
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사학위논문

Compact finite difference methods using local

analytic basis functions for the Helmholtz

equation

헬름홀츠 방정식의 해석적 기저 함수를 이용한

컴팩트 유한 차분법

2017 년 8 월

서울대학교 대학원

기계항공공학부

박 현 서





Compact finite difference methods using local analytic

basis functions for the Helmholtz equation

지도교수 이 건 우

이 논문을 공학박사 학위논문으로 제출함

2017 년 5 월

서울대학교 대학원

기계항공공학부

박 현 서

Hyunseo Park의 공학박사 학위논문을 인준함

2017 년 7 월

위 원 장 Changsoo Shin (인)

부위원장 Kunwoo Lee (인)

위 원 Dong-Joo Min (인)

위 원 Churl-Hyun Jo (인)

위 원 UGeun Jang (인)





Abstract

Compact finite difference methods using local analytic basis functions for the

Helmholtz equation are derived in this thesis. Compared to former compact fi-

nite difference methods, the proposed methods using the analytic information of

the Helmholtz equation greatly reduce the numerical dispersion error so that the

minimum number of grids per wavelength required in the numerical simulation

can be lowered. This enables us to simulate the higher frequency/wavenumber

range without increasing the number of grids, which reduces the computational

costs. The proposed compact finite difference methods have great potential for

numerically intensive applications using regular tensor product grids, because

of their efficiency and accuracy. Some numerical results and comparisons are

provided to verify the efficiency and accuracy of the proposed scheme. The

proposed scheme is also applied to seismic wave propagation in heterogeneous

media to assess its feasibility for geophysical applications.

Keywords: Helmholtz equation, Trefftz basis function, finite difference, nu-

merical dispersion, seismic wave

Student Number: 2010-23217

i



Contents

Abstract i

Chapter 1 Introduction 1

1.1 Background and Importance . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Discretization using Analytic Basis Functions 7

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Finite Difference Operator . . . . . . . . . . . . . . . . . . 8

2.1.3 Näıve Second Order Finite Difference Method . . . . . . . 10

2.2 1D Compact Finite Difference Methods . . . . . . . . . . . . . . 11

2.2.1 3-Point Method . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Alternative Derivation . . . . . . . . . . . . . . . . . . . . 12

2.3 2D Compact Finite Difference Methods . . . . . . . . . . . . . . 14

ii



2.3.1 5-Point Method . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 9-Point Method . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 3D Compact Finite Difference Methods . . . . . . . . . . . . . . 23

2.4.1 7-Point Method . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 19-Point Method . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 27-Point Method . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Source Amplitude Correction Functions . . . . . . . . . . . . . . 30

2.5.1 1D Source Amplitude Correction Function . . . . . . . . . 30

2.5.2 2D Source Amplitude Correction Functions . . . . . . . . 33

2.5.3 3D Source Amplitude Correction Functions . . . . . . . . 39

Chapter 3 Dispersion Analysis and Numerical Experiments 44

3.1 Plane Wave Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 2D Dispersion Curves . . . . . . . . . . . . . . . . . . . . 44

3.1.2 3D Dispersion Curves . . . . . . . . . . . . . . . . . . . . 54

3.2 Numerical Solutions with the Impulse Source . . . . . . . . . . . 62

3.2.1 2D 9-Point Method for a Homogeneous Medium . . . . . 62

3.2.2 3D 27-Point Method for a Homogeneous Medium . . . . . 72

3.2.3 2D Seismic Wave Propagation in Heterogeneous Media . . 82

Chapter 4 Conclusions 86

Appendix A Exact 1D Discretization with Piecewise-Constant

Media 87

A.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

iii



Appendix B Perfectly Matched Layer 90

B.1 Continuous Perfectly Matched Layer . . . . . . . . . . . . . . . . 90

B.2 Discrete Perfectly Matched Layer in 1D . . . . . . . . . . . . . . 91

B.3 Discrete Perfectly Matched Layer in 2D and 3D . . . . . . . . . . 92

Bibliography 94

초록 99

iv



List of Figures

Figure 2.1 1D stencil for a homogeneous medium . . . . . . . . . . 13

Figure 2.2 Neighbor nodal points centered at u0,0 . . . . . . . . . . 17

Figure 2.3 Dispersion error curves for the näıve second order FDM

and Nehrbass et al. (1998)’s second order FDM. Closer

to zero is better. The vertical axis means the phase dif-

ference error when the wave propagates distance h. G is

the number of grids per wavelength. . . . . . . . . . . . . 19

Figure 2.4 Three basic nodal summations in the 27-point compact

stencil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.5 The unnormalized sinc function . . . . . . . . . . . . . . 33

Figure 2.6 Source amplitude correction functions for the 2D im-

pulse source. . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.7 The series approximation of F9(kh). The imaginary co-

efficients and log terms are omitted in the series approx-

imation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



Figure 2.8 The source amplitude correction functions for the 3D

impulse source. . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.9 The series expression of F27(kh). It matches well with

Re(F27(kh)). . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.1 A schematic for describing the phase difference when the

wave travels distance h with the propagation angle θ . . 45

Figure 3.2 Dispersion error curves for the 2D näıve second order
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Chapter 1

Introduction

1.1 Background and Importance

The Helmholtz equation has been widely used in many applications including

acoustics, elastic wave propagation and electromagnetics. Because the Helmholtz

equation has an important role for such linear wave propagation, much research

effort has been made to develop numerical methods for efficiently computing the

solution of the Helmholtz equation. There are two main obstacles to efficiently

solving the numerical solution of the Helmholtz equation. The first one is that

the solution of the Helmholtz equation is highly oscillatory, which degrades the

convergence rate of an iterative sparse matrix solver unless we employ a sophis-

ticated preconditioner technique. Using a direct sparse matrix solver instead

of an iterative solver, one might avoid the convergence rate problem from the

oscillatory behavior, but the arithmetic and storage complexities become super-
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linear with respect to degrees of freedom, which may hinder the applicability

to large scale problems. There have been many published works to reduce the

computational complexities of iterative and direct solvers by utilizing domain

decomposition methods (see Gander and Zhang, 2016, and references therein)

and H-matrix techniques (e.g. Banjai and Hackbusch, 2007; Wang et al., 2011).

The second obstacle is the dispersion error inherent in numerical methods. The

dispersion error (or the phase error) comes when the trailing error terms are

truncated in the discretization process. If the dispersion error is large, then a

fine mesh is required to meet some desired level of accuracy, thus the computa-

tional costs increase. Therefore, reduction of the dispersion error is essential for

large scale problems such as seismic wave propagation. In this thesis, we focus

on reducing the dispersion error.

1.2 Previous Works

Several compact finite difference methods, which use only the direct neighbor

nodal points locally on regular grids, have been proposed to reduce the nu-

merical dispersion error, because the conventional second order finite difference

method fails to give a reasonable accuracy unless the wavenumber or the fre-

quency is quite low compared to the grid size. Although some higher order

methods with extended finite difference stencils may also reduce the dispersion

error, the compact stencil has some advantages such as easy implementation

of boundary conditions and the reduced fill-in of sparse matrix factorization.

There are some related works as follows:
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Second order compact finite difference methods

Jo et al. (1996)’s work is popular in the exploration geophysics commu-

nity. Jo et al. (1996)’s 9-point 2D compact stencil combines two different

discretizations of the Laplacian operator and Marfurt (1984)’s idea, which

mixes the consistent mass matrix and the lumped mass matrix derived from

the finite element method. Jo et al. (1996) finds some weighting parame-

ters to minimize a least squares objective function of the dispersion error.

Although this method has second order of accuracy, the dispersion error is

greatly reduced from the optimization. Jo et al. (1996)’s approach is ex-

tended to the 27-point 3D compact stencil by Operto et al. (2007).

Higher order compact finite difference methods

The conventional finite difference method gives second order of accuracy,

whereas some higher order methods give 4th order and 6th order of accuracy

without extending the length of the finite difference stencil. In 2D, the 4th

order method (Singer and Turkel, 1998) and 6th order method (Singer and

Turkel, 2006; Nabavi et al., 2007) use the 9-point compact stencil. In 3D, the

6th order method (Sutmann, 2007) uses the 27-point compact stencil. The

central idea of the higher order methods is to transform the truncation error

to computable terms by repeatedly applying the given partial differential

equation to the truncation error, so that the computable terms are not

errors anymore. The truncation error removal process continues until the

desired order of accuracy is met.

Trefftz methods

3



Trefftz methods belong to a family of finite element methods that use trial

and test functions that are locally exact solutions of the specific partial

differential equation. The oscillatory basis functions of the Helmholtz equa-

tion can express the solution better than the conventional polynomial basis

functions. The term Trefftz basis function can be used as a synonym for the

term analytic basis functions. There are popular examples of Trefftz methods

such as the method of fundamental solutions (MFS), the ultra weak vari-

ational formulation (UWVF) and the plane wave discontinuous Galerkin

method (PWDG), etc. For detailed information about Trefftz methods for

the Helmholtz equation, see Hiptmair et al. (2016), and references therein.

Compact finite difference methods using Trefftz basis functions

Trefftz basis functions well known in the finite element communities can be

adopted to the compact finite difference methods. Nehrbass et al. (1998)’s

5-point stencil method in 2D and 7-point stencil method in 3D use the

cylindrical and spherical Bessel functions as local analytic basis functions.

Although the order of accuracy remains second order, the dispersion error

of Nehrbass et al. (1998)’s method is better than that of the conventional

second order method. A set of 2D plane waves is also used as local analytic

basis functions on the 9-point stencil to simulate eletromagnetic wave prop-

agation in Tsukerman (2006)’s work, which covers broad applications using

local analytic basis functions in the finite difference framework. The plane

wave basis functions also belong to Trefftz basis functions, which are able

to significantly reduce the dispersion error.
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All the methods listed above share the same principle in the sense that they

use the analytic information of the Helmholtz equation. However, their disper-

sion characteristics might not be enough especially for large scale problems.

1.3 Objectives

In this thesis, we will focus on further reducing the numerical dispersion er-

ror in the context of compact finite difference methods by using local analytic

basis functions which are called generalized harmonic polynomials (see Hipt-

mair et al., 2016) to squeeze out all the extra efficiency. We also derive source

amplitude correction functions, which are required to match the amplitude of

the discrete impulse response with that of the analytic impulse response in the

improved range of the wavenumber/frequency due to the reduced dispersion

error. After analyzing the dispersion characteristics of the proposed scheme, a

seismic wave propagation problem is solved by the proposed scheme to examine

its applicability to geophysical applications.

1.4 Organization of the Thesis

There are three remaining chapters in this thesis. Chapter 2 describes how to

derive 1D, 2D and 3D compact finite difference methods incorporated with the

analytic basis functions, and how to obtain source amplitude correction func-

tions for the impulse source. In Chapter 3, the dispersion characteristics of some

compact finite difference methods and the proposed methods are compared, and

the accuracy of the numerical solutions with the source amplitude correction

5



functions is also verified. Then, the proposed scheme is applied to 2D seismic

wave propagation. Finally, short conclusions for the proposed scheme are drawn

in Chapter 4.
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Chapter 2

Discretization using Analytic
Basis Functions

We derive compact finite difference methods using local analytic basis functions.

The analytic information of the Helmholtz equation can be exploited to greatly

improve the accuracy and efficiency of the finite difference methods for the

Helmholtz equation.

2.1 Preliminaries

2.1.1 Helmholtz Equation

For the computational domain Ω ⊂ R3 and its boundary ∂Ω, the boundary

value problem (BVP) for the Helmholtz equation is expressed as
−k2u−∇2u = f in Ω,

some boundary conditions on ∂Ω,

(2.1)
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where k is the wavenumber, ∇2 is the Laplacian operator and f is the source

function. Appropriate boundary conditions such as free surface boundary condi-

tions and the radiation boundary condition may be imposed. In this thesis, the

scalar field u is assumed to be the pressure perturbation of the linear acoustics.

Of course, u may represents other physical quantities such as the electromag-

netic field.

Equation (2.1) can be expressed in Cartesian coordinates as

−k2u− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= f, (2.2)

which will be repeatedly used in this thesis.

The acoustic density ρ can be included as

−k
2

ρ
u−∇ · 1

ρ
∇u = f, (2.3)

and its Cartesian version is expressed as

−k
2

ρ
u− ∂

∂x

1

ρ

∂u

∂x
− ∂

∂y

1

ρ

∂u

∂y
− ∂

∂z

1

ρ

∂u

∂z
= f. (2.4)

2.1.2 Finite Difference Operator

We define a finite difference operator

δxA(x) =
A(x+ h/2)−A(x− h/2)

h
, (2.5)

where h is the grid interval and A(x) is an arbitrary function defined in some in-

terval including [−h/2, h/2]. There is a connection between the finite difference

operator δx and the differential operator ∂x := ∂
∂x . First, a shifting operator is

8



extracted from the Taylor series

B(x+ h) =

∞∑
n=0

1

n!
(h∂x)

nB(x)

= exp(h∂x)B(x),

(2.6)

where B(x) is a smooth C∞ differentiable function in some interval including

[0, h]. The exponential expression exp(h∂x) is a pseudo differential operator that

produces a translated function from the function B(x) with a finite distance

h. Using the pseudo differential operator, the finite difference operators in each

coordinate direction can be expressed as

δx =
1

h

(
exp

(
h

2
∂x

)
− exp

(
−h
2
∂x

))
=

2

h
sinh

(
h

2
∂x

)
,

δy =
2

h
sinh

(
h

2
∂y

)
,

δz =
2

h
sinh

(
h

2
∂z

)
,

(2.7)

where sinh(z) = (exp(z)− exp(−z))/2. As we can see, the finite difference op-

erators are expressed as the hyperbolic function with the differential operators.

δx can be expanded as

δx =
2

h
sinh

(
h

2
∂x

)
= ∂x +

h2

24
∂3x +

h4

1920
∂5x +

h6

322560
∂7x + . . . ,

(2.8)

which has second order of accuracy. When h → 0, the limits of δx, δy and δz

approach to ∂x, ∂y and ∂z, respectively.
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We can also form second derivatives

δ2x =

(
2

h
sinh

(
h

2
∂x

))2

=
2 cosh(h∂x)− 2

h2

δ2y =
2 cosh(h∂y)− 2

h2

δ2z =
2 cosh(h∂z)− 2

h2
,

(2.9)

which have the same effect with the conventional second order finite difference

δ2xF (x) =
F (x+ h)− 2F (x) + F (x− h)

h2
. (2.10)

2.1.3 Näıve Second Order Finite Difference Method

Using the finite difference operators of Equation (2.9), the spatial derivatives of

the Helmholtz equation (Equation (2.2)) can be replaced by the discrete spatial

derivatives as follows

−k2u− δ2xu− δ2yu− δ2zu+O(h2) = f. (2.11)

Equation (2.11) does not perform well in the numerical simulation due to the

severe truncation error. Ignoring the numerical error from discretization of the

source function f , the second order truncation error O(h2) has an explicit series

expression

(δ2x + δ2y + δ2z − ∂2x − ∂2y − ∂2z )u

=
h2

12
(∂4x + ∂4y + ∂4z )u+

h4

360
(∂6x + ∂6y + ∂6z )u+

h6

20160
(∂8x + ∂8y + ∂8z )u+ . . . ,

(2.12)

which is obtained from the series expansion of Equation (2.9). The truncation

error can be significantly reduced by using some analytic knowledge of the

underlying governing equation.

10



2.2 1D Compact Finite Difference Methods

2.2.1 3-Point Method

We start with the 1D Helmholtz equation with a homogeneous medium (a

constant wavenumber k)

−k2u− ∂2xu = 0, (2.13)

where the source function f is omitted. The equation can be used to replace the

spatial derivative ∂2xu with the scalar multiplication −k2u. Using this replace-

ment, successive application of ∂2x gives (∂2x)
nu = (−k2)nu. The finite difference

operator δ2x can be manipulated as

δ2xu =
2 cosh(h∂x)− 2

h2
u

=
∞∑
n=0

2

(2n+ 2)!
h2n(∂2x)

n+1u

=
∞∑
n=0

2

(2n+ 2)!
h2n(−k2)n+1u

=
2 cos(kh)− 2

h2
u.

(2.14)

Note that the pseudo differential operator cosh(h∂x) is transformed to cos(kh).

Rearranging Equation (2.14) gives

−2− 2 cos(kh)

h2
u− δ2xu = 0, (2.15)

which is a discrete analogue of the continuous version of the 1D Helmholtz

equation (Equation (2.13)) without any discretization error. Using the function

value um = u(xm) uniformly sampled at the discrete point xm, we rewrite

Equation (2.15) as

−2− 2 cos(kh)

h2
um − δ2xum = 0, (2.16)
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or simply

−2− 2 cos(kh)

h2
u0 − δ2xu0 = 0. (2.17)

When the grid size h approaches to zero, Equation (2.15) approaches to the

1D Helmholtz equation (Equation (2.13)) as we can see the following limits

lim
h→0

2− 2 cos(kh)

h2
= k2,

lim
h→0

δ2x = ∂2x.

(2.18)

2.2.2 Alternative Derivation

As we see in the previous section, any even function of the differential operator

∂x can be transformed to the corresponding even function of the wavenumber

k by using the Helmholtz equation (Equation (2.13)). By replacing ∂x in even

functions with ik, the 1D shifting operator (Equation (2.6)) can be manipulated

as

exp(h∂x) = cosh(h∂x) + sinh(h∂x)

= cosh(h∂x) +
sinh(h∂x)

h∂x
h∂x

= cosh(hik) +
sinh(hik)

hik
h∂x

= cos(kh) + sinc(kh)h∂x.

(2.19)

Because sinh(x) is an odd function, the manipulation in the second line of

Equation (2.19) is required to make the expression involving sinh(h∂x) even.

The unnormalized sinc function is defined as

sinc(x) =
sin(x)

x
, (2.20)

which will appear frequently in the rest of the thesis.
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Figure 2.1: 1D stencil for a homogeneous medium

Using the 1D shifting operator, a nodal value that is separated by distance

h can be written analytically as

u(h) = exp(h∂x)u0

= (cos(kh) + sinc(kh)h∂x)u0

= cos(kh)u0 + sinc(kh)h∂xu0

(2.21)

where u0 is a nodal value of the solution at x = 0 and ∂xu0 is the first derivative

at x = 0. Substituting h→ ±h into Equation (2.21) gives

u1 := u(h) = cos(kh)u0 + sinc(kh)h∂xu0, (2.22)

u−1 := u(−h) = cos(kh)u0 − sinc(kh)h∂xu0. (2.23)

Summation of Equation (2.22) and (2.23) results in cancellation of the first

derivative term and it gives a finite difference expression

u−1 + u1 = 2 cos(kh)u0, (2.24)

which consists only of three local nodal points (Figure 2.1). Equation (2.24) can

be solved by a tri-diagonal matrix system with proper boundary conditions.

Equation (2.24) is equivalent to Equation (2.17) in the previous section. This

derivation can be applied to obtain a finite difference method for 1D piecewise-

constant heterogeneous media (Appendix A).
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Note that Equation (2.21) can also be obtained from the general solution

form

u(x) = A cos(kx) +B sin(kx), (2.25)

where A = u0 and B =
1

k
∂xu0. cos(kx) and sin(kx) are the analytic basis

functions of the 1D Helmholtz equation (Equation (2.13)).

2.3 2D Compact Finite Difference Methods

In this section, we develop compact finite difference methods for the 2D Helmholtz

equation. Although we are tempted to extend the error-free approach of the 1D

problems, there is no way to completely remove the truncation error in the

2D problem. Nevertheless, we try to maximally utilize the local analytic basis

functions by combining neighbor nodal points as in the 1D problem.

A neighbor value of the 2D solution can be expressed in the polar coordinates

(r, θ) by the 2D shifting operator as follows

u(r, θ) = exp(r cos(θ)∂x + r sin(θ)∂y)u0,0, (2.26)

where u0,0 is a local reference nodal value at r = 0 to simplify the following

derivation. To manipulate the 2D shifting operator, we can utilize the Jacobi-

Anger expansion

exp(iz cos(θ)) =

∞∑
n=−∞

inJn(z)e
inθ

= J0(z) + 2

∞∑
n=1

inJn(z) cos(nθ),

(2.27)

where Jn(z) is the n-th order Bessel function of the first kind.

14



By using the Jacobi-Anger expansion, the 2D shifting operator can be ex-

panded as

exp(r cos(θ)∂x + r sin(θ)∂y)

= exp

(
ikr

(
cos(θ)

∂x
ik

+ sin(θ)
∂y
ik

))
=exp(ikr cos(θ − ψ))

=J0(kr) + 2

∞∑
n=1

inJn(kr) cos(n(θ − ψ))

=J0(kr) + 2
∞∑
n=1

inJn(kr)(cos(nθ) cos(nψ) + sin(nθ) sin(nψ)),

(2.28)

where cosψ = ∂x/ik and sinψ = ∂y/ik. Also, the trigonometric identity cos(x−

y) = cosx cos y + sinx sin y was used twice. We can check that

cos2 ψ + sin2 ψ =

(
∂x
ik

)2

+

(
∂y
ik

)2

= − 1

k2
(∂2x + ∂2y)

= 1

(2.29)

by using the operator relation −k2−∂2x−∂2y = 0 from the 2D Helmholtz equation

without the source function f .

Plugging Equation (2.28) into Equation (2.26) gives

u(r, θ) = J0(kr)u0,0 + 2

∞∑
n=1

inJn(kr)(cos(nθ) cos(nψ) + sin(nθ) sin(nψ))u0,0

= J0(kr)u0,0 +
∞∑
n=1

Jn(kr) (An cos(nθ) +Bn sin(nθ)),

(2.30)

where An = 2in cos(nψ)u0,0 and Bn = 2in sin(nψ)u0,0. The Bessel functions

with the trigonometric functions in the series are called generalized harmonic

polynomials.
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Note that seperation of variables in the polar coordinates (r, θ) gives the

general solution of the 2D Helmholtz equation in the form of

u(r, θ) =
∞∑
n=0

(Jn(kr) + CnYn(kr))(An cos(nθ) +Bn sin(nθ)), (2.31)

where Yn(z) the n-th order Bessel function of the second kind, which has the

logarithmic singularity at z = 0, whereas the 2D shifting operator version does

not contain Yn(kr).

Equation (2.30) is a main building block to construct the finite difference

methods in the following sections.

2.3.1 5-Point Method

The coefficients An and Bn in Equation (2.30) can be partly removed by using

combination of neighbor nodal points. By setting θ → θ+π in Equation (2.30),

the expansion of the analytic basis functions becomes

u(r, θ + π) = J0(kr)u0,0 +
∞∑
n=1

Jn(kr)(−1)n(An cos(nθ) +Bn sin(nθ)). (2.32)

Because of the alternating sign (−1)n in the summation, we can eliminate some

An and Bn when n is odd. Adding Equation (2.30) and Equation (2.32) gives

u(r, θ) + u(r, θ + π) =

2J0(kr)u0,0+2
∞∑
n=1

J2n(kr)(A2n cos(2nθ) +B2n sin(2nθ)).
(2.33)

Similarly, we set θ → θ +
π

2
in Equation (2.33) to obtain

u(r, θ +
π

2
) + u(r, θ +

3π

2
) =

2J0(kr)u0,0+2

∞∑
n=1

J2n(kr)(−1)n(A2n cos(2nθ) +B2n sin(2nθ))

(2.34)
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Figure 2.2: Neighbor nodal points centered at u0,0

Adding Equation (2.33) and Equation (2.34) results in

u(r, θ) + u(r, θ +
π

2
) + u(r, θ + π) + u(r, θ +

3π

2
) =

4J0(kr)u0,0 + 4
∞∑
n=1

J4n(kr)(A4n cos(4nθ) +B4n sin(4nθ)).

(2.35)

Setting r = h and θ = 0, we rewrite the nodal values in the polar coordinates

with subscripts that denote relative Cartesian coordinates to the reference node

u0,0 as shown in Figure 2.2. Then, we drop the summation part to form a 5-point

stencil expression

u1,0 + u0,1 + u−1,0 + u0,−1 = 4J0(kh)u0,0, (2.36)

which has second order of accuracy incurred from the truncation. Equation (2.36)

can be cast into the finite difference form

−4− 4J0(kh)

h2
u0,0 − (δ2x + δ2y)u0,0 = 0, (2.37)
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using the following relation

u1,0 + u0,1 + u−1,0 + u0,−1 = (h2(δ2x + δ2y) + 4)u0,0. (2.38)

The limit of the term containing the Bessel function approaches to k2 as follows

lim
h→0

4− 4J0(kh)

h2
= k2 (2.39)

from the Taylor series expansion

4− 4J0(kh) = (kh)2 − (kh)4

16
+

(kh)6

576
− (kh)8

36864
+ . . . . (2.40)

The Bessel function need not be evaluated exactly. Evaluating the series up to

6th or 8th order gives nearly identical dispersion curves (Figure 2.3(b)) to those

of the exact Bessel function in the kh interval [0, π].

Note that Equation (2.36) is equivalent to Nehrbass et al. (1998)’s 5-point

2D finite difference method, which is better than the näıve finite difference

method in terms of the numerical dispersion error. Figure 2.3(a) and Fig-

ure 2.3(b) show their dispersion characteristics. The phase error (k̃h− kh)/2π

should be close to zero along the horizontal axis 1/G. More detailed explanation

for the dispersion error will be given in Chapter 3.
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(a) Dispersion error curves for the näıve second order FDM.
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(b) Dispersion error curves for Nehrbass et al. (1998)’s second order

FDM. The curves are closer to zero and more balanced than those of

the näıve second order FDM.

Figure 2.3: Dispersion error curves for the näıve second order FDM and

Nehrbass et al. (1998)’s second order FDM. Closer to zero is better. The ver-

tical axis means the phase difference error when the wave propagates distance

h. G is the number of grids per wavelength.
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2.3.2 9-Point Method

We proceed to further remove the truncation error by employing more neighbor

nodal points. Plugging r →
√
2r and θ → θ +

π

4
into Equation (2.35) gives

u(
√
2r,θ +

π

4
) + u(

√
2r, θ +

3π

4
) + u(

√
2r, θ +

5π

4
) + u(

√
2r, θ +

7π

4
) =

4J0(
√
2kr)u0,0 + 4

∞∑
n=1

J4n(
√
2kr)(−1)n(A4n cos(4nθ) +B4n sin(4nθ)).

(2.41)

Summation of Equation (2.35) and Equation (2.41) with the weight 1/J4(kr)

and 1/J4(
√
2kr) gives

1

J4(kr)

(
u(r, θ) + u(r, θ +

π

2
) + u(r, θ + π) + u(r, θ +

3π

2
)

)
+

1

J4(
√
2kr)

(
u(
√
2r, θ +

π

4
) + u(

√
2r, θ +

3π

4
) + u(

√
2r, θ +

5π

4
) + u(

√
2r, θ +

7π

4
)

)
=(

4J0(kr)

J4(kr)
+

4J0(
√
2kr)

J4(
√
2kr)

)
u0,0+

4
∞∑
n=2

(
J4n(kr)

J4(kr)
+ (−1)n

J4n(
√
2kr)

J4(
√
2kr)

)
(A4n cos(4nθ) +B4n sin(4nθ)),

(2.42)

where the summation begins from n = 2 because of the elimination when n = 1.

With r = h, θ = 0, we truncate the summation part to obtain the following

expression

1

J4(kh)
(u1,0 + u0,1 + u−1,0 + u0,−1) +

1

J4(
√
2kh)

(u1,1 + u−1,1 + u−1,−1 + u1,−1)

=

(
4J0(kh)

J4(kh)
+

4J0(
√
2kh)

J4(
√
2kh)

)
u0,0.

(2.43)

Although Equation (2.43) can be implemented in its form as is, we further

manipulate it by using the finite difference operators δx and δy to easily imple-
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ment the Perfectly Matched Layer (PML) in the discrete level. The derivation

of the discrete PML is shown in Appendix B. To include the finite difference

operators, we use the following relations

u1,0 + u0,1 + u−1,0 + u0,−1 = (h2(δ2x + δ2y) + 4)u0,0,

u1,1 + u−1,1 + u−1,−1 + u1,−1 = (2h2(δ2x + δ2y) + h4δ2xδ
2
y + 4)u0,0.

(2.44)

Inserting Equation (2.44) into Equation (2.43) and rearranging the resulting

equation, we obtain the follwing finite difference expression

− 1

h2

(
4− 4J0(kh)

J4(kh)
+

4− 4J0(
√
2kh)

J4(
√
2kh)

)
u0,0 −

(
1

J4(kh)
+

2

J4(
√
2kh)

)
(δ2x + δ2y)u0,0

− 1

J4(
√
2kh)

h2δ2xδ
2
zu0,0 = 0.

(2.45)

By multiplying the inverse of the coefficient of (δ2x + δ2y), the final form is reor-

ganized as

−L9(kh)

h2
u0,0 − (δ2x + δ2y)u0,0 − h2M9(kh)δ

2
xδ

2
yu0,0 = 0, (2.46)

where

L9(kh) =

(
1

J4(kh)
+

2

J4(
√
2kh)

)−1
(
4− 4J0(kh)

J4(kh)
+

4− 4J0(
√
2kh)

J4(
√
2kh)

)
,

M9(kh) =

(
J4(

√
2kh)

J4(kh)
+ 2

)−1

.

(2.47)

Directly evaluating the several Bessel functions would cause significant numer-

ical overheads. L9(kh) and M9(kh) can be expressed as Taylor series

L9(kh) = (kh)2 − (kh)4

12
+

(kh)6

360
− 13(kh)8

276480
+

(kh)10

2073600
− 13(kh)12

3715891200
+ . . . ,

M9(kh) =
1

6
+

(kh)2

180
+

(kh)4

8640
+

(kh)6

518400
+

(kh)8

464486400
+ . . . .

(2.48)
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Although the truncation error of Equation (2.46) is O(h6), the minimum orders

that should be evaluated for L9(kh) and M9(kh) are 10 and 6, respectively.

Otherwise, the dispersion characteristic deteriorates. As in the 5-point case,

the numerical error can get lowered by computing the higher order terms than

6th order even if the equation has O(h6) error. L9(kh) and M9(kh) can be

efficiently evaluated by the Horner’s rule (Horner, 1819). Note that one might

use the Chebyshev polynomial Tn(x) with the Clenshaw’s three term recurrence

formula (Clenshaw, 1955) to approximate L9(kh) and M9(kh) for minimizing

maximal pointwise error (the minimax property of the Chebyshev polynomial),

although there would be nonvanishing error when kh → 0, if the order of the

Chebyshev polynomials is not high enough.

Some 6th order methods (Singer and Turkel, 2006; Sutmann, 2007; Nabavi

et al., 2007) give the truncated series

L6th(kh) = (kh)2 − (kh)4

12
+

(kh)6

360
,

M6th(kh) =
1

6
+

(kh)2

180
,

(2.49)

which are equivalent to the low order terms in Equation (2.48). The dispersion

characteristic of the 6th order method will be compared with our method later

in Chapter 3.

We may slightly modify Equation (2.46) to

−L9(kh)

h2
u0,0 − (δ2x + δ2y)u0,0 − h2δxδyM9(kh)δxδyu0,0 = 0, (2.50)

which would be helpful for efficient numerical implementation due to symmetry

of the resulting discretization when the equation is applied to heterogeneous
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media and the PML (Appendix B), although the 9-point method was derived

on the homogeneity assumption.

2.4 3D Compact Finite Difference Methods

The solution of the 3D Helmholtz equation can be expanded with the analytic

basis functions as follows

u(r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

Clmjl(kr)Y
m
l (θ, ϕ)

=
∞∑
l=0

l∑
m=−l

Clmjl(kr)

√
(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ,

(2.51)

where jl(z) is the l-th order spherical Bessel function of the first kind, Y m
l (θ, ϕ)

is the spherical harmonic function, and Pm
l (z) is the associated Legendre func-

tion. The polar angle θ and the azimuthal angle ϕ in the spherical coordinates

are restricted to the intervals [0, π] and [0, 2π), respectively. Also, Clm is an

unknown coefficient to be eliminated by the combination of the neighbor nodal

points to obtain higher-order expressions as we conducted in the 2D cases. The

analytic function expression can be derived by applying the plane wave ex-

pansion of the spherical wave to the 3D shifting operator as the Jacobi-Anger

expansion is used in the 2D case. Or simply, we can use the general solution

without the spherical Bessel function of the second kind yl(kr).

Because the derivation of the 3D finite difference methods is somewhat

lengthy, so we suggest three basic building blocks to ease the derivation of the

3D finite difference methods as follows:

6-Point Summation
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This is a summation of the six nodes with distance h from the reference

node u0,0,0 at r = 0. The participating nodes are displayed in Figure 2.4(a).

u1,0,0 + u−1,0,0 + u0,1,0 + u0,−1,0 + u0,0,1 + u0,0,−1

= 6j0(kh)u0,0,0+j4(kh)

(
7

2
C40 +

1

2

√
35

2
(C4,−4 + C44)

)

+j6(kh)

(
3

4
C60 −

3

4

√
7

2
(C6,−4 + C64)

)
+O(h8).

(2.52)

12-Point Summation

This is a summation of the twelve nodes whose distance is
√
2h from the

center node u0,0,0. The participating nodes are displayed in Figure 2.4(b).

u1,1,0 + u−1,−1,0+u1,−1,0 + u−1,1,0

+u0,1,1 + u0,−1,−1+u0,1,−1 + u0,−1,1

+u1,0,1 + u−1,0,−1+u−1,0,1 + u1,0,−1

= 12j0(
√
2kh)u0,0,0+j4(

√
2kh)

(
−7

4
C40 −

1

4

√
35

2
(C4,−4 + C44)

)

+j6(
√
2kh)

(
−39

16
C60 +

39

16

√
7

2
(C6,−4 + C64)

)
+O(h8)

(2.53)

8-Point Summation

This is a summation of the eight nodes whose distance is
√
3h from the
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(a) 6-point (b) 12-point (c) 8-point

Figure 2.4: Three basic nodal summations in the 27-point compact stencil

center node u0,0,0. The participating nodes are displayed in Figure 2.4(c).

u1,1,1 + u−1,−1,−1 + u1,1,−1 + u−1,−1,1

+u1,−1,1 + u−1,1,−1 + u1,−1,−1 + u−1,1,1

= 8j0(
√
3kh)u0,0,0+j4(

√
3kh)

(
−28

9
C40 −

2

9

√
70(C4,−4 + C44)

)
+j6(

√
3kh)

(
16

9
C60 −

8

9

√
14(C6,−4 + C64)

)
+O(h8)

(2.54)

By combining the three building blocks, we derive several compact finite

difference methods in the following sections.
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2.4.1 7-Point Method

If we use only the 6-point summation, it gives the 7-point stencil (including the

center node u0,0,0) method equivalent to Nehrbass et al. (1998)’s work. Using

the following relation

u1,0,0 + u−1,0,0 + u0,1,0 + u0,−1,0 + u0,0,1 + u0,0,−1

= (h2(δ2x + δ2y + δ2z) + 6)u0,0,0,

(2.55)

Equation (2.52) can be expressed as a finite difference form

−6− 6j0(kh)

h2
u0,0,0 − (δ2x + δ2y + δ2z)u0,0,0 = 0, (2.56)

which has second order of accuracy. Its numerical dispersion characteristic is

better than the näıve second order finite difference method (Equation (2.11)),

although the accuracy is not enough in the range of high wavenumber k. The

function (6− 6j0(kh)) has the following series expansion

6− 6j0(kh) = (kh)2 − (kh)4

20
+

(kh)6

840
− (kh)8

60480
+ . . . . (2.57)

2.4.2 19-Point Method

By combining the 6-point and 12-point summations with appropriate weighting,

a 4th order method using the 19-point stencil can be obtained as follows

A19(kh)(u1,0,0 + u−1,0,0 + u0,1,0 + u0,−1,0 + u0,0,1 + u0,0,−1)

+B19(kh)(u1,1,0 + u−1,−1,0 + u1,−1,0 + u−1,1,0

+u0,1,1 + u0,−1,−1 + u0,1,−1 + u0,−1,1

+u1,0,1 + u−1,0,−1 + u−1,0,1 + u1,0,−1)

= D19(kh)u0,0,0,

(2.58)
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where

A19(kh) = j4(
√
2kh)

B19(kh) = 2j4(kh)

D19(kh) = 6j0(kh)A19(kh) + 12j0(
√
2kh)B19(kh).

(2.59)

Using Equation (2.55) and the following relation

u1,1,0 + u−1,−1,0+u1,−1,0 + u−1,1,0

+u0,1,1 + u0,−1,−1+u0,1,−1 + u0,−1,1

+u1,0,1 + u−1,0,−1+u−1,0,1 + u1,0,−1

= (4h2(δ2x + δ2y+δ
2
z) + h4(δ2xδ

2
y + δ2yδ

2
z + δ2zδ

2
x) + 12)u0,0,0,

(2.60)

Equation (2.58) becomes

−L19(kh)

h2
u0,0,0− (δ2x+ δ2y + δ2z)u0,0,0−h2M19(kh)(δ

2
xδ

2
y + δ2yδ

2
z + δ2zδ

2
x)u0,0,0 = 0,

(2.61)

where

L19(kh) =
6A19(kh) + 12B19(kh)−D19(kh)

A19(kh) + 4B19(kh)
,

M19(kh) =
B19(kh)

A19(kh) + 4B19(kh)
.

(2.62)

As in the 2D 9-point case, L19(kh) andM19(kh) are approximated by the Taylor

series expansions

L19(kh) = (kh)2 − (kh)4

12
+

17(kh)6

5544
− 3373(kh)8

57081024
+

8447(kh)10

13454812800
+ . . . ,

M19(kh) =
1

6
+

(kh)2

396
+

5(kh)4

679536
− 43(kh)6

224246880
+ . . . .

(2.63)
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2.4.3 27-Point Method

We employ all the three summations to eliminate all the coefficients (C40, C60,

C4,−4, C44, C6,−4 and C64) as follows

A27(kh)(u1,0,0 + u−1,0,0 + u0,1,0 + u0,−1,0 + u0,0,1 + u0,0,−1)

+B27(kh)(u1,1,0 + u−1,−1,0 + u1,−1,0 + u−1,1,0

+u0,1,1 + u0,−1,−1 + u0,1,−1 + u0,−1,1

+u1,0,1 + u−1,0,−1 + u−1,0,1 + u1,0,−1)

+C27(kh)(u1,1,1 + u−1,−1,−1 + u1,1,−1 + u−1,−1,1

+u1,−1,1 + u−1,1,−1 + u1,−1,−1 + u−1,1,1)

=D27(kh)u0,0,0,

(2.64)

where

A27(kh) = 312j4(
√
3kh)j6(

√
2kh) + 128j4(

√
2kh)j6(

√
3kh)

B27(kh) = 96j4(
√
3kh)j6(kh) + 256j4(kh)j6(

√
3kh)

C27(kh) = 351j4(kh)j6(
√
2kh)− 54j4(

√
2kh)j6(kh)

D27(kh) = 6j0(kh)A27(kh) + 12j0(
√
2kh)B27(kh) + 8j0(

√
3kh)C27(kh).

(2.65)

The weighting function C27(kh) is irrelavent to the coefficient Clm. Using Equa-

tion (2.55) and Equation (2.60) and the following relation

u1,1,1 + u−1,−1,−1 + u1,1,−1 + u−1,−1,1

+u1,−1,1 + u−1,1,−1 + u1,−1,−1 + u−1,1,1

= (4h2(δ2x + δ2y+δ
2
z) + 2h4(δ2xδ

2
y + δ2yδ

2
z + δ2zδ

2
x) + h6δ2xδ

2
yδ

2
z + 8)u0,0,0,

(2.66)
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Equation (2.64) becomes the 27-point finite difference expression

−L27(kh)

h2
u0,0,0 − (δ2x + δ2y + δ2z)u0,0,0 − h2M27(kh)(δ

2
xδ

2
y + δ2yδ

2
z + δ2zδ

2
x)u0,0,0

−h4N27(kh)δ
2
xδ

2
yδ

2
zu0,0,0 = 0,

(2.67)

where

L27(kh) =
6A27(kh) + 12B27(kh) + 8C27(kh)−D27(kh)

A27(kh) + 4B27(kh) + 4C27(kh)

M27(kh) =
B27(kh) + 2C27(kh)

A27(kh) + 4B27(kh) + 4C27(kh)

N27(kh) =
C27(kh)

A27(kh) + 4B27(kh) + 4C27(kh)
.

(2.68)

Equation (2.67) can be slightly modified to

−L27(kh)

h2
u0,0,0 − (δ2x + δ2y + δ2z)u0,0,0 − h2δxδyM27(kh)δxδyu0,0,0

−h2δyδzM27(kh)δyδzu0,0,0

−h2δzδxM27(kh)δzδxu0,0,0

−h4δxδyδzN27(kh)δxδyδzu0,0,0 = 0,

(2.69)

which can be used to include the discrete Perfectly Matched Layer symmet-

rically (Appendix B) and mild heterogeneity, although the order of accuracy

decreases to first order due to the interface error.

The Taylor series of L27(kh), M27(kh) and N27(kh) are given as

L27(kh) = (kh)2 − (kh)4

12
+

(kh)6

360
− (kh)8

22464
+

1273(kh)10

3150576000
− 5749(kh)12

1867661452800
+ . . . ,

M27(kh) =
1

6
+

(kh)2

180
+

(kh)4

9360
+

11(kh)6

7956000
+

4021(kh)8

424468512000
+ . . . ,

N27(kh) =
1

30
+

(kh)2

540
+

127(kh)4

2237625
+

158(kh)6

127544625
+

39360019(kh)8

1894190734800000
+ . . . .

(2.70)
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The low order terms of these series match with the series of Sutmann (2007)’s

6th order method as follows

L6th(kh) = (kh)2 − (kh)4

12
+

(kh)6

360
,

M6th(kh) =
1

6
+

(kh)2

180
,

N6th(kh) =
1

30
.

(2.71)

2.5 Source Amplitude Correction Functions

The amplitude mismatch between the discrete and analytic solutions for the

impulse source is quite significant especially when a näıve implementation of

the impulse source is used in the extended wavenumber range, thus correction

for the amplitude mismatch must be considered. We only deal with the impulse

source in this thesis. For smoothly distributed sources, see 6th order compact fi-

nite difference methods (Singer and Turkel, 2006; Sutmann, 2007; Nabavi et al.,

2007).

2.5.1 1D Source Amplitude Correction Function

In Section 2.2.1, we determined the 1D discrete Helmholtz operator (Equa-

tion (2.15)) without the source function f . To consider a set of impulse sources

(the Dirac delta distribution) in the discrete framework, we manipulate the
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continuous Helmholtz equation with the discrete Helmholtz operator as follows

(−k2 − ∂2x)u = f

u = (−k2 − ∂2x)
−1f

um = [(−k2 − ∂2x)
−1f ]m(

−2− 2 cos(kh)

h2
− δ2x

)
um =

(
−2− 2 cos(kh)

h2
− δ2x

)
[(−k2 − ∂2x)

−1f ]m,

(2.72)

where the subscript m means a discrete sampling operation from a continuous

function (e.g. um = u(xm)).

Equation (2.72) is a formal expression that requires an exact solution (−k2−

∂2x)
−1f . Fortunately in the 1D problem, a discrete source function that generates

the exact solution for series of the Dirac delta functions f(x) =
∑

l αlδ(x− xl)

exists. αl is a strength for the Dirac delta function at x = xl. We assume

that the source location xl is exactly on the discrete sampled nodes, although

impulse sources at arbitrary locations (e.g. between two sampled nodes) are not

difficult to consider.

If the imaginary part of k is positive (Im k > 0), the analytic solution for

the series of impulse sources is expressed as

(−k2 − ∂2x)
−1f =

∑
l

i

2k
exp(ik|x− xl|)αl, (2.73)

which is a weighted summation of Green’s functions (impulse responses) for

the 1D Helmholtz equation. Then, the right hand side of the fourth line of
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Equation (2.72) becomes(
−2− 2 cos(kh)

h2
− δ2x

)
[(−k2 − ∂2x)

−1f ]m

=

(
−2− 2 cos(kh)

h2
− δ2x

)∑
l

i

2k
exp(ik|xm − xl|)αl

=
∑
l

sinc(kh)
αl

h
δlm

= sinc(kh)
αm

h
,

(2.74)

where δlm is the Kronecker delta function defined as

δlm =


0 if l ̸= m,

1 if l = m.

(2.75)

Using Equation (2.74), Equation (2.72) becomes

−2− 2 cos(kh)

h2
um − δ2xum = sinc(kh)

αm

h
, (2.76)

which is able to produce the exact solution from the series of impulse sources.

We set m = 0 for simplicity as follows

−2− 2 cos(kh)

h2
u0 − δ2xu0 = sinc(kh)

α0

h
. (2.77)

The sinc(kh) function may be thought of as a correction term for the finite

volume approximation of the Dirac delta function

α0

h
=

∫ x0+
h
2

x0−h
2

α0δ(x− x0) dx∫ x0+
h
2

x0−h
2

dx

, (2.78)

which is an average of the source term within a grid cell whose size is h.

Figure 2.5 shows the sinc(kh) function. If we conduct a 1D simulation with
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Figure 2.5: The unnormalized sinc function

kh = π/2 (the number of grids per wavelength G = 2π/kh = 4), then the

sinc function has the value about 0.637. If we use only the näıve finite volume

approximation of the source term (Equation (2.78)) without sinc(kh), the am-

plitude of the numerical solution would have 1/0.637 = 1.57 times as large as

the amplitude of the analytic solution.

2.5.2 2D Source Amplitude Correction Functions

The source amplitude correction is essential also for 2D. As we derived the

source amplitude correction term sinc(kh) for the 1D problem in Section 2.5.1,

we apply the discrete Helmholtz operator to the analytic solution with the

source f as follows(
−L9(kh)

h2
− (δ2x + δ2y)− h2M9(kh)δ

2
xδ

2
y

)
u0,0 =(

−L9(kh)

h2
− (δ2x + δ2y)− h2M9(kh)δ

2
xδ

2
y

)[
(−k2 − ∂2x − ∂2z )

−1f
]
0,0
.

(2.79)
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The right hand side of Equation (2.79) is a discrete source term that produces

a numerical solution that exactly matches with the analytic solution.

When Im k > 0, we know that the impulse response (Green’s function) for

f(x, y) = α0,0δ(x− x0, y − y0) is expressed as the 0th order Hankel function of

the first kind

(−k2 − ∂2x − ∂2z )
−1f =

i

4
H

(1)
0 (kr)α0,0, (2.80)

where r =
√

(x− x0)2 + (y − y0)2 and H
(1)
0 (z) = J0(z)+iY0(z). Then, the right

hand side of Equation (2.79) is expressed as(
−L9(kh)

h2
− (δ2x + δ2y)− h2M9(kh)δ

2
xδ

2
y

)[
i

4
H

(1)
0 (kr)α0,0

]
0,0

. (2.81)

However, the Hankel function has the logarithmic singularity at r = 0, so the

computation with the discrete Helmholtz operator does not give an expression

with a finite value. Thus, we replace the value at r = 0 with the value at

r = hϵ > 0. Equation (2.81) becomes(
−L9(kh)

h2
− (δ2x + δ2y)− h2M9(kh)δ

2
xδ

2
y

)[
i

4
H

(1)
0 (kr)α0,0

]
0,0

≈ i

4
(−L9(kh)H

(1)
0 (khϵ)− (4H

(1)
0 (kh)−4H

(1)
0 (khϵ))

−M9(kh)(4H
(1)
0 (

√
2kh)− 8H

(1)
0 (kh) + 4H

(1)
0 (khϵ)))

α0,0

h2

(2.82)

with the finite volume approximation of the 2D impulse source given as

α0,0

h2
=

∫ y0+
h
2

y0−h
2

∫ x0+
h
2

x0−h
2

α0,0δ(x− x0, y − y0) dx dy∫ y0+
h
2

y0−h
2

∫ x0+
h
2

x0−h
2

dx dy

, (2.83)

thus, the source amplitude correction function F9(kh) for the 9-point case is
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given as

F9(kh) =
i

4
(−L9(kh)H

(1)
0 (khϵ)− (4H

(1)
0 (kh)− 4H

(1)
0 (khϵ))

−M9(kh)(4H
(1)
0 (

√
2kh)− 8H

(1)
0 (kh) + 4H

(1)
0 (khϵ))).

(2.84)

Here, we need to impose a condition for the source correction function to de-

termine ϵ. The source correction function should be 1 with kh → 0 as with

sinc(kh). The requirement can be met by computing ϵ with the limit

lim
kh→0

F9(kh) =
log 2− 10 log ϵ

6π
= 1, (2.85)

thus ϵ = exp((log 2 − 6π)/10) ≈ 0.1627. Because we fully determined F9(kh),

the 9-point discrete Helmholtz equation with the impulse source can be approx-

imated as

−L9(kh)

h2
u0,0 − (δ2x + δ2y)u0,0 − h2M9(kh)δ

2
xδ

2
yu0,0 = F9(kh)

α0,0

h2
, (2.86)

or

−L9(kh)

h2
u0,0 − (δ2x + δ2y)u0,0 − h2δxδyM9(kh)δxδyu0,0 = F9(kh)

α0,0

h2
, (2.87)

which comes from the symmetric modification (Equation (2.50)).

The introduction of ϵ is not just simple approximation. Because the numeri-

cal solution obtained from the impulse source cannot embed the true singularity

of the Hankel function at r = 0, so it should give a finite value at r = 0. ϵ has a

role in removing the singularity in the numerical solution and it approximately

predicts the finite value at the singularity. In Chapter 3, we can verify that the

numerical solution at the singularity r = 0 for the unit impulse source is given

as i
4H

(1)
0 (khϵ).
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Although the source amplitude correction is not essential for the 5-point

method in Section 2.3.1 because of the limited wavenumber range, the source

amplitude correction function for the 5-point method can be obtained as follows(
−4− 4J0(kh)

h2
− (δ2x + δ2y)

)[
i

4
H

(1)
0 (kr)α0,0

]
0,0

≈ i(J0(kh)H
(1)
0 (khϵ)−H

(1)
0 (kh))

α0,0

h2

(2.88)

and

lim
kh→0

F5(kh) = lim
kh→0

i(J0(kh)H
(1)
0 (khϵ)−H

(1)
0 (kh)) = −2 log ϵ

π
= 1, (2.89)

which gives ϵ = exp(−π/2) ≈ 0.2079.

F5(kh) and F9(kh) are shown in Figure 2.6. We can see that the imaginary

parts of F5(kh) and F9(kh) are relatively small, and F9(kh) is quite similar to

sinc(kh).

We may compute the series expansion of F9(kh) as a correction term instead

of directly evaluating F9(kh), because F9(kh) contains the Hankel functions,

which may be cumbersome to numerically evaluate. The series is approximated

as

F9(kh) ≈ 1− 0.163691940555019(kh)2 + 0.008941056176803205(kh)4

− 0.0002831009275904193(kh)6 + 7.233616285328642× 10−6(kh)8

− 1.2750088335092805× 10−7(kh)10.

(2.90)

The series approximation originally contains imaginary coefficients and log

terms, but they are ignored because of their small contribution as shown in

Figure 2.6(b). This series approximation can be efficiently computed by the
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Horner’s rule (Horner, 1819). Figure 2.7 shows that the series expression matches

quite well with Re(F9(kh)).
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(a) The real and imaginary parts of the source correction function

F5(kh).
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(b) The real and imaginary parts of the source correction function

F9(kh). F9(kh) is quite similar to sinc(kh).

Figure 2.6: Source amplitude correction functions for the 2D impulse source.
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Figure 2.7: The series approximation of F9(kh). The imaginary coefficients and

log terms are omitted in the series approximation.
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2.5.3 3D Source Amplitude Correction Functions

The source amplitude correction function for the 3D 7-point method is com-

puted first. The 3D analytic solution for the source f(x, y, z) = α0,0,0δ(x −

x0, y − y0, z − z0) is given as

(−k2 − ∂2x − ∂2y − ∂2z )
−1f =

eikr

4πr
α0,0,0, (2.91)

where r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. The singularity at r = 0 can be

avoided by replacing the value at r = 0 with the value at r = hϵ > 0 as follows

(2.92)

(
−6− 6j0(kh)

h2
− (δ2x + δ2y + δ2z)

)[
eikr

4πr
α0,0,0

]
0,0,0

≈
(
−6− 6j0(kh)

h2
eikhϵ

4πhϵ
− 6

h2

(
eikh

4πh
− eikhϵ

4πhϵ

))
α0,0,0

=
6

4π

(
1

ϵ
eikhϵj0(kh)− eikh

)
α0,0,0

h3

with the finite volume approximation of the impulse source

α0,0,0

h3
=

∫ z0+
h
2

z0−h
2

∫ y0+
h
2

y0−h
2

∫ x0+
h
2

x0−h
2

α0,0,0δ(x− x0, y − y0, z − z0) dx dy dz∫ z0+
h
2

z0−h
2

∫ y0+
h
2

y0−h
2

∫ x0+
h
2

x0−h
2

dx dy dz

. (2.93)

Thus, the source correction function for the 7-point method can be expressed

as

F7(kh) =
3

2π

(
1

ϵ
exp(ikhϵ)j0(kh)− exp(ikh)

)
. (2.94)

The limit of F7(kh) has the following expression

lim
kh→0

F7(kh) =
3− 3ϵ

2πϵ
= 1, (2.95)
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thus ϵ = 3/(3 + 2π) ≈ 0.3232.

We can also apply the singularity removal process to the 19-point case.(
−L19(kh)

h2
− (δ2x + δ2y + δ2z)− h2M19(kh)(δ

2
xδ

2
y + δ2yδ

2
z + δ2zδ

2
x)

)[
eikr

4πr
α0,0,0

]
0,0,0

≈

(
− L19(kh)

eikhϵ

4πϵ
− 6

(
eikh

4π
− eikhϵ

4πϵ

)

−M19(kh)

(
−24eikh

4π
+

12ei
√
2kh

4π
√
2

+
12eikhϵ

4πϵ

) )
α0,0,0

h3

(2.96)

Thus, the source correction function for the 19-point case is defined as

F19(kh) =− L19(kh)
eikhϵ

4πϵ
− 6

(
eikh

4π
− eikhϵ

4πϵ

)
−M19(kh)

(
−24eikh

4π
+

12ei
√
2kh

4π
√
2

+
12eikhϵ

4πϵ

)
,

(2.97)

and the limit of F19(kh) has the following form

lim
kh→0

F19(kh) =
4− (2 +

√
2)ϵ

4πϵ
= 1, (2.98)

thus ϵ = 4/(2 +
√
2 + 4π) ≈ 0.2503.

Also, we apply the singularity removal process to the 27-point case as follows(
− L27(kh)

h2
− (δ2x + δ2y + δ2z)

− h2M27(kh)(δ
2
xδ

2
y + δ2yδ

2
z + δ2zδ

2
x)− h4N27(kh)δ

2
xδ

2
yδ

2
z

)[
eikr

4πr
α0,0,0

]
0,0,0

≈

(
− L27(kh)

eikhϵ

4πϵ
− 6

(
eikh

4π
− eikhϵ

4πϵ

)

−M27(kh)

(
−24eikh

4π
+

12ei
√
2kh

4π
√
2

+
12eikhϵ

4πϵ

)

−N27(kh)

(
24eikh

4π
− 24ei

√
2kh

4π
√
2

+
8ei

√
3kh

4π
√
3

− 8eikhϵ

4πϵ

) )
α0,0,0

h3
.

(2.99)
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The source amplitude correction function for the 27-point case is expressed

as

F27(kh) =− L27(kh)
eikhϵ

4πϵ
− 6

(
eikh

4π
− eikhϵ

4πϵ

)
−M27(kh)

(
−24eikh

4π
+

12ei
√
2kh

4π
√
2

+
12eikhϵ

4πϵ

)

−N27(kh)

(
24eikh

4π
− 24ei

√
2kh

4π
√
2

+
8ei

√
3kh

4π
√
3

− 8eikhϵ

4πϵ

)
,

(2.100)

and the limit of F27(kh) has the following expression

lim
kh→0

F27(kh) =
192− (126 + 27

√
2 + 4

√
3)ϵ

180πϵ
= 1, (2.101)

thus ϵ = 192/(126+27
√
2+4

√
3+180π) ≈ 0.2607. Then, the 27-point discrete

expression with the impulse source can be expressed as

−L27(kh)

h2
u0,0,0 − (δ2x + δ2y + δ2z)u0,0,0 − h2δxδyM27(kh)δxδyu0,0,0

−h2δyδzM27(kh)δyδzu0,0,0

−h2δzδxM27(kh)δzδxu0,0,0

−h4δxδyδzN27(kh)δxδyδzu0,0,0 = F27(kh)
α0,0,0

h3
,

(2.102)

which comes from the symmetric modification Equation (2.69).

All the source amplitude correction functions for the 3D cases are shown in

Figure 2.8.
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Figure 2.8: The source amplitude correction functions for the 3D impulse source.
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Figure 2.9: The series expression of F27(kh). It matches well with Re(F27(kh)).

To avoid numerical evaluation of the several complex exponential functions

and the spherical Bessel functions in F27(kh), we use the following series ex-

pression

F27(kh) ≈ 1− 0.1629235349294909(kh)2 + 0.010029553652376767(kh)4

− 0.0004383253850535262(kh)6 + 0.000016842113455513565(kh)8

− 4.0663798991259547× 10−7(kh)10,

(2.103)

which can be efficiently evaluated by the Horner’s rule (Horner, 1819). Although

F27(kh) contains odd power terms with complex coefficients, they are omitted

because of their small contribution as we can see the imaginary part of F27(kh)

in Figure 2.8(c). Figure 2.9 shows that F27(kh) and the series are matched well.
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Chapter 3

Dispersion Analysis and
Numerical Experiments

We examine the accuracy of each finite difference method by means of the

plane wave analysis. It is also shown that the proposed methods with the source

amplitude correction functions give correct discrete impulse responses matched

with the analytic impulse responses. Then, 2D seismic wave propagation in

heterogeneous media is briefly examined with the proposed methods.

3.1 Plane Wave Analysis

3.1.1 2D Dispersion Curves

The dispersion characteristic for each finite difference method can be analyzed

by the plane wave analysis. If we assume that the numerical solution is a plane

wave ansatz u(x, y) = exp(ik̃(cos(θ)x+ sin(θ)y)) with the numerical wavenum-
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Figure 3.1: A schematic for describing the phase difference when the wave travels

distance h with the propagation angle θ

ber k̃, then we obtain ∂xu = ik̃ cos(θ)u and ∂yu = ik̃ sin(θ)u. The angle θ for

the plane wave direction goes from the positive x-axis to the positive y-axis.

For the plane wave solution u, the second order finite difference operators can

be written as

δ2xu =
2 cosh(∂xh)− 2

h2
u

=
2 cos(kxh)− 2

h2
u,

δ2yu =
2 cos(kyh)− 2

h2
u,

(3.1)

where kxh = k̃h cos(θ) and kyh = k̃h sin(θ). Using these relations, we can

rewrite finite difference equations with the numerical dispersion relation in

terms of kh and k̃h. We will treat the dimensionless quantity kh as a whole. It

also applies to k̃h.

Using the plane wave assumption, we compare our proposed scheme with

the previous works introduced in Chapter 1 as follows:
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Näıve 2nd order method

Inserting Equation (3.1) into the näıve second order method, we can obtain

the following numerical dispersion relation

−(kh)2 − ((2 cos(kxh)− 2) + (2 cos(kyh)− 2)) = 0, (3.2)

and kh can be explicitly expressed as

kh =
√

−((2 cos(kxh)− 2) + (2 cos(kyh)− 2)), (3.3)

which is a function of k̃h and θ. When the wave travels distance h, kh and k̃h

are the actual phase change and the numerical phase change, respectively.

We can take (k̃h − kh)/2π as an error measure which has the unit cycle

and the difference should be as small as possible. In Figure 3.2, the phase

difference of the näıve finite difference method is plotted for various k̃h and

uniformly divided propagation angles in the range of 0 ≤ θ ≤ π/4 (because

of symmetry).

Nehrbass et al. (1998)’s 2nd order method

From Equation (2.37), we can obtain the following equation

−(4− 4J0(kh))− ((2 cos(kxh)− 2) + (2 cos(kyh)− 2)) = 0. (3.4)

Because of J0(kh), kh cannot be expressed explicitly. We can solve kh for

given k̃h by using iterative root finding methods. The phase difference is

shown in Figure 3.3.

Jo et al. (1996)’s 9-point method

This method reduces the dispersion error by optimization without increasing
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the order of accuracy, and the method remains second order of accuracy.

The equation for computing the dispersion error is expressed as

−(kh)2
(
c+

1− c

4
(2 cos(kxh) + 2 cos(kyh))

)
−((2 cos(kxh)− 2) + (2 cos(kyh)− 2))

−1− a

2
(2 cos(kxh)− 2)(2 cos(kyh)− 2) = 0,

(3.5)

where a and c are optimized weighting parameters. The coefficients a and c

originally derived in Jo et al. (1996) are 0.5461 and 0.6248, respectively. We

recomputed the coefficients from optimization using an objective function

with the phase difference (k̃h − kh)/2π. We obtained a = 0.5713 and b =

0.6274, and they give slightly smaller phase difference errors than those of

Jo et al. (1996). The phase difference is shown in Figure 3.4.

Singer and Turkel (1998)’s 4th order method

This 4th order method also utilize the 9-point stencil. The numerical dis-

persion relation between kh and k̃h is expressed as

−
(
(kh)2 − (kh)4

12

)
− ((2 cos(kxh)− 2) + (2 cos(kyh)− 2))

− 1

6
(2 cos(kxh)− 2)(2 cos(kyh)− 2) = 0.

(3.6)

The phase difference is shown in Figure 3.5.

6th order method

The 6th order method (Singer and Turkel, 2006; Sutmann, 2007; Nabavi

et al., 2007) has the following relation

−L6th(kh)− ((2 cos(kxh)− 2) + (2 cos(kyh)− 2))

−M6th(kh)(2 cos(kxh)− 2)(2 cos(kyh)− 2) = 0

(3.7)
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where L6th(kh) = (kh)2 − (kh)4/12 + (kh)6/360 and M6th(kh) = 1/6 +

(kh)2/180 from Equation (2.71). The 6th order method contains more se-

ries terms than Singer and Turkel (1998)’s 4th order method. The phase

difference is shown in Figure 3.6.

Tsukerman (2006)’s method

The plane wave basis functions are used in Tsukerman (2006)’s work. The

numerical dispersion relation can be expressed as

− (2− 2 cos(kh))− ((2 cos(kxh)− 2) + (2 cos(kyh)− 2))

− −(2− 2 cos(kh))− (4 cos(kh/
√
2)− 4)

(2 cos(kh/
√
2)− 2)2

(2 cos(kxh)− 2)(2 cos(kyh)− 2) = 0.

(3.8)

The phase difference is shown in Figure 3.7.

9-point method of this thesis

The numerical dispersion relation directly comes from Equation (2.46) as

follows

−L9(kh)− ((2 cos(kxh)− 2) + (2 cos(kyh)− 2))

−M9(kh)(2 cos(kxh)− 2)(2 cos(kyh)− 2) = 0.

(3.9)

The phase difference is shown in Figure 3.8.

We can see that the phase difference (dispersion error) reduces from Fig-

ure 3.2 to Figure 3.8. An interesting point of Jo et al. (1996)’s method is that

the dispersion error of Jo et al. (1996)’s method is better than that of Singer

and Turkel (1998)’s 4th order method if we use approximately the range of

1/G = k̃h/2π > 0.18.
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For easy comparison, we can think of another measure such as

π/4

max
θ

|k̃h− kh|
. (3.10)

The measure is interpreted as the number of grids when the propagated wave

reaches the phase difference error of 1/8 cycle (π/4 radian) in the maximum

phase error direction for given k̃h. The measure can be used to roughly deter-

mine the size of computational mesh although the measure is not strictly the

number of grids if the maximum error direction is not aligned to the coordinate

axes. Using the measure, we can estimate the feasible maximum number of

grids for numerical simulation for given k̃h as shown in Figure 3.9. The 9-point

method proposed in this thesis has the highest number of grids along 1/G. In

other words, the dispersion error of the 9-point method accumulates less than

the other methods.
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Figure 3.2: Dispersion error curves for the 2D näıve second order method
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Figure 3.3: Dispersion error curves for Nehrbass et al. (1998)’s 2D second order

method
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Figure 3.4: Dispersion error curves for Jo et al. (1996)’s method

with the modified coefficients a and c
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Figure 3.5: Dispersion error curves for Singer and Turkel (1998)’s 2D fourth

order method

51



0.0 0.1 0.2 0.3 0.4
-0.0010

-0.0005

0.0000

0.0005

0.0010

1

G
=
k
˜
h

2π

k˜
h
-
k
h

2
π

Figure 3.6: Dispersion error curves for the 6th order method (Singer and Turkel,

2006; Sutmann, 2007; Nabavi et al., 2007)
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Figure 3.7: Dispersion error curves for Tsukerman (2006)’s method
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Figure 3.8: Dispersion error curves for the 9-point method of this thesis
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3.1.2 3D Dispersion Curves

From the 3D plane wave ansatz u(x, y, z) = exp(ik̃(sin(θ) cos(ϕ)x+sin(θ) sin(ϕ)y+

cos(θ))) with the numerical wavenumber k̃, we obtain the following partial

derivative relations

∂xu = ik̃ sin(θ) cos(ϕ)u,

∂yu = ik̃ sin(θ) sin(ϕ)u,

∂zu = ik̃ cos(θ)u.

(3.11)

Thus, the finite difference operators for the plane wave become

δ2xu =
2 cos(kxh)− 2

h2
u,

δ2yu =
2 cos(kyh)− 2

h2
u,

δ2zu =
2 cos(kzh)− 2

h2
u,

(3.12)

where kxh = k̃h sin(θ) cos(ϕ), kyh = k̃h sin(θ) sin(ϕ) and kzh = k̃h cos(θ). We

compute the dispersion curves only for 0 ≤ θ ≤ π/2 and 0 ≤ ϕ ≤ π/4 using

symmetry. Six compact finite difference methods are compared as follows:

Näıve 2nd order method

The numerical dispersion equation of this method comes directly from Equa-

tion (2.11).

−(kh)2− ((2 cos(kxh)− 2)+ (2 cos(kyh)− 2)+ (2 cos(kzh)− 2)) = 0 (3.13)

The phase difference is shown in Figure 3.10.

Nehrbass et al. (1998)’s 2nd order method
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−(6− 6j0(kh))− ((2 cos(kxh)− 2)+ (2 cos(kyh)− 2)+ (2 cos(kzh)− 2)) = 0

(3.14)

The phase difference is shown in Figure 3.11. As with the 2D method of

Nehrbass et al. (1998), this method is slightly better than the 3D näıve

second order method.

Operto et al. (2007)’s method

Operto et al. (2007) extended Jo et al. (1996)’s approach to the 3D problem.

−(kh)2
(
wm1 +

wm2

6
(2 cos(kxh) + 2 cos(kyh) + 2 cos(kzh))

+
wm3

12
(2 cos(kxh+ kyh) + 2 cos(kxh− kyh) + 2 cos(kyh+ kzh)

+2 cos(kyh− kzh) + 2 cos(kzh+ kxh) + 2 cos(kzh− kxh))
)

−
(
(2 cos(kxh)− 2) + (2 cos(kyh)− 2) + (2 cos(kzh)− 2)

)
−
(w2

6
+
w3

2

)(
(2 cos(kxh)− 2)(2 cos(kyh)− 2)

+(2 cos(kyh)− 2)(2 cos(kzh)− 2)

+(2 cos(kzh)− 2)(2 cos(kxh)− 2)
)

−3w3

8
(2 cos(kxh)− 2)(2 cos(kyh)− 2)(2 cos(kzh)− 2) = 0,

(3.15)

where wm1 = 0.4965, wm2 = 0.4510, wm3 = 0.0525, w2 = 0.8901 and

w3 = 0.1099. The phase difference is shown in Figure 3.12.
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19-point method of this thesis

The phase difference is shown in Figure 3.13 for the following numerical

dispersion relation

−L19(kh)−
(
(2 cos(kxh)− 2) + (2 cos(kyh)− 2) + (2 cos(kzh)− 2)

)
−M19(kh)

(
(2 cos(kxh)− 2)(2 cos(kyh)− 2)

+(2 cos(kyh)− 2)(2 cos(kzh)− 2)

+(2 cos(kzh)− 2)(2 cos(kxh)− 2)
)
= 0.

(3.16)

Sutmann (2007)’s 6th order method

The phase difference is shown in Figure 3.14 for the following numerical

dispersion relation

−L6th(kh)−
(
(2 cos(kxh)− 2) + (2 cos(kyh)− 2) + (2 cos(kzh)− 2)

)
−M6th(kh)

(
(2 cos(kxh)− 2)(2 cos(kyh)− 2)

+(2 cos(kyh)− 2)(2 cos(kzh)− 2)

+(2 cos(kzh)− 2)(2 cos(kxh)− 2)
)

−N6th(kh)(2 cos(kxh)− 2)(2 cos(kyh)− 2)(2 cos(kzh)− 2) = 0.

(3.17)

27-point method of this thesis

The phase difference is shown in Figure 3.15 for the following numerical
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dispersion relation

−L27(kh)−
(
(2 cos(kxh)− 2) + (2 cos(kyh)− 2) + (2 cos(kzh)− 2)

)
−M27(kh)

(
(2 cos(kxh)− 2)(2 cos(kyh)− 2)

+(2 cos(kyh)− 2)(2 cos(kzh)− 2)

+(2 cos(kzh)− 2)(2 cos(kxh)− 2)
)

−N27(kh)(2 cos(kxh)− 2)(2 cos(kyh)− 2)(2 cos(kzh)− 2) = 0.

(3.18)

As in 2D, we use the measure

π/4

max
θ,ϕ

|k̃h− kh|
, (3.19)

which can be used to identify the feasible maximum number of grids for given

k̃h. We can see that the phase difference for the 3D methods reduces from

Figure 3.10 to Figure 3.15. The proposed 27-point method has the highest

feasible number of grids along 1/G as shown in Figure 3.16. When 1/G = 0.3,

for example, the feasible maximum number of grids of the 27-point method is

about 2000, but the number of grids of Sutmann (2007)’s method, which is

the highest among the other methods, is only about 140. Thus, it shows the

superiority of the proposed 27-point method.
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Figure 3.10: Dispersion error curves for the 3D Näıve second order method
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Figure 3.11: Dispersion error curves for Nehrbass et al. (1998)’s 3D second order

method
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Figure 3.12: Dispersion error curves for Operto et al. (2007)’s method based on

Jo et al. (1996)’s approach
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Figure 3.13: Dispersion error curves for the 19-point method of this thesis
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Figure 3.14: Dispersion error curves for Sutmann (2007)’s method
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Figure 3.15: Dispersion error curves for the 27-point method of this thesis
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Figure 3.16: The number of grids to reach 1/8 cycle (π/4 radian) phase error

for 3D methods. Higher is better.
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3.2 Numerical Solutions with the Impulse Source

All the following numerical experiments use the source amplitude correction

functions to compensate the amplitude difference. The numerical solution would

not match the analytic solution unless the correction functions are applied.

3.2.1 2D 9-Point Method for a Homogeneous Medium

The numerical solutions were computed by the 9-point method for k̃h/2π =

0.01, 0.10, 0.20, 0.30 and 0.40. Because the 5-point method is not accurate

enough to be used in such wide range of k̃h, it was excluded. The size of the

2D computational domain was set to (nx×ny) = (401× 401) and the Perfectly

Matched Layer (Appendix B) was used for absorbing the outgoing waves. The

thickness (the number of grids) of the PML was 20. The unit impulse source

was discretized at the exact center node of the computational domain. For

k̃h/2π = 0.30 and 0.40, the impulse source was approximated also by a set

of discrete sources at the 9 neighbor nodes, because the contribution of the

neighbor nodes slightly increases when k̃h is large. Computing the contribution

of the neighbor nodes for the impulse source are essentially the same with the

process of computing the source amplitude correction functions. The analytic

solutions were computed by i
4H

(1)
0 (kr), and the value at the singular point r = 0

in the analytic solution was replaced by i
4H

(1)
0 (khϵ), which is predicted from

the singularity removal process in the previous chapter.

For each k̃h, we extracted a line section parallel to either x- or y-direction,

and the line section contains the singularity of the 2D impulse response. From
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Figure 3.17 to Figure 3.23, we can see that the discrete and analytic solutions

match well together. For k̃h/2π = 0.30 and 0.40, we can see that the numerical

solutions from the 9-point impulse source approximation are better matched

with the predicted value i
4H

(1)
0 (khϵ) at r = 0 than those of the single point

approximation. Although Figure 3.24 and Figure 3.25 show that the 9-point

approximation of the impulse source is better than the single point approxima-

tion in terms of pointwise L1 error, the single point approximation also works

reasonably well.

From the observation above, the source amplitude correction functions and

ϵ computed from the singularity removal process are justified. If the source

amplitude correction functions are not applied, then the amplitude discrepancy

between the numerical solution and the analytic solution would be significant.
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Figure 3.17: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.01. The discrete solution is ob-

tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.18: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.10. The discrete solution is ob-

tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.19: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.20. The discrete solution is ob-

tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.20: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.30. The discrete solution is ob-

tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.21: Comparison between the analytic solution (solid line) and the

discrete solution (dots) when 1/G = k̃h/2π = 0.30. The discrete solution is

obtained from the proposed 9-point method of this thesis with the 9-point ap-

proximation of the impulse source.
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Figure 3.22: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.40. The discrete solution is ob-

tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.23: Comparison between the analytic solution (solid line) and the

discrete solution (dots) when 1/G = k̃h/2π = 0.40. The discrete solution is

obtained from the proposed 9-point method of this thesis with the 9-point ap-

proximation of the impulse source.
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Figure 3.24: Pointwise L1 error plot for 1/G = k̃h/2π = 0.30. The solid line is

computed from the single point approximation, and the dashed line is computed

from the 9 point approximation of the impulse sources.
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Figure 3.25: Pointwise L1 error plot for 1/G = k̃h/2π = 0.40. The solid line is

computed from the single point approximation, and the dashed line is computed

from the 9-point approximation of the impulse source.
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3.2.2 3D 27-Point Method for a Homogeneous Medium

As in the 2D test, the numerical solutions were computed by the 27-point

method for k̃h/2π = 0.01, 0.10, 0.20, 0.30 and 0.40. The size of the 3D compu-

tational domain was set to (nx × ny × nz) = (61× 61× 101) for k̃h/2π = 0.10,

0.20, 0.30 and 0.40. For k̃h/2π = 0.01, the size of the domain was increased to

(nx ×ny ×nz) = (61× 61× 201) because relatively small imaginary part of the

numerical solution (Figure 3.26) was affected by the slight reflection near the

boundaries in spite of using the PML whose thickness is 20. The unit impulse

source was discretized at the node (ix, iy, iz) = (31, 31, 31) for k̃h/2π = 0.10,

0.20, 0.30, 0.40 and at the node (ix, iy, iz) = (31, 31, 81) for k̃h/2π = 0.01,

where 1 ≤ ix ≤ nx, 1 ≤ iy ≤ ny and 1 ≤ iz ≤ nz. For k̃h/2π = 0.30 and 0.40,

the impulse source was approximated also by a set of discrete sources at the 27

neighbor nodes. The analytic solutions were computed by exp(ikr)/4πr, and

the value at the singular point r = 0 in the analytic solution was replaced by

exp(ikhϵ)/4πhϵ.

For each k̃h, we extracted a 1D line section parallel to z-direction, and

the 1D line section contains the singularity of the 3D impulse response. From

Figure 3.26 to Figure 3.32, we can see that the discrete and analytic solutions

match well together. For k̃h/2π = 0.30 and 0.40, we can see that the numerical

solutions from the 27-point impulse source approximation are better matched

with the predicted value exp(ikhϵ)/4πhϵ at r = 0 than those of the single point

approximation. Although Figure 3.33 and Figure 3.34 shows that the 27-point

approximation of the impulse source has lower pointwise L1 error than the single
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point approximation, the single point approximation also reasonably matches

the analytic solutions well as in 2D.
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Figure 3.26: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.01. The discrete solution is ob-

tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.27: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.10. The discrete solution is ob-

tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.28: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.20. The discrete solution is ob-

tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.29: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.30. The discrete solution is ob-

tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.30: Comparison between the analytic solution (solid line) and the

discrete solution (dots) when 1/G = k̃h/2π = 0.30. The discrete solution is

obtained from the proposed 27-point method of this thesis with the 27-point

approximation of the impulse source.
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Figure 3.31: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = k̃h/2π = 0.40. The discrete solution is ob-

tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.32: Comparison between the analytic solution (solid line) and the

discrete solution (dots) when 1/G = k̃h/2π = 0.40. The discrete solution is

obtained from the proposed 27-point method of this thesis with the 27-point

approximation of the impulse source.
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Figure 3.33: Pointwise L1 error plot for 1/G = k̃h/2π = 0.30. The solid line is

computed from the single source approximation, and the dashed line is com-

puted from the 27-point approximation.
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Figure 3.34: Pointwise L1 error plot for 1/G = k̃h/2π = 0.40. The solid line is

computed from the single source approximation, and the dashed line is com-

puted from the 27-point approximation.
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3.2.3 2D Seismic Wave Propagation in Heterogeneous Media

From the previous numerical experiments for a homogeneous medium, the nu-

merical solutions are matched well with the analytic solutions in the broad

range of k̃h. However, the derivation of the proposed compact finite difference

methods is based on the local homogeneity assumption, so the methods do not

fully consider heterogeneity and there are first order errors at the interfaces (ex-

cept for 1D, see Appendix A). Thus, the proposed methods would give inexact

reflection and transmission coefficients if the grid interval h is not small enough.

Nevertheless, the proposed methods can be used to simulate wave propagation

in heterogeneous media to some extent. We compare the numerical solutions of

our 2D 9-point compact finite difference method with the reference solutions

obtained from the time domain modeling method of Tal-Ezer et al. (1987),

which exactly considers heterogeneity without the numerical dispersion and

the interface error due to exact time marching and spatial differentiations.

For comparison, we chose the Marmousi model (Versteeg, 1994), which is a

classical heterogeneous acoustic wave speed model for seismic wave propagation.

The velocity model is shown in Figure 3.35. The velocity increases as the depth

deepens and the minimum and maximum velocity of the model is 1.5 km/s

and 5.5 km/s, respectively. The velocity model was obtained by resampling and

smoothing the original velocity model whose grid interval is 4 meters. The re-

sampled grid interval h is 12.5 meters and the grid size is (nx×nz)=(736×240),

where x is Distance direction and z is Depth direction as shown in Figure 3.35.

The time domain solution of our 9-point method was obtained by transform-
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ing the frequency domain solution with the discrete Fourier transform. The

reference time domain solution was obtained from time marching with Tal-

Ezer et al. (1987)’s method. Most modeling conditions are the same for both

modeling methods: The maximum recording time Tmax is 4 seconds. Also, the

maximum frequency fmax is about 30 Hz and the time interval ∆t is 1/(2fmax).

We can compute the number of grids per minimum wavelength G = 4 using

the minimum velocity 1.5 km/s, the maximum frequency fmax = 30 Hz and the

grid interval h = 12.5 m. The boundary conditions of our 9-point method is the

frequency domain PML (see Appendix B), and the boundary condition of Tal-

Ezer et al. (1987)’s method is a variant of the time domain PML (Park et al.,

2014). The PML was set in the four boundaries and the thickness (the number

of grids) of the PML is 20. The source wavelet is a shifted Ricker wavelet defined

as

w(t) = (1− 2π2(fpeakt− 1.1)2) exp(−π2(fpeakt− 1.1))2), (3.20)

where fpeak ≈ fmax/3 = 10 Hz is the peak frequency whose amplitude is the

maximum in the frequency spectrum. In the 9-point method, the spatial impulse

source with the Ricker wavelet was set at the center of the computational do-

main. In Tal-Ezer et al. (1987)’s method, the spatial distribution of the impulse

source was approximated by a narrow Gaussian bell shaped distribution. For

both cases, the receiver line was set parallel to x (Distance) direction through

the center of the domain

As shown in Figure 3.36, both seismograms from the receiver line are vir-

tually indistinguishable with the naked eye. Time traces at some distances are

also shown in Figure 3.37 and the traces are matched well.
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Figure 3.35: The Marmousi P-wave velocity model

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9

T
im
e
(s
ec
o
n
d
)

Distance (km)

(a) Tal-Ezer’s method

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9

T
im
e
(s
ec
o
n
d
)

Distance (km)

(b) 9-point method

Figure 3.36: Time domain seismograms from Tal-Ezer and the 9-point method
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Figure 3.37: Comparison of time domain traces between Tal-Ezer’s method and

the 9-point method
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Chapter 4

Conclusions

The compact finite difference methods using the analytic basis functions were

introduced, and we verified the high accuracy of the proposed methods in terms

of the dispersion error and the amplitude of the impulse response in the wide

range of k̃h. Although the proposed methods are based on the homogeneity

assumption, the numerical experiements showed that the methods can simu-

late reasonably well seismic wave propagation in hetereogeneous media. Thus,

large scale geophysical applications with the impulse sources on Cartesian grids

such as full waveform inversion (Tarantola, 1984; Shin, 1988; Pratt et al., 1998;

Virieux and Operto, 2009) in the exploration geophysics would benefit from the

accuracy and efficiency of the proposed methods.
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Appendix A

Exact 1D Discretization with
Piecewise-Constant Media

A.1 Derivation

We consider the 1D Helmholtz equation

−k
2

ρ
u− ∂

∂x

1

ρ

∂u

∂x
= f (A.1)

with the piecewise-constant wavenumber k and density ρ. The 1D shifting op-

erator (Equation (2.21)) can be used to derive a finite difference expression for

the piecewise-constant material distribution. In Figure A.1, the first derivatives

are discontinuous due to the discontinuous media at x = 0. We can analytically

write neighbor nodal points as

u1 := u(h) = cos(k 1
2
h)u+0 + sinc(k 1

2
h)h∂xu

+
0 , (A.2)

u−1 := u(−h) = cos(k− 1
2
h)u−0 − sinc(k− 1

2
h)h∂xu

−
0 . (A.3)
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Figure A.1: 1D stencil for piecewise-constant heterogeneous media

There are two conditions should be met as follows

u−0 = u+0 , (A.4)

1

ρ− 1
2

∂u−0
∂x

=
1

ρ 1
2

∂u+0
∂x

. (A.5)

The first one (Equation (A.4)) is the pressure continuity condition and the

second one (Equation (A.5)) is the normal velocity continuity condition. Using

these two conditions, the first derivatives can be cancelled out to form the

following three term expression

u−1

ρ− 1
2
sinc(k− 1

2
h)

+
u1

ρ 1
2
sinc(k 1

2
h)

=

(
cos(k− 1

2
h)

ρ− 1
2
sinc(k− 1

2
h)

+
cos(k 1

2
h)

ρ 1
2
sinc(k 1

2
h)

)
u0, (A.6)

where u0 = u−0 = u+0 .

If there is an impulse source f(x) = α0δ(x−x0), which is located at x = x0,

then a jump of the normal velocity occurs as follows

1

ρ− 1
2

∂u−0
∂x

+ α0 =
1

ρ 1
2

∂u+0
∂x

, (A.7)

which gives

u−1

ρ− 1
2
sinc(k− 1

2
h)

+
u1

ρ 1
2
sinc(k 1

2
h)

=

(
cos(k− 1

2
h)

ρ− 1
2
sinc(k− 1

2
h)

+
cos(k 1

2
h)

ρ 1
2
sinc(k 1

2
h)

)
u0 + α0h.

(A.8)
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Using the finite difference operator δx, Equation (A.8) can be rewritten as

− 1

h2

(
1− cos(k− 1

2
h)

ρ− 1
2
sinc(k− 1

2
h)

+
1− cos(k 1

2
h)

ρ 1
2
sinc(k 1

2
h)

)
u0 − δx

1

ρ sinc(kh)
δxu0 =

α0

h
, (A.9)

which does not produce any discretization error. Of course, discretization er-

ror may be introduced when the actual discontinuous interface is not exactly

matched with the grid interface, or when the continuous problem has smooth

profiles of the density ρ and the wavenumber k.

If we assume homogeneous medium (ρ− 1
2
= ρ 1

2
= ρ and k− 1

2
= k 1

2
= k),

then Equation (A.9) reduces to

− 1

h2

(
2− 2 cos(kh)

ρ sinc(kh)

)
u0 − δx

1

ρ sinc(kh)
δxu0 =

α0

h
, (A.10)

which is similar to Equation (2.76) in Section 2.5.1. The only difference between

the two equations is the location of the sinc(kh) function. In Equation (A.9)

and Equation (A.10), the sinc(kh) function can be thought of as a correction

term to compute an effective density ρ̃ = ρ sinc(kh). We rewrite Equation (A.9)

with the effective density ρ̃ as follows

− 1

h2

(
1− cos(k− 1

2
h)

ρ̃− 1
2

+
1− cos(k 1

2
h)

ρ̃ 1
2

)
u0 − δx

1

ρ̃
δxu0 =

α0

h
, (A.11)

where the finite volume approximation α0/h of the Dirac delta function can be

used as a source term without correction, because sinc(kh) is absorbed to the

effective density ρ̃.
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Appendix B

Perfectly Matched Layer

B.1 Continuous Perfectly Matched Layer

The Perfectly Matched Layer (Bérenger, 1994, 2007) has the ability to suppress

spurious reflections at the boundaries of the computational domain. In the

frequency domain, the PML can be easily introduced by using the following

complex coordinate stretching (Chew and Weedon, 1994)

∂x → 1

sx
∂x,

∂y → 1

sy
∂y,

∂z →
1

sz
∂z,

(B.1)

where sx and sz are the complex coordinate stretching parameters. If we apply

the complex coordinate stretching to the 2D Helmholtz equation, then we obtain
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the Helmholtz equation with the PML coefficients as follows

−k2u− 1

sx

∂

∂x

1

sx

∂u

∂x
− 1

sy

∂

∂y

1

sy

∂u

∂y
= 0. (B.2)

Multiplying sxsy to Equation (B.2) gives

−k2sxsyu− ∂

∂x

sy
sx

∂u

∂x
− ∂

∂y

sx
sy

∂u

∂y
= 0. (B.3)

Either Equation (B.2) or Equation (B.3) can be used, but Equation (B.3) may

be more preferred, because Equation (B.3) can be discretized by using a sym-

metric indefinite matix. If a direct sparse matrix solver such as a multifrontal

solver is used, then the symmetric indefinite matrix can be factorized by the

LDLT (LDLT ) decomposition with the Bunch-Kaufman 2×2 diagonal pivoting

(Bunch and Kaufman, 1977). The LDLT decomposition can reduce the arith-

metic operations and the memory requirement roughly by half, compared to

the LU decomposition.

We can also apply the complex coordinate stretching to the 3D Helmholtz

equation as follows

−k2u− 1

sx

∂

∂x

1

sx

∂u

∂x
− 1

sy

∂

∂y

1

sy

∂u

∂y
− 1

sy

∂

∂y

1

sy

∂u

∂y
= 0. (B.4)

Multiplying sxsysz to Equation (B.4) gives

−k2sxsyszu− ∂

∂x

sysz
sx

∂u

∂x
− ∂

∂y

szsx
sy

∂u

∂y
− ∂

∂z

sxsy
sz

∂u

∂z
= 0. (B.5)

B.2 Discrete Perfectly Matched Layer in 1D

In 1D problem, the complex coordinate stretching gives

−k2u− 1

sx

∂

∂x

1

sx

∂u

∂x
= 0. (B.6)
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If we assume piecewise constant media, the wavenumber k and the PML pa-

rameter sx is constant within one grid cell. Then Equation (B.6) becomes

−k2u− 1

s2x

∂2u

∂x2
= 0, (B.7)

and subsequently,

−k2s2xu− ∂2u

∂x2
= 0. (B.8)

So, the PML coefficient sx can be absorbed to the wavenumber k. Then, we can

just use the equation for the piecsewise constant heterogeneous media (Equa-

tion (A.8) or Equation (A.9)) with the modified wavenumber k → ksx. This

discretization method of the 1D PML does not introduce any discretization

error.

B.3 Discrete Perfectly Matched Layer in 2D and 3D

In contrast to the 1D problem, the exact discretization of the PML cannot

be achieved in the 2D and 3D problems. We may try the following complex

coordinate stretching in the discrete level, which is analogous to the continuous

version of the complex coordinate stretcing (Equation (B.1)).

δx → 1

sx
δx,

δy → 1

sy
δy,

δz →
1

sz
δz.

(B.9)
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If we apply the discrete complex coordinate stretching to the 2D 9-point method

(Equation (2.50)), then, we obtain the following equation

−L9(kh)

h2
u0,0−

(
1

sx
δx

1

sx
δx +

1

sy
δy

1

sy
δy

)
u0,0−h2

1

sx
δx

1

sy
δyM9(kh)

1

sx
δx

1

sy
δyu0,0 = 0.

(B.10)

Multiplying sxsy to Equation (B.10), we can obtain the symmetric discretiza-

tion of the Helmholtz equation with the PML as follows

−L9(kh)

h2
sxsyu0,0 −

(
δx
sy
sx
δx + δy

sx
sy
δy

)
u0,0 − h2δxδy

M9(kh)

sxsy
δxδyu0,0 = 0.

(B.11)

If we have the variable density ρ, then Equation (B.11) can be approximately

modified to

−L9(kh)

h2
sxsy
ρ

u0,0 −
(
δx

sy
ρsx

δx + δy
sx
ρsy

δy

)
u0,0 − h2δxδy

M9(kh)

ρsxsy
δxδyu0,0 = 0,

(B.12)

which reduces to Equation (B.11) when ρ is constant.

We can apply the discrete complex coordinate stretching to the 3D discrete

Helmholtz equation (Equation (2.69)) as follows

−L27(kh)

h2
u0,0,0 −

(
1

sx
δx

1

sx
δx +

1

sy
δy

1

sy
δy +

1

sz
δz

1

sz
δz

)
u0,0,0

−h2 1

sx
δx

1

sy
δyM27(kh)

1

sx
δx

1

sy
δyu0,0,0

−h2 1

sy
δy

1

sz
δzM27(kh)

1

sy
δy

1

sz
δzu0,0,0

−h2 1

sz
δz

1

sx
δxM27(kh)

1

sz
δz

1

sx
δxu0,0,0

−h4 1

sx
δx

1

sy
δy

1

sz
δzN27(kh)

1

sx
δx

1

sy
δy

1

sz
δzu0,0,0 = 0.

(B.13)

93



Multiplying sxsysz to Equation (B.14) gives

−L27(kh)

h2
sxsyszu0,0,0 −

(
δx
sysz
sx

δx + δy
szsx
sy

δy + δz
sxsy
sz

δz

)
u0,0,0

−h2δxδy
M27(kh)sz

sxsy
δxδyu0,0,0

−h2δyδz
M27(kh)sx

sysz
δyδzu0,0,0

−h2δzδx
M27(kh)sy

szsx
δzδxu0,0,0

−h4δxδyδz
N27(kh)

sxsysz
δxδyδzu0,0,0 = 0,

(B.14)

which is a symmetric discretization of the 3D Helmholtz equation with the

PML. We can also approximately include the density ρ into Equation (B.14) as

follows

−L27(kh)

h2
sxsysz
ρ

u0,0,0 −
(
δx
sysz
ρsx

δx + δy
szsx
ρsy

δy + δz
sxsy
ρsz

δz

)
u0,0,0

−h2δxδy
M27(kh)sz
ρsxsy

δxδyu0,0,0

−h2δyδz
M27(kh)sx
ρsysz

δyδzu0,0,0

−h2δzδx
M27(kh)sy
ρszsx

δzδxu0,0,0

−h4δxδyδz
N27(kh)

ρsxsysz
δxδyδzu0,0,0 = 0.

(B.15)
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초록

본논문에서는헬름홀츠방정식의해석적기저함수를이용한컴팩트유한차분법을

유도한다.해석적인정보를활용하는본방법은수치적인분산오차를크게줄임으

로써,기존의컴팩트유한차분법에비해수치시뮬레이션에사용되는파장당최소

격자 수를 낮출 수 있다. 이를 통해, 사용되는 격자 수를 늘리지 않고서도 높은 주

파수 혹은 파수 영역에 대한 시뮬레이션을 가능하게 해주므로 계산량이 감소한다.

효율성과 정확성이 높은 본 컴팩트 유한차분법은 정규 격자를 이용한 계산량이

큰 응용 분야에 매우 적합하다. 제안된 방법의 효율성과 정확성을 확인하기 위해

수치적인 결과를 보이고 이를 비교한다. 또한, 비균질 매질에서의 지진파 전파에

본 방법을 적용해보고 본 방법의 지구물리 응용 분야에 대한 적용성을 가늠한다.

주요어: 헬름홀츠 방정식, 트레프츠 기저 함수, 유한 차분, 수치적 분산 오차, 지진

파

학번: 2010-23217
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