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Abstract

Compact finite difference methods using local analytic basis functions for the
Helmholtz equation are derived in this thesis. Compared to former compact fi-
nite difference methods, the proposed methods using the analytic information of
the Helmholtz equation greatly reduce the numerical dispersion error so that the
minimum number of grids per wavelength required in the numerical simulation
can be lowered. This enables us to simulate the higher frequency/wavenumber
range without increasing the number of grids, which reduces the computational
costs. The proposed compact finite difference methods have great potential for
numerically intensive applications using regular tensor product grids, because
of their efficiency and accuracy. Some numerical results and comparisons are
provided to verify the efficiency and accuracy of the proposed scheme. The
proposed scheme is also applied to seismic wave propagation in heterogeneous

media to assess its feasibility for geophysical applications.

Keywords: Helmholtz equation, Trefftz basis function, finite difference, nu-
merical dispersion, seismic wave

Student Number: 2010-23217
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Chapter 1

Introduction

1.1 Background and Importance

The Helmholtz equation has been widely used in many applications including
acoustics, elastic wave propagation and electromagnetics. Because the Helmholtz
equation has an important role for such linear wave propagation, much research
effort has been made to develop numerical methods for efficiently computing the
solution of the Helmholtz equation. There are two main obstacles to efficiently
solving the numerical solution of the Helmholtz equation. The first one is that
the solution of the Helmholtz equation is highly oscillatory, which degrades the
convergence rate of an iterative sparse matrix solver unless we employ a sophis-
ticated preconditioner technique. Using a direct sparse matrix solver instead
of an iterative solver, one might avoid the convergence rate problem from the

oscillatory behavior, but the arithmetic and storage complexities become super-



linear with respect to degrees of freedom, which may hinder the applicability
to large scale problems. There have been many published works to reduce the
computational complexities of iterative and direct solvers by utilizing domain
decomposition methods (see Gander and Zhang, 2016, and references therein)
and H-matrix techniques (e.g. Banjai and Hackbusch, 2007; Wang et al., 2011).
The second obstacle is the dispersion error inherent in numerical methods. The
dispersion error (or the phase error) comes when the trailing error terms are
truncated in the discretization process. If the dispersion error is large, then a
fine mesh is required to meet some desired level of accuracy, thus the computa-
tional costs increase. Therefore, reduction of the dispersion error is essential for
large scale problems such as seismic wave propagation. In this thesis, we focus

on reducing the dispersion error.

1.2 Previous Works

Several compact finite difference methods, which use only the direct neighbor
nodal points locally on regular grids, have been proposed to reduce the nu-
merical dispersion error, because the conventional second order finite difference
method fails to give a reasonable accuracy unless the wavenumber or the fre-
quency is quite low compared to the grid size. Although some higher order
methods with extended finite difference stencils may also reduce the dispersion
error, the compact stencil has some advantages such as easy implementation
of boundary conditions and the reduced fill-in of sparse matrix factorization.

There are some related works as follows:



Second order compact finite difference methods

Jo et al. (1996)’s work is popular in the exploration geophysics commu-
nity. Jo et al. (1996)’s 9-point 2D compact stencil combines two different
discretizations of the Laplacian operator and Marfurt (1984)’s idea, which
mixes the consistent mass matrix and the lumped mass matrix derived from
the finite element method. Jo et al. (1996) finds some weighting parame-
ters to minimize a least squares objective function of the dispersion error.
Although this method has second order of accuracy, the dispersion error is
greatly reduced from the optimization. Jo et al. (1996)’s approach is ex-

tended to the 27-point 3D compact stencil by Operto et al. (2007).

Higher order compact finite difference methods

The conventional finite difference method gives second order of accuracy,
whereas some higher order methods give 4th order and 6th order of accuracy
without extending the length of the finite difference stencil. In 2D, the 4th
order method (Singer and Turkel, 1998) and 6th order method (Singer and
Turkel, 2006; Nabavi et al., 2007) use the 9-point compact stencil. In 3D, the
6th order method (Sutmann, 2007) uses the 27-point compact stencil. The
central idea of the higher order methods is to transform the truncation error
to computable terms by repeatedly applying the given partial differential
equation to the truncation error, so that the computable terms are not
errors anymore. The truncation error removal process continues until the

desired order of accuracy is met.

Trefftz methods



Trefftz methods belong to a family of finite element methods that use trial
and test functions that are locally exact solutions of the specific partial
differential equation. The oscillatory basis functions of the Helmholtz equa-
tion can express the solution better than the conventional polynomial basis
functions. The term Trefftz basis function can be used as a synonym for the
term analytic basis functions. There are popular examples of Trefftz methods
such as the method of fundamental solutions (MFS), the ultra weak vari-
ational formulation (UWVF) and the plane wave discontinuous Galerkin
method (PWDG), etc. For detailed information about Trefftz methods for

the Helmholtz equation, see Hiptmair et al. (2016), and references therein.

Compact finite difference methods using Trefftz basis functions

Trefftz basis functions well known in the finite element communities can be
adopted to the compact finite difference methods. Nehrbass et al. (1998)’s
5-point stencil method in 2D and 7-point stencil method in 3D use the
cylindrical and spherical Bessel functions as local analytic basis functions.
Although the order of accuracy remains second order, the dispersion error
of Nehrbass et al. (1998)’s method is better than that of the conventional
second order method. A set of 2D plane waves is also used as local analytic
basis functions on the 9-point stencil to simulate eletromagnetic wave prop-
agation in Tsukerman (2006)’s work, which covers broad applications using
local analytic basis functions in the finite difference framework. The plane
wave basis functions also belong to Trefftz basis functions, which are able

to significantly reduce the dispersion error.



All the methods listed above share the same principle in the sense that they
use the analytic information of the Helmholtz equation. However, their disper-

sion characteristics might not be enough especially for large scale problems.

1.3 Objectives

In this thesis, we will focus on further reducing the numerical dispersion er-
ror in the context of compact finite difference methods by using local analytic
basis functions which are called generalized harmonic polynomials (see Hipt-
mair et al., 2016) to squeeze out all the extra efficiency. We also derive source
amplitude correction functions, which are required to match the amplitude of
the discrete impulse response with that of the analytic impulse response in the
improved range of the wavenumber /frequency due to the reduced dispersion
error. After analyzing the dispersion characteristics of the proposed scheme, a
seismic wave propagation problem is solved by the proposed scheme to examine

its applicability to geophysical applications.

1.4 Organization of the Thesis

There are three remaining chapters in this thesis. Chapter 2 describes how to
derive 1D, 2D and 3D compact finite difference methods incorporated with the
analytic basis functions, and how to obtain source amplitude correction func-
tions for the impulse source. In Chapter 3, the dispersion characteristics of some
compact finite difference methods and the proposed methods are compared, and

the accuracy of the numerical solutions with the source amplitude correction



functions is also verified. Then, the proposed scheme is applied to 2D seismic
wave propagation. Finally, short conclusions for the proposed scheme are drawn

in Chapter 4.
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Chapter 2

Discretization using Analytic
Basis Functions

We derive compact finite difference methods using local analytic basis functions.
The analytic information of the Helmholtz equation can be exploited to greatly
improve the accuracy and efficiency of the finite difference methods for the

Helmholtz equation.
2.1 Preliminaries

2.1.1 Helmholtz Equation

For the computational domain  C R? and its boundary 052, the boundary

value problem (BVP) for the Helmholtz equation is expressed as

—k*u — V?u = f in Q,

some boundary conditions on 0f2,



where k is the wavenumber, V? is the Laplacian operator and f is the source
function. Appropriate boundary conditions such as free surface boundary condi-
tions and the radiation boundary condition may be imposed. In this thesis, the
scalar field u is assumed to be the pressure perturbation of the linear acoustics.
Of course, u may represents other physical quantities such as the electromag-
netic field.

Equation (2.1) can be expressed in Cartesian coordinates as
kU — s — = = (2.2)

which will be repeatedly used in this thesis.

The acoustic density p can be included as

k2 1
——u—V--Vu=f (2.3)
P P

and its Cartesian version is expressed as

k2 O10u 0 10u 0 10u

T Gwpon  Gypdy bzpos T 24
2.1.2 Finite Difference Operator
We define a finite difference operator
5, A(x) = A(x+h/2) — A(x — h/2) (2.5)

h )
where h is the grid interval and A(x) is an arbitrary function defined in some in-

terval including [—h/2, h/2]. There is a connection between the finite difference

operator ¢, and the differential operator 9, := %. First, a shifting operator is



extracted from the Taylor series

B(zx+h) = Zni ()

= exp(hdy)B(z),

(2.6)

where B(x) is a smooth C*° differentiable function in some interval including
[0, h]. The exponential expression exp(hd,) is a pseudo differential operator that
produces a translated function from the function B(x) with a finite distance
h. Using the pseudo differential operator, the finite difference operators in each

coordinate direction can be expressed as

= 2 sinh <haz> ,
h 2
0 b (2.7)
5y = ESil’lh <26y> y
2 . h
0, = Esmh <28Z> ,

where sinh(z) = (exp(z) — exp(—2z))/2. As we can see, the finite difference op-
erators are expressed as the hyperbolic function with the differential operators.

0, can be expanded as

Op = %sinh (Z(?w)

h : s R 5

(2.8)

which has second order of accuracy. When h — 0, the limits of ¢, d, and 9,

approach to 0., 0, and 0., respectively.



We can also form second derivatives

> (2 ("0,))
5x—(hsmh 289”

_ 2cosh(hd,) — 2

h? (2.9)
52— 2 cosh(h0y) — 2
y 2
52— 2 cosh(hd,) — 2
z h2 ’

which have the same effect with the conventional second order finite difference

F(x+h)—2F(z)+ F(z — h)
h? .

62F(z) = (2.10)

2.1.3 Naive Second Order Finite Difference Method

Using the finite difference operators of Equation (2.9), the spatial derivatives of
the Helmholtz equation (Equation (2.2)) can be replaced by the discrete spatial

derivatives as follows
—k*u — 67u — dou — 0zu+ O(h®) = f. (2.11)

Equation (2.11) does not perform well in the numerical simulation due to the
severe truncation error. Ignoring the numerical error from discretization of the
source function f, the second order truncation error O(h?) has an explicit series
expression

(624624 62— & — 92 — 0)u

4 6
8§+8§+a§)u+h—(8§+8§+8§)u+h—(8§+8§+8§)u+...,

2
= 12l 360 20160
(2.12)

which is obtained from the series expansion of Equation (2.9). The truncation
error can be significantly reduced by using some analytic knowledge of the

underlying governing equation.

]
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2.2 1D Compact Finite Difference Methods
2.2.1 3-Point Method

We start with the 1D Helmholtz equation with a homogeneous medium (a
constant wavenumber k)

—k*u — 0%u =0, (2.13)

where the source function f is omitted. The equation can be used to replace the
spatial derivative O?u with the scalar multiplication —k?u. Using this replace-
ment, successive application of 92 gives (02)"u = (—k?)"u. The finite difference

operator §2 can be manipulated as

_ 2cosh(hdy) — 2

62u % u
- 7;) (2n 2+ (0" o1
= i @fwh2n(—k2)"+1u
gz(z(z)s(kh) -2
I E R

Note that the pseudo differential operator cosh(hd,) is transformed to cos(kh).
Rearranging Equation (2.14) gives

2 — 2 cos(kh)
U §2u =0, (2.15)
which is a discrete analogue of the continuous version of the 1D Helmholtz
equation (Equation (2.13)) without any discretization error. Using the function

value u,;, = u(z;,) uniformly sampled at the discrete point xz,,, we rewrite

Equation (2.15) as
2 —2cos(kh)

= Uy — 620U = 0, (2.16)

]
11 -i == T



or simply
2 —2cos(kh)

3 ug — 62ug = 0. (2.17)

When the grid size h approaches to zero, Equation (2.15) approaches to the
1D Helmholtz equation (Equation (2.13)) as we can see the following limits

lim 2 — 2cos(kh)

= k?
h—0 h? ’

(2.18)
lim 62 = 92.
h—0 * L

2.2.2 Alternative Derivation

As we see in the previous section, any even function of the differential operator
0, can be transformed to the corresponding even function of the wavenumber
k by using the Helmholtz equation (Equation (2.13)). By replacing 9, in even
functions with ik, the 1D shifting operator (Equation (2.6)) can be manipulated
as

exp(hd,) = cosh(hd,) + sinh(hd,)

sinh(hdy)
hoy

sinh(hik)
hik

= cos(kh) + sinc(kh)ho,.

= cosh(h0y) + h0y

(2.19)

= cosh(hik) + hoy

Because sinh(x) is an odd function, the manipulation in the second line of
Equation (2.19) is required to make the expression involving sinh(hd,) even.

The unnormalized sinc function is defined as

sine(z) = S2), (2.20)

which will appear frequently in the rest of the thesis.

¥ [ ]
12 ffj == T



u_1\ J Up Uuq

h 0xUo

Figure 2.1: 1D stencil for a homogeneous medium

Using the 1D shifting operator, a nodal value that is separated by distance

h can be written analytically as
u(h) = exp(hdz)ug
= (cos(kh) + sinc(kh)h0y)ug (2.21)
= cos(kh)ug + sinc(kh)hozug

where ug is a nodal value of the solution at z = 0 and 0,ug is the first derivative

at z = 0. Substituting A — +h into Equation (2.21) gives

uy = u(h) = cos(kh)ug + sinc(kh)hdzuy, (2.22)

u_1 := u(—h) = cos(kh)ug — sinc(kh)hozuo. (2.23)

Summation of Equation (2.22) and (2.23) results in cancellation of the first

derivative term and it gives a finite difference expression
u_1 +up = 2cos(kh)ug, (2.24)

which consists only of three local nodal points (Figure 2.1). Equation (2.24) can
be solved by a tri-diagonal matrix system with proper boundary conditions.
Equation (2.24) is equivalent to Equation (2.17) in the previous section. This
derivation can be applied to obtain a finite difference method for 1D piecewise-

constant heterogeneous media (Appendix A).

]
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Note that Equation (2.21) can also be obtained from the general solution
form

u(z) = Acos(kzx) + Bsin(kz), (2.25)

1
where A = ug and B = %@Euo. cos(kz) and sin(kx) are the analytic basis

functions of the 1D Helmholtz equation (Equation (2.13)).

2.3 2D Compact Finite Difference Methods

In this section, we develop compact finite difference methods for the 2D Helmholtz

equation. Although we are tempted to extend the error-free approach of the 1D
problems, there is no way to completely remove the truncation error in the
2D problem. Nevertheless, we try to maximally utilize the local analytic basis
functions by combining neighbor nodal points as in the 1D problem.

A neighbor value of the 2D solution can be expressed in the polar coordinates

(r,0) by the 2D shifting operator as follows
u(r, ) = exp(r cos(0)d, + rsin(6)9y)uo 0, (2.26)

where ug is a local reference nodal value at » = 0 to simplify the following
derivation. To manipulate the 2D shifting operator, we can utilize the Jacobi-

Anger expansion

exp(iz cos(f)) = Z i T (2)e™?
L (2.27)
= Jo(z) +2 Z i" Jn(z) cos(nd),
n=1

where J,,(2) is the n-th order Bessel function of the first kind.

-1] 3
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By using the Jacobi-Anger expansion, the 2D shifting operator can be ex-

panded as

exp(r cos(6)0, + rsin(0)dy)

—exp <z‘kzr (cos(H)fZ + sin(9)?li>>

=exp(ikr cos( — ) (2.28)

=Jo(kr) +2) i Jn(kr) cos(n(0 — 1))

n=1

=Jo(kr) + 2 Z i" Jy (k1) (cos(nb) cos(nip) + sin(nd) sin(ny)),

n=1

where cos 1) = 0, /ik and siny = 9, /ik. Also, the trigonometric identity cos(x—

y) = cosxcosy + sinx siny was used twice. We can check that

2 2
cos? 1 + sin? ¢ = <?z> + (ii)
o Ca (2.29)
=1
by using the operator relation —k2—92 —65 = 0 from the 2D Helmholtz equation

without the source function f.

Plugging Equation (2.28) into Equation (2.26) gives

u(r, ) = Jo(kr)ugo + 2 Z i" Jy (kr)(cos(nf) cos(ni) + sin(nf) sin(ny) )uo,o

n=1
= Jo(kr)ug,o + Z Jn(kr) (Ay, cos(n) + By, sin(nd)),
n=1
(2.30)
where A, = 2i" cos(ny)ugo and B,, = 2i" sin(ny)ugp. The Bessel functions

with the trigonometric functions in the series are called generalized harmonic

polynomials.
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Note that seperation of variables in the polar coordinates (r,6) gives the

general solution of the 2D Helmholtz equation in the form of

u(r,0) = Z (Jn(kr) + CLY,(kr))(Ay, cos(nf) + By, sin(nd)), (2.31)

n=0

where Y,,(2) the n-th order Bessel function of the second kind, which has the
logarithmic singularity at z = 0, whereas the 2D shifting operator version does
not contain Y, (kr).

Equation (2.30) is a main building block to construct the finite difference

methods in the following sections.

2.3.1 5-Point Method

The coefficients A,, and B,, in Equation (2.30) can be partly removed by using
combination of neighbor nodal points. By setting § — 6 + 7 in Equation (2.30),

the expansion of the analytic basis functions becomes

u(r,0 4+ m) = Jo(kr)ug,o + Z Jn(kr)(=1)" (A, cos(nf) + By sin(nh)). (2.32)

n=1

Because of the alternating sign (—1)" in the summation, we can eliminate some

A, and B, when n is odd. Adding Equation (2.30) and Equation (2.32) gives

u(r,0) +u(r,0 +m) =
o (2.33)
2Jo(kr)uo 0+2 Z Jon (k) (Agy cos(2nb) + Bay, sin(2nf)).

n=1
Similarly, we set § — 0 + g in Equation (2.33) to obtain

3T

u(r,€+g)+u(r,9+?) =

200 (kr)uo,0+2 Y _ Jon(kr)(—1)"(Azn cos(2n6) + By, sin(2nb))
n=1

(2.34)
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Figure 2.2: Neighbor nodal points centered at ug o

Adding Equation (2.33) and Equation (2.34) results in

u(r,@)+u(r,0+g)—i—u(r,@—i—ﬂ)—i-u(r,@—k3%):

A4Jo(kr)ugo + 4 Z Jan (k1) (Agy cos(4nb) + By, sin(4nd)).
n=1
(2.35)
Setting r = h and 6 = 0, we rewrite the nodal values in the polar coordinates

with subscripts that denote relative Cartesian coordinates to the reference node

uo,0 as shown in Figure 2.2. Then, we drop the summation part to form a 5-point

stencil expression

u1,0 +uo,1 +u—1,0+ Up,—1 = 4J0(k:h)u070, (2.36)

which has second order of accuracy incurred from the truncation. Equation (2.36)

can be cast into the finite difference form

4 —4Jy(kh
—hzo()uox) — (62 + 05)uo0 =0, (2.37)
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using the following relation
u1,0+ uo,1 +u—1,0+ Up,—1 = (h2(592c + (55) + 4)UO70. (2.38)

The limit of the term containing the Bessel function approaches to k? as follows

4-4
lim 4= 4J0(kh)

= k2 2.
h—0 h2 ( 39)

from the Taylor series expansion

s (W) (kD) (kR

4 = 4Jo(kh) = (kh)” — ==+ ~o = — oo

TR (2.40)

The Bessel function need not be evaluated exactly. Evaluating the series up to
6th or 8th order gives nearly identical dispersion curves (Figure 2.3(b)) to those
of the exact Bessel function in the kh interval [0, 7].

Note that Equation (2.36) is equivalent to Nehrbass et al. (1998)’s 5-point
2D finite difference method, which is better than the naive finite difference
method in terms of the numerical dispersion error. Figure 2.3(a) and Fig-
ure 2.3(b) show their dispersion characteristics. The phase error (kh — kh)/2m
should be close to zero along the horizontal axis 1/G. More detailed explanation

for the dispersion error will be given in Chapter 3.
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(a) Dispersion error curves for the naive second order FDM.
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(b) Dispersion error curves for Nehrbass et al. (1998)’s second order
FDM. The curves are closer to zero and more balanced than those of

the nalve second order FDM.

Figure 2.3: Dispersion error curves for the naive second order FDM and
Nehrbass et al. (1998)’s second order FDM. Closer to zero is better. The ver-
tical axis means the phase difference error when the wave propagates distance
h. G is the number of grids per wavelength.
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2.3.2 9-Point Method

We proceed to further remove the truncation error by employing more neighbor

nodal points. Plugging r — v/2r and 6 — 6 + % into Equation (2.35) gives
T 3T 5T T
u(vV2r,0 + Z) +u(V2r,0 + Z) + u(V2r,0 + Z) +u(V2r,0 + Z) =

4Jo(V2kr)ugo + 4> Jun(V2ZEr)(—1)"(Aun cos(4nf) + Buy sin(4n)).
n=1
(2.41)
Summation of Equation (2.35) and Equation (2.41) with the weight 1/J4(kr)

and 1/.J4(v/2kr) gives

1 <u(r, 9)+U(T,9+;)+U(T,9+7r)+u(r,9+%)> +

Ja(kr) :
iy (V20 a0+ 5D - ur 0 T 40+ 7)) =
(S S
472 (?:((::)) * (_1)71%) (Aun cos(4nB) + By sin(4nh)),

(2.42)

where the summation begins from n = 2 because of the elimination when n = 1.
With r = h, § = 0, we truncate the summation part to obtain the following

expression

Jy(kh) (g +u—11+u_1-1+ui 1)

Adokh) | 4Jo(v2kh)
Takh) " I(v2kn) )
(2.43)

(ul,o + up,1 + u—1,0 + U()7_1) +

1
Jo(v/2kh)

Although Equation (2.43) can be implemented in its form as is, we further

manipulate it by using the finite difference operators d, and 4, to easily imple-

7 ) 1]
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ment the Perfectly Matched Layer (PML) in the discrete level. The derivation
of the discrete PML is shown in Appendix B. To include the finite difference

operators, we use the following relations

U104+ upa +u—10+ug—1 = (h*(62 + 5@2,) + 4)uo 0,
(2.44)

urg u_1g +u_11+ui 1= (2h*(63 +5,) + h* 6267 + 4)up.
Inserting Equation (2.44) into Equation (2.43) and rearranging the resulting

equation, we obtain the follwing finite difference expression

1 (4—4Jo(kh) 4 —4Jy(V2kh) < 1 2 ) 5 o
—— + — - 62+90
h2< Ja(kh) avarny )"0 \Tamy t givarny ) O 0o
1
—————h2526%ug o = 0.
Ta(v2kh) eoet00

(2.45)

By multiplying the inverse of the coefficient of (62 + 5;), the final form is reor-

ganized as
_Lgi(z];m“ovo = (02 + 83 uo,0 — h* Mo (kh)5705u0,0 = 0, (2.46)
where
b = <J4<1’ﬁh> ' J4<¢2§kh)>_l (4 _Jjé]gh) +: _Jj{\(]/(iﬁ?h)> !
My(kh) = (J‘f,(;(/,f}’f)”) ' 2) 7

(2.47)
Directly evaluating the several Bessel functions would cause significant numer-

ical overheads. Lg(kh) and Mg(kh) can be expressed as Taylor series
kn)*  (kh)®  13(kh)®  (kh)!© 13(kh)'2
e e ) _
o(kh) = (kh) 12 + 360 276480 * 2073600 3715891200 ’
1 (kh)?  (kR)*  (kh)® (kh)®
My(kh) = — e
a(kh) 6 180 + 8640 + 518400 + 464486400

(2.48)
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Although the truncation error of Equation (2.46) is O(h%), the minimum orders
that should be evaluated for Lg(kh) and My(kh) are 10 and 6, respectively.
Otherwise, the dispersion characteristic deteriorates. As in the 5-point case,
the numerical error can get lowered by computing the higher order terms than
6th order even if the equation has O(h®) error. Lg(kh) and Myg(kh) can be
efficiently evaluated by the Horner’s rule (Horner, 1819). Note that one might
use the Chebyshev polynomial T},(z) with the Clenshaw’s three term recurrence
formula (Clenshaw, 1955) to approximate Lg(kh) and My(kh) for minimizing
maximal pointwise error (the minimax property of the Chebyshev polynomial),
although there would be nonvanishing error when kh — 0, if the order of the
Chebyshev polynomials is not high enough.

Some 6th order methods (Singer and Turkel, 2006; Sutmann, 2007; Nabavi

et al., 2007) give the truncated series

L (kh) = (kh)? —

1 (kh)?
Men(kh) = 6t (18()) ,

which are equivalent to the low order terms in Equation (2.48). The dispersion
characteristic of the 6th order method will be compared with our method later
in Chapter 3.

We may slightly modify Equation (2.46) to

_ Lo(kh)

TUQO - (533 + 55)11070 — h25$6yM9(kh)5x5yu070 =0, (250)

which would be helpful for efficient numerical implementation due to symmetry

of the resulting discretization when the equation is applied to heterogeneous
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media and the PML (Appendix B), although the 9-point method was derived

on the homogeneity assumption.

2.4 3D Compact Finite Difference Methods

The solution of the 3D Helmholtz equation can be expanded with the analytic
basis functions as follows

00 l
u(r,@, ¢) = Z Z Clmjl(kr)yim(gﬂ ¢)

=0 m=-—1

9] l
2 2 . [ —m)! m im
= Clmjl(k‘r) El—i—m;'Pl (COS@)e ¢’
1=0 m=—I ’

where j;(z) is the I-th order spherical Bessel function of the first kind, Y;"(6, ¢)

(2.51)

is the spherical harmonic function, and P/"(2) is the associated Legendre func-
tion. The polar angle # and the azimuthal angle ¢ in the spherical coordinates
are restricted to the intervals [0, 7] and [0,27), respectively. Also, Cj,, is an
unknown coefficient to be eliminated by the combination of the neighbor nodal
points to obtain higher-order expressions as we conducted in the 2D cases. The
analytic function expression can be derived by applying the plane wave ex-
pansion of the spherical wave to the 3D shifting operator as the Jacobi-Anger
expansion is used in the 2D case. Or simply, we can use the general solution
without the spherical Bessel function of the second kind y;(kr).

Because the derivation of the 3D finite difference methods is somewhat
lengthy, so we suggest three basic building blocks to ease the derivation of the

3D finite difference methods as follows:

6-Point Summation

-1
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This is a summation of the six nodes with distance h from the reference

node ug o at r = 0. The participating nodes are displayed in Figure 2.4(a).

u1,0,0 + %-1,0,0 + %0,1,0 + %0,—1,0 + %0,0,1 + %0,0,—1

) . 7 1 /35
= 6jo(kh)uo0,0+ja(kh) (2040 +5\ 5 (Ca-at O44)> (2.52)

+3j6(kh) (icﬁo - i\/Z(CG,4 + C64)> + O(h®).

12-Point Summation
This is a summation of the twelve nodes whose distance is v/2h from the

center node ug 0. The participating nodes are displayed in Figure 2.4(b).

u1,1,0 + U-1,—-1,0tU1,-1,0 + U-1,1,0
+uo0,1,1 + U0,—1,—1+U0,1,—1 + U0,—1,1

+u1,0,1 + U-1,0—1F+U—-1,0,1 + U1,0,—1

. . 7 1 /35
= 12j0(V2kh)ug 0,0+ ja(V2kh) (—4040 1V ?(04,—4 + C'44)>

. 39 39 /7
+36(V/2kh) (—16060 + 16 5(06,—4 + 064)) +0(h®)

(2.53)

8-Point Summation

This is a summation of the eight nodes whose distance is v/3h from the
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(a) 6-point (b) 12-point (c) 8-point

Figure 2.4: Three basic nodal summations in the 27-point compact stencil

center node ug 0. The participating nodes are displayed in Figure 2.4(c).

U1+ U—1,-1,-1F U1 F U111

+uy,—11tu—11-1+ur—1,-1+u-1171

. . 28 2
= 8j0(V/3kh)ug 0.0+ja(V3kh) <—9040 - §\/%(C4,—4 + C44)>

+j6(V3kh) <196060 - g\/ﬂ(cﬁ,—zl + 064)) + O(h®)
(2.54)

By combining the three building blocks, we derive several compact finite

difference methods in the following sections.
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2.4.1 7-Point Method

If we use only the 6-point summation, it gives the 7-point stencil (including the
center node u ) method equivalent to Nehrbass et al. (1998)’s work. Using

the following relation

u1,0,0 + %-1,0,0 + %0,1,0 + %0,—1,0 + %0,0,1 + %0,0,—1

(2.55)
= (h*(62 + 62 + 6%) + 6)uo,0,0,
Equation (2.52) can be expressed as a finite difference form
6 — 6jo(kh
_f?()UO,O,O — (03 + 0 + 02)ug 00 = 0, (2.56)

which has second order of accuracy. Its numerical dispersion characteristic is
better than the naive second order finite difference method (Equation (2.11)),
although the accuracy is not enough in the range of high wavenumber k. The

function (6 — 6jo(kh)) has the following series expansion

OGO

6 — 6jolkh) = (kh)" — 20—+ ~o10- ~ 0480

T (2.57)

2.4.2 19-Point Method
By combining the 6-point and 12-point summations with appropriate weighting,
a 4th order method using the 19-point stencil can be obtained as follows
Avg(kh)(u1,0,0 + u—1,0,0 + u0,1,0 + ©0,—1,0 + ©0,0,1 + %0,0,—1)
+Big(kh)(u1,1,0 +u—1,-1,0 + ¥1,-1,0 + U—1,1,0
+uo,1,1 + uo,—1,—1 + Up,1,—1 + Up,—1,1 (2.58)
+ui01 +u—10-1+u-101+u,0-1)

= D1g(kh)uo 0,0,
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where
Asg(kh) = ja(V2kh)
Big(kh) = 2j4(kh) (2.59)

Dig(kh) = 6jo(kh) A1g(kh) + 12;o(V2kh) Big(kh).

Using Equation (2.55) and the following relation

U11,0 +U-1,-1,0+U1,—1,0 T U-1,1,0
+uo0,1,1 + U0,—1,—1+U0,1,—1 + U0,—1,1
(2.60)

+u1,0,1 +U-1,0-1FTU-1,01 1+ U1,0,—1

= (4h°(02 + 0,402) + h* (8267 + 6262 + 6262) + 12)uo 0,0,

Equation (2.58) becomes

Lyg(kh
_19h(2)uO70’0 — ((Sg + (5; + 52)’[1,07070 — hQMlg(kh)((Si(;Z + (5;52 + 5§5g)u0,070 =0,
(2.61)
where
Lyo(kh) = SA19(kh) + 12B19(kh) — Do (kh)
1 Ajg(kh) 4 4B19(kh) ’
Buo(kh) (2.62)
Mig(kh) = 1o

= Ayg(kh) + 4Byg(kh)’

As in the 2D 9-point case, Lig(kh) and Mi9(kh) are approximated by the Taylor

series expansions

kR)*  17(kh)®  3373(kh)®  8447(kh)!°
L = 2_( —
19(kh) = (kh) 12 T Th514 57081024 ' 13454812800 ’
1 (kh)?  5(kh)*  43(kh)®
Myo(kh) = = -
10(kh) = &+ 306 T 670536 ~ 224246880

(2.63)
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2.4.3 27-Point Method

We employ all the three summations to eliminate all the coefficients (Cyo, Céo,

04,_4, 044, 667_4 and 064) as follows

Aoz(kh)(u1,0,0 + u—1,0,0 + uo,1,0 + uo,—1,0 + 0,01 + %0,0—1)
+Bor(kh)(u1,1,0 + u—1,-1,0 + u1,—1,0 + U—1,1,0
+uo0,1,1 + Uo,—1,—1 + Uo,1,—1 + U0,—1,1
+ui01+u—10-1+u-101+u,0-1) (2.64)
+Cor(kh)(u1 11 +u—1-1-1+ui1-1+u-1-11
+up 11+ u—11,-1+u,—1,-1+u-11,1)
=Da7(kh)uo,0,0,

where

Aoz (kh) = 31254(V/3kh)js(V2kh) + 128;4(V2kh)j6(v/3kh)
Byr(kh) = 96j4(V/3kh)js(kh) + 25654 (kh)je(V3kh)
Cor(kh) = 35154 (kh)je(v2kh) — 54j4(V/2kh)js(kh)

Doz (kh) = 6jjo(kh)Agz(kh) + 12jo(V/2kh) Bar (kh) + 8jo(v/3kh)Car (kh).
(2.65)

The weighting function Ca7(kh) is irrelavent to the coefficient Cj,,. Using Equa-
tion (2.55) and Equation (2.60) and the following relation
U111 FU—1,-1,-1 tU,1,—1 +uU-1-1.1
+uy,—11tu—11,-1+ur—1,-1+u-11,

= (4h*(67 + 0,4062) + 2h* (636, + 6702 + 6202) + h0626,67 + 8)uo,0,0,
(2.66)
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Equation (2.64) becomes the 27-point finite difference expression

Loz (kh
- 2711(2 )uo,o,o — (024 6, + 62)u0,0,0 — B> Moz (kh) (6207 + 0262 + 6202)u0,0,0

—h* Noz(kh) 626262 u0,00 = 0,

%Yz
(2.67)
where
Loty — A2z + 128 (k1) + SCanllh) — D (k)
o7 Ao7(kh) + 4Bar(kh) + 4Ca7(kh)
Boz7(kh) + 2C57(kh)
Ms7(kh) = 2.68
21(kh) Aqr(kh) + 4Ba7(kh) + 4Co7 (kh) (2.68)
Co7(kh)
Nor(kh) = .
21(kh) Aqgz(kh) + 4Byz(kh) + ACq7(kh)
Equation (2.67) can be slightly modified to
Lo7(kh
—27h(2)U(]70’0 — ((53 + (5; + (53)’&070,0 — h25w5yM27(/€h)5x5yuO’0,0
—h25 5ZM27(k‘h)5 57;“0,0,0
! ! (2.69)

—h25,8, Moz (kh)S,0,u0,0.0
—h*620y6- Naz (kh)6.0,6-u0,0,0 = 0,

which can be used to include the discrete Perfectly Matched Layer symmet-

rically (Appendix B) and mild heterogeneity, although the order of accuracy

decreases to first order due to the interface error.

The Taylor series of Loz(kh), Ma7(kh) and Na7(kh) are given as

(kh)*  (kR)®  (kh)®  1273(kh)'° 5749 (kh)!?
Lar(kh) = (kh)* — 12 77360 22464 | 3150576000 1867661452800
_ 1 (kh)? N (kh)* N 11(kh)8 N 4021(kh)®
6 ' 180 ' 9360 ' 7956000 = 424468512000 ’
(kh)? 127(kh)4+ 158(kh)" N 39360019(kh)®
30 ' 540 | 2237625 | 127544625 ' 1894190734300000 ('2"76)
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The low order terms of these series match with the series of Sutmann (2007)’s

6th order method as follows

kh)* kh)®
Lo (kh) = (kn? — 1T (ED
1 (kh)?
Mgin (kh) = 6 + (18()) ; (2.71)
1
Netn(kh) = 30"

2.5 Source Amplitude Correction Functions

The amplitude mismatch between the discrete and analytic solutions for the
impulse source is quite significant especially when a naive implementation of
the impulse source is used in the extended wavenumber range, thus correction
for the amplitude mismatch must be considered. We only deal with the impulse
source in this thesis. For smoothly distributed sources, see 6th order compact fi-
nite difference methods (Singer and Turkel, 2006; Sutmann, 2007; Nabavi et al.,

2007).

2.5.1 1D Source Amplitude Correction Function

In Section 2.2.1, we determined the 1D discrete Helmholtz operator (Equa-
tion (2.15)) without the source function f. To consider a set of impulse sources

(the Dirac delta distribution) in the discrete framework, we manipulate the

1 [ ]
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continuous Helmholtz equation with the discrete Helmholtz operator as follows

(=k* = 3p)u = f
u=(-k-)7f
= [(=k* = 02) " flm
(_2 - 2;(2>s(k:h) B 52) w = <_2 - 2;(2)8(/{]1) B 55) (k2 — 02) 1 ],
(2.72)
where the subscript m means a discrete sampling operation from a continuous
function (e.g. uy, = u(xy,)).

Equation (2.72) is a formal expression that requires an exact solution (—k%—

02)~1 f. Fortunately in the 1D problem, a discrete source function that generates
the exact solution for series of the Dirac delta functions f(x) =), yé(z — ;)
exists. a; is a strength for the Dirac delta function at x = z;. We assume
that the source location x; is exactly on the discrete sampled nodes, although
impulse sources at arbitrary locations (e.g. between two sampled nodes) are not

difficult to consider.

If the imaginary part of k is positive (Imk > 0), the analytic solution for

the series of impulse sources is expressed as

(~k* =37 f = 3 5 explikle — @i, (2.73)
l

which is a weighted summation of Green’s functions (impulse responses) for

the 1D Helmholtz equation. Then, the right hand side of the fourth line of

" 2] -2-t)) 8} 3
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Equation (2.72) becomes

(- QZSS(kh) -2 [ - )

2 2 (kh '
_ < COS ) 52) Z i exp<’Lk|.%'m - xl‘)al
!

2k
(2.74)
Z sinc(kh) 5lm
1
— sinc(kh) 2™
sinc(kh) o
where d;,,, is the Kronecker delta function defined as
0 ifl#m,
Otm = (2.75)
1 ifl=m
Using Equation (2.74), Equation (2.72) becomes
2—-2 m
Z(f(kh)um ) - sinc(kh)%, (2.76)

which is able to produce the exact solution from the series of impulse sources.

We set m = 0 for simplicity as follows

2 —2cos(kh)

2 uy — 02ugp = sinc(k‘h)%

. 2.77
: (277
The sinc(kh) function may be thought of as a correction term for the finite

volume approximation of the Dirac delta function

To+75
/ apd(x — xp) dx
(67s) T

h
o—2

- = — , (2.78)
2
/ dx
xro—

which is an average of the source term within a grid cell whose size is h.

(SIS

Figure 2.5 shows the sinc(kh) function. If we conduct a 1D simulation with
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sinc(kh)
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Figure 2.5: The unnormalized sinc function

kh = m/2 (the number of grids per wavelength G = 2w/kh = 4), then the
sinc function has the value about 0.637. If we use only the naive finite volume
approximation of the source term (Equation (2.78)) without sinc(kh), the am-
plitude of the numerical solution would have 1/0.637 = 1.57 times as large as

the amplitude of the analytic solution.

2.5.2 2D Source Amplitude Correction Functions

The source amplitude correction is essential also for 2D. As we derived the
source amplitude correction term sinc(kh) for the 1D problem in Section 2.5.1,
we apply the discrete Helmholtz operator to the analytic solution with the

source f as follows

Lo(kh
(—9;)—®%ﬂ@—mmﬂmﬁﬁ>wp:

(221 — 52+ 8 — a2 ) (47 — 02— 027 1]
(2.79)
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The right hand side of Equation (2.79) is a discrete source term that produces
a numerical solution that exactly matches with the analytic solution.

When Im k£ > 0, we know that the impulse response (Green’s function) for
f(z,y) = apod(x — zo,y — yo) is expressed as the Oth order Hankel function of
the first kind

(—k? = 92 = 02)7" f = 2 H{" (kr)ago, (2.80)

where 7 = /(z — 20)2 + (y — y0)? and H(gl)(z) = Jo(z)+1Yp(2). Then, the right

hand side of Equation (2.79) is expressed as

Lo(kh i
(—E2 - @ i) — a2} ) |1 (hrona] s

However, the Hankel function has the logarithmic singularity at » = 0, so the
computation with the discrete Helmholtz operator does not give an expression
with a finite value. Thus, we replace the value at r = 0 with the value at

r = he > 0. Equation (2.81) becomes

Lo(kh i
<— o )—(5g+5§>_h2M9<kh)aga;) [4H(gl)(k7“)01070}

0,0

~ %‘Lﬂkh)Hél)(kh@ — (4HS" (kh)—4HS" (khe)) (2.82)

«
— My (kh)(AH" (V2kh) — 8HV (kh) + AH" (khe))) 132’0

with the finite volume approximation of the 2D impulse source given as

yot+5  pzot+d
/ / a0,00(x — 0,y — yo) dz dy
apo  Jyo—% Jzo—%
h2

0—3
yo+% w0+%
/ dz dy
zo—1

h
Yo—3

, (2.83)

thus, the source amplitude correction function Fy(kh) for the 9-point case is
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given as

Fo(kh) = %(—Lg(kh)Hél)(khe) — (4HY (kh) — 4HV (khe))
(2.84)

— My(kh)(AH (V2kh) — 8HY (kh) + 4HSY (khe))).
Here, we need to impose a condition for the source correction function to de-
termine e. The source correction function should be 1 with kh — 0 as with

sinc(kh). The requirement can be met by computing € with the limit

. log2 — 10loge
lim Fy(kh) = ——F— =" =1 2.
k}%fo o(kh) 67 ’ (2.85)

thus € = exp((log2 — 67)/10) ~ 0.1627. Because we fully determined Fy(kh),

the 9-point discrete Helmholtz equation with the impulse source can be approx-

imated as
Lo(kh Q0,0
BB o (82 4 2o — HM(kR)2200 = Fo(km) 200, (2.86)
or
Lo(kh o
— 922 )uo,o — (82 + 62)uo,0 — 26,6, Mo (kh)d,6,u00 = F(kh) ]32;0, (2.87)

which comes from the symmetric modification (Equation (2.50)).

The introduction of € is not just simple approximation. Because the numeri-
cal solution obtained from the impulse source cannot embed the true singularity
of the Hankel function at r = 0, so it should give a finite value at r = 0. € has a
role in removing the singularity in the numerical solution and it approximately
predicts the finite value at the singularity. In Chapter 3, we can verify that the

numerical solution at the singularity » = 0 for the unit impulse source is given

as ﬁHél)(khe).
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Although the source amplitude correction is not essential for the 5-point
method in Section 2.3.1 because of the limited wavenumber range, the source

amplitude correction function for the 5-point method can be obtained as follows

4 — 4Jo(kh i
(5100 ) 0]
0,0 (2.88)
. 1 1 Q0,0
~ i(Jo(kh)HSY (khe) — HY (k1)) o
and
. RT . (1) B (1) o _210g€ o 2.89
kléf_l)loFg,(kh) _klégoz(Jg(kh)Ho (khe) — Hy” (kh)) = — =1 (2.89)

which gives € = exp(—m/2) ~ 0.2079.

F5(kh) and Fy(kh) are shown in Figure 2.6. We can see that the imaginary
parts of F5(kh) and Fy(kh) are relatively small, and Fy(kh) is quite similar to
sinc(kh).

We may compute the series expansion of Fy(kh) as a correction term instead
of directly evaluating Fy(kh), because Fy(kh) contains the Hankel functions,
which may be cumbersome to numerically evaluate. The series is approximated

as
Fy(kh) ~1— 0.163691940555019(k‘h)2 + 0.008941056176803205(k:h)4

— 0.0002831009275904193(kh)® + 7.233616285328642 x 10~ %(kh)®

— 1.2750088335092805 x 10~ (kh)™©.
(2.90)

The series approximation originally contains imaginary coefficients and log
terms, but they are ignored because of their small contribution as shown in

Figure 2.6(b). This series approximation can be efficiently computed by the
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Horner’s rule (Horner, 1819). Figure 2.7 shows that the series expression matches

quite well with Re(Fy(kh)).
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sinc(kh)
— — — Re(Fs(kh))
........ Im(Fs(kh))

(a) The real and imaginary parts of the source correction function

F5(kh).
1.0
0.8f
osl sinc(kh)
i — — = Re(Fy(kh))
ALY Im(Fgy(kh))

0.2+

(b) The real and imaginary parts of the source correction function

Fy(kh). Fo(kh) is quite similar to sinc(kh).

Figure 2.6: Source amplitude correction functions for the 2D impulse source.

——— Series
— — = Re(Fy(kh))

kh

3n
4

RS
RS

Figure 2.7: The series approximation of Fy(kh). The imaginary coefficients and

log terms are omitted in the series approximation.
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2.5.3 3D Source Amplitude Correction Functions

The source amplitude correction function for the 3D 7-point method is com-
puted first. The 3D analytic solution for the source f(x,y,2) = g,0,00(z —
x0,Y — Yo, 2 — 20) i given as

ikr

1292 _ 92 _g2y-1p_ €
(k2= 02— ) f =

00,0,0, (2.91)

where 7 = \/(z — 20)2 + (y — y0)2 + (2 — 20)2. The singularity at r = 0 can be

avoided by replacing the value at r = 0 with the value at r = he > 0 as follows

o ikr
(_Gﬁﬂﬂ(kh) _ (5§+5§+6§)> [e 060,0,0}

h? A7y 0.0.0
_ _6 o 6j0(/{7h) eikhe B E @ B eikhe N (2.92)
h?2 Adwrhe h2 \4wh Arhe 0,0,0

6 1 ikhe ikh \ ©0,0,0
S kh) — e*h ) =22
47_(_ <6e .]0( ) € h3

with the finite volume approximation of the impulse source

Zo+% Yotz x0+%
/ / / @0,000(T — To,y — Yo,z — 20) dz dy dz
0,00 _ Jz0-% Jyo—§ Jwo—§
h3 '

/Z(H-Z
sy

2

(2.93)

Thus, the source correction function for the 7-point method can be expressed

as
3 (1 . . )
Fr;(kh) = or ( exp(ikhe)jo(kh) — exp(zk‘h)) . (2.94)
T\ €
The limit of F7(kh) has the following expression

3 — 3e
lim F-(kh) = =1 2.
Jim Fir(kh) ’ (2.95)

2me

20 A L) ¢



thus e = 3/(3 + 27) ~ 0.3232.

We can also apply the singularity removal process to the 19-point case.

Liotkh) _ (52 1 52 4 52) _ 120y (ki) (5262 + 626 + 6262) ) [
_T_(:c—i_ y+ z)_ 19( )(my+ yz+ zac) 47‘('7“060’070
0,0,0
pikhe oikh  gikhe
~| — Lig(kh -6 —
( 19(kh) 4me ( 4 4me )
24 ikh 12 iv2kh 12 ikhe
— Mug(kh) [ - g 22 25 2000
47 472 47re h
(2.96)
Thus, the source correction function for the 19-point case is defined as
eikhe ezkh eikhe
Fi9(kh) = — Lig(kh — —
1o(kh) 10(kh) 4me 0 ( 4 4me >
. . . 2.97
Y (kh) _24ezkh N 1261\/5]611 N 1261khe ( )
19 A7 47+/2 47e ’
and the limit of Fi9(kh) has the following form
. 4—(2+ \/§)€
lim Fig(kh) = ——— =1 2.
Khos0 19(kh) dme ' (2.98)

thus € = 4/(2 + V2 4 4m) ~ 0.2503.

Also, we apply the singularity removal process to the 27-point case as follows

< _ Lalkh) (02 + 62 + 62)
T Y z

h2

ikr
— 12 Moy (kh) (6262 + 6267 + 6262) — h* Noy (kh)526257 ) [eao,op}

ryeE 4dmr

0,0,0
pikhe cikh  cikhe
~ | — Lo7(kh —6 —
< 21(kh) dme < 4 dme >
24¢ikh 1262\/§kh 19¢tkhe
— Moz (kh) | —
27(kh) ( 47 * 47/2 * e
B N27(k=h) 24¢ikh B 24ei\/§kh N Seiﬁkh B Qetkhe 0,00
47 47r\/§ 47‘(\/5 47e h3
(2.99)
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The source amplitude correction function for the 27-point case is expressed

as

e 4t 4re

eikhe eikh e’ikhc
Far(kh) = — Lag(kh) 6 ( )

24 etkh 126i\/§kh 192¢tkhe
— Mo7(kh) | —
27(kh) ( pra iy B . (2.100)
24eikh  94eiV2kh  QiV3kh  gikhe
~ Nos(kh) et 24e L 8e _ 8e ,
A7 47\/2 473 d7e
and the limit of Fy7(kh) has the following expression
. 192 — (126 + 27v/2 + 4v/3)e
lim For(kh) = =1 2.101
o, For (kh) 1807e ! (2.101)

thus € = 192/(126 4 27v/2 4+ 4+/3 4+ 1807) ~ 0.2607. Then, the 27-point discrete

expression with the impulse source can be expressed as

Loz (kh
_22(2)“0,0,0 — (62 + 05 + 62)u0,00 — h*6,0, Mag (kh)3,8,u0,0,0
—h28,6, M7 (kh)d,0,u0,0,0
v Y (2.102)
—h25z5xM27(kh)5z5xU0,0,0
a
— 16,60, Noz(kh)6.:6,6,u0,00 = F27(kh)%,

which comes from the symmetric modification Equation (2.69).
All the source amplitude correction functions for the 3D cases are shown in

Figure 2.8.
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sinc(kh)
— = = Re(F7(kh))
Im(F7(kh))

(a) The real and imaginary parts of the source correction function

F;(kh) for the 7-point method

1.0
0.8
0.6
0.4

0.2

sinc(kh)
— — — Re(Fig(kh))
Im(Fg(kh))

(b) The real and imaginary parts of the source correction function

Fig(kh) for the 19-point method. Fig(kh) is quite similar to sinc(kh).

1.0

0.8

0.6

0.4

0.2

sinc(kh)
— — = Re(Fzr(kh))
Im(F27(kh))

(¢) The real and imaginary parts of the source correction func-

tion Fa7(kh) for the 27-point method. Fa7(kh) slightly deviates from

sinc(kh) when kh becomes large.

Figure 2.8: The source amplitude correction functions for the 3D impulse source.
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——— Series
— — = Re(Fz7(kh))

Py = kh

4 s

N
NN

Figure 2.9: The series expression of Fy7(kh). It matches well with Re(Fy7(kh)).

To avoid numerical evaluation of the several complex exponential functions

and the spherical Bessel functions in Fy7(kh), we use the following series ex-

pression

For(kh) ~ 1 — 0.1629235349294909(kh)? + 0.010029553652376767 (kh)*
— 0.0004383253850535262(kh)° + 0.000016842113455513565(kh)®

— 4.0663798991259547 x 10~ 7 (kh)™,
(2.103)

which can be efficiently evaluated by the Horner’s rule (Horner, 1819). Although
Fy;(kh) contains odd power terms with complex coefficients, they are omitted
because of their small contribution as we can see the imaginary part of Fyr(kh)

in Figure 2.8(c). Figure 2.9 shows that Fa7(kh) and the series are matched well.
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Chapter 3

Dispersion Analysis and
Numerical Experiments

We examine the accuracy of each finite difference method by means of the
plane wave analysis. It is also shown that the proposed methods with the source
amplitude correction functions give correct discrete impulse responses matched
with the analytic impulse responses. Then, 2D seismic wave propagation in

heterogeneous media is briefly examined with the proposed methods.

3.1 Plane Wave Analysis

3.1.1 2D Dispersion Curves

The dispersion characteristic for each finite difference method can be analyzed
by the plane wave analysis. If we assume that the numerical solution is a plane

wave ansatz u(x,y) = exp(ik(cos(f)x + sin(f)y)) with the numerical wavenum-
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h: travel distance

exp(ikh): actual phase change
exp(ikh): numerical phase change

kh — kh: phase difference in radian

(kh — kh)/2m: phase difference in cycle

Figure 3.1: A schematic for describing the phase difference when the wave travels

distance h with the propagation angle 6

ber k, then we obtain d,u = ik cos(@)u and d,u = iksin(@)u. The angle § for
the plane wave direction goes from the positive z-axis to the positive y-axis.
For the plane wave solution u, the second order finite difference operators can

be written as

~ 2cosh(0;h) — 2

2
oz 72
= —2 COS(k]:Lth) _ 2’LL’ (31)
2 cos(kyh) — 2
2, _ y
e P

where k,h = khcos(0) and k,h = khsin(f). Using these relations, we can
rewrite finite difference equations with the numerical dispersion relation in
terms of kh and kh. We will treat the dimensionless quantity kh as a whole. It
also applies to kh.

Using the plane wave assumption, we compare our proposed scheme with

the previous works introduced in Chapter 1 as follows:
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Naive 2nd order method
Inserting Equation (3.1) into the naive second order method, we can obtain

the following numerical dispersion relation
—(kh)?* — ((2cos(kzh) — 2) + (2cos(kyh) —2)) =0, (3.2)

and kh can be explicitly expressed as

kh = \/—((2cos(kyh) — 2) + (2cos(kyh) - 2), (3.3)

which is a function of kh and 6. When the wave travels distance h, kh and kh
are the actual phase change and the numerical phase change, respectively.
We can take (kh — kh)/2m as an error measure which has the unit cycle
and the difference should be as small as possible. In Figure 3.2, the phase
difference of the naive finite difference method is plotted for various kh and
uniformly divided propagation angles in the range of 0 < 6 < 7/4 (because

of symmetry).

Nehrbass et al. (1998)’s 2nd order method

From Equation (2.37), we can obtain the following equation
—(4 —4Jo(kh)) — ((2cos(kzh) — 2) + (2cos(kyh) — 2)) = 0. (3.4)

Because of Jy(kh), kh cannot be expressed explicitly. We can solve kh for
given kh by using iterative root finding methods. The phase difference is

shown in Figure 3.3.

Jo et al. (1996)’s 9-point method

This method reduces the dispersion error by optimization without increasing

T ) 1
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the order of accuracy, and the method remains second order of accuracy.

The equation for computing the dispersion error is expressed as
1 —
—(kh)? (c + TC(2 cos(kzh) + 2 cos(kyh))>

—((2cos(kzh) — 2) + (2 cos(kyh) — 2)) (3.5)
—1_7“(2 cos(kyh) — 2)(2 cos(kyh) — 2) = 0,
where a and ¢ are optimized weighting parameters. The coefficients a and ¢
originally derived in Jo et al. (1996) are 0.5461 and 0.6248, respectively. We
recomputed the coefficients from optimization using an objective function
with the phase difference (kh — kh)/2r. We obtained a = 0.5713 and b =
0.6274, and they give slightly smaller phase difference errors than those of

Jo et al. (1996). The phase difference is shown in Figure 3.4.

Singer and Turkel (1998)’s 4th order method
This 4th order method also utilize the 9-point stencil. The numerical dis-

persion relation between kh and kh is expressed as

4
— <(l<:h)2 — (klhg ) — ((2cos(kzh) — 2) + (2 cos(kyh) — 2))

(3.6)
- é(QCos(k:xh) — 9)(2cos(kyh) — 2) = 0.

The phase difference is shown in Figure 3.5.

6th order method
The 6th order method (Singer and Turkel, 2006; Sutmann, 2007; Nabavi

et al., 2007) has the following relation

—Letn(kh) — ((2cos(kgh) — 2) + (2 cos(kyh) — 2)) 57)
— Megin(kh) (2 cos(kzh) — 2)(2cos(kyh) —2) =0
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where Lgi,(kh) = (kh)? — (kh)*/12 + (kh)%/360 and Mg, (kh) = 1/6 +
(kh)?/180 from Equation (2.71). The 6th order method contains more se-
ries terms than Singer and Turkel (1998)’s 4th order method. The phase

difference is shown in Figure 3.6.

Tsukerman (2006)’s method
The plane wave basis functions are used in Tsukerman (2006)’s work. The

numerical dispersion relation can be expressed as
— (2 —2cos(kh)) — ((2cos(kzh) — 2) + (2cos(kyh) — 2))

_ —(2—2cos(kh)) — (4 cos(kh/\/2) — 4)
(2 cos(kh/\/2) — 2)2

(3.8)

The phase difference is shown in Figure 3.7.

9-point method of this thesis
The numerical dispersion relation directly comes from Equation (2.46) as

follows

—Lg(kh) — ((2cos(kyh) — 2) + (2cos(kyh) — 2)) 39)
— Mg (kh)(2 cos(kzh) — 2)(2cos(kyh) —2) = 0.

The phase difference is shown in Figure 3.8.

We can see that the phase difference (dispersion error) reduces from Fig-
ure 3.2 to Figure 3.8. An interesting point of Jo et al. (1996)’s method is that
the dispersion error of Jo et al. (1996)’s method is better than that of Singer
and Turkel (1998)’s 4th order method if we use approximately the range of

1/G = kh/2r > 0.18.

i SRS
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For easy comparison, we can think of another measure such as

w/4

S (3.10)
meax\k:h — kh|

The measure is interpreted as the number of grids when the propagated wave
reaches the phase difference error of 1/8 cycle (7/4 radian) in the maximum
phase error direction for given kh. The measure can be used to roughly deter-
mine the size of computational mesh although the measure is not strictly the
number of grids if the maximum error direction is not aligned to the coordinate
axes. Using the measure, we can estimate the feasible maximum number of
grids for numerical simulation for given kh as shown in Figure 3.9. The 9-point
method proposed in this thesis has the highest number of grids along 1/G. In
other words, the dispersion error of the 9-point method accumulates less than

the other methods.
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Figure 3.2: Dispersion error curves for the 2D naive second order method
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Figure 3.3: Dispersion error curves for Nehrbass et al. (1998)’s 2D second order

method
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Figure 3.4: Dispersion error curves for Jo et al. (1996)’s method

with the modified coefficients a and ¢
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Figure 3.5: Dispersion error curves for Singer and Turkel (1998)’s 2D fourth

order method
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Figure 3.6: Dispersion error curves for the 6th order method (Singer and Turkel,

2006; Sutmann, 2007; Nabavi et al., 2007)
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Figure 3.7: Dispersion error curves for Tsukerman (2006)’s method
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Figure 3.9: The number of grids required to reach 1/8 cycle (w/4 radian) phase
error for 2D methods. Higher is better.
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3.1.2 3D Dispersion Curves

From the 3D plane wave ansatz u(x, y, z) = exp(ik(sin(8) cos(¢)z+sin(8) sin(¢)y+
cos(0))) with the numerical wavenumber k, we obtain the following partial

derivative relations

dpu = ik sin(0) cos(¢)u,
dyu = ik sin(6) sin(¢p)u, (3.11)
d.u = ik cos(0)u.

Thus, the finite difference operators for the plane wave become

2 2 cos(kyh) — 2

ozu 02 u,
2cos(kyh) — 2

Sou = (hy2)u (3.12)
2 kyh) — 2

52 = COS<hQ>u

where k,h = khsin(0) cos(¢), kyh = khsin(6) sin(¢) and k,h = khcos(6). We
compute the dispersion curves only for 0 < § < 7/2 and 0 < ¢ < 7/4 using

symmetry. Six compact finite difference methods are compared as follows:

Naive 2nd order method
The numerical dispersion equation of this method comes directly from Equa-

tion (2.11).
—(kh)? — (2 cos(kzh) — 2) + (2 cos(kyh) — 2) + (2 cos(k,h) —2)) = 0 (3.13)
The phase difference is shown in Figure 3.10.

Nehrbass et al. (1998)’s 2nd order method
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—(6 —650(kh)) — ((2cos(kzh) —2) 4 (2 cos(kyh) — 2) + (2cos(k.h) —2)) =0

(3.14)
The phase difference is shown in Figure 3.11. As with the 2D method of
Nehrbass et al. (1998), this method is slightly better than the 3D naive

second order method.

Operto et al. (2007)’s method

Operto et al. (2007) extended Jo et al. (1996)’s approach to the 3D problem.

—(kh)? ( W1 + %(2 cos(kzh) + 2 cos(kyh) + 2 cos(k;h))

Wm3

+12

(2 cos(kgh + kyh) + 2 cos(kyh — kyh) + 2 cos(kyh + k.h)
+2cos(kyh — k.h) + 2 cos(kh + kgh) + 2 cos(koh — kgh)) )
- <(2 cos(kzh) —2) + (2 cos(kyh) — 2) + (2cos(k.h) — 2))
w9 w3
= <? + 7) ((2cos(heh) — 2) (2 cos(kyh) - 2)
+(2cos(kyh) — 2)(2cos(k.h) — 2)
(2 cos(koh) — 2)(2 cos(kuh) — 2))
3ws
—?(2 cos(kzh) — 2)(2cos(kyh) —2)(2cos(k,h) —2) =0,
(3.15)
where w,,; = 0.4965, w,s = 0.4510, w,,3 = 0.0525, wy = 0.8901 and

w3 = 0.1099. The phase difference is shown in Figure 3.12.
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19-point method of this thesis
The phase difference is shown in Figure 3.13 for the following numerical

dispersion relation

—Lyg(kh) — <(2 cos(kyh) —2) + (2cos(kyh) — 2) + (2cos(k.h) — 2))
Mg (kh) ((2 cos(kgh) — 2)(2 cos(kyh) — 2)
+(2cos(kyh) — 2)(2 cos(kh) — 2)

(2 cos(ksh) — 2)(2cos(kgh) — 2)) ~0.
(3.16)

Sutmann (2007)’s 6th order method
The phase difference is shown in Figure 3.14 for the following numerical

dispersion relation

~Len(kh) — ((ZCos(kxh) —2) + (2cos(kyh) — 2) + (2cos(k.h) — 2))
~ Mg (kh) ((2 cos(kgh) — 2)(2 cos(kyh) — 2)
+(2cos(kyh) — 2)(2 cos(kh) — 2)
(2 cos(ksh) — 2)(2 cos(kph) — 2))

—Ngtn (kh) (2 cos(kzh) — 2)(2 cos(kyh) — 2)(2 cos(k.h) — 2) = 0.
(3.17)

27-point method of this thesis

The phase difference is shown in Figure 3.15 for the following numerical
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dispersion relation
~ Loy(kh) — ((2 cos(kigh) — 2) + (2cos(kyh) — 2) + (2 cos(ksh) — 2))
— Moy (kh) ((2cos(kmh) — 9)(2cos(kyh) — 2)
+(2cos(kyh) — 2)(2cos(k.h) — 2)
(2 cos(koh) — 2)(2 cos(kyh) — 2))
— Noz(kh)(2 cos(kgh) — 2)(2 cos(kyh) — 2)(2cos(k;h) — 2) = 0.

(3.18)

As in 2D, we use the measure

_Th (3.19)
ngzx|kh — kh|

which can be used to identify the feasible maximum number of grids for given
kh. We can see that the phase difference for the 3D methods reduces from
Figure 3.10 to Figure 3.15. The proposed 27-point method has the highest
feasible number of grids along 1/G as shown in Figure 3.16. When 1/G = 0.3,
for example, the feasible maximum number of grids of the 27-point method is
about 2000, but the number of grids of Sutmann (2007)’s method, which is

the highest among the other methods, is only about 140. Thus, it shows the

superiority of the proposed 27-point method.
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Figure 3.10: Dispersion error curves for the 3D Naive second order method
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Figure 3.11: Dispersion error curves for Nehrbass et al. (1998)’s 3D second order

method
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Figure 3.12: Dispersion error curves for Operto et al. (2007)’s method based on

Jo et al. (1996)’s approach
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Figure 3.13: Dispersion error curves for the 19-point method of this thesis
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Figure 3.14: Dispersion error curves for Sutmann (2007)’s method
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Figure 3.15: Dispersion error curves for the 27-point method of this thesis
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Figure 3.16: The number of grids to reach 1/8 cycle (7/4 radian) phase error

for 3D methods. Higher is better.
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3.2 Numerical Solutions with the Impulse Source

All the following numerical experiments use the source amplitude correction
functions to compensate the amplitude difference. The numerical solution would

not match the analytic solution unless the correction functions are applied.

3.2.1 2D 9-Point Method for a Homogeneous Medium

The numerical solutions were computed by the 9-point method for l%h/ 2T =
0.01, 0.10, 0.20, 0.30 and 0.40. Because the 5-point method is not accurate
enough to be used in such wide range of kh, it was excluded. The size of the
2D computational domain was set to (n, x n,) = (401 x 401) and the Perfectly
Matched Layer (Appendix B) was used for absorbing the outgoing waves. The
thickness (the number of grids) of the PML was 20. The unit impulse source
was discretized at the exact center node of the computational domain. For
l;:h/ 2m = 0.30 and 0.40, the impulse source was approximated also by a set
of discrete sources at the 9 neighbor nodes, because the contribution of the
neighbor nodes slightly increases when kh is large. Computing the contribution
of the neighbor nodes for the impulse source are essentially the same with the
process of computing the source amplitude correction functions. The analytic
solutions were computed by %H(gl) (kr), and the value at the singular point r = 0
in the analytic solution was replaced by %Hél)(khe), which is predicted from
the singularity removal process in the previous chapter.

For each kh, we extracted a line section parallel to either z- or y-direction,

and the line section contains the singularity of the 2D impulse response. From

1l 7
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Figure 3.17 to Figure 3.23, we can see that the discrete and analytic solutions
match well together. For l;:h/27r = 0.30 and 0.40, we can see that the numerical
solutions from the 9-point impulse source approximation are better matched
with the predicted value %Hél)(k:he) at 7 = 0 than those of the single point
approximation. Although Figure 3.24 and Figure 3.25 show that the 9-point
approximation of the impulse source is better than the single point approxima-
tion in terms of pointwise L error, the single point approximation also works
reasonably well.

From the observation above, the source amplitude correction functions and
e computed from the singularity removal process are justified. If the source
amplitude correction functions are not applied, then the amplitude discrepancy

between the numerical solution and the analytic solution would be significant.

63 A L) ¢



Real part

Imaginary part

04l ]
0.2 |
o0 M
oo oo oo0-0-0-0-0-0-0
1 1 1 1 e 1
0 10 20 30 40 50

-0.05F

Distance (the number of grids)

(a) Real part

0 10 20 30 40 50

Distance (the number of grids)

(b) Imaginary part

Figure 3.17: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = kh/2r = 0.01. The discrete solution is ob-

tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.18: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2m = 0.10. The discrete solution is ob-
tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.19: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2m = 0.20. The discrete solution is ob-
tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.20: Comparison between the analytic solution (solid line) and the dis-

crete solution (dots) when 1/G = kh/2w = 0.30. The discrete solution is ob-

tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.21: Comparison between the analytic solution (solid line) and the
discrete solution (dots) when 1/G = /;:h/ 2w = 0.30. The discrete solution is
obtained from the proposed 9-point method of this thesis with the 9-point ap-

proximation of the impulse source.
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Figure 3.22: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2m = 0.40. The discrete solution is ob-
tained from the proposed 9-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.23: Comparison between the analytic solution (solid line) and the
discrete solution (dots) when 1/G = kh/2m = 0.40. The discrete solution is
obtained from the proposed 9-point method of this thesis with the 9-point ap-

proximation of the impulse source.
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Figure 3.24: Pointwise L; error plot for 1/G = kh/2r = 0.30. The solid line is
computed from the single point approximation, and the dashed line is computed

from the 9 point approximation of the impulse sources.
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Figure 3.25: Pointwise L; error plot for 1/G = kh/2r = 0.40. The solid line is
computed from the single point approximation, and the dashed line is computed

from the 9-point approximation of the impulse source.

71 ; H kl 1_'.” [



3.2.2 3D 27-Point Method for a Homogeneous Medium

As in the 2D test, the numerical solutions were computed by the 27-point
method for l;:h/27r = 0.01, 0.10, 0.20, 0.30 and 0.40. The size of the 3D compu-
tational domain was set to (n, x n, x n,) = (61 x 61 x 101) for kh/2m = 0.10,
0.20, 0.30 and 0.40. For kh/2m = 0.01, the size of the domain was increased to
(ng X ny xn;) = (61 x 61 x 201) because relatively small imaginary part of the
numerical solution (Figure 3.26) was affected by the slight reflection near the
boundaries in spite of using the PML whose thickness is 20. The unit impulse
source was discretized at the node (iz,14,,7,) = (31,31,31) for l;:h/27r = 0.10,
0.20, 0.30, 0.40 and at the node (iy,iy,i,) = (31,31,81) for kh/2% = 0.01,
where 1 < i, < ng, 1 < iy < ny and 1 <4, < n,. For kh/2r = 0.30 and 0.40,
the impulse source was approximated also by a set of discrete sources at the 27
neighbor nodes. The analytic solutions were computed by exp(ikr)/4mr, and
the value at the singular point » = 0 in the analytic solution was replaced by

exp(ikhe)/Amhe.

For each I;:h, we extracted a 1D line section parallel to z-direction, and
the 1D line section contains the singularity of the 3D impulse response. From
Figure 3.26 to Figure 3.32, we can see that the discrete and analytic solutions
match well together. For kh /2w = 0.30 and 0.40, we can see that the numerical
solutions from the 27-point impulse source approximation are better matched
with the predicted value exp(ikhe)/4mhe at r = 0 than those of the single point
approximation. Although Figure 3.33 and Figure 3.34 shows that the 27-point

approximation of the impulse source has lower pointwise L error than the single
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point approximation, the single point approximation also reasonably matches

the analytic solutions well as in 2D.
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Figure 3.26: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2m = 0.01. The discrete solution is ob-

tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.27: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2m = 0.10. The discrete solution is ob-
tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.28: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2w = 0.20. The discrete solution is ob-
tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.29: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2r = 0.30. The discrete solution is ob-
tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.30: Comparison between the analytic solution (solid line) and the
discrete solution (dots) when 1/G = kh/2m = 0.30. The discrete solution is
obtained from the proposed 27-point method of this thesis with the 27-point

approximation of the impulse source.
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Figure 3.31: Comparison between the analytic solution (solid line) and the dis-
crete solution (dots) when 1/G = kh/2m = 0.40. The discrete solution is ob-
tained from the proposed 27-point method of this thesis with the single point

approximation of the impulse source.
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Figure 3.32: Comparison between the analytic solution (solid line) and the
discrete solution (dots) when 1/G = kh/2r = 0.40. The discrete solution is
obtained from the proposed 27-point method of this thesis with the 27-point

approximation of the impulse source.
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Figure 3.33: Pointwise L; error plot for 1/G = kh/2r = 0.30. The solid line is

computed from the single source approximation, and the dashed line is com-

puted from the 27-point approximation.
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Figure 3.34: Pointwise L; error plot for 1/G = kh/2r = 0.40. The solid line is

computed from the single source approximation, and the dashed line is com-

puted from the 27-point approximation.
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3.2.3 2D Seismic Wave Propagation in Heterogeneous Media

From the previous numerical experiments for a homogeneous medium, the nu-
merical solutions are matched well with the analytic solutions in the broad
range of kh. However, the derivation of the proposed compact finite difference
methods is based on the local homogeneity assumption, so the methods do not
fully consider heterogeneity and there are first order errors at the interfaces (ex-
cept for 1D, see Appendix A). Thus, the proposed methods would give inexact
reflection and transmission coefficients if the grid interval h is not small enough.
Nevertheless, the proposed methods can be used to simulate wave propagation
in heterogeneous media to some extent. We compare the numerical solutions of
our 2D 9-point compact finite difference method with the reference solutions
obtained from the time domain modeling method of Tal-Ezer et al. (1987),
which exactly considers heterogeneity without the numerical dispersion and

the interface error due to exact time marching and spatial differentiations.

For comparison, we chose the Marmousi model (Versteeg, 1994), which is a
classical heterogeneous acoustic wave speed model for seismic wave propagation.
The velocity model is shown in Figure 3.35. The velocity increases as the depth
deepens and the minimum and maximum velocity of the model is 1.5 km/s
and 5.5 km/s, respectively. The velocity model was obtained by resampling and
smoothing the original velocity model whose grid interval is 4 meters. The re-
sampled grid interval h is 12.5 meters and the grid size is (n, x n,)=(736 x 240),
where z is Distance direction and z is Depth direction as shown in Figure 3.35.

The time domain solution of our 9-point method was obtained by transform-
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ing the frequency domain solution with the discrete Fourier transform. The
reference time domain solution was obtained from time marching with Tal-
Ezer et al. (1987)’s method. Most modeling conditions are the same for both
modeling methods: The maximum recording time Ti,ax is 4 seconds. Also, the
maximum frequency frax is about 30 Hz and the time interval At is 1/(2fiax)-
We can compute the number of grids per minimum wavelength G = 4 using
the minimum velocity 1.5 km/s, the maximum frequency fiax = 30 Hz and the
grid interval h = 12.5 m. The boundary conditions of our 9-point method is the
frequency domain PML (see Appendix B), and the boundary condition of Tal-
Ezer et al. (1987)’s method is a variant of the time domain PML (Park et al.,
2014). The PML was set in the four boundaries and the thickness (the number
of grids) of the PML is 20. The source wavelet is a shifted Ricker wavelet defined
as
w(t) = (1 =27 (fpeart — 1.1)?) exp(—7*(fpeart — 1.1))?), (3.20)
where fpeak = fmax/3 = 10 Hz is the peak frequency whose amplitude is the
maximum in the frequency spectrum. In the 9-point method, the spatial impulse
source with the Ricker wavelet was set at the center of the computational do-
main. In Tal-Ezer et al. (1987)’s method, the spatial distribution of the impulse
source was approximated by a narrow Gaussian bell shaped distribution. For
both cases, the receiver line was set parallel to 2 (Distance) direction through
the center of the domain
As shown in Figure 3.36, both seismograms from the receiver line are vir-
tually indistinguishable with the naked eye. Time traces at some distances are

also shown in Figure 3.37 and the traces are matched well.
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Figure 3.35: The Marmousi P-wave velocity model
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Figure 3.36: Time domain seismograms from Tal-Ezer and the 9-point method
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Figure 3.37: Comparison of time domain traces between Tal-Ezer’s method and
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Chapter 4

Conclusions

The compact finite difference methods using the analytic basis functions were
introduced, and we verified the high accuracy of the proposed methods in terms
of the dispersion error and the amplitude of the impulse response in the wide
range of kh. Although the proposed methods are based on the homogeneity
assumption, the numerical experiements showed that the methods can simu-
late reasonably well seismic wave propagation in hetereogeneous media. Thus,
large scale geophysical applications with the impulse sources on Cartesian grids
such as full waveform inversion (Tarantola, 1984; Shin, 1988; Pratt et al., 1998;
Virieux and Operto, 2009) in the exploration geophysics would benefit from the

accuracy and efficiency of the proposed methods.
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Appendix A

Exact 1D Discretization with
Piecewise-Constant Media

A.1 Derivation

We consider the 1D Helmholtz equation

k2 0 10u

"o apon

(A1)

with the piecewise-constant wavenumber k£ and density p. The 1D shifting op-

erator (Equation (2.21)) can be used to derive a finite difference expression for

the piecewise-constant material distribution. In Figure A.1, the first derivatives

are discontinuous due to the discontinuous media at x = 0. We can analytically

write neighbor nodal points as
uy := u(h) = cos(k1h)ug + sinc(k1h)hdug
2 2

u_1 :=u(—h) =cos(k_rh)u;, — sinc(k_%h)h&rua.

2
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Figure A.1: 1D stencil for piecewise-constant heterogeneous media

There are two conditions should be met as follows

uy =g, (A4
1 Ouy 1 Gug
N . A.
p_1 ox L ox (A-5)

The first one (Equation (A.4)) is the pressure continuity condition and the
second one (Equation (A.5)) is the normal velocity continuity condition. Using
these two conditions, the first derivatives can be cancelled out to form the

following three term expression

U1 uy B cos(k:_%h) . cos(k:%h) w0, (A.6)
B p_%sinc(k_%h) p%sinc(k%h) 0r A

p_aisinc(k_1h) + pisinc(kih)
2 2 2 2
where ug = uy = uar.
If there is an impulse source f(z) = agd(z —x¢), which is located at x = x,

then a jump of the normal velocity occurs as follows

1 = 1 +
g +ap = 1 Oug ) (A7)
p_1 Ox p1 Ox
2 2
which gives
U_1 uy COS(k_%h) cos(k%h)
. = h.
p_1sinc(k_1h) + pisinc(kih) p_isinc(k_1h) T pisinc(kih) up + Qo
2 2 2 2 5 5 5 1
(A.8)
e o |
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Using the finite difference operator d,, Equation (A.8) can be rewritten as

1 < 1-— cos(k:iéh) 1 — cos(k

1 . PN s (A.9)
12\ p_ysine(k_sh) " pysine(k,h) U0 O Sine(kh) T T T

which does not produce any discretization error. Of course, discretization er-
ror may be introduced when the actual discontinuous interface is not exactly

matched with the grid interface, or when the continuous problem has smooth

profiles of the density p and the wavenumber k.

If we assume homogeneous medium (p_% =pL=p and k:_% = k% = k),
then Equation (A.9) reduces to
1 (2 —2cos(kh) 1 Qg
_ — Op———0pug = —, Al
h? < psinc(kh) > 1o psinc(kh) =y (A.10)

which is similar to Equation (2.76) in Section 2.5.1. The only difference between
the two equations is the location of the sinc(kh) function. In Equation (A.9)
and Equation (A.10), the sinc(kh) function can be thought of as a correction
term to compute an effective density p = psinc(kh). We rewrite Equation (A.9)

with the effective density p as follows

1 (1 - cos(kz_%h)

1 —cos(kih) 1 o
_ﬁ = + 2 ) uy — 590551“40 = F, (A.ll)

,0_% P%
where the finite volume approximation ag/h of the Dirac delta function can be

used as a source term without correction, because sinc(kh) is absorbed to the

effective density p.
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Appendix B

Perfectly Matched Layer

B.1 Continuous Perfectly Matched Layer

The Perfectly Matched Layer (Bérenger, 1994, 2007) has the ability to suppress
spurious reflections at the boundaries of the computational domain. In the
frequency domain, the PML can be easily introduced by using the following

complex coordinate stretching (Chew and Weedon, 1994)

Oy — — O,
Sg

Oy — iay, (B.1)
Sy

1
0, & —0,,

z

where s, and s, are the complex coordinate stretching parameters. If we apply

the complex coordinate stretching to the 2D Helmholtz equation, then we obtain
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the Helmholtz equation with the PML coefficients as follows

9 1 0 10u 1 0 10u
_ s gy | B.2
R 5; 0T 5, 0x 5y Oy Sy Oy 0 (B-2)

Multiplying sz s, to Equation (B.2) gives
—kPspsyu— — L — — 22T =, (B.3)

Either Equation (B.2) or Equation (B.3) can be used, but Equation (B.3) may
be more preferred, because Equation (B.3) can be discretized by using a sym-
metric indefinite matix. If a direct sparse matrix solver such as a multifrontal
solver is used, then the symmetric indefinite matrix can be factorized by the
LDLT (LDL") decomposition with the Bunch-Kaufman 2 x 2 diagonal pivoting
(Bunch and Kaufman, 1977). The LDLT decomposition can reduce the arith-
metic operations and the memory requirement roughly by half, compared to
the LU decomposition.

We can also apply the complex coordinate stretching to the 3D Helmholtz
equation as follows

181@ 181@ 181@

K- - - — — =, B.4
“ 5; 0% 5, 0 5y 0y sy Oy s, 0ysy 0y (B-4)

Multiplying s sys. to Equation (B.4) gives
—k:Qstyszu 0 sy5: @ — gszsx @ — gsmsy @ =0. (B.5)

Oz s, Ox Oy sy Oy 0z s, 0z

B.2 Discrete Perfectly Matched Layer in 1D

In 1D problem, the complex coordinate stretching gives

]
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If we assume piecewise constant media, the wavenumber k& and the PML pa-

rameter s, is constant within one grid cell. Then Equation (B.6) becomes

1 0%u
k- LT, (B.7)
and subsequently,
82
k2520 — aT;L = 0. (B.8)

So, the PML coefficient s, can be absorbed to the wavenumber k. Then, we can
just use the equation for the piecsewise constant heterogeneous media (Equa-
tion (A.8) or Equation (A.9)) with the modified wavenumber k& — ks,. This
discretization method of the 1D PML does not introduce any discretization

error.

B.3 Discrete Perfectly Matched Layer in 2D and 3D

In contrast to the 1D problem, the exact discretization of the PML cannot
be achieved in the 2D and 3D problems. We may try the following complex
coordinate stretching in the discrete level, which is analogous to the continuous

version of the complex coordinate stretcing (Equation (B.1)).

1
O0p — — O,
Sg

1
0y — S—éy, (B.9)

Y

1
0y, — —0,.
Sz

-1 &1
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If we apply the discrete complex coordinate stretching to the 2D 9-point method

(Equation (2.50)), then, we obtain the following equation

h2

Lo(kh 1 1 1.1 1 1 1 1
—Muo,o— <5x5x - 5y85y) uo,o—hzsfaxféyMg(kh)—5E;5yu070 = 0.

Sy Sz y

(B.10)

x SiL‘ Sy Yy

Multiplying s,s, to Equation (B.10), we can obtain the symmetric discretiza-

tion of the Helmholtz equation with the PML as follows

Lg(kh)
e

Mg (kh)

Sz Sy

SxSyU0,0 — <5:vzy5z + (5yzx(5y) upg,0 — h25 (5 (5 1) yU0,0 = 0.
T Y
(B.11)

If we have the variable density p, then Equation (B.11) can be approximately

modified to
Lo(kh) s; - Mo(kh
N 9]52 ) > SyuO,O o (5xsyéa; + 5y85y> up,0 — h25$5 9( )5 0 y%0,0 = 0
P PSx PSy PSzSy
(B.12)

which reduces to Equation (B.11) when p is constant.

We can apply the discrete complex coordinate stretching to the 3D discrete
Helmholtz equation (Equation (2.69)) as follows
Loz (kh 1 1 1 1 1.1
—#Uo,o,o — | —0p—0z + 751/753,/ + —0.—0. U0,0,0
h Sg Sy sy Sy Sz Sz

1 1
—h2 5 —5 M27(kh) (5 8—5yu000

Sz Sx y

h2 ! 5 f5 M27<kh> 5 75 210,0,0 (B-13)

Sy SZ Sy Sz
9 1 1
—h*—6, —5 M27(kh) 0, *5:1:11/0,0,0
Sz Sz Sz Sz
.1 11
—h 5 — 0y ;5 5 N27(k'h) (5 B —0 ;6zu0,0,0 =0.
x Yy Sz S Yy z
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Multiplying s;sys. to Equation (B.14) gives

SyS. S,Sz SzS

Loz (kh)
- h?

0z + Oy 0y + 0 y5z> 0,0,0
T Sy Sz

__h25m5yﬂ4é7(kh)sz
525y

M27(kh)sm
552

M27(k‘h)3y5 5 %0.0.0

525y5:10,0,0 — <5a:
02:040,0,0

_h25y6z 6y5zUO,O,O (B14)

—h26,6,

SySy
Noz(kh)

Sz8yS,

_h45;1:5y5z 5x6y6zu0,0,0 =0,

which is a symmetric discretization of the 3D Helmholtz equation with the

PML. We can also approximately include the density p into Equation (B.14) as

follows
L kh €T z z zZ°T T
— 27(2 )S 55 U0,0,0 — (5;5 Sy” (533 +(5y8 i 5y +5zs Sy(sz U0,0,0
h p PSg PSy PSz
_h2615yM5x6yu0,0,0
PSzSy
Moz (kh)sy
—h25yazw6yézuop,o (B.15)
Yoz
Mo7(kh
——h2625r22£8)8y5z51u01L0
Noz(kh
_h%wéyéz;)j?i:‘sx‘gﬁzuo,o,o = 0.
rSySz
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