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Abstract 

 

Polarization control of surface plasmon 

polaritons and its application to 

polarimeter 
 

Kyookeun Lee 

Department of Electrical Engineering and Computer Science 

College of Engineering 

Seoul National University 
 

Surface plasmon polaritons (SPPs) are electromagnetic waves propagating 

along the metal-dielectric interface. Plasmonics has been rigorously studied 

over the last decade, since SPPs are considered as one of the most promising 

candidates to accomplish highly integrated photonic circuits with their unique 

ability to squeeze light under the diffraction limit. Among various efforts to 

develop plasmonic elements in both passive and active ways, it is still a 

crucial issue how to generate SPPs with high coupling efficiency. Recently, 

nano-antennas with asymmetric structures have been showing that they could 

give directivity to generation of SPPs, so that the coupling efficiency could be 

more enhanced. In addition to directional excitation of SPPs, control of the 

direction attracts research interests in terms of plasmonic routers and 

multiplexed plasmonic elements. The polarization states of incident light is an 

adequate component to be a control signal, making use of polarization-

selective nature of both SPPs and anisotropic scatterers. However, 

controllability of previous studies is bounded by binary operation in general 

with respect to the helicity or the orientation angle of the incident light. 

This dissertation investigates polarization control of SPPs and their 

application to a compact polarimeter. The controllability of SPPs is extended 

based on periodic nano-aperture arrays and polarized light, and their 
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applications are suggested. 

First, the issue of interferometric-controlled optical devices is discussed. 

Interaction between light and optical devices can be tuned in all-optical 

manner with high modulation depth by controlling interference of coherent 

light. When two parallel arrays of aperture pairs are illuminated by linearly 

polarized light, interference of counter-propagating SPPs excited by the arrays 

can be controlled by the orientation angle of the incident light. Translation of 

optical path length can be replaced by the orientation angle rotation of the 

incident field. This makes experimental setup of the interferometry be 

significantly simplified. 

The second application deals with a compact polarimeter, an optical 

analyzer that detects the state of polarization (SOP). In order to measure the 

full-Stokes parameters, polarizers with different measuring SOPs are required. 

Polarization-selective excitation of SPPs can play a role of a polarizer since 

the selective excitation implies that SPPs are extinguished at a certain 

polarization. Hybrid aperture pair array and X-shaped aperture array are 

proposed to launch SPPs to a single direction when illuminated by the target 

elliptical SOP. Then, the aperture arrays are applied to the polarimeter, which 

are equivalent to four different elliptical polarizers. Polarization states can be 

measured at a single shot detection within a tiny system. 

I expect that this dissertation can help to develop more compact optical 

systems based on polarization-sensitive optical elements. Furthermore, I hope 

that this work inspires research on optical angular momentum interaction 

mediated by nano-structures surface waves. 
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Chapter 1 Introduction 

 

 

 

1.1 Overview of plasmonics 

 

Surface plasmon polaritons (SPPs) are electromagnetic waves propagating 

along the metal-dielectric interface. Plasmonics has been rigorously studied 

over the last decade since SPPs are nominated as one of the most promising 

candidates to accomplish highly integrated photonic circuits with their 

unique ability to squeeze light under the diffraction limit [1, 2]. Plasmonic 

waveguides, for example, can deliver guided modes with volume of smaller 

than a few tens of nanometers, while photonic modes are cut off [3, 4]. As 

well as various types of waveguides [5–7], other plasmonic elements 

including resonators [8–11] and interconnectors [12–14] have been 

successfully demonstrated, thanks to the rapid development of 

nanofabrication techniques. Active plasmonic devices, which modulate SPPs 

using external control signals such as sources [15–20], amplifiers [21, 22], 

modulators [23–27], switches [28–31], and logic gates [32, 33], have also 

been proposed based on electro-optical, thermo-optical, mechanical, and all-

optical mechanisms. 

Among various efforts to develop plasmonic elements in both passive 

and active ways, it is still a crucial issue how to generate SPPs with high 

efficiency. Because of higher momentum of SPPs than free space photons, 
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additional apparatus is required to couple incident light into SPPs. Prisms 

and gratings are typical examples. At the early stage of research, optical 

nano-antennas were proposed, adopted from advanced radiofrequency 

antenna theories [34–36]. Especially, nano-antennas with asymmetric 

structure give directivity to generation of SPPs, so that the coupling 

efficiency can be more enhanced [37–41]. 

More recent studies on SPP couplers suggest control of directivity, as 

well as directional coupling of SPPs with high extinction ratio. Polarization 

states of incident light is widely utilized as a control signal, making use of 

polarization-selective nature of both SPPs and anisotropic scatterers. Fully 

perforated slits and apertures [42–47], asymmetric nano-antennas [48, 49], 

and waveguides [50] are applied to directional launching and switching of 

SPPs with the control of the linear and circular polarization states of the 

incident light. In terms of integrated plasmonic circuits, directional control of 

SPPs can also be utilized as plasmonic routers and multiplexed elements. 

Furthermore, interaction between circularly polarized light and 

anisotropic scattering of SPPs can help to explore spin-orbit interaction of 

light based on subwavelength nano-structures. Since the circularly polarized 

light carries an intrinsic spin angular momentum, spatially inhomogeneous 

media can cause spin-dependent phenomena [51]. Generation and control of 

plasmonic vortex fields using the spin or geometry of the plasmonic structure 

are a proper instance that shows the spin-orbit interaction of light. 

Observation of the spin-orbit interaction is experimentally presented by 

plasmonic vortex lenses with geometry of the Archimedean spiral [52] and 

chains of anisotropic nano-apertures [53, 54]. 
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1.2 Motivation of this dissertation 

 

Excitation of SPPs using periodic array of anisotropic scatterer is a powerful 

platform that tailors wavefront of SPPs. When light is incident with a certain 

state of polarization (SOP), amplitude and phase profile of the generated 

SPPs can be designed by a position and a tilt angle of each scatterers. 

Recently, polarization-controlled SPP excitation was demonstrated using an 

array of rectangular nano-aperture pairs [46]. Both pathway and phase of 

excited SPPs can be tuned independently by changing positions and tilt 

angles of the apertures. Plasmonic elements of multiplexed-lenses [49, 55–

57] and caustic beam generator [58] have been demonstrated, applying the 

proposed working principle. These applications show possibilities of 

excitation and control of SPPs based on the aperture pair array. However, 

controllability of the previous studies are bounded by binary operation with 

respect to the helicity of the incident light. In this dissertation, the 

controllability of SPPs based on the aperture arrays is extended and its 

applications are presented. 

The first application focuses on the issue of interferometric-controlled 

optical devices. All-optic control utilizing interference between independent 

coherent light sources provides controllability of nanostructured optical 

devices. Interaction between light and optical devices can be tuned in all-

optical manner with high modulation depth by controlling interference of 

coherent sources. For example, resonators with lossy media illuminated by 

coherent light sources can absorb light perfectly, which corresponds to time-

reversal process of lasing [59, 60]. In addition to absorption, reflection and 
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transmission are actively tuned by controlling the phase difference of 

incoming coherent light [61–63]. However, an experimental apparatus to 

realize optical coherent control systems requires delicate alignment of optical 

elements and fine control of optical path length. In the visible and the near-

infrared regime in particular, change of optical path length by a few tens of 

nanometers influences the result considerably. Interferometric control of 

SPPs using the aperture arrays can manage this issue. When two parallel 

arrays of the aperture pairs are illuminated by linearly polarized light, 

interference between counter-propagating SPPs excited by the arrays can be 

controlled by the orientation angle of the incident light. Translation of optical 

path length is then replaced by the orientation angle rotation of the incident 

field. Hence, experimental setup of the interferometry can be significantly 

simplified. 

The second application deals with a compact polarimeter based on 

polarization-sensitive generation of SPPs. Polarimeter is an optical analyzer 

that detects the SOP. Typically, SOPs are obtained after several times of 

measurements by branching the input beam either spatially [64] or 

temporally [65]. This measurement scheme makes the polarimeter be bulky 

and sluggish. With help of recent advances in nanophotonics, several efforts 

have been made that introduce compact polarimeters. Various types of 

circular polarization analyzers that measure the helicity of light have been 

proposed based on spin-dependent scattering of light [66–70]. Full-Stokes 

polarimeters based on plasmonic elements [69, 70], metasurfaces [71, 72], 

and asymmetric silicon waveguides [73] have been demonstrated. States of 

polarizations are fully specified by a single measurement without any 



 

     

 

5 

splitting of optical paths using proposed polarimeters. However, in these 

studies, polarimeters are designed at certain target wavelengths, so that 

operation bandwidths are limited. Recently, spectropolarimeters, which 

measure both the wavelength and the SOP simultaneously with broad 

operation bandwidths, were presented using chromatic aberrations of 

metasurfaces [74, 75]. Measurement accuracy of these metasurface-based 

polarimeters, however, is dependent on propagation length of probing signals, 

since the working principle relies on polarization-dependent deflection. 

A polarimeter composed of polarization-sensitive excitation of SPPs can 

help to improve the aforementioned issues. In order to measure the full-

Stokes parameters, polarizers with different measuring SOPs are required. 

Polarization-selective excitation of SPPs can play a role of a polarizer since 

the selective excitation implies that SPPs are extinguished at a certain 

polarization. In order to reduce the number of measuring polarizers and use 

the optimized measurement scheme, four different elliptical polarizers are 

needed. Directional launching of SPPs using elliptical polarized light has 

been reported based on asymmetric nano-spheres [76]. However, the 

proposed device is hard to implement because the nano-sphere should be 

floated from the surface with the exact geometry. This problem is handled by 

introducing novel aperture pair array. Proposed aperture array launches SPPs 

to a single direction with high extinction ratio when illuminated by the target 

elliptical SOP. Then, the aperture pair arrays are applied to polarimeter, 

which are equivalent to four different elliptical polarizers. Polarization states 

can be measured at a single shot detection within a tiny system. 
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1.3 Scope and organization 

 

This dissertation describes methods for polarization control of SPPs and its 

application to a compact polarimeter. Structure of aperture pair array 

perforated on a metal film and its interaction with polarized light is one of 

the main subject in this dissertation. At the beginning, basic physics of SPPs 

and excitation mechanism of SPPs at a periodic aperture array will be 

explained briefly. Then detailed descriptions of each chapter will be 

presented in following order: introduction, working principles, design and 

simulation results, experimental results, and summary with discussions. 

 

Table 1.1 Main subjects of each chapter in terms of aperture geometries, 

incident polarization states, and functions of the devices. 

Aperture array geometry

(xy-plane)

Incident

polarization states
Function of the device

3

4

5

 Facing aperture pairs

 Hybrid aperture pair

 X-shaped aperture pair

 Linear

 Elliptical

 Arbitrary

 Interferometric control

 Directional control

 Measurement of SOPs

ψ
x

y

ψ

χ

x

y

1s
2s

3s

2ψ

2χ

Chapter

x

x

y

y

I

I

I

I









 
 
 
 
  
 

1

2

3

s

s

s

 
 
 
 
 

 

 

In Chapter 3, polarization control of an SPP interference will be 

described. An orientation angle of an incident field is used as a control signal 
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here. Working principle based on rectangular aperture pair arrays in face-to-

face arrangement will be explained in Section 3.2. Optimization results of a 

rectangular plasmonic resonator, which is controlled by interference of SPPs, 

will be presented in Section 3.3. After that, experimental results based on 

near-field scanning optical microscopy (NSOM) will be shown in Section 3.4. 

In Chapter 4, directional launching and switching of SPPs will be 

explained. Excitation of SPPs at a hybrid aperture pair array illuminated by 

elliptically polarized light will be discussed in Section 4.2. Conditions for 

directional generation of SPPs and its switching are yielded from a simple 

analytic model based on superposition of complex fields. In Section 4.3, 

extinction ratio of fabricated hybrid aperture pair array is measured. 

In Chapter 5, a compact plasmonic polarimeter will be proposed. At 

first, an X-shaped aperture array will be introduced in Section 5.2 as a 

building block of the polarimeter. It will be shown that the X-shaped aperture 

array is an elliptical polarizer with broad operation wavelength range. In 

Section 5.3, configuration of the polarimeter will be presented using the X-

shaped aperture arrays. It will be explained that an arbitrary SOP can be 

specified by detecting four SPP intensities with calibration factors. In Section 

5.4, Experimental results will verify operation of the proposed polarimeter at 

wavelengths of 800 nm, 840 nm, 920 nm, and 980 nm. 

Chapter 6 will give summary of this dissertation and concluding 

remarks with perspectives. 
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Chapter 2 Interaction between 

polarized light and plasmonic nano-

structures 

 

 

 

2.1 Propagation of SPPs at a metal-dielectric single 

interface 

 

Throughout this dissertation, SPPs propagating along the metal-air interface 

is mainly discussed. Therefore, it will be helpful to start with brief 

introduction to SPPs at the single interface geometry. 

Consider a geometry that homogeneous metal (εm) and air make a 

contact locating the interface at z = 0. Source-free Maxwell’s equation and 

boundary conditions at the interface yield non-zero solution of a transverse-

magnetic mode when sign of permittivity of the given geometry changes at z 

= 0. Field profiles of achieved electromagnetic waves in the area of z > 0 are 

written as [77]: 

 

  SPP

00, ,0 djk x z
H e e


H ,     (2.1) 
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 E ,   (2.2) 

 

where ω is angular frequency, ε0 vacuum permittivity. κd and kSPP are wave 

vector component to the x-axis and z-axis, respectively. In the area of z < 0, 

similarly, 
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Figure 2.1 (a) Schematic illustration of electric fields of SPPs at a metal-air 

interface. (b) Dispersion relation of SPPs. 

 

Continuity relation at the boundary and wave vector relation yields kSPP, 

which is a dispersion relation of SPPs: 
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Figure 2.1(b) shows the dispersion relation of SPPs at the interface 

between a Drude metal with negligible collision frequency and air. A dashed 

line is that of air and a dash-dotted line is of dielectric medium with 

refractive index of 1.45. It is shown that SPPs have larger momentum than 

photons in free space by comparing the dashed line and a solid curve. This 

implies that SPPs cannot be directly excited by free space photons. Prisms 

and gratings are typical examples of additional geometry that makes SPPs 

excited by compensating the phase mismatch. 

 

c

(a)

(c)

(b)

(d)

 

Figure 2.2 Examples of geometries that excite SPPs: (a) a prism 

(Kretschmann configuration), (b) gratings, (c) a bump/rod, and (d) an 

aperture. 
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2.2 Interaction between polarized light and periodic 

array of plasmonic nano-structures 

 

2.2.1 Tailoring of transmitted/reflected light using plasmonic 

nano-structure arrays 

After the first observation of the extraordinary optical transmission through 

metallic films perforated by subwavelength hole arrays in 1998 [78], 

periodic array of subwavelength structures has been one of the most actively 

studied subjects in photonics. Nanophotonics is coined, meaning a study of 

photonics utilizing nano-scale functional elements to manipulate light. 

Transmission, reflection and absorption spectra are engineered using various 

types of subwavelength periodic arrays with different unit cell geometries, 

holes, rectangular apertures, c-shaped apertures, dolmen-shaped rods, and 

asymmetric rings for examples [79–81]. Theoretical approach showed that 

optical phenomena of periodic array of subwavelength holes can be 

characterized by scattering of SPP modes [82]. 

Recently, periodic arrays of plasmonic nano-structures have been 

applied to spatial modulation of light, attracting much of research interests. 

Phase and amplitude of an incident wavefront can be fully modulated 

without any diffraction when the period of scatterers is shorter than 

wavelength of the given light. Plasmonic nano-structure is widely used as a 

scatterer due to its large scattering cross section near the resonance. Spatial 

phase modulation of light is demonstrated firstly using V-shape metallic 

nano-rods [83]. Phase of scattered fields by the V-shaped nano-rod array can 
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be modulated from 0 to 2π by engineering arm lengths and angles between 

the arms. Similarly, T-shaped nano-rod arrays are proposed achieving ultra-

thin wave plates [84]. Geometric parameters of widths and lengths of each 

arm are adjusted. Anomalous reflection is experimentally demonstrated 

based on a gap-plasmon antenna array with different aspect ratios of the 

antennas [85]. In these cases, phase of incoming light is manipulated by 

changing geometric parameters or dispersions of scatterers. 

 

(a) (b) (c)

Gold DielectricSilver
 

Figure 2.3 Unit cell geometries of plasmonic nano-structure arrays utilizing 

scatterer dispersions: (a) a V-shaped nano-rod [83], (b) a T-shaped nano-rod 

[84], and (c) a gap-plasmon antenna [85]. 

 

Gold Dielectric

(a) (b)
θ θ

 

Figure 2.4. Unit cell geometries of plasmonic nano-structure arrays utilizing 

rotation of anisotropic scatterers: (a) a gap-plasmon antenna [87] and (b) C-

shaped aperture with rotation angle of θ [88]. 
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Using circularly polarized light and array of anisotropic scatterers, it is 

possible to modulate light with the fixed geometry of the scatterer. When 

circularly polarized light illuminates the anisotropic scatterer array, phase of 

the cross-polarization component is proportional to −2σinθ, where θ is 

rotation angle of the scatterer [86]. Helicity of the incident light, σin, is 1 for 

the right-hand circular polarization (RCP) and −1 for left-hand circular 

polarization (LCP). Holograms are demonstrated by modulation phase of 

reflected light using the geometric phase of rectangular gap-plasmon antenna 

arrays [87]. 

In a case of linearly polarized light, amplitude modulation of light can 

be achieved using two orthogonal polarization states. Amplitude of cross-

polarized component changes in a sinusoidal manner according to angle 

difference between the scatterer and the orientation angle of the incident field, 

similar to transmission characteristics of a linear polarizer. C-shaped aperture 

array was introduced that generates Airy beams [88]. 

 

2.2.2 Generation and control of SPPs using nano-aperture arrays 

In a similar way, optical near-fields delivered by SPPs can be generated and 

tailored by periodic nano-structures. Rectangular nano-aperture with high 

aspect ratio is one of the elementary anisotropic antenna of SPPs due to its 

simple geometry and analytic model. The rectangular aperture radiating SPPs 

can be modeled as an in-plane dipole source of SPPs [89]. Figure 2.5(b) 

shows a radiation pattern of SPPs through the rectangular aperture perforated 

on a gold film. Each level depicts normalized electric field magnitude normal 

to the surface (Ez-field) with the equal interval at 20 nm above the metal 



 

     

 

14 

surface. Here, the Ez-field is adopted among field components to represent 

radiated SPP fields since the Ez-field is only delivered by SPPs while 

orthogonal to the incident electric field components in this case. Full three-

dimensional finite-element method (FEM; COMSOL Multiphysics) is used 

for the calculation with following parameters: wavelength λ0 = 980 nm, 

dielectric constant of the gold film εAu = −37.81 + j1.13 [90], refractive index 

of a substrate nsubs = 1.45, length and width of the aperture l = 320 nm, w = 

80 nm, and thickness of the film tAu = 200 nm. 

When periodically arranged rectangular apertures along the y-direction 

with subwavelength period and the same tilt angle are illuminated by 

normally incident light, the aperture array generates SPPs with uniform 

wavefront propagating to the x-direction, as illustrated in Figure 2.5 (a). In 

this case, Amplitude A and phase profile Φ of the SPP wavefront are 

determined by the tilt angle of apertures θ. When the input light is circularly 

polarized, complex field of SPPs a = AΦ to the +x-direction is then 

approximately written as [58]: 

 

  0 sin j

xa a e   

  ,   (2.6) 

 

where σ is a helicity of the incident light. 
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Figure 2.5 (a) Periodically arranged rectangular nano-apertures with tilt 

angle θ illuminated by normally incident light and (b) scattered field profile 

of a single rectangular aperture. 

 

Additional column of the aperture array can enlarge the availability of 

polarization control. When two columns of the aperture array are arranged by 

face-to-face configuration with a distance of d as seen in Figure 2.6(a), time-

averaged SPP intensity to the +x-direction is given by: 
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where Δ = πd / λSPP is retarded phase due to the distance between the columns.  
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Figure 2.6 (a) Schematic illustration array of rectangular aperture pairs with 

a distance of 3λSPP / 4 illuminated by right-hand circularly polarized (RCP) 

light and (b) its corresponding Hy-field profile. 

The intensity becomes zero at a case of d = 3λSPP / 4 (Δ = 3π / 4) and σ = 

1. That is, SPPs are launched to the single direction of –x when the input 

beam is the RCP. If the helicity is switched, propagating direction is reversed. 

Figure 2.6(b) shows simulated SPP field profile of the case. The RCP wave 

of 980 nm wavelength is normally incident on the aperture array with a 

period of 240 nm. The distance between the columns is 720 nm, where λSPP = 

976 nm. Other geometric and physical parameters are the same with the 

parameters used in Figure 2.5(b). It is clearly seen that SPPs propagate to the 
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–x-direction. 

 

(a)

(b)

(c)
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Figure 2.7 Geometries of aperture pair arrays in top-view introduced in this 

dissertation. (a) Facing aperture pair arrays in Chapter 3, (b) hybrid aperture 

pair array in Chapter 4, and (c) X-shaped aperture pair array in Chapter 5. 

 

In following chapters, three different types of aperture pair arrays are 

introduced extending the previously described aperture array: Chapter 3 

facing aperture pair arrays, Chapter 4 hybrid aperture pair array, and Chapter 

5 X-shaped aperture pair array. Figure 2.7 shows schematic geometries of 

each array. 

The facing aperture pair arrays is composed of two face-to-face-
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arranged rectangular aperture pair arrays as shown in Figure 2.7(a). A single 

line of the array is equivalent to the aperture pair array that is depicted in 

Figure 2.6. Distance between the adjacent apertures along the x-axis is 

reduced from 3λSPP / 4 to λSPP / 4. The function of the aperture pair array, 

polarizing SPP splitting according to the helicity of incoming light, is still 

valid in this case according to working principle described in Figure 2.6. In 

order to avoid overlap of apertures, the apertures are arranged like a tire track 

shape. Two face-to-face-arranged aperture pair arrays can induce interference 

of SPPs when the arrays are illuminated by normally incident linearly 

polarized light. More detailed descriptions of its working principle and 

corresponding function will be presented in Section 3.2. 

The hybrid aperture pair array consists of two aperture pair arrays with 

different openings and rotation angles. Each pair splits SPPs of the RCP and 

the LCP component of incident light, but with the different direction and 

coupling coefficient. The hybrid aperture pair array can launch SPPs 

directionally by elliptically polarized light. Geometric parameters of the 

aperture pair arrays determine directional launching conditions of SPPs. 

Effect of widths and lengths of the apertures, and distance between the pair 

arrays will be discussed in Section 4.2. 

The X-shaped aperture pair array can be considered as an overlapped 

hybrid aperture pair array with zero distance between the pair array. The X-

shaped aperture pair reduces the number of geometric parameters, compared 

to the hybrid aperture pair. Meanwhile, the array gets additional geometric 

symmetry along the x-axis, which associates with symmetric optical response 

according to the helicity of an input beam. The X-shaped aperture pair array 
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is equivalent to an elliptical SPP polarizer that extinguishes SPPs when 

incident light is elliptically polarized. In Chapter 5, a compact polarimeter 

will be proposed utilizing four different elliptical SPP polarizers composed 

of the X-shaped aperture pair array. 
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Chapter 3  Interferometric control of 

SPPs using linearly polarized light 

 

 

 

3.1 Introduction 

 

Surface plasmon polaritons have been successfully applied to building 

nanoscale optical resonators due to their ability of squeezing light far below 

the diffraction limit with highly resonant conditions [91]. Subwavelength 

plasmonic resonators, which are based on single-crystalline silver nanowires 

[8], few-nanometer-thick metal-insulator-metal waveguides [9], and metallic 

fins [92], have been demonstrated. Interactions with quantum emitters and 

lasing action of plasmonic resonators have been also investigated [93–95]. 

Along with the recent development of active plasmonic elements, 

tunable plasmonic resonators have been proposed. Thermo-optical and 

electro-optical control of resonators has been shown using metal strips [96] 

and graphene nanoribbons [97]. In both cases, material properties of the 

resonators are tuned by the external control signal. Modulation depth of such 

active resonators, however, is limited because of small volume of an active 

layer and short variation range of material properties. 

All-optic control utilizing interference between coherent light sources is 

able to improve the controllability of nanostructured optical devices. 

Interaction between light and optical devices can be tuned in all-optical 
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manner with high modulation depth by controlling interference of coherent 

light [59–63]. However, an experimental apparatus to realize optical coherent 

control systems requires delicate alignment of optical elements and fine 

control of optical path length. In the visible and the near-infrared regime in 

particular, change of the optical path length with a few tens of nanometer 

influences the result considerably. 

Here, a tunable plasmonic resonator is proposed whose property is 

controlled by linearly polarzed light. The proposed device consists of 

aperture pair arrays, gratings, and a cavity. The aperture arrays generate and 

split SPPs into two components when illuminated by linearly polarized light. 

Phase difference between counter-propagating SPPs is then proportional to 

the orientation angle of the incident field. This polarization-dependency 

grants the device tunability. The periodic gratings and the rectangular cavity 

make a resonator. When the SPPs encounter each other at the resonator with 

in-phase, electromagnetic energy density in the resonator is maximized. On 

the other hand, for the out-of-phase case, the energy density is minimized. 

Utilizing the tunability, absorption and emission can be controlled when the 

cavity is coupled with lossy media and emitters. After introducing basic 

principles of interferometric control of SPPs, optimization of the resonator 

and simulation results will be presented. Experimental results will be shown 

using the NSOM. 
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3.2 Face-to-face arrangement of the aperture pair arrays 

and linearly polarized light incidence 
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Figure 3.1 Schematic illustration of the overall device. The resonator and the 

aperture pair arrays are illuminated by the polarized electric field with an 

orientation angle of ψ. Insets show detailed configuration of the resonator 

and the aperture pair array. 

 

Figure 3.1 shows a schematic illustration of the proposed device. 

Configuration of the aperture pair array is shown with details in the inset at 

the bottom of Figure 3.1. Each geometric parameter indicates: t: metal 

thickness, wc: cavity width, dc: cavity depth, wg: grating width, dg: grating 

depth, pg: grating period, px: x-direction aperture distance, py: y-direction 

aperture period, wa: aperture width, and la: aperture length. A pair of 
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rectangular apertures, which are tilted with angles of 45 ° at the right side 

and 135 ° at the left side, are spaced with distance of a quarter wavelength of 

the SPP. This is the equivalent case explained in the previous section, 

because translation of sources with a distance of a wavelength will give the 

same synthesized fields, ignoring any losses. 

Complex field of SPPs to the +x-direction ax+ and to the –x-direction ax- 

at the center of the pair can be written as: 
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where ψ is an orientation angle of the incoming electric field. According to 

coordinate system, the incoming electric field lies along the x-direction when 

ψ = 0, and along the y-direction when ψ = π / 2. Multiplied terms of 1/ 2 , 

the exponential function, and the sine function in Equations (3.1) and (3.2) 

correspond to amplitude projection factor due to tilt angles, phase retardation 

factor from the spacing between the pair, and amplitude projection factor 

between the incoming electric field and the nano-aperture, respectively. It is 

shown that the generated counter-propagating SPPs have the same amplitude 
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with phase difference of 2ψ – π. If the spacing and tilt angles of the aperture 

pair array vary, this phase-only modulation of the envelopes cannot be 

achieved. This result coincides with the previous work done by Lin et al. 

[46], considering that a polarization state of linearly polarized light equals to 

a linear combination of right-hand and left-hand circular polarizations. 
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Figure 3.2 (a) Phase of SPP fields generated by the apertures pair array. 

Normalized electric field intensity profiles of the aperture pair arrays 

illuminated by the incoming electric field with the orientation angle of (b) 0 

and (c) π / 2. 
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Phase change of SPPs at a fixed distance with respect to the orientation 

angle is calculated with the finite element method (FEM) based full-vectorial 

simulations. Gold film with t = 300 nm on a glass substrate is illuminated by 

the wavelength of 980 nm. Dielectric constants of the gold and glass are –

37.81 + 1.13j and 2.10, respectively [90]. Geometric parameters of the 

aperture pair array are: px = 240 nm, py = 400 nm, wa = 80 nm, and la = 320 

nm. Wavelength of the SPP at the gold-air interface is 967 nm, of which px 

corresponds to about a one-fourth. 

Dashed lines in Figure 3.2(a) plot ideal phase profiles according to 

Equations (3.1) and (3.2). It can be seen that dots, which represent calculated 

phase, follow the dashed lines. The phase difference between the two SPPs, 

especially, is almost the same as the analytic results, 2ψ – π. If the two 

aperture pair arrays are placed with a face-to-face form, interference of 

counter-propagating SPPs can be controlled by the orientation angle. Figures 

3.2(b) and 3.2(c) depict electric field intensity profiles in the xy-plane at 20 

nm above the metal surface when the two aperture pair arrays are illuminated 

by the electric field of ψ = 0 and ψ = π / 2, respectively. Nodes and antinodes 

between the columns are reversed as the incoming electric field rotates by 90 

degrees. 
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3.3 Design and optimization of a resonator 

 

3.3.1 Control of stored electromagnetic energy using linearly 

polarized light 

 

(a) (b)
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Figure 3.3 Schematic illustrations of (a) the on-state and (b) the off-state 

controlled by interference between counter-propagating SPPs. 

 

The resonator is made of a rectangular cavity and periodic gratings that act 

as partial mirrors, so that the quality factor can be increased. As previously 

explained, counter-propagating SPPs encounter with in-phase at the 

resonator for ψ = π/2 case and with out-of-phase for ψ = 0 case. That is, 

averaged electromagnetic energy density u  inside the resonator becomes its 

maximum for the former case, while it becomes the minimum for the latter 

case. Let the former case on-state and the latter case off-state. On/off ratio r 

is defined using u  of the two states as: 
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where S is the cavity area, and 
on

E , 
off

E  are electric fields of the on-state 

and the off-state, respectively. 

 

3.3.2 Optimization of a rectangular cavity and periodic gratings 

 

(a) (b)

O
n

/o
ff

 r
at

io
 (

a.
u

.)

 

Figure 3.4 (a) The on/off ratio according to the cavity width. (b) The on/off 

ratio map with respect to the grating period and offset. 

 

In order to optimize the resonator, geometric parameters are investigated. At 

first, wc, width of the cavity, is examined. It is shown in Figure 3.4(a) that the 

first order resonance occurs when wc is around a half of the SPP wavelength. 

The maximum on/off ratio is achieved as 20.1, with the width of 520 nm. 

Then, the grating period and the offset, which is a distance between the edge 

of the cavity and the first grating, are inspected since they also have 

periodicity related with the wavelength. The on/off ratio map according to 

each parameter is depicted in Figure 3.4(b). Other auxiliary parameters are 

set as dc = 200 nm, dg = 110 nm, and wg = 80 nm. The optimum condition 

appears when pg is about a wavelength of the SPP. The on/off ratio increases 

about 15 times, compared with the on/off ratio without the gratings. It 
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indicates that the gratings play a role of amplifying the resonance. The 

grating period is determined as 940 nm and the offset as 180 nm. The Q-

factor of the optimized resonator is 81.4. 
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Figure 3.5 Spectrum of stored electromagnetic energy inside the cavity. 

 

Figure 3.6 shows simulation results of the overall device, including the 

aperture pair arrays and the resonator. The averaged energy density inside the 

cavity, which is normalized by that of the off-state, rises from 1 to 430 as ψ 

changes from 0 to π / 2. As well as the energy density of the on-state and the 

off-state, an intermediate amount of the energy density can be obtained by 

the appropriate orientation angle that agrees with the relation of Figure 3.6(a). 

Cross-sectional electric field intensity profiles in Figures 3.6(b) and (c) 

clearly show the result. Strong electric fields appear at the cavity for the on-

state, while electric fields are enhanced at the gratings rather than the cavity 

for the off-state. 
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Figure 3.6 (a) Averaged energy density inside the cavity normalized by that 

of the off-state with respect to the orientation angle. Cross-sectional 

normalized electric field intensity profiles of (b) the on-state and (c) the off-

state. 
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3.4 Experimental demonstration 
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Figure 3.7 (a) SEM image of the fabricated sample. (b) Experimental 

apparatus measuring the near-field images. M: mirror, QWP: quarter-wave 

plate, HWP: half-wave plate, LP: linear polarizer, CCD: charge-coupled 

device, PD: photodetector, and x10: objective lens of x10. 
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The optimized device is fabricated on a gold film using the focused ion beam 

(FIB) milling with source voltage of 30 kV and current of 1 pA (FEI, Helios 

650). The aperture pair arrays of 3 periods along the x-direction and 100 

periods along the y-direction are perforated on a 300-nm-thick gold film 

deposited on a 1 mm thick piecewise slide glass (Marienfeld, plain) by e-

beam evaporator (KVT, KVE-3004). Periodic arrangement of the array along 

the x-axis, with the period equal to the SPP wavelength, is placed to enhance 

SPP signal levels. After that, the gratings and the cavity are positioned at the 

center of the face-to-face aperture pair arrays. A SEM image of the fabricated 

sample is shown in Figure 3.7(a). 

Experimental setup is illustrated in Figure 3.7(b). Near-field images are 

measured using NSOM (Nanonics, MultiView 4000) with an aperture probe 

with 250 nm core diameter. Optical power though a fiber from the probe is 

detected by an InGaAs photodetector (Agilent, 81634B). The sample is 

illuminated by the laser of 980 nm wavelength after passing a set of the wave 

plates and the polarizer, which renders light into linear polarization states. 

The orientation angle is changed by rotating the polarizer. It is worth to note 

that near-field imaging based on raster scanning is inadequate to measure 

interferometry in general because it is vulnerable to vibrational noise during 

the measurement. According to the experimental scheme in Figure 3.7(b), 

however, noise in the optical path affects the same for the both path lengths, 

so that disturbance can be cancelled out. This makes the imaging more 

impervious to vibrational noise. 

Near-field images with scanning window of 33 μm × 33 μm at the on-

state and the off-state are depicted in Figure 3.8. It is shown that bright 
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double lines appear at the cavity of the on-state. Because of low signal level 

of the off-state, the near-field profile is detected with more noises that result 

in diagonal stripes in Figure 3.8 (b). 

(a)

(b)

0

1

0

1

 

Figure 3.8 NSOM images at (a) the on-state and (b) the off-state. Scale bars 

represent 5 μm. 

For the sake of precise comparison between the field profiles, magnified 

NSOM images are acquired by narrowing scanning window to 14.5 μm × 

14.5 μm around the center. The exact position of the cavity is obtained by 

analyzing surface morphology data collected from an auxiliary atomic force 

microscopy (AFM) probe of the NSOM system. Figure 3.9 shows raw data 

acquired from the NSOM and AFM probes. Positions of the cavity and the 

gratings are clearly recognized. Measured NSOM data are then averaged 

along the y-axis in order to clarity the signals. The y-axis is also specified by 

the surface morphology data, which is normal to the orientation of the cavity. 
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(a) (b)

(c) (d)

 

Figure 3.9 Raw NSOM data and corresponding auxiliary AFM data at (a, b) 

the on-state and (c, d) the off-state. Scale bars represent 3 μm. 

x
 

Figure 3.10 Cross-sectional intensity profiles near the cavity. Dash-dotted 

line corresponds to the cavity. 
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Figure 3.10 plots cross-sectional intensity near the center of the sample. 

As well as shifting of nodes and antinodes, near-field intensity of the on-state 

is seized strongly at the edge of the cavity, whose width is lined with dash-

dot in Figure 3.10. This result seems different from the energy density profile 

depicted in Figure 3.6(b), however, since the energy density is enhanced 

markedly at the center of the cavity rather than the edges. This difference can 

be explained by uneven coupling efficiency between each electric field 

component and the NSOM probe. Properties of the NSOM probe, such as 

aperture type, core diameter, and tilt angle can influence the coupling 

efficiencies among the field components [98]. Especially for the proposed 

resonator, amount of the in-plane electric fields (Ex-field) and the electric 

fields normal to the surface (Ez-field) are almost leveled inside and near the 

cavity. Thus, the uneven coupling efficiencies can make intensity profiles 

different from the exact energy density profiles. 

Based on the cross-sectional intensity profiles, the on/off ratio is figured 

out. As previously mentioned, measured near-field intensities have some 

discrepancies from the exact energy density. That is, the on/off ratio cannot 

be computed as the same way that is applied for simulation results. Instead, 

the maximum intensity values inside the cavity of each state are adopted, 

noticing that ratios of the maximum values are similar among the field 

components. The final on/off ratio is found out as 1.55. 

The on/off ratio derived from the experimental results, however, is not 

as remarkable as that from the simulation results. The major drawback is 

fabrication errors of the resonator. For example, due to sensitive resonant 

condition with high Q-factor, 20 nm difference of the cavity width from the 
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target dimension decreases the on/off ratio down to one-tenth of the optimum 

value. Geometric defects of the resonator, rough surface morphology of the 

bottom of the cavity, tapered sidewalls, and fillets at the grating edges for 

examples, also contribute to reduce Q-factor of the resonator. With regard to 

the measurement system, laser source with higher output power can improve 

clarity of the images by increasing the signal-to-noise ratio of measured near-

field intensities. Furthermore, other imaging techniques that are able to 

collect optical power directly proportional to energy density inside the cavity 

can help to improve the measurement, for instance fluorescence imaging 

using deposition of dye molecules and quantum dots [99–101]. 
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3.5 Summary and discussions 

 

A plasmonic resonator is designed and demonstrated whose electromagnetic 

energy density can be controlled by the orientation angle of the incident 

electric field. Interferometric control of SPPs, which are excited by the nano-

aperture pairs, makes the resonator tunable. After optimizing the resonator, 

the on/off ratio reaches 430. This large tunability can be utilized in optical 

transceivers and particle trapping systems. Near-field images are measured 

using NSOM by actuating only the angle of the polarizer. Based on the 

working principle of our work, interferometric control is possible without 

exquisite alignment of optical path length. That is, experimental setup of the 

interferometry can be significantly simplified. The proposed method can 

contribute to realizing all-optically controlled active plasmonic devices and 

coherent network elements, and developing more compact polarization-

sensitive optical systems. 

In this chapter, interferometric control of SPPs are discussed based on 

linear polarization states. The helicity information of light, however, is 

discarded. It will be investigated to make use of both an orientation and an 

ellipticity angle of a polarization state in the following chapters. 
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Chapter 4 Directional launching and 

switching of SPPs using elliptically 

polarized light 

 

 

 

4.1 Introduction 

 

Here, directional launching and switching of SPPs using elliptically 

polarized light are proposed based on a hybrid aperture pair array. The hybrid 

aperture pair is composed of two rectangular aperture pairs with different 

size factor. Due to different coupling coefficient between SPPs generated by 

each aperture pair, SPPs propagate to a single direction at the given 

elliptically polarize light. Starting from an analytic model that deals with 

SPPs generated by a simple complex field with uniform wavefront, 

numerical and experimental verifications are presented. 
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4.2 Principles of hybrid aperture pair array 

 

4.2.1 Configuration of a hybrid aperture pair 
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Figure 4.1 Directional launching scheme of SPPs using array of hybrid 

aperture pairs and elliptically polarized light. Inset shows top-view of the 

hybrid aperture pairs. 

 

In Section 2.2.2, excitation of SPPs through a single column and double 

columns of the aperture array is explained. The double columns of the 

aperture array act as a polarized beam splitter that splits SPPs into the RCP 

component and the LCP component. However, polarized beam splitting 

according to the helicity of the incoming light abandons information about 

an orientation angle of the polarization since field intensities of propagating 

SPPs to each x-direction are determined by the distance between the columns 

and the helicity of the input beam. If splitting of SPPs that is sensitive to both 

the orientation angle and the helicity of the incident light is possible, 
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controllability coverage can be extended to the entire surface of the Poincaré 

sphere, not only the polar points. 

Here, additional double columns of the aperture array are introduced as 

shown in Figure 4.1. The aperture array columns are composed of two sets of 

aperture pairs, which are coined as a hybrid aperture pair. Let the two 

aperture columns at the left side be Pair 1, and the right side be Pair 2. Pair 

1 and 2 have the same period along the y-direction and the distance between 

the adjacent columns is 3λSPP / 4. Both Pair 1 and 2 operate as polarized 

beam splitters. However, their tilt angles are allocated inversely, (− π/4, π/4) 

for Pair 1 and (π/4, − π/4) for Pair 2. Hence, splitting directions with respect 

to the helicity of the incident light are opposite to each other, between Pair 1 

and 2. In addition, coupling efficiencies of each pair to SPPs are different 

due to variation of lengths and widths. 

Consider the case of the RCP illumination at Pair 1 and Pair 2. Electric 

field profile of the incident light is: 

 

 0 1, ,0
2

sjk z

in

E
j e E ,       (4.1) 

 

where ks is wavenumber of the dielectric substrate. As shown in Figure 

2.6(b), SPPs generated by Pair 1 will propagate to the –x-direction. 

According to Equation (2.2), Ez-field of the propagating SPP mode can be 

written by: 
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z xE E e e
 

  .        (4.2) 
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Neglecting an intrinsic loss of SPPs, a coupling coefficient of SPPs 

generated by Pair 1 is then defined by a ratio between complex amplitudes of 

the incident field and the Ez-field of SPPs: 

 

SPP1
1

0

E
c

E
 .   (4.3) 

 

In a similar way, the coupling coefficient by Pair 2 can be obtained. In a case 

of Figure 4.2 (b), |c1| < |c2| since Pair 2 has large footprint. 

Size factor of the hybrid aperture pair can be then fully characterized by 

a coupling ratio c and phase difference δ as: 

 

1

2

c
c

c
 ,        (4.4) 

 

2 1c c   ,        (4.5) 

 

where   is an argument function of a complex number. 

Suppose that elliptically polarized light with an orientation angle ψ and 

axial lengths of a and b as Figure 4.2(a) illuminates Pair 1 and 2. Right-hand 

rotated field is assumed in this case. Each CP component in the elliptical 

polarization can be obtained from the Jones calculus as: 
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J J J ,   (4.6) 

 

where ψ is an orientation angle of the polarization ellipse and the Jones 

vectors JR = 1/ 2 (1, − j)T and JL = 1/ 2 (1, j)T denote SOPs of the RCP 

and LCP, respectively. Exchange of the sign of b can describe the field 

incidence of left-hand rotation. Derived relation shows that the RCP and the 

LCP component have amplitude ratio of (a + b) : (a − b) with phase 

difference of 2ψ. 

 

1d

2d

d

(a)

(b)

RJ LJ

R

a

b

J

 

Figure 4.2 (a) Polarization ellipse denoting the SOP of the illuminated beam. 

(b) Working principle of a hybrid aperture pair array with component-wise 

picture of Pair 1 (middle) and Pair 2 (bottom). 
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As mentioned above, Pair 1 and 2 split the RCP and LCP component of 

the incident light to opposite direction of SPPs. As shown in Figure 4.2(b), 

Pair 1 (middle) releases the RCP component of the incoming light to the –x-

direction of SPPs (blue arrows), while the LCP component to the +x-

direction (red arrows). For the case of Pair 2, SPPs couple in the opposite 

manner. Size of each arrow illustrates magnitude of coupled SPPs by the 

pairs schematically. Net SPPs to each x-direction can be obtained by 

superposition of two cases, as seen in the top of Figure 4.2(b). If it is possible 

to match the blue arrows of Pair 1 and the red arrows of Pair 2 with the same 

magnitude but phase difference of π, SPPs to the –x-direction will be 

canceled out. Therefore, SPPs will propagate only to the +x-direction. Such 

matching condition can be found by investigating relation among coupling 

coefficients c1, c2, and the RCP/LCP components derived from Equation 

(4.6). At first, amplitude of SPPs excited by Pair 1 and Pair 2 should be the 

same. The coupling ratio c satisfies 

 

0

a b
c

a b





.       (4.7) 

 

The subscript 0 denotes the matched condition that SPPs from Pair 1 and 2 

are canceled out. Here, intrinsic loss of SPPs and secondary scattering that 

occurs when coupled SPPs cross over the other apertures are neglected to 

simplify an analytic model. 

Secondly, consider phase terms of SPP complex fields. The phase term 

includes geometric phase from each polarization component, retarded phase 
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due to traveling of SPPs, and phase difference δ due to the size factor of the 

aperture. The phase term of SPPs to the –x-direction excited by Pair 1, φ1, 

can be written as: 

 

1 SPP 1 1k d     ,   (4.8) 

 

where kSPP is a wavenumber of the SPP. Similarly, the phase term of SPPs by 

Pair 2 is: 

 

2 SPP 2 2k d      .   (4.9) 

 

Then the phase difference δ is achieved from the total phase difference φ2 − 

φ1 at the out-of-phase condition as: 

 

 0 SPP2 2 1k d n      ,    (4.10) 

 

where n is an integer number. For the LCP-dominant incident field, signs of 

the geometric phase term and the retarded phase term are switched as: 

 

 0 SPP2 2 1c c k d m       .    (4.11) 

 

This implies that there is a conjugate polarization state s0
c of s0 that can 

excite SPPs to the other direction. 
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In summary, it is possible to generate SPPs to a single direction for the 

given arbitrary SOP s0, by properly designed hybrid aperture pair array with 

the size factor satisfying c0 and δ0. In addition, propagating direction of SPPs 

can be switched by the conjugate polarization state sc. 

In reverse, s0 can be found at the given hybrid aperture pair. An 

ellipticity angle χ0 of the polarization ellipse is directly obtained from the 

coupling ratio c from Equations (4.4) and (4.7) and the definition of the 

ellipticity angle as: 

 

0

1
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1

c

c


 
  

 
.   (4.12) 

 

The orientation angle ψ is affected by two parameters of d and δ. 

According to Equations (4.10) and (4.11), ψ0 and its conjugate ψ0
c can be 

rewritten as: 

 

  SPP
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     ,    (4.13) 
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     .    (4.14) 

 

Derived equations show relation among ψ0, ψ0
c, d, and δ explicitly. Both 

orientation angles vary the same amount with respect to the change of d. On 

the other hand, deviation between ψ0 and ψ0
c increases when δ increases. 
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Hence, an arbitrary set of ψ0 and ψ0
c can be attained by engineering d and δ. 

 

4.2.2 Design of hybrid aperture pairs and examples 
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Figure 4.3 Contour maps of (a) the coupling coefficient c and (b) the phase 

difference δ according to length of the rectangular apertures. 
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Figure 4.3 shows contours of c and δ based on the array of single aperture 

pair (see Figure 2.6) perforated on a 200 nm thick gold film. The coupling 

coefficient c is presented in dimension of dB to show the result more clearly. 

l1 and l2 denote length of each pair. Width is fixed as a quarter of the length. 

FEM is used for the calculation with following parameters: wavelength λ0 = 

980 nm, distance between the face-to-face aperture columns 3λSPP / 4 = 720 

nm, period along the y-direction py = 240 nm, dielectric constant of the gold 

film εAu = −37.81 + j1.13 [90], and refractive index of a substrate 1.45. c and 

δ are obtained from near-field components delivered by SPPs when the 

aperture pair array is illuminated by the RCP. Thickness of the gold film and 

range of the aperture length are selected considering wavelength of the 

incident field, to avoid abrupt change of the coupling ratio c and the phase 

difference δ due to resonance rising at a single aperture. 

Each point in Figures 4.3(a) and (b) indicates c and δ of the hybrid 

aperture where the lengths of each pair are given by l1 and l2, respectively. 

For instance, Pair 1 of 260 nm and Pair 2 of 320 nm length give c = 1.512 

and δ = π / 4. The hybrid aperture with Pair 1 of 210 nm and Pair 2 of 340 

nm have c = 4.441 and δ = π / 2. In order to verify the proposed model, a 

case of c = 1.512 and δ = π / 4 is chosen, which is mentioned at the previous 

example. According to Equations (4.12), (4.13), and (4.14), deviation of the 

orientation angle 0 0

c   will be π / 4 and the ellipticity angle χ0 be 11.5 °. 

Length and width of Pair 1 are selected as 260 nm and 70 nm, respectively, 

and 340 nm and 75 nm for Pair 2 after additional slight tuning of lengths and 

widths. If SPPs excited by the hybrid aperture are the exact superposition of 

Pair 1 and Pair 2, intensities of SPPs propagating to the +x-direction Ix+ and 
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the –x-direction Ix– at the polarization angles of ψ and χ will be expressed 

using Equations (4.6), (4.10) and (4.11) as: 

 

 2 2 2

0 0 R L 0 R L SPP 02 cos 2xI I c a a c a a k d 
       ,   (4.15) 

 

 2 2 2

0 R 0 L 0 R L SPP 02 cos 2xI I a c a c a a k d 
       ,   (4.16) 

 

where  2

R sin / 4a     and  2

L sin 3 / 4a    . Extinction ratio is 

then defined by a ratio between two intensities, 
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.   (4.17) 

 

Figure 4.4 shows extinction ratio in the case of d = 1440 nm. The 

polarization angles at directional launching of SPPs are obtained by (ψ0, χ0) = 

(22.5 °, 11.5 °) and (ψ0
c, χ0

c) = (157.5 °, −11.5 °), which are black dashed 

lines and white dashed lines respective in Figures 4.4(b) and (c). Figure 4.4 

(b) depicts analytic results according to Equations (4.16) and (4.17), while 

Figure 4.4(c) is the result using the FEM simulation with the geometry in 

Figure 4.4(a). It is shown that the hybrid aperture pair array operates as 

expected by comparing Figures 3.4(b) and (c). 
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Figure 4.4 (a) The hybrid aperture pair array with d = 1440 nm. (b) 

Extinction ratio computed by analytic model according to Equations (4.15) 

and (4.16). (c) Extinction ratio calculated by the FEM. 
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Figure 4.5 (a) The hybrid aperture pair array with d = 1200 nm. (b) 

Extinction ratio computed by analytic model according to Equations (4.15) 

and (4.16). (c) Extinction ratio calculated by the FEM. 
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Figure 4.5 is another example, which is introduced to check validity of 

Equations (4.13) and (4.14). The second type of the hybrid aperture pair 

array has the same geometric parameters with the first one, except for d. In 

this case, d is 240 nm shorter than the previous case, which is equivalent to a 

quarter of the SPP wavelength. Because the size factor is the same, χ at the 

directional launching condition is the same with the previous example. On 

the other hand, ψ rotates − π / 4 due to the change of d. Therefore, the 

polarization angles will be (ψ0, χ0) = (157.5 °, 11.5 °) and (ψ0
c, χ0

c) = (112.5 °, 

−11.5 °). The simulation result of the second example also follows the 

analytic result, but some amount of deviation at (ψ0, χ0). The deviation 

implies c and δ of Pair 1 and 2 differ according to the helicity of the 

incoming light. Considering that the change of the helicity is equivalent to 

switch of the coordinate from +x to –x or from +y to –y, it can be said that 

this asymmetry is inherited from the geometrical asymmetry of the hybrid 

aperture array. The hybrid aperture array does not have even geometry with 

respect to the x-axis nor the y-axis. For example, SPPs excited by Pair 1 

traveling to the +x-direction encounter Pair 2, while those to the –x-direction 

glide without bumping to any additional scatterers. This issue can be handled 

if Pair 1 and 2 are overlapped so that the geometry gets symmetry. The 

overlapped hybrid aperture array, or an X-shaped aperture array will be 

introduced and discussed in Chapter 5. 
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Figure 4.6. Hy-field profiles of SPPs at (a, b) the case of d = 1440 nm and the 

case of d = 1200 nm. Scale bar indicates 500 nm. 

 

Figure 4.6 depicts SPPs at each directional launching condition for the 

two examples. Hy-field profiles in the xy-plane at 20 nm above the metal 

surface are plotted in order to clearly show near-fields carried by SPPs. All 

the fields are normalized with the same scale. It is seen that SPPs travel to 

the single direction with uniform wavefront. Extinction ratios are 16.9 dB, 

−19.2 dB, 18.3 dB, and −24.1 dB, from Figures 4.6(a) to (d), respectively. 
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4.3 Experimental demonstration 

 

4.3.1 Fabrication and measurement setup 
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Figure 4.7 SEM images of (a, b) the hybrid aperture arrays with d = 1440 nm, 

(c, d) d = 1200 nm, and (e, f) an outcoupler 

 

Focused ion beam (FEI, Quanta 200 3D) milling is used for fabrication 

of the hybrid aperture array with the geometries of Figures 4.4(a) and 4.5(a). 

Hybrid aperture pair arrays of 2 periods along the x-direction and 100 

periods along the y-direction are perforated on a 200 nm thick gold film 

deposited on a 1 mm thick piecewise slide glass (Marienfeld, plain) by e-
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beam evaporator (KVT, KVE-3004). Twenty periods of the array are 

engraved at a single exposure of FIB with 10 pA of current and 30 kV of 

source voltage. The same exposure is repeated 5 times after translating the 

sample holder by 4.8 μm along the y-axis between the each step. Milling 

sequence is allocated row-by-row following a zigzag manner in order to 

locate each aperture at a precise position. Figure 4.7 shows SEM images 

(Hitachi, S-4800) of fabricated hybrid aperture arrays. Lengths, widths, and 

distances among adjacent apertures are matched to the target parameters after 

several times of adjustments. 
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Figure 4.8 Schematic illustration of FIB milling sequence. 

 

In order to measure optical near-fields of SPPs, outcouplers are 

positioned at the equal distance, 30 μm, from the hybrid aperture array. The 

outcoupler is a periodic grating that radiates incoming SPPs to the free space 

as illustrated in Figure 4.9(a). Optical power delivered by SPPs to each 

direction can be compared by measuring brightness of each outcoupler by 

the CCD. The outcoupler is fabricated to have 880 nm period with 0.5 fill 

factor, 5 periods, 80 nm depth, and 18 μm length. The distance between the 

outcouplers is preferred to be closer to the hybrid aperture array considering 

a coupling efficiency. However, if the distance between the outcouplers are 
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too close, parasitic interference due to reflected SPPs at the outcoupler can 

disturb the result. The distance of 30 μm is set to compromise these two 

issues after several times of experimental trials. The period is determined to 

have the highest coupling efficiency based on numerical studies. 

 

1 m

(a) (b)
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Figure 4.9 (a) Operation mechanism of an outcoupler and (b) a SEM image 

of fabricated outcoupler. 

 

Experiment apparatus is setup based on continuous wave laser of 980 

nm wavelength as shown in Figure 4.10. Output power of the laser beam is 

about 200 mW. A set of a polarizer and wave plates are placed to produce 

arbitrary elliptically polarized light. Two former wave plates are fixed to 

produce circular polarization that makes the illuminated power constant 

regardless of the polarization state after the linear polarizer. The linear 

polarizer and the half-wave plate synthesize desired SOPs by rotating to 

appropriate angles after that. All optical elements on a path including mirrors 

are anti-reflection coated with operating wavelengths from 700 nm to 1100 

nm. The fabricated sample on a stage is illuminated from the backside by a 

normally incident laser beam that covers the whole area of the sample 
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uniformly. At the frontside of the sample, a CCD camera captures images 

magnified by an x 50 objective lens (Allied Vision, Mako G-223). Position 

of a mirror below the stage is toggled in order to obtain the images of the 

illuminated sample and the incident polarization simultaneously. A 

commercial polarimeter is used to detect SOPs of the laser beam after the 

polarizer and wave plates (Thorlabs, PAX5710IR-T). 
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Figure 4.10 Schematic illustration of measurement setup. Inset illustrates a 

top-view of the sample. M: mirror, NDF: neutral-density filter, QWP: 

quarter-wave plate, HWP: half-wave plate, LP: linear polarizer, CCD: 

charge-coupled device, and x50: objective lens of x 50. 
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4.3.2 Measured extinction ratios 

Captured images of the hybrid apertures at given SOPs are shown in Figures 

4.11 and 4.12. Bright areas at the center correspond to the transmitted light 

through the hybrid aperture pair arrays. The outcouplers are located at the 

both ends of presented images. It can be seen that brightness of each 

outcoupler changes according to polarization states of the incident light. It is 

worthy of noting that the outcouplers are thoroughly turned off at the left-

most case in Figure 4.11(a) and the right-most case in Figure 4.11(b). This 

implies that radiated fields at the outcouplers only depend on excited SPPs, 

without permitting any direct transmission of the incident light. 

For the sake of comparison, calculated field profiles, which show 

normalized electric field intensities |E|2 100 nm above the surface, are 

presented below the corresponding captured images. Here, a numerical 

model that assumes anisotropic subwavelength apertures as dipole sources is 

used (see Ref. [55] for more detailed descriptions). The calculated profiles 

directly depict near-field intensities delivered by SPPs generated by the 

hybrid aperture pair array. Similarly, the aperture arrays are located at the 

center of the figures. It can be seen that intensities at the right and the left 

side of the aperture arrays change according to the given polarization states. 

Noting that there is a linear relation between intensities of SPPs and 

intensities of radiated fields by the outcouplers, captured images and 

corresponding calculated field profiles show close proximity to each other. 
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(a) χ = 11.3 °

ψ = 26.0 ° ψ = 161.0 °ψ = 71.0 ° ψ = 116.0 °

ψ = 26.0 ° ψ = 161.0 °ψ = 71.0 ° ψ = 116.0 °

(b) χ = − 11.3 °

 

Figure 4.11 Captured images and calculate electric field intensity profiles at ellipticity angles of (a) χ = 11.3 ° and (b) χ = 

−11.3 ° for the cases of d = 1440 nm. Scale bars are 10 μm. 
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(a) χ = 11.3 °

ψ = 26.0 ° ψ = 161.0 °ψ = 71.0 ° ψ = 116.0 °

ψ = 26.0 ° ψ = 161.0 °ψ = 71.0 ° ψ = 116.0 °

(b) χ = − 11.3 °

 

Figure 4.12 Captured images and calculate electric field intensity profiles at ellipticity angles of (a) χ = 11.3 ° and (b) χ = 

−11.3 ° for the cases of d = 1200 nm. Scale bars are 10 μm. 
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Figure 4.13 Measured extinction ratios for the cases of (a) d = 1440 nm and 

(b) d = 1200 nm. Insets illustrate SOPs on unit Poincaré spheres. 

 

The extinction ratio is measured by rotating ψ in 16 steps at χ = 11.3 ° 

and χ = −11.3 °. Intensities Ix+ and Ix− are obtained from brightness at each 

outcoupler areas of the achieved images, after removing dc level signals. 

Then the extinction ratios are calculated according to Equation (4.17). Figure 

4.13 plots the result. Solid lines are the simulation results that have also been 
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presented in Figures 4.4(c) and 4.5(c), and dots are the measured extinction 

ratios. Blue lines and dots denote results of χ = 11.3 ° and red lines and dots 

represent those of χ = −11.3 ° Insets in Figure 3.12 graphically show the 

given SOPs on a unit radius Poincaré sphere. In the both cases with different 

d, measured extinction ratios are well matched with the simulation results. 

High directivity is achieved at the target polarization states. Maxima and 

minima extinction ratios are obtained as 16.1 dB, −12.2 dB for the case of  

d = 1440 nm, and 21.1 dB, −18.1 dB for the case of d = 1200 nm. 
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4.4 Summary and discussions 

 

In this chapter, generation of SPPs based on an array of hybrid aperture pairs 

with subwavelength period is investigated. It is shown that directional 

launching and switching of SPPs can be executed at an arbitrary set of two 

elliptical polarization states, which are not orthogonal to each other. After 

verifying the analytic model using the FEM simulations, optical response of 

the fabricated hybrid aperture pair array is examined. The hybrid aperture 

pair array with lengths and widths (260 nm, 70 nm,) and (340 nm, 75 nm) is 

perforated on a 200 nm thick gold film by the FIB milling. Experimental 

results show high coincidence with the analytic model and numerical results 

in two different cases. Extinction ratios are achieved as 16.1 dB, −12.2 dB, 

21.1 dB, and −18.1 dB at the polarization angles (ψ, χ) of (26.0 °, 11.3 °), 

(161.0 °, −11.3 °), (4.5 °, 11.3 °), and (116 °, −11.3 °), respectively. 
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Chapter 5 Compact plasmonic 

polarimeter 

 

 

 

5.1 Introduction 

 

In this chapter, a compact plasmonic polarimeter is proposed based on an X-

shaped aperture array. The X-shaped aperture array is composed of a pair of 

X-shaped aperture of different arm sizes with face-to-face arrangement. 

Surface plasmon polaritons excited by this aperture array are turned off at a 

certain elliptically polarized light, so that the X-shaped aperture array acts as 

an elliptical polarizer of SPPs. Polarization state of normally incident light is 

detected by reading intensities of SPPs generated by two perpendicular X-

shaped aperture arrays. After describing an analytic model of the X-shaped 

aperture array based on the Jones calculus, design rules of the polarimeter 

will be presented. Finally, experimental results will be shown with 

illumination wavelengths of 800 nm, 840 nm, 920 nm, and 980 nm. 
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5.2 Design of an X-shaped aperture array 

 

5.2.1 Analysis on scattering property of the X-shaped aperture 

array using the Jones calculus 
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Figure 5.1 (a) Schematic illustration of an X-shaped aperture array. (b, c) 

Field profiles of two lowest order modes of a single X-shaped aperture. 

 

In Chapter 4, the hybrid aperture array has been discussed that generates 

SPPs to a single direction for elliptically polarized light. An X-shaped 

aperture array as shown in Figure 5.1 can be another example of the hybrid 
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aperture array where the distance between Pair 1 and Pair 2 is zero. In order 

to guarantee that the X-shaped aperture is equivalent to an overlap of Pair 1 

and 2, each arm of the X-shaped aperture should hold independent dipole 

modes. Figures 5.1(b) and (c) show field profiles of two lowest order modes 

of the X-shaped aperture. Results of the modes are obtained using a mode 

analysis based on the FEM. Color maps depict electric field magnitude and 

arrows represent in-plane instantaneous electric fields. Widths and lengths of 

the arms along the x-axis and the y-axis are 60 nm, 300 nm, 95 nm, and 380 

nm, respectively. Other physical parameters are set as: λ0 = 840 nm, εm = 

−25.85 + j0.79 [90]. Calculated field profiles show dipole modes along the 

each arm. Other higher order modes also exist. However, these higher order 

modes are rarely excited at the normal incidence, due to zero-averaged field 

overlap with the equi-phased incident field. It is worthy of noting that 

magnitude of the electric fields weakens at the center of the aperture due to 

wide gap distance between metal walls. This causes an effective length of 

each arm to be reduced. 

If the X-shaped aperture only permits two orthogonal dipoles, array of 

the X-shaped apertures transmits the incident light when an orientation angle 

of its electric field, or polarization, is matched with the angle of the arm of 

the X-shaped aperture. That is, the X-shaped aperture array can be 

considered as a rotated polarizer. The Jones matrix of the rotated polarizer is 

[85]: 
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where c1 and c2 represent complex scattering coefficients for the incident 

field which are linearly polarized along the two arms. Equation (5.1) is a 

general relation that describes any transmitted light through the rotated 

polarizer. Likewise, Equation (5.1) can characterize SPPs generated by the 

X-shaped aperture array from the fact that electric field oscillations at the 

aperture excite SPPs traveling to longitudinal directions. That is, SPPs 

excited by an X-shaped aperture array, which is periodically arranged along 

the y-axis, can be explained using an x-pol component of the transmitted 

Jones vector. Therefore, coupling coefficient of SPPs at given Jones vector J 

can be obtained by: 

 

 SPP 11
c  MJ .      (5.2) 

 

The proposed X-shaped aperture array consists of two columns of X-

shaped apertures that are positioned face-to-face with a distance of d and tilt 

angle of 45 °. The Jones matrix that gives coupling coefficient of SPPs 

propagating to the –x-direction is written by: 
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where Δ = 2πd / λSPP is a retarded phase due to traveling of SPPs between the 

aperture columns. It is possible to extinguish SPPs to the –x-direction if there 

is J that makes (Mx-J)11 = 0. Such Jx− is calculated from Equation (5.3) as: 

 

 

 

1 2
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cos
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x
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J .    (5.4) 

 

Decomposition of Jx− into JR = 1/ 2 (1, − j)T and JL = 1/ 2 (1, j)T gives 

two coefficient cR− and cL−: 

 

   R 1 2 1 2

1 1
cos sin

2 22 2
c c c c c

 
    ,  (5.5) 

 

   L 1 2 1 2

1 1
cos sin

2 22 2
c c c c c

 
     ,  (5.6) 

 

where Jx− = cRJR + cLJL. Similarly, Jx+, cR+ and cL+ are obtained by switching 

the sign of the retarded phase. Denote corollary relations: 

 

R Lc c   ,     (5.7) 

 

L Rc c   .     (5.8) 
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In order to check the validity of derived relations, the hybrid aperture 

pair array is revisited. In the case of the hybrid aperture pair, d of Pair 1 and 

2 is set as 3λSPP / 4, which means Δ / 2 = 3π / 4. Then Jx− is obtained by: 

 

2 R 1 Lx c c   J J J .   (5.9) 

 

This result corresponds to representation s0 in the Jones vector form when 

the distance between Pair 1 and 2 is zero. Likewise, Jx+ case gives the SOP 

of s0
c, the coincide result. 

In summary, the X-shaped aperture array can block SPPs to a certain 

direction normal to the array period. In other works, the X-shaped aperture 

array operates as an elliptical polarizer. Allowed SOP, or blocked SOP can be 

figured out by investigating cR and cL. Derived coefficients cR and cL will 

differ according to the wavelength, but it is still possible to find appropriate 

values of cR and cL. Therefore, the X-shaped aperture array can function as a 

broadband elliptical polarizer of SPPs. 

Before further examinations, properties of the X-shape aperture array at 

a certain target wavelength are investigated in order to determine geometric 

parameters of the X-shaped aperture. The standard wavelength is chosen to 

be 840 nm, considering operation wavelengths of experiment apparatus. 

Detailed description about experimental setup and conditions will be 

presented in Section 5.4. Similar to the design strategy proposed in Section 

4.2.2, scattering properties of a single aperture pair array are analyzed firstly 

considering the X-shaped aperture as a sum of the two arrays. 
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Figure 5.2 Contour maps of (a) the coupling coefficient c and (b) the phase 

difference δ according to length of the rectangular apertures. 

 

Figure 5.2 shows results of the coupling ratio c and the phase difference 

δ of SPPs following Equations (4.4) and (4.5) with respect to lengths of 

aperture pair array. Geometric and physical parameters are assigned as: 

wavelength of the incident light λ0 = 840 nm, dielectric constants of gold and 
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dielectric substrate, εm = −25.85 + j0.79, εd = 2.11, wavelength of the SPP 

λSPP = 824 nm, distance between the array columns d = 620 nm, period along 

the y-axis py = 360 nm, and thickness of the metal film tm = 300 nm. Aspect 

ratio of the aperture is fixed as 4 so that the width is a quarter of given length. 

Thickness of the gold film and range of the aperture lengths are set to avoid 

resonance at the aperture since the resonance can induce abrupt change in c 

and δ. 

 

360 nm

620 nm

60 nm

300 nm 380 nm

95 nm

x

y

 

Figure 5.3 A top-view of determined X-shaped aperture array. 

 

Here, 270 nm and 360 nm of l1 and l2 are chosen respectively that give 

parameters of c = 1.252 and δ = 45.05 °. When two aperture pairs are 

overlapped and form the X-shaped aperture, however, effective lengths of the 

arms shrink due to expansion of gap size at the overlap region. Thus, the arm 

lengths should be longer than the aperture lengths to make the X-shaped 

aperture array show the same c and δ. Additional parametric study of the arm 

lengths is executed and finds out additional lengths of 30 nm and 20 nm for 

each arm, which correspond to about a one-third of the widths. Geometric 

parameters of the final X-shaped aperture array is as shown in Figure 5.3, 
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lengths and widths are (300 nm, 60 nm) for the arm 1, and (380 nm, 95 nm) 

for the arm 2. Coupling parameters of the determined X-shape aperture array 

are, c = 1.438 and δ = 44.65 °. 
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Figure 5.4 Normalized Hy-field profiles at the xy-plane 20 nm above the 

surface illuminated by the give SOPs. 

 

According to Equations (4.12), (4.13), and (4.14), polarization angles ψ 

and χ at directional launching condition of SPPs are (112.3 °, 10.2 °) and 

(67.7 °, −10.2 °). The first pair of angles make SPPs propagate to the +x-

direction, and the second pair to the –x-direction. Figure 5.4 shows field 

profiles of SPPs, Hy-field, when the input beam is polarized as the given 

polarization angles. Color maps represent Hy-fields in the xy-plane at 20 nm 

above the metal surface. It is clearly seen that SPPs are generated to a single 

direction as expected with high directivity. Extinction ratios are 25.5 dB for 
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the case of Figure 5.4(a) and –25.5 dB for the case of Figure 5.4(b), 

following Equation (4.17). Compared with the hybrid aperture pair array, the 

X-shape aperture pair operates symmetrically with respect to the helicity of 

the incident light. The reason is that the X-shaped aperture array have even 

geometry along the x-axis, while the hybrid aperture pair array does not. 

 

5.2.2 Broadband polarizer-like property of the X-shaped aperture 

array 

The X-shaped aperture array blocks the incident light of selected SOP when 

SPPs to a single direction is considered as a transmitted wave. The forbidden 

SOP is determined following Equations (5.5) and (5.6). I introduce 

parameters that characterize the polarizer-like property of the X-shaped 

aperture array similar to Equations (4.4) and (4.5) as: 

 

R

L

c
c

c





 ,     (5.10) 

 

R Lc c    .     (5.11) 

 

The coupling ratio c and the phase difference δ are functions of a 

wavelength since c1, c2, and Δ vary according to the wavelength. c and δ can 

be obtained by imposing the circularly polarized light to the X-shaped 

aperture array, rather than achieving all the subcomponents c1, c2, and Δ. Let 

the RCP light illuminate the X-shaped aperture array. Based on the Jones 
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matrix as Equation (5.3), SPPs to each direction is given by: 

 

     R 1 2 1 211

1 1
cos sin

2 22 2
x c c c c

 
   M J ,   (5.12) 

 

     R 1 2 1 211

1 1
cos sin
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x c c c c

 
   M J .   (5.13) 

 

Noticing that (Mx+JR)11 = cR+ and (Mx−JR)11 = −cL+, the coupling parameters c 

and δ can be rewritten as: 
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   R R11 11x x     M J M J .    (5.15) 

 

The polarization angles ψ± and χ± of the forbidden SOP, which turn off 

SPPs to propagate to the ±x-direction, are then obtained by: 
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where sign of Equations (5.16) and (5.17) corresponds to the case of –x-

direction for the plus and +x-direction for the minus, respectively in the same 

order. 
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Figure 5.5 Coupling parameters (a) c and (b) δ with respect to the 

wavelength of the incident light. 

 

Figure 5.5 shows the coupling parameters c and δ with respect to the 

wavelength of the incident light. Amplitude and phase of near-fields carried 
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by SPPs are measured when the X-shaped aperture array is illuminated by 

normally incident RCP light. Then c and δ are computed based on Equations 

(5.14) and (5.15). Geometric and physical parameters are set as the same as 

the FEM simulations that achieve results of Figure 5.4. Considering material 

dispersion, dielectric constants of a gold film and a glass substrate are given 

according to the textbook [90]. Wavelength window ranges from 650 nm to 

1050 nm, which is about ± 200 nm from the reference wavelength of 840 nm. 

Each point of Figure 5.5 informs the forbidden SOPs at each 

wavelength. For example, at 850 nm, c = 1.426 and δ = 51.68 °. 

Corresponding polarization angle sets of the forbidden SOPs are (115.8 °, 

10.0 °) at the –x-direction and (64.2 °, –10.0 °) at the +x-direction. Likewise, 

forbidden SOPs will be (103.9 °, 4.0 °), (76.1 °, –4.0 °) at the wavelength of 

750 nm, and (15.8 ° 20.1 °), (164.2 °, –20.1 °) at the wavelength of 980 nm. 

Extinction ratios following the definition of Equation (4.17) are calculated at 

previously mentioned wavelengths to verify that the parameters c and δ can 

describe the function of the X-shaped aperture array as the polarizer. 

Results plotted in Figure 4.6. show that peaks of extinction ratios appear 

at the expected forbidden SOPs. High extinction ratio along a direction 

indicates that SPPs to the other direction are turned off. Therefore, properties 

of the SPP polarizer can be properly characterized by the coupling 

parameters c and δ, which are figured out from Equations (5.14) and (5.15). 
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Figure 5.6 Poincaré sphere representation of given polarization states and 

corresponding extinction ratios at the wavelength of (a, b) 750 nm, (c, d) 850 

nm, and (e, f) 980 nm, respectively. 
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Meanwhile, it is worthy of noting that c reaches about 1, and δ about 0 

at the wavelengths below 750 nm, which result in difference between the 

polarization angles ψ+ − ψ− and χ+ − χ− to be zero. This implies that the X-

shaped aperture array cannot split SPPs according to the SOP of the incident 

light, or the forbidden SOPs are degenerated. Hence, the X-shaped aperture 

array does not play the role of a polarizer in this wavelength range. 
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5.3 Single-shot characterization of a polarization state 

using the X-shaped aperture array 

 

5.3.1 Configuration of the polarimeter based on the X-shaped 

aperture array 
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x

y
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Figure 5.7 (a) Polarization ellipse and (b) corresponding SOP representation 

using a unit Poincaré sphere. 

 

A polarizer is used for apparatus that measures an SOP of light. Full 

characterization of an arbitrary SOP can be achieved by detecting transmitted 

power through a set of different polarizers. TWhe SOP vector, which is a unit 

vector on the Poincaré sphere, is defined by: 

 

   1 cos 2 cos 2s   ,   (5.18) 

   2 cos 2 sin 2s   ,   (5.19) 

 3 sin 2s  .    (5.20) 
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From the above definition, s = (1, 0, 0) represents a linear polarization 

along the x-axis, (−1, 0, 0) the y-axis, (0, 1, 0) an axis with an angle of 45 °, 

(0, −1, 0) with an angle of 135 °, (0, 0, 1) the RCP, and (0, 0, −1) the LCP. 

Assuming six measuring polarizers that transmit SOPs representing each end 

of the basis, the SOP components of the measured light are given by: 
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,      (5.23) 

 

where Ix, Iy, Ix+y, Ix−y, IR, and IL denote intensities of the measured light 

through each polarizer. This shows that the SOP vector can be fully 

characterized by probing transmitted power through the six polarizers. 

Probes can be reduced to the number of four, whose SOPs are represented by 

a tetrahedron when inscribed in the Poincare sphere [102]. 
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Figure 5.8 Configuration of a polarimeter based on perpendicular 

arrangement of the X-shape aperture array. 

 

In the previous section, it is shown that the X-shaped aperture array 

functions as an elliptical polarizer of SPPs. Coupling coefficient of SPPs 

propagating to the +x-direction that is excited by the SOP with the Jones 

vector of J = aRJR + aLJL can be expressed as (Mx+J)11, according to the 

explanations of the previous section. Intensity of SPP fields traveling to the 

+x-direction is then written as: 

 

 2 2 2

0 R L R L2 cos 2xI I c a a ca a  
      , (5.24) 
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where c and δ are the coupling parameters following Equations (5.10) and 

(5.11), respectively. Similarly, intensity to the –x-direction is 

 

 2 2 2

0 R L R L2 cos 2xI I a c a ca a  
      . (5.25) 

 

Counter-clockwise rotation of the entire X-shaped aperture array as shown in 

Figure 5.8 will excite additional SPPs to the y-directions: 

 

 2 2 2

0 R L R L2 cos 2yI I c a a ca a  
      , (5.26) 

 2 2 2

0 R L R L2 cos 2yI I a c a ca a  
      . (5.27) 

 

The SOP vector of the incident light can be analyzed using the 

intensities Ix+, Ix−, Iy+, and Iy− as: 
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That is, it is possible to characterize any SOP of the incident light with a 

single-shot measurement by detecting optical powers delivered by SPPs to 

four directions. Furthermore, the parameters c and δ, which are obtained 

from coupling coefficients of the X-shaped aperture pairs, are used as 

calibration factors. Datasheet of the calibration factors at given wavelength 

should be acquired first, before starting the measurement. 

 

5.3.2 Specification of operation bandwidth 

If denominators in parentheses of Equations (5.28), (5.29) and (5.30) become 

zeros, the SOP vector cannot be obtained. There are two conditions that the 

denominators become zeros: 1) c = 1, and 2) δ = nπ / 2, where n is an integer 

number. Operation bandwidth of the determined polarimeter can be specified 

by examining distribution of c and δ with respect to the wavelength. In the 

case of the proposed X-shaped aperture array, wavelengths below 750 nm 

violate the first criterion, and around 885 nm and 960 nm violate the second 

criterion, according to Figure 5.5. 

On the other hand, the operation bandwidth can be engineered to cover 

certain target range by inspecting the calibration factor c and δ to regulate the 

criteria under given geometric and physical parameters. It will be a good 

approach to make δ be 45 ° at the center wavelength first, for δ to keep away 

from both 0 ° and 90 °. 
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5.4 Experimental demonstration 

 

5.4.1 Fabrication and measurement setup 
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Figure 5.9 Schematic illustration of FIB milling sequence. 
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FIB (FEI, Quanta 200 3D) milling is used for fabrication of the X-shaped 

aperture array and the outcouplers. The X-shaped apertures are perforated at 

a single exposure of 10 pA of current and 30 kV on a 300 nm thick gold film 

deposited on a 1 mm thick piecewise slide glass (Marienfeld, plain) by e-

beam evaporator (KVT, KVE-3004). Polygon function is used to outline the 

geometry of the X-shaped aperture. Coordinates of polygon vertices are 

assigned counter-clockwise manner starting at 12 o’clock, regardless of a tilt 

angle of the X-shape aperture. 

 

 

Figure 5.10 Coordinate assignment of the X-shaped aperture based on a 

polygon function. 

 

Milling sequence of the entire device is allocated as illustrated in Figure 

5.9 in order to guarantee the precise geometry. At first, 14 periods of the X-

shaped aperture pairs along the y-direction are perforated 4 times from the 

top to the bottom. Each aperture is fabricated row-by-row in a zigzag manner 

as shown in Figure 5.9 (b). At the center, an additional translation of 1.4 μm 

is inserted in order to avoid overlap among the horizontally and vertically 

arranged apertures. The aperture array along the horizontal axis is made 
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according to the similar procedure after rotating a sample holder 90 by 

degrees counter-clockwise as depicted in Figures 5.9(c) and (d). Here, in 

order for fine alignment between the vertical and horizontal array, the 

aperture arrays near the center are fabricated first, rather than the straight 

sequence from the top to the bottom. 

 

(a) (b)

(c) (d)

5 μm

500 nm

1 μm

500 nm

 

Figure 5.11 SEM images of (a) the proposed polarimeter, (b) the outcoupler, 

(c) magnified views at the center area of the polarimeter, and (d) the X-

shaped aperture array. 

 

After that, the outcouplers are located with the same process. The 90 

degrees rotation of the sample holder is executed between the vertical ones 
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and horizontal ones, fixing the geometry with vertical shape. The outcouplers 

are placed at the four sides, 25 μm away from the center. Geometry of the 

outcoupler is the same as what has been used in Chapter 4: 880 nm period 

with 0.5 fill factor, 5 periods, 80 nm depth, and 18 μm length. 
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Figure 5.12 Experimental setup. Inset illustrates a top-view of the sample. M: 

mirror, BS: beam-splitter, NDF: neutral-density filter, QWP: quarter-wave 

plate, HWP: half-wave plate, LP: linear polarizer, CCD: charge-coupled 

device, and x50: objective lens of x50. 

 

Experiment setup is made based on a Ti:Sapphire tunable laser and a 

continuous wave laser of 980 nm wavelength. The tunable laser covers 

wavelengths from 700 nm to 920 nm (Sirah, Matisse TR). Beam paths of the 

two lasers are combined using a beam-splitter. Output powers of the laser 

beams are set about 200 ~ 300 mW, admitting some amount of variation with 

respect to the wavelength. The other part of the experimental setup is similar 

to the apparatus used in Chapter 4. A set of a polarizer and wave plates with 
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anti-reflection coatings are placed after the beam-splitter to produce elliptical 

polarization states. The center wavelength of the X-shaped aperture is set to 

be 840 nm at first, which is mentioned in Section 5.2.1, after considering 

operation bandwidth of the tunable laser and optical elements. Measurement 

of images of the illuminated sample and corresponding SOPs are executed 

using the CCD camera (Allied Vision, Mako G-223) and the commercial 

polarimeter (Thorlabs, PAX5710IR-T), which are the same as the equipment 

introduced in Chapter 3. 

 

5.4.2 Field profiles and measured polarization states 

In order for verification of the broadband operation, the fabricated sample is 

tested at wavelengths of 760 nm, 800 nm, 840 nm, 920 nm, and 980 nm. Due 

to the wavelength coverage of the tunable laser, 980 nm wavelength is 

generated using the separate continuous wave laser as shown in Figure 5.12. 

At first, the calibration factors c and δ are measured with respect to the 

given wavelengths. According to Equations (5.28), (5.29), and (5.30), 

measured intensities can be related to the SOP vector after achieving 

datasheets of c and δ over the operation wavelengths. The calibration factors 

can be obtained experimentally using Equations (5.14) and (5.16). Equation 

(5.14) tells that the coupling ratio between intensities along the x-directions 

or the y-directions quantifies c when the incident light is given by the RCP or 

LCP. Value of c is computed by an average of four different coupling ratios 

since there are two sets of outcouplers and two given SOPs. 

In the case of δ, difference of orientation angles that turn off SPPs to 

each x-direction or y-direction corresponds to δ. Table 5.1 notes orientation 
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angles of polarizations at each wavelength when each outcoupler turns off. 

Column labels of the table, right, left, up, and down, denote positions of the 

each outcouplers. During the experiment, combinations of the linear 

polarizer and the half-wave plate are recorded by inspecting the brightness at 

each outcoupler to be the darkest. Then the SOP is detected using the 

polarimeter at each recorded condition. Value of δ is calculated as a mean of 

two angle differences, which are obtained from the horizontal and the 

vertical sets of outcouplers, respectively. 

 

Table 5.1 Orientation angles of polarizations at extinguishments of each 

outcoupler. 

Wavelength (nm) Right (°) Left (°) Up (°) Down (°) 

760 92.8 91.1 2.9 175.6 

800 97.8 85.1 9.0 173.0 

840 104.2 70.8 16.0 157.5 

920 153.1 30.1   64.2 107.2 

980 166.7 19.0 82.7 102.4 

 

Figure 5.13 shows the measured calibration factors (dots) compared 

with the simulation results (solid lines). It is shown that the phase factor δ is 

well matched among the measured ones and calculated ones. However, in a 

case of amplitude factor c, there is some amount of overshoot at longer 

wavelengths. Both fabrication errors and nonlinear sensitivity curve of the 

CCD camera can contribute to this result. 
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Figure 5.13 Measured calibration factors c and δ (red dots) at wavelengths of 

760 nm, 800 nm, 840 nm, 920 nm, and 980 nm. 

 

Revisiting the issue about the operation bandwidth in Section 5.3.2, it is 

worth to noting that the calibration factor δ of the 760 nm case violates the 

second criteria that is discussed in section 5.3.2: δ = 4.5 °, which is close to 0. 

Therefore, characteristics as the polarimeter of the proposed device will be 

demonstrated at wavelengths of 800 nm, 840 nm, 920nm, and 980 nm from 
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now on. Results of the 760 nm will be discussed in Section 5.4.3. 

Figures 5.14 and 5.15 show CCD images at given SOPs at each 

wavelength. In order for comparison, electric field intensity profiles in the 

xy-plane at 100 nm above the surface based on the dipole model simulation 

are depicted under corresponding CCD images. The captured CCD images 

and calculated field profiles show high coincidence with each other. 

Brightness level at the center of the outcouplers is lower due to the void at 

the center where the vertical and horizontal array intersect. 

Ten different polarization states, which correspond to the end of each 

axis s1, s2, and s3, and other four more elliptical polarization states, are 

measured. Intensities are achieved by averaging the signal inside each 

outcoupler region and eliminating dc noise from captured images. States of 

polarization vectors are computed then following Equations (5.28), (5.29), 

and (5.30). The calibration factors c and δ follow the measured results. 
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0 800 nm 

(ψ, χ) = (22.5 °, 20 °)

0 840 nm  0 920 nm  0 980 nm 
 

Figure 5.14 Captured CCD images and corresponding calculated electric field intensity profiles for the given SOP (ψ, χ) = 

(22.5 °, 20 °). Scale bars are 10 μm. 
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0 800 nm 

(ψ, χ) = (157.5 °, −20 °)

0 840 nm  0 920 nm  0 980 nm 
 

Figure 5.15 Captured CCD images and corresponding calculated electric field intensity profiles for the given SOP (ψ, χ) = 

(157.5 °, −20 °). Scale bars are 10 μm.
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Figure 5.16 shows the obtained SOPs represented on the unit Poincaré 

sphere. The first six measurements, which correspond to linear polarizations 

with orientation angles of 0 °, 45 °, 90 °, and 135 °, and two circular 

polarizations, are illustrated. Blue dots represent the SOP of the incident light, 

and red dots indicate measured SOPs using the proposed polarimeter. It is 

shown that each point on the sphere shows high coincidence. Likewise, 

measurement results of the four additional elliptical polarization states given 

by (ψ, χ) = (22.5 °, ± 20 °), (157.5 °, ± 20 °) are shown in Figure 4.17. The 

red dots are located adjacent to the blue dots in the same way. 

In order to quantify the accuracy of the proposed polarimeter, introduce 

deviations of the orientation angle and the ellipticity angle as: 
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,   (5.31) 
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,   (5.32) 

 

where subscript m denotes the measurement value, and ref denotes the given 

value. n = 10 here, which is the number of the measurement. Measured 

polarization angles ψm and χm are obtained using Equations (5.18), (5.19) and 

(5.20). 
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(a) (b)

(c) (d)

 

Figure 5.16 Poincaré sphere representation of the measured SOPs for linear 

and circular polarizations at the wavelength of (a) 800 nm, (b) 840 nm, (c) 

920 nm, and (d) 980 nm. 
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(a) (b)

(c) (d)

 

Figure 5.17 Poincaré sphere representation of the measured SOPs for 

elliptical polarizations at the wavelength of (a) 800 nm, (b) 840 nm, (c) 920 

nm, and (d) 980 nm. 

 

The orientation angle accuracy Δψ and the ellipticity angle accuracy Δχ 

at each wavelength and the overall accuracy are written in Table 5.2. 

Orientation angles for the case of the RCP and LCP incidence are excluded 

because orientation angles of the given SOPs cannot be defined. Deviation 

angles of the both orientation and ellipticity are about 5 degrees. 
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Table 5.2 Measurement accuracies at each wavelength and the overall. 

Wavelength (nm) Δψ (°) Δχ (°) 

800 4.02 5.81 

840 4.86 3.46 

920 5.75 4.20 

980 6.25 3.08 

Total 5.28 4.27 

 

5.4.3 Analysis on the accuracy: the parameters c and δ and size 

factor 

 

(a) (b)

 

Figure 5.18 Poincaré sphere representation of the measured SOPs for (a) 

linear/circular polarizations and (b) elliptical polarizations at the wavelength 

of 760 nm. 

 

Figure 5.18 shows the measured SOPs at the same set of given SOPs as in 

Figures 5.16 and 5.17 at the wavelength of 760 nm. It is seen that deviations 
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from the reference SOPs are larger than the case of the other wavelengths. 

The accuracies Δψ and Δχ are 7.92 ° and 11.28 °, which are 1.50 and 2.64 

times larger than the overall accuracies of the polarimeter. This analysis 

implies that it is reasonable approach to design the X-shaped aperture array 

and the polarimeter according to the criteria proposed in Section 5.3.2. The 

accuracy of the polarimeter can be aggravated when c and δ get closer to the 

forbidden values. 

 

(a) (b) (c)

10.8 m

x

y

15.0 m

x

y

20.0 m

14.4 m

x

y 20.9 m

25.0 m

 

Figure 5.19 Top views of the polarimeter with different arm lengths that 

correspond to (a) 14, (b) 19, and (c) 28 periods. 

 

The number of periods of the X-shaped aperture array, which composes 

each arm of the polarizer, can affect the accuracy. The accuracies are 

obtained from the measurement using 10 different SOPs, the same as done in 

the previous section. The period numbers of 14, 17, and 28 are tested, which 

correspond to arm lengths of 4.7 μm, 6.5 μm, and 9.7 μm. Figure 5.19 shows 

schematic illustrations of the polarimeters with different size factors. Note 

that the last case is the sample presented in the previous section. 
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0 800 nm  0 840 nm  0 920 nm  0 980 nm 

0 800 nm  0 840 nm  0 920 nm  0 980 nm 

(a) ny = 14, χ = 45 °

(a) ny = 19, χ = 45 °

 

Figure 5.20 Captured images of the polarimeters with the period number (a) 14 and (b) 19 when illuminated by the RCP 

at each wavelength. Scale bars are 10 μm. 
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Table 5.3 Measurement accuracies at each wavelength and the overall 

wavelengths according to the arm length of the polarimeter. 

Wavelength (nm) 
ny = 14 ny = 19 ny = 28 

Δψ (°) Δχ (°) Δψ (°) Δχ (°) Δψ (°) Δχ (°) 

800 21.09 10.53 8.32 6.61 4.02 5.81 

840 3.06 3.82 3.55 5.38 4.86 3.46 

920 16.11 7.08 13.77 3.99 5.75 4.20 

980 7.94 4.10 16.79 10.11 6.25 3.08 

Total 13.93 6.94 11.76 6.91 5.28 4.27 

 

Table 5.3 shows change of the accuracies according to the number of 

periods ny. The deviations decreases as the period number increases. That is, 

the larger the footprint of the device is, the more precise the measurement. 

According to important factors of a certain application, the number of period 

can be adjusted. 
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5.5 Summary and discussions 

 

In this chapter, a compact plasmonic polarimeter is proposed based on the X-

shaped aperture array. Surface plasmon polaritons excited by the X-shaped 

aperture array are turned off at a given elliptical polarization state. In other 

words, the X-shaped aperture array can be modeled as an elliptical polarizer 

for SPPs. A polarimeter is composed of the X-shaped aperture array with 

vertical and horizontal arrangements, which are equivalent to superposition 

of four different elliptical polarizers. Polarization state of a normally incident 

light can be specified at a single detection of SPP intensities to each direction. 

Simulation results verify that an operation bandwidth of the polarimeter 

covers from 750 nm to 1050 nm. It is experimentally demonstrated that the 

proposed polarimeter can find out polarization angles with accuracy within 

5 ° deviations. Design rules are proposed with regard to the accuracy of the 

polarimeter. 

It is worthy of noting that the proposed polarimeter can easily be 

extended to other wavelengths by changing the geometry of the X-shaped 

aperture. Due to small footprint of the polarimeter, it can be applied to map 

spatial distribution of polarization states by scanning non-uniform optical 

beams, rather than averaging out the spatial distribution. Furthermore, the 

proposed polarimeter can be applied to more integrated detector, by 

replacing outcouplers to Schottky contacts [69]. The accuracy can be 

enhanced if measuring polarization states is located at the optima, which is 

represented by a regular tetrahedron inscribed in the Poincaré sphere [102]. 

In terms of the calibration factors used in this chapter, the regular tetrahedron 
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can be achieved when: c = 1.932, and δ = 45 °. 
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Chapter 6 Conclusion 

 

In this dissertation, methods for polarization control of SPPs and their 

application to a compact polarimeter are discussed. Starting from interaction 

between polarized light and rectangular aperture array, a hybrid aperture pair 

array and an X-shaped aperture array are introduced that extends 

controllability using polarization states of incident light. Interferometry-

controlled plasmonic resonator, directional launching and switching of SPPs 

using elliptically polarized light, and a compact polarimeter are proposed and 

demonstrated experimentally. 

In Chapter 3, a plasmonic resonator is designed and demonstrated 

whose electromagnetic energy density can be controlled by the orientation 

angle of the incident electric field. Interferometric control of SPPs, which are 

excited by the nano-aperture pairs, makes the resonator tunable. After 

optimizing the resonator, the on/off ratio reaches 430. Based on the working 

principle of our work, interferometric control is possible without exquisite 

alignment of optical path length. That is, experimental setup of the 

interferometry can be significantly simplified. The proposed method can 

contribute to realizing all-optically controlled active plasmonic devices and 

coherent network elements. 

In Chapter 4, directional launching and switching of SPPs using 

elliptically polarized light is investigated. A hybrid aperture pair array, which 

is composed of two sets of pair arrays with different size factor, is proposed. 

Polarization angles of both an orientation and an ellipticity angle are utilized 
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as a control variable, extending the controllability shown in the previous 

chapter. Experimental results show that directional launching can be 

achieved as predicted, as well as high extinction ratios. Here, a set of 

polarization states that can switch a direction of SPPs does not have to be 

orthogonal to each other. Hence, polarization control is possible with more 

diversity, other than binary operation. 

In Chapter 5, a compact plasmonic polarimeter is proposed based on the 

X-shaped aperture array. A polarimeter is composed of the X-shaped aperture 

array with vertical and horizontal arrangements, which are equivalent to 

superposition of four different elliptical polarizers. Polarization state of a 

normally incident light can be specified at a single detection of SPP 

intensities to each direction. Simulation results verify that an operation 

bandwidth of the polarimeter covers from 750 nm to 1050 nm. It is 

experimentally demonstrated that the proposed polarimeter can find out 

polarization angles with accuracy within 5 ° deviations, wavelengths from 

800 nm to 1000 nm. It is worthy of noting that the proposed polarimeter can 

easily be extended to other wavelengths by changing the geometry of the X-

shaped aperture. Due to small footprint of the polarimeter, it can be applied 

to map spatial distribution of polarization states by scanning non-uniform 

optical beams, rather than averaging out the spatial distribution. Furthermore, 

the proposed polarimeter can be applied to more integrated detector. The 

accuracy can be enhanced if measuring polarization states is located at the 

optima, which is represented by a regular tetrahedron inscribed in the 

Poincaré sphere. 

I expect that this dissertation can help to develop more compact optical 
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systems based on polarization-sensitive building blocks. Furthermore, I hope 

that this work inspires research on optical angular momentum interaction 

mediated by surface waves. More elaborate descriptions about spin-orbit 

interaction of light can be made if elliptically polarized light and intrinsic 

spin of surface waves are taken into account. 
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초    록 

 

표면 플라즈몬 폴라리톤은 금속-유전체 경계면을 따라 진행하

는 전자기파를 말한다. 표면 플라즈몬 폴라리톤은 파장 한계 이하

의 구조에서도 집속되거나 도파하는 것이 가능하다. 이러한 특징은 

광집적회로에 적용되기에 적합하여 지난 약 20년간 다양한 형태의 

능동형, 수동형 표면 플라즈몬 폴라리톤 변조 소자가 연구되었다. 

높은 결합 효율로 표면 플라즈몬 폴라리톤을 여기시키는 것은 

여전히 주요한 이슈 중 하나로, 비대칭 구조물 및 비등방 산란을 

이용한 표면 플라즈몬 폴라리톤의 방향 여기가 최근 주목을 받고 

있다. 이와 더불어 방향 제어에 대한 연구 또한 적극적으로 제안되

고 있다. 다양한 방향 제어 방법 중 입사광의 편광을 이용하는 방

법이 있다. 편광을 이용한 표면 플라즈몬의 방향성 여기 및 그 제

어 방법은 비등방 산란을 이용한 구조물에서 그 제어가 용이하다는 

장점이 있다. 하지만 선편광 혹은 원편광 등 제한적인 편광 상태만

을 사용함으로써 제어의 자유도가 크게 제약받고 있다. 

본 박사학위 논문에서는 주기적으로 배열된 나노 개구 쌍을 이

용하여 표면 플라즈몬의 방향 제어에 사용되는 편광 상태의 범위를 

확장하고, 이를 응용한다. 

첫번째 응용으로는 편광 회전각으로 제어 가능한 플라즈몬 공

진기를 제안한다. 제안한 소자에서는 두 개의 마주보는 형태의 개

구 쌍 배열을 이용, 서로 반대방향으로 발진하는 표면 플라즈몬 폴

라리톤을 발생시킨다. 이때 표면 플라즈몬 폴라리톤 간 위상차가 

입사광의 편광 회전각으로 조절되어 표면 플라즈몬 폴라리톤의 간
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섭이 조절된다. 간섭 무늬와 공진기 간 상대적 위치에 따라 공진기 

내 저장되는 전자기에너지가 제어된다. 이는 간섭을 통한 매질의 

광특성 변조를 복잡한 광경로 조절 없이 편광 조절으로만 가능케 

했다는 의의가 있다. 

다음으로는 표면 플라즈몬 폴라리톤의 편광 의존적 여기 현상

을 이용한 초소형 편광측정기를 제안한다. 편광측정기 구성에 앞서 

타원 편광에서 표면 플라즈몬 폴라리톤의 방향 여기가 가능한 혼성 

개구 쌍 배열과 십자형 개구 배열 구조를 제안한다. 제안된 혼성 

개구 쌍 배열은 임의의 타원 편광에서 표면 플라즈몬 폴라리톤을 

방향성을 갖게 여기 시킬 수 있다. 표면 플라즈몬 폴라리톤을 투과

광으로 보았을 때, 이는 제안한 소자가 타원 편광판의 기능을 수행

함을 의미한다. 서로 다른 네 개의 타원 편광판에 해당하는 십자형 

개구 배열을 배치함으로써 편광측정기를 구현할 수 있다. 제안된 

편광측정기는 작은 소자에서 원샷 측정이 가능하다는 장점이 있다. 

또한 약 200 nm 정도의 동작 대역폭을 실험적으로 확인하였다. 

본 박사학위 논문의 결과는 편광 의존적 동작이 요구되는 각종 

광 시스템의 개선과 소형화에 기여할 수 있을 것으로 기대된다. 또

한 나노 구조물과 표면파로 촉발된 빛의 각운동량 상호작용에 대한 

연구에도 활용될 수 있을 것으로 기대된다. 
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