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Abstract

In this thesis, we study various properties of representations of squares

by ternary quadratic forms.

A (positive definite integral) ternary quadratic form is called strongly S-

regular if it satisfies a regularity property on the number of representations of

squares of integers. We explain the relation between the strongly S-regularity

and the conjecture given by Cooper and Lam, and we resolve their conjecture

completely. We prove that there are only finitely many strongly S-regular

ternary forms up to isometry if the minimum of the non zero squares that

are represented by the form is fixed. In particular, we show that there are

exactly 207 non-classic integral strongly S-regular ternary quadratic forms

representing one.
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Chapter 1

Introduction

A homogeneous quadratic polynomial with three variables

f(x1, x2, x3) =
∑

1≤i,j≤3

aijxixj, (aij = aji ∈ Q)

is called a ternary quadratic form over Q. We say that f is positive definite

if the corresponding symmetric matrix Mf := (aij) is positive definite. We

say f is integral if each coefficient aij is an integer. The quadratic form f

is called non-classic integral if f is an integral polynomial, that is, both aii
and aij + aji are all integers for any i, j. Note that every integral form is

non-classic integral. Throughout this thesis, we assume that every ternary

quadratic form f is positive definite and non-classic integral.

For a (non-classic integral positive definite) ternary quadratic form f and

a positive integer n, we define

R(n, f) = {(x1, x2, x3) ∈ Z3 : f(x1, x2, x3) = n} and r(n, f) = |R(n, f)|.

Since we are assuming that f is positive definite, the set R(n, f) is always

finite. Finding a closed formula for r(n, f) or finding all positive integers

n such that r(n, f) 6= 0 for a given ternary quadratic form f are quite old

problems which are still widely open. As one of the simplest cases, Gauss

showed that if f is a sum of three squares, that is, f(x, y, z) = x2+y2+z2, then

r(n, f) is a multiple of the Hurwitz-Kronecker class number of an imaginary
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CHAPTER 1. INTRODUCTION

quadratic field. In fact, if the class number of f is one, then Minkowski-Siegel

formula gives a closed formula for r(n, f). As a natural modification of the

Minkowski-Siegel formula, it was proved in [13] and [21] that the weighted

sum of the representations of quadratic forms in the spinor genus is also

equal to the product of local densities except spinor exceptional integers (see

[20] for the definition spinor exceptional integers). Hence, if the spinor class

number g+(f) of f is one, we also have a closed formula for r(n, f). As far as

the author knows, there is no known closed formula for r(n, f) except those

cases (for some relations between r(n, f)’s, see [12]).

Though it seems to be quite difficult to find a closed formula for r(n, f) for

any positive integer n, there are some additional closed formulas for r(n, f)

if the integer n is contained in some particular proper subset S of the set of

integers. For example, for any integer n ∈ S, if r(n, f) = r(n, f ′) for any

f ′ ∈ gen(f), then the Minkowski-Siegel formula gives a closed formula for

r(n, f). Note that there is an integer n such that r(n, f) 6= r(n, f ′) for any

f ′ ∈ gen(f) that is not isometric to f by Schiemann’s result [18].

In 2013, Cooper and Lam [4] tried to find a closed formula for r(n2, f),

where f(x, y, z) = x2 + ay2 + bz2 for some integers a, b. In that article,

they proved, by using some q-series identities, that for the quadratic form

f(x, y, z) = x2 + by2 + cz2 with (b, c) = (1, 1), (1, 2), (1, 3), (2, 2), (3, 3),

r(n2, f) =
∏
p|2bc

g(b, c, p, ordp(n))
∏
p-2bc

h(b, c, p, ordp(n)), (1.0.1)

where

h(b, c, p, ordp(n)) =
pordp(n)+1 − 1

p− 1
−
(
−df
p

)
pordp(n) − 1

p− 1

and g(b, c, p, ordp(n)) has to be determined on an individual and case-by-case

basis, and they conjectured that the above equality also holds for some 64

pairs of (b, c) (see Table 3.1 in Chapter 3). Recently, Guo, Peng and Qin in

[8] verified the conjecture when

(b, c) = (1, 4), (1, 5), (1, 6), (1, 8), (2, 3), (2, 4),

(2, 6), (3, 6), (4, 4), (4, 8), (5, 5), (6, 6)
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CHAPTER 1. INTRODUCTION

by using theory of modular forms of weight 3/2, and Hürlimann in [9] verified

the conjecture when

(b, c) = (2, 8), (2, 16), (8, 8), (8, 16)

by using some q-series identities on Bell ternary quadratic forms.

In this thesis, we prove Cooper and Lam’s conjecture completely. Further-

more, we find all ternary quadratic forms f satisfying the condition (1.0.1)

under the assumption that 1 is represented by the form f .

In Chapter 2, we introduce some definitions and well-known results on

quadratic spaces and lattices. We adapt the geometric language of quadratic

spaces and lattices rather than quadratic forms in the subsequent discussion.

The term “lattice” will always refer to a positive definite integral Z-lattice

on an n-dimensional positive definite quadratic space over Q. Let L = Zx1 +

Zx2 + · · ·+ Zxn be a Z-lattice of rank n. We write

L ' (B(xi, xj)).

The right hand side matrix is called a matrix presentation of L. If B(xi, xj) =

0 for any i 6= j, then we write L ' 〈Q(x1), Q(x2), . . . , Q(xn)〉, where Q is the

quadratic map such that Q(x) = B(x, x) for any x ∈ L. The discriminant

dL of the lattice L is defined by the determinant of the corresponding matrix

(B(xi, xj)).

For two Z-lattices M and L, a linear map σ : M → L is called a repre-

sentation from M to L if it preserves the bilinear form, that is,

B(σ(x), σ(y)) = B(x, y) for any x, y ∈M.

We define

R(M,L) = {σ : M → L | σ is a representation}

and r(M,L) = |R(M,L)|. In particular, O(L) = R(L,L) which is called the

isometry group of L, and o(L) = r(L,L). For any Z-lattice L, the isometry

3



CHAPTER 1. INTRODUCTION

class containing L in gen(L) is denoted by [L]. As usual, we define

w(L) =
∑

[M ]∈gen(L)

1

o(M)
and r(K, gen(L)) =

1

w(L)

∑
[M ]∈gen(L)

r(K,M)

o(M)
,

for any Z-lattice K. Any unexplained notations and terminologies can be

found in [16] or [17].

In Chapter 3, we completely resolve Cooper and Lam’s conjecture intro-

duced the above. In fact, the condition (1.0.1) in Cooper and Lam’s con-

jecture is a little bit vague, for the function g(b, c, p, ordp(n)) is not given

directly. So, we introduce the notion “strongly S-regularity” of ternary

quadratic forms. To be more precise, let f be a ternary quadratic form. For

any integer n, let n1 and n2 be positive integers such that P (n1) ⊂ P (8df),

(n2, 8df) = 1 and n = n1n2. Here P (n) denotes the set of prime factors of n.

Then f is called strongly S-regular if for any positive integer n = n1n2,

r(n2
1n

2
2, f) = r(n2

1, f) ·
∏
p-8df

hp(df, λp), (1.0.2)

where λp = ordp(n) for any prime p and

hp(df, λp) =
pλp+1 − 1

p− 1
−
(
−df
p

)
pλp − 1

p− 1
.

Clearly, if f does not represent any squares of integers, then f is trivially

strongly S-regular. So, we always assume that a strongly S-regular ternary

form f represents at least one square of an integer. Note that this condition

is equivalent to the condition that f represents one over Q.

Our method is based on the action of Hecke operators on the space of

modular forms of weight 3
2

and the Minkowski-Siegel formula on the weighted

sum of the representations by quadratic forms in the same genus.

In Chapter 4, we prove that every strongly S-regular form represents all

squares that are represented by its genus, and there are only finitely many

strongly S-regular ternary forms up to isometry if

ms(f) = min
n∈Z+
{n : r(n2, f) 6= 0}

4



CHAPTER 1. INTRODUCTION

is fixed. Furthermore, we show that there are exactly 207 strongly S-regular

ternary quadratic forms that represent one (see Tables 4.1 and 4.2). In the

proof of Lemma 4.2.1 and Theorem 4.2.2, we extensively use mathematics

software MAPLE for large amount of computation. In fact, if a ternary

quadratic form f satisfies the condition (1.0.1), then clearly f is strongly

S-regular. Furthermore, one may easily show that if

r(n2, f) = r(n2, gen(f)) (1.0.3)

for any integer n, then f satisfies the condition (1.0.1). In this chapter, we

will show that all three conditions (1.0.1), (1.0.2) and (1.0.3) given above are

equivalent by showing that every strongly S-regular ternary quadratic form

satisfies the condition (1.0.3).

In Chapter 5, we generalize the notion of “strongly S-regularity” of

ternary quadratic forms. Let T be a proper subset of positive integers.

A ternary quadratic form f is called strongly T -regular (strongly spinor T -

regular) if r(n, f)=r(n, gen(f)) (r(n, f) = r(n, spn(f)), respectively) for any

integer n ∈ T , where

ws(f) =
∑

[g]∈spn(f)

1

o(g)
and r(n, spn(f)) =

1

ws(f)

∑
[g]∈spn(f)

r(n, g)

o(g)
.

Let t be a positive square free integer. We define

St = {tn2 | n ∈ Z}.

We prove that there exist only finitely many strongly St-regular ternary

quadratic forms up to isometry if

mSt(f) = min
n∈Z+
{n : r(tn2, f) 6= 0}

is fixed. We also prove that if any splitting integer for the genus of a ternary

quadratic form f is not of the form tn2, then f is strongly St-regular if and

only if f is strongly spinor St-regular.
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Chapter 2

Preliminaries

In this chapter, we introduce some definitions and well-known results which

are used in throughout the thesis. Especially, we state the Minkowski-Siegel

formula which is important for representation of quadratic forms over Z.

2.1 Definitions

Let Q be the rational number field. For a prime p (including ∞), we denote

the fields of p-adic completions of Q by Qp, in particular Q∞ = R, field of

real number. Let F be a field Q or Qp. A quadratic space V over F is a finite

dimensional vector space over F equipped with a non-degenerate symmetric

bilinear form

B : V × V → F.

Then we have the following properties:

B(x, y) = B(y, x), B(αx+ βy, z) = αB(x, z) + βB(y, z),

for any x, y, z ∈ V and α, β ∈ F . The quadratic map Q associated with B is

defined by

Q(x) = B(x, x),

for any x ∈ V . We say that a quadratic space is unary, binary, ternary,

quaternary,. . . , n-ary, according as its dimension is 1, 2, 3, 4, . . . , n.

6



CHAPTER 2. PRELIMINARIES

Let V,W be quadratic spaces over F . If a linear mapping σ from V into

W satisfies that

Q(σx) = Q(x) for any x ∈ V ,

we call σ a representation from V into W and say that V is represented by

W . Furthermore if σ is a bijective linear map, then we call σ an isometry

from V onto W . In this case, we say that V and W are isometric and write

V ' W . The group of all isometries from V onto itself is denoted by O(V ).

For σ ∈ O(V ), we call σ a rotation if detσ = 1. We denote the set of all

rotations of V by O+(V ).

Let V be a quadratic space over F and let x1, x2, . . . , xn be a basis of V .

The n× n matrix

(B(xi, xj))1≤i,j≤n

is called the matrix of the quadratic space V in the basis x1, x2, . . . , xn. In

this case, we write

V ' (B(xi, xj)).

We say that V is positive definite if the matrix (B(xi, xj)) is positive definite.

If B(xi, xj) = 0 for any i 6= j, then we write

V ' 〈Q(x1), Q(x2), . . . , Q(xn)〉.

The determinant

det(B(xi, xj))

of the n×n matrix (B(xi, xj)) is called the discriminant of V and we denote

it by dV . Note that the discriminant of V in (F×/(F×)2)∪{0} is independent

of the basis of V . If dV 6= 0, then we say that V is a regular quadratic space.

Let V be a non-zero regular n-ary quadratic space over F . For any

σ ∈ O(V ), we can express σ as a product of symmetries by Theorem 43:3 in

[17], say

σ = τv1τv2 · · · τvr .

We define

θ(σ) = Q(v1)Q(v2) · · ·Q(vr) ∈ F×/(F×)2,

and call it the spinor norm of σ. By Proposition 54:6, the spinor norm of σ

7



CHAPTER 2. PRELIMINARIES

in F×/(F×)2 is well-defined. Since

θ(στ) = θ(σ)θ(τ),

we have a group homomorphism

θ : O+(V )→ F×/(F×)2.

We define

O′(V ) = {σ ∈ O+(V ) | θ(σ) = 1}.

Clearly this is the kernel of the homomorphism θ.

Let F be a field Qp or Q∞(= R). For non-zero elements α, β in F , the

Hibert symbol (
α, β

p

)
,

or simply (α, β), is defined to be +1 if αx2 +βy2 = 1 has a solution x, y ∈ F ;

otherwise the symbol is defined to be −1. Let V be a regular n-ary quadratic

space over F . If V has a splitting

V ' 〈α1, α2, . . . , αn〉,

then we define the Hasse symbol

Sp(V ) =
∏

1≤i≤n

(
αi, di
p

)
,

where di = α1α2 · · ·αn. Note that this is independent of the orthogonal

splitting chosen for V .

Let R be the ring of integers Z or the ring of p-adic integers Zp. Let F

be the quotient field of R and let V be a quadratic space over F . Let L be

a subset of V which is an R-module under the laws induced by the vector

space structure of V over F . We define

FL = {αx | α ∈ F, x ∈ L}.

8



CHAPTER 2. PRELIMINARIES

Note that FL is a subspace of V . We call the R-module L a R-lattice in V

if there is a basis x1, x2, . . . , xn for V such that

L ⊆ Rx1 +Rx2 + · · ·+Rxn.

Furthermore if FL = V , then we call the R-module L a R-lattice on V . We

say that a R-lattice is unary, binary, ternary, quaternary,. . . , n-ary, according

as its rank is 1, 2, 3, 4, . . . , n.

Let U, V be quadratic spaces over F . Let K,L be R-lattices on the

quadratic spaces U, V , respectively. We say that K is represented by L if

there is a representation σ : FK → FL such that σK ⊆ L. We say that

K and L are isometric if there is a representation σ : FK → FL such that

σK = L. In this case, we write K ' L.

Let L be a R-lattice on quadratic space V and let x1, x2, . . . , xn be a basis

of L. As before, the n× n matrix

(B(xi, xj))1≤i,j≤n

is called the matrix of R-lattice L in the basis x1, x2, . . . , xn. In this case, we

write

L ' (B(xi, xj)).

We say that L is positive definite if the matrix (B(xi, xj)) is positive definite.

If B(xi, xj) = 0 for any i 6= j, then we write

L ' 〈Q(x1), Q(x2), . . . , Q(xn)〉.

The determinant

det(B(xi, xj))

of the n×n matrix (B(xi, xj)) is called the discriminant of L and we denote

it by dL. Note that the discriminant of L in (F×/(R×)2)∪{0} is independent

of the basis of L. If dL 6= 0, then we say that L is a regular R-lattice.

Let L be a regular R-lattice on quadratic space V . We define the dual

lattice L] of L by

L] = {x ∈ V | B(x, L) ⊆ R}.

9



CHAPTER 2. PRELIMINARIES

Let V be a regular non-zero quadratic space and let K,L be R-lattices

on the quadratic space V . We say that K and L are in the same class if

K = σL for some σ ∈ O(V ).

This is obviously an equivalence relation on the set of all R-lattices on V and

we consequently obtain a partition of this set into equivalence classes. We

use

clsL

to denote the class of L. The subgroup O(L) of O(V ) is defined as follows:

O(L) = {σ ∈ O(V ) | σL = L}.

We call O(L) the isometry group of L and we denote the order |O(L)| of

O(L) by o(L). We also definie the subgroup O+(L) of O(L) by

O+(L) = O(L) ∩O+(V ).

Let L be a R-lattice on the quadratic space V over F . We define the

scale (norm) of L by the R-module generated by the subset B(L,L) (Q(L),

respectively) of F . Here

B(L,L) = {B(x, y) | x, y ∈ L} and Q(L) = {Q(x) | x ∈ L}.

We denote the scale (norm) of L by sL (nL, respectively). Note that

2sL ⊆ nL ⊆ sL.

Let L be a Z-lattice on quadratic space V over Q. The genus genL of Z-

lattice L on V is defined by the set of all Z-lattices K on V with the following

property: for each finite prime p there exists an isometry Σp ∈ O(Vp) such

that Kp = ΣpLp. Here Lp is the Zp-lattice L⊗Zp. We say that the Z-lattice

on V is in the same spinor genus as L if there is an isometry σ ∈ O(V ) and

a rotation Σp ∈ O′(V ) at each finite prime such that

Kp = σpΣpLp,

10



CHAPTER 2. PRELIMINARIES

for every finite prime p. The spinor genus spnL of Z-lattice L is defined

by the set of all Z-lattices in the same spinor genus as L. Clearly we have

clsL ⊆ spnL ⊆ genL. We define h(L) by the number of classes in genL and

call it the class number of L. We also define g(L) by the number of spinor

genera in genL. Note that h(L) and g(L) is always finite. We define

w(L) =
∑

[M ]∈gen(L)

1

o(M)
and r(K, gen(L)) =

1

w(L)

∑
[M ]∈gen(L)

r(K,M)

o(M)
,

ws(L) =
∑

[M ]∈spn(L)

1

o(M)
and r(K, spn(L)) =

1

ws(L)

∑
[M ]∈spn(L)

r(K,M)

o(M)
,

for any Z-lattice K.

For a ternary Z-lattice L = Zx1 + Zx2 + Zx3, the corresponding ternary

quadratic form fL is defined by

fL =
∑

1≤i,j≤3

B(xi, xj)xixj.

We always assume that unless stated otherwise,

any Z-lattice L is a positive definite Z-lattice such that n(L) = Z.

Hence 4 · dL is an integer. If dL is not an integer, then the Legendre symbol(
dL
p

)
for an odd prime p is defined as

(
4·dL
p

)
. For any odd integer n, we say

n (does not) divides dL if n (does not, respectively) divides the integer 4 ·dL.

A binary form ax2 + bxy + cy2 will be denoted by [a, b, c] and a ternary

form ax2 + by2 + cz2 + dyz + ezx+ fxy will be denoted by [a, b, c, d, e, f ].

If an integer n is represented by L over Zp for any prime p including the

infinite prime, then we say that n is represented by the genus of L, and we

write n→ gen(L). When n is represented by the lattice L itself, then we

write n→L. The class of L in the genus of L will be denoted by [L]. For

any odd prime p, ∆p is denoted by a non square unit in Z×p .

11



CHAPTER 2. PRELIMINARIES

2.2 Splitting integers

Let Ω be the set of all primes including ∞. Consider the following multi-

plicative group ∏
p∈Ω

Q×p .

An elements of this group is defined in terms of its p-coordinates, say

i = (ip)p∈Ω (ip ∈ Q×p ).

Then the multiplication in the direct product is coordinatewise. We say

an element i in the above big group idèle if it satisfies the following extra

condition:

|ip|p = 1 for almost all p ∈ Ω.

Then the set of all idèles is a subgroup of the direct product. This subgroup

is called the group of idèles, and denoted by JQ. Let Q+ be the set of all

positive rational numbers. Let PQ+ be the group of principal idèles of the

form (α)p∈Ω, where α ∈ Q+. For a Z-lattice L, we define the subgroup JLQ of

JQ by

JLQ = {i ∈ JQ | ip ∈ θ(O+(Lp)) for every finite prime p}.

Let L be a ternary Z-lattice with discriminant d. Assume that c is a non-zero

integer satisfying

−cd /∈ (Q×)2.

For p in Ω, we define

Nc(p) = {β ∈ Q×p | (β,−cd)p = 1},

where ( , )p is the Hilbert symbol. Now we define the subgroup Nc of JQ by

Nc = {i ∈ JQ | ip ∈ Nc(p) for all prime p ∈ Ω}.

We call c a splitting integer for gen(L) if c is represented by gen(L) and

[JQ : NcPQ+JLQ ] = 2. In this case, gen(L) is split into two half-genera. The

12
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half-genus containing the class [L] is denoted by HL(c) and the other half-

genus is denoted by HL̃(c).

2.3 The Minkowski-Siegel formula

Throughout this section, R and F denote the p-adic integer ring Zp and

the p-adic number field Qp, respectively. Here p is a prime number. We

denote the set of m × n matrices with entries in R by Mm,n(R) and we

put Mm(R) = Mm,m(R). For matrices X, Y , we put Y [X] = X tY X if

it is defined. We say that a symmetric matrix S over R is regular if the

determinant of S is non-zero.

First, we introduce the notion of local density.

Lemma 2.3.1. Let S and T be regular symmetric matrices over R of degree

s and t, respectively. Put

Et(R) = {B = Bt ∈Mt(R) | all diagonal entries of B is in 2R}

and take an integer h such that phT−1 is in Et(R). For G ∈ Ms,t(R) and

nonnegative integers r, e, we put

Apr(T, S;G, pe) =

{X ∈Ms,t(R) mod pr | S[X] ≡ T mod prEt(R), X ≡ G mod pe}.

If r ≥ h+max (e, 1), then we have

(pr+1)t(t+1/2−st)]Apr+1(T, S;G, pe) = (pr)t(t+1/2−st)]Apr(T, S;G, pe).

Proof. See Lemma 5.6.1 in [16].

Lemma 2.3.2. Let S and T be regular symmetric matrices over F of degree

s and t, respectively and let G ∈Ms,t(R). Put

Bpr(T, S;G, pe) =

{X ∈Ms,t(R) mod prS−1Ms,t(R) |S[X] ≡ T mod prEt(R), X ≡ Gmod pe}.

13
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Let h′ be an integer such that ph
′
S−1 ∈ Es(R). Then Bpr(T, S;G, pe) is well-

defined for r ≥ h′ + e. For an integer a and a sufficienly large r, we have

]Bpr+a(paT, paS;G, pe) = ]Bpr(T, S;G, pe).

Furthermore if S and T are integral and r ≥ h′+max (e, 1), then we have

]Apr(T, S;G, pe) = ptordp(detS)]Bpr(T, S;G, pe).

Proof. See Lemma 5.6.3 in [16].

Lemma 2.3.3. Let S and T be regular symmetric matrices over F of degree

s and t, respectively and let G ∈ Ms,t(R). Then for a sufficiently large r,

(pr)t(t+ 1/2− st)]Bpr(T, S;G, pe) is independent of r.

Proof. See Lemma 5.6.4 in [16].

Lemma 2.3.4. Let S and T be regular symmetric matrices over R of degree

s and t, respectively and let G ∈Ms,t(R). Put

A′pr(T, S;G, pe) =

{X ∈Ms,t(R) mod pr | S[X] ≡ T mod pr, X ≡ G mod pe}.

Then we have

]A′pr(T, S;G, pe) = 2tδ2,p]Apr(T, S;G, pe),

for a sufficiently large r where δ is Kronecker’s delta function.

Proof. See Lemma 5.6.5 in [16].

Now we will define the local density. Let K and L be regular R-lattices

with rankK = k and rankL = l and let {xi}, {yi} be bases of K, L, respec-

tively. Let g be a homomorphism from K to L. Then we have

K = Rx1 +Rx2 + · · ·+Rxk and L = Ry1 +Ry2 + · · ·+Ryl
(g(x1), g(x2), · · · , g(xk)) = (y1, y2, · · · , yl)G for some G ∈Ml,k(R).

14
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We put

T = (B(xi, xj))1≤i,j≤k and S = (B(yi, yj))1≤i,j≤l.

Then the dual basis of L is given by (y1, y2, · · · , yl)S−1. We put

B̃pr(K,L; g, pe) = {σ : K → L/prL] | Q(σ(x)) ≡ Q(x) mod 2pr,

σ(x) ≡ g(x) mod peL for x ∈ K}.

Then B̃pr(K,L; g, pe) is canonically identified with Bpr(T, S;G, pe) through

matrix representation. We define

βp(K,L; g, pe) = pkorddL
p limr→∞(pr)k(k+1)/2−kl]B̃pr(K,L; g, pe)

= pkorddL
p limr→∞(pr)k(k+1)/2−kl]Bpr(T, S;G, pe).

By Lemma 2.3.3, above definition is well-defined. If e = 0, then the additional

condition σ(x) ≡ g(x) mod peL is clearly satisfied. Hence we put

Apr(T, S) = Apr(T, S;G, p0),

A′pr(T, S) = A′pr(T, S;G, p0),

βpr(K,L) = βpr(K,L; g, p0).

Now we define local density as follows:

αp(K,L) = 2kδ2,p−δk,lβpr(K,L),

where δ is Kronecker’s delta function. If we assume that s(K), s(L) ⊆ R,

then by Lemma 2.3.2, we have

βpr(K,L) = lim
r→∞

(pr)k(k+1)/2−kl]Apr(T, S).

Therefore by Lemma 2.3.4, we also have

αp(K,L) = 2−δk,l lim
r→∞

(pr)k(k+1)/2−kl]A′pr(T, S).

Actually, this is Siegel’s original definition of local density.

For a positive definite Z-lattice M on a positive definite quadratic space

15
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over Q, we put

w(M) =
∑

[N ]∈gen(M)

1

o(N)
,

where [N ] is the equivalence class containing N in the genus gen(M).

The following theorem is the famous Minkowski-Siegel formula.

Theorem 2.3.5. Let K and L be positive definite Z-lattices with rankK = k

and rankL = l and put

εk,l =

{
1/2 if either l = k + 1 or l = m ≥ 1,

1 otherwise.

Then we have

1

w(L)

∑
[M ]∈gen(L)

r(K,M)

o(M)

= εk,lπ
k(2l−k+1)/4

k−1∏
i=0

Γ((l − i)/2)−1(dL)−k/2(dK)(l−k−1)/2

×
∏
p<∞

αp(Kp, Lp),

where r(K,M) is the number of the representations from K to M and Γ is

the ordinary gamma function.

Proof. See Theorem 6.8.1 in [16].

2.4 Calculations of local densities

Let L be a regular Zp-lattice with rankL = l and let n be a nonzero p-adic

integer. We assume that the norm nL is Zp and l > 1. In this section, we

provide an explicit formula for the local density αp(n, L) of n by L which is

defined in previous section. The results in this section were proved by Yang

in [22].

First, assume that p 6= 2. Then we may assume that

L ' 〈ε1pt1 , ε2pt2 , . . . , εlptl〉,

16
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where εi ∈ Z×p and t1 ≤ t2 ≤ · · · ≤ tl. Here t1 = 0 by the assumption on L.

For each positive integer k, we put

L(k, 1) = {1 ≤ i ≤ l | ti − k < 0 is odd} and l(k, 1) = ]L(k.1).

Furthermore, we define

d(k) = k +
1

2

∑
ti<k

(ti − k) and δp =

{
1 if p ≡ 1 (mod 4),
√
−1 if p ≡ 3 (mod 4).

For n = βpa with β ∈ Z×p and a ∈ Z, we put

f1(n) =


−1

p
if l(a+ 1, 1) is even,(

β

p

)
1
√
p

if l(a+ 1, 1) is odd,

and

R1(n, L) = (1− p−1)
∑

0<k≤a
l(k, 1) is even

vkp
d(k) + va+1p

d(a+1)f1(n).

Here

vk =


δ3l(k,1)
p

∏
i∈L(k,1)

(
εi
p

)
if l(k, 1) is even,

δ3l(k,1)+1
p

∏
i∈L(k,1)

(
εi
p

)
if l(k, 1) is odd.

Theorem 2.4.1. Under the same notations given above, we have

αp(n, L) = 1 +R1(n, L).

Proof. See Theorem 3.1 in [22].

Finally, assume that p = 2. Then L is isometric to

〈ε12t1 , ε22t2 , . . . , εP2tP 〉 ⊥
(
⊥Mi=1 2mi

(
0 1

2
1
2

0

))
⊥
(
⊥Nj=1 2nj

(
1 1

2
1
2

1

))
,

17
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where εh ∈ Z×2 , th,mi and nj are all integers. The assumption on L means

that the smallest integer among all lh,mi and nj is zero. Note that P +2M+

2N = l. For each positive integer k, we put

L(k, 1) = {1 ≤ h ≤ P | th − k < 0 is odd}, l(k, 1) = ]L(k.1),

p(k) = (−1)
∑

nj<k(nj−k)
,

ε(k) =
∏

h∈L(k−1,1)

εh,

d(k) = k + 1
2

∑
th<k−1

(th − k + 1) +
∑
mi<k

(mi − k) +
∑
nj<k

(nj − k),

δ(k) =

{
0 if th = k − 1 for some h,

1 otherwise.

Let ψ(x) = e−2πiλ(x) be the canonical character of Qp, where λ : Qp →
Qp/Zp ↪→ Q/Z. Now we define for n = β2a with β ∈ Z×2 and a ∈ Z,

R1(n, L) =
∑

0<k≤a+3
l(k − 1, 1) is odd

δ(k)p(k)

(
2

µε(k)

)
2d(k)−3/2

+
∑

0<k≤a+3
l(k − 1, 1) is even

δ(k)p(k)

(
2

ε(k)

)
2d(k)−1ψ

(µ
8

)
char(4Z2)(µ),

where (
2

x

)
=

{
(2, x)2 if x ∈ Z×2 ,
0 otherwise,

and µ = µk(n) is given by

µk(n) = β2a−k+3 −
∑

th<k−1

εh.

Here char(X) is the characteristic function of a set X and ( , )p is the Hilbert

symbol.

18
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Theorem 2.4.2. Under the same notations given above, we have

α2(n, L) = 1 +R1(n, L).

Proof. See Theorem 4.1 in [22].
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Chapter 3

Representations of squares by

ternary forms

In this chapter, we resolve the conjecture given by Cooper and Lam in [4].

3.1 Indistinguishable by squares

In this section, we investigate various properties on the representations of

squares by ternary quadratic forms.

Definition 3.1.1. Let L be a ternary Z-lattice. We say the genus of L is

indistinguishable by squares if r(n2, L) = r(n2, L′) for any L′ ∈ gen(L) and

any integer n.

Let L be a ternary Z-lattice. It is obvious that if the genus of L does

not represent any squares of integers, that is, r(n2, L′) = 0 for any integer n

and any L′ ∈ gen(L), or the class number of L is one, then the genus of L

is indistinguishable by squares. As pointed out in the above, some genera of

ternary Z-lattices are obviously indistinguishable by squares.

Lemma 3.1.2. Let L be a ternary Z-lattice and let V = Q ⊗ L be the

quadratic space. Then r(n2, L′) = 0 for any L′ ∈ gen(L) and any positive

integer n if and only if d(Vp) = −1 and Sp(V ) 6= (−1,−1)p for some prime

p. Here d(Vp) is the discriminant of Vp, where Vp = V ⊗Qp is the quadratic

space over Qp, and Sp(V ) is the Hasse symbol of V over Qp.
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Proof. The lemma follows directly from the fact that r(n2, L′) = 0 for any

L′ ∈ gen(L) and any positive integer n if and only if 1 is not represented by

V .

Remark 3.1.3. In fact, it is possible that 1 is not represented by a genus

which is indistinguishable by squares. For example, let L ' 〈2, 3, 24〉. Then

one may easily check that the class number of L is 2 and the other lattice in

the genus is L′ '
(

5 1

1 5

)
⊥ 〈6〉. By checking the local structure at p = 2

and 3, one may easily show that r(n2, L) = r(n2, L′) = 0 for any integer n

not divisible by 6. Assume that

36n2 = 2x2 + 3y2 + 24z2

for some integers n and x, y, z. Then one may easily check that x ≡ 0

(mod 6) and y ≡ 0 (mod 2). Therefore we have r(36n2, L) = r(3n2, 〈1, 2, 6〉).
Similarly, one may also check that r(36n2, L′) = r(3n2, 〈1, 2, 6〉). Therefore

we have r(n2, L) = r(n2, L′) for any integer n.

Lemma 3.1.4. Let L be a ternary Z-lattice and let n be a positive integer.

For any prime p, we assume that ordp(n) = λp. If 1 is represented by the

genus of L, then we have

r(n2, gen(L))

r(1, gen(L))
=n

∏
p|n,p|8dL

αp(n
2, L)

αp(1, L)

∏
p|n,p-8dL

αp(n
2, L)

αp(1, L)

=
∏

p|n,p|8dL

pλp · αp(n
2, L)

αp(1, L)

∏
p|n,p-8dL

(
pλp+1 − 1

p− 1
−
(
−dL
p

)
pλp − 1

p− 1

)
.

In particular, if the lattice L has class number 1, then we have

r(n2, L) = r(1, L)
∏

p|n,p|8dL

pλp · αp(n
2, L)

αp(1, L)

×
∏

p|n,p-8dL

(
pλp+1 − 1

p− 1
−
(
−dL
p

)
pλp − 1

p− 1

)
.
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Proof. The Minkowski-Siegel formula implies

r(n2, gen(L)) = π
3
2 Γ

(
3

2

)−1

· 1√
dL
· n
∏
p<∞

αp(n
2, Lp),

where αp is the local density. If p does not divide 8dL, then by [22],

αp(n
2, L) = αp(p

2λp , L) = 1 +
1

p
− 1

pλp+1
+

(
−dL
p

)
1

pλp+1
.

The lemma follows from this.

Remark 3.1.5. When the class number of a ternary lattice L is 1, the above

lemma gives a closed formula, which is, in principle, a finite product of local

densities, for the number of representations of squares by L. This could by

extended to other rank cases. Let L be a Z-lattice with h(L) = 1. If the rank

of the Z-lattice L is an odd (even) integer greater than 1 (0), then we might

have a closed formula of r(n2, L) (r(n, L), respectively) which is essentially

given by a finite product of local densities. For example, if the rank of L is

4, then we have

r(n, L) = r(1, L)
∏
p|2dL

pordp(n)αp(n, L)

αp(1, L)

∏
p-2dL

pordp(n)+1 −
(
dL
p

)ordp(n)+1

p−
(
dL
p

) .

There are some articles dealing with this subject by using different methods

such as q-series or modular forms. For example, see [2], [3], [5] and [7].

Lemma 3.1.6. Let L be a ternary Z-lattice. If for any L′ ∈ gen(L),r(n2, L)=

r(n2, L′) for any integer n such that every prime factor of n divides 8dL, then

the genus of L is indistinguishable by squares.

Proof. The action of Hecke operators T (p2) for any prime p - 8dL on theta

series of the Z-lattice L gives

r(p2n, L) +

(
−ndL
p

)
r(n, L) + p · r

(
n

p2
, L

)
=

∑
[L′]∈gen(L)

r∗(pL′, L)

o(L′)
r(n, L′).
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Here, if p2 - n, then r
(
n
p2
, L
)

= 0 and

r∗(pL′, L) =

{
r(pL′, L)− o(L) if L ' L′,

r(pL′, L) otherwise.

For details, see Chapter 3 of [1]. It is well known that

∑
[L′]∈gen(L)

r∗(pL′, L)

o(L′)
= p+ 1. (3.1.1)

Assume that r(n2, L) = r(n2, L′) for any L′ ∈ gen(L). Then by (3.1.1), we

have

r(p2n2, K) =

(
p+ 1−

(
−n2dL

p

))
r(n2, K)− p · r

(
n2

p2
, K

)
,

for any Z-lattice K ∈ gen(L). Therefore if n is not divisible by p, then

r(p2n2, L) = r(p2n2, L′) for any L′ ∈ gen(L). The lemma follows from in-

duction on the number of prime factors not dividing 8dL counting multiplic-

ity.

Now we collect some known results on the number of representations

of integers by ternary quadratic forms, which are needed later. Let L be

a ternary Z-lattice. For any prime p, the λp-transformation (or Watson

transformation) is defined as follows:

Λp(L) = {x ∈ L : Q(x+ z) ≡ Q(z) (mod p) for all z ∈ L}.

Let λp(L) be the non-classic integral lattice obtained from Λp(L) by scaling

V = L ⊗ Q by a suitable rational number. For a positive integer N =

pe11 p
e2
2 · · · p

ek
k , we also define

λN(L) = λe1p1(λ
e2
p2

(· · ·λek−1
pk−1

(λekpk(L)) · · · )).

Note that λp(λq(L)) = λq(λp(L)) for any primes p 6= q.

Lemma 3.1.7. Let L be a ternary Z-lattice and let p be an odd prime. If the
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unimodular component in a Jordan decomposition of Lp is anisotropic, then

r(pn, L) = r(pn,Λp(L)).

Proof. See [6].

Now assume that the 1
2
Zp-unimodular component in a Jordan decompo-

sition of Lp is nonzero isotropic. Assume that p is a prime dividing 4dL.

Then by Weak Approximation Theorem, there exists a basis {x1, x2, x3} for

L such that

(B(xi, xj)) ≡
(

0 1
2

1
2

0

)
⊥ 〈pordp(4dL)δ〉 (mod pordp(4dL)+1),

where δ is an integer not divisible by p. We define

Γp,1(L) = Zpx1 + Zx2 + Zx3, Γp,2(L) = Zx1 + Zpx2 + Zx3.

Note that the lattice Γp,i(L) depends on the choice of basis for L. However

the set {Γp,1(L),Γp,2(L)} is independent of the choices of the basis for L.

There are exactly two sublattices of L with index p whose norm is contained

in pZ. They are, in fact, Γp,1(L) and Γp,2(L). For some properties of these

sublattices of L, see [12].

Lemma 3.1.8. Under the same assumptions given above, we have

r(pn, L) = r(pn,Γp,1(L)) + r(pn,Γp,2(L))− r(pn,Λp(L)).

Proof. See Proposition 4.1 of [12].

3.2 The Cooper and Lam’s conjecture

Let L be a ternary Z-lattice whose genus is indistinguishable by squares.

Then Lemma 3.1.4 gives a closed formula on r(n2, L). In this section, we

resolve the conjecture given by Cooper and Lam in [4] by using this obser-

vation.
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Table 3.1: Data for Conjecture 3.2.1

b c

1 1, 2, 3, 4, 5, 6, 8, 9, 12, 21, 24

2 2, 3, 4, 5, 6, 8, 10, 13, 16, 22, 40, 70

3 3, 4, 5, 6, 9, 10, 12, 18, 21, 30, 45

4 4, 6, 8, 12, 24

5 5, 8, 10, 13, 25, 40

6 6, 9, 16, 18, 24

8 8, 10, 13, 16, 40

9 9, 12, 21, 24

10 30

12 12

16 24

21 21

24 24

Conjectrue 3.2.1. Let b and c be any integers given in Table 1. Let n be

a positive integer and let λp = ordp(n) for any prime p. Then the number

r(n2, 〈1, b, c〉) of the integer solutions of the diophantine equation

n2 = x2 + by2 + cz2

is given by the formula of the type

r(n2, 〈1, b, c〉) =

∏
p|2bc

g(b, c, p, λp)

∏
p-2bc

h(b, c, p, λp)

 , (3.2.1)

where

h(b, c, p, λp) =
pλp+1 − 1

p− 1
−
(
−bc
p

)
pλp − 1

p− 1
(3.2.2)

and g(b, c, p, λp) has to be determined on an individual and case-by-case basis.
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Cooper and Lam verified the conjecture when

(b, c) = (1, 1), (1, 2), (1, 3), (2, 2), (3, 3)

by using some identities on q-series. In 2014, Guo, Peng and Qin in [8]

verified the conjecture when

(b, c) = (1, 4), (1, 5), (1, 6), (1, 8), (2, 3), (2, 4),

(2, 6), (3, 6), (4, 4), (4, 8), (5, 5), (6, 6)

by using theory of modular forms of weight 3/2. In 2016, Hürlimann in [9]

verified the conjecture when

(b, c) = (2, 8), (2, 16), (8, 8), (8, 16)

by using some q-series identities on Bell ternary quadratic forms.

In fact, by Lemma 3.1.4, the conjecture holds when the class number of

`b,c = 〈1, b, c〉 is one. In this case, we have

∏
p|2bc

g(b, c, p, λp) = r(1, `b,c)
∏
p|2bc

pλp · αp(n
2, `b,c)

αp(1, `b,c)
.

Therefore we may assume that the class number of `b,c is greater than 1, that

is,
(b, c) = (2, 13), (2, 22), (2, 40), (2, 70), (3, 5),

(3, 21), (3, 45), (5, 13), (8, 10), (8, 13).

In fact, one may easily verify that h(`b,c) = 2 in all cases given above. In

these cases, we define the other Z-lattice in the genus of `b,c by mb,c.

Definition 3.2.2. Let L be a ternary Z-lattice. For any integer n, let n1

and n2 be positive integers such that P (n1) ⊂ P (8dL), (n2, 8dL) = 1 and

n = n1n2. Here P (n) denotes the set of prime factors of n. The lattice L is

called strongly S-regular if for any positive integer n = n1n2,

r(n2
1n

2
2, L) = r(n2

1, L) ·
∏
p-8dL

hp(dL, λp),
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where λp = ordp(n) for any prime p and

hp(dL, λp) =
pλp+1 − 1

p− 1
−
(
−dL
p

)
pλp − 1

p− 1
.

Lemma 3.2.3. Let L be a ternary Z-lattice. If L satisfies the condition

(3.2.1) in Conjecture 3.2.1, then L is strongly S-regular.

Proof. Suppose that L satisfies the condition (3.2.1) in Conjecture 3.2.1.

Note that bc in (3.2.2) should be replaced by dL in general case. Let n = n1n2,

where P (n1) ⊂ P (8dL) and (n2, 8dL) = 1. Since

r(n2
1n

2
2, L) =

∏
p|8dL

gp(dL, λp)
∏
p-8dL

hp(dL, λp), r(n2
1, L) =

∏
p|8dL

gp(dL, λp),

where λp = ordp(n) for any prime p and

hp(dL, λp) =
pλp+1 − 1

p− 1
−
(
−dL
p

)
pλp − 1

p− 1
,

we have

r(n2
1n

2
2, L) = r(n2

1, L)
∏
p-8dL

hp(dL, λp).

Therefore L is strongly S-regular.

Theorem 3.2.4. Let L be a ternary Z-lattice. Every Z-lattice in the genus

of L is strongly S-regular if and only if gen(L) is indistinguishable by squares.

Proof. Suppose that r(n2, L) = r(n2, L′) for any integer n and any Z-lattice

L′ in the genus of L. Let n = n1n2, where P (n1) ⊂ P (8dL) and (n2, 8dL) = 1.

First assume that r(n2
1, L) 6= 0. By Minkowski-Siegel formula, we have

r(n2
1n

2
2, L

′)

r(n2
1, L

′)
=
r(n2

1n
2
2, gen(L))

r(n2
1, gen(L))

=
∏
p|8dL

αp(n
2
1n

2
2, L

′
p)

αp(n2
1, L

′
p)

∏
p-8dL

hp(dL, λp)

=
∏
p-8dL

hp(dL, λp)
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for any Z-lattice L′ ∈ gen(L). Hence we have

r(n2
1n

2
2, L

′) = r(n2
1, L

′)
∏
p-8dL

hp(dL, λp).

Now assume that r(n2
1, L) = 0. Then by Lemma 3.1.6, r(n2

1n
2
2, L

′) = 0 for

any L′ ∈ gen(L). Therefore L′ is strongly S-regular for any L′ ∈ gen(L).

Conversely, suppose that every Z-lattice in the genus of L is strongly

S-regular. Let gen(L) = {[L] = [L1], [L2], . . . , [Lh]}. Let n1 be any integer

such that P (n1) ⊂ P (8dL). Note that for any prime p - 8dL and any integer

i ∈ {1, 2, . . . , h},

r(p2n2
1, Li) +

(
−dL
p

)
r(n2

1, Li) =
∑

[L′]∈gen(L)

r∗(pL′, Li)

o(L′)
r(n2

1, L
′).

Since r(p2n2
1, Li) =

(
p+ 1−

(
−dL
p

))
r(n2

1, Li) by the assumption, we have

πp(L)

 r(n2
1, L1)
...

r(n2
1, Lh)

 = (p+ 1)

 r(n2
1, L1)
...

r(n2
1, Lh)

 ,

where πp(L) =
(
r∗(pLj ,Li)

o(Lj)

)
is the transpose of the Eichler’s Anzahlmatrix of L

at p (see [12]). This implies that πp(L) has an eigenvalue p+1 corresponding

to the eigenvector (r(n2
1, L1), . . . , r(n2

1, Lh)). Assume that

r(n2
1, Lk) = max(r(n2

1, L1), r(n2
1, L2), . . . , r(n2

1, Lh)).

Then

(p+ 1)r(n2
1, Lk) =

h∑
i=1

r∗(pLi, Lk)

o(Li)
r(n2

1, Li)

≤
h∑
i=1

r∗(pLi, Lk)

o(Li)
r(n2

1, Lk) = (p+ 1)r(n2
1, Lk).
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This implies that

r∗(pLi, Lk)

o(Li)
r(n2

1, Li) =
r∗(pLi, Lk)

o(Li)
r(n2

1, Lk).

Now by class linkage Theorem proved in [10], for any integer i = 1, 2, . . . , h,

there is a prime p - 8dL such that r∗(pLi, Lk) 6= 0. This implies that

r(n2
1, Li) = r(n2

1, Lk). The theorem follows from this by Lemma 3.1.6.

Remark 3.2.5. Assume that the class number of a ternary Z-lattice L is

two. Then one may easily show that if L is strongly S-regular, then so is the

other Z-lattice in the genus of L.

Theorem 3.2.6. Let L be a ternary Z-lattice representing 1. Then L is

strongly S-regular if and only if L satisfies the condition (3.2.1) in Conjecture

3.2.1.

Proof. Note that “if” is proved in Lemma 3.2.3. The “only if” is the direct

consequence of Theorem 4.3.7 and Lemma 3.1.4.

Corollary 3.2.7. Let L be a ternary Z-lattice representing 1. Then L sat-

isfies the condition (3.2.1) in Conjecture 3.2.1 if and only if gen(L) is indis-

tinguishable by squares.

Proof. The theorem is the direct consequence of Theorem 3.2.4 and Theorem

3.2.6.

From now on, we prove the conjecture when the class number of the Z-

lattice `b,c is two. In fact, we will show that each genus of `b,c is indistin-

guishable by squares except the cases when (b, c) = (3, 5), (3, 21) and (3, 45).

In the exceptional cases, we show that r(n2, `b,c) = r(n2,mb,c) only when n

is odd.

Theorem 3.2.8. The genera gen(`2,40), gen(`2,22) and gen(`2,70) are all in-

distinguishable by squares.

Proof. Note that

gen(`2,40) = {`2,40, `8,10}, gen(`2,22) =

{
`2,22, m2,22 = 〈1〉 ⊥

(
6 2

2 8

)}
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and

gen(`2,70) =

{
`2,70, m2,70 = 〈1〉 ⊥

(
8 2

2 18

)}
.

Let n be any integer such that n ≡ 0, 1 (mod 4). Define a map
fn : R(n, `8,10) 7→ R(n, `2,40) by fn(x, y, z) =

(
x, 2y,

z

2

)
,

fn : R(n, `2,22) 7→ R (n,m2,22) by fn(x, y, z) =

(
x, 2z,

y − z
2

)
,

fn : R(n, `2,70) 7→ R (n,m2,70) by fn(x, y, z) =

(
x,
y − z

2
, 2z

)
.

One may easily check that fn is a well defined bijective map. The lemma

follows directly from this.

Lemma 3.2.9. For any positive integer n such that n ≡ 1 (mod 8),

r(n, `3,5) = r (n,m3,5) , r(n, `3,21) = r

(
n,m3,21 = 〈1〉 ⊥

(
6 3

3 12

))
and

r(n, `3,45) = r

(
n,m3,45 = 〈1〉 ⊥

(
12 3

3 12

))
.

Proof. Since proofs are quite similar to each other, we only provide the proof

of the first case. Note that m3,5 = 〈1〉 ⊥
(

2 1

1 8

)
. Let n be an integer such

that n ≡ 1 (mod 8). Define

A1(n) = {(x, y, z) ∈ Z3 | x2 + 3y2 + 5z2 = n, x ≡ y ≡ z ≡ 1 (mod 2)},

A2(n) =

{(x, y, z) ∈ Z3 | x2 + 3y2 + 5z2 = n, x ≡ 1 (mod 2), y ≡ z ≡ 0 (mod 2)},

and

A3(n) =

{(x, y, z) ∈ Z3 | x2 + 3y2 + 5z2 = n, x ≡ y ≡ 0 (mod 2), z ≡ 1 (mod 2)}.
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We also define

B1(n)={(x, y, z) ∈ Z3 | x2 + 2y2 + 8z2 + 2yz = n, x ≡ y ≡ z ≡ 1 (mod 2)},

B2(n) =

{(x, y, z) ∈ Z3 |x2 + 2y2 + 8z2 + 2yz=n, x ≡ 1 (mod 2), y ≡ z ≡ 0 (mod 2)},

and

B3(n) =

{(x, y, z) ∈ Z3 |x2 + 2y2 + 8z2 + 2yz=n, x≡z≡1 (mod 2), y ≡ 0 (mod 4)}.

Then it is clear that

R(n, `3,5) = A1(n)∪A2(n)∪A3(n) and R(n,m3,5) = B1(n)∪B2(n)∪B3(n).

One may easily check that y ≡ z (mod 4) for any (x, y, z) ∈ A2(n), x 6≡ y

(mod 4) for any (x, y, z) ∈ A3(n) and y 6≡ z (mod 4) for any (x, y, z) ∈
B1(n).

We prove that

|A1(n)|+ |A2(n)| = |B1(n)|+ |B2(n)| and |A3(n)| = |B3(n)|,

which implies the assertion. First, we define a map f : A1(n) ∪ A2(n) 7→
B1(n) ∪B2(n) by

f(x, y, z) =

(
x,
y + 3z

2
,
y − z

2

)
.

Since

x2 + 3y2 + 5z2 = x2 + 2

(
y + 3z

2

)2

+ 2

(
y + 3z

2

)(
y − z

2

)
+ 8

(
y − z

2

)2

and
y + 3z

2
− y − z

2
= 2z ≡ 0 (mod 2),

the above map f is well defined. Furthermore one may easily check that f
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is bijective.

To show that |A3(n)| = |B3(n)|, we define

A0
3(n) = {(x, y, z) ∈ A3(n) | x− y − 2z ≡ 4 (mod 8)}

and

B0
3(n) = {(x, y, z) ∈ B3(n) | 2x− y + 2z ≡ 0 (mod 8)}.

Since (x, y, z) ∈ A3(n) ⇐⇒ (x, y,−z) ∈ A3(n), we have 2|A0
3(n)| = |A3(n)|.

Similarly, we also have 2|B0
3(n)| = |B3(n)| from the fact that (x, y, z) ∈

B3(n) ⇐⇒ (−x, y, z) ∈ B3(n). Now we define a map g : A0
3(n) 7→ B0

3(n) by

g(x, y, z) =

(
x+ 3y

2
,
x− y + 2z

2
,
−x+ y + 2z

4

)
and a map h : B0

3(n) 7→ A0
3(n) by

h(x, y, z) =

(
2x+ 3y − 6z

4
,
2x− y + 2z

4
,
y + 2z

2

)
.

One may easily check that both g and h are well defined and h◦g = id, g◦h =

id.

We put

K1 =

1 0 0

0 2 1

0 1 7

 , K2 =

2 0 1

0 3 1

1 1 3

 , L1 =

2 0 1

0 4 2

1 2 8

 , L2 =

2 1 1

1 4 0

1 0 8

 ,

and

T =

2 0 1

0 4 1

1 1 4

 .

Theorem 3.2.10. Both gen(`2,13) and gen(`8,13) are indistinguishable by

squares.
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Proof. Note that

m2,13 = 〈1〉 ⊥
(

5 2

2 6

)
, m8,13 = 〈1〉 ⊥

(
5 1

1 21

)
.

For any integer n,

r(4n2, `8,13) = r(n2, `2,13) and r(4n2,m8,13) = r(n2,m2,13).

If n is odd, then

r(n2, `2,13) = r(n2, `8,13) and r(n2,m2,13) = r(n2,m8,13).

Hence gen(`2,13) is indistinguishable by squares if and only if gen(`8,13) is

indistinguishable by squares. Therefore it suffices to show that gen(`2,13) is

indistinguishable by squares. Note that

r(4n2, `2,13) = r(2n2, K1) = r(2n2, L1),

r(4n2,m2,13) = r(2n2, K2) = r(2n2, L2).

Now by Lemma 3.1.8, we have

r(8n2, L1) = 2r(4n2, T )− r(2n2, K1), r(8n2, L2) = 2r(4n2, T )− r(2n2, K2).

Also by Lemma 3.1.6 and Lemma 3.1.7, we have r(2n2, K1) = r(2n2, K2) for

any odd integer n. In fact, by Lemma 3.1.8, we have r(2n2, K1) = r(2n2, K2)

for any integer n. By combining all equalities given above, we have

r(16n2, `2,13)− r(4n2, `2,13) = r(16n2,m2,13)− r(4n2,m2,13).

Furthermore, since r(4n2, `2,13) = r(n2, `2,13) and r(4n2,m2,13) = r(n2,m2,13)

for any odd integer n, it suffices to show that r(n2, `2,13) = r(n2,m2,13) for

any odd integer n. Now by Lemma 3.1.7, we know that r(132 · n2, `2,13) =

r(n2, `2,13) and r(132 ·n2,m2,13) = r(n2,m2,13). Therefore the theorem follows

directly from Lemma 3.1.6.

Proposition 3.2.11. The genus of `5,13 is indistinguishable by squares.
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Proof. Note that gen(`5,13) =

{
`5,13,m5,13 = 〈1〉 ⊥

(
2 1

1 33

)}
. Since `5,13 is

aniso-tropic over Z5 and Z13, r(n2, `5,13) = r(n2,m5,13) for any odd integer n

by Lemma 3.1.6. If x2 +5y2 +13z2 = 4n2, then x, y, z are all even. Therefore

r(4n2, `5,13) = r(n2, `5,13) and r(4n2,m5,13) = r(n2,m5,13).

The proposition follows from this.

Remark 3.2.12. All genera containing `3,5, `3,21 or `3,45 are not indistin-

guishable by squares. For example, r(4, `3,k) = 6 6= 2 = r(4,m3,k) for any

k = 5, 21 and 45. However by Lemma 4.1.3, r(n2, `3,k) = r(n2,m3,k) for any

odd integer n.

Example 3.2.13. As pointed out earlier, if the genus of a Z-lattice L is

indistinguishable by squares, then we may have a closed formula for r(n2, L′)

for any Z-lattice L′ ∈ gen(L). For example, one may easily show that

α2(n2, `2,13)

α2(1, `2,13)
=

2max(1,λ2)+1 − 3

2λ2
and

α13(n2, `2,13)

α13(1, `2,13)
=

1

13λ13
,

where λp = ordp(n) for any prime p. Therefore by Lemma 3.1.4, we have

r(n2, `2,13)= r(n2,m2,13)=2(2max(1,λ2)+1 − 3)

×
∏
p|n,

(p,26)=1

(
pλp+1 − 1

p− 1
−
(
−26

p

)
pλp − 1

p− 1

)
.

34



Chapter 4

Strongly S-regular ternary

forms

4.1 Some properties of strongly S-regular

ternary forms

Let L be a strongly S-regular ternary Z-lattice. Since we are assuming that

the genus of L represents at least one square of an integer, by Lemma 3.1.2,

we always have

d(L⊗Qp) 6= −1 or Sp(L⊗Qp) = (−1,−1)p for any prime p.

Lemma 4.1.1. Any strongly S-regular ternary Z-lattice L represents all

squares of integers that are represented by its genus.

Proof. Let L be a strongly S-regular ternary Z-lattice. Suppose that there

is an integer a such that a2 is represented by the genus of L, whereas it is

not represented by L itself. Then for any prime p - 8dL, if a = pt · b for some

integer b such that (b, p) = 1, then we have

r(p2a2, L) = r(b2, L)

(
pt+2 − 1

p− 1
−
(
−dL
p

)
pt+1 − 1

p− 1

)
= 0.

On the other hand, if we consider the action of the Hecke operator T (p2) to
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the theta series given by L for any prime p - 8dL, then we have

r(p2a2, L)+

(
−a2dL

p

)
r(a2, L)+p ·r

(
a2

p2
, L

)
=

∑
[L′]∈gen(L)

r∗(pL′, L)

o(L′)
r(a2, L′),

where r∗(pL′, L) is the number of primitive representations of pL′ by L. For

details, see Chapter 3 of [1]. Since r(a2, L) = r
(
a2

p2
, L
)

= 0, we have

r(p2a2, L) =
∑

[L′]∈gen(L)

r∗(pL′, L)

o(L′)
r(a2, L′).

From the assumption, there is a Z-lattice L′ ∈ gen(L) such that r(a2, L′) 6=
0. Furthermore, by Class Linkage Theorem given by [10], there is a prime

q - 8dL such that r∗(qL′, L) 6= 0. These imply that r(q2a2, L) 6= 0, which is

a contradiction.

Corollary 4.1.2. Let L be a strongly S-regular ternary Z-lattice. Then every

integer m such that m2 is represented by L is a multiple of ms(L) = ms(fL).

Proof. The corollary follows directly from the fact that for any prime p,

ordp(ms(L)) is completely determined by Lp by Lemma 4.1.1.

Proposition 4.1.3. Let q be an odd prime and let L be a ternary Z-lattice

such that Lq does not represent 1. Assume that Lq ' 〈∆q, q
αε1, q

βε2〉 for

ε1, ε2 ∈ Z×q and 1 ≤ α ≤ β.

(i) If α ≥ 2 and Lq 6' 〈∆q, q
2ε1, q

2ε2〉 for some ε1, ε2 ∈ Z×p , then L is

strongly S-regular if and only if λq(L) is strongly S-regular. Further-

more, if one of them is true, then ms(L) = q ·ms(λq(L)).

(ii) If α = 1 and Lq 6' 〈∆q, q,−q〉, then L is strongly S-regular if and only

if λ2
q(L) is strongly S-regular. Furthermore, if one of them is true, then

ms(L) = q ·ms(λ
2
q(L)).

Proof. Since the proof is quite similar to each other, we only provide the

proof of the first case. For any positive integer n, let n1 and n2 be positive

integers such that P (n1) ⊂ P (8dL), (n2, 8dL) = 1 and n = n1n2, where P (n)
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is the set of primes dividing n. Suppose that L is strongly S-regular. Then

we have

r(q2n2
1n

2
2, L) = r(q2n2

1, L)
∏
p-8dL

hp(dL, λp),

where λp and hp(dL, λp) are defined in the introduction. Since r(q2n2
1n

2
2, L) =

r(n2
1n

2
2, λq(L)) and r(q2n2

1, L) = r(n2
1, λq(L)) by Lemma 3.1.7, we have

r(n2
1n

2
2, λq(L)) = r(n2

1, λq(L))
∏
p-8dL

hp(dL, λp).

Since the set of primes dividing 8dL equals to the set of primes dividing

8d(λq(L)) from the assumption, the above equation implies that λq(L) is

strongly S-regular.

Conversely, Suppose that λq(L) is strongly S-regular. Then we have

r(n2
1n

2
2, λq(L)) = r(n2

1, λq(L))
∏
p-8dL

hp(dλq(L), λp).

Hence if ordq(n1) ≥ 1, then

r(n2
1n

2
2, L) = r(n2

1, L)
∏
p-8dL

hp(dL, λp).

Note that if ordq(n1) = 0, then r(n2
1n

2
2, L) = r(n2

1, L) = 0. Therefore L is a

strongly S-regular lattice.

Now assume that L or λq(L) is strongly S-regular. Since 1 is not rep-

resented by Lq, ms(L) is divisible by q. Furthermore, since r(q2n, L) =

r(n, λq(L)) by Lemma 3.1.7, we have ms(L) = q ·ms(λq(L)).

Proposition 4.1.4. Let L be a ternary Z-lattice such that L2 does not rep-

resent 1. Assume that L2 ' 〈ε1〉 ⊥M for ε1 ∈ Z×2 .

(i) If M is an improper modular lattice with norm contained in 4Z2 or

M ' 〈2αε2, 2βε3〉 for ε2, ε3 ∈ Z×2 and nonnegative integers α, β such

that β ≥ α ≥ 2, then L is strongly S-regular if and only if λ2(L) is

strongly S-regular. Furthermore, if one of them is true, then ms(L) =

2 ·ms(λ2(L)).
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(ii) If M ' 〈2αε2, 2βε3〉 with ε2, ε3 ∈ Z×2 and nonnegative integers α, β (β ≥
α) such that 0 ≤ α ≤ 1, then L is strongly S-regular if and only if

λ2
2(L) is strongly S-regular. Furthermore, if one of them is true, then

ms(L) = 2 ·ms(λ
2
2(L)).

Proof. Since the proof is quite similar to the odd case, the proof is left to the

reader.

Theorem 4.1.5. Let L be a strongly S-regular ternary Z-lattice. Then there

is a positive integer N such that

1. λN(L) is a strongly S-regular lattice such that ms(λN(L)) is odd square

free;

2. for any odd prime p dividing ms(λN(L)),

λN(L)p ' 〈∆p, p
2ε1, p

2ε2〉 or 〈∆p, p,−p〉,

where ε1, ε2 ∈ Z×p .

Proof. By Propositions 4.1.3 and 4.1.4, if p2 divides ms(L) for some prime

p, then λp(L) or λ2
p(L) is also strongly S-regular. Hence by taking λp-

transformations to L repeatedly, if needed, we may find an integer n such

that λn(L) is a strongly S-regular lattice such that ms(λn(L)) is odd square

free. If ms(λn(L)) is one, then there is nothing to prove. Assume that

ms(λn(L)) = p1p2 · · · pt where pi 6= pj are primes. Assume that p = pi for

some i = 1, 2, . . . , t. Then 1 is not represented by λn(L)p by Lemma 4.1.1.

Hence by Proposition 4.1.3, either λιp(λn(L)) is a strongly S-regular lattice

such that

p ·ms(λ
ι
p(λn(L))) = ms(λn(L)) and 1 → (λιp(λn(L)))p,

where ι = 1 or 2 depending on the structure of (λn(L))p, or

Lp ' 〈∆p, p
2ε1, p

2ε2〉 or 〈∆p, p,−p〉, (4.1.1)

where ε1, ε2 ∈ Z×p . If n′ is the product of primes satisfying the first condition,

then N = n ·n′ satisfies all conditions given in the statement of the theorem.
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Definition 4.1.6. A strongly S-regular ternary Z-lattice is called terminal

if ms(L) is an odd square free integer, and for any prime p dividing ms(L),

Lp satisfies the above condition (4.1.1).

Note that for any strongly S-regular lattice L, there is an integer N

such that λN(L) is a terminal strongly S-regular lattice by Theorem 4.1.5.

Therefore, to classify all strongly S-regular lattices, in some sense, it suffices

to find all terminal strongly S-regular lattices.

Remark 4.1.7. In fact, there are infinitely many terminal strongly S-regular

ternary Z-lattices. To show this, let q be a prime such that q ≡ 5 (mod 8).

We prove that the diagonal ternary lattice L(q) = 〈2, q, q〉 is a terminal

strongly S-regular Z-lattice for any prime q satisfying the above condition.

If n is not divisible by q, then r(n2, L(q)) = 0. Furthermore

r(q2n2, L(q)) = r(qn2, λq(L(q))),

where λq(L(q)) = 〈1, 1, 2q〉. Let λq(L(q)) = Zx1 + Zx2 + Zx3 such that

(B(xi, xj)) = diag(1, 1, 2q). Let u be an integer such that u2 ≡ −1 (mod q).

Let z = ax1 + bx2 + cx3 ∈ λq(L(q)) such that Q(z) = qn2. Then, since

Q(z) = a2 + b2 + 2qc2 ≡ a2 − u2b2 ≡ (a− ub)(a+ ub) ≡ 0 (mod q),

z ∈ L(q,+) := Z(qx1) + Z(ux1 + x2) + Zx3 or z ∈ L(q,−) := Z(qx1) +

Z(−ux1 + x2) + Zx3. Note that L(q,+) ∩ L(q,−) = Z(qx1) + Z(qx2) + Zx3.

Furthermore, d(L(q,±)) = 2q3 and the scale of each lattice is qZ. Hence, we

have

r(q2n2, L(q)) = r(qn2, λq(L(q))) = 2r(n2, 〈1, 1, 2〉)− r(n2, L(q)). (4.1.2)

Therefore if we use an induction on ordq(n), the assertion follows directly

from the fact that 〈1, 1, 2〉 is strongly S-regular. Furthermore, since every

Z-lattice in the genus of L(q) satisfies the equation (4.1.2), the genus of L(q)

is indistinguishable by squares.

Theorem 4.1.8. For any positive integer m, there are only finitely many

strongly S-regular ternary Z-lattices L up to isometry such that ms(L) = m.
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Proof. Let L be a strongly S-regular ternary Z-lattice with ms(L) = m.

Since for any ternary lattice K and any prime p, there are only finitely many

lattices whose λp-transformation is isometric to K, it suffices to show that

there are only finitely many terminal strongly S-regular lattice L such that

ms(L) = m under the assumption that m = q1q2 · · · qs is an odd square free

integer. When m = 1, then we let s = 0.

Let {x1, x2, x3} be a Minkowski reduced basis for L such that

(B(xi, xj)) '

a f e

f b d

e d c

 (0 ≤ a ≤ b ≤ c and 2|f | ≤ a, 2|e| ≤ a, 2|d| ≤ b).

Recall that a, b, c, 2d, 2e, 2f are relatively prime integers and

L = [a, b, c, 2d, 2e, 2f ].

Let pt be the t-th smallest odd prime so that p1 = 3, p2 = 5 and so on. Define

t′ = min{t ∈ N | 4m6p4
t < p1 · · · pt−1}.

Note that such an integer always exists by the Bertrand-Chebyshev Theorem.

Let t′′ be the smallest integer such that 2pt′′ > 6 · 3s+1 and t0 = max{t′, t′′}.
Finally, let t1 be the integer such that p1p2 · · · pt1−1 | dL, but pt1 - dL.

First, assume that t1 ≥ t0. Then

4m6p4
t1
< p1p2 · · · pt1−1 < 4dL ≤ 4abc ≤ 4ac2 ≤ 4m2c2.

Hence m2p2
t1
< c and we have

r(m2p2
t1
, L) = r

(
m2p2

t1
,

(
a f

f b

))
≤ 6 · 3s+1.

However, since pt1 - 8mdL, we have

r(m2p2
t1
, L) = r(m2, L)

(
pt1 + 1−

(
−dL
pt1

))
≥ 2pt1 ≥ 2pt′′ > 6 · 3s+1.
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This is a contradiction.

Finally, assume that t1 < t0. Choose a positive integer λ0 such that

pλ0t1 > 3s+1(2λ0 + 1). If c > m2p2λ0
t1 , then

r(m2p2λ0
t1 , L) = r

(
m2p2λ0

t1 ,

(
a f

f b

))
≤ 6 · 3s(2λ0 + 1).

This is a contradiction for

r(m2p2λ0
t1 , L) = r(m2, L)

(
pλ0+1
t1 − 1

pt1 − 1
−
(
−dL
pt1

)
pλ0t1 − 1

pt1 − 1

)
≥ 2pλ0t1 .

Therefore we have c ≤ m2p2λ0
t1 , which implies that the discriminant of L is

bounded by a constant depending only on m. This completes the proof.

4.2 Strongly S-regular ternary forms repre-

senting 1

The aim of this section is to find all strongly S-regular ternary lattices L with

ms(L) = 1. Recall that we are assuming that the norm n(L) of a Z-lattice L

is Z. Hence the scale s(L) of L is Z or 1
2
Z.

Lemma 4.2.1. Let L be a strongly S-regular ternary Z-lattice with ms(L) =

1. If s(L) = Z (s(L) = 1
2
Z), then dL is not divisible by at least one prime in

{3, 5, 7} ({3, 5, 7, 11}, respectively).

Proof. Let L be a strongly S-regular ternary Z-lattice with ms(L) = 1. First,

assume that s(L) = 1
2
Z. Let {x1, x2, x3} be a Minkowski reduced basis for L

such that

(B(xi, xj)) '

1 e d

e a c

d c b

 (1 ≤ a ≤ b, 0 ≤ 2e ≤ 1, −1 ≤ 2d ≤ 1, 0 ≤ 2c ≤ a),

where a, b, 2c, 2d, 2e are all integers and at least one of 2c, 2d and 2e is

odd. Let pt be the t-th smallest odd prime. Suppose, on the contrary, that
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p1p2 · · · pt | dL, whereas pt+1 - dL for some t ≥ 4.

First, assume that t = 4. Since 3 ·5 ·7 ·11 | dL and 13 - dL by assumption,

we have

r(132, L) = r(1, L)

(
13 + 1−

(
−dL
13

))
≥ 26. (4.2.1)

If b ≥ 132 + 1, then r(132, L) = r(132, [1, 2e, a]) ≤ 18. This is a contradiction

and hence we have 1 ≤ a ≤ b ≤ 169. For all possible finite cases, we may

check by direct computations that there are no ternary Z-lattice satisfying

the equation (4.2.1). The case when t = 5 or 6 can be dealt with similar

manner to this.

Finally, assume that t ≥ 7. Since pt+1 - dL, we have

r(p2
t+1, L) = r(1, L)

(
pt+1 + 1−

(
−dL
pt+1

))
≥ 46.

If t ≥ 7, then 4p4
t+1 < p1 · · · pt ≤ 4dL ≤ 4ab ≤ 4b2 by Bertrand-Chebyshev

Theorem. Hence we have p2
t+1 < b. Therefore we have

r(p2
t+1, L) = r(p2

t+1, [1, 2e, a]) ≤ 18,

for any positive integer a. This is a contradiction.

Since the proof of the case when s(L) = Z is quite similar to the above,

the proof is left to the reader.

Theorem 4.2.2. There are exactly 207 strongly S-regular ternary Z-lattices

L up to isometry such that ms(L) = 1, which are listed in Tables 4.1 and

4.2.

Proof. Note that all ternary lattices except those with dagger mark and

〈1〉 ⊥ [4, 4, 9], 〈1〉 ⊥ [4, 4, 25] in Table 4.1 are class number one. Hence they

are strongly S-regular. There are exactly 12 ternary lattices in Table 4.1

whose class number is 2. The strongly S-regularities of all these lattices with

dagger mark were already proved in Chapter 3. Finally, both 〈1〉 ⊥ [4, 4, 9]

and 〈1〉 ⊥ [4, 4, 25] highlighted in boldface have class number 3, and the

strongly S-regularities of these two lattices will be proved in Proposition

4.3.3.
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There are exactly 30 strongly S-regular lattices L such that s(L) = 1
2
Z

and h(L) = 2, which are listed in Table 4.2. In fact, the Z-lattice Si in Table

4.2 has class number two and the other lattice in the genus is Ti, for any

1 ≤ i ≤ 15. The strongly S-regularities of these lattices will be considered

in Proposition 4.3.1. Those lattices highlighted in boldface in Table 4.2 has

class number 3, and the proof of the strongly S-regularities of these lattices

will be given in Proposition 4.3.6.

Let L be a strongly S-regular ternary Z-lattice. First, assume that s(L) =

Z. Then L = 〈1〉 ⊥ `, for some binary lattice ` such that

` = [a, 2b, c] =

(
a b

b c

)
(0 ≤ 2b ≤ a ≤ c).

From the above theorem, the discriminant of L, which is ac − b2, is not

divisible by at least one prime in {3, 5, 7}. We will use the fact that if

p - 2dL, then

r(p2t, L) = r(1, L)

(
pt+1 − 1

p− 1
−
(
−dL
p

)
pt − 1

p− 1

)
.

Assume that L ' 〈1〉 ⊥ [1, 0, s] for some positive integer S. If 3 - s, then

r(9, L) = r(1, L) ·
(

4−
(
−dL

3

))
≥ 12.

Hence s = 1, 2, 4, 5 or 8. Assume that s = 3s1, for some integer s1 such that

5 - s1. Since r(25, L) > r(25, [1, 0, 1]) = 12, we have 3s1 ≤ 25. Therefore

s1 = 1, 2, 3, 4, 7 or 8. Assume that s = 15s2 for some integer s2 such that

7 - s2. One may apply similar argument to show that there does not exist a

strongly S-regular lattice in this case.

From now on, we assume that r(1, L) = 2, that is, a ≥ 2. Assume that

3 - dL. Then we have r(32, L) = 6 or 10, and r(34, L) = 18 or 34. Hence we

have 2 ≤ a ≤ 9. If a = 9, then c = 9. In this case, one may easily show that

r

(
34, 〈1〉 ⊥

(
9 b

b 9

))
6= 18, 34,
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which is a contradiction. Next assume that a = 8. If c ≥ 10, then

r(32, L) = r(32, [1, 0, 8]) = 6 = 2

(
4−

(
−dL

3

))
.

Hence
(−dL

3

)
= 1, which implies that r(34, L) = 18. If c ≥ 82, then r(34, L) =

r(34, [1, 0, 8]) = 10, which is a contradiction. Therefore we have 8 ≤ c ≤ 81.

For all possible cases, that is, a = 8, 0 ≤ 2b ≤ 8 and 8 ≤ c ≤ 81, one may

easily check only when ` is isometric to one of

[8, 0, 8], [8, 0, 10]†, [8, 0, 13]†, [8, 0, 16], [8, 0, 40],

[8, 4, 18]†, [8, 8, 12], [8, 8, 24] and [8, 8, 72],

L = 〈1〉 ⊥ ` is strongly S-regular. Note that the class number of L is one if `

is isometric to one of binary lattices given above, except binary lattices with

dagger mark. The lattices ` marked with a dagger are strongly S-regular by

Chapter 3. The proof of the remaining cases, that is 2 ≤ a ≤ 7, is quite

similar to this. In particular, the case when ` = [4, 4, 9], where the class

number of L = 〈1〉 ⊥ ` is 3 in this case, will be considered in Proposition

4.3.3.

Assume that dL is divisible by 3, but is not divisible by 5. In this case,

we have r(52, L) = 10 or 14, and r(54, L) = 50 or 74. Since r(p2, [1, 0, a]) ≤ 6

for any prime p and any integer a ≥ 2, we have 2 ≤ a ≤ c ≤ 25. For all

possible cases, one may easily show that L is strongly S-regular if and only

if the class number of L is one, except the case when ` = [4, 4, 25]. For the

exceptional case, the proof of the strongly S-regularity of L will be given in

Proposition 4.3.3.

Finally, assume that 15 | dL and 7 - dL. For all possible cases, L is

strongly S-regular if and only if the class number of L is one.

Now assume that s(L) = 1
2
Z. Let {x1, x2, x3} be a Minkowski reduced

basis for L such that

(B(xi, xj)) '

1 e d

e a c

d c b

 = [1, a, b, 2c, 2d, 2e],
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where a, b, 2c, 2d, 2e are integers such that 1 ≤ a ≤ b and 0 ≤ 2e ≤ 1, −1 ≤
2d ≤ 1, 0 ≤ 2c ≤ a. Note that at least one of 2c, 2d, 2e is odd. In this case,

the discriminant of L is not divisible by at least one prime in {3, 5, 7, 11}
by the above theorem. Assume that a = 1 and b = 1. Then clearly, L '
[1, 1, 1, 0, 0, 1] or [1, 1, 1, 1, 1, 1], all of which are strongly S-regular. Next,

assume that a = 1, e = 0 and b ≥ 2. Let p ∈ {3, 5, 7, 11} be a prime

not dividing dL. Since r(p2, L) = 4p or 4(p + 2) and r(52, [1, 0, 1]) = 12,

r(p2, [1, 0, 1]) = 4 for any p ∈ {3, 7, 11}, we have 2 ≤ b ≤ p2. One may easily

show that there are exactly 6 strongly S-regular lattices in this case, all of

which have class number 1.

Next assume that a = 1, 2e = 1 and b ≥ 2. In this case, since r(1, L) = 6,

we have r(p2, L) = 6p or 6(p+ 2). Furthermore, since r(72, [1, 1, 1]) = 18 and

r(p2, [1, 1, 1]) = 6 for any p ∈ {3, 5, 11}, we have 2 ≤ b ≤ p2. One may easily

show that there are exactly 12 strongly S-regular lattices in this case, all of

which have class number 1.

From now on, we assume that r(1, L) = 2, that is, a ≥ 2. Assume further

that 3 - dL. Since r(32, L) = 6 or 10, we have 2 ≤ a ≤ 9. Furthermore, since

r(34, L) = 18 or 34, and r(32n, [1, 2e, a]) ≤ 2(2n+ 1) for any positive integer

n, we have {
2 ≤ a ≤ b ≤ 9 if r(9, [1, 2e, a]) < 6,

2 ≤ a ≤ b ≤ 81 if r(9, [1, 2e, a]) = 6.

In this case, we have 30 candidates of strongly S-regular lattices. They are

listed in the first row of Table 4.2. Among them, there are exactly 18 lattices

having class number 1. The remaining 12 lattices T1 ∼ T6 and S1 ∼ S6 in

the first row of Table 4.2 have class number 2. The proof of the strongly

S-regularities of these lattices will be considered in Proposition 4.3.1.

Next assume that 3 | dL and 5 - dL. Since r(52, L) = 10 or 14, and

r(52, [1, 2e, a]) ≤ 6 < 10,

we have 2 ≤ a ≤ b ≤ 25. In this case, we have twenty two candidates with

class number 1, twelve lattices with class number 2, and three lattices with

class number 3. The proof of the strongly S-regularities of these lattices

having class number 2 (class number 3) will be considered in Proposition
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`

[1, 0, 1], [1, 0, 2], [1, 0, 4], [1, 0, 5], [1, 0, 8], [2, 0, 2],

[2, 2, 3], [2, 0, 4], [2, 0, 5], [2, 2, 6], [2, 0, 8], [2, 0, 10],

[2, 0, 13]†, [2, 0, 16], [2, 2, 18], [2, 0, 22]†, [2, 2, 33]†, [2, 0, 40]†,

3 - dL [2, 0, 70]†, [3, 2, 3], [3, 2, 5], [3, 2, 7], [4, 0, 4], [4, 4, 5],

(47) [4, 0, 8], [4, 4, 8], [4,4,9], [5, 0, 5], [5, 4, 6]†, [5, 0, 8],

[5, 0, 10], [5, 4, 12], [5, 0, 13]†, [5, 2, 21]†, [5, 0, 25], [5, 0, 40],

[6, 4, 6], [6, 4, 8]†, [8, 0, 8], [8, 0, 10]†, [8, 8, 12], [8, 0, 13]†,

[8, 0, 16], [8, 4, 18]†, [8, 8, 24], [8, 0, 40], [8, 8, 72]

[1, 0, 3], [1, 0, 6], [1, 0, 9], [1, 0, 12], [1, 0, 21], [1, 0, 24],

[2, 2, 2], [2, 0, 3], [2, 2, 5], [2, 0, 6], [3, 0, 3], [3, 0, 4],

[3, 0, 6], [3, 0, 9], [3, 0, 12], [3, 0, 18], [4, 4, 4], [4, 0, 6],

3 | dL, 5 - dL [4, 4, 7], [4, 0, 12], [4, 4, 13], [4, 0, 24], [4,4,25], [5, 2, 5],

(45) [6, 0, 6], [6, 6, 6], [6, 0, 9], [6, 0, 16], [6, 0, 18], [6, 6, 21],

[6, 0, 24], [8, 8, 8], [9, 0, 9], [9, 6, 9], [9, 0, 12], [9, 0, 21],

[9, 0, 24], [10, 4, 10],[12, 0, 12], [12, 12, 21], [16, 16, 16],

[16, 0, 24], [21, 0, 21], [24, 0, 24], [24, 24, 24]

15 | dL, 7 - dL [3, 0, 10], [3, 0, 30], [4, 4, 16], [6, 6, 9], [10, 10, 10], [10, 0, 30],

(9) [12, 12, 13], [12, 12, 33], [40, 40, 40]

Table 4.1: Strongly S-regular lattices L = 〈1〉 ⊥ `

4.3.1 (Proposition 4.3.6, respectively). Recall that all lattices highlighted in

boldface in Tables 4.1 and 4.2 have class number 3.

Now assume that dL is divisible by 15, but not divisible by 7. In this

case, we have 2 ≤ a ≤ b ≤ 49. Everything is quite similar to the above cases.

In this case, we have twelve candidates with class number 1, two lattices with

class number 2, and one lattice with class number 3.

Finally, assume that 105 | dL and 11 - dL. In this case, L is isometric to

one of 4 lattices listed in fourth line of Table 4.2. The proof of the strongly

S-regularities of these 4 ternary lattices will be considered in Proposition

4.3.1.
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L

[1, 1, 1, 1, 1, 1], [1, 1, 2, 0, 1, 0], [1, 1, 2, 1, 1, 1], [1, 1, 3, 1, 1, 0],

[1, 1, 3, 1, 1, 1], [1, 1, 5, 1, 1, 1], [1, 1, 7, 1, 1, 1], [1, 2, 2, 1, 1, 0],

[1, 2, 2, 2, 1, 1], [1, 2, 3, 0, 1, 0], [1, 2, 3, 1, 0, 1], T1=[1, 2, 4, 1, 1, 1],

S1=[1, 2, 4, 2, 1, 0], [1, 2, 7, 0, 0, 1], [1, 2, 9, 0, 1, 0],

S2=[1, 2, 23, 0, 1, 0], [1, 3, 3, 2, 1, 1], [1, 3, 4, 2, 0, 1], [1, 3, 5, 1, 1, 1],

3 - dL (37) [1, 3, 5, 3, 1, 1], S3=[1, 3, 9, 2, 1, 1], S4=[1, 3, 10, 0, 0, 1],

T2=[1, 3, 17, 2, 1, 1], [1, 3, 22, 0, 0, 1], [1, 4, 4, 3, 1, 1], [1, 4, 9, 3, 1, 1],

T3=[1, 5, 5, 1, 1, 0], T4=[1, 5, 6, 2, 0, 1], S5=[1, 5, 19, 5, 1, 0],

S6=[1, 5, 49, 5, 1, 0], [1, 7, 9, 7, 1, 0], [1, 9, 9, 8, 1, 1],

T5=[1, 9, 10, 0, 0, 1],[1, 9, 15, 5, 0, 1], [1, 9, 21, 7, 0, 1],

T6=[1, 9, 29, 8, 1, 1], [1, 9, 70, 0, 0, 1]

[1, 1, 1, 0, 0, 1], [1, 1, 2, 0, 0, 1], [1, 1, 2, 1, 1, 0], [1, 1, 3, 0, 0, 1],

[1, 1, 4, 0, 0, 1], [1, 1, 5, 1, 1, 0], [1, 1, 6, 0, 0, 1], [1, 1, 11, 1, 1, 0],

[1, 1, 12, 0, 0, 1], [1, 1, 18, 0, 0, 1], [1, 2, 2, 1, 1, 1], [1, 2, 3, 1, 1, 0],

[1, 2, 3, 2, 1, 0], [1, 2, 4, 2, 1, 1], [1, 2, 5, 1, 1, 1], S7=[1, 2, 7, 0, 1, 0],

S8=[1, 2, 9, 2, 1, 0], S9=[1, 2, 10, 1, 0, 1], [1, 3, 4, 3, 1, 0],

T7=[1, 3, 5, 1, 0, 1], T8=[1, 3, 6, 0, 0, 1], L1= [1,3,7,0,1,0],

3 | dL, [1, 3, 8, 2, 0, 1], [1, 4, 4, 2, 1, 1], [1, 4, 5, 2, 1, 0], T9=[1, 4, 5, 2, 1, 1],

5 - dL (47) [1, 4, 6, 3, 0, 1], [1, 4, 11, 2, 1, 0], [1, 4, 13, 2, 1, 1], [1, 5, 5, 4, 1, 1],

[1, 5, 7, 1, 0, 1], [1, 5, 7, 2, 1, 1], S10=[1, 5, 13, 5, 1, 1],

S11=[1, 5, 15, 3, 0, 1], [1, 6, 7, 0, 1, 0], T10=[1, 6, 11, 6, 1, 0],

S12=[1, 6, 25, 0, 1, 0], [1, 7, 7, 5, 1, 1], T11=[1, 7, 11, 5, 1, 0],

L4= [1,7,12,0,0,1], [1, 7, 13, 5, 1, 1], [1, 7, 18, 0, 0, 1],

M6= [1,7,19,5,1,1], [1, 9, 13, 9, 1, 0], T12=[1, 13, 13, 8, 1, 1],

[1, 13, 15, 3, 0, 1], [1, 13, 23, 13, 1, 0]

[1, 1, 4, 0, 1, 0] [1, 1, 10, 0, 0, 1], [1, 1, 30, 0, 0, 1], [1, 2, 7, 2, 1, 1],

15 | dL, [1, 3, 3, 1, 1, 1], [1, 4, 5, 4, 1, 0], [1.4.15, 0, 0, 1], [1, 5, 9, 5, 1, 0],

7 - dL (18) [1, 6, 13, 6, 1, 0], [1, 7, 7, 3, 1, 0], S13=[1, 7, 10, 0, 0, 1],

T13=[1, 7, 11, 5, 1, 1], L10= [1,7,30,0,0,1], [1, 7, 31, 5, 1, 1],

[1, 10, 19, 0, 1, 0],[1, 15, 19, 15, 1, 0],[1, 19, 19, 8, 1, 1],[1, 19, 30, 0, 0, 1]

105 | dL, S14=[1, 2, 15, 0, 0, 1], T14=[1, 4, 7, 0, 0, 1], S15=[1, 7, 17, 7, 1, 0],

11 - dL (4) T15=[1, 11, 11, 7, 1, 1]

Table 4.2: Strongly S-regular lattices L with s(L) = 1
2
Z
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4.3 Nontrivial strongly S-regular ternary

forms

In this section, we prove the strongly S-regularities of ternary lattices with

class number greater than 1 in Tables 4.1 and 4.2.

Proposition 4.3.1. For i = 1, 2, . . . , 15, let Si and Ti be ternary Z-lattices

listed in Table 4.2. The genus gen(Si) is indistinguishable by squares for any

i. Therefore Si and Ti are strongly S-regular for any 1 ≤ i ≤ 15.

Proof. Note that the class number of Si is two, and the other lattice in the

genus of Si is Ti for any i = 1, 2, . . . , 15.

We only provide the proofs of the cases when i = 1, 3, 13, 14 and 15; the

other cases being similar. We put

P1 = [2, 4, 4, 2, 2, 0], P2 = [47, 47, 47, 0, 47, 47], P3 = [1, 1, 10, 0, 0, 1],

Q = [4, 8, 16, 2, 4, 4], S14,1 = [1, 2, 60, 0, 0, 1], S14,2 = [2, 4, 60, 0, 0, 2],

S14,3 = [2, 4, 15, 0, 0, 2], T14,1 = [1, 4, 28, 0, 0, 1], T14,2 = [4, 4, 28, 0, 0, 2],

T14,3 = [4, 4, 7, 0, 0, 2].

First, we consider the case when i = 1. By Lemma 3.1.7, we see that

r(132n2, S1) = r(n2, S1) and r(132n2, T1) = r(n2, T1) for any integer n. Also

by Lemma 3.1.8, we have

r(4n2, S1) = 2r(4n2, P1)− r(n2, S1) and r(4n2, T1) = 2r(4n2, P1)− r(n2, T1),

for any integer n. Since r(1, S1) = r(1, T1), gen(S1) is indistinguishable by

squares by Lemma 3.1.6.

We consider the case when i = 3. Note that d(S3) = 2−1 · 47. By Lemma

3.1.8, we have

r(472n2, S3) = 2r(472n2, P2)− r(n2, S3),

r(472n2, T3) = 2r(472n2, P2)− r(n2, T3),

for any integer n. If x2 + 3y2 + 9z2 + xy + 2yz + zx = 4n2, then x, y, z are
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all even. Hence we have

r(4n2, S3) = r(n2, S3) and r(4n2, T3) = r(n2, T3).

Therefore gen(S3) is indistinguishable by squares by Lemma 3.1.6.

Note that d(S13) = 2−1 · 33 · 5. By Lemma 3.1.7, we have r(32n2, S13) =

r(n2, P3), r(52n2, S13)= r(n2, S13) and r(32n2, T13) = r(n2, P3), r(52n2, T13) =

r(n2, T13) for any integer n. If x2 + 7y2 + 10z2 + xy = 4n2, then x, y, z are

all even. Hence we have

r(4n2, S13) = r(n2, S13) and r(4n2, T13) = r(n2, T13).

Therefore the genus gen(S13) is indistinguishable by squares by Lemma 3.1.6.

Now, we consider the Z-lattice S14, which is one of the most difficult

cases. Note that d(S14) = 2−2 · 3 · 5 · 7. By Lemma 3.1.7, we have

r(p2n2, S14) = r(n2, S14) and r(p2n2, T14) = r(n2, T14),

for any prime p ∈ {3, 5, 7}. Let {x1, x2, x3} be the basis for S14 such that

Q(ax1+bx2+cx3) = a2+ab+2b2+15c2. Assume thatQ(ax1+bx2+cx3) = 4n2.

Then we have a ≡ c (mod 2), b ≡ 0 (mod 2) or c ≡ 0 (mod 2). This implies

that for z = ax1 + bx2 + cx3,

z ∈ Z(2x1) + Z(2x2) + Z(x1 + x3) or z ∈ Z(x1) + Z(x2) + Z(2x3).

Therefore we have, for any integer n,

r(4n2, S14) = r(4n2, Q) + r(4n2, S14,1)− r(n2, S14).

Similarly, we also have

r(4n2, T14) = r(4n2, Q) + r(4n2, T14,1)− r(n2, T14).

Furthermore, one may easily show that

r(4n2, S14,1) = 2r(4n2, S14,2)− r(n2, S14),

r(4n2, T14,1) = 2r(4n2, T14,2)− r(n2, T14),
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and

r(4n2, S14,3) = r(4n2, S14,2) = 2r(n2, S14)− r(n2, S14,3),

r(4n2, T14,3) = r(4n2, T14,2) = 2r(n2, T14)− r(n2, T14,3).
(4.3.1)

By combining all equalities given above, we have

r(4n2, S14) = r(4n2, Q) + 2r(n2, S14)− 2r(n2, S14,3),

r(4n2, T14) = r(4n2, Q) + 2r(n2, T14)− 2r(n2, T14,3).
(4.3.2)

Since r(1, S14) = r(1, T14) = 2 and r(1, S14,3) = r(1, T14,3) = 0, we have

r(22t, S14) = r(22t, T14) for any positive integer t by (4.3.1) and (4.3.2).

Therefore the genus of S14 is indistinguishable by squares by Lemma 3.1.6,

and r(n2, S14,3) = r(n2, T14,3) for any integer n. Note that the class number

of S14,3 is 3. In fact, the proof of the strongly S-regularities of S9 is quite

similar to this.

Finally by Lemma 3.1.7, we have

r(p2n2, S15) = r(n2, S15) and r(p2n2, T15) = r(n2, T15)

for any prime p ∈ {3, 5, 7}. Let {y1, y2, y3} be the basis for S15 such that

Q(ay1+by2+cy3) = a2+7b2+17c2+7bc+ca. Assume that Q(ay1+by2+cy3) =

4n2. Then we have a ≡ b (mod 2) and c ≡ 0 (mod 2). Therefore we have

r(4n2, S15) = r(4n2,Z(2y1) + Z(y1 + y2) + Z(2y3)),

which implies that for any integer n,

r(4n2, S15) = r(n2, S14).

Similarly, we also have

r(4n2, T15) = r(n2, T14).

Therefore gen(S15) is indistinguishable by squares by Lemma 3.1.6.
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Now we consider the lattices having class number 3. We define

K1,t = 〈1〉 ⊥
(

4 2

2 233t + 1

)
, K2,t = 〈1, 1, 253t〉, K3,t =

2 0 1

0 2 1

1 1 233t + 1

 ,

for any non negative integer t.

Lemma 4.3.2. For any nonnegative integer t, the ternary Z-lattices K1,t,K2,t

and K3,t are in the same genus. Furthermore, we have

2r(n2, K1,t) = r(n2, K2,t) + r(n2, K3,t),

for any integer n.

Proof. Note that d(Ki,t) = 25 · 3t for any i = 1, 2, 3. By checking local

structures at p = 2 and 3, one may easily show that all ternary Z-lattices

K1,t, K2,t and K3,t are in the same genus for any integer t ≥ 0. Fix a non

negative integer t.

Note that for any integer n, one may easily show that

r(4n2, K1,t) = r(4n2, K2,t) = r(4n2, K3,t) = r(n2, 〈1, 1, 233t〉).

Assume that n is odd. If x2 + 4y2 + 4yz+ (233t + 1)z2 = n2, then either x or

z is odd, but not both. Hence we have

r(n2, K1,t) = r(n2, 〈1, 4, 253t〉) + r

(
n2, 〈4〉 ⊥

(
4 2

2 233t + 1

))
.

Similarly, we have r(n2, K2,t) = 2r(n2, 〈1, 4, 253t〉). Let K3,t = Zx1 + Zx2 +

Zx3 such that

(B(xi, xj)) =

2 0 1

0 2 1

1 1 233t + 1

 .

Let v ∈ K3,t such that Q(v) = n. Let a, b, c be integers such that v =

a(x1 − x2) + b(x2 + x3) + cx3. Since Q(v) ≡ b2 + c2 ≡ 1 (mod 2), either b or
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c is odd, but not both. Hence for any odd integer n,

r(n,K3,t) = r(n,Z(x1 − x2) + Z(2x2 + 2x3) + Zx3)

+r(n,Z(x1 − x2) + Z(x2 + x3) + Z(2x3)).

Since

Z(x1 − x2) + Z(2x2 + 2x3) + Zx3 ' Z(x1 − x2) + Z(x2 + x3) + Z(2x3)

' 〈4〉 ⊥
(

4 2

2 233t + 1

)
,

we have

r(n2, K3,t) = 2r

(
n2, 〈4〉 ⊥

(
4 2

2 233t + 1

))
,

for any odd integer n. Consequently, for any integer n,

2r(n2, K1,t) = r(n2, K2,t) + r(n2, K3,t).

This completes the proof.

Proposition 4.3.3. Both ternary Z-lattices K1,0 and K1,1 defined above are

strongly S-regular ternary Z-lattices.

Proof. Note that

gen(K1,0) = {[K1,0], [K2,0], [K3,0]} and gen(K1,1) = {[K1,1], [K2,1], [K3,1]}.

Therefore by Lemma 4.3.2, we have

r(n2, gen(K1,i)) = 4

(
1

8
r(n2, K1,i) +

1

16
r(n2, K2,i) +

1

16
r(n2, K3,i)

)
= r(n2, K1,i),

for any integer n and any i = 0, 1. Therefore by Lemma 3.1.4, we see that

both K1,0 and K1,1 are strongly S-regular.

Remark 4.3.4. If a strongly S-regular lattice M has class number two, then

the other lattice in the genus of M is also strongly S-regular by Remark 3.2.5.

52



CHAPTER 4. STRONGLY S-REGULAR TERNARY FORMS

This is not true in general if the class number of a lattice is greater than two.

For example, both ternary Z-lattices K1,0 and K1,1 are strongly S-regular,

however all the other lattices in gen(K1,0) and gen(K1,1) are not strongly

S-regular.

For any positive integer t, we define

`t =

(
1 1

2
1
2

1

)
⊥ 〈3t〉, Lt =

(
1 1

2
1
2

7

)
⊥ 〈3t〉, Mt =

1 1
2

1
2

1
2

7 5
2

1
2

5
2

3t+ 1


and

Nt =

3 3
2

0
3
2

3 3
2

0 3
2

3t+ 1

 , Kt =

(
1 1

2
1
2

1

)
⊥ 〈27t〉.

Lemma 4.3.5. Let t be any positive integer. For any positive integer n, we

have

r(3n+1, `t) = 3r(3n+1, Lt) = 3r(3n+1,Mt) = 2r(3n+1, Nt)+r(3n+1, Kt).

Proof. Let {x1, x2, x3} be the basis for `t whose Gram matrix is given above.

Assume that Q(ax1 + bx2 + cx3) = 3n + 1. Since (a − b)2 ≡ 1 (mod 3), we

have a ≡ 0 (mod 3) or b ≡ 0 (mod 3) or a+ b ≡ 0 (mod 3), however any of

two cases cannot occur simultaneously. Therefore we have

r(3n+ 1, `t)=r(3n+ 1,Z(3x1)+Zx2+Zx3)+r(3n+ 1,Zx1+Z(3x2)+Zx3)

+r(3n+ 1,Z(x1 − x2) + Z(3x2) + Zx3),

which implies that r(3n + 1, `t) = 3r(3n + 1, Lt). Now let y1 = x1, y2 = x2

and y3 = x1 + x2 + x3. Then

(B(yi, yj)) =

1 1
2

3
2

1
2

1 3
2

3
2

3
2

3t+ 3

 .

Assume Q(ay1 + by2 + cy3) = 3n + 1. Since (a − b)2 ≡ 1 (mod 3), we have

a ≡ 0 (mod 3) or b ≡ 0 (mod 3) or a + b ≡ 0 (mod 3), however any of two
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cases cannot occur simultaneously. Therefore we have

r(3n+ 1, `t)=r(3n+ 1,Z(3x1)+Zx2+Zx3)+r(3n+ 1,Zx1+Z(3x2)+Zx3)

+r(3n+ 1,Z(x1 − x2) + Z(3x2) + Zx3),

which implies that r(3n + 1, `t) = 3r(3n + 1,Mt). Finally, if we choose a

basis {x1, x1 + x2, x1 + x3} for `t, then we may prove that r(3n + 1, `t) =

2r(3n+ 1, Nt) + r(3n+ 1, Kt).

Proposition 4.3.6. The ternary Z-lattices L1, L4, L10 and M6 are all strongly

s-regular.

Proof. First, note that Nt is contained in gen(Kt) for any positive integer t,

Lt ∈ gen(Nt) if t ≡ 1 (mod 3), and Mt ∈ gen(Nt) if t ≡ 0 (mod 3). For any

integer t 6≡ 0 (mod 3), since λ2
3(Lt) ' λ2

3(Nt) ' λ2
3(Kt) ' `t, we have

r(9n, Lt) = r(9n,Nt) = r(9n,Kt) = r(n, `t). (4.3.3)

If t ≡ 0 (mod 3), then we have

r(9n,Mt) = r(9n,Nt) = r(9n,Kt) = r(n, `t).

For t = 1, 4 or 10, one may easily show that gen(Lt) = {[Lt], [Nt], [Kt]} and

gen(M6) = {[M6], [N6], [K6]}. Now by equation (4.3.3) and Lemma 4.3.5, we

have

r(n2, Lt) = 4

(
r(n2, Lt)

8
+
r(n2, Nt)

12
+
r(n2, Kt)

24

)
= r(n2, gen(Lt)),

for any t = 1, 4 or 10. Furthermore, we have

r(n2,M6) =
8

3

(
r(n2,M6)

4
+
r(n2, N6)

12
+
r(n2, K6)

24

)
= r(n2, gen(M6)).

This completes the proof.

Theorem 4.3.7. Let L be a ternary Z-lattice representing 1. Then L is

strongly S-regular if and only if L satisfies r(n2, L) = r(n2, gen(L)) for any

integer n.
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Proof. Note that “if” is trivial. The “only if” is the direct consequence of

Theorem 4.2.2 and Propositions 4.3.1, 4.3.3 and 4.3.6.

Corollary 4.3.8. Let L be a ternary Z-lattice representing 1. Then the

followings are all equivalent.

(1) L satisfies r(n2, L) = r(n2, gen(L)) for any integer n;

(2) L satisfies the condition (3.2.1) in Conjecture 3.2.1;

(3) L is strongly S-regular.

Proof. The corollary is the direct consequence of Theorem 3.2.6 and Theorem

4.3.7.
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Chapter 5

Strongly regularity on square

classes

In this chapter, we generalize the notion of “strongly S-regularity” of ternary

quadratic forms.

5.1 Strongly St-regular ternary forms

Definition 5.1.1. Let L be a ternary Z-lattice and let T be a proper subset

of positive integers. The lattice L is called strongly T -regular if r(n, L) =

r(n, gen(L)) for any integer n ∈ T .

Lemma 5.1.2. Let L be a ternary Z-lattice. The class number of L is one

if and only if L is strongly Z+-regular.

Proof. The “only if” part follows directly from the definition. Suppose that

r(n, L) = r(n, gen(L)) for any integer n. Then, clearly L is regular. Hence

L is isometric to one of 913 candidates of regular ternary forms given [11].

Suppose that the class number of L is bigger than 1. Note that the number

of such a lattice is 913− 794 = 116. For each case, one may show by a direct

computation that there is an integer n such that r(n, L) 6= r(n, gen(L)).

For a positive square-free integer t, we define

St = {tn2 : n ∈ Z}.
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Lemma 5.1.3. Let L be a ternary Z-lattice. Let n be a positive integer

and let t be a positive square free integer. For any prime p, we assume that

ordp(n) = λp. If t is represented by the genus of L, then we have

r(tn2, gen(L))

r(t, gen(L))
= n

∏
p|8dL

αp(tn
2, L)

αp(t, L)

∏
p-8dL

αp(tn
2, L)

αp(t, L)

=
∏
p|8dL

pλp · αp(tn
2, L)

αp(t, L)

∏
p-8dL

(
pλp+1 − 1

p− 1
−
(
−tdL
p

)
pλp − 1

p− 1

)
.

In particular, if the lattice L has class number 1, then we have

r(tn2, L) = r(t, L)
∏
p|8dL

pλp · αp(tn
2, L)

αp(t, L)

×
∏
p-8dL

(
pλp+1 − 1

p− 1
−
(
−tdL
p

)
pλp − 1

p− 1

)
.

Proof. Note that if p does not divide 8dL, then by [22], we have

αp(tn
2, L) =


1 +

1

p
− 1

pλp+1
− 1

pλp+2
if p | t,

1 +
1

p
− 1

pλp+1
+

(
−tdL
p

)
1

pλp+1
otherwise.

Hence the lemma follows directly from the Minkowski-Siegel formula.

Let L be a strongly St-regular ternary Z-lattice with a positive square

free integer t. For any integer n, let n1 and n2 be positive integers such that

P (n1) ⊂ P (8dL), (n2, 8dL) = 1 and n = n1n2. Here P (n) denotes the set of

prime factors of n. Then by Lemma 5.1.3, we have

r(tn2
1n

2
2, L) = r(tn2

1, L)
∏
p-8dL

hp(tdL, λp),

where λp = ordp(n) for any prime p and

hp(tdL, λp) =
pλp+1 − 1

p− 1
−
(
−tdL
p

)
pλp − 1

p− 1
.
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We define

mSt(L) = min
n∈Z+
{n : r(tn2, L) 6= 0}.

Then we also have

{n : r(tn2, L) 6= 0} = mSt(L)Z.

Theorem 5.1.4. For any positive integer m, there are only finitely many

strongly St-regular ternary Z-lattice L up to isometry such that mSt(L) = m.

Proof. The proof is quite similar to Theorem 4.1.8.

5.2 Strongly spinor St-regular ternary forms

Lemma 5.2.1. Let L be a ternary Z-lattice with g(L) ≥ 2 and let s be a

positive integer such that n(L]) = s−1Z. Let K be a ternary Z-lattice in the

genus of L and let t be a positive square free integer. If

r(tn2, spn(L))− r(tn2, spn(K)) 6= 0,

for some integer n, then t divides s.

Proof. See Korollar 2 of [20].

Let L be a ternary Z-lattice and let s be a positive integer such that

n(L]) = s−1Z. Let t be a positive square free integer. Assume that there

exists a ternary Z-lattice K in the genus of L such that

r(tn2, spn(L))− r(tn2, spn(K)) 6= 0,

for some integer n. Then by Lemma 5.2.1, t divides s. We define h to

be an integer such that s = tt′h2 with t′ square free. If g(L) = 1, then

r(n, spn(L)) = r(n, gen(L)).

Theorem 5.2.2. Let L be a ternary Z-lattice with g(L) ≥ 2 and let n be an

integer. Let t be a positive square free integer.
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(i) If any splitting integer for gen(L) is not of the form tn2, then we have

r(tn2, spn(L)) = r(tn2, gen(L)).

(ii) Assume that there exists a ternary Z-lattice K in the genus of L such

that r(tn2, spn(L)) − r(tn2, spn(K)) 6= 0 for some integer n. If there

exists a splitting integer for gen(L), say c, which is of the form tn2,

then we have

r(tn2, spn(L)) = r(tn2, gen(L)) +
ψ(n)

2
· n.

Here ψ is determined by r(tn2, spn(K1)) − r(tn2, spn(K2)) = ψ(n) · n
modulo h with K1 ∈ HL(c), K2 ∈ HL̃(c).

Proof. Assume that

gen(L) = {spn(L) = spn(L1), spn(L2), . . . , spn(Le)}.

where {L1, L2, . . . , Le} is a complete set of representatives of all spinor genus

in gen(L). Note that e is of the form 2r with positive integer r.

First, we consider the part (i). Since any splitting integer for gen(L) is not

of the form tn2, by Korollar 2 of [20], we have r(tn2, spn(L)) = r(tn2, spn(L′))

for any Z-lattice L′ in the genus of L. Hence we have

r(tn2, gen(L))=
1

w(L)

∑
[L′]∈gen(L)

r(tn2, L′)

o(L′)

=
1

w(L)
(r(tn2, spn(L1))ws(L1)+ · · ·+r(tn2, spn(Le))ws(Le))

=
1

w(L)
(r(tn2, spn(L1))(ws(L1) + ·+ ws(Le)))

= r(tn2, spn(L)).

Finally, we consider the part (ii). Assume that L2 is contained in HL̃(c).

Then by Korollar 2 of [20], we have

r(tn2, spn(L1))− r(tn2, spn(L2)) = ψ(n) · n. (5.2.1)
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Here ψ(n) is a function defined by above equation modulo h.

On the other hand, note that ws(L) = ws(L
′) for any Z-lattice L′ in the

genus of L. Since there exists a splitting integer for gen(L) which is of the

form tn2, by Korollar 2 of [20], we have

r(tn2, gen(L))=
1

w(L)

∑
[L′]∈gen(L)

r(tn2, L′)

o(L′)

=
1

w(L)
(r(tn2, spn(L1))ws(L1)+ · · ·+r(tn2, spn(Le))ws(Le))

=
1

2
r(tn2, spn(L1)) +

1

2
r(tn2, spn(L2)).

(5.2.2)

By (5.2.1) and (5.2.2), we have

r(tn2, spn(L1)) = r(tn2, gen(L1)) +
ψ(n)

2
· n.

This completes the proof.

Definition 5.2.3. Let L be a ternary Z-lattice and let T be a proper subset of

positive integers. The lattice L is called strongly spinor T -regular if r(n, L) =

r(n, spn(L)) for any integer n ∈ T .

Corollary 5.2.4. Let L be a ternary Z-lattice and let t be a positive square

free integer. If L is strongly spinor St-regular, then we have a closed formula

for r(tn2, L).

Proof. The corollary is a direct consequence of the definition of strongly

spinor St-regularity and Theorem 5.2.2.

Corollary 5.2.5. Let L be a ternary Z-lattice with g(L) ≥ 2 and let t be

a positive square free integer. If any splitting integer for gen(L) is not of

the form tn2, then L is strongly spinor St-regular if and only if L is strongly

St-regular.

Proof. The corollary is a direct consequence of Theorem 5.2.2 (i).

Example 5.2.6. (i) Consider the ternary Z-lattice L1 = [1, 2, 64, 0, 0, 0].

Then the genus of L1 contains two spinor genera and four classes. More
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precisely, let

L2 = [1, 8, 18, 8, 0, 0], K1 = [2, 4, 17, 4, 0, 0], K2 = [3, 3, 17,−2, 2, 2].

Note that the spinor genus of L1 (K1) contains the ternary Z-lattice L2 (K2,

repectively). Then one may easily verify that

r(n2, L1) = r(n2, L2) and r(n2, K1) = r(n2, K2),

for any integer n. Hence every form in the genus of L1 is strongly spinor

S1-regular. Furthermore one may easily check that c is a splitting integer for

the genus of L1 if and only if c = m2(m ∈ Z). Therefore we have by Theorem

5.2.2 (ii),

r(n2, L1) = Φ(n)
∏
p-2

(
pλp+1 − 1

p− 1
−
(
−2

p

)
pλp − 1

p− 1

)
+ n ·

(n
2

)
· (−1)

n−1
2 ,

r(n2, K1) = Φ(n)
∏
p-2

(
pλp+1 − 1

p− 1
−
(
−2

p

)
pλp − 1

p− 1

)
− n ·

(n
2

)
· (−1)

n−1
2 ,

where λp = ordp(n) for any prime p and

Φ(n) =


2λ2 if 0 ≤ λ2 ≤ 1,

2λ2−1 if 2 ≤ λ2 ≤ 3,

12 if λ2 ≥ 4.

(ii) Next consider the ternary Z-lattice K1,0 = [1, 4, 9, 4, 0, 0] which is defined

in Section 4.3. Note that class number of K1,0 is three and the spinor genus

of K1,0 contains only one class. One may easily check that c is a splitting

integer for the genus of K1,0 if and only if c = 2m2(m ∈ Z). Since K1,0

is strongly spinor St-regular for any positive square free integer t, K1,0 is

strongly St-regular for any positive square free integer t 6= 2 by Corollary

5.2.5.
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quadratischer Formen, J. Number Theory 12(1980), 529-540.

[20] R. Schulze-Pillot, Thetareihen positiv definiter quadratischer Formen,

Invent. Math. 75(1984), 283-229.
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국문초록

이 논문에서는 삼변수 이차형식이 제곱수를 표현할 때, 그 개수에 관한 다

양한 성질을 연구한다.

양의 정부호이고 정수계수인 삼변수 이차형식이 제곱수의 표현의 개수에

관한 정규적인 성질을 만족하는 경우, 이를 강력한 S-정규형식이라고 한다.

우리는 강력한 S-정규성과 Cooper와 Lam에 의해 주어진 추측과의 관계를

설명하고 그들의 추측을 완벽하게 해결한다. 또한, 표현되는 양의 제곱수의

최솟값을 고정하면, 강력한 S-정규형식은 유한함을 증명한다. 특별히, 1을 표

현하는 강력한 S-정규형식은 정확히 207개 존재함을 증명한다.

주요어휘: 삼변수 이차형식의 표현, 제곱수

학번: 2011-20261


	1 Introduction
	2 Preliminaries
	2.1 De�finitions
	2.2 Splitting integers
	2.3 The Minkowski-Siegel formula
	2.4 Calculations of local densities

	3 Representations of squares by ternary forms
	3.1 Indistinguishable by squares
	3.2 The Cooper and Lam's conjecture

	4 Strongly S-regular ternary forms
	4.1 Some properties of strongly S-regular ternary forms
	4.2 Strongly S-regular ternary forms representing 1
	4.3 Nontrivial strongly S-regular ternary forms

	5 Strongly regularity on square classes
	5.1 Strongly S_t-regular ternary forms
	5.2 Strongly spinor S_t-regular ternary forms

	Abstract (in Korean)


<startpage>8
1 Introduction 1
2 Preliminaries 6
 2.1 De�finitions 6
 2.2 Splitting integers 12
 2.3 The Minkowski-Siegel formula 13
 2.4 Calculations of local densities 16
3 Representations of squares by ternary forms 20
 3.1 Indistinguishable by squares 20
 3.2 The Cooper and Lam's conjecture 24
4 Strongly S-regular ternary forms 35
 4.1 Some properties of strongly S-regular ternary forms 35
 4.2 Strongly S-regular ternary forms representing 1 41
 4.3 Nontrivial strongly S-regular ternary forms 48
5 Strongly regularity on square classes 56
 5.1 Strongly S_t-regular ternary forms 56
 5.2 Strongly spinor S_t-regular ternary forms 58
Abstract (in Korean) 64
</body>

