. In addition to the ineffective

frequency ratio patterns, the additional damping constraint results in the inefficient

performance, hence the performance of this case is the worst of the considered con-

figurations.

The optimal frequency ratios and damping ratios for various mass ratios in the

range of 1 to 10 percent are depicted in Figures 3.8. The acute vortex represents

STMD cases, showing those require much damping ratio than MTMDs as classical

TMD solution indicates. In terms of mass ratio, it can be shown that irrespective of the

MTMD configurations, the optimal frequency ratio becomes wider and the damping

ratio becomes decreasing as the number of TMDs becomes larger. The decreasing

margin for dampinf of TMD unit is larger when the mass ratio is larger. Moreover,

it can be found that the marginal of the damping ratio becomes smaller, implying

the existence of some convergence lines as the number of TMDs becomes larger. The

patterns in the γ − ζ domain explained in the above are also observed in all the

considered mass ratios for each of MTMD: while the LMTMDo forms a widening

funnel shape with circular sector, the LMTMDγ forms similar pattern with irregular

circular sector, and the cases of constrained damping coefficients such as LMTMDζ ,

LMTMDγζ and LMTMDµζ form funnel shapes with triangular sector. LMTMDµ

shows irregular funnel due to the characteristic of the optimal condition shown in the

previous section.

Total amount of damping constants

The total amount of damping coefficients (cT =
∑N

i=1 ci) is compared in Figure 3.9,

which may provide economic and efficiency perspective. Figure 3.9a shows the re-

quired amount of damping for unit TMD mass divided by the natural frequency

of the primary structure so as to non-dimensionalize. For any considered variables
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(a) LMTMDo (b) LMTMDγ

(c) LMTMDζ (d) LMTMDγζ

(e) LMTMDµ (f) LMTMDµζ

Figure 3.8: Spatial representation for optimal frequency ratios and optimal damping

ratios of LMTMDs
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including the mass ratios and the number of TMDs, the required total damping

coefficients increases in the order of LMTMDo, LMTMDγ , LMTMDζ , LMTMDγζ ,

LMTMDµ and LMTMDµζ . It can be seen that while it is not significantly different

between first four configurations, the cases where the mass ratios are restricted show

a considerable increase. Also it can be readily found that the required total damping

coefficients increases as the mass ratio becomes higher, but decreases as the number

of TMDs increases. The total amount of damping normalized to that of STMD is

depicted in Figure 3.9b. Compared to STMD, the amount of damping decreases irre-

spective of mass ratio in the case of LMTMDo, but the degree of decreasing becomes

slight larger under the sub-optimal conditions. And the economical advantage in the

use of MTMD is not as efficient as LMTMDo when using the LMTMDs that the mass

ratios are constrained.

Comparison of transfer functions

To illustrate the efficiency of the considered MTMDs, we considered a primary struc-

ture with its damping ratio of 1% and MTMDs of 10 units with its total mass ratio of

5%. Figure 3.10 compares the frequency response functions (FRFs) for the displace-

ment of primary structure with the response of the main mass alone. Although some

minor differences in their shapes, all LMTMDs with considered configurations can re-

duce amplitudes effectively, of which frequency responses show N + 1 well-separated

local modes.

Figure 3.10a compares the FRFs for LMTMDo and LMTMDγ , showing no sig-

nificant differences among them. Also there is no considerable difference between

LMTMDζ and LMTMDγζ when comparing Figures 3.10b and 3.10c. Based on these

comparisons, it can be concluded that there is no considerable effect in control per-

formance when the constraint on the frequency ratios is taken into account.

Compared to LMTMDo, both LMTMDζ and LMTMDγζ differ in a way that blunt
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(a) Total damping coefficients per unit mass of MTMD

(b) Total damping coefficients normalized to that of STMD

Figure 3.9: Total damping amount of damping coefficients
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peak appears at the low frequency range, and the following peaks gradually becomes

sharper as the frequency increases (see Figure 3.10b and 3.10c). The characteristic

shape is attributed to the constraint for identical damping constant, of which features

were discussed in the preceding section on the damping coefficient restraint.

Figure 3.10d depicts the FRFs that mass ratios are constrained in a compari-

son with LMTMDo. Unlikely the FRFs mentioned above, those for mass-constrained

ones show irregular pattern and the maxima of the FRFs are considerably higher

than the other ones. This trend states that, though well-optimized, the constraint for

mass ratios are not effective in reducing the vibration responses. Comparing between

LMTMDµ and LMTMDµζ , more higher peak was observed in the case where both

the mass ratio and damping constraints are imposed on.

3.4.2 LMTMDs designed by RPO

Optimal parameters with RPO are discussed in detailed. Of possible consideration

any uncertain parameters, this study dealt with the variation of the natural frequency

of the primary structure. In the below, the features of their optimal parameters as

well as the frequency responses of the configurations are discussed and compared with

those by NPO solutions.

Optimal parameters

The optimal parameters obtained by RPO are depicted in Figures 3.11, where the

optimal ones are obtained for the case of mass ratio are 2, 5 and 10 percent for the

number of TMDs are 5 and 10, respectively. The blank circles are the optimal param-

eters by RPO and the filled circles are those by NPO. With different patterns, both

LMTMDs have common trend that as the uncertainty of the involving parameters are

dealt with, the frequency ratio becomes wider and the damping ratio becomes either

larger. Such a trend was explained in a qualitative way by Hoang and Warnitchai

72



(a) LMTMDo and LMTMDγ

(b) LMTMDo and LMTMDζ
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(c) LMTMDo and LMTMDγζ

(d) LMTMDo, LMTMDµ and LMTMDµγ

Figure 3.10: Comparison of FRFs for various LMTMD configurations (µT = 5% and

N = 5)
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(a) LMTMDo (b) LMTMDγ

(c) LMTMDζ (d) LMTMDγζ

(e) LMTMDµ (f) LMTMDµζ

Figure 3.11: Comparison of optimal parameters obtained by NPO and RPO (µT =

5%)
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(2005) that the high damping ratio play a role of flattening the magnitude of FRF.

Such a trend can be observed by looking into FRFs in detail, which are depicted in

Figure 3.12. Because of its characteristics, LMTMDs have damper with less damp-

ing ratio, such that the excessive vibration can be occur when the natural frequency

of the primary structure is detuned and resonant to itself. By looking at the blue

lines which represents the well-tuned case, it is shown that the RPO solution tries

to mingle the edge of the bandwidth by demanding larger damping ratio, and the

opposite widening also occurs. Under the frequency-varied conditions, the edge of the

bandwidth becomes more attenuated compared to the optimal system obtained by

NPO.

One interesting thing is that the optimal line by RPO under a light mass ratio

coincides with that by NPO under a heavier mass ratio (see Figure 3.12b). It can be

interpreted that both the increasing of the mass ratio and securing the robustness

have similar mechanism in suppressing the FRF. Or, in other words, if one tries to

find an optimal parameters for pre-selected mass ratio with securing robustness, it

can be a viable solution to apply the parameters for heavier parameters.

Comparison of transfer functions

To illustrate the efficiency of the LMTMDs obtained by RPO, we considered a primary

structure with its damping ratio of 1%, and prescribed three different conditions of

LMTMDo configuration: 1) µT = 2% and N = 3; 2) µT = 5% and N = 3; and 3)

µT = 5%, N = 10. Further to examine the robustness, we considered a perturbation

of the natural frequency in the range of -10 to 10 percent with its offset of 2%.

Figure 3.12 shows the FRFs for the displacement of primary structure equipped with

prescribed MTMDs obtained by NPO and RPO respectively.

For both solutions, it can be shown that increasing the total mass ratio can provide

more robust control performance. Compared to the case of µT = 2% of three TMDs,
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(a) With NPO solutions

(b) With RPO solutions

Figure 3.12: FRFs under the perturbation of natural frequency
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LMTMDs with same number but heavier one appears effective in suppressing the

frequency response. Such a difference in control performance is already indicated in

the preceding section. Although not as significant as the mass ratio, increasing the

number of TMDs also affects its performance enhancement, especially when the extent

of perturbation is large. The enhanced performance of the system with large number

of TMDs can be explained as the many MTMDs permits more number of TMDs

incorporate in dissipating the vibration energy.

Compared to the NPO solutions under same condition, the RPO solutions can

suppress the frequency responses especially perturbed to large frequencies. The en-

hanced performance of the system with large number of TMDs can be explained as

the many MTMDs permits more number of TMDs incorporate in dissipating the

vibration energy.

3.4.3 Approximate solution for LMTMDγζ

So far in this study we have considered various LMTMD configurations, of which

optimal solutions cannot be simply described for the numerous number of design

variables. LMTMDγζ , however, can be determined its optimal condition with just

three design variables such as two variables for frequency ratios γ1 and βγ , and a

fictitious damping ratio ζo. It is fruitful to provide the approximate design equa-

tion, because LMTMDγζ shows its control performance similar to the best optimal

LMTMDo.

Figure 3.13 shows the parametersm1,m2 and ζo for various mass ratio and number

of TMDs for optimal LMTMDγζ . As can be seen from the figure, the slopes m1 and

m2 tend to decrease with increasing the number of TMDs and the mass ratio, and

the fictitious damping ratio ζo decreases requiring exponentially decreased damping

per unit TMD. In order to provide simple and useful ways, the regressive formula

are established which provide sufficient agreement with the optimal solutions. The
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(a) Slope m1

(b) Slope mN
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(c) Optimal fictitious damping ratio ζ∗o

Figure 3.13: Shape parameters for optimal LMTMDγζ

formula are given by

m1 ≈ p0 + p1µT + p2exp[−p3(N − 1)] (3.38a)

m2 ≈ p0 + p1µT + p2exp[−p3(N − 1)] (3.38b)

ζo ≈
√
µT (4 + 3µT )(1 + µT )

2(2 + µT )
exp

[
p0µ

p1
T (N − 1)p2

]
(3.38c)

The optimal frequency ratios can be calculated by following formula [see Figure 3.14:

γ∗1 =
ζ∗t −m1γ

∗
t

ζo −m1
(3.39a)

γ∗N =
ζ∗t −m2γ

∗
t

ζo −m2
(3.39b)
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Figure 3.14: Graphical representation on spatial distribution of LMTMDγζ

Equations (3.38) and (3.39) can be useful in designing optimal LMTMDγζ . The

other factors can be determined by some equations. The design parameters and re-

gressive coefficients are summarized in Table 3.2.

Table 3.2: Design parameters and regression coefficients

Parameter
Coefficient

R2

p0 p1 p2 p3

m1 [Eq. (3.38a)] 0.5742 2.3400 0.2812 0.2806 0.9723

mN [Eq. (3.38b)] -0.4306 0.7147 0.0469 0.2153 0.9414

ζ∗o [Eq. (3.38c)] -0.4948 -0.0458 0.4395 - 0.9919
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3.5 Stroke Consideration and Design Procedure

3.5.1 Stroke consideration

For design purposes it is desired to determine the maximum stroke of TMDs to encase

the moving masses, especially when designing MTMD because the required damping

exponentially decreases with increasing the number of TMDs that result in undesired

stroke requiring more space in its housing. Lin et al. (2010) developed a two-stage

design procedure, whereby considering both structural and TMD responses. In terms

of H∞ norm, it can be seen that limiting the maximum stroke of the MTMDs can

helps not only the purpose itself, but also decreasing the peak point of the FRF within

an appropriate weighting region. Such a trend was discussed in the study conducted

by Yamaguchi and Harnpornchai (1993), in which the identical damping ratio of

the MTMD have its optimum such that below the value, the maximum of the FRF

is governed by excessive TMD stroke, and above the value, the structural response

governs.

Figure 3.15a depicts the RMS displacement of main structure in its ordinate and

maximum of the RMS displacements of TMDs in its abscissa, comparing LMTMDo

and LMTMDγζ . As stated in the part of the performance comparison, both the control

performance and the maximum RMS displacement of the TMDs are similar. As for

the TMD stroke, the maximum RMS displacement rapidly increases with increasing

the number of TMDs, but the marginal increasing becomes decrease. Such a trend

is predictable when recalling the dependency between the number of TMDs and the

optimal damping ratios. In the design purpose, it is convenient to transform the

information on Figure 3.15b into another (N − µT ) space in a contour form. One

can use Figure 3.15b as a design contour for evaluating the control efficiency and for

limiting the maximum of TMD stroke.
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(a) Performance grid for LMTMDo and LMTMDγζ

(b) Design contour for LMTMDo

Figure 3.15: Performance and stroke grid for design
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3.5.2 Design procedure

This section is dedicated to demonstrate the design procedure for the case of paral-

lel type LMTMDs, each of which comprises a linear spring and a viscous damping

element. The following design procedure covers not only the case of designing a new

structure but also the case of mitigating the existing structures.

1. Determine the dynamic properties such as the structural mass ms, structural

damping coefficient cs, and structural stiffness ks. Those can be either assumed

appropriately or estimated from field measurements.

2. Evaluate the anticipated structural response, for instance the structural dis-

placement xs, and determine the performance level to be attained.

3. Determine the total mass ratio of the LMTMDs µT =
∑N

i=1 µi, which directly

yields the total mass of the LMTMDs, with the help of the relationship between

the total mass ratio and the controlled structural RMS response normalized to

the uncontrolled one.

4. Select the optimal frequency ratios and the optimal damping ratio for the con-

figuration type and the number of TMDs what you prefers. Do not struggle

with choosing the total number of TMDs in terms of performance, since it does

not affect vibration mitigation level. However, keep in mind that increasing

the number of TMDs yields decreasing the optimal damping ratios, demanding

larger stroke limitations.

5. Check whether the stroke of LMTMDs chosen at the previous step exceeds the

prescribed stroke limitations. If exceeds, two solution could be imposed: Reduce

the number of TMDs, or make the chamber to absorb the excessive strokes.
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3.6 Concluding Remarks

This study developed a framework for design of linear multiple tuned mass dampers

(LMTMDs) in order to provide general guidance for their configuration, robustness,

and stroke limitation issue. The optimal parameters for various LMTMD configu-

rations were first investigated with considering the constraints on frequency ratios,

damping ratios, mass distributions and combinations thereof. Next, two different op-

timization schemes were investigated for generality in design: Nominal Performance

Optimization (NPO) and Robust Performance Optimization (RPO). In order to en-

able designers to consider the performance evaluation and the stroke limitations simul-

taneously during design, this study provided contour maps for the RMS displacement

of the main structure and the largest RMS displacement of LMTMDs.

The key features can be drawn as follows:

1. It is demonstrated that LMTMDo is found to be most efficient in terms of

suppressing the structural vibration, but some configurations like LMTMDγ ,

LMTMDζ and LMTMDγζ can also exhibit their control performance similar

to LMTMDo. Two other configurations LMTMDµ and LMTMDµζ , however,

not only deteriorate their control efficiency but also require large amount of

damping coefficient compared to other MTMDs, especially when the number of

TMDs becomes larger.

2. The optimal parameters such frequency ratios and damping ratios of MTMDs

are found under the condition that the main structure is excited by a ground

motion of stationary zero-mean white-noise. From NPO solution, it was found

that the optimal parameters of MTMDs extend that of the single TMD.

3. From the backbone curve predicted by the classical solution of Warburton

(1982), the optimal frequency range tends to span further as the number of
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TMDs increases, and as the damping ratio per an unit TMD becomes smaller.

4. The RPO solution was found, which helps take into account of the perturbation

of the natural frequency of main structure. Compared to the NPO solution, the

RPO solution provides more wider frequency spans and decreased damping

ratio. Based on the comparative analysis in the frequency domain, the RPO

based solution is shown to provide more robust solution.

5. Considering the analyzed result that the LMTMDγζ exhibits the performance

comparable to the optimal solution LMTMDo with much reduced design vari-

ables, this study proposed an approximate solution for LMTMDγζ was pro-

posed.
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Chapter 4

Frictional Multiple Tuned Mass
Dampers

This study investigates optimal design and analysis of frictional multiple tuned mass

dampers, in which the Coulomb-type frictional force is incorporated in either purpose-

fully or unintentionally. Four of the feasible FMTMD configurations are formulated

and comparatively analyzed, each of which is constrained in a way of linearly dis-

tributed frequency ratios, uniformly distributed coefficients of friction (COFs), and/or

combinations thereof. An approximate design formula is developed for FMTMDγτ

configuration formed under the constraint of frequency ratios and COFs. In order to

cope with the difficulties inherent in nonlinearity of the system, this study adopted

the statistical linearization technique, which enables the complicated nonlinear force

terms to be linearized in statistical sense. Some miscellaneous but important consid-

erations such as stroke limitations and design procedure were also aptly included.
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4.1 Introduction

Tuned mass damper (TMD) is a passive control device, which help dampen the dy-

namic response of primary structures efficiently. In principle, TMD attracts vibration

energy of the main structure by resonance, and dissipates the energy through built-in

energy dissipation devices. Because of its novelty for controlling vibration, a vari-

ous types of TMDs have been extensively studied and investigated among numerous

researchers during the past several decades.

Multiple tuned mass damper (MTMD) is a system comprising multiple units of

TMDs, often each TMDs having different dynamic characteristics. In the early stage

of research, MTMDs with viscous dampers were studied due to its simplicity and

clarity in a physical sense. For instance, linear MTMDs with equally spaced natural

frequencies and each of which having equal viscous damping constant were studied

by Xu and Igusa (1992) based on an asymptotic analysis, and it was shown that such

a linear MTMD is effective in reducing the response of the main structure. Joshi and

Jangid (1997) and Jangid (1999) found the optimal parameters of linear MTMDs for

undamped and damped primary structure, respectively.

MTMDs with equal damping ratios and equally spaced natural frequencies were

also investigated by various researchers including Yamaguchi and Harnpornchai (1993),

Abé and Fujino (1994), Kareem and Kline (1995) and Jangid and Datta (1997). Until

recently, various studies have been conducted for the linear MTMDs with relaxed

constraints, such as Igusa and Xu (1994), Li (2002), Hoang, Fujino, and Warnitchai

(2008), Zuo (2009), Li and Ni (2007), Fu and Johnson (2010), and Yang, Sedaghati,

and Esmailzadeh (2015a). The main differences in these papers involve 1) considered

excitation, such as harmonic forcing function and the ground acceleration, 2) the ob-

jective function, such as the RMS response of the primary structure or the maximum

of the frequency response and 3) employed optimization strategies.
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Despite its simplicity and effectiveness, linear TMDs have some drawbacks. One

of the most significant drawbacks is that the incorporated dashpot is prone to lose

its performance. With repetitive operations during a long lifetime, the dashpot would

defeat its function caused by increasing of temperature of the damper fluid, and would

lose its performance because of risk caused by liquid leakage.

To overcome these drawbacks, some researchers tried to incorporate the Coulomb-

type force into the TMD as an energy dissipative mechanism. Inaudi and Kelly (1995)

proposed a nonlinear TMD that uses friction dampers acting transversely to the

direction of the motion of the mass damper as a means for energy dissipation. Based

on the statistical linearization procedure that can effectively simplify for computing

the RMS response of the system, they showed that, when appropriately designed, the

nonlinear system achieves the same level of performance that an ideally linear TMD

would provide.

Carpineto et al. (2014) and Wang (2011) developted Nonlinear TMDs that dis-

sipates the input energy by frictional hysteretic mechanism. Wang (2011) proposed

a nonlinear TMD, in which Coulomb-type frictional dissipating mechanism is ac-

commodated, and examined its feasibility through numerical simulations. Based on

the evaluation of frequency response function (FRF) with the harmonic balancing

method, the optimal design parameters of the nonlinear TMD were obtained by min-

imizing the magnitude of the real part of the real FRF. Wang (2011) concluded that

the nonlinear TMD proposed by the author can outperform a common linear TMD

in machining stability improvement.

Rüdinger (2007) investigated the performance of TMDs with nonlinear viscous

damping elements. In calculating the RMS displacement of the main structure, the

author employed statistical linearization method. It was shown from this study that

the optimal damping parameter values for the nonlinear TMD depend on the dis-

placement magnitude and excitation intensity, in constrast to the case of a linear
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TMD. However, the response magnitude is relatively insensitive to the value of the

damping parameters of the mass damper.

Alexander and Schilder (2009) explored the performance of a nonlinear TMD,

which is modeled as a two DOF system with a cubic nonlinearity. The numerical

results obtained, however, were negative since the TMD with a cubic nonlinearity

and constant damping ratio does not provide an improvement over an optimal linear

TMD.

Gewei and Basu (2010) investigated the effectiveness of the nonlinear tuned mass

dampers in which dry friction force is employed. They adopted harmonic solution and

statistical linearization to calculate the vibrational response and found the optimal

friction coefficient of friction (COF) of TMDs. It was found from this research that

the optimal friction coefficient depends on the response of the TMD which is in turn

almost proportional to the intensity of the excitation.

This study seeks to provide optimal solutions for the four practically feasible

FMTMD configurations: 1) no constraint either on the frequency ratios or on the

coefficient of friction (COF) imposed; 2) the frequency ratios are linearly distributed

and equally spaced; 3) the COFs are uniformly distributed and identical; 4) the

frequency ratios are equally spaced and the COFs are identical. To cope with the

difficulties inherent in nonlinearity of the problem, this study adopted the statistical

linearization technique, which enables the complicated nonlinear force terms to be

linearized in a statistical sense. Some miscellaneous considerations such as stroke

limitations and design procedure were aptly included.
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Figure 4.1: Structure-FMTMD system

4.2 Model Formulation

4.2.1 Governing equations of motion

Consider a system comprised of a primary structure and N units of auxiliary mass,

each of which is connected with a linear spring and an energy dissipation element

in parallel (see Figure 4.1). The structure-MTMD system can be represented as the

following differential equations:

(ms +mT )ẍs +
N∑
i=1

miẍi + csẋ+ ksx = fs (4.1a)

mi(ẍs + ẍi) + kixi + gi = fi i = 1, · · · , N (4.1b)

where ms, cs and ks are the mass, damping constant and spring constant of the

primary structure; mi and ki are the mass and spring constant of the i-th TMD;

N is the number of TMDs; gi is a dissipation force arising from a relative motion

of contacting surface between the primary structure and the i-th TMD; mT is the

total mass of TMDs calculated by
∑N

i=1mi; xs is the displacement of the primary

structure, and xi is the relative displacement between the i-th TMD and the primary
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Figure 4.2: Idealized Coulomb-type frictional force

structure; A dot notation signifies a derivative with respect to time t; The external

force exerted on the primary structure and on the i-th unit of TMD are denoted as

fs, and fi, respectively.

If the whole system is excited by a zero white-noise base acceleration, each of the force

terms associated the i-th unit of TMD, fi, is zero and that on the primary structure,

fs, is defined as −(ms +mT )üg, where üg is the ground acceleration with a constant

spectral intensity Süg , i.e.,

E[üg(t)üg(t+∆t)] = 2πSügδ(∆t), (4.2)

where E[·] is an expectation operator and δ(·) is the Dirac-delta function.

The frictional force will be assumed as Coulomb-type, and the force term gi can

be modeled as shown in Figure 4.2. Thus

gi = gi(ẋi) = gio sgn(ẋi) = τimig sgn(ẋi) (4.3)

where gio is the characteristic frictional force for the i-th TMD, τi is the coefficient

of friction (COF), and sgn(·) denotes a signum function.
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Dividing Eqs. (4.1a) and (4.1b) by the mass of the primary structure ms and that

of the i-th TMD respectively yields the equations

(1 + µT )ẍs +
N∑
i=1

µiẍi + 2ζsωsẋ+ ω2
sx = −(1 + µT )üg (4.4a)

ẍs + ẍi + gi/mi + γ2i ω
2
sxi = 0 i = 1, · · · , N (4.4b)

where the normalized terms µi and γi are the mass ratio of the i-th TMD (i.e. the

ratio between the mass of the i-th TMD and that of the main structure), and the

frequency ratio of the i-th TMD (i.e. the ratio between the frequency of the i-th TMD

by itself and that of the main structure) given by

µi =
mi

ms
, (4.5a)

γi =
ωi

ωs
=

√
ki
mi

√
ms

ks
=

√
ki
ks
µ
−1/2
i (4.5b)

and µT is the ratio of the total mass given by
∑N

i=1 µi.

A convenient reformulation of the equations of motion can be suitably made by

replacing the associated terms with non-dimensional variables. First, xs and xi can

be non-dimensionalized by normalizing them to the RMS displacement of the un-

controlled structure xref . With the help of the theoretical results for the stochastic

response of a SDOF system excited by a white-noise stationary process (Lutes and

Sarkani, 2004), the RMS displacement of the uncontrolled system can be calculated

by

xref =

√
πSüg

2ζsω3
s

. (4.6)
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Further, introducing non-dimensional displacements ys = xs/xref and yi = xi/xref ,

and a time scale to = ωst, the equations of motion can be non-dimensionalized as

follows:

(1 + µT )y
′′
s +

N∑
i=1

µiy
′
i + 2ζsy

′
s + ys = −(1 + µT )w

′′
g (4.7a)

y′′s + y′′i + ψi + γ2i yi = 0 i = 1, · · · , N (4.7b)

where a prime notation denotes the derivation with respect to the non-dimensional

time to, and w
′′
g is the non-dimensionalized ground acceleration exerted on the primary

structure with its spectral intensity of

Sw′′
g
=

Süg

x2refω
3
s

=
2ζs
π
. (4.8)

And the non-dimensionalized friction force term ψi is written as follows:

ψi = ψi(y
′
i) =

gi(ẋi)

miω2
sxref

= ηi sgn(y
′
i) (4.9)

where

ηi =
gio/µi

msω2
sxref

=
1

ω2
sxref/g

τi. (4.10)

The matrix equation of motion for the combined system with N + 1 degree-of-

freedoms can be consequently derived as follows:

My′′ + Cy′ +Ky + ψ = fw′′
g (4.11)
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where y = [ys, y1, · · · , yN ]T, ψ = [0, ψ1, · · · , ψN ]T, f = [−(1 + µT ), 0, · · · , 0]T and

M =


1 + Σµi µ1 · · · µN

1 1 · · · 0
...

...
. . .

...

1 0 · · · 1

 , (4.12a)

C =


2ζs 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , (4.12b)

K =


1 0 · · · 0

0 γ21 · · · 0
...

...
. . .

...

0 0 · · · γ2N

 . (4.12c)

4.2.2 FMTMD configurations

This study considers four of feasible MTMD configurations: FMTMDo is a config-

uration on which no constraint for the frequency ratios or the COFs is imposed;

FMTMDγ is the case where the frequency ratios are linearly distributed; FMTMDτ

is the case where the COFs are uniformly distributed; FMTMDγτ is the case in which

the frequency ratios and the COFs are distributed linearly and uniformly, respectively.

For all of these configurations, the stiffness of each TMD is presumed to be the same.

These FMTMD configurations are summarized in Table 4.1.
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Spring constraint uniformly distributed

Given that the spring constants of MTMD are uniformly distributed (that is, the

stiffness of each TMD is identical), the mass ratio of the i-th TMD is written in

terms of the total mass ratio µT and the frequency ratios γi.

If the spring constant of each TMD is identical to ko, then Eq. (4.5b) becomes as

follows:

µi =
ko
ks
γ−2
i =

γ−2
i

Σγ−2
i

µT (4.13)

where ks is the stiffness of the primary structure.

Then, adding up all the mass ratios of Eq. (4.13) gives the following expression:

ko =
µT

Σγ−2
i

ks. (4.14)

Substituting Eq. (4.14) into Eq. (4.13) gives the expression of µi written in terms of

the frequency ratios γi and a predetermined total mass ratio µT as follows:

Table 4.1: Constraints for considered LMTMD configurations

Configuration
Constraints

Masses
Frictional

coefficients

Spring

constants

Frequency

ratios

FMTMDo - - U† -

FMTMDγ C† - U L†

FMTMDτ - U U -

FMTMDγτ C U U L

†: U = Uniformly distributed, C = Constrained and L = Linearly

distributed.
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µi =
γ−2
i∑N

i=1 γ
−2
i

µT i = 1, · · · , N. (4.15)

Eq. (4.15) implies that the mass ratios of the TMDs can be completely replaced

by the frequency ratios. Accordingly, if no additional constraint is imposed upon a

configuration just as FMTMDo, the associated design vector γd is given as γd =

[γ1, · · · , γN ]T.

Frequency ratios linearly distributed

In the case that the frequency ratios are linearly distributed (that is, those are equally

spaced), the frequency ratio of the i-th TMD for the constraint is expressed as follows:

γj = γ1 +
j − 1

N − 1
βγ for j = 2, · · · , N (4.16)

Note that the frequency ratios can be determined by the first frequency ratio, and

the bandwidth determined as βγ = γN − γ1. Thus under the constraint for linearly-

constrained frequency ratios, the associated design vector for frequency ratios γd is

given by

γd = [γ1, βγ ]
T (4.17)

and the remained frequency ratios are determined by Eq. (4.16).

Recalling the Figure 3.2 that graphically represents the aspects of the constraint

for linearly-constrained frequency ratios, the masses of the TMDs are found to be

densely distributed in the heavy side, as can be seen by inspecting Eq. (4.15) that

the mass ratio is inversely proportional to the square of the frequency ratio.
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Frictional coefficients uniformly distributed

Given that the nonlinear force only attributes the exertion force and the force is

exerted by a friction arises from the TMD and the main structure with the extent of

same COF, the non-dimensionalized frictional force can be determined by following

expression:

ψi = ψi(y
′
i) =

1

ω2
sxref/g

τ sgn(y′i) i = 1, · · · , N (4.18)

where τ are the identical COF.

Compared to the frictional force defined by Eq. (4.3), the non-dimensional force

is independent on the TMD parameters including its mass.

4.2.3 Statistical linearization

One attractive method of solving stochastic nonlinear differential equations is a sta-

tistical linearization which can replace a set of the nonlinear equations by a set of

linear ones that is equivalent in a statistical sense. Some theoretical aspects and ap-

plications of this technique are described in the literature (Roberts and Spanos, 2003;

Socha, 2005a,b). For the equations of motion for structure-FMTMD system described

as Eq. (B.23), the statistical linearization technique enables the nonlinear force term

ψ to be replaced with an equivalent term that minimizes the mean square of the error

E[ε2] (i.e. Euclidean norm) where the error ε is given by

ε = ψ − Ceqy′ (4.19)

where Ceq is a parametric matrix to be determined that minimizes the quantified

error term.

Under the assumption of stationary Gaussian excitation, a procedure for min-

imizing the error based on the Euclidean norm falls into an explicit form of the
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(a) ψi (b) ∂y′
i
ψi

Figure 4.3: Normalized frictional force ψi and its derivative ∂y′iψi

parametric matrix Ceq. With applying the first order necessary condition for opti-

mality, the parametric matrix can be expressed by the following simple expression

(details are supplemented with Appendix B).

ceqi+1 = E[∂y′iψi] = E

[
∂ψi

∂y′i

]
i = 1, · · · , N (4.20)

where ψi is the nonlinear force of the i-th TMD, and ∂y′iψi denotes its partial deriva-

tive with respect to the non-dimension velocity y′i. The normalized Coulomb-type

frictional force ψi and its derivative ∂y′iψi are idealistically depicted in Figure 4.3. It

should be noted that ceq1 = 0 as the first element of the nonlinear vector ψ is null [see

its definition defined by Eq. (4.9)].

Further, under the assumption that the responses of the equivalent stationary

system are stationary zero-mean Gaussian processes, the relative non-dimensional

velocity of the i-th TMD, y′i, also becomes Gaussian with corresponding variance,

say σy′i . Substituting the partial derivative of the friction force and using the sifting

property of the Dirac delta function, the equivalent damping element ceqi+1 can be

consequently evaluated. Connected with the equivalency of the equivalent damping

coefficient and its normalized form, Eq. (4.20) can be rearranged into the following
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form:

ceqi+1 = 2γiζ
eq
i =

√
2

π
ηi

1

σy′i
. (4.21)

Rearranging Eq. (4.21) in terms of the design variable, gio or τi gives:

ηi =
gio/µi

msω2
sxref

=
τi

ω2
sxref/g

=
√
2πγiζ

eq
i σy′i (4.22)

Hence we have a equivalent linear matrix Ceq comprised of the equivalent force term,

so that the solution obtained from the linear MTMD part can be adapted.

The matrix equation Eq. (B.23) can be rewritten in terms of equivalent linearized

system by substituting the statistically linearized term into the nonlinear vector as

follows:

My′′ + (C + Ceq)y′ +Ky = fw′′
g (4.23)

where the matrices M , C and K are previously defined as Eqs. (4.12) and the equiv-

alent damping matrix Ceq is defined as the comprise of the equivalent terms defined

by Eq. (4.21) as follows:

Ceq =


0 0 · · · 0

0 ceq2 · · · 0
...

...
. . .

...

0 0 · · · ceqN+1

 (4.24)

With introducing a non-dimensional state vector z = [yT, y′T]T, a first-order state-

space model can be formulated as follows:

z′ = Az +Bw′′
g (4.25)
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where the corresponding matrices A and B are given by

A =

 O I

−M−1K −M−1(C + Ceq)

 , (4.26a)

B =

 O

−f

 . (4.26b)

Note that the equivalent damping matrix of the equivalent linear system consists of

the non-dimensionalized relative velocities of TMDs [see Eq. (4.21)], and the relative

velocities can be evaluated upon a determined system property [see Eq. (4.25)]. Hence,

it is necessarily required to assume the initial system properties and to iterate the

circumstances as the appropriate tolerance to be minimized.

If the external loading w′′
g is a steady-state stationary white noise with its spec-

tral strength Sw′′
g
as assumed previously, the covariance matrix Q = E[zzT] can be

obtained by solving the following Lyapunov equation (Lutes and Sarkani, 2004):

AQ+QAT + 2πSw′′
g
BBT = O. (4.27)

4.3 Optimization Strategies

The response quantities of interest is the RMS displacement of the controlled main

structure normalized to that of the uncontrolled one, σys . Attributed to its definition,

the non-dimensional displacement of main structure σys would be in a range of zero

to unity. Also it can be interpreted as a quantity for control efficiency such that σys

is zero if the TMD completely suppress the vibration of main structure, and is unity

when the TMD has no effect.

The mathematical description of the response of quantity can be established as

follows:
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σ2ys = E[y2s ] = E[(sTz)TsTz] = tr[SQ] (4.28)

where tr[·] is a trace operator, s = [1, 0, · · · , 0]T is the weighting vector corresponding

to sifting the structural displacement, and S is the weighting matrix which can be

calculated by S = ssT.

Then the optimization problem is formulated as:

minimize
γd, ζd

J = σys

subject to γd ∈ Ωγ , ζd ∈ Ωζ (4.29)

where γd and ζd are the design variable vectors defined in the previous section that

corresponds to appropriate constraints, and Ωγ and Ωζ are the feasible regions for γd

and ζd, respectively. Here, the feasible regions Ωγ and Ωζ were set in a way that the

frequency ratios γi, the damping ratios ζi, the bandwidth of frequency ratio βγ and

the fictitious damping ratio ζo are required to be non-negative.

In the optimization process, an initial guess of the design variables affects the

number of function evaluations to find the solution. One could provide an initial

point by adapting the classical solutions for STMD, for example, those proposed by

Warburton (1982):

γ∗t =

√
1 + µT /2

1 + µT
, (4.30a)

ζ∗t =

√
µT (1 + 3µT /4)

4(1 + µT )(1 + µT /2)
. (4.30b)

where γ∗t and ζ∗t are the optimal frequency ratio and damping ratio of the STMD, in

which an asterisk in superscript (∗) after a variable signifies that the variable is at its

optimum.
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The above Lyapunov equation can be efficiently solved by the well-established al-

gorithms, for instance the algorithm proposed by Bartels and Stewart (1972), which

is implemented in a commecial program such as MATLAB®. In the optimization pro-

cedure, this study adapted an iterative method for solving a sequence of Quadratic

Programming Sub-problems subjected to a linearized constraint functions for its supe-

rior rate of convergence. At each iteration, to make an approximation of the Hessian

matrix, Broyden-Fletcher-Goldfarb-Shanno algorithm was adopted for its effective-

ness and good performance even for non-smooth optimization problems (Coleman

et al., 1999).

4.3.1 Set 1: FMTMDo and FMTMDγ

In the cases of FMTMDo and FMTMDγ , the optimal level of frictional force and

associated COF can be determined from the optimal solution of equivalent linear

system. Consider the first set of FMTMDo and FMTMDγ . The relationship between

the nonlinear force to be optimized and relevant equivalent linear terms is given by

Eq. (4.22), repeated here for convenience:

ηi =
√
2πγiζ

eq
i σy′i . (4.22)

One can see from the relationship that the nonlinear force is determined explicitly in

terms of the coefficients such as γi and ζi, and the normalized RMS velocity σy′i of

the equivalent linear system. And the expression for the nonlinear term is explicit,

since σy′i is not dependent on the nonlinear force ηi, but is determined by the param-

eters of the equivalent linear system, γi and ζi. Hence, seeking the optimal nonlinear

parameter ηi falls into finding the optimal parameters of linearized system, that can

be accomplished by the procedure used in LMTMD optimization.

The optimal friction force η∗i , hence, can be determined by both optimal parame-

ters γ∗i and ζeq∗i , and associated RMS velocity σy′i of the equivalent system by following
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expression:

η∗i =
√
2πγ∗i ζ

eq∗
i σ∗y′i

(4.31)

where the optimal parameters γ∗i , ζ
eq∗
i and σ∗y′i

can be obtained by the procedure used

in LMTMD optimization.

4.3.2 Set 2: FMTMDτ and FMTMDγτ

It becomes tedious to find the optimal solution for the set of FMTMDτ and FMTMDγτ .

In these cases, the optimal parameters are restricted in a way that all of the frictional

coefficient are of equal, so that constrained optimization scheme should be adopted.

Consider the first set of FMTMDτ and FMTMDγτ . The relationship between the

nonlinear force to be optimized and relevant equivalent linear terms is given by Eq.

(4.22), repeated here again for convenience:

τi
ω2
sxref/g

=
√
2πγiζ

eq
i σy′i (4.22)

As likely the previous set, the COF is determined explicitly in terms of the coeffi-

cients such as γi and ζi, and the normalized RMS velocity σy′i of the equivalent linear

system. The optimal COF τ∗i , hence, can be determined by both optimal parameters

γ∗i and ζeq∗i , and associated RMS velocity σy′i of the equivalent system.

In the case where the COFs are restrained to be identical, an additional constraint

should be applied as follows:

τ1 = τ2 = · · · = τN . (4.32)

Or equivalently, Eq. (4.32) can be rewritten in terms of normalized variables as follows:

γ1ζ
eq
1 σy′1 = γ2ζ

eq
2 σy′2 = · · · = γNζ

eq
N σy′N . (4.33)
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It should be also taken into account that the optimal frictional coefficient depends

on the optimal variables which can be found from the equivalent linear system. Hence,

the previous chapter for linear MTMDs can be employed in obtaining such optimal

variables. Since the optimal parameters are the ones under the linear assumption so

that they do not depend on the excitation level or the vibration level of the primary

structure, but the denumerator of the left hand side of the equation, xref depends on

the excitation level. As a result, the optimum of the frictional coefficient of the TMDs

also depends on the excitation level.

4.4 Results and Discussion

This section concerns numerical results including the features of the optimal param-

eters, the frequency responses of the system with optimized FMTMDs and input-

sensitivity analysis result. Further, an approximate solution for designing FMTMDγτ

is also considered. In the below, the main system is characterized by a damping ratio

of 1%, and the total mass ratio of the MTMDs is predetermined to be in the range of

1% to 10% at intervals of 1%, though in some cases the parameter is held to be 5%.

The number of TMD units are increased from one (i.e. single TMD) to ten.

4.4.1 Optimal parameters

Figure 4.4 depicts the optimal frequency ratios γ∗i and the optimal equivalent damping

ratios ζeq∗i in (γ− ζ) space, for a given total mass ratio of 5%. It follows that all cases

have the same optimal condition for single TMD of γ∗1 = 0.97 and ζeq∗1 = 0.11, which

corresponds to the well-established solution provided by Warburton (1982). From

the optimal solution for single TMD, the bandwidth of the frequency ratios becomes

wider and the optimal damping ratios tend to decrease with increasing of the number

of TMD units.
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(a) FMTMDo (b) FMTMDγ

(c) FMTMDτ (d) FMTMDγτ

Figure 4.4: Optimal frequency ratios and equivalent damping ratios for FMTMDs

(µT = 5%)
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In the case of FMTMDo on which no restrictive assumption is imposed, the op-

timal tuning condition is achieved when the frequency ratios are not evenly spaced,

but are densely covered around the natural frequency of primary structure. Also it

appears that TMDs located nearby the natural frequency of primary structure tend

to require lower damping ratios than other TMDs (see Figure 4.4a).

In FMTMDγ , it is observed that the optimal parameters are gradually deviated

from those of FMTMDo with increasing of the the number of TMDs. Due to the

constraint that the frequency ratios are evenly spaced, some TMDs are compulsory

located at the end of the frequency bandwidth (see Figure 4.4b). Under the condition,

the TMDs located at the end of the bandwidth requires relatively large damping

compared to the unconstrained condition.

There is no considerable difference between FMTMDτ and FMTMDγτ except

for the distribution of the frequency ratios. However, when comparing these two

configurations to FMTMDo, the optimal equivalent damping ratios are distributed in

a inconsistent way that the TMDs with high frequency ratio tends to dampen highly.

This trend can be explained as follows: Under the constraint on the identical COF,

multiplied value of the frequency ratio, equivalent damping ratio and its normalized

RMS velocity of the i-th TMD is restrained to be a constant for all TMDs, as can be

seen from Eq. (4.22). Of the components, though not explicitly, the TMD unit with

lower equivalent damping ratio might experiences large velocity, constituting their

multiplication to be almost constant. Hence, under the constraint, ζeq∗i σ∗y′i
would

be inversely proportional to the frequency ratio γi, and ζeq∗i also become inversely

proportional to the one.

Figure 4.5 delineates the spatial distribution of optimal parameters such as fre-

quency ratios and equivalent damping ratios under the predetermined total mass ratio

µT in a range of 1 to 10% with an interval of 1%. In this figure, the solid line with

circle marks on the very acute vortex represents a design curve for single TMD pro-
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(a) FMTMDo (b) FMTMDγ

(c) FMTMDτ (d) FMTMDγτ

Figure 4.5: Spatial representation for optimal frequency ratios optimal equivalent

damping ratios of FMTMDs
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posed by Warburton (1982). Each configuration exhibits a similar pattern showed by

4.5 within every layer of a predetermined mass ratio, involving the patterns that the

optimal frequency ratio becomes wider and the damping ratio becomes decreasing as

the number of TMDs becomes larger. With regard to the effect on the total mass ratio

µT , the margin of decreasing the damping ratio becomes larger with increasing the

mass ratio. Moreover, it can be found that the damping ratio becomes asymptotically

smaller, implying the existence of some convergence lines as the number of TMDs

under a sufficiently large number. The patterns in the γ − ζ domain explained in the

above are also observed in all the considered mass ratios for each of MTMD: while the

FMTMDo forms a widening funnel shape with circular sector, the FMTMDγ forms

similar pattern with irregular circular sector, and the cases of constrained damping

coefficients such as FMTMDτ and FMTMDγτ form funnel shapes with triangular

sector.

The optimal frequency ratios γ∗i and optimal normalized friction forces η∗i are

depicted in Figures 4.6, in which the optimal friction force is transformed from Eq.

(4.22). First of all, the backbone curve that is valid for the SFTMD can be determined

by following procedure. The optimal frequency ratios and the optimal equivalent

damping ratio for the STMD are proposed by Warburton (1982). Some characteris-

tics are inherited from those of Figure 4.5, but the decreasing trend with increasing

the number of TMDs becomes much steeper compared to those of optimal equivalent

damping ratios. Such an aspect attributes to the feature of the relationship between

the frictional force and the optimal linear properties expressed in Eq. (4.22), in which

the optimal frictional force is not only proportional to the optimal equivalent damp-

ing ratio but also inversely proportional to the relative velocity of the TMD. As the

relative velocity would be increase with decreasing the damping ratio for the increas-

ing of the number of TMD, the optimal frictional force decreases rapidly caused by

both the decreasing of damping ratios and the increasing of relative TMD velocity.
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(a) FMTMDo (b) FMTMDγ

(c) FMTMDτ (d) FMTMDγτ

Figure 4.6: Spatial representation for optimal frequency ratios optimal normalized

frictional force of FMTMDs
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(a) FMTMDo (b) FMTMDγ

(c) FMTMDτ (d) FMTMDγτ

Figure 4.7: Spatial representation for optimal frequency ratios optimal COFs of FMT-

MDs
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The optimal frequency ratios and optimal COF are depicted in Figures 4.6, in

which the optimal friction force is, further, transformed from Eq. (4.22). Again, the

solid line with circle marks on the very acute vortex converted from the key equation

and a design curve proposed by Warburton (1982). Key aspects of this figure can be

found in Figures 4.7c and 4.7d that the spatial distribution of optimal parameters for

given mass ratio lie on straight lines with uniform COF, for which the approximate

solution would be provided in the following next section.

4.4.2 Frequency responses with optimal parameters

To illustrate the efficiency of the considered MTMDs, we considered a primary struc-

ture with its damping ratio of 1% and MTMDs of 10 units with its total mass ratio

of 5%. Figure 4.8 compares the frequency response functions (FRFs) for the displace-

ment of primary structure with the response of the main mass alone. Although some

minor differences in their shapes, all LMTMDs with considered configurations can

reduce amplitudes effectively, of which frequency responses show N+1 well-separated

local modes.

Figure 4.8a compares the FRFs for FMTMDo and FMTMDγ and no significant

difference was found. Also there is no considerable difference between FMTMDτ and

FMTMDγτ when comparing Figures 4.8b and 4.8c. Based on these comparisons, it can

be concluded that there is no considerable effect in performance when the constraint

on the frequency ratios is taken into account.

Compared to FMTMDo, Both FMTMDτ and FMTMDγτ differ in the way that

sharp peak appears at the low frequency with the following peaks gradually becoming

blunt as the frequency becomes higher (see Figures 4.8b and 4.8c). Such a feature

is ascribed to the constraint for identical COF, which would provide larger damping

force with heavier TMD with low frequency ratio. The difference between the FRFs

of FMTMDτ and FMTMDγτ is ascribed to the constraint for linearly distributed
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(a) FMTMDo and FMTMDγ

(b) FMTMDo and FMTMDτ

113



(c) FMTMDo and FMTMDγτ

Figure 4.8: Comparison of FRFs for various FMTMD configurations under the tar-

geted input level (µT = 5% and N = 10)

frequency ratios.

4.4.3 Input-intensity sensitivity analysis

Since nonlinear systems involving the structure-FMTMD system do not described

by an impulse response, the variation of the frequency responses caused by an input

level should be strictly considered. The frequency responses described in the preceding

subsection are valid only in a case that the external input strength is corresponding

to the targeted or designed one. Although a specific condition is designed to meet a

targeted performance level in a specific load level, the frequency responses for other

level of excitation differ significantly, often yielding deteriorated performance.

In the below, an input-sensitivity analysis was extensively carried out. To illustrate

the efficiency of the considered MTMDs, we considered a primary structure with its
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damping ratio of 1% and MTMDs of 5 units with its total mass ratio of 5%. Two con-

figurations FMTMDo and FMTMDτ are considered. Once the non-dimensionalized

optimal parameters were determined under the input level of Sw′′
g
, the optimized

structure are subjected to varying strength of input.

Figures 4.9 depict the FRFs of the considered FMTMDs under the input loadings

are in a range from 0.5 to 1.5 with its interval of 0.1, and those for the cases of 0.5,

1.0 and 1.5 are highlighted with the colors of blue, purple and red, respectively. It

can be seen from these figures that once the FRFs under a low level of input strength

would blunt appearing the original structural mode becomes flatten with increasing

the loading level to 0.5. Further increased loading to the originally-targeted loading

enables the TMDs to facilitate in a active way until the targeted input strength. As the

input level further increases beyond the targeted input level, the equivalent damping

ratios decreases compared to those for targeted one, causing undesired and frivolous

motions of TMDs resulting in their FRFs to be more increased peaks and deep valleys,

which might be unhelpful in controlling the main structure. Comparing Figures 4.9a

and 4.9b, FMTMDτ , a configuration that the COF is comparably restricted to be

identical, appears more detrimental compared to FMTMDo. The reason for the trend

is ascribed to the irregular pattern of the damping ratio as shown in the preceding

section on the optimal parameters.

The input-dependent frequency responses would be problematic when the FRFs

are concerned with loading input. Figures 4.10a and 4.10b depict the FRFs of con-

sidered FMTMDso under the various input loadings that is consistent with Figure

4.9, but the loading scale attributes. As in Figure 4.9, the figure plots the cases in

a range from 0.5 to 1.5 with its interval of 0.1, and those for the cases of 0.5, 1.0

and 1.5 are highlighted with the colors of blue, purple and red, respectively. It can

be seen that the aspects of the FRFs could be more problematic if the loading level

exceeds the targeted level. As the input level further increases beyond the targeted
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(a) FMTMDo

(b) FMTMDτ

Figure 4.9: Sensitivity of normalized frequency response functions (µT = 5% and

N = 5)
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input level, the equivalent damping ratios decreases compared to those for targeted

one, causing undesired and frivolous motions of TMDs resulting in their FRFs to be

more increased peaks and deep valleys, which might be unhelpful in controlling the

main structure.

In order to concern the robustness issue with varying input strengths, we graph-

ically plotted the relationship between the input level normalized to the targeted

loading strength and the maximum of the FRFs. Figures 4.11a and 4.11b depict the

input-sensitivity of the peak of maximum FRF of FMTMDo and FMTMDτ , respec-

tively. In these plots, we can found an interesting feature such that under a slightly

low level of the input strength, say in a range of 0.4 to 1.0 for two units of FMTMDo

configuration, helps suppressing the peak of the FRF.

4.4.4 Approximate solution for FMTMDγτ

So far in this study we have considered various FMTMD configurations, of which

optimal solutions cannot be simply described for the numerous number of design

variables. FMTMDγτ , however, can be determined its optimal condition with just

three design variables such as two bound frequency ratios γ1 and βγ , and a COF τ .

Figure 4.12 shows the parametersm1,m2 and τi for various mass ratio and number

of TMDs for optimal FMTMDγτ . As discussed in preceding sections, parameters γ1

decreases and increases βγ with increasing the number of TMDs and the mass ratio,

indicating the spread of frequency bandwidth, and the COF τ decreases requiring

exponentially decreased damping per unit TMD. In order to provide simple and useful

ways, the regressive formula are established, which provide sufficient agreement with

the raw data. The formula are given by

m1 ≈ p0 exp(−p2 ∗ µp3T ) (4.34a)

m2 ≈ p0 exp(−p2 ∗ µp3T ) (4.34b)
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(a) FMTMDo

(b) FMTMDτ

Figure 4.10: Sensitivity of frequency response functions (µT = 5% and N = 5)
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(a) FMTMDo

(b) FMTMDτ

Figure 4.11: Sensitivity of frequency response functions (µT = 5% and N = 5)
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(a) Slope m1

(b) Slope mN
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(c) Optimal normalized COF τi/(ω
2
sxref/g)

Figure 4.12: Shape parameters for optimal LMTMDγζ

τi/(ω
2
sxref/g) ≈ p0 exp[p1N

p2µp3T ] (4.34c)

Equations. (4.34a) and (4.34b) can be useful in designing optimal FMTMDγτ . The

other factors can be determined by some equations. If more fitter equation is needed,

one can use the following higher order equation. The design parameters and regressive

coefficients are summarized in Table 4.2.

Table 4.2: Design parameters and regression coefficients

Parameter
Coefficient

R2

p0 p1 p2 p3

m1 [Eq. (4.34a)] 38.98 7.40 0.10 - 0.9872

mN [Eq. (4.34b)] -5547 13.78 0.07 - 0.9883

τi/(ω
2
sxref/g) [Eq. (4.34c)] 1.423 -4.337 0.047 0.049 0.9631

121



Figure 4.13: Graphical representation on spatial distribution of FMTMDγτ

γ∗1 = γ∗t +
τ∗i − τ∗t

m1(ω2
sxref/g)

(4.35a)

γ∗N = γ∗t +
τ∗i − τ∗t

mN (ω2
sxref/g)

(4.35b)

4.5 Design Procedure

This section is dedicated to demonstrate the design procedure for the case of parallel

type MTMDs, each of which comprises a linear spring and a viscous damping element.

The following design procedure covers not only the case of designing a new structure

but also the case of mitigating the existing structures.

1. Determine the dynamic properties such as the structural mass ms, structural

damping coefficient cs, and structural stiffness ks. Those can be either assumed
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appropriately or estimated from field measurements.

2. Evaluate the anticipated structural response, for instance the structural dis-

placement xs, and determine the performance level to be attained.

3. Determine the total mass ratio of the MTMDs µT =
∑N

i=1 µi, which directly

yields the total mass of the MTMDs, with the help of the relationship between

the total mass ratio and the controlled structural RMS response normalized to

the uncontrolled one.

4. Select the optimal frequency ratios and the optimal damping ratio for the con-

figuration type and the number of TMDs what you prefers. Do not struggle

with choosing the total number of TMDs in terms of performance, since it does

not affect vibration mitigation level. However, keep in mind that increasing

the number of TMDs yields decreasing the optimal damping ratios, demanding

larger stroke limitations.

5. Check whether the stroke of MTMDs chosen at the previous step exceeds the

prescribed stroke limitations. If exceeds, two solution could be imposed: Reduce

the number of TMDs, or make the chamber to absorb the excessive strokes.

4.6 Concluding Remarks

This study provided a framework for design of frictional multiple tuned mass dampers

(FMTMDs), which can provide guidance about all aspects of the FMTMDs includ-

ing the MTMD configurations, issue on the robustness for loading-sensitivity, and

the stroke limitation issue. To this end, the optimal parameters of various FMTMD

configurations are investigated, of which constraints are such as the frequency ratios

and coefficient of friction.

The key features can be drawn as follows:
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1. The optimal parameters like frequency ratios and equivalent damping ratios of

MTMD, which are obtained from a statistical linearization technique, are found

under the condition that the main structure is excited by a ground motion of

stationary zero-mean white-noise.

2. From the backbone curve predicted by the classical solution of Warburton

(1982), the optimal frequency range tends to span further as the number of

TMDs increases, and the optimal equivalent damping ratio per an unit TMD

becomes smaller. The rate of increasing the span and decreasing the damp-

ing ratio is drastic when the total mass ratio is larger, showing insignificant

difference with a larger number of TMDs.

3. An input-sensitivity analysis was extensively conducted. It was shown that once

the FRFs under a low level of input strength would blunt appearing the orig-

inal structural mode becomes flatten with increasing the loading level to 0.5.

Further increased loading to the originally-targeted loading enables the TMDs

to facilitate in a active way until the targeted input strength.

4. As the input level further increases beyond the targeted input level, the equiv-

alent damping ratios decreases compared to those for targeted one, causing

undesired and frivolous motions of TMDs resulting in their FRFs to be more

increased peaks and deep valleys, which might be unhelpful in controlling the

main structure.

5. The approximate solution for FMTMDγτ was determined its optimal condition

with just three design variables such as two bound frequency ratios γ1 and βγ ,

and a COF τ .
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Chapter 5

Extreme Value Analysis for
Frictional MTMDs

This study addresses the characteristics of stochastic responses of a system incorpo-

rated with optimal frictional tuned mass dampers (FTMDs). First, with the aim of

finding the optimal parameters, a statistical linearization technique is employed, in

which a nonlinear force term was replaced with linearized one that is equivalent in

a statistical sense. In order to improve an accuracy for the estimation of the RMS

value of FTMD based on the statistical linearization, this study exploits a statistical

nonlinearization technique, which replaces nonlinear systems with a class of other

well-solved nonlinear systems. A correction factor that is defined as the ratio of RMS

displacement between nonlinear and linear system is proposed on the basis of the

result of statistical nonlinearization technique. This study further derived an explicit

formula for evaluating a peak factor for the frictional TMD. The correction factor

and the peak factor are examined with numerical simulations.
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5.1 Introduction

Tuned mass damper (TMD) is a passive control device that additionally attached

to a vibrating structure so as to dampen the structural vibration. In principle, a

TMD attracts vibration energy of the main structure into itself by resonance, and

dissipates it through built-in energy dissipation devices. Since its invention of Frahm

(1911), much effort was directed toward the design of a linear TMD that is connected

to the main structure with a spring and a viscous damper in parallel (Den Hartog,

1956; Warburton, 1982; Asami et al., 2002; Bisegna and Caruso, 2012). Moreover

incorporating such a linear dissipation device enables one to provide fruitful statistics

of the response relevant to reliability such as level crossing rates (Lutes and Sarkani,

2004; Newland, 2012).

Although various forms of nonlinearity are ubiquitous in nature, and it is usually

never welcomed in mechanical and structural engineering fields because of mathe-

matical complexity involved. Particularly in implementing linear TMDs, the viscous

element actually do display nonlinear behavior (Terenzi, 1999), which may lead to

undesired side effects such as being out of optimal condition. In order for designers

to accommodate such an undesired nonlinearity, several researchers investigated the

behavior of nonlinear TMDs (Rüdinger, 2006, 2007; Love and Tait, 2015).

In some cases, such a nonlinear dissipation mechanism is incorporated in an in-

tentional way in order to overcome some disadvantages of linear viscous elements, for

example, the loss of its dissipation performance over time caused by liquid leakage.

Inaudi and Kelly (1995) proposed a nonlinear TMD that uses friction mechanism as

energy dissipation sources. Wang (2011) proposed a nonlinear TMD that incorpo-

rates the Coulomb-type frictional dissipating mechanism, and examined its feasibility

through numerical simulations. Carpineto et al. (2014) examined the applicability

of nonlinear TMDs consisted of steel wire ropes, whose hysteretic behaviors can be
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described in terms of Bouc-Wen constitutive law.

Nonlinear differential equations that describe the above-mentioned problems are

much more challenging to solve than their linear counterparts. One attractive method

of solving the nonlinear differential equations is the statistical linearization which can

replace a set of the nonlinear equations by a set of linear ones that is equivalent in

a statistical sense. Some theoretical aspects of this technique including a variety of

applications are well described in the literature (Roberts and Spanos, 2003; Socha,

2005a,b).

In spite of convenience in its applicability, the statistical linearization may be

inaccurate in calculating the necessary responses. The inaccuracy can result from the

discrepancy between the equivalent linear system whose responses are presumed to

be Gaussian and the original one presumed to be non-Gaussian. Especially such a

discrepancy may lead to inaccurate estimation of the RMS displacement and relevant

peak values of the original nonlinear TMD, which may be of vital importance in

designing its accommodating chamber.

In order to minimize the discrepancy, Love and Tait (2015) employed the con-

cept of statistical nonlinearization to represent the nonlinear damping as amplitude-

dependent viscous dapming and predicted the RMS response of the structure-TMD

system. They obtained the probability density function for the TMD dispacement

and estimated the peak response distribution. However, more detailed study is still

necessary for the accuracy in estimation of RMS response and the peak response

distribution.

This study addresses the RMS response and the extreme value distribution for

the frictional tuned mass dampers (FTMDs). To predict more accurate peak distribu-

tion of TMDs, this study exploits the statistical nonlinearization technique, in which

nonlinear systems are replaced with a class of other nonlinear systems whose exact

solution have been already explicitly derived. A correction factor that is defined as the
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ratio of RMS displacement between nonlinear and linear system is also derived based

on the result of statistical nonlinearization technique. This study further derived an

explicit formula for evaluating a peak factor for the frictional TMD. The correction

factor and the peak factor are examined with numerical simulations.

5.2 FMTMD Optimization

5.2.1 Governing equations of motion

Consider a system comprised of a primary structure and N units of TMD, each of

which is connected with a linear spring and a nonlinear element in parallel (see Figure

4.1). The structure-MTMD system can be represented as the following differential

equations:

(ms +mT )ẍs +

N∑
i=1

miẍi + csẋ+ ksx = fs (5.1a)

mi(ẍs + ẍi) + gi + kixi = 0 i = 1, · · · , N (5.1b)

where ms, cs and ks are the mass, damping constant and spring constant of the

primary structure; mi and ki are the mass and spring constant of the i-th unit of

the TMDs; N is the number of TMDs; gi is a dissipation force induced by relative

motion of the i-th unit of the TMD; mT is the total mass of the TMDs calculated by∑N
i=1mi; xs is the displacement of the primary structure, and xi is the displacement

of the i-th unit of the TMDs relative to that of the primary structure; A dot notation

is used for indicating a derivative with respect to time t; The external force exerted

on the primary structure and on the i-th unit of the TMDs are denoted as fs, and

fi, respectively.
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If the whole system is excited by a zero white-noise base acceleration, each of the force

terms associated the i-th unit of MTMD is zero and that on the primary structure is

−(ms+mT )üg, where üg is the ground acceleration with a constant spectral intensity

Süg , i.e.,

E[üg(t)üg(t+∆t)] = 2πSügδ(∆t), (5.2)

where E[·] is an expectation operator and δ(·) is the Dirac-delta function.

If the dissipative force is of power-law type then the force term gi may be written

parametrically as follows:

gi = gi(ẋi) = gio|ẋi|βsgn(ẋi) (5.3)

where gio is a damping coefficient for the i-th TMD, sgn[·] is a signum function and β

is a parameter that determines the type of dissipation force: values of zero and unity

correspond to the Coulomb-type and viscous dissipation force, respectively.

Dividing Eqs. (5.1a) and (5.1b) by the mass of the primary structure ms and that

of the i-th TMD respectively yields the following equations:

(1 + µT )ẍs +

N∑
i=1

µiẍi + 2ζsωsẋ+ ω2
sx = −(1 + µT )üg (5.4a)

ẍs + ẍi + gi/mi + γ2i ω
2
sxi = 0 i = 1, · · · , N (5.4b)

where the normalized terms µi and γi are the ratio between the mass of the i-th TMD

and that of the main structure, and the frequency ratio (i.e., the ratio between the
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frequency of the TMD by itself and that of the main structure) given by

µi =
mi

ms
, (5.5a)

γi =
ωi

ωs
=

√
ki
mi

√
ms

ks
=

√
ki
ks
µ
−1/2
i (5.5b)

and µT is the ratio of the total mass given by
∑N

i=1 µi.

A convenient reformulation of the equations of motion can be suitably made by

replacing the associated terms with non-dimensional variables. First, xs and xi can

be non-dimensionalized by normalizing them to the RMS displacement of the un-

controlled structure xref . With the help of the theoretical results for the stochastic

response of a SDOF system excited by a white-noise stationary process (Lutes and

Sarkani, 2004), the RMS displacement of the uncontrolled system can be calculated

by

xref =

√
πSüg

2ζsω3
s

. (5.6)

Further, introducing non-dimensional displacements ys = xs/xref and yi = xi/xref ,

and a time scale to = ωst, the equations of motion can be non-dimensionalized as

follows:

(1 + µT )y
′′
s +

N∑
i=1

µiy
′
i + 2ζsy

′
s + ys = −(1 + µT )w

′′
g (5.7a)

y′′s + y′′i + ψi + γ2i yi = 0 i = 1, · · · , N (5.7b)

where a prime notation denotes the derivation with respect to the non-dimensional

time τ , and w′′
g is the non-dimensionalized ground acceleration exerted on the primary

structure with its spectral intensity of
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Sw′′
g
=

Süg

x2refω
3
s

=
2ζs
π
. (5.8)

And the non-dimensional dissipation force term ψi is written as follows:

ψi = ψi(y
′
i) =

gi(ẋi)

miω2
sxref

= ηi|y′i|βsgn(y′i) (5.9)

where

ηi =
gio/µi

msω2
sxref

. (5.10)

Particularly for the Coulomb-type friction, the dissipate force is written in terms of a

coefficient of friction (COF) of the i-th TMD. In this case, Eq. (5.10) becomes further

expanded in terms of the COF as follows:

ηi =
gio/µi

msω2
sxref

=
τimig/µi
msω2

sxref
=

1

ω2
sxref/g

τi. (5.11)

The matrix equation of motion for the combined system with N + 1 degree-of-

freedoms can be consequently derived as follows:

My′′ + Cy′ +Ky + ψ = fw′′
g (5.12)
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where y = [ys, y1, · · · , yN ]T, ψ = [0, ψ1, · · · , ψN ]T, f = [−(1 + µT ), 0, · · · , 0]T and

M =


1 + Σµi µ1 · · · µN

1 1 · · · 0
...

...
. . .

...

1 0 · · · 1

 , (5.13a)

C =


2ζs 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , (5.13b)

K =


1 0 · · · 0

0 γ21 · · · 0
...

...
. . .

...

0 0 · · · γ2N

 . (5.13c)

5.2.2 Statistical linearization

One attractive method of solving stochastic nonlinear differential equations is a sta-

tistical linearization which can replace a set of the nonlinear equations by a set of

linear ones that is equivalent in a statistical sense. Some theoretical aspects and ap-

plications of this technique are described in the literature (Roberts and Spanos, 2003;

Socha, 2005a,b). For the equations of motion for structure-FMTMD system described

by Eq. (5.12), the statistical linearization technique enables the nonlinear force term

ψ to be replaced with an equivalent term that minimizes the mean square of the error

E[ε2] where the error ε is given by

ε = ψ − Ceqy′ (5.14)
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where Ceq is a parametric matrix to be determined that minimizes the described

mean square of the error.

Under the assumption of stationary Gaussian excitation, the elements of the para-

metric matrix Ceq can be expressed by the following simple expression (details are

supplemented with Appendix B).

ceqi+1 = E[∂y′iψi] = E

[
∂ψi

∂y′i

]
i = 1, · · · , N (5.15)

where ceqi+1 is the (i+ 1)-th element of the parametric matrix Ceq and ∂y′iψi denotes

the partial derivative of the nonlinear force ψi with respect to the non-dimension

velocity y′i.

If the dissipative force is in a linear form (or when the parameter β is unity), it

readily yields that ceqi+1 = ψi. Note that ceq1 = 0 as the first element of the nonlinear

vector ψ is null [see its definition denoted in Eq. (B.23)].

If the force is of the Coulomb-type, however, it needs to be evaluated the right

term of Eq. (5.15). The idealized Coulomb-type frictional force ψi and its derivative

∂y′iψi are depicted in Figure 4.3. Further, under the assumption that the responses

of the equivalent stationary system are stationary zero-mean Gaussian processes, the

relative non-dimensional velocity of the i-th TMD, y′i, also becomes Gaussian with

corresponding variance, say σy′i . Substituting the partial derivative of the friction force

and using the sifting property of the Dirac delta function, the equivalent damping

element ceqi+1 can be consequently evaluated. Connected with the equivalency of the

equivalent damping coefficient and its normalized form, Eq. (5.15) can be rearranged

into the following form:

ceqi+1 = 2γiζ
eq
i =

√
2

π
ηi

1

σy′i
. (5.16)

where ηi is the frictional coefficient defined in Eq. (5.11). Further, rearranging Eq.
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(5.32) in terms of the design variable, ηi gives:

ηi =
√
2πγiζ

eq
i σy′i (5.17)

Hence we have derived a equivalent linear matrix Ceq comprised of the equivalent

force term, so that the solution obtained from the linear MTMD part can be adapted,

where the left hand term is the coefficient in the nonlinear system while the right hand

terms are the coefficients in the equivalent linear system. And the expressions for the

nonlinear term are explicit, since σy′i do not depend on the coefficients ηi. Hence,

seeking the optimal nonlinear parameter ηi falls into finding the optimal parameters

of linearized system. That can be accomplished by the procedure used in LMTMD

optimization.

Further, the terms contained in the equivalent matrix can be converted into the

normalized form as previously seen in the linear MTMD chapter as follows:

The matrix equation (5.12) can be rewritten by substituting the statistically lin-

earized term into the nonlinear vector as follows:

My′′ + (C + Ceq)y′ +Ky = fw′′
g (5.18)

where the matrices M , C and K are previously defined at Eqs. (5.10) and the equiv-

alent damping matrix Ceq is defined as follows:

Ceq =


0 0 · · · 0

0 ceq1 · · · 0
...

...
. . .

...

0 0 · · · ceqN

 (5.19)

With introducing a non-dimensional state vector z = [yT, y′T]T, a first-order state-

space model can be formulated as follows:
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z′ = Az +Bw′′
g (5.20)

where the corresponding matrices A and B are given by

A =

 O I

−M−1K −M−1(C + Ceq)

 , (5.21a)

B =

 O

−f

 . (5.21b)

Note that the equivalent damping matrix of the equivalent linear system consists of

the non-dimensionalized relative velocities of TMDs [see Eq. (5.14)], and the relative

velocities can be evaluated upon a determined system property [see Eq. (5.20)]. Hence,

it is necessarily required to assume the initial system properties and to iterate the

circumstances as the appropriate tolerance to be minimized.

If the external loading w′′
g is a steady-state stationary white noise with its spec-

tral strength Sw′′
g
as assumed previously, the covariance matrix Q = E[zzT] can be

obtained by solving the following Lyapunov equation (Lutes and Sarkani, 2004):

AQ+QAT + 2πSw′′
g
BBT = O. (5.22)

5.2.3 Optimization strategy

The response quantities of interest is the RMS displacement of the controlled main

structure normalized to that of the uncontrolled one, σys . Attributed to its definition,

the non-dimensional displacement of main structure σys would be in a range of zero

to unity. Also it can be interpreted as a quantity for control efficiency such that σys

is zero if the TMD completely suppress the vibration of main structure, and is unity

when the TMD has no effect.
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The mathematical description of the response of quantity can be established as

follows:

σ2ys = E[y2s ] = E[(sTz)TsTz] = tr[SQ] (5.23)

where tr[·] is a trace operator, s = [1, 0, · · · , 0]T is the weighting vector corresponding

to sifting the structural displacement, and S is the weighting matrix which can be

calculated by S = ssT.

Then the optimization problem is formulated as:

minimize
γd, ζd

J = σys

subject to γd ∈ Ωγ , ζd ∈ Ωζ (5.24)

where γd and ζd are the design variable vectors defined in the previous section that

corresponds to appropriate constraints, and Ωγ and Ωζ are the feasible regions for γd

and ζd, respectively. Here, the feasible regions Ωγ and Ωζ were set in a way that the

frequency ratios γi, the damping ratios ζi, the bandwidth of frequency ratio βγ and

the fictitious damping ratio ζo are required to be non-negative.

The above Lyapunov equation can be efficiently solved by the well-established al-

gorithms, for instance the algorithm proposed by Bartels and Stewart (1972), which

is implemented in a commecial program such as MATLAB®. In the optimization pro-

cedure, this study adapted an iterative method for solving a sequence of Quadratic

Programming Sub-problems subjected to a linearized constraint functions for its supe-

rior rate of convergence. At each iteration, to make an approximation of the Hessian

matrix, Broyden-Fletcher-Goldfarb-Shanno algorithm was adopted for its effective-

ness and good performance even for non-smooth optimization problems (Coleman

et al., 1999).
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The optimum of the frictional coefficient normalized to the static force for the

displacement is xref is than arranged into the following form:

η∗i =
√
2πγ∗i ζ

eq∗
i σ∗y′i

(5.25)

where the optimal parameters γ∗i , ζ
eq∗
i and σ∗y′i

can be obtained by the procedure used

in LMTMD optimization.

5.3 Improved Estimation of Peak Distribution

This section tries to improve the accuracy of the estimation of peak distribution of

MTMDs by exploiting the statistical nonlinearization technique. The adjusting factor

as an explicit expression is derived, which enables the RMS displacement of TMDs

by statistical linearization to be corrected more precisely. Further, a formula for the

peak factor of the response of the frictional TMD was also derived.

5.3.1 Statistical nonlinearization

Statistical nonlinearization is a technique in which nonlinear systems are replaced with

a class of other nonlinear systems whose exact solution have been already explicitly

derived (Caughey, 1986). The statistical nonlinearization departs from the statistical

linearization in that it enables one to predict deviations from a Gaussian response

approximation.

Consider the i-th oscillator attached with an energy dissipation element and a

spring, whose values are optimized by employing the statistical linearization tech-

nique. The non-dimensionalized equation of motion for the i-th oscillator is as follows:

y′′i + η∗i |y′i|βsgn(y′i) + (γ∗i )
2yi = −y′′s (5.26)
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where yi is the non-dimensionalized displacement of the i-th unit of TMD, y′′s is the

non-dimensionalized acceleration of the primary structure, γ∗i and η∗i are the optimal

frequency ratio and damping coefficient for the i-th unit of TMD, respectively.

Now we wish to replace the equation of motion with another one of which analytic

solution is already well-established. Consider the equation of motion described by

y′′i + η∗iH(Ei)y
′
i + (γ∗i )

2y = −y′′s (5.27)

where H(Ei) is a continuous function of the total energy for the i-th TMD described

by the following energy expression:

Ei =
1

2
y′2i +

1

2
(γ∗i )

2y2i . (5.28)

Caughey and Ma (1982) have shown that when the response of the oscillator

is governed by Eq. (5.27) under the white-noise excitation of its strength Sy′′s , the

probability density of the envelope response ai(t) is given by

fAi(ai) = C0aiexp

(
− η∗i
πSy′′s

∫ Ei

0
H(ι)dι

)
(5.29)

where C0 is a normalizing constant.

Note that the non-dimensional acceleration of the primary structure y′′s does not

actually belong to a white-noise process. However we presumably regard the process

as similar to a white noise because, when the TMDs are designed appropriately, the

response that once was a narrow band process becomes a wide band process, spreading

its frequency contents to a wide range of frequency bandwidth.

In order for the original equations of motion Eq. (5.26) to be replaced as the form

of Eq. (5.27) accurately as possible, the suitable functionH(Ei) should be constructed

that minimizes the error between ψ∗
i and η∗i . One can establish a function that ensures

138



Figure 5.1: Energy functional adopted in this study

the same order as the original damping term η∗i , for example, proposed by Roberts

and Spanos (2003) as follows:

H(Ei) = 2(β+1)/2 η
∗
i√
π

Γ
(
β+2
2

)
Γ
(
β+3
2

)E(β−1)/2
i (5.30)

Energy functions H(Ei) for β = 0 and β = 1 are depicted in Figure 5.1. If the energy

function is constant irrespective of the mechanical energy Ei, the formulation falls into

the statistical linearization, providing the equivalency of the original damping term η∗i

with an equivalent constant damping coefficient ceqi . The function H(Ei) = 1/
√
2Ei

for β = 0, on the other hand, provides amplitude-dependent damping coefficient. Such

a response-dependent damping characteristic would provide a larger scatterness for

low and high responses, which will be shown in the validation chapter. It should be

also noted that the applied energy functional is singular and diverges if the response

becomes lower. The singularity would provide infinite damping force, thus not allowing

the oscillator to be in the zero-like response.

Once the energy functional and the dissipation force term is expressed in a relation
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of Eq. (5.30), then the probability density function for the peak may be found from the

exact solution of the problem. Substituting Eq. (5.30) into Eq. (5.29) and evaluating

yields

fAi(ai) =
(β + 1)κ

2/(β+1)
o

Γ
(

2
β+1

) aiexp(−κoaβ+1
i ) (5.31)

where

κo =
2η∗i

π3/2Sy′′s

Γ
(
β+2
2

)
Γ
(
β+3
2

) (γ∗i )β+1

β + 1
(5.32)

The variance of ai is determined by computing the second moment of fAi(ai), such

that

σ2ai =
1

2

∫ ∞

0
a2i f(ai)dai

=
Γ
(

4
β+1

)
2Γ
(

2
β+1

)κ−2/(β+1)
o (5.33)

where the associated parameters are given by

κ =

 Γ
(

4
β+1

)
2Γ
(

2
β+1

)
(β+1)/2

(5.34a)

αi =
ai
σai

(5.34b)

Consequently Eq. (5.31) can be normalized by σai to produce

fAi(αi) =
(β + 1)κ2/(β+1)

Γ
(

2
β+1

) αiexp(−καβ+1
i ) (5.35)
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Figure 5.2: Probability density functions of peak for β =0 and 1

The derived probability density function is generic for any kind of power of β,

and its characteristics are portrayed in Love and Tait (2015). This study, however,

highlights the comparison between the linear one and the Coulomb-type friction. The

associated parameter κ can be readily determined as
√
3, if β is zero, and becomes

1/2 if β is unity. In those cases, the corresponding variables follows to the Erlang-2

distribution and Rayleigh distribution with the following probability density func-

tions:

fAi(αi) =


3αi exp(−

√
3αi) if β = 0

αi exp(−
α2
i

2
) if β = 1

(5.36)

Figure 5.2 depicts a comparison of the two probability density functions. This

study goes further into two kind of forces, where β = 0 represents the Coulomb-type

friction, and β = 1 for the viscously-linear damping.
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5.3.2 Correction factor

In the preceding section, the RMS displacement of the TMD of the equivalent non-

linear system can be determined with Eq. (5.31). However, the determination of the

input intensity induced by the motion of main structure Sy′′s obstructs the way of

evaluating the RMS response. Alternatively the RMS response can be determined by

the procedure of statistical linearization technique, whose accuracy is assessed by var-

ious researchers. Love and Tait (2015) compared the RMS responses obtained by the

statistical linearzation with those by a series of extensive simulation, and observed the

predicted value overestimates in a level of approximately 13 percent under the case

of TMD with 3 percent mass ratio. This section establishes a correction factor, which

enables the RMS response by statistical linearization to be corrected with exploiting

the solution of statistical nonlinearization technique.

Define ηi,L and κo,L as the force coefficient and κo for a linear case, and the ηi,F

and κo,F as those for a Coulomb-type friction case. The elimination of the obstructive

input strength Sy′′s can be made by dividing κo,F into κo,L as follows:

κo,F
κo,L

= 2
η∗i,F
η∗i,L

Γ(1)

Γ(3/2)

Γ(2)

Γ(3/2)

(γ∗i )

(γ∗i )
2

=
8

π

η∗i,F
η∗i,L

(γ∗i )
−1 (5.37)

In the similar manner, the RMS displacement normalized to that of the linear one is

given by

(
σ∗ai,F
σ∗ai,L

)2

=
Γ(4)

2Γ(2)

2Γ(1)

Γ(2)

κ−2
o,F

κ−1
o,L

= 6

(
κo,F
κo,L

)−2

κ−1
o,L (5.38)
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where the ratio κo,F/κo,L can be evaluated from Eq. (5.37). Further, the parame-

ter κo,L can be written in terms of the RMS displacement of the linear system by

substituting β = 1 into Eq. (5.33) as follows:

κo,L =
1

2(σ∗ai,L)
2

(5.39)

The RMS displacement of the nonlinearized model can be adjusted from that of

the linearized model. The ratio between the force constants can be calculated from

Eq. (5.25) as

η∗i,F
η∗i,L

=
η∗i,F

2γ∗i ζ
eq∗
i

=

√
π

2
σ∗y′i,L

. (5.40)

By substituting Eq. (5.39) and (5.40) into Eq. (5.38), the ratio of RMS displacements

can be evaluated by following expression:

σ∗ai,F
σ∗ai,L

= 6

[
8

π

√
π

2
σ∗y′i,L

(γ∗i )
−1

]−2

· (σ∗y′i,L)
2

=

√
3π

8

(
σ∗yi,L
σ∗
y′i,L

)2

γ∗2i . (5.41)

Here we can exploit a well-known result of random vibration theory that for ‘any’

narrowband process, the characteristic frequency, which is exactly the same as the

natural frequency for linear oscillator, may be approximated by the ratio of the RMS

velocity to the RMS displacement (Lutes and Sarkani, 2004). With this idea, Eq.

(5.41) is given by

σ∗ai,F
σ∗ai,L

=

√
3π

8
≈ 1.0854. (5.42)

Equation (5.42) enables the RMS response by statistical linearization to be cor-

rected with exploiting the solution of statistical nonlinearization technique. Some
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features might be discussed. First, the constant term
√
3π/8 ≈ 1.0854 corrects the

response to be increased about 8.5 percent; Second, the extent of correction does

not relate to dynamic characteristics of oscillator such as dissipation force term, the

equivalent damping ratio and the frequency ratio. Such dependency can be fruitful

especially in designing of MTMDs. Although the optimal damping of the MTMD de-

creases with increasing the number of TMDs, the features fluctuate but the expression

is not sensitive to the RMS displacement.

5.3.3 Peak factors

It is necessary to know the maximum response that is expected to occur during a

certain period of time. This peak response provides the governing TMD displace-

ment and can be used to determine the governing TMD loading. A peak response

distribution can be derived from the response amplitude distribution provided by Eq.

(5.36).

Linear oscillators

For a linear oscillator, the probability density function of its response is already well-

established. The probability density of the maximum peak of envelope response from

N cycles is given by

fAi(αi) = Nαi exp

[
−N exp

(
1

2
α2
i

)
− 1

2
α2
i

]
. (5.43)

Under the Poisson assumption, the peak factor for the linear oscillator PFL is derived

by (Davenport, 1964) as follows:

PFL =
√
2 lnN +

γ√
2 lnN

(5.44)

where γ is an Euler constant of 0.577.
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Frictional oscillators

In the case of the friction TMD, following derivation is needed. By integrating Eq.

(5.36), the cumulative probability distribution is defined as the integrated probability

density as follows:

FAi(αi) = 1− q (5.45)

where the function q is defined as

q = q(αi) = (1 +
√
3αi)e

−
√
3αi . (5.46)

The probability that N successive peaks are all less than ar is given by

PAi(αi) = FAi(αi)
N = (1− q)N (5.47)

and the associated probability density function corresponds to

pAi(αi) =
dPAi(αi)

dαi
= N(1− q)N−1 dq

dαi
(5.48)

Put q(αi) = ξ/N , where 0 ≤ ξ ≤ N . For large values of N , we can write in the limit,

the asymptotic form

pAi(αi)dαi = d[(1− ξ/N)N ]

= de−ξ = −e−ξdξ (5.49)

With this form, the variable αi can be written by connecting it with Eq. (5.46)

as follows:
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Figure 5.3: Lambert-W function

ξ = N(1 +
√
3αi)e

−
√
3αi

⇐⇒ αi = − 1√
3

[
1 +W−1

(
−e−1 ξ

N

)]
(5.50)

where W−1(·) is a Lambert-W function (or a product log function), in which a single-

valued branch of W−1 is defined by the additional constraints such that αi = 0, if

ξ = N and αi → ∞, if ξ = 0. The Lambert-W function is depicted in Figure 5.3.

The peak factor for a oscillator with friction can be obtained by calculating the

following integral:

PFF =

∫ ∞

0
αipAi(αi)dαi = − 1√

3

∫ N

0

[
1 +W−1

(
−e−1 ξ

N

)]
e−ξdξ (5.51)

In order to integrate the above equation, we adapt the bounded description of the

W−1 given by (Chatzigeorgiou, 2013)
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− 1−
√
2u− u < W−1(−e−u−1) < −1−

√
2u− 2

3
u. (5.52)

Substituting Eq. (5.52) into Eq. (5.51) and rearranging it gives

PFF =
PFL√

3
+
γ + lnN√

3
(5.53)

where γ is an Euler constant of 0.577.

5.4 Model Evaluation

Nonlinear simulations are carried out to evaluate the validity of the model. A structure

with a generalized mass of 1 ton, a natural frequency of 1 rad/sec, and an inherent

damping of 1 percent is used. Two FMTMDs, 3 and 5 percent of mass ratios are

considered. The optimal parameters are summarized in Table 5.1.

A first step for the simulation is to generate a time domain ground acceleration

w′′
g . ‘wgn’ function in the MATLAB® is used for the signal generation. The white-

noise generated by wgn is essentially the band-limited and max frequency is equal to

half of the sampling frequency. The ideal white-noise has infinite variance but wgn

requires to specify it as follows. σ2w′′
g
is equated to the spectral strength of white noise

required times half of the sampling frequency in rad/sec. In this study the sampling

time is taken as 0.005 sec, which is suitable in calculating the nonlinear force, and

in turn corresponding sampling frequency is followed as 200 Hz. The Runge-Kutta

method is used to solve the equations of motion described as Eq. (5.18).

One of the sampled time histories for linear and frictional TMD of 3% mass ra-

tio and their associated peak distributions are plotted in Figure 5.4, in which the

envelopes of the response were obtained by constructing associated analytic signal

via the Hilbert transform (Bendat and Piersol, 2011). Firstly, it was found that the

linear TMD experiences in a way that the response and its peak follow Gaussian and
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Rayleigh distribution as well-described by linear vibration theory. Compared to the

linear TMD, on the other hand, the frictional TMD exhibits a drastic response, show-

ing large displacement at the portion where a large response occurs and vice versa.

Also it was shown that the Erlang-2 distribution can describe the peak distribution

for the frictional TMD more precisely compared to the Rayleigh distribution.

The RMS response of the frictional TMD normalized to that of the linear one for

the simulations are plotted in Figure 5.5, in which the ordinates are transformed into

the standardized as normal distribution quantity in order to readily determine the

extent of normality, and the vertical lines are the value predicted by statistical lin-

earization (SL) and the value by Eq. (5.41), respectively. It was found from numerical

simulations that the SL underestimates the RMS displacement of TMD significantly

providing less than 3 percent quantile compared to the simulated results. However,

Equation (5.41) predicts suitable values for the RMS displacement compared to the

simulated results. As mentioned previously, the accuracy of the estimation does not

depend on the mass ratio of the TMD. There was a slight difference in various mass

ratio that the variance of the ratio tends to decrease when using heavier TMD. This

trend is ascribed to the fact that heavier TMD provides a better performance that

the main structure becomes wide-band process compared to the light TMD. Hence,

the presumed condition of white-noise input becomes realistic when using heavier

mass ratio. The latest result shows a 9 percent discrepancy in the value of a long-

sought number called the Hubble constant, which describes how fast the universe is

expanding.

5.5 Concluding Remarks

This study investigated the characteristics of the stochastic response of a system

with frictional tuned mass dampers (FTMDs). In order to improve the accuracy for

148



F
ig
u
re

5.
4:

S
im

u
la
te
d
ti
m
e
h
is
to
ri
es

an
d
h
is
to
gr
am

s
fo
r
re
sp
on

se
s
(µ

T
=
3%

):
E
q
u
iv
al
en
t
li
n
ea
r
m
o
d
el

(t
op

)
an

d

or
ig
in
al

n
o
n
li
n
ea
r
m
o
d
el

(b
ot
to
m
)

149



(a) µ=1%

(b) µ=3%

150



(c) µ=5%

Figure 5.5: Normal probability plot of simulated peak distribution ratio and predicted

by simulations
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the estimation of RMS displacement of the FTMDs, this study exploited a statis-

tical nonlinearization technique, and derived a correction factor which accounts for

the nonlinearity in evaluating the RMS response. Also, this study derived a closed-

form expression for calculating peak factor. Based on the numerical simulations, the

proposed correlation factor and the peak factor formula were validated extensively.

The key features can be drawn as follows:

1. Based on the statistical nonlinearization, this study derived the probability den-

sity function for the peak values of the FTMD unit. It was shown that, for the

FTMD, the probability that any peak exceeds a certain value can be approx-

imated as the Erlang-2 distribution, which is clearly distinguished from the

solution of linear vibration theory that predicts that as Rayleigh distribution.

2. A correction factor that defines the ratio of RMS displacement between non-

linear and linear system was derived. Through the numerical simulations, it

was found that the estimated value obtained by the statistical linearization un-

derestimates the RMS displacement of TMD significantly providing less than

3 percent quantile compared to the simulated results. The model proposed by

this study provides in a level of 10 % quantile showing less than 10% from the

mean value of the simulated solution.

3. This study further derived an explicit formula for evaluating a peak factor for

the frictional TMD. It was found from numerical simulations that the peak

distribution is not dependent on the mass ratio of TMD, thereby the frequency

ratio and damping ratio of TMD.

4. The predicted peak response showed some discrepancies with the simulated

results; however, the maximum relative error was less than 13 percent. The

results show a trend that as the DVA mass ratio decreases, the model tends to

152



overestimate the peak response of the TMD.
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Table 5.1: Optimal parameters of FMTMDs of 10 units with 5% mass ratio

Mass

ratio

Frequency

ratio

Equivalent

damping ratio

Normalized

friction force

Normalized

COF

µT , % γ∗i ζeq∗i , % ηi/(msω
2
sxref), % τi/(ω

2
sxref/g), %

1 0.992 4.981 0.469 0.478

3 0.977 8.564 1.161 1.315

5 0.977 8.564 1.161 1.315
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Chapter 6

Applications of MTMDs

This chapter presents several applications of multiple tuned mass dampers (MT-

MDs). The first section proposes a mechanism-based frictional pendulum tuned mass

damper (FPTMD), which contributes to overcome some shortcomings of conventional

translational TMDs with viscous damping. The nonlinear equations of motion of the

proposed FPTMD are first derived and statistically linearized in order to obtain the

optimal control parameters under earthquake excitation. The second section is a case

study that provides a procedure for designing MTMDs, which covers modal analysis

based on finite element method, optimal design of tuned mass dampers, and evaluat-

ing their control performance and robustness under the frequency-perturbed states.

The final section presents a project in an attempt to mitigate an excessive vibration

of a problematic structure. The overall process of the project includes the vibration

performance evaluation, modal analysis based on finite element method and optimal

design and manufacturing of tuned mass dampers.
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6.1 Frictional Pendulum Tuned Mass Dampers

In this section, a mechanism-based frictional pendulum tuned mass damper (FPTMD)

is proposed in order to overcome some shortcomings of conventional translational

TMDs with viscous damping and extend the applicability of frictional TMDs. The

nonlinear equations of motion of the proposed FPTMD are first derived and statisti-

cally linearized in order to obtain the optimal control parameters under earthquake

excitation. The displacement time history of the primary structure predicted using

the developed linearized model was shown to correlate well with that based on the

exact nonlinear model. The gradient-based optimization was adopted in order to effi-

ciently find the optimal parameters related to the pendulum length and the frictional

force. Analyses of the optimal parameters obtained were also made to enhance the un-

derstanding of the FPTMD behavior which is unique and different from conventional

translational TMDs.

6.1.1 Introduction

Tuned mass damper (TMD) is a mechanical device to dampen the dynamic response

of structures through the resonant motion of the TMD. Because of its novelty for at-

tenuating excessive vibrations of structures, various types of TMDs have been studied

and applied in many ways.

One of the most widely used TMDs in practice is a translational–type linear TMD

(TLTMD), which is composed of an auxiliary mass moving in a translational direc-

tion, a spring and a dashpot, since its invention by Frahm (1911). Many researchers

including Den Hartog (1956) and Warburton (1982) provided the analytical solu-

tions for the optimal parameters of TLTMDs, and their solutions are still popular in

practical applications.

Although TLTMDs have sound theoretical basis and show satisfactory perfor-
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mance in many applications, some shortcomings have been also encountered. One

of the shortcomings is that TLTMDs require frictionless guides in order to facilitate

the smooth movement of an auxiliary mass. In general, such a guide requires high

cost for both fabrication and maintenance. The viscous damping elements mounted

in TLTMDs can be degraded due to aging and they also have a risk of leakage.

Dry friction is an inherent mechanism of energy dissipation in nature. Several

researchers studied dry friction devices as an alternative to viscous damping. Inaudi

and Kelly (1995) investigated a translational-frictional type TMD (TFTMD) with

damping provided by two friction devices acting at right angles to the motion of the

secondary mass. Through response analysis based on the statistical linearization, they

showed that TFTMDs can achieve the equivalent level of performance comparable to

TLTMDs. Pointing out some advantages for taking account into the nonlinear be-

havior in TMDs, Ricciardelli and Vickery (1999) investigated a translational TMD

with dry damping and indicated that the friction damper tends to be more effec-

tive for large amplitude, but less for low level of vibration. Gewei and Basu (2010)

proposed a TMD with nonlinear dry friction at the interface between the primary

structure and the TMD. Using an approximate analytical technique combined with

statistical linearization method, they showed that frictional force can be as beneficial

as proportional viscous damping force when using TMDs for suppression of vibration.

Meanwhile, a pendulum-type TMD (PTMD) can be another viable solution to

circumvent technical difficulties involved in TLTMDs. In fact, a lot of PTMDs have

been applied in many ways. For example, PTMDs were used to suppress wind-induced

vibration of high-rise building structures (Irwin and B, 2001; Kwok and Samali, 1995).

Gerges and Vickery (2005) conducted numerical studies to evaluate the optimal tuning

parameters of PTMDs for the damped primary structures and demonstrated their

efficiency under both wind and earthquake excitations. Setareh et al. (2006) conducted

the analytical and experimental studies of a PTMD and indicated that a significant
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reduction of the excessive floor vibrations can be efficiently achieved.

In order to introduce frictional mechanism into any PTMD applications, the use

of frictional surface mimicking the trajectory of a moving pendulum appears ideal.

However, it is very difficult to fabricate such a curved surface with a designed frictional

coefficient corresponding to the exact trajectory of a moving pendulum. In this study,

a mechanism-based frictional pendulum TMD (FPTMD) is first proposed which uses

the frictional force between the third (or tertiary) mass and the surface of a primary

structure. The nonlinear equations of motion which describe the behavior of the

proposed FPTMD are then linearized in the statistical manner, in which the mean of

squared errors between nonlinear and linearized responses is minimized. Further, the

optimal parameters of FPTMD are obtained through the gradient-based optimization

schemes. Finally, the optimization approach based on the statistical linearization in

this study is validated by comparing with the numerical results obtained from directly

solving the original nonlinear equations.

6.1.2 FPTMD proposed and equations of motion

Consider a primary structure having mass ms, stiffness ks and viscous constant cs as

shown in Figure 6.1. A pendulum of mass m1 and length l1 is attached to the primary

structure by using a hinged joint and a massless rigid bar. It is possible to consider the

inertial effect of the rigid bar, but its effect is neglected in this paper for the sake of

simplicity. For a system with normal pendulum (Figure 6.1a), the massless rigid bar

should be extended with additional length l2. The end of this extended part should

be pin-connected to the tertiary mass to form a three-hinge mechanism (Figure 6.1b).

As shown in Figure 6.1, let xs be the displacement of the primary structure to the

x-direction, x1 and y1 be the displacement of the secondary or pendulum mass to the

x and y direction, and x2 be the displacement of the tertiary mass, which dissipates

the transferred energy through friction.
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(a) System with normal pendulum (b) Kinematic variables

Figure 6.1: Idealized structure-FPTMD system

The equations of motion can be derived using well-known Lagrange’s method as

follows. The Lagrangian function L, defined as the difference between the total kinetic

energy T and the potential energy V of the system, can be expressed as

L = T − V =
1

2
msẋ

2
s +

1

2
m1

(
ẋ21 + ẏ21

)
+

1

2
m2ẋ

2
2 −

1

2
ksx

2
s − V1 (6.1)

Normalizing Eq. (1) with the mass of the primary structure M gives,

L∗ = L/ms =
1

2
ẋ2s +

1

2
µ
(
ẋ21 + ẏ21

)
+

1

2
µνẋ22 −

1

2
ωnx

2
s − V ∗

1 (6.2)

where µ = m1/ms, ν = m2/m1 and ω
2
s = ks/ms. In order to introduce the generalized
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coordinates, we employ the geometric relations as follows,

x1 = X + l1 sin θ (6.3a)

ẋ1 = Ẋ + l1θ̇ cos θ (6.3b)

y1 = l1 (1− cos θ) (6.3c)

ẏ1 = l1θ̇ sin θ (6.3d)

x2 = X − ξ (6.3e)

ẋ2 = Ẋ − ξ̇ (6.3f)

where ξ is the displacement of the tertiary mass relative to the primary structure.

The next step is to express the displacement of the tertiary mass in terms of the

angular displacement of the pendulum. By applying the law of the second cosine to

the geometric configuration shown in Figure 6.1b, the kinematic relationship between

θ and ξ can be obtained as follows,

l23 = (l0 + ξ)2 + l22 − 2 (l0 + ξ) l2 cos (π/2− θ) (6.4)

It can be seen from Eq. (6.26) that the displacement of the tertiary mass can be

expressed in terms of the angular displacement connected with the initial geometric

parameters. Solving Eq. (6.26) for ξ and differentiating it gives the following relation-

ships:

ξ = ξ (θ) = l2

(
sin θ − η0 +

√
sin2θ + η20

)
(6.5a)

ξ̇ = ξ̇(θ, θ̇) = θ̇
dξ

dθ
= l1η1κθ̇ (6.5b)
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where η0 = l0/l2 and η1 = l2/l1, and

κ = κ (θ) = cos θ

1 +
sin θ√

sin2θ + η20

 . (6.6)

The Lagrangian equations of motion are as follows

d

dt

(
∂L∗

∂Ẋ

)
− ∂L∗

∂X
= Ξ∗

X (6.7a)

d

dt

(
∂L∗

∂(l1θ̇)

)
− ∂L∗

∂(l1θ)
= Ξ∗

l1θ (6.7b)

where Ξ∗
X and Ξ∗

l1θ
are the non-conservative forces normalized to the mass of the

primary structure acting on the corresponding degrees of freedom. Substituting Eqs.

(6.3) into Eq. (6.8) and using elementary calculus, each term in Eq. (??) is given as

161



follows,

∂L∗

∂Ẋ
= Ẋ + µ(1 + ν)Ẋ + µl1[cos θ − ν(η1κ)]θ̇ (6.8a)

∂L∗

∂X
= −ω2

sX (6.8b)

∂L∗

∂(l1θ̇)
= µ[cos θ − ν(η1κ)]Ẋ + µl1

[
1 + ν(η1κ)

2
]
θ̇ (6.8c)

∂L∗

∂(l1θ)
= −µ

[
sin θ + ν

(
η1

dκ

dθ

)]
Ẋθ̇

+ µl1ν(η1κ)

(
η1

dκ

dθ

)
θ̇2 − µg sin θ (6.8d)

Ξ∗
X =

ΞX

ms
=
FX

ms
− cs
ms

ẋs + τ
m2

ms
g sgn(κθ̇)

= F ∗
X − 2ζsωsẋs + τµνg sgn(κθ̇) (6.8e)

Ξ∗
l1θ =

Ξl1θ

ms
=
Fl1θ

ms
− m2

ms
τg sgn(κθ̇)

= F ∗
l1θ − τµνg sgn(κθ̇) (6.8f)

where η1 is l2/l1; FX and F ∗
X are the external force exerted to the primary structure

and its normalized form, Fl1θ and F ∗
l1θ

are an external force exerted to the secondary

structure and its normalized form, respectively; ζs is the damping ratio of the primary

structure, and τ is the friction coefficient. The earthquake ground motion is considered

as the external force by expressing the external forces F ∗
X and F ∗

l1θ
as

F ∗
X = − (1 + µ+ µν) üg (6.9a)

F ∗
l1θ = 0 (6.9b)

Substituting the expressions in Eq. (6.9) into Eq. (6.8) and rearranging yields the
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governing nonlinear equations of motion of the FPTMD subjected to earthquake

excitations.

Ẍ + 2ζsωsẊ + ω2
sX + µ(1 + ν)Ẍ + µl1[cos θ − ν(η1κ)]θ̈

−µl1
[
sin θ + ν

(
η1

dκ

dθ

)]
θ̇2 − τµνg sgn(κθ̇) = −(1 + µ+ µν)üg (6.10a)

[cos θ − ν(η1κ)] Ẍ + l1[ν(η1κ)
2 + 1]θ̈ + l1ν(η1κ)

(
η1

dκ

dθ

)
θ̇2

+g sin θ + τνg sgn(κθ̇) = 0 (6.10b)

Eq. (6.10) describes the exact behavior of the FPTMD system proposed. Recalling

that ν is the ratio of the tertiary mass to that of the pendulum, the terms associated

with coefficient ν in Eqs. (6.10) effectively govern the motion of the tertiary mass. It is

also noted that the terms for the tertiary mass are heavily dependent on the position of

pendulum, θ, implying that the entire system would exhibit highly coupled nonlinear

behavior.

The variation of κ is depicted in Figure 6.2 [also see Eq. (6.28)]. Several observa-

tions can be made from this figure. First, the parameter κ is always positive regardless

of η0 and θ, implying that the κ in the signum function of friction force term can be

ignored [see Eq. (6.10b)]. Second, κ is asymmetric except for η0 → ∞, so the tertiary

mass would provide a ’biased’ friction force which may lead to the deterioration of

energy dissipation. Considering that the asymmetric behavior of the system is not

desirable, we simplify the equations of motion under the assumption of sufficiently

short l2. Under this assumption, the parameters η0 and η1 can be neglected. The
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Figure 6.2: Parameter κ for various values of η0

resulting simplified equations of motion are as follows:

Ẍ + 2ζsωsẊ + ω2
sX + µ(1 + ν)Ẍ + µl1(cos θ)θ̈

−µl1(sin θ)θ̇2 − τµνg sgn(θ̇) = −(1 + µ+ µν)üg (6.11a)

(cos θ)Ẍ + l1θ̈ + g sin θ + τνg sgn(θ̇) = 0 (6.11b)

Eqs. (25) and (26) can be recast into the following compact form

Mq̈ + Cq̇ +Kq +Φ = füg (6.12)

where q = [X, θ]T, f = −[1 + µ(1 + ν), 0]T, and the M , C, K and Φ are the system
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matrices and the nonlinear vector as follows.

M =

 1 0

0 0

 , C =

 2ζsωs 0

0 0

 ,K =

 ω2
s 0

0 0

 , (6.13a)

Φ =

 µ(1 + ν)Ẍ + µl1(cos θ)θ̈

(cos θ)Ẍ + l1θ̈


+

 −µl1(sin θ)θ̇2 − τµνg sgn(θ̇)

τνg sgn(θ̇)

+

 0

g sin θ

 . (6.13b)

6.1.3 Statistical linearization

The objective of the statistical linearization is to substitute the nonlinear vector (Φ)

with the linear vectors associated with equivalent mass, damping and stiffness matri-

ces such that the error between the original and the equivalent system is minimized.

Based on the derivation in the Appendix C, the matrices of the equivalent linear

system are given as follows:

M e = E

[
∂Φ

∂q̈

]
=

 µ (1 + ν) µl1E [cos θ]

E [cos θ] l1

 (6.14a)

Ce = E

[
∂Φ

∂q̇

]
=

 0 −2µl1E
[
(sin θ) θ̇

]
− E

[
∂
∂θ̇

(
τµνg sgn

(
θ̇
))]

0 E
[

∂
∂θ̇

(
τνg sgn

(
θ̇
))]

 (6.14b)

Ke = E

[
∂Φ

∂q

]
=

 0 −µl1E
[
(sin θ) θ̇

]
0 −E

[
(sin θ) Ẍ

]


+

 0 −µl1E
[
(cos θ) θ̇2

]
0 0

+

 0 0

0 gE [cos θ]

 (6.14c)
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The expectations of Eqs. (6.18) can be calculated explicitly when the response θ is

assumed to be a zero-mean Gaussian process. First, the expected value of a cosine

function can be explicitly obtained as follows.

E [cos θ] =
1√
2πσθ

∫ ∞

−∞
cos θ × exp

[
−θ̇2/2σ2θ

]
dθ = exp

[
−σθ2/2

]
(6.15)

The averages of other terms can be calculated by assuming a property that two

variables X and θ are uncorrelated, and each of these variables and its derivative are

uncorrelated (Lutes and Sarkani, 2004).

E[(sin θ)θ̇] = E[sin θ]E[θ̇] = 0 (6.16a)

E[(sin θ)θ̈] = E[sin θ]E[θ̈] = 0 (6.16b)

E[(sin θ)Ẍ] = E[sin θ]E[Ẍ] = 0 (6.16c)

E[(cos θ)θ̇2] = E[cos θ]E[θ̇2] = σ2
θ̇
exp[−σ2θ/2] (6.16d)

In addition, under the Gaussian assumption, the expected value of the remained

term in Eq. (6.14b) can be calculated as follows (Roberts and Spanos, 2003) DO NOT

REFER:

E

[
∂

∂θ̇

(
τνg sgn (θ̇)

)]
=

√
2

π

τνg

σθ̇
(6.17)

Finally, we can obtain the linearized system parameters expressed in terms of
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statistical moments and structural parameters:

M̃ =M +M e =

 1 + µ(1 + ν) µl1 exp
[
−σθ2/2

]
exp

[
−σθ2/2

]
l1

 (6.18a)

C̃ = C + Ce =

 2ζnωn −
√

2
π
τµνg
σθ̇

0
√

2
π
τνg
σθ̇

 (6.18b)

K̃ = K +Ke =

 ω2
n −µl1σ2θ̇ exp

[
−σθ2/2

]
0 g exp

[
−σθ2/2

]
 (6.18c)

The linearized structural properties are cast into the terms of statistical moments

of the responses. It should be also noted that the statistical moments are also written

in the terms of linearized matrices. Hence, the statistical linearization can be accom-

plished by iteratively solving those equations which are connected with the mechanical

properties of linearized system and statistical moments up to an acceptable order of

magnitude.

6.1.4 Gradient-based optimization

In this section, we seek to find the optimal parameters that would reduce the vibration

of the primary structure. As we have constructed the explicit form for the linearized

matrices, it is possible to use the gradient-based optimization which provides a fast

searching direction in the feasible design region. The objective function and elements

of its gradient are taken as follows,

J = trace
[
ŜQ̂
]

(6.19a)

∂J

∂di
= trace

[
Ŝ
∂Q̂

∂di

]
(6.19b)
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where di is the i-th design variable (in this study, d1 = l1 and d2 = τν), Ŝ is

a weighting matrix, and Q̂ is the state covariance matrix which is obtainable by

solving the Lyapunov equation. One of the favorable choice of the weighing matrix

is a null matrix except the first element is unity such that the performance measure

J represents the RMS displacement of the primary structure. Note that the trace is

a linear operator, hence it commutes with the partial derivative. Although the state

covariance matrix Q̂ is an implicit function of design variables, explicit expressions for

Eq. (6.19a) can be obtained by differentiating the Lyapunov equation. Differentiating

with respect to design variable gives us

H̃
∂Q̃

∂di
+
∂Q̃

∂di
H̃ ′ +

(
∂H̃

∂di
Q̃+ Q̃

∂H̃ ′

∂di

)
= O (6.20)

Here we note that determining the gradient matrices in Eq. (6.20) needs solving

the Lyapunov equation as well. The partial derivative of the system matrix with

respect to the design variable di can be directly obtained as follows

∂H̃

∂di
=

∂

∂di

 H D

O Λ

 =

 ∂H
∂di

O

O O

 (6.21)

And the first element of the matrix can be cast as follows

∂H

∂di
=

∂

∂di

 O I

−M̃−1K̃ −M̃−1C̃

 (6.22)

Using chain rule and the basic identity of the derivative of the inverse matrix
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(Jeffrey and Dai, 2008), the sub-matrices in Eq. (6.22) can be expressed as,

− ∂

∂di

(
M̃−1K̃

)
= −M̃−1∂K̃

∂di
− ∂M̃−1

∂di
K̃

= −M̃−1∂K̃

∂di
+ M̃−1∂M̃

∂di
M̃−1K̃ (6.23a)

− ∂

∂di

(
M̃−1C̃

)
= −M̃−1 ∂C̃

∂di
− ∂M̃−1

∂di
C̃

= −M̃−1 ∂C̃

∂di
+ M̃−1∂M̃

∂di
M̃−1C̃ (6.23b)

The derivatives of M̂ , Ĉ and K̂ are obtained by differentiating Eqs. (6.18) with

respect to the design variable di. The partial derivative of the matrices with respect

to the design variables l1 and τ are as follows:

∂M̃

∂li
=

 0 µ exp
[
−σθ2/2

]
0 1

 , ∂M̃

∂τ
=

 0 0

0 0

 (6.24a)

∂C̃

∂l1
=

 0 0

0 0

 , ∂C̃

∂τ
=

 0 −
√

2
π
µνg
σθ̇

0
√

2
π
νg
σθ̇

 (6.24b)

∂K̃

∂l1
=

 0 −µσ2
θ̇
exp

[
−σθ2/2

]
0 0

 , ∂K̃
∂τ

=

 0 0

0 0

 (6.24c)

In summary, it requires double loops to find the optimal parameters: inner loop

for finding linearized matrices in statistical senses, and outer loop which seeks the

optimized design parameters. The flowchart of iterative statistical linearization and

optimum design process implemented is depicted in Figure 6.17. It should be noted

that the double loops do not demand much numerical efforts since each loops tries to

find the solution under the convex regions; the inner loop seeks to minimize the error
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Figure 6.3: Flow chart of iterative statistical linearization and optimum design process

implemented

terms written in the quadratic form, and the outer loop tries to minimize the convex

objective function.

Once the objective function and its gradient have been established, various tech-

niques are available to find the optimal parameters. Sequential Quadratic Program-

ming method, or an iterative method for solving a sequence of Quadratic Program-

ming Sub-problems subjected to a linearized constraint functions, was adapted in this

study due to its superior rate of convergence. At each iteration Broyden-Fletcher-

Goldfarb-Shanno algorithm was adopted for its effectiveness and good performance.

MATLAB standard routine was used to find the optimum parameters (Coleman et

al., 1999).
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6.1.5 Numerical example

A single degree of freedom primary structure having a period of Ts = 2 sec (i.e. a

natural frequency of ωs = 3.14 rad/sec) and a damping ratio 1% is considered as an

example. In this study, the RMS displacement of the primary structure was selected

as the objective function. The weighting matrix in Eqs. (6.19) is thus selected as

follows,

S̃ =


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 (6.25)

The excitation is assumed to be filtered white noise process with its intensity

S0, which can be determined by the characteristic of the soil condition. In this case

study, the primary structure is assumed to be excited by the ground motion with the

peak ground acceleration (PGA) of 0.40g at the soil surface. The PGA level of 0.40g

corresponds to the design PGA in seismically active region like southern California.

The spectral intensity factor S0 can be determined by using the following input-output

relationship of the SDOF system under the white noise process (Crandall and Mark,

2014)

σ2üg
=
π

2

S0ωg

ζg
(1 + 4ζ2g ) (6.26)

where σüg is the RMS acceleration of the ground acceleration . The RMS acceleration

level was then determined from the considered peak ground acceleration (PGA) and

a peak factor of 3 as

PGA = 3σüg (6.27)
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Table 6.1: Details of employed input motion

Variables Value

PGA, g 0.40

Spectral intensity S0, m
2/sec3 0.0128

Stiff soil sites

(Lin and Tyan, 1986)

Filter frequency ωg, rad/sec 20.80

Filter damping ratio ζg, % 40

Low-frequency filter

(Clough and Penzien, 1993)

Filter frequency ω2, rad/sec 0.40

Filter damping ratio ζ2, % 90

Thus, the spectral intensity can be determined by following relationship:

S0 =
2

9π

ζg(PGA)2

(1 + 4ζ2g )ωg
(6.28)

With assuming stiff soil condition (Lin and Tyan, 1986), the frequency and damping

parameters for the soil filter were chosen as ωg = 20.80 rad/sec and ζg = 40%,

respectively. The low-cut filter with the filter frequency ω2 and filter damping ratio

ζ2 was also considered (Clough and Penzien, 1993). The details of the employed

input motion are summarized in Table 6.1, and relevant technique to deal with the

structural response under the filtered excitations, namely introducing a ‘shaping filter’

or ‘pre-filter’, is described in Appendix C.

Parametric studies

To check the validity of the linearized system, a comparison of the simulation results

for the equivalent linear system is first examined by comparing the solution of the

system [or the solution of Eqs. (6.10)] with that of the linearized system. Figure

6.4 shows a comparison between the exact and linearized solution with the FPTMD

172



properties of µ= 0.10, l1= 99.5 cm, τ= 0.55 and ν= 0.30. From Figure 6.4a, it can be

readily seen that the displacement history of the primary structure predicted using the

linearized model correlates very well with that based on the exact nonlinear model.

To gain more insight into the characteristics of FPTMD, the angular velocities

of the pendulum for the two models were compared in Figure 6.4b. The two models

show comparable response during strong response phase, however, some discrepancy

is also seen in the details of time history response. It is also worthwhile to recall that

the dissipative force term contained in Eq. (6.18b) is inversely proportional to the

RMS response of the angular velocity of the pendulum.

The discrepancy which arises from the Gaussian assumption can be also observed

from the normalized dissipative hysteretic forces compared in Figure 6.5a. It can be

seen from this comparison that the variance of the angular displacement of the exact

model is a little bit larger compared to that of linearized model. Even though there

exists some discrepancy in the variance of the angular displacement and hysteresis

curve, the overall energy accumulation is similar in both models [see Figure 6.5b].

RMS response levels of the equivalent linearized system for various design param-

eters were also analyzed. Figure 5(a) depicts the RMS response level normalized to

that of uncontrolled system for varying mass ratio ν and friction coefficient τ , with a

pendulum length of l1 = 99.5 cm. Here we can make several observations as follows.

First, the maximum reduction in RMS response attainable is about 55% and 45% for

2% and 10% mass ratio, respectively. Second, the optimal parameters τ and ν for a

fixed pendulum length are almost opposing each other. This is not surprising since

the frictional force exerted by the motion of the tertiary mass is proportional to the

friction coefficient τ and the mass ratio ν [see Eq. (82)].

Figure 6 shows the RMS responses of the equivalent system for various pendu-

lum length l1 and normalized friction force term τν. Here, the pendulum length was

normalized to the reference pendulum defined as lref = g/ω2
n, where ωn is the natu-
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(a) Displacement of primary structures

(b) Angular velocity of pendulums

Figure 6.4: Comparison of time histories between the exact and linearized solution
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(a) Normalized dissipative force

(b) Normalized dissipative energy

Figure 6.5: Comparison of indexes for energy dissipation between the exact and lin-

earized solution
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(a) µ=0.02

(b) µ=0.05

Figure 6.6: RMS response levels compared to uncontrolled case depending on mass

ratio ν and friction coefficient τ (l1=99.5 cm)
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ral frequency of the primary structure. Again, the same trend is observed that the

efficiency of FPTMD increases as the weight of the pendulum mass becomes larger.

It should be emphasized that the optimal pendulum length for µ= 0.02 should be

shorter than lref while that for µ= 0.10 should be longer than lref. This is in con-

tradiction to the well-known fact in conventional translational TMD design that the

optimal period of a TMD is close to a period slightly longer than that of a primary

structure. Some explanation on this matter will be given in the next section.

Optimal parameters of FPTMD

The optimization procedure was programmed to find the optimal design parameters of

FPTMD (refer to Figure 6.17). The two optimal parameters for the proposed FPTMD

are presented in Figure 6.8 as a function of mass ratio and damping. From Figure

6.8a, it can be seen that the optimal pendulum length becomes longer with increasing

mass ratio. The optimal parameter τν, corresponding to the frictional force, is plotted

in Figure 6.8b. Unlike the optimal length, the parameter τν does not vary widely, but

is rather bounded in the range of 0.08 to 0.13.

Some explanations for the trends of the optimal parameters are given in the below.

First, when the mass ratio is small, the optimal period shorter than that of the

primary structure is demanded [see Figure 6.8a. This is again contradictory to the

case of conventional TMDs for which the optimal period is slightly longer than that of

the primary structure; as is well-known, the solution by Den Hartog (1956) suggests

the optimal period as (1+ µ)Tn, where µ is the mass ratio of the TMD and Tn is the

natural period of the primary structure. 6.9a shows the variation of the expectation

of the cosine of the angular displacement, which is directly related to the potential

force terms in Eqs. (6.14b) and (6.18b). The increase in the RMS response of the

”light” pendulum decreases the potential force, thus shortening the “effective length”

of the pendulum.
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(a) µ=0.02

(b) µ=0.05

Figure 6.7: Contour of the normalized RMS response depending upon normalized

frictional force and pendulum length (ν=0.7)
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(a) Normalized pendulum length

(b) Normalized frictional force

Figure 6.8: Optimal design parameters for various mass ratio µ
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(a) Expectation of the cosine of the angular displace-

ment

(b) RMS response of the angular velocity

Figure 6.9: Effect of mass ratio on angular displacement and velocity under optimal

design condition
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The trend of the optimal τν depicted in Figure 6.8b may also seem contradic-

tory to the case of conventional translational TMDs where larger optimal damping

force is required as the mass ratio increases. However, this is also understandable

with recalling that the dissipative force is proportional to the parameter τν, but is

also inversely proportional to the RMS angular velocity of the pendulum. As can

be observed from Figure 6.1b, the RMS angular velocity of the pendulum decays

exponentially as the pendulum mass increases. Consequently, the required optimal

frictional force expressed in terms of τν should be more or less constant irrespective

of the mass ratio.

6.1.6 Summary and conclusions

This study proposed a mechanism-based frictional pendulum TMD (FPTMD) in

which the potential force is provided by a pendulum mass and the dissipative force is

induced by the frictional force between a tertiary mass and the surface of a primary

structure. The results of this study can be summarized as follows.

1. A mechanism-based friction-pendulum TMD utilizing a three-hinge mechanism

was proposed which can overcome some shortcomings of traditional transla-

tional TMDs.

2. The exact and simplified nonlinear equations of motion for the proposed FPTMD

were first derived. In order to circumvent the mathematical difficulties associ-

ated with highly nonlinear behavior of the FPTMD proposed, a statistical lin-

earization technique was adopted to derive a set of equivalent linear equations.

3. A case study conducted based on the filtered white noise input showed that the

displacement time history of the primary structure predicted using the devel-

oped linearized model correlates very well with that from the exact nonlinear
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model. The angular velocity response of the pendulum predicted by the equiv-

alent linear model was comparable to that based on the exact nonlinear model

during strong response phase. However, some inevitable discrepancy was also

observed in the details of the time history response.

4. In order to efficiently find the optimal parameters related to the pendulum

length and the frictional force, the gradient-based optimization was adopted.

To this end, a closed form for the gradient of the object function was derived.

An iterative process which combines statistical linearization and optimization

was implemented to obtain the optimal parameters under seismic excitation.

5. Analyses of the optimal parameters obtained were also made to enhance the

understanding of the FPTMD behavior which is unique and different from con-

ventional translational TMDs.
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Figure 6.10: Drawing for examined floor

6.2 Vibration Attenuation of Hallway

This numerical study investigates the applicability of multiple tuned mass dampers

(MTMDs) for suppressing human-induced floor vibration. A hallway at the 5th floor

of Building 39 of Seoul National University was selected as an example structure.

Field measurements were firstly conducted, and then the modal characteristics were

calibrated with a finite element model. Linear and frictional MTMDs (LMTMDs

and FMTMDs) with a total mass ratio of 5%, each of which systems consists of ten

units of TMDs, are then designed according to the procedure described in Chapters

3 and 4. To investigate the effectiveness of designed TMDs, sensitivity analyses for

the frequency perturbation of main structure and force amplitude variation were

conducted. It was shown that FMTMDs are as effective as LMTMDs when subjected

to near the targeted input level, and are more effective under the amplitude larger

than the targeted one.
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6.2.1 Description of the examined hallway

The hallway at the 5th floor of Building 39 of Seoul National University was selected

as the examined floor, in which excessive vibration was often reported from walking

faculties passing through. The floor structure is composed of a 150 mm-deep reinforced

concrete slab supported by two types of 12.75 meter-long steel floor beams.

The dynamic properties including the natural frequency and corresponding modal

mass were determined by experimental and numerical ways. First, the natural fre-

quency of the hallway was found from the heel-drop test, and the modal mass was

estimated by calibrating the test result with the result of modal analysis for a finite

element model.

Modal characteristics

Free vibration tests were conducted by applying heel-drop impacts on the middle

point of the hallway. Figure 6.11 depicts a time history and the associated Fourier

transform for the hallway excited by a heel-drop impact. From the measurements, it

was found that only the first mode with its natural frequency of 6.64 Hz dictates the

dynamic response of the hallway. The damping ratio for the first mode was found

from the half-power bandwidth method to be 1.13 percent.

Finite element analysis was conducted to analyze the dynamic behavior of the

structure. A finite element model for the hallway was generated in ETABS® computer

software and adjusted to match the free vibration tests. The structural members are

set up based on the structural drawing shown in Figure 6.10. Some detailed techniques

for modeling the floor are adopted according to the SCI-P354 (Smith et al., 2007). The

dynamic modulus of elasticity of concrete was taken to be 38 MPa, which is about

1.35 times larger than an usual modulus for statics. The columns are modeled as

uni-dimensional beam element, being pinned at their inflection point located at mid-
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(a) Time history (b) Frequency response

Figure 6.11: Heel-drop test results

height between floors. The mass of the floor is set to be equivalent to the summation of

self-weight and 30 percent of the prescribed design live loads. A value of 1.13 percent

Rayleigh damping was applied, which corresponds to the measured value.

The mode shape of the first mode is presented in Figure 6.12, of which modal

frequency and corresponding modal mass are calculated to be 6.75 Hz and 18.85

ton, respectively. The modal analysis result is in qualitative agreement with the field

measurement, indicating a natural frequency for the first mode of 6.75 Hz that is only

within 1 percent error with measured one.

Vibration performance evaluation

From additional field measurements, the maximum acceleration of approximately 2%g

was observed, which is regarded as problematic for indoor footbridges according to

the AISC Design Guide #11 (Murray et al., 1997).

For evaluation, the peak acceleration due to walking can be computed using the

simplified design formula (Murray et al., 1997):
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Figure 6.12: Calculated shapes of the first mode of the hallway (modal frequency and

corresponding modal mass are calculated to be 6.75 Hz and 8.22 ton)

ap
g

=
Poexp(−0.35fn)

βW
(6.29)

where ap/g is the estimated peak acceleration in units of g, fn is the natural frequency

of the structure, and Po is a constant force equal to 0.29 kN for floors and 0.41 kN

for footbridges. The substitution of fn = 6.64 Hz and Po = 0.29 kN into Eq. (6.29)

yields ap/g = 0.84%g.

A set of walking tests were also conducted, in which four occupied conditions were

rather arbitrarily selected and tested; 10 and 15 people seated or standing. Three tests

were repeated for each of the four occupied conditions. The forcing and measuring

points were placed at the center of the floor to pick up the dynamic characteristics of

the first mode. The peak acceleration measured from the walking tests was 0.73%g as

an average spanning between 0.39%g and 1.31%g, which could exceed the threshold

of 0.5%g for human comfort in an office environment recommended by (Murray et al.,

1997). Note that the mean value of measured peak accelerations were rather lower

than the estimated peak acceleration. Such a discrepancy is due to an assumption
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on the simplified evaluation formula that the response would reach a fully resonance

state, which is actually hard to built up. More realistic estimation can be made

by appropriately applying relevant adjusting factor such as resonance amplification

factor or modal shape factors (Smith et al., 2007).

6.2.2 Design of multiple tuned mass dampers

Two types of MTMDs, linear MTMD (LMTMD) and frictional MTMD (FMTMD),

are designed according to the procedure described in Chapters 3 and 4. The total mass

ratio µT is taken to be 5% (i.e. total mass of MTMDs is 942.5 kg) so that the TMD

can produce an effective damping of 4-5% compared to the 1.13% original structural

damping, which is determined from Figure 3.6. Both MTMDs are determined to

consists of ten units of TMDs in order for each unit to weigh about 100 kg. All units

of the MTMDs are designed to be located at the middle of the hallway where the

modal shape value is the largest for their efficiency.

The optimal parameters for the MTMDs designed are presented in Table 6.2.

The values of friction forces and COFs for the FMTMDs are normalized to their

corresponding denominators. To convert those normalized values into actual physical

values, the parameters such as the mass (ms) and its RMS displacement under the

uncontrolled condition (ω2
sxref) should be identified. As described earlier, the mass

of main structure appeared to be 18.85 ton and 6.64 Hz. The RMS acceleration is

determined by applying 1/
√
2 to the mean of peak acceleration.

6.2.3 Numerical investigation

Footfall loading model

The footfall force function is modeled as a Fourier series according to the SCI-P354

(Smith et al., 2007)

187



F (t) = q

H∑
i=1

αi sin (2iπfpt+ ϕi) (6.30)

where q is the weight of an average person (normally taken as 746 N), H is the

number of Fourier terms, αi is the Fourier coefficient (or dynamic load factor) of the

i-th term, fp is the pace frequency, and ϕi is the phase lag of the i-th term. The

dynamic load factors and the phase lags as proposed by Bachmann and Ammann

(1987) are summarized in Table 6.3.

If the human exerts the footfall force on a concentrated location through moving

in one direction with its velocity of v, the force can be simulated as a moving load

which acts along the pathway. Considering the first mode governs with its shape of

almost half-sine function, the equivalent dynamic force concentrated at the midpoint

Table 6.2: Optimal parameters of designed MTMDs

Frequency

ratio

Damping

ratio

Normalized

friction force

Normalized

COF

γ∗i ζ∗i , % ηi/(msω
2
sxref), ‰ τi/(ω

2
sxref), %

0.8356 2.513 8.811 12.518

0.8791 2.290 8.712 13.698

0.9174 2.152 8.503 14.559

0.9535 2.054 8.261 15.281

0.9890 1.982 8.001 15.922

1.0246 1.931 7.729 16.508

1.0612 1.898 7.442 17.049

1.0998 1.885 7.129 17.546

1.1423 1.903 6.771 17.977

1.1931 1.986 6.299 18.241
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Table 6.3: Fourier coefficients for walking activities

Harmonic i Dynamic load factor αi Phase angle ϕi

1 0.436(ifp−0.95) 0

2 0.006(ifp+12.3) −π/2

3 0.007(ifp+5.20) π

4 0.007(ifp+2.00) π/2

of the floor F eq(t) can be expressed as follows (Chopra, 2007):

Feq(t) =

∫ L

0
F (t)× δ(x− vt)× sin

(πx
L

)
dx

= q
H∑
i=1

αi sin(2iπfpt+ ϕi) sin
(πv
L
t
)

(6.31)

where L is the beam span length, and δ(·) is the Dirac delta function. The walking

velocity v is approximated by the following equation (Bachmann and Ammann, 1987)

v = 1.67f2p − 4.83fp + 4.50 (6.32)

where v is in m/s and the pace frequency fp (Hz) is bounded between 1.7 Hz and 2.5

Hz.

In order to investigate the applicability of designed MTMDs, this study considered

the most severe possible outcome that can be projected to occur in a given range of

pace frequencies. Total 71 walking forces are simulated as the possible scenarios in

deterministic ways, where the pace frequencies are determined to be spanned from

1.7 Hz to 2.5 Hz spacing 0.01 Hz, and their corresponding walking velocities.
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MTMD performance evaluation

Figure 6.13 depicts simulated time response and associated peak acceleration spec-

trum. As for the uncontrolled structure, the maximum acceleration is about 1.2%g,

which is considerable in excess of 0.5%g of maximum allowable peak acceleration

according to the AISC DG #11. Not only in the vicinity of the pace frequency of

2.2 Hz, but also that of 1.7 Hz might be problematic by resonant by the third force

component. It can be seen that both designed MTMDs are effective in attenuating

the excessive vibration, enabling the hallway to be within the acceptable threshold

for offices according to the AISC DG #11.

Sensitivity analysis

Natural frequency perturbation A natural frequency of a floor structure might

be uncertain or change according to various situations such as modeling error in

identifying the structural properties, or random deterioration of material or structural

properties over time. This study presumably considered that the natural frequency

of the examined floor would be uncertain with its variance of 10%, which is also

consistent with the previous researches such as Ellingwood (1996) that used 10%

COV for dead load.

Figure 6.14 depicts the peak acceleration spectrum of the structure where the

natural frequency is perturbed to the lower or higher value of 10%. The pace frequency

producing maximum acceleration for each case were different because each floor was

excited by the harmonic components matching the divisor of the natural frequency

of the structure. That is, the uncontrolled structure with frequency-perturbed to the

lower value of 10% is mainly excited by the third component (6.64/3= 2.21 Hz or

5.98/3 = 1.99 Hz), while that with 10%-higher frequency perturbation is excited by

the two components, the third (7.30/3= 2.43 Hz) and the fourth (7.30/4 = 1.83 Hz).

190



(a) Time responses

(b) Peak acceleration spectrum

Figure 6.13: Simulated time response and associated peak acceleration spectrum of

examined structure with nominal natural frequency
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It is observed that significant reduction can be achieved with both MTMDs, suc-

cessfully attenuating the excessive vibration. The maximum acceleration of the damp-

ened structures are around 0.4 %g, which is significantly reduced compared to the

uncontrolled structure and is much below the allowable peak acceleration of 1.1%g.

Interestingly, the FMTMDo is found to be more effective than LMTMDo under the

condition that the main structure is near but not resonant. The undesired large re-

sponse outside the resonant bandwidth may ascribed to the characteristic of the fre-

quency response function of the system-MTMD system, in which some regions outside

the resonant bandwidth become larger compared to the uncontrolled case [see Fig-

ure 3.10]. The FMTMDs, fortunately, have smoothed frequency responses due to the

large values of equivalent damping of MTMDs under the condition that the uncon-

trolled response is smaller than specified in designing procedures. Such a sensitivity of

the equivalent damping of the frictional mechanism on the input intensity may con-

tribute to the beneficial effect on the reduction of the response outside the resonant

bandwidth.

Input-intensity sensitivity Figures 6.15 depict the peak acceleration spectrum

when the input-intensity is of 50% and of 150% compared to the design-specified

intensity. When the forcing function is 50% lower than the design-specified loading,

the FMTMDo showed its ineffectiveness compared to LMTMDo, though appropri-

ately controlling the excessive vibration under the resonant condition. The relative

inefficiency of the FMTMD may be due to the large values of equivalent damping of

MTMDs under the condition that the uncontrolled response is smaller than specified

in designing procedures. As the input level further increases beyond the targeted in-

put level up to 150%, the FMTMDo become more effective in a whole range of pace

frequencies.
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(a) 10% lower than nominal

(b) 10% higher than nominal

Figure 6.14: Peak acceleration spectrum under perturbed natural frequencies
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(a) 50% lower than design-specified intensity

(b) 50% higher than design-specified intensity

Figure 6.15: Peak acceleration spectrum under various input intensity
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6.2.4 Results and discussion

The applicability of MTMDs for the attenuation of floor vibration was investigated

based on numerical analyses. This study provided the optimal parameters of the

MTMDs. Based on the numerical simulations, it was shown that MTMDs designed

according to the proposed procedure exhibits performance under the realizable range

of walking frequencies.

195



6.3 Project: Vibration Mitigation of Floating Café

This section presents a project in an attempt to mitigate an excessive vibration of

a problematic structure, which was conducted by the authors collaborated with Bo-

sung ENG Group who provided safety design and with DRB Holding Co.,Ltd. who

supported in manufacturing process. The overall process of the project includes the

vibration performance evaluation, modal analysis based on finite element method

and optimal design and manufacturing of tuned mass dampers. From a comparison

between before and after installation of designed TMD, it was shown that the prob-

lematic vibration can be significantly reduced to the performance level required by

the clients.

6.3.1 Introduction

On 5th March of 2015 at a newly constructing department store, very uncomfortable

vibration was experienced by the workers. The problematic spot locates at a part of

the third floor, at which a floating café was planned to become occupied. In order to

check safety and eliminate such an intolerable vibration, the client decided to request

Bosung ENG Group who was in charge of the structural design of the department

building. Three days later, a team for solving the problem was constituted, which

composed of Steel Structures and Seismic Laboratory of the Seoul National University,

Bosung ENG Group who provided safety design and with DRB Holding Co., Ltd.

who supported in manufacturing process. Starting with a preliminary measurement

conducted on 8th of that month, the overall process of the project was carried out,

which includes the vibration performance evaluation, modal analysis based on finite

element method and optimal design and manufacturing of tuned mass dampers. The

structural members are set up based on the structural drawing shown in Figure 6.16.
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6.3.2 Description of floating café

The floating café is composed of a 150 mm-deep reinforced concrete slab supported by

two steel beams of its length 12 m with its depth of 700 mm. The dynamic properties

including the natural frequency and corresponding modal mass were determined by

experimental and numerical ways.

Preliminary vibration tests were conducted by applying heel-drop impacts on the

tip of the cantilever arms. Figure 6.17 depicts a time history and the associated Fourier

transform for the hallway excited by a heel-drop impact. From the measurements, it

was found that the first two modes with its natural frequency of 6 Hz and 20 Hz

dictate the dynamic response of the structure. The damping ratios were found from

the half-power bandwidth method to be 1% and 3%, respectively. It was concluded

from the preliminary test that the floating café can be probably excited by the third

component (6/3= 2 Hz), which resulted in an excessive vibration that was intolerable

for workers during the construction.

A finite element model was constructed to analyze the dynamic behavior of the

Figure 6.16: Drawing for floating café
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(a) Time history
(b) Frequency response

Figure 6.17: Preliminary test results

structure. The structural members are set up based on the structural drawing shown in

Figure 6.16. Some detailed techniques for modeling the floor are adopted according to

the SCI-P354 (Smith et al., 2007). The dynamic modulus of elasticity of concrete was

taken to be 38 MPa, which is about 1.35 times larger than an usual modulus for statics.

The columns are modeled as uni-dimensional beam element, being pinned at their

inflection point located at mid-height between floors. The mass of the floor is set to

be equivalent to the summation of self-weight and 30 percent of the prescribed design

live loads. A value of 1 percent Rayleigh damping was applied, which corresponds to

the measured value for the first mode of the structure.

The mode shape of the governing first mode is presented in Figure 6.18. The modal

analysis result is in qualitative agreement with the field measurement, indicating a

natural frequency for the first mode of 6.057 Hz that is only within 1 percent error

with measured one.
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Table 6.4: Modal properties of floating café

Values

1st mode 2nd mode

Under construction

(Tested)

Frequency, Hz 6.057 19.060

Mass, ton 3.319 0.125

Finished

(Predicted)

Frequency, Hz 6.1348 19.174

Mass, ton 7.283 0.203

Figure 6.18: Mode shape of the first mode

6.3.3 Design of multiple tuned mass dampers

Two sets of FMTMDo, each set of which consists of three units are designed and

implemented in this study. The FMTMDs were designed by Steel Structures and

Seismic Design Laboratory in Seoul National University, and manufactured by Dongil

DRB Holding Co., Ltd.. The design procedure for the TMDs are regulated according

to those proposed by this study (see Design procedures covered in Chapter 4). The

RMS acceleration in %g is usually taken as lower than the peak acceleration, but

it is taken as same as the peak value as a conservative manner. In order to attain
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Table 6.5: Optimal parameters of designed MTMDs

Type

Frequency

ratio

Equivalent

damping ratio

Normalized

friction force

Normalized

COF

γ∗i ζeq∗i , % ηi/(msω
2
sxref), % τi/(ω

2
sxref/g), %

FMTMDo 0.911 4.220 24.31 21.07

0.994 3.960 27.70 29.40

1.081 3.873 29.40 35.88

the suppression level of increasing the damping ratio of 5%, the mass ratios for both

TMDs are taken as 5%, and the number of TMDs is taken to be five units (see Figure

3.6).

Designed MTMDs are manufactured. Figure 6.17 shows the overview and detailed

view of the TMDs. After all, the TMDs are installed. Figure 6.19 shows the installed

locations and in-field tuning process.

6.3.4 Vibration serviceability assessment

Figure 6.20 compares the measured accelerations of the main structure before and

after activating the MTMDs, in which the left, centered and right panels are those

measured at the tip, at the center of the café, and the top of one of the TMD.

It is clear that the acceleration levels are significantly lower when the TMDs are

activated. While the time history of the tucked TMD is almost identical to the main

structure, the activated TMD shows a large response of acceleration, participating in

the vibration dissipation.
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(a) Overview (b) Details

(c) Installed locations (d) In-field tuning

Figure 6.19: Manufactured TMD unit

(a) Uncontrolled (b) Activated

Figure 6.20: Measured accelerations of the main structure
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6.3.5 Results and discussion

The applicability of MTMDs for the attenuation of floor vibration was investigated

based on numerical analyses. This study provided the optimal parameters of the

MTMDs. Based on the numerical simulations, it was shown that MTMDs designed

according to the proposed procedure exhibits performance under the realizable range

of walking frequencies.
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Chapter 7

Summary and Conclusions

This study presented a framework for the design of multiple tuned mass dampers

(MTMDs), widely covering all the design aspects such as control efficiency, opti-

mal design parameters, their robustness, and stroke limitation issues. Optimal design

of linear MTMDs (LMTMDs) were firstly discussed. It was confirmed that optimal

damping ratios decrease as the number of TMD increases. Such a relationship between

optimal damping and the number of TMD induces an idea that, with a large num-

ber of TMDs, frictional mechanism inherent in TMD operation would be sufficient

to satisfy the required small damping ratio. Based on the remark, the design of fric-

tional MTMDs (FMTMDs), which dissipate the transferred energy through inherent

friction mechanism.

Chapter 3 provided a framework for design of LMTMDs. The optimal parameters

of various LMTMD configurations are investigated, of which constraints are such as

the frequency ratios, damping ratios, mass distributions and combinations thereof.

Second, two different optimization schemes are employed: Nominal performance op-

timization (NPO) and Robust performance optimization (RPO). In order to allow
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the designer to consider the performance evaluation and the stroke limitations simul-

taneously, this study provides contour maps for the RMS displacement of the main

structure and the largest RMS displacement of the LMTMDs that can be useful in

the design process. The main findings can be summarized as follows:

1. Among the considered MTMD configurations, LMTMDo is found to be most

efficient in terms of suppressing the structural vibration, but some configu-

rations like LMTMDγ , LMTMDζ and LMTMDγζ can also exhibit their con-

trol performance similar to LMTMDo. Two other configurations LMTMDµ

and LMTMDµζ , however, not only deteriorate their control efficiency but also

require large amount of damping coefficient compared to the other MTMDs,

especially the number of TMDs becomes larger.

2. The optimal parameters like frequency ratios and damping ratios of MTMD

are found under the condition that the main structure is excited by a ground

motion of stationary zero-mean white-noise. From NPO solution, it was found

that the optimal parameters of MTMDs extend that of the single TMD.

3. From the backbone curve predicted by the classical solution of Warburton

(1982), the optimal frequency range tends to span further as the number of

TMDs increases, and the damping ratio per an unit TMD becomes smaller. The

rate of increasing the span and decreasing the damping ratio is drastic when the

total mass ratio is larger, showing insignificant difference with a larger number

of TMDs.

4. The RPO solution, which helps take into account the perturbation of the nat-

ural frequency of main structure, was found with the Point estimation method.

Compared to the NPO solution, the RPO solution provides more wider fre-

quency spans and decreased damping ratio. Based on the comparative analysis
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in the frequency domain, the RPO based solution provides more robust solution.

5. Considering the analyzed results that the LMTMDγζ exhibits the performance

to the optimal solution LMTMDo with much reduced design variables, this

study proposed an approximate solution for LMTMDγζ .

6. To allow the designer to consider the performance evaluation and the stroke lim-

itations simultaneously, this study provides contour maps for the RMS displace-

ment of the main structure and the largest RMS displacement of the LMTMDs

that can be useful in the design process.

Chapter 4 provided a framework for design of FMTMDs. The optimal parameters

of various FMTMD configurations were investigated, of which constraints are such

as the frequency ratios, damping ratios, mass distributions and combinations thereof.

Four of the feasible FMTMD configurations are formulated and comparably ana-

lyzed, each of which is constrained in a way of linearly distributed frequency ratios,

uniformly distributed coefficients of friction (COFs), and/or combinations thereof. An

approximate design formula is developed for FMTMDγτ configuration utilized under

the constraint of frequency ratios and COFs. In order to cope with the difficulties

inherent in nonlinearity of the system, this study adopted a statistical linearization

technique, which enables the complicated nonlinear force terms to be linearized in a

statistical sense. The key features of this chapter includes:

1. The optimal parameters like frequency ratios and equivalent damping ratios of

MTMD, which are obtained from a statistical linearization technique, are found

under the condition that the main structure is excited by a ground motion of

stationary zero-mean white-noise.

2. From the backbone curve predicted by the classical solution, the optimal fre-

quency range tends to span further as the number of TMDs increases, and the
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damping ratio per an unit TMD becomes smaller. The rate of increasing the

span and decreasing the damping ratio is drastic when the total mass ratio is

larger, showing insignificant difference with a larger number of TMDs.

3. An input-sensitivity analysis was extensively carried out. It was shown that

once the FRFs under a low level of input strength would blunt appearing the

original structural mode becomes flatten with increasing the loading level to 0.5.

Further increased loading to the originally-targeted loading enables the TMDs

to facilitate in a active way until the targeted input strength. As the input level

further increases beyond the targeted input level, the equivalent damping ratios

decreases compared to those for targeted one, causing undesired and frivolous

motions of TMDs resulting in their FRFs to be more increased peaks and deep

valleys, which might be unhelpful in controlling the main structure.

4. The approximate solution for FMTMDγτ was determined its optimal condition

with just three design variables such as two bound frequency ratios γ1 and βγ ,

and a COF τ .

Chapter 5 addressed RMS responses and extreme value distributions for the fric-

tional multiple tuned mass dampers (FMTMDs). In designing of optimal FMTMD,

the nonlinear system arising from the frictional elements were replaced into an equiva-

lent linear system by means of statistical linearization. In order to improve an accuracy

for the estimation of peak distribution of MTMDs, this study exploited a statistical

nonlinearization technique, which replaces nonlinear systems with a class of other

nonlinear systems of which exact solution has been explicitly derived. A correction

factor that defines the ratio of RMS displacement between nonlinear and linear sys-

tem was derived, based on the result of statistical nonlinearization technique. This

study further derived an explicit formula for evaluating a peak factor for the frictional

TMD. Those correction factor and formula for the peak factor were examined with
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Monte Carlo Simulation. The main findings are summarized below:

1. Based on the statistical nonlinearization, this study derived the probability den-

sity function for the peak values of the FTMD unit. It was shown that, for the

FTMD, the probability that any peak exceeds a certain value can be approx-

imated as the Erlang-2 distribution, which is clearly distinguished from the

solution of linear vibration theory that predicts that as Rayleigh distribution.

2. A correction factor that defines the ratio of RMS displacement between non-

linear and linear system was derived. Through the numerical simulations, it

was found that the estimated value obtained by the statistical linearization un-

derestimates the RMS displacement of TMD significantly providing less than

3 percent quantile compared to the simulated results. The model proposed by

this study provides in a level of 10 % quantile showing less than 10% from the

mean value of the simulated solution.

3. This study further derived an explicit formula for evaluating a peak factor for

the frictional TMD. It was found from numerical simulations that the peak

distribution is not dependent on the mass ratio of TMD, thereby the frequency

ratio and damping ratio of TMD.

4. The predicted peak response showed some discrepancies with the simulated

results; however, the maximum relative error was less than 13 percent. The

results show a trend that as the DVA mass ratio decreases, the model tends to

overestimate the peak response of the TMD.

Chapter 6 dealt with several applications of multiple tuned mass dampers (MT-

MDs). In the first section, a mechanism-based frictional pendulum tuned mass damper

(FPTMD) was proposed, which contributes to overcome some shortcomings of conven-

tional translational TMDs with viscous damping. In the second section, a numerical
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study was carried out to provide a design procedure of MTMDs, which covered modal

analysis based on finite element method, optimal design of tuned mass dampers, and

evaluating their control performance and robustness under the frequency-perturbed

states. The final section presented a project in an attempt to mitigate an excessive

vibration of a problematic structure. The overall process of the project includes the

vibration performance evaluation, modal analysis based on finite element method

and optimal design and manufacturing of tuned mass dampers. The main findings

are summarized below:

1. A mechanism-based friction-pendulum TMD utilizing a three-hinge mechanism

was proposed which can overcome some shortcomings of traditional transla-

tional TMDs. The exact and simplified nonlinear equations of motion for the

proposed FPTMD were first derived. In order to circumvent the mathematical

difficulties associated with highly nonlinear behavior of the FPTMD proposed,

a statistical linearization technique was adopted to derive a set of equivalent

linear equations.

2. The applicability of MTMDs for the attenuation of floor vibration was investi-

gated based on numerical and experimental ways. First, the hallway at the 5th

floor of Building 39 of Seoul National University was selected as the example

structure. The overall process of the project includes the vibration performance

evaluation, modal analysis based on finite element method and optimal design

and manufacturing of tuned mass dampers.
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Appendix A

Point Estimation Method

Point estimation method (PEM) is a class of numerical methods for evaluating the

statistical moments of a given function that consists of random input variables. A typ-

ical work out of the method involves (1) determining specific points of input variables

and associated weighting factors, followed by (2) evaluating the statistical moments of

the given function at the discrete points, and (3) combining all of evaluated statistical

moments with associated weighting factors for the final calculation. The numerical

answer can be treated as an approximate value of the statistical moments of the given

function.

The PEM is effective and powerful compared to several relevant techniques such

as direct integration method, Monte Carlo Simulation and Response Surface Method,

especially when the associated random variables are in a large number. Some details

on the determination of ‘points’ varies depending on the number of the specific points

per an input variable.This study dealt with 2N + 1 scheme which requires 2N +

1 specific points per an input variable. More details on its theoretical aspects can

be found in the literature Rosenblueth (1975) and Hong (1998), and those on its
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applications can also be found in Morales and Perez-Ruiz (2007) and Caramia et al.

(2010).

Consider a function Y = Y (X1, · · · , XN ) where the individual variables Xj ,

j = 1, · · · , N are random. The procedure for computing the moments of the out-

put variables can be summarized by the following step:

1. Set the vector consists of l-th moment of the output variable to be zero, and

set the variable index j as one.

2. Determine the two standard locations for the individual variable Xj :

χj,1 =
λj,3
2

+

√
λj,4 −

3

4
λ2j,3 (A.1a)

χj,2 =
λj,3
2

−
√
λj,4 −

3

4
λ2j,3 (A.1b)

where λj,3 and λj,4 denote the third and fourth standard central moments of

the input random variable Xj with probability density function fXj (xj), that

is:

λj,3 =
M3(Xj)

σ3Xj

, (A.2a)

λj,4 =
M4(Xj)

σ4Xj

, (A.2b)

M3(Xj) =

∫ ∞

−∞
(xj − µXj )

3dxj , (A.2c)

M3(Xj) =

∫ ∞

−∞
(xj − µXj )

4dxj (A.2d)
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Figure A.1: Two deterministic points and evaluated values for these points

where µXj and σXj in the relationship are the mean and the standard deviation

ofXj , respectively. Note that λj, 1 equals zero, λj, 2 is unity, and λj,3 and λj,4 are

the skewness and kurtosis of the random variable xt, respectively. Particularly,

the third central moment λj,3 yields zero when the variable Xj is symmetric.

3. Determine the two points xj,1 and xj,2 [see Figure A.1]:

xj,1 = µXj + χj,1σXj (A.3a)

xj,2 = µXj + χj,2σXj (A.3b)

As can be deduced from Eq. (A.2), these determined points depend on the first

three moments of fXt .

4. Evaluate the given function Y for both locations xj,k using the two input vari-
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able vectors:

ν1 = [µX1 , µX2 , · · · , xj,1, · · · , µXN
] (A.4a)

ν2 = [µX1 , µX2 , · · · , xj,2, · · · , µXN
] (A.4b)

5. Determine the associated weight factors:

wj,1 =
1

χj,1(χj,1 − χj,2)
(A.5a)

wj,2 = − 1

χj,1(χj,1 − χj,2)
(A.5b)

6. Update E(Y l):

E(Y l) = E(Y l) +
2∑

k=1

wj,k[Y (νk)]
l (A.6)

7. Repeat the above steps for j = j + 1 until the list of random input variables is

exhausted.

8. Evaluate the function Y at the input vector consists of mean points:

νµ = [µX1 , µX2 , · · · , µXj , · · · , µXN
] (A.7)

9. Determine the weight factor for the input vector νµ:

wµ = 1−
N∑
j=1

1

λj,4 − λj, 32
(A.8)
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10. Update E(Y l):

E(Y l) = E(Y l) + wµ[Y (νµ)]
l

=

N∑
j=1

2∑
k=1

wj,k[Y (νk)]
l + wµ[Y (νµ)]

l (A.9)

The procedure previously described is valid in the case that the input random

variables are uncorrelated each other. If the input random variables are correlated to

some extent, an additional treatment should be preceded in a way that transforms

the set of correlated input variables into an uncorrelated set of variables. The details

about the procedure are described in the literature (Hong, 1998).
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Appendix B

Statistical Linearization

One attractive method for solving nonlinear stochastic differential equations is a sta-

tistical linearization which can replace a set of nonlinear differential equations by a

set of equivalent linear equations in a statistical sense. This appendix is dedicated

to briefly present a coverage on the statistical linearization, particularly for the case

when the input is a zero-mean stationary white-noise excitation, and the response

processes of concern are also stationary. A comprehensive example is followed by

the presented coverage. Additional issues on the technique involving an extension to

non-stationary process problem and its accuracy are detailed in Roberts and Spanos

(2003), and recent research on advanced theoretical issues and its applications of this

technique are well reviewed in the literature (Socha, 2005a,b).

B.1 Formulation

Consider a system that includes nonlinear force term ψ in the form
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My′′ + Cy′ +Ky + ψ(y, y′, y′′) = fu (B.1)

where M , C and K denote the mass, viscous damping and stiffness matrices, respec-

tively, y is a generalized coordinate vector, a prime notation denotes the derivative,

ψ is a nonlinear vector whose entries are function of the coordinate vector y and its

derivatives, u is a scalar random process and f is an influence vector for the process

u.

The first step of the statistical linearization is to formulate a set of equivalent

linear equations by replacing the nonlinear vector ψ with the linear vectors associated

with equivalent mass, damping and stiffness matrices such that the error between the

original and the equivalent system is to be minimized.

The equivalent linear system is defined by

My′′ + Cy′ +Ky +M eqy′′ + Ceqy′ +Keqy = fu (B.2)

where M eq, Ceq and Keq are the equivalent matrices to be suitably determined.

The difference ε between the original and the equivalent linear system, or the

error can be defined by

ε = ψ −M eqy′′ − Ceqy′ −Keqy (B.3)

A variety of error measures can be considered(Socha, 2005a), but the mean square

of the error is one of the commonly used measures owing to its simplicity and clarity

of conceptual aspect. The mean-squared error to be minimized is then defined as

E[εTε] = E[ψTψ]− 2E[ψT(M eqy′′ + Ceqy′ +Keqy)]

+ E[(M eqy′′ + Ceqy′ +Keqy)T(M eqy′′ + Ceqy′ +Keqy)]. (B.4)
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B.2 Solution Procedure

B.2.1 Error minimization

From Eq. (B.4) it is seen that the error measure E[εTε] is simply a quadratic form with

respect to the parametric matrices M eq, Ceq and Keq. The next step is to determine

the parametric matrices of equivalent system that minimize the error measure.

One can minimize the quadratic measure by applying the first order necessary

conditions such as:

∂

∂Keq
E[εTε] = 0 (B.5a)

∂

∂Ceq
E[εTε] = 0 (B.5b)

∂

∂M eq
E[εTε] = 0 (B.5c)

As a representative case, we only present some core operations for stiffness term

[Eq. (B.5a)]. Applying the necessary condition to the third term contained in the

second expectation in Eq. (B.4) gives us

∂

∂Keq
E[ψTKeqy] = E[ψyT] (B.6)

Next, applying the necessary condition to the last term contained in the third expec-

tation in Eq. (B.4) gives us

∂

∂Keq
E[yTKeqTKeqy] = 2KeqE[yyT] (B.7)

The expectation of the elastic and damping forces of the equivalent system can be

reduced to

∂

∂Keq
E[yTKeqTCeqy′] = CeqE[y′yT] (B.8)
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Repeating similar operations for damping and mass and applying the linear property

of the expectation operator E[·], Eqs. (B.5) can be rewritten into the following form:

∂

∂Keq
E[εTε] = −2E[ψyT] + 2M eqE[y′′yT] + 2CeqE[y′yT] + 2KeqE[yyT]

= 0 (B.9a)

∂

∂Ceq
E[εTε] = −2E[ψy′T] + 2M eqE[y′′y′T] + 2CeqE[y′y′T] + 2KeqE[yy′T]

= 0 (B.9b)

∂

∂M eq
E[εTε] = −2E[ψy′′T] + 2M eqE[y′′y′′T] + 2CeqE[y′y′′T] + 2KeqE[yy′′T]

= 0 (B.9c)

Assuming that the output vector y and its derivatives y′ and y′′ in Eqs. (B.9) are

Gaussian process, the following formula can be used (Lutes and Sarkani, 2004)

E[h(x)xT] = E

[
∂h

∂x

]
E[xxT] (B.10)

where h(·) is a scalar function and x is a Gaussian vector. Using the formula, Eqs.

(B.9) can be written as follows.

E[ψyT] = E

[
∂ψ

∂y

]
E[yyT] (B.11a)

E[ψy′T] = E

[
∂ψ

∂y′

]
E[yy′T] (B.11b)

E[ψy′′T] = E

[
∂ψ

∂y′′

]
E[yy′′T] (B.11c)

With introducing a combining vector ŷ = [yT, y′T, y′′T]T, we can rewrite the equations

into the following form:
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E

[
∂ψ

∂ŷ

]
E[ŷŷT] = [KeqCeqM eq]E[ŷŷT] (B.12)

Noting that the matrix E[ŷŷT] is non-singular, the equation that determines the

parameters of the statistically linearized system are obtained as follows.

E

[
∂ψ

∂ŷ

]
= [KeqCeqM eq] (B.13)

Consequently, if the nonlinear vector ψ is explicitly written in terms of the as-

sociated coordinate y and its derivatives and is differentiable to those terms, the

equivalent matrices can be determined as Eq. (B.13) by applying the expectation to

those partial derivatives.

B.2.2 Response evaluation

Once the elements of the equivalent linear system were established, the response of

the system can be suitably obtained by means of the standard linear theory. Among

various approaches, this coverage adopted the state variable approach. The equations

of motion for the equivalent linear system can be rewritten into the state variable

form as follows.

z′ = Az +Bu (B.14)

where z = [yT, y′T]T and the matrices A and B are as follows:

A =

 O I

−(M +M eq)−1(K +Keq) −(M +M eq)−1(C + Ceq)

 , (B.15a)

B =

 O

(M +M eq)−1f

 . (B.15b)
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If the external loading u is a zero-mean stationary white-noise excitation with its

spectral strength Su, the covariance matrix Q = E[zzT] can be obtained by solving

the following Lyapunov equation (Lutes and Sarkani, 2004):

AQ+QAT + 2πSuBB
T = O (B.16)

In those cases where the external loading u is not a white-noise excitation, it is

available to augment the order of the overall system by applying the concept of a

‘pre-filter’, which is briefly covered in Appendix C. If needed, please refer to Roberts

and Spanos (2003).

One can find from the preceding procedure that a cyclic relationship between the

equivalent elements and the responses of the equivalent linear system, or between Eq.

(B.13) and Eq. (B.16). To find the response and corresponding equivalent elements,

hence, an iterative scheme followed by an appropriate initial estimate should be em-

ployed. It should be emphasized that the existence and uniqueness of the procedure

are guaranteed in a rigorous way (Roberts and Spanos, 2003), so that the search

procedure within the cyclic relationship, hence, is of valuable in finding the solution.

B.3 Examples of Systems with Power-Law Damping

This section presents a comprehensive example of a structure-FMTMD system, in

which the main structure is controlled by the frictional multiple tuned mass damper

in a passive way. Consider a structure-MTMD system by Eq. (4.8), in which the

dissipative force of the i-th TMD ψi is as follows:

ψi = ψi(y
′
i) = ηi|y′i|βsgn(y′i) (5.9)

where ηi is the constant, and sgn[·] is a signum function.
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The statistical linearization technique enables the nonlinear force term ψ = [0, ψi, · · · , ψN ]T

to be replaced with an equivalent term that minimizes the mean square of the error

E[ε2] where the error ε is given by

ε = ψ − Ceqy′ (B.17)

where Ceq is a parametric matrix to be determined that minimizes the described

mean square of the error.

Under the assumption of stationary Gaussian excitation, the elements of the para-

metric matrix Ceq can be obtained by Eq. (B.13), of which partial differentiation is

done in an element-wise way, as follows:

ceqi+1 = E[∂y′iψi] = E

[
∂ψi

∂y′i

]
i = 1, · · · , N (B.18)

where ψi is the nonlinear force induced by the response of the i-th element, and

∂y′iψi denotes the partial derivative of the nonlinear force ψi with respect to the

non-dimension velocity y′i. The idealized Coulomb-type frictional force hatψi and its

derivative ∂y′iψ̂i are depicted in Figure. Also it should be noted that ceq1 = 0 as the

first element of the nonlinear vector ψ is null [see its definition denoted in Eq. (B.23)].

Further, under the assumption that the responses of the equivalent stationary

system are stationary zero-mean Gaussian processes, the relative non-dimensional

velocity of the i-th TMD, y′i, also becomes Gaussian with corresponding variance, say

σy′i . Then the expectation value in the Eq. (B.18) is evaluated by following expression:

E

[
∂ψi

∂y′i

]
=

1√
2πσy′i

∫ ∞

−∞

∂ψi

∂y′i
exp[−y′2i /2σy′i ] dy

′
i (B.19)

And the partial derivative of Eq. (B.19) is given by
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∂ψi

∂y′i
=


2ηi δ(y

′
i) if β = 0

ηiβ|y′i|β−1 if β > 0

(B.20)

where δ(·) is the Dirac delta function.

Substituting the partial derivative of the friction force and using the sifting prop-

erty of the Dirac delta function, the equivalent damping element ceqi+1 can be con-

sequently evaluated. Connected with the equivalency of the equivalent damping co-

efficient and its normalized form, Eq. (B.18) can be rearranged into the following

form:

ceqi+1 = 2γiζ
eq
i =


√

2

π
ηi

1

σy′i
if β = 0

ηiβΓ(β/2)(
√
2σy′i)

β−1

√
π

if β > 0

(B.21)

Rearranging Eq. (B.18) in terms of the design variable, ηi gives:

ηi =


√
2πγiζ

eq
i σy′i if β = 0

2
√
π(
√
2σy′i)

1−β

βΓ(β/2)
µiγiζ

eq
i if β > 0

(B.22)

Hence we have a equivalent linear matrix Ceq comprised of the equivalent force term,

so that the solution obtained from the linear MTMD part can be adapted. Further,

the terms contained in the equivalent matrix can be converted into the normalized

form as previously seen in the linear MTMD chapter as follows:

The matrix equation (4.7) can be rewritten by substituting the statistically lin-

earized term into the nonlinear vector as follows:

My′′ + (C + Ceq)y′ +Ky = fw′′
g (B.23)
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where the matricesM , C andK are previously defined at Eqs. (4.9) and the equivalent

damping matrix Ceq is defined in Eq. (4.21). With introducing a non-dimensional state

vector z = [yT, y′T]T, a first-order state-space model can be formulated as Eq. (4.25),

where the corresponding matrices A and B are given by

A =

 O I

−M−1K −M−1(C + Ceq)

 , (B.24a)

B =

 O

−f

 . (B.24b)

Note that the equivalent damping matrix of the equivalent linear system consists

of the non-dimensionalized relative velocities of TMDs [see Eq. (4.13)], and the rela-

tive velocities can be evaluated upon a determined system property [see Eq. (B.24)].

Hence, it is necessarily required to assume the initial system properties and to iterate

the circumstances as the appropriate tolerance to be minimized.

As assumed that the external loading w′′
g is a zero-mean stationary white-noise

excitation with its spectral strength Sw′′
g
, the covariance matrix Q = E[zzT] can be

obtained by solving the following Lyapunov equation

AQ+QAT + 2πSw′′
g
BBT = O (B.25)

One can find from the preceding procedure that a cyclic relationship between the

equivalent elements and the responses of the equivalent linear system, or between Eq.

(B.21) and Eq. (B.25). To find the response and corresponding equivalent elements,

hence, an iterative scheme followed by an appropriate initial estimate should be em-

ployed. It should be emphasized that the existence and uniqueness of the procedure

are guaranteed in a rigorous way (Roberts and Spanos, 2003), so that the search

procedure within the cyclic relationship, hence, is of valuable in finding the solution.
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Appendix C

Applying Pre-Filters

This appendix is dedicated to describe the techniques which is useful to deal with the

structural response under non-white excitations by introducing a ’shaping filter’ or

’pre-filter’. More detailed description on this issue can be referred to various textbooks

or relevant documents, and this appendix part is excerpted from Chapter 7.4.2 from

Roberts and Spanos (2003).

Suppose that a system is written in the form of state-space description. The pre-

filter determines the transfer function between the input which is white noise and

the output is of non-white excitation process. Under the circumstance, the original

system is able to be described as an augmented, which consists of the original system

and the pre-filter components in series. The schematic flow is depicted in Figure C.1.

When the switch is closed after the pre-filtered output has reached stationary, it is

clear that the non-stationary response of the original system will not be influenced

by the transient response of the pre-filter.

The consequence of employing a switch into the augmented system can be realized

by taking adequate initial conditions for the covariance matrix of the overall state
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Figure C.1: Block diagram representation of the use of pre-filters to determine system

response in the non-stationary case

variable vector, z. Thus, let z = [xT, χT]T, where x is the augmented state vector,

and χ is the state vector associated with the pre-filter output.

First, suppose that the equation of motion was written as a first-order state-space

equation as follows:

x′ = Ax+Bu′′g (C.1)

where u′′g is a ground acceleration and

A =

 O I

−M−1K −M−1C

 , (C.2a)

B =

 O

−f

 . (C.2b)

In the limited case where the input vector is of single degree of freedom, the

process Qs is governed by pre-fileter equations of the following general form

νm−1χ
(m−1) + νm−2χ

(m−2) + · · ·+ ν0χ
(0) = Qs, (C.3a)

χ(m) + λm−1χ
(m−1) + · · ·+ λ0χ

(0) = n, (C.3b)
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where λ0, λ1, · · · , λm−1 and ν0, ν1, · · · , νm−1 are filter constants and n is a station-

ary white noise process, with unit strength. The superscript (n) denotes the n-th

derivative. The vector χ may be defined by χ = [χ(0), χ(1), · · · , χ(m−1)]T. With this

definition, Equation (C.3) may be written in the standard state variable form i.e.

χ′ = Eχ+ F (C.4)

where

E =


0 1 · · · 0

0 0 · · · 0
...

...
. . .

...

−λ0 −λ1 · · · −λm−1

 , (C.5a)

F =
[
0 0 · · · 0

]
. (C.5b)

In those cases where the random ground acceleration is filtered white-noise, it is

possible to augment the overall system by introducing a ‘shaping filter’. The aug-

mented system is then governed by the usual state variable equation of the form

x′ = Gx+W (C.6)

where

G =

 E D

O F

 , (C.7a)

W = [0T, FT]T. (C.7b)
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D is defined by

D = a(t)

 O

M−1v

 νT (C.8)

where

ν =
[
ν1 ν2 · · · νm−1

]T
. (C.9)

As indicated, the augmented system matrix G is time dependent through the intro-

duction of the modulating function a(t) that appears in D.

The covariance martrix V for x is governed by the usual differential matrix equa-

tion for a system drive by white noise. In the present notation this equation may be

written as

V ′ = GV + V GT + P (C.10)

where

P =


0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 1

 . (C.11)

In solving Eq. (C.11) it is essential to start the integration procedure at the instant

the switch is closed. At this time (t=0, say), some elements in V , which relate directly

to χ will be non-zero. To demonstrate this, it is convenient to partition V , according

to (C.1). Thus

V =

 Vzz Vzχ

V T
zχ Vχχ

 (C.12)
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Abstract (in Korean)

최근 건축재료기술 및 이에 상응하는 설계기술의 발전은 건축물의 경량화 및 고층화를

가능케 하였으며, 이에 따라 건물의 진동 성능은 설계 시점이나 시공 전후에 필수적으로

고려해야 할 요소 중 하나가 되었다. 진동제어기술은 이러한 경량/고층 건물의 수요증

가와 맞물려 그 수요 역시 점증하고 있다. 이 중 동조질량감쇠기(Tuned mass damper,

TMD)는 원구조물과 동조하는 부가질량, 공진을 유도하기 위한 복원기구 및 유입된

진동에너지를 소산하기 위한 감쇠기구로 구성되며, 우수한 성능과 간편한 원리에 따른

구현의 용이성으로 인해 가장 널리 쓰이는 진동제어 장치이다.

다중동조질량감쇠기(Multiple TMD, MTMD)는 여러 개의 적절히 설계된 TMD

들을 배치하여 원구조물의 진동을 저감하는 하나의 시스템을 일컫는다. MTMD를 구현

하고자 할 경우, 단일TMD와는 달리 단일 고유진동수가 아니라 넓은 진동수대역에 걸쳐

각 단위TMD들이 공진하여 진동에너지를 흡수할 수 있도록 시스템을 구성해야 한다.

MTMD의 최적 설계를 위해서는 기존 단일TMD와는 달리 각 단위TMD들의 최적 동특

성을 찾기 위한 최적화를 수행해야 하며, 또한 MTMD의 적용으로 인해 유발될 것으로

예상되는 부작용들을 충분히 고려해야 한다.

본 논문은 MTMD의 최적 설계안을 도출하며, 본 논문의 주제는 1) 선형 속도의

존감쇠를 통해 에너지를 소산하는 이른바 선형 다중동조질량감쇠기(Linear MTMD,

LMTMD)의 최적설계, 2) Coulomb타입의 마찰력을 통해 에너지를 소산하는 마찰 다

중동조질량감쇠기(Frictional MTMD, FMTMD)의 최적설계 및 3) FMTMD의 정확한

RMS변위 추정을 위한 보정계수, 극값분포 확률밀도함수와 그에 따른 피크팩터 추정식

개발 등을 포괄한다.

본 연구는 실용적으로 여겨지는 여섯 가지 LMTMD 구성에 대한 최적해를 도출하였

으며, 이 중 최적해에 버금가는 성능을 보유하되 세 개의 매개변수로 TMD의 동특성을

기술할 수 있는 LMTMD구성에 대한 설계식을 제안하였다. 또한 본 연구에서 도출한
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최적해 분포로부터 동일한 총부가질량비를 가질 경우에는 그 진동성능에는 유의미한

차이가 나타나지 않으나, 단위 갯수가 늘어남에 따라 최적성능 발현에 요구되는 총점

성감쇠기구의 용량이 감소함을 보였다. 다만 이러한 요구감쇠의 감소는 결과적으로 각

단위TMD의 요구변위 증가로 이어져 기구를 보다 더 정밀하게 만들어야 할 조건을 추

가로 부여한다.

본 연구에서는 또한 네 개의 FMTMD구성에 대한 최적해를 도출하였으며, 이 중 적

은 매개변수를 가지면서도 높은 성능을 발현하는 구성에 대한 설계식을 제안하였다. 본

연구는비선형거동을보이는마찰력을통계적으로등가를갖는선형속도의존하중으로

대체한 후, 이 때의 오차를 최소화하는 선형 속도의존하중 및 그에 대응되는 마찰력을

제시하였다. 또한 마찰력 도입에 따라 하중의 크기가 TMD성능에 미치는 영향을 다각

적으로 분석하였다.

본 연구는 또한 통계적 선형화를 통해 예측된 RMS 변위값이 실제 값을 8% 가량

과소평가하는 것을 보였으며, 통계적 비선형화기법을 통해 상기 예측된 RMS변위값을

보정하는 식을 제시하였다. 또한 FMTMD의 과도한 응답을 미리 예측하게 하기 위해

피크팩터 산정을 위한 식을 유도하고 이를 제시하였다.

본 연구에서는 마찰-진자형 TMD를 개발하여 이 성능을 수치적 방식을 통해 확인하

였으며, 또한 바닥진동 제어 시 요구되는 TMD설계 전반의 과정을 체계적으로 정리하여

응용부분에 추가하였다. 마지막으로 MTMD를 적용한 실제 프로젝트를 제시함으로써

이론적고찰뿐만아니라실제적부분을충실하게다루었다.본연구의결과는제작,설치

및 제어가 훨씬 용이한 Modular TMD 혹은 Portable TMD의 개발에 활용될 수 있다.

주요어: 동조질량감쇠기, 다중동조질량감쇠기, 마찰기구, 진동제어, 통계적선형화, 바닥

진동

학번: 2011-30173
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