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Simvastatin protects ischemic spinal cord injury from cell death and 

cytotoxicity through decreasing oxidative stress 

: in vitro primary cultured rat spinal cord model under oxygen and 

glucose deprivation-reoxygenation conditions 

 

Abstract 

Background: Ischemia and the following reperfusion damage are critical 

mechanisms of spinal cord injury. Statins have been reported to decrease ischemia-

reperfusion injury in many organs including spinal cord. Anti-oxidative effect is 

one of the main protective mechanisms of statin against neuronal death and 

cytotoxicity. We hypothesized that statins’ anti-oxidative property would yield 

neuroprotective effects on spinal cord ischemia-reperfusion injury 

Methods: Primary cultured spinal cord motor neurons were isolated from Sprague-

Dawley rat fetuses. Ischemia–reperfusion injury model was induced by 60 min of 

oxygen and glucose deprivation (OGD) and 24 h of reoxygenation. Healthy and 

OGD cells were treated with simvastatin at concentrations of 0.1, 1, and 10 μM for 

24 h. Cell viability was assessed using WST-8, cytotoxicity with LDH, and 

production of free radicals with DCFDA. 

Results: OGD reduced neuronal viability compared to normoxic control by 35.3%; 

however 0.1-10 μM of simvastatin treatment following OGD improved cell 
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survival. OGD increased LDH release up to 214%; however, simvastatin treatment 

attenuated its cytotoxicity at concentrations of 0.1-10 μM (p < 0.001 and p = 0.001). 

Simvastatin also reduced deteriorated morphological changes of motor neurons 

following OGD. Oxidative stress was reduced by simvastatin (0.1-10 μM) 

compared to untreated cells exposed to OGD (p < 0.001). 

Conclusions: Simvastatin effectively reduced spinal cord neuronal death and 

cytotoxicity against ischemia-reperfusion injury, probably via modification of 

oxidative stress.  

 

Key Words: Ischemia-reperfusion injury; neuroprotection; oxidative stress; 

oxygen-glucose deprivation; simvastatin; spinal cord injury 

Student Number: 2012-30508   
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Introduction 

 Spinal cord injury (SCI) can lead to devastating complications, including 

permanent neurological damage [1-3]. In acute traumatic spinal cord injury, 

ischemia and the following reperfusion play a critical role in primary mechanical 

and secondary pathophysiological mechanisms [4-6]. After the initial rapid 

compression and trauma, spinal cord ischemia occurs via various mechanisms, 

including direct injury to the microvasculature, reduced spinal cord blood flow, and 

disrupted spinal cord autoregulation [5]. In the following passages, restoration of 

vascular perfusion and surgical intervention are essential part of treatment 

approach to avoid persistent compression, however, reperfusion per se can cause 

further damage [7-9]. 

Spinal cord ischemia–reperfusion damage is also an important cause of 

postoperative neurological deficits following decompression surgery, which are 

rare but very serious. For example, 1.5% - 6.3% of patients with cervical 

spondylotic myelopathy suffer postoperative delayed paraplegia related to 

ischemia-reperfusion injury of the spinal cord [7-9]. In such cases, neuroprotection 

against ischemia-reperfusion is crucial to prevent spinal cord injury. 

Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase 

inhibitors, have been shown to minimize the severity of ischemia-reperfusion 

injury in many organs including the brain, heart, kidney, and lung [10-14]. Statins 

attenuate neuronal injury and promote neurologic recovery after cerebral ischemia 

in experimental animal models and in vitro cellular models [15-18]. Statins are 

frequently used as cholesterol-lowering agents, but their protective effect against 
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ischemia depends on other actions as well [19], including modification of oxidative 

stress [16,20-22], anti-inflammatory effects, and immunomodulation [15,18]. 

Statins have been repeatedly reported to be neuroprotective against spinal cord 

injury, demonstrating neurologic and histopathologic improvements [23-27]. 

Especially simvastatin, since it readily crosses the blood-spinal cord barrier, could 

be widely used to treat spinal cord injuries in clinical practice [24]. As yet, the 

underlying mechanism has not been fully studied. In models of cerebral ischemia, 

simvastatin attenuated neuronal death by reducing the production and toxicity of 

oxidative stress-related markers [28,29]. However, statins’ beneficial antioxidant 

properties in spinal cord neurons have not yet been investigated. 

In this study, we sought the efficacy of simvastatin in attenuation of SCI-induced 

pathology. We first demonstrated that ischemia-reperfusion injury elicits motor 

neuron death and cytotoxicity in this model of SCI, and then investigated whether 

simvastatin treatment recovers those deteriorations of spinal cord neurons against 

oxidative stress as its neuroprotective mechanism of action.   
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Materials & Methods 

Ⅰ. Primary culture of spinal cord neuron 

The animal procedures were carried out in Seoul National University Bundang 

Hospital according to an approved animal research protocol (IRB number: 63-13-

034). Timed-pregnant Sprague-Dawley rats were obtained and primary rat spinal 

cord neurons were isolated from embryonic day 14-15 rat fetuses using a 

previously described method [30]. Briefly, embryonic vertebral canals were opened, 

meninges and blood vessels were cleared away using sterile fine-tipped forceps, 

and the embryonic spinal cords were sliced into small pieces using a scalpel. After 

microdissection and trituration, the isolated cells were seeded on poly-l-lysine (200 

µg/mL) (PLL) (Sigma-Aldrich, St. Louis, MO, USA) coated plates at a 

concentration of 10
5
 cells/well and maintained in a 5% CO2 incubator at 37°C. 

Cells were cultured in neurobasal medium (Gibco, Carlsbad, CA, USA) 

supplemented with 2% B27 supplement (Gibco) and 2mM glutamine (Gibco). 

After 3 days in vitro (DIV), 5µM cytosine-β-d-arabinofuranoside (AraC) (Sigma-

Aldrich, St. Louis, MO, USA) was added into the medium to inhibit non-neuronal 

cell proliferation. One half of the culture medium was replaced by a fresh medium 

every 3 days. 

 

Ⅱ. Oxygen and glucose deprivation (OGD) followed by reoxygenation 

OGD and reoxygenation was carried out in cultures after 7 DIV as described 
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previously [31]. Briefly, on the seventh day, the original media was removed and 

replaced with glucose-free DMEM. The cultures were then transferred to an 

anaerobic incubator containing a mixture of 95% N2 and 5% CO2 at 37 °C. Several 

pilot experiments with various durations of OGD and reoxygenation indicated that 

60 min of OGD and 24 h recovery led to sufficient injury for this study.  

 

Ⅲ. Treatment with simvastatin 

Simvastatin (Sigma-Aldrich, St Louis, MO, USA) of 4 mg was dissolved in 100 

µl of ethanol, with subsequent addition of 150 µl of 0.1 N NaOH. This solution 

was incubated at 50 °C for 2 h and then neutralized with HCl to pH 7. The resulting 

solution had a final volume of 1 ml with sterile phosphate-buffered saline [32]. To 

examine the toxicity of simvastatin on motor neurons, various concentrations of 

simvastatin (0.1-50 μM) were applied to healthy motor neurons for 24 h. In the 

main experiment, simvastatin was applied to the ischemia-reperfusion-injured 

motor neurons at concentrations of 0, 0.1, 1, and 10 μM for 24 h. Injured control 

cultures (OGD only) were given equal volume of phosphate-buffered vehicle. Each 

dose of simvastatin was applied from the start of the OGD and was maintained 

during the following 24-h reoxygenation period. 

 

Ⅳ. Determination of cellular viability 

Cellular viability was assessed with tetrazolium salt reduction assay. This is a 
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colorimetric method for determining the number of living cells. The viable cells 

containing NADH or NADPH can convert tetrazolium compound, WST-8, 2-(2-

methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium, 

into formazan product that is soluble in tissue culture medium [33,34]. According 

to the manufacturer’s instruction (cell counting kit 8 (CCK-8), Sigma-Aldrich, St. 

Louis, MO, USA), 10 µL of WST-8 solution was added to each well in 96-well 

plates. After 2-h incubation at 37 °C, absorbance at 450 nm was measured using a 

microplate reader. The quantity of formazan product is directly proportional to the 

number of living cells in the culture, and the results are expressed as the percentage 

of viable cells relative to untreated controls.  

 

Ⅴ. Determination of cytotoxicity  

Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme that is released into 

the cell culture supernatant when the cytoplasmic membrane is ruptured [28,35,36]. 

LDH activity in the medium was determined using a colorimetric diagnostic kit 

(CytoTox96Ⓡ Non-Radioactive Cytotoxicity Assay, Promega, Madison, WI, USA). 

In brief, 50 μL aliquots of the culture medium and 50 μL of reconstituted substrate 

were mixed and incubated for 30 min at 37 °C in the dark, after which the reaction 

was terminated with a stop solution (1 M HCl, 50 μL). The color intensity is 

directly proportional to the number of lysed cells and can be qualified by reading 

the absorbance at 490 nm. The percentage of cytotoxicity is determined by 

calculating the optical density at 490 nm (OD490nm) and subtracting from the 



６ 

 

absorbance value obtained in the background control. 

 

Ⅵ. Measurement of free radical production 

The production of free radicals was assessed by using DCFDA (2’,7’-

dichlorofluorescein diacetate), which is one of the most widely used techniques for 

direct measuring of cell redox state [37]. DCFDA is a fluorogenic dye for highly 

selective detection of hydroxyl, peroxyl and any other intracellular reactive oxygen 

species (ROS) activity. DCFDA is diffused into cells and is deacetylated by 

cellular esterases into a non-fluorescent compound that is subsequently oxidized by 

ROS into DCF (2’, 7’–dichlorofluorescein). DCF is a highly fluorescent compound 

and hence is detectable by fluorescence spectroscopy. 

DCFDA assay was performed according to the manufacturer’s instruction 

(DCFDA Cellular ROS detection kit, Abcam, Cambridge, UK). In brief, 10 µL of 

DCFDA was added to cells and incubated for 30 min. After washed out with PBS, 

the intensity of fluorescence was examined by flow cytometry. Accumulation of 

the oxidized fluorescent derivate (DCF) in the cells was measured at emission and 

excitation wavelengths of 530 and 485 nm, respectively.  

 

Ⅶ. Statistical analysis  

 Data are expressed as mean ± SEM. Statistical comparisons between groups were 

done using t-tests and comparisons between three or more groups were performed 
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by one-way ANOVA followed by Dunnett T3 post hoc comparisons. A p-value 

less than 0.05 was considered significant. All statistical analyses were performed 

using SPSS 19.0 software for Windows (SPSS, Chicago, IL, USA). 

 

 

 

 

  



８ 

 

Results  

Ⅰ. Motoneuron cultures and effects of simvastatin on healthy motor neuron 

After seven to eight days in culture, cells showed neuronal morphological 

characteristics and an extensive meshwork of neurite outgrowth (Fig. 1a, b).  

 

Fig.1 Typical morphology of healthy primary spinal cord neurons from rats  

a. The healthy neurons showed extensive neurite outgrowth and neurons with a 

dense meshwork on day 4.  

b. Much denser meshwork can be seen on day 7 compared to Fig 1a.  

 

Concentrations of simvastatin from 1 to 50 μM were applied to healthy control 

cells. Concentrations of 1, 5, and 10 μM did not affect the viability of cultured 

spinal neurons as indicated by WST-8. In contrast, at a concentration of 50 μM, cell 

viability was statistically decreased compared to the control cells (p = 0.002). Since 

the 50 μM concentration seemed to be toxic, we applied simvastatin at 

concentrations of 1 to 10 μM in further experiments (Fig. 2). 
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Fig.2 Effect of simvastatin on the viability of healthy motor neuron  

Effect of simvastatin on the viability of motor neuron was assessed with WST-8 

assay. There were no differences in the viability of healthy cells depending on the 

concentration of simvastatin. Simvastatin showed little or no effect on normal 

motoneuron ranges from 1 to 10 μM. However, at concentration of 50 μM, WST-8 

statistically decreased compared to control cell.  

Data are expressed as the percentage of total WST-8 and represent the mean ± 

SEM. * denotes significant difference from that of control (n = 16; p < 0.05).  

 

Ⅱ. The effect of simvastatin on ischemia-reperfusion-induced cell death and 

cytotoxicity 

Spinal cord ischemia-reperfusion injury was simulated by 60 min of OGD and 24 
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h of reoxygenation. This duration of injury resulted in moderate loss of the neural 

meshwork and morphological changes in the remaining cells (Fig. 3).   

 

Fig. 3 Morphological change in the motor neuron following ischemia-

reperfusion injury with or without simvastatin 

a. Without simvastatin. Ischemia-reperfusion damage resulted in massive cell loss 

and destruction of neural networks. 

b. With simvastatin. Treatment of simvastatin markedly increased neuronal 

survival after ischemia-reperfusion damage. Neurons preserved morphological 

features with a denser meshwork of neurites when compared to Fig 3a. 

 

The ischemia-reperfusion injury dramatically reduced cell survival (35% decrease) 

measured by WST-8 assay compared to the control culture. Simvastatin markedly 

ameliorated OGD/reoxygenation-evoked cell death at concentrations of 1 and 10 

μM (p = 0.032 and p = 0.008, respectively) when compared to injured controls (Fig. 

4). The protective effect was shown within a range of 0.1 to 10 μM. However, 

simvastatin did not fully restore viability of ischemia-reperfusion injured motor 

neurons to that of healthy controls.  
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Fig.4 Effect of simvastatin on the viability of the motor neuron following 

ischemia–reperfusion injury 

Effect of OGD and simvastatin on the viability of motor neuron was assessed with 

WST-8 assay. OGD resulted in marked reduction of cellular viability. Simvastatin, 

treated at the indicated concentrations, resulted in an increase in cell survival, 

particularly at 1 and 10 μM.  

Values are represented as means ± SEM; * denotes significant difference from that 

of control. # denotes significant difference from the OGD cells (n = 16; p < 0.05). 

OGD: Oxygen and glucose deprivation. 

 

The effects of simvastatin on the motor neuron damage are shown in Fig. 5. The 

ischemia-reperfusion damage resulted in cell death, as evidenced by an increase in 

LDH (214%). Within a range of 0.1 to 10 μM, simvastatin-treated motor neurons 
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showed significantly lower values for LDH when compared to injured controls (p < 

0.001 and p = 0.001, respectively), though cell death was not completely blocked.  

 

Fig.5 Effect of simvastatin on the cytotoxicity following ischemia–reperfusion 

injury 

Cytotoxicity of OGD was assessed with LDH release. Cells were subjected to 60 

min of OGD and 24 h of recovery time. LDH significantly increased after OGD 

compared to healthy cells. Simvastatin treatment (0.1, 1, and 10 μM) effectively 

attenuated LDH release.  

Values are represented as means ± SEM; * denotes significant difference from 

control. # denotes significant difference from the OGD cells (n = 16; p < 0.05). 

LDH: Lactate dehydrogenase, OGD: Oxygen and glucose deprivation 
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Ⅲ. The effect of simvastatin on ischemia-reperfusion-induced oxidative stress  

OGD and reoxygenation dramatically increased DCFDA value, implying higher 

levels of oxidative stress. Simvastatin effectively reduced the oxidative stress. All 

tested doses of simvastatin (0.1-10 μM) attenuated the rise in DCFDA level (p < 

0.001 at all experimental concentrations), but not to a value as low as that of the 

healthy controls (Fig. 6).  
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Fig. 6 Effect of simvastatin on the motor neuron oxidative stress induced with 

ischemia-reperfusion 

Oxidative stress of the motor neuron was assessed with DCFDA assay. OGD led to 

marked increase in DCF labelling of cells. Simvastatin treatment (0.1, 1, and 10 

μM) effectively reduced DCF labelling following OGD.  

Values are represented as means ± SEM; * denotes difference from control, # 

denotes difference from OGD cells (n = 16; p < 0.05). DCF: 2’, 7’–

dichlorofluorescein, DCFDA: Dichlorodihydrofluorescein diacetate, OGD: Oxygen 

and glucose deprivation.  
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Discussion 

The present study demonstrated that motor neuron death, cytotoxicity and 

oxidative stress induced by ischemia-reperfusion injury are significantly attenuated 

by simvastatin. To our knowledge, this is the first study to suggest the protective 

role of statins against ischemic injury of spinal cord neurons devising a primary 

motor neuron culture. 

OGD and reoxygenation is well-established and reliable neuronal cellular injury 

models that mimic changes that occur after ischemic insult in vivo [38-40].
 
Neurons 

are the cell type most sensitive to ischemic injury. Previous studies of cerebral 

ischemia-reperfusion have demonstrated that ischemia-reperfusion injury leads to 

obvious morphological neuronal changes, decreased cell survival, and dramatic 

increases in LDH release [38-40]. Our model of motor neuron ischemia-

reperfusion yielded similar damages; motor neurons of primary cultured rat spinal 

cord resulted in a significant decrease in cell viability as evidenced by WST-8. 

After OGD, almost twice as much LDH had leaked out through the injured cell 

membrane as was leaked from healthy cells, implying increased neurotoxicity. Also 

OGD and reoxygenation dramatically increased DCFDA value, implying enhanced 

free radical generation in cells. 

Statins reduce OGD and reoxygenation-induced neuronal injury [28,40]. Statins 

reduce cerebral infarct volume [41,42], improve perfusion deficits [43], and 

facilitate cognitive improvement [17] mostly using the experimental preclinical 

stroke models [39,43]. Protective effect of statins against ischemic injury has also 
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been reported in other organs, such as myocardial ischemia-reperfusion injury 

[11,44], ischemic acute kidney injury [14], and intestinal ischemia–reperfusion 

injury [45]. We obtained similar results; simvastatin effectively attenuated 

ischemia-reperfusion induced spinal cord motor neuron death. Quantitative 

analysis showed an increase in cell survival after simvastatin treatment at 

concentrations from 0.1 to 10 μM.  

Similarly, ischemia-reperfusion-evoked LDH release was reduced by simvastatin 

in a dose dependent manner, which supports the protective effect of simvastatin 

against ischemia-reperfusion-induced cytotoxicity. LDH leakage indicates 

cytotoxicity as a result of cell membrane disintegration [20]. The elevated LDH 

following OGD in our study significantly decreased with simvastatin treatment at 

concentrations of 0.1, 1, and 10 μM, indicating that it attenuates the cellular 

injury/death induced by ischemia. Our basic research performed at cellular level 

demonstrated the safety margin of simvastatin in terms of motor neuron protection. 

Ischemic injury leads to production of massive amounts of ROS that directly 

damage the main cellular constituents [18,22]. In addition, reperfusion to an 

ischemic organ, a restoration of oxygen levels in hypoxic tissues, also stimulates 

ROS production [46,47]. However, the CNS is extremely sensitive to oxidative 

stress due to delicate lipid layers of its cell membranes and low levels of 

antioxidant enzymes [48]. Oxidative stress responses in the CNS vary among to 

different cell types. Neurons have relatively low antioxidant capacity and limited 

scope to upregulate it upon increased oxidative stress, so they are much more 
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vulnerable to oxidative damage than other cells in CNS [49,50]. Previous studies 

investigated the correlation between increased production of ROS and neuronal 

death following ischemia/hypoxia [51,52]. Simvastatin has been reported to have 

pleiotropic effects, including reducing oxidative stress [18,19,53]. 

In our study, simvastatin significantly decreased free radical production induced 

by ischemia-reperfusion, implying that the drug modifies ischemia-reperfusion-

induced oxidative stress. Numerous studies have reported that statins decrease ROS 

production in tissue, in vivo models, and in cultured neurons derived from 

embryonic rat brain tissue [18,20,29], and following major vascular surgery [54] 

including thoracoabdominal aneurysm repair[55,56] and decompression surgery of 

degenerative changes of spine including cervical spondylotic myelopathy [57-59]. 

Our study results agree with these findings, showing that simvastatin reduces the 

production of DCFDA in spinal cord cells exposed to OGD and reoxygenation. 

DCFDA is one of the most widely used techniques for directly measuring the redox 

state of a cell [60]. 

Despite numerous reports of the neuroprotective effects of statins [19,28,29,61-

63], some investigators have reported that they are toxic to neurons in vitro [64,65]. 

The toxicity versus protective effects of statins are dependent upon various factors, 

including the pharmacological characteristics of the individual statin agent, 

concentration of the drug, and cholesterol content of the neural cell used in the 

experiment [66]. Therefore, before the main experiment, we evaluated 

simvastatin’s toxicity to healthy motor neurons using concentrations ranging from 
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0.1 to 50 μM, based on the previous studies [28,66-70]. Cellular viability, assessed 

by WST-8, was not affected at any experimental simvastatin dose from 0.1 to 10 

μM. However, with a dose of 50 μM, the viability of the normal motor neuron was 

significantly reduced. This finding is consistent with that of previous reports and 

suggests possible cytotoxicity of high-dose statins [71]; that high dose was not 

applied in the main experiments. 

The limitation of this study is that we did not determine the precise mechanism 

of action of simvastatin. Our capabilities did not allow us to examine whether the 

protective effects were due to direct reduction of cholesterol, or whether 

indirect/nonspecific mechanisms of the statins modify cellular signaling. Further 

studies will help to elucidate the exact mechanism and the long-term effects of 

statins for clinical application. Second, there were no additional experiments to 

show antagonizing the neuroprotective effect of simvastatin, by coapplication other 

drugs, such as mevalonate, one of the downstream products of HMG-CoA 

reductase. Third, it is significant that our spinal cord cells were cultured from 

embryonic 14-15 fetus because only embryonic cells can be used for extended 

culture. However, younger cells are more sensitive to neurotoxins, and therefore, 

the results should generalize to adults with caution. 

Conclusions 

In conclusion, simvastatin reduces ischemia and reperfusion-induced injury of 

spinal cord motor neurons through its antioxidant effects. Our results could lead to 

clinical use of simvastatin to treat this type of spinal cord injury.  
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척수 허혈-재관류 손상 시 심바스타틴이 산화스트레스 감소를 

통해 세포 사멸 및 세포 독성에 미치는 신경 보호 효과:  

산소 및 포도당 결핍-재산소화 생체 외  

1차 배양 흰쥐의 척수 모델 

 

초록 

서론: 허혈과 이에 따르는 재관류 손상은 척수손상의 주요 메커니즘이

다. 스타틴, 특히 심바스타틴은 뇌를 비롯한 많은 기관에서 허혈-재관류 

손상을 감소시키는 것으로 보고되었다. 항산화 효과는, 신경 세포 사멸 

및 세포 독성에 대한 스타틴의 주요 보호 기전 중 하나인데 척수에서는 

연구된 바가 없다. 본 연구는 척수 허혈-재관류 모델을 만들어, 심바스

타틴의 척수 허혈-재관류 손상에 대한 신경 보호 효과를 알아보고자 하

였다. 

대상 및 방법: Sprague-Dawley rat 태아로부터 추출된 척수 운동 신경을 

1차 배양하였다. 60분간의 산소 및 포도당 결핍(OGD) 직후 24시간 동안

의 재산소화에 의해 허혈-재관류 손상 모델을 유도하였다. 건강한 세포

와 OGD 세포 각각에 0.1, 1, 10 μM의 농도로 심바스타틴을 24시간 동안 

처리하였다. 세포 생존력은 WST-8, 세포 독성은 LDH, 자유 라디칼 생성
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은 DCFDA를 이용하여 측정하였다. 

결과: OGD 는 정상 대조군에 비해 신경세포 생존율을 35.3% 감소시켰다. 

그러나 OGD 후 0.1-10 μM 심바스타틴 치료는 세포 생존율을 유의하게 

향상시켰다. OGD 는 LDH 방출을 214%까지 증가시켰으나, 심바스타틴 

치료는 0.1-10 μM 농도에서 세포 독성을 감소시켰다 (p <0.001 및 p = 

0.001). 심바스타틴은 또한 OGD 후 운동 신경 세포의 형태학적 변형도 

감소시켰다. 산화 스트레스는 OGD 에 노출되고 치료받지 않은 세포에 

비해, 심바스타틴 (0.1-10 μM)에 의해 감소되었다 (p <0.001). 

결론: 심바스타틴은 허혈-재관류 손상에 대한 척수의 신경 세포 사멸 및 

세포 독성을 효과적으로 감소시켰으며, 이는 산화 스트레스의 감소를 

통해 나타났다. 

 

주요어 : 산소-포도당 결핍; 산화 스트레스; 신경 보호; 심바스타틴; 척

수 손상; 허혈-재관류 손상 
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