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Abstract

In this thesis, we study various properties of representations of squares
by ternary quadratic forms.

A (positive definite integral) ternary quadratic form is called strongly S-
reqular if it satisfies a regularity property on the number of representations of
squares of integers. We explain the relation between the strongly S-regularity
and the conjecture given by Cooper and Lam, and we resolve their conjecture
completely. We prove that there are only finitely many strongly S-regular
ternary forms up to isometry if the minimum of the non zero squares that
are represented by the form is fixed. In particular, we show that there are
exactly 207 non-classic integral strongly S-regular ternary quadratic forms
representing one.

Key words: Representations of ternary quadratic forms, squares
Student Number: 2011-20261
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Chapter 1

Introduction

A homogeneous quadratic polynomial with three variables

f(@1, 29, 3) = Z a;jxity, (a; = a; € Q)

1<i,j<3

is called a ternary quadratic form over Q. We say that f is positive definite
if the corresponding symmetric matrix My := (a;;) is positive definite. We
say f is integral if each coefficient a;; is an integer. The quadratic form f
is called non-classic integral if f is an integral polynomial, that is, both a;;
and a;; + aj; are all integers for any 4,j. Note that every integral form is
non-classic integral. Throughout this thesis, we assume that every ternary
quadratic form f is positive definite and non-classic integral.

For a (non-classic integral positive definite) ternary quadratic form f and
a positive integer n, we define

R(n, f) = {(21, 29, 23) € Z* : f(x1,79,23) =n} and r(n,f) = |R(n, f)).

Since we are assuming that f is positive definite, the set R(n, f) is always
finite. Finding a closed formula for r(n, f) or finding all positive integers
n such that r(n, f)# 0 for a given ternary quadratic form f are quite old
problems which are still widely open. As one of the simplest cases, Gauss
showed that if f is a sum of three squares, that is, f(x,y, 2) = 2?+y?+22, then
r(n, f) is a multiple of the Hurwitz-Kronecker class number of an imaginary



CHAPTER 1. INTRODUCTION

quadratic field. In fact, if the class number of f is one, then Minkowski-Siegel
formula gives a closed formula for r(n, f). As a natural modification of the
Minkowski-Siegel formula, it was proved in [13] and [21] that the weighted
sum of the representations of quadratic forms in the spinor genus is also
equal to the product of local densities except spinor exceptional integers (see
[20] for the definition spinor exceptional integers). Hence, if the spinor class
number gt (f) of f is one, we also have a closed formula for r(n, f). As far as
the author knows, there is no known closed formula for r(n, f) except those
cases (for some relations between r(n, f)’s, see [12]).

Though it seems to be quite difficult to find a closed formula for r(n, f) for
any positive integer n, there are some additional closed formulas for r(n, f)
if the integer n is contained in some particular proper subset S of the set of
integers. For example, for any integer n € S, if r(n, f) = r(n, f') for any
f' € gen(f), then the Minkowski-Siegel formula gives a closed formula for
r(n, f). Note that there is an integer n such that r(n, f) # r(n, f') for any
1’ € gen(f) that is not isometric to f by Schiemann’s result [18].

In 2013, Cooper and Lam [4] tried to find a closed formula for r(n?, f),
where f(x,y,z) = x® + ay® + bz for some integers a,b. In that article,
they proved, by using some ¢-series identities, that for the quadratic form

r(n? f) = H g(b, ¢, p,ord,(n)) H h(b, ¢, p,ord,(n)), (1.0.1)

p|2be pt2be

where

h(b, ¢, p,ord,(n)) =

pordp(n)—H -1 B (_df) pordp(n) -1
p—1 p p—1

and g(b, ¢, p, ord,y(n)) has to be determined on an individual and case-by-case
basis, and they conjectured that the above equality also holds for some 64
pairs of (b,¢) (see Table 3.1 in Chapter 3). Recently, Guo, Peng and Qin in
8] verified the conjecture when

(b7 C) = (17 4)7 (17 5)7 (17 6)7 (17 8)? (27 3)7 (27 4)7
(2,6),(3,6),(4,4),(4,8),(5,5), (6,6)
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by using theory of modular forms of weight 3/2, and Hiirlimann in [9] verified
the conjecture when

(b,c) = (2,8),(2,16),(8,8),(8,16)

by using some g-series identities on Bell ternary quadratic forms.

In this thesis, we prove Cooper and Lam’s conjecture completely. Further-
more, we find all ternary quadratic forms f satisfying the condition (1.0.1)
under the assumption that 1 is represented by the form f.

In Chapter 2, we introduce some definitions and well-known results on
quadratic spaces and lattices. We adapt the geometric language of quadratic
spaces and lattices rather than quadratic forms in the subsequent discussion.
The term “lattice” will always refer to a positive definite integral Z-lattice
on an n-dimensional positive definite quadratic space over Q. Let L = Zx; +
Zxy + - - - + Zx,, be a Z-lattice of rank n. We write

L ~ (B(z;, ;).

The right hand side matrix is called a matriz presentation of L. If B(x;, x;) =
0 for any i # j, then we write L ~ (Q(x1), Q(z2), ..., Q(x,)), where @ is the
quadratic map such that Q(x) = B(x,z) for any z € L. The discriminant
dL of the lattice L is defined by the determinant of the corresponding matrix

(B(zi, ;).
For two Z-lattices M and L, a linear map o : M — L is called a repre-
sentation from M to L if it preserves the bilinear form, that is,
B(o(x), 0(y)) = Blz,y) for any 2,y € M.
We define
R(M,L)={0: M — L | o is a representation }

and r(M, L) = |R(M, L)|. In particular, O(L) = R(L, L) which is called the
isometry group of L, and o(L) = r(L, L). For any Z-lattice L, the isometry
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class containing L in gen(L) is denoted by [L]. As usual, we define

WD = ¥ o ad r(Kgen) = o 3

[M]€egen(L) [M]€egen(L)

r(K, M)
o(M) ’

for any Z-lattice K. Any unexplained notations and terminologies can be
found in [16] or [17].

In Chapter 3, we completely resolve Cooper and Lam’s conjecture intro-
duced the above. In fact, the condition (1.0.1) in Cooper and Lam’s con-
jecture is a little bit vague, for the function g(b,c,p,ord,(n)) is not given
directly. So, we introduce the notion “strongly S-regularity” of ternary
quadratic forms. To be more precise, let f be a ternary quadratic form. For
any integer n, let ny and ny be positive integers such that P(ny) C P(8df),
(n9,8df) = 1 and n = nyny. Here P(n) denotes the set of prime factors of n.
Then f is called strongly S-regular if for any positive integer n = nins,

r(nin3, ) = r(ni, ) - T hwldf, M), (1.0.2)
pisdf
where )\, = ord,(n) for any prime p and

Apt1 A

prTt —1 —df \ p*r —1
h,(d = — :
p(f’)\p) 1 ( ) 1

Clearly, if f does not represent any squares of integers, then f is trivially
strongly S-regular. So, we always assume that a strongly S-regular ternary
form f represents at least one square of an integer. Note that this condition
is equivalent to the condition that f represents one over Q.

Our method is based on the action of Hecke operators on the space of
modular forms of weight % and the Minkowski-Siegel formula on the weighted
sum of the representations by quadratic forms in the same genus.

In Chapter 4, we prove that every strongly S-regular form represents all
squares that are represented by its genus, and there are only finitely many
strongly S-regular ternary forms up to isometry if

ms(f) = min{n :r(n? f) # 0}

nezZt
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is fixed. Furthermore, we show that there are exactly 207 strongly S-regular
ternary quadratic forms that represent one (see Tables 4.1 and 4.2). In the
proof of Lemma 4.2.1 and Theorem 4.2.2, we extensively use mathematics
software MAPLE for large amount of computation. In fact, if a ternary
quadratic form f satisfies the condition (1.0.1), then clearly f is strongly
S-regular. Furthermore, one may easily show that if

r(n?, f) = r(n’ gen(f)) (1.0.3)

for any integer n, then f satisfies the condition (1.0.1). In this chapter, we
will show that all three conditions (1.0.1), (1.0.2) and (1.0.3) given above are
equivalent by showing that every strongly S-regular ternary quadratic form
satisfies the condition (1.0.3).

In Chapter 5, we generalize the notion of “strongly S-regularity” of
ternary quadratic forms. Let T be a proper subset of positive integers.
A ternary quadratic form f is called strongly T-reqular (strongly spinor T-
reqular) if r(n, f)=r(n,gen(f)) (r(n, f) = r(n,spn(f)), respectively) for any
integer n € T', where

w(f)= Y = and efnspn(f) = —— 0 109

[gl€spn(f) O(g)

Let t be a positive square free integer. We define
Sy = {tn® | n € Z}.

We prove that there exist only finitely many strongly S;-regular ternary
quadratic forms up to isometry if

ms,(f) = min{n : r(in®, f) # 0}

is fixed. We also prove that if any splitting integer for the genus of a ternary
quadratic form f is not of the form tn?, then f is strongly S;-regular if and
only if f is strongly spinor S;-regular.



Chapter 2

Preliminaries

In this chapter, we introduce some definitions and well-known results which
are used in throughout the thesis. Especially, we state the Minkowski-Siegel
formula which is important for representation of quadratic forms over Z.

2.1 Definitions

Let Q be the rational number field. For a prime p (including co), we denote
the fields of p-adic completions of Q by Q,, in particular Q. = R, field of
real number. Let F' be a field Q or Q,. A quadratic space V over F' is a finite
dimensional vector space over F' equipped with a non-degenerate symmetric
bilinear form

B:VxV = F

Then we have the following properties:
B(z,y) = B(y,z), Blaz+ fy,z)=aB(z,z2)+ BB(y,z),

for any z,y,2z € V and a, 8 € F. The quadratic map () associated with B is
defined by

Q(m) = B($,l’),
for any x € V. We say that a quadratic space is unary, binary, ternary,
quaternary,. .., n-ary, according as its dimension is 1,2,3,4,...,n.
6
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Let V., W be quadratic spaces over F'. If a linear mapping ¢ from V into
W satisfies that
Q(ox) = Q(x) forany x € V,

we call o a representation from V into W and say that V' is represented by
W. Furthermore if o is a bijective linear map, then we call o an isometry
from V onto W. In this case, we say that V and W are isometric and write
V ~ W. The group of all isometries from V" onto itself is denoted by O(V).
For 0 € O(V), we call o a rotation if detc = 1. We denote the set of all
rotations of V by Ot (V).

Let V' be a quadratic space over F and let x1,xs,...,x, be a basis of V.
The n x n matrix

(B(®i, 7)) )1<ij<n

is called the matriz of the quadratic space V in the basis x1, o, ..., 2,. In
this case, we write

V ~ (B(x;, xj)).

We say that V' is positive definite if the matrix (B(z;, x;)) is positive definite.
If B(z;,z;) =0 for any i # j, then we write

V= (Q(21), Q(w2), - .., Q).

The determinant

det(B(x;, x;))

of the n x n matrix (B(x;, x;)) is called the discriminant of V and we denote
it by dV. Note that the discriminant of V in (£ /(F*)?)U{0} is independent
of the basis of V. If dV # 0, then we say that V is a regular quadratic space.
Let V' be a non-zero regular n-ary quadratic space over F. For any
o € O(V), we can express o as a product of symmetries by Theorem 43:3 in

[17], say
O = Ty Ty " * To, -

We define

0(0) = Qu1)Q(v2) -+~ Q(v,) € F*/(F*)?,

and call it the spinor norm of o. By Proposition 54:6, the spinor norm of o
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in F*/(F*)? is well-defined. Since
O(oT) = 0(0)0(7),
we have a group homomorphism
0:0"(V)— F*/(F*)2.

We define
O'(V)={oceO"(V)|0()=1}.

Clearly this is the kernel of the homomorphism 6.
Let F be a field Q, or Q (= R). For non-zero elements o, # in F', the

( 2’ )
)

or simply (a, 3), is defined to be +1 if ax®+ fy* = 1 has a solution x,y € F;
otherwise the symbol is defined to be —1. Let V' be a regular n-ary quadratic
space over F. If V has a splitting

V ~ <Oél,042,...,04n>,

then we define the Hasse symbol

s,00= T (%),

1<i<n

where d; = ajas---«,. Note that this is independent of the orthogonal
splitting chosen for V.

Let R be the ring of integers Z or the ring of p-adic integers Z,. Let F
be the quotient field of R and let V' be a quadratic space over F. Let L be
a subset of V' which is an R-module under the laws induced by the vector
space structure of V over F. We define

FL={ax| o€ F,zeL}.
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Note that F'L is a subspace of V. We call the R-module L a R-lattice in V
if there is a basis x1, z9, ..., x, for V such that

L C Rx1+ Rxy+ - -+ Rx,,.

Furthermore if F'LL =V, then we call the R-module L a R-lattice on V. We
say that a R-lattice is unary, binary, ternary, quaternary,. .., n-ary, according
as its rank is 1,2,3,4,...,n.

Let U,V be quadratic spaces over F'. Let K, L be R-lattices on the
quadratic spaces U, V', respectively. We say that K is represented by L if
there is a representation o : FIK — F'L such that oK C L. We say that
K and L are isometric if there is a representation o : FK — FL such that
oK = L. In this case, we write K ~ L.

Let L be a R-lattice on quadratic space V and let x, z9, ..., x, be a basis
of L. As before, the n x n matrix

(B(xi, 75) h1<ij<n

is called the matrix of R-lattice L in the basis x1, xs, ..., z,. In this case, we
write

L ~ (B(z;,x;)).

We say that L is positive definite if the matrix (B(x;,x;)) is positive definite.
If B(z;,2z;) =0 for any i # j, then we write

L~ <Q(xl)> Q(x2)7 te 7Q($n>>

The determinant
det(B(z;, x;))

of the n x n matrix (B(z;,z;)) is called the discriminant of L and we denote
it by dL. Note that the discriminant of L in (F*/(R*)?)U{0} is independent
of the basis of L. If dL # 0, then we say that L is a reqular R-lattice.
Let L be a regular R-lattice on quadratic space V. We define the dual
lattice L* of L by
L*={reV|B(z,L) C R}
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Let V be a regular non-zero quadratic space and let K, L be R-lattices
on the quadratic space V. We say that K and L are in the same class if

K =oL for some o € O(V).

This is obviously an equivalence relation on the set of all R-lattices on V' and
we consequently obtain a partition of this set into equivalence classes. We
use

clsL

to denote the class of L. The subgroup O(L) of O(V') is defined as follows:
O(L)={c€O(V)|oL=L}

We call O(L) the isometry group of L and we denote the order |O(L)| of
O(L) by o(L). We also definie the subgroup O*(L) of O(L) by

O*(L) = O(L) N O*(V).

Let L be a R-lattice on the quadratic space V over F. We define the
scale (norm) of L by the R-module generated by the subset B(L, L) (Q(L),
respectively) of F. Here

B(L, L) ={B(z,y) |z,y € L} and Q(L) ={Q(x) [z € L}.
We denote the scale (norm) of L by sL (nL, respectively). Note that
2sL Cnl Csl.

Let L be a Z-lattice on quadratic space V over Q. The genus genL of Z-
lattice L on V is defined by the set of all Z-lattices K on V with the following
property: for each finite prime p there exists an isometry X, € O(V},) such
that K, = X,L,. Here L, is the Z,-lattice L ® Z,. We say that the Z-lattice
on V is in the same spinor genus as L if there is an isometry ¢ € O(V') and
a rotation X, € O'(V) at each finite prime such that

Ky =0p2, Ly,

10
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for every finite prime p. The spinor genus spnlL of Z-lattice L is defined
by the set of all Z-lattices in the same spinor genus as L. Clearly we have
clsL C spnL C genL. We define h(L) by the number of classes in genL and
call it the class number of L. We also define g(L) by the number of spinor
genera in genL. Note that h(L) and g(L) is always finite. We define

w = ! and 7 en :L M
) [M]ge:n(m o(M) 4 it w(L) [M]ge:nm o(M)
w = 1 an T Sp1n = 1 M
o [M]ezsp:n@) o(M) 4 i) ws(L) [M}ezsp:nw) o(M)

for any Z-lattice K.
For a ternary Z-lattice L = Zxy + Zxo + Zx3, the corresponding ternary
quadratic form f;, is defined by

fL: Z B(IZ‘,(L’]’)(L’in.

1<4,5<3
We always assume that unless stated otherwise,
any Z-lattice L is a positive definite Z-lattice such that n(L) = Z.

Hence 4 - dL is an integer. If dL is not an integer, then the Legendre symbol
(%) for an odd prime p is defined as <%>. For any odd integer n, we say
n (does not) divides dL if n (does not, respectively) divides the integer 4 -dL.

A binary form az? 4 bzy + cy? will be denoted by [a,b, | and a ternary
form az? + by? + c2? + dyz + ezx + fay will be denoted by [a, b, ¢, d, e, f].

If an integer n is represented by L over Z, for any prime p including the
infinite prime, then we say that n is represented by the genus of L, and we
write n — gen(L). When n is represented by the lattice L itself, then we
write n— L. The class of L in the genus of L will be denoted by [L]. For
any odd prime p, A, is denoted by a non square unit in Z.

11
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2.2 Splitting integers

Let € be the set of all primes including co. Consider the following multi-

[T

peEQ

plicative group

An elements of this group is defined in terms of its p-coordinates, say

i = (ip)pea (ip € @;)

Then the multiplication in the direct product is coordinatewise. We say
an element 7 in the above big group idele if it satisfies the following extra
condition:

liy|, = 1 for almost all p € €.

Then the set of all ideles is a subgroup of the direct product. This subgroup
is called the group of ideles, and denoted by Jg. Let QT be the set of all
positive rational numbers. Let Py+ be the group of principal ideles of the
form (a)peq, where v € QF. For a Z-lattice L, we define the subgroup J(é of
J@ by

J§={ieJg|i, €0(O(L,)) for every finite prime p}.

Let L be a ternary Z-lattice with discriminant d. Assume that ¢ is a non-zero
integer satisfying
—cd ¢ (Q*)%.
For p in ), we define
Ne(p) ={6 € Q) | (8, —cd)p = 1},
where (), is the Hilbert symbol. Now we define the subgroup N, of Jgy by

N.={i e Jy|i, € N.(p) for all prime p € Q}.

We call ¢ a splitting integer for gen(L) if ¢ is represented by gen(L) and
[Jg : NePg+J§] = 2. In this case, gen(L) is split into two half-genera. The

12



CHAPTER 2. PRELIMINARIES

half-genus containing the class [L] is denoted by Hp(c) and the other half-
genus is denoted by Hj(c).

2.3 The Minkowski-Siegel formula

Throughout this section, R and F' denote the p-adic integer ring Z, and
the p-adic number field Q,, respectively. Here p is a prime number. We
denote the set of m x n matrices with entries in R by M,,,(R) and we
put M, (R) = Mpm(R). For matrices X,Y, we put Y[X] = X'V X if
it is defined. We say that a symmetric matrix S over R is regular if the
determinant of S is non-zero.

First, we introduce the notion of local density.

Lemma 2.3.1. Let S and T be reqular symmetric matrices over R of degree
s and t, respectively. Put

Ei{(R) = {B = B" € My(R) | all diagonal entries of B is in 2R}

and take an integer h such that p"T~' is in Ey(R). For G € M,,(R) and
nonnegative integers r, e, we put

Ay (T, S;G,p°) =
{X € Ms4(R) mod p" | S[X] =T mod p"E(R), X =G mod p°}.

If r > h-+maz (e, 1), then we have
(p ) 28 A L (T, 85 G pf) = ()27 084, (T, S G ).
Proof. See Lemma 5.6.1 in [16]. O

Lemma 2.3.2. Let S and T be reqular symmetric matrices over F of degree
s and t, respectively and let G € Mg, (R). Put

Bpr (T7 Sa G7pe> =
{X € M,4(R) modp"S™*M,,(R)|S[X] =T modp"E;(R), X = G modp°}.

13
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Let I’ be an integer such that p" S™' € E(R). Then B, (T, S;G,p°) is well-
defined for r > h' +e. For an integer a and a sufficienly large v, we have

§Byrre (p*T,p"S; G, p°) = 1By (T, 5; G, p°).
Furthermore if S and T are integral and r > h'+mazx (e, 1), then we have
tA (T, S; G, p°) = ptore (S4B (T, S; G, p°).
Proof. See Lemma 5.6.3 in [16]. O

Lemma 2.3.3. Let S and T be reqular symmetric matrices over F' of degree
s and t, respectively and let G € Ms(R). Then for a sufficiently large r,
(") (t+ 1/2 — st)iBy (T, S; G, p°) is independent of r.

Proof. See Lemma 5.6.4 in [16]. O

Lemma 2.3.4. Let S and T be reqular symmetric matrices over R of degree
s and t, respectively and let G € Mg, (R). Put

AL (T, S;G,p%) =
{X € Ms(R) modp" | S[X] =T mod p", X =G mod p°}.

Then we have
ﬂAIpT (T7 SJ G7 p€> = 2t62’pjjAp”" (T7 S7 G7 p6)7
for a sufficiently large r where § is Kronecker’s delta function.

Proof. See Lemma 5.6.5 in [16]. O

Now we will define the local density. Let K and L be regular R-lattices
with rank K = k and rankL = [ and let {x;}, {y;} be bases of K, L, respec-
tively. Let g be a homomorphism from K to L. Then we have

K =Rry+ Rxo+---+ Rxy and L= Ry, + Rys+---+ Ry
(g(xl)ag(xQ)a T 7g<xk)) = (y17y27 T >yl>G for some G € Ml,k(R>

14
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We put
T = (B(zi, zj) hi<ij<r  and S = (B(yi, y;))1<ij<i-

Then the dual basis of L is given by (y1, 2, ,y)S~ . We put

By (K, Lig,p) = {o: K = L/p"L* | Q(o(2)) = Q() mod 2p",
o(z) = g(x) mod p°L for z € K}.

Then Bpr(K ., L;g,p°) is canonically identified with B,(T,S; G, p¢) through
matrix representation. We define

Bo(K, L g,p?) = pFo%” lim, o0 (p7 )M EHD2-HE B (K, L; g, p°)
_ pkordgL lim, o (pr)k(k—i-l)/Q—klﬁBpr (T, S G,pe).

By Lemma 2.3.3, above definition is well-defined. If e = 0, then the additional
condition o(x) = g(x) mod p°L is clearly satisfied. Hence we put

A (T, S) = Ay (T, S; G, p?),

AT, S) = AL.(T, S; G, p°),

Bpr (K, L) = Byr (K, Ly g, 1°).
Now we define local density as follows:

(K, L) = 2k2e =0k (K L),

where ¢ is Kronecker’s delta function. If we assume that s(K),s(L) C R,
then by Lemma 2.3.2, we have

By (K, L) = lim (p")MF+27ky 4 (T, S).

T—00

Therefore by Lemma 2.3.4, we also have

a, (K, L) = 270 Lim (p")FEHD/2Ry A7 (T, S),

7—00

Actually, this is Siegel’s original definition of local density.
For a positive definite Z-lattice M on a positive definite quadratic space

15
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over Q, we put
1
M) = —
[N]egen(M)
where [N] is the equivalence class containing N in the genus gen(M).

The following theorem is the famous Minkowski-Siegel formula.

Theorem 2.3.5. Let K and L be positive definite Z-lattices with rankK = k
and rankl =1 and put

{1/2 if either l=k+1 or l=m2>1,
€kl =

1 otherwise.

Then we have

1 r(K, M)
2 o(M)
k—1
_ €k,lﬂk(2l_k+1)/4 H P((l . i)/2)_1(dL)_k/2(dK)(l_k_l)/2
=0
x H o (Ko, L),

p<oo

’UJ( ) [M]egen(L)

where r(K, M) is the number of the representations from K to M and T is
the ordinary gamma function.

Proof. See Theorem 6.8.1 in [16]. O

2.4 Calculations of local densities

Let L be a regular Z,-lattice with rankL = [ and let n be a nonzero p-adic
integer. We assume that the norm nL is Z, and [ > 1. In this section, we
provide an explicit formula for the local density a,(n, L) of n by L which is
defined in previous section. The results in this section were proved by Yang
in [22].

First, assume that p # 2. Then we may assume that

L~ <€1pt17 €2pt27 s 7€lptl>7

16
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where ¢; € Z; and t; <ty < --- < t;. Here t; = 0 by the assumption on L.
For each positive integer k, we put

Lk, 1) ={1<i<l|t;—k<O0isodd} and I(k,1)=H8L(k.1).
Furthermore, we define

d(k) = k+%2(ti —k) and 6&,=

ti<k

{1 if p=1 (mod4),

For n = fp® with § € Z,f and a € Z, we put

—1
— if Il(a+1,1) is even,
p
<—) — if l(a+1,1)is odd,
p) VP
and
Rin,L)=(1=p) 3 o™ + vV fin).
0<k<a
I(k,1) is even
Here
o3Ik, 1) H (&> if I(k,1) is even
) ) Y
ieLkn) NP

Vi = )
G | 9) it I(k, 1) is odd.
ier(en) NP

Theorem 2.4.1. Under the same notations given above, we have
ap(n,L) =14 Ri(n, L).
Proof. See Theorem 3.1 in [22]. O

Finally, assume that p = 2. Then L is isometric to

(€121 €32 .. ep2tP) L (Lf‘il omi <

o= O
[
~_
~~
—
N
=
=
o
[\
N
N =
— o=
~_
~_

17
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where €, € Z3,t,,m; and n; are all integers. The assumption on L means

that the smallest integer among all [;,, m; and n; is zero. Note that P+2M +

2N = 1. For each positive integer k, we put

Lk 1) ={1<h<P|t,—k<O0isodd}, I(k1)=4L(k1),

plk) = (1)<,

e(k) = H €,

heL(k—1,1)

dk)=k+3 > (th—k+1)+ > (mi—k)+ > (n;—k),

tp<k—1 m;<k

5(k) = {0 if t, =k —1 for some h,

1 otherwise.

Let ¢(z) = e #"@) he the canonical character of Q,, where \ : Q, —

Qp/Z, — Q/Z. Now we define for n = 52¢ with § € Z; and a € Z,

Ry(n,L) = Z 5(k)p(k) ( 2 ) od(k)—3/2

pe(k)

0<k<a+3
I(k—1,1) is odd

2

+ Y SRk (—> 9d(k)-1y, <%)char(4Z2)(,u),

e(k)

0<k<a+3
I(k—1,1) is even

where

(2)_ (2,z)y if z€Z3,
x 0 otherwise,

and p = ug(n) is given by

,uk(n) _ B2a7k+3 _ Z €.

th<k—1

Here char(X) is the characteristic function of a set X and (, ), is the Hilbert

symbol.

18
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Theorem 2.4.2. Under the same notations given above, we have
as(n, L) =14 Ry(n,L).

Proof. See Theorem 4.1 in [22].

19



Chapter 3

Representations of squares by
ternary forms

In this chapter, we resolve the conjecture given by Cooper and Lam in [4].

3.1 Indistinguishable by squares

In this section, we investigate various properties on the representations of
squares by ternary quadratic forms.

Definition 3.1.1. Let L be a ternary Z-lattice. We say the genus of L is
indistinguishable by squares if r(n? L) = r(n* L) for any L' € gen(L) and
any integer n.

Let L be a ternary Z-lattice. It is obvious that if the genus of L does
not represent any squares of integers, that is, 7(n? L) = 0 for any integer n
and any L' € gen(L), or the class number of L is one, then the genus of L
is indistinguishable by squares. As pointed out in the above, some genera of
ternary Z-lattices are obviously indistinguishable by squares.

Lemma 3.1.2. Let L be a ternary Z-lattice and let V = Q ® L be the
quadratic space. Then r(n? L") = 0 for any L' € gen(L) and any positive
integer n if and only if d(V,) = —1 and S,(V) # (—1,—1), for some prime
p. Here d(V},) is the discriminant of V,, where V, =V @ Q,, is the quadratic
space over Q,, and S,(V') is the Hasse symbol of V' over Q,.
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Proof. The lemma follows directly from the fact that r(n? L’) = 0 for any
L’ € gen(L) and any positive integer n if and only if 1 is not represented by
V. O

Remark 3.1.3. In fact, it is possible that 1 is not represented by a genus
which is indistinguishable by squares. For example, let L ~ (2,3,24). Then
one may easily check that the class number of L is 2 and the other lattice in

. 5 1
the genus is L' ~ (1 .
and 3, one may easily show that r(n? L) = r(n? L') = 0 for any integer n
not divisible by 6. Assume that

) 1 (6). By checking the local structure at p = 2

36n? = 227 + 3y? + 2427

for some integers n and x,y,z. Then one may easily check that x = 0
(mod 6) and y = 0 (mod 2). Therefore we have r(36n?, L) = r(3n?, (1,2, 6)).
Similarly, one may also check that r(36n? L') = r(3n?,(1,2,6)). Therefore
we have r(n? L) = r(n? L') for any integer n.

Lemma 3.1.4. Let L be a ternary Z-lattice and let n be a positive integer.
For any prime p, we assume that ord,(n) = \,. If 1 is represented by the
genus of L, then we have

r(nz,gen(L))_n H a,(n? L) H ay(n?, L)

r(1, gen(L)) pinaladL a,(1,L) olngiBdL a,(1,L)

e appg’LL)) 1 L(pA;iI 1 (—§L> p;p__ll) |

pln,p|8dL pln,ptdd

In particular, if the lattice L has class number 1, then we have

r(n®,L) = r(1,L) H pA,,_M

P|n,p|8dL ap(l’ L)
y H < ptt — 1 <—dL) pr — 1)
P|n,pi8dL p p—1
21
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Proof. The Minkowski-Siegel formula implies

r(n?, gen(L)) = 74T (g) - ﬁ o T ewn®. L),

p<oco

where «, is the local density. If p does not divide 8dL, then by [22],

1 1 —dL 1
ap(n27 L) = ap(p”\pa L) =1+ 5 - p’\PH * (T) p)‘erl'

The lemma follows from this. O

Remark 3.1.5. When the class number of a ternary lattice L is 1, the above
lemma gives a closed formula, which is, in principle, a finite product of local
densities, for the number of representations of squares by L. This could by
extended to other rank cases. Let L be a Z-lattice with hA(L) = 1. If the rank
of the Z-lattice L is an odd (even) integer greater than 1 (0), then we might
have a closed formula of r(n?, L) (r(n, L), respectively) which is essentially
given by a finite product of local densities. For example, if the rank of L is
4, then we have

ordp(n)+1
() Qp(n, L) por (%>
) = (1. L ordp(n) P\
T(n7 ) T( ) ) H p Oép<].,L) H (@)
p|2dL pt2dL p D

There are some articles dealing with this subject by using different methods
such as ¢-series or modular forms. For example, see [2], [3], [5] and [7].

Lemma 3.1.6. Let L be a ternary Z-lattice. If for any L' € gen(L),r(n*, L)=
r(n® L) for any integer n such that every prime factor of n divides 8dL, then
the genus of L is indistinguishable by squares.

Proof. The action of Hecke operators T'(p?) for any prime p { 8L on theta
series of the Z-lattice L gives

r(pn, L) + (_ndL) r(n,L)+p-r (]%»L> P %T("’L/)'

p [L']€gen(L)
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Here, if p® { n, then r (1%, L) =0 and

r(pLl’,L) —o(L) if L ~ L/,
r(pLl, L) otherwise.

rorn) -
For details, see Chapter 3 of [1]. It is well known that

r(pl, L)
— = L. A1
> o) Pt (3.1.1)
[L']egen(L)

Assume that r(n? L) = r(n? L) for any L' € gen(L). Then by (3.1.1), we

have
_ QdL 2
r<p2n2,f<>:(p+1—( ~ ))rmz,m—p-r(%,ff),

for any Z-lattice K € gen(L). Therefore if n is not divisible by p, then
r(p*n? L) = r(p*n? L') for any L' € gen(L). The lemma follows from in-

duction on the number of prime factors not dividing 8dL counting multiplic-
ity. O

Now we collect some known results on the number of representations
of integers by ternary quadratic forms, which are needed later. Let L be
a ternary Z-lattice. For any prime p, the A -transformation (or Watson
transformation) is defined as follows:

A(L)={zeL:Q(x+z2) =Q(z) (mod p) for all z € L}.

Let A\,(L) be the non-classic integral lattice obtained from A,(L) by scaling
V = L ® Q by a suitable rational number. For a positive integer N =
P pst - - pit, we also define

AN (L) = A (A (- A (A (L)) -+ ).

Note that A\,(A\;(L)) = A;(A\,(L)) for any primes p # q.

Lemma 3.1.7. Let L be a ternary Z-lattice and let p be an odd prime. If the
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unimodular component in a Jordan decomposition of L, is anisotropic, then

r(pn, L) = r(pn, Ap(L)).
Proof. See [6]. O

Now assume that the %Zp—unimodular component in a Jordan decompo-
sition of L, is nonzero isotropic. Assume that p is a prime dividing 4dL.
Then by Weak Approximation Theorem, there exists a basis {z1, o, 23} for
L such that

(Bl = (

o= O

1
(5)) 1 <pordp(4dL)5> (HlOd pordp(4dL)+1>’

where 0 is an integer not divisible by p. We define
ijl(L> = Zpl’l + Z[EQ + Zl'g, prg(L) = ZZEl + Zp.f(]g + ZZJZ3.

Note that the lattice I',;(L) depends on the choice of basis for L. However
the set {I',1(L),I'p2(L)} is independent of the choices of the basis for L.
There are exactly two sublattices of L with index p whose norm is contained
in pZ. They are, in fact, I',1 (L) and I'p2(L). For some properties of these
sublattices of L, see [12].

Lemma 3.1.8. Under the same assumptions given above, we have
r(pn, L) = r(pn, Tpa(L)) + r(pn, Tpa(L)) — r(pn, Ap(L)).

Proof. See Proposition 4.1 of [12]. O

3.2 The Cooper and Lam’s conjecture

Let L be a ternary Z-lattice whose genus is indistinguishable by squares.
Then Lemma 3.1.4 gives a closed formula on 7(n? L). In this section, we
resolve the conjecture given by Cooper and Lam in [4] by using this obser-
vation.
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Table 3.1: Data for Conjecture 3.2.1

b c

1 1,2,3,4,5,6,8,0, 12,21, 24

2 2,3,4,5,6,8, 10, 13, 16, 22, 40, 70
3 3,4,5,6,9, 10, 12, 18, 21, 30, 45
4 4,6, 8,12, 24

5 5, 8,10, 13, 25, 40

6 6,9, 16, 18, 24

8 8, 10, 13, 16, 40

9 9, 12, 21, 24

10 30

12 12

16 24

21 21

24 24

Conjectrue 3.2.1. Let b and c be any integers given in Table 1. Let n be
a positive integer and let N\, = ord,(n) for any prime p. Then the number
r(n% (1,b,c)) of the integer solutions of the diophantine equation

n? = z? + by? + cz?

s given by the formula of the type

r(n?, (1,b,c)) H g(b,c,p, Ap) H h(b,c,p, \p) | (3.2.1)
p|2bc pf2be
where - , \
prtt —1 —bc\ pr —1
h(b,c,p, \,) = — ( ) 3.2.2
o) =" = (S5 B (322)

and g(b, ¢, p, \,) has to be determined on an individual and case-by-case basis.
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Cooper and Lam verified the conjecture when
(bv C) = (17 1)7 (17 2)? (17 3)7 (27 2)7 (37 3)

by using some identities on g¢-series. In 2014, Guo, Peng and Qin in [§]
verified the conjecture when

(b’ C) = (174)’ (1’ 5)7 (17 6)7 (1’ 8)? (27 3)7 (27 4)a
(2,6),(3,6),(4,4),(4,8),(5,5),(6,6)

by using theory of modular forms of weight 3/2. In 2016, Hirlimann in [9]
verified the conjecture when

(b,¢) = (2,8),(2,16), (8,8), (8, 16)

by using some g¢-series identities on Bell ternary quadratic forms.
In fact, by Lemma 3.1.4, the conjecture holds when the class number of
Uy = (1,b,c) is one. In this case, we have

Hg(b7c7p7)\ —Tlfbc Hpkp.apn gbC)

a,(1,¢
p|2be p|2be p bc)

Therefore we may assume that the class number of ¢, . is greater than 1, that
is,
(b,c) = (2,13),(2,22),(2,40),(2,70),(3,5),
(3,21), (3,45),(5,13),(8,10), (8,13).

In fact, one may easily verify that h({,.) = 2 in all cases given above. In
these cases, we define the other Z-lattice in the genus of ¢, . by my..

Definition 3.2.2. Let L be a ternary Z-lattice. For any integer n, let n
and ny be positive integers such that P(ny) C P(8dL), (ny,8dL) = 1 and
n = niny. Here P(n) denotes the set of prime factors of n. The lattice L is
called strongly S-reqular if for any positive integer n = nyna,

r(nn3, L) = r(n3, L H h,(dL, \p,)
pI8dL
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where A, = ord,(n) for any prime p and

Ap+1 [ A

prTt —1 —d)p?—l
hy(dL, \,) = ———— — .
p( P) 1 ( 1

Lemma 3.2.3. Let L be a ternary Z-lattice. If L satisfies the condition
(3.2.1) in Conjecture 3.2.1, then L is strongly S-reqular.

Proof. Suppose that L satisfies the condition (3.2.1) in Conjecture 3.2.1.
Note that bc in (3.2.2) should be replaced by dL in general case. Let n = nyna,
where P(ny) C P(8dL) and (ny,8dL) = 1. Since

r(nind, L) = [[ go(@L. ) T ho(dL,Ny), r(n3, L) = [] gp(dL, ),
p|8dL pt8dL p|8dL

where A, = ord,(n) for any prime p and

M1 dLN pe— 1
hp(dL,Ap):p——( )p ,

p—1 p ) p—-1
we have
r(nn3, L) = r(n3, L H hy(dL, \,)
pi8dL
Therefore L is strongly S-regular. O

Theorem 3.2.4. Let L be a ternary Z-lattice. Fvery Z-lattice in the genus
of L is strongly S-regular if and only if gen(L) is indistinguishable by squares.

Proof. Suppose that r(n?, L) = r(n? L') for any integer n and any Z-lattice
L’ in the genus of L. Let n = nyny, where P(n,) C P(8dL) and (ng,8dL) = 1.
First assume that 7(n?, L) # 0. By Minkowski-Siegel formula, we have

r(n?n3, L')  r(n3n3, gen(L)) a, n1n2,L’
= =11 ) IT 7otz 2)

r(nt, L) r(ni,gen(L)) Bror Cay(nd L) i
= I hwlarL.x)
pi8dL
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for any Z-lattice L' € gen(L). Hence we have

r(nn3, L") = r(n}, L) H hy(dL, \p).
pi8dL

Now assume that r(n?, L) = 0. Then by Lemma 3.1.6, r(nin3, L') = 0 for
any L' € gen(L). Therefore L’ is strongly S-regular for any L' € gen(L).

Conversely, suppose that every Z-lattice in the genus of L is strongly
S-regular. Let gen(L) = {[L] = [L1],[L2],.-.,[Ln]}. Let ny be any integer
such that P(ny) C P(8dL). Note that for any prime p  8dL and any integer
i€ {1,2,...,h},

—dL *(pL', L;
r(p*ni, Li) + (—) r(n3, L;) = Z Mr(n%,ﬂ).

L/
p [L']€gen(L) 0( )
Since r(p*n?, L;) = (p +1-— <%L>) r(n?, L;) by the assumption, we have

T(”%>L1) T(”%>L1>
(L) : =(p+1) : ,
r(n%[’h) T(n%[’h)

r*(pLj,L;)
o(Ly)
at p (see [12]). This implies that m,(L) has an eigenvalue p+ 1 corresponding

to the eigenvector (r(n?, Ly),...,7(n?, Ly)). Assume that

where m,(L) = is the transpose of the Eichler’s Anzahlmatrix of L

r(n%, Ly) = max(r(nf, Ly), r(n%, L), ... ,r(nf, Ly)).
Then

h *
2 - r (pLia Lk) 2 )
(p+ Dr(n?, Ly) = Y ———"2r(n}, Ly)
= olLi)
r*(pLs, Ly)
)

=2 o)

h
r(n3, L) = (p+ 1)r(n, Ly).

1
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This implies that

T*(PLz', Lk)

2 [ 1 (P iy Lk
([l) T(”la Z)

WTO/LD Lk)

Now by class linkage Theorem proved in [10], for any integer i = 1,2,...,h,
there is a prime p 1 8dL such that r*(pL;, Ly) # 0. This implies that
r(n3, L;) = r(n?, L;,). The theorem follows from this by Lemma 3.1.6. [

Remark 3.2.5. Assume that the class number of a ternary Z-lattice L is
two. Then one may easily show that if L is strongly S-regular, then so is the
other Z-lattice in the genus of L.

Theorem 3.2.6. Let L be a ternary Z-lattice representing 1. Then L 1is
strongly S-regular if and only if L satisfies the condition (3.2.1) in Conjecture
3.2.1.

Proof. Note that “if” is proved in Lemma 3.2.3. The “only if” is the direct
consequence of Theorem 4.3.7 and Lemma 3.1.4. O

Corollary 3.2.7. Let L be a ternary Z-lattice representing 1. Then L sat-
isfies the condition (3.2.1) in Conjecture 3.2.1 if and only if gen(L) is indis-
tinguishable by squares.

Proof. The theorem is the direct consequence of Theorem 3.2.4 and Theorem
3.2.6. O

From now on, we prove the conjecture when the class number of the Z-
lattice ¢, is two. In fact, we will show that each genus of ¢, is indistin-
guishable by squares except the cases when (b, c) = (3,5), (3,21) and (3,45).
In the exceptional cases, we show that r(n? ¢, .) = r(n? my,.) only when n
is odd.

Theorem 3.2.8. The genera gen({s40), gen(la22) and gen(ly 7o) are all in-
distinguishable by squares.

Proof. Note that

6 2
gen(lea0) = {la.40, ls10}, gen(lo90) = {32,22, Mmoo = (1) L (2 8)}
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and

8 2
gen(émo) = {52,70, ma 70 = <1> 1 <2 18> } .

Let n be any integer such that n = 0,1 (mod 4). Define a map

( z
fn : R<n7€8,10) = R(na€2,40) by fn(x7ya Z) = <Q§', 2y7 5) ’
fu: R(n o) = R(n,mom) by fula,y,z) = (2,227

-z
2 )
, 22

In: R(”,@Jo) = R(n,mmo) by fn(xvya Z) =1z yT

One may easily check that f, is a well defined bijective map. The lemma
follows directly from this. ]

Lemma 3.2.9. For any positive integer n such that n =1 (mod 8),

6 3
ot =), )= (ronan =001 (5 2)

12 3
’I“(TL,€3745) =T (n,m3745 = <1> 1 (3 12)) .

Proof. Since proofs are quite similar to each other, we only provide the proof

2 1
of the first case. Note that mgs = (1) L (1 g

and

). Let n be an integer such
that n =1 (mod 8). Define

Ai(n) = {(z,9,2) €Z* | 2* + 3y* +52° =n, x =y = 2 = 1 (mod 2)},

As(n) =
{(z,y,2) €Z® | 2* +3y* + 52> =n, 2 =1(mod 2), y = 2 = 0 (mod 2)},
and

As(n) =
{(z,y,2) €Z* | 2* +3y* + 52> =n, s =y = 0(mod 2), z=1(mod 2)}.
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We also define
Bi(n)={(v,y,2) €Z | 2* + 2> + 82 + 2yz =n, x =y = z = 1 (mod 2)},

By(n) =
{(z,y,2) € Z*|2* + 29> + 82> + 2yz=n,r = 1 (mod 2),y = z = 0 (mod 2)},
and

Bs(n) =
{(z,y,2) € Z*|2* + 2> + 82° + 2yz=n,r=2=1(mod 2), y = 0 (mod 4)}.

Then it is clear that
R(n, 63,5) = Al (n) U A2 (n) U Ag(n) and R(n, m3,5) = B1 (n) U Bg(n) U B3<7’L)

One may easily check that y = z (mod 4) for any (x,y,z) € As(n), x £y
(mod 4) for any (x,y,2) € As(n) and y # z (mod 4) for any (x,y,2) €
Bl(n)

We prove that

[A1(n)] + [As(n)| = [Bi(n)| + |Ba(n)| and  [As(n)] = |Bs(n)],

which implies the assertion. First, we define a map f : A;(n) U Ay(n) —
Bi(n) U By(n) by

f(wai%z): (x7y+32 y_2>'

2 7 2

Since

32\ 2 3 — —2\?
m2+3y2+522:x2+2(y+2 Z) +2<yz Z) (y22)+8(y22)

and

y+3z2 y—=z
2 2
the above map f is well defined. Furthermore one may easily check that f

=2z=0 (mod 2),

31
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is bijective.
To show that |A3(n)| = |Bs(n)|, we define

AY(n) = {(z,y,2) € A3(n) | * —y — 22 = 4 (mod 8)}
and
BY(n) = {(x,y,2) € Bs(n) | 22 — y + 22 = 0 (mod 8)}.

Since (z,y, z) € Az(n) <= (z,y,—2) € Az(n), we have 2|A%(n)| = |As(n)|.
Similarly, we also have 2|BJ(n)| = |Bs(n)| from the fact that (z,y,z) €
B3(n) <= (—=z,y,2) € B3(n). Now we define a map g : A3(n) — BI(n) by

r+3y r—y+2z —x+y+2z2
g(x7yﬁz): 2 ) 2 ) 4

and a map h : BY(n) — AJ(n) by

h ) 20 +3y — 62 20 —y+22 y+ 2z
.Y, 2) = )
7y7 4 ) 4 ) 2
One may easily check that both g and h are well defined and hog = id, goh =
id. O]
We put
100 2 01 2 01 2 11
Ki=10 2 1|,Ko=10 3 1|,Li=10 4 2].,L,=|(1 4 0],
017 11 3 1 2 8 1 0 8
and
2 01
T=|(0 41
1 1 4

Theorem 3.2.10. Both gen(l213) and gen(ls13) are indistinguishable by
squares.
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Proof. Note that

5 2 5 1
maaz = (1) L (2 6) , mgiz=(1) L (1 21) :

For any integer n,
7’(4712,68,13) = r(n2,€2,13) and r(4n2,m8’13) = T<n27m2’13).
If n is odd, then
T(n2,€2,13) = r(n2,€8’13) and r(n2,m2713) = r(n2,m8713).

Hence gen(¢313) is indistinguishable by squares if and only if gen(fg13) is
indistinguishable by squares. Therefore it suffices to show that gen(fs3) is
indistinguishable by squares. Note that

r(4n? ly13) = r(2n? Ky) = r(2n?, Ly),
r(4n?, mg13) = r(2n? Ky) = r(2n?, Ly).

Now by Lemma 3.1.8, we have
r(8n% Ly) = 2r(4n®, T) — r(2n% K;), 7(8n% Ly) = 2r(4n* T) — r(2n* K>).

Also by Lemma 3.1.6 and Lemma 3.1.7, we have 7(2n?, K;) = r(2n?, K;) for
any odd integer n. In fact, by Lemma 3.1.8, we have r(2n?, K;) = r(2n?, K5)
for any integer n. By combining all equalities given above, we have

?"(16712, 62713) — T(4n2, 62713) = 7"(16%2, m2,13) - T(4n27 m2,13)‘

Furthermore, since r(4n?, €y 13) = r(n?, l313) and r(4n?,ma13) = 7(n? ma13)
for any odd integer n, it suffices to show that r(n?, ¢13) = r(n% ma,3) for
any odd integer n. Now by Lemma 3.1.7, we know that r(13% - n? fy3) =
r(n?, 0y 13) and r(13%-n?,ma13) = r(n? ma13). Therefore the theorem follows
directly from Lemma 3.1.6. O

Proposition 3.2.11. The genus of {513 is indistinguishable by squares.
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1 33
aniso-tropic over Zs and Zj3, m(n?, €513) = r(n? ms13) for any odd integer n
by Lemma 3.1.6. If 22 +5y% + 1322 = 4n?, then x,y, z are all even. Therefore

2 1
Proof. Note that gen(¢s13) = {65,13,7715,13 =(1) L ( )} Since 0513 is

7’(4n2,€5,13) = r(n2,€5713) and r(4n2,m5713) = T’(nz,m5713).
The proposition follows from this. ]

Remark 3.2.12. All genera containing {35, {321 or {345 are not indistin-
guishable by squares. For example, 7(4,03;) = 6 # 2 = r(4,msy) for any
k = 5,21 and 45. However by Lemma 4.1.3, r(n? (3;) = r(n* masy) for any
odd integer n.

Example 3.2.13. As pointed out earlier, if the genus of a Z-lattice L 1is
indistinguishable by squares, then we may have a closed formula for r(n?, L)
for any Z-lattice L' € gen(L). For example, one may easily show that

az(n?, ly13) gmax(1,d2)+1 _ 3 ar3(n?, € 13) 1

- d —
as(1, 05 13) 202 o ai3(1,213) 133’

where A\, = ord,(n) for any prime p. Therefore by Lemma 3.1.4, we have

fr<n27 62,13) - T(n2, m2713> :2(2max(17)‘2)+1 - 3)

" H p’\P“—l_ —26\ p —1
p—1 p ) p=1)
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Chapter 4

Strongly S-regular ternary
forms

4.1 Some properties of strongly S-regular

ternary forms

Let L be a strongly S-regular ternary Z-lattice. Since we are assuming that
the genus of L represents at least one square of an integer, by Lemma 3.1.2,

we always have
dL®Q,) #—-1 or S,(L®Q,) = (-1,—-1), for any prime p.

Lemma 4.1.1. Any strongly S-reqular ternary Z-lattice L represents all
squares of integers that are represented by its genus.

Proof. Let L be a strongly S-regular ternary Z-lattice. Suppose that there
is an integer a such that a? is represented by the genus of L, whereas it is
not represented by L itself. Then for any prime p 1 8dL, if a = p* - b for some
integer b such that (b, p) = 1, then we have

42 t+1
9 9 9 pe—1 —dL\ p —1
rpa,Lzrb,L( —( ) = 0.
( ) ( ) p—1 P p—1

On the other hand, if we consider the action of the Hecke operator T'(p?) to
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the theta series given by L for any prime p { 8dL, then we have

—a?dL 2 “(pL, L
e e H e F D S !
(L]

/
p €gen(L) O(L )

where r*(pL’, L) is the number of primitive representations of pL’ by L. For
2

details, see Chapter 3 of [1]. Since r(a? L) =r <g—2, L) = 0, we have

P (pL, L
T(p2a2)L) - Z (O(L/) )T(GQ,L,).
[L']egen(L)

From the assumption, there is a Z-lattice L' € gen(L) such that r(a?, L') #
0. Furthermore, by Class Linkage Theorem given by [10], there is a prime
q 1 8dL such that r*(¢L/, L) # 0. These imply that r(¢*a?, L) # 0, which is
a contradiction. O

Corollary 4.1.2. Let L be a strongly S-regular ternary Z-lattice. Then every
integer m such that m? is represented by L is a multiple of ms(L) = ms(fL).

Proof. The corollary follows directly from the fact that for any prime p,
ord,(ms(L)) is completely determined by L, by Lemma 4.1.1. O

Proposition 4.1.3. Let q be an odd prime and let L be a ternary Z-lattice
such that L, does not represent 1. Assume that L, ~ (A,,q%€1,¢ €s) for
€1, €9 GZqX and 1 < a <.

(i) If &« > 2 and L, # (A, ¢*e1,¢%es) for some €1, €5 € Z), then L is
strongly S-regular if and only if \j(L) is strongly S-reqular. Further-
more, if one of them is true, then mys(L) = q - ms(A\,(L)).

(1) If « =1 and L, % (Ay,q,—q), then L is strongly S-regular if and only
if Ag(L) 1s strongly S-reqular. Furthermore, if one of them s true, then
m(L) = g-m ().

Proof. Since the proof is quite similar to each other, we only provide the
proof of the first case. For any positive integer n, let n; and ny be positive
integers such that P(n;) C P(8dL), (ng,8dL) =1 and n = nyng, where P(n)
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is the set of primes dividing n. Suppose that L is strongly S-regular. Then
we have
r(g*nin2, L) = r(¢*n?, L H hy(dL, \,)
pi8dL
where \, and h,(dL, \,) are defined in the introduction. Since r(¢*n3n3, L) =
r(nin3, \,(L)) and r(¢*n?, L) = r(n?, \,(L)) by Lemma 3.1.7, we have

r(ning, Ay(L)) = r(n}, Ag(L)) T hu(dL, Ap)
pi8dL

Since the set of primes dividing 8dL equals to the set of primes dividing
8d(N\,(L)) from the assumption, the above equation implies that \,(L) is
strongly S-regular.

Conversely, Suppose that A\,(L) is strongly S-regular. Then we have

r(”%ngv )‘Q(L)) =r nlv H h d)‘ )
pt8dL

Hence if ord,(ny) > 1, then

r(nin3, L) =r(n}, L) ] ho(dL, Ap)
pI8dL

Note that if ord,(n;) = 0, then r(n?n3, L) = r(n?, L) = 0. Therefore L is a
strongly S-regular lattice.

Now assume that L or A\ (L) is strongly S-regular. Since 1 is not rep-
resented by L,, ms(L) is divisible by ¢. Furthermore, since r(¢’n, L) =
r(n, Ay(L)) by Lemma 3.1.7, we have my(L) = q - ms(A,(L)). O

Proposition 4.1.4. Let L be a ternary Z-lattice such that Lo does not rep-
resent 1. Assume that Ly ~ (e1) L M for ¢; € Z5 .

(i) If M is an improper modular lattice with norm contained in 47y or
M =~ (2%y,2%€3) for €s,e5 € Z5 and monnegative integers o, 3 such
that > « > 2, then L is strongly S-reqular if and only if Ao(L) is
strongly S-regular. Furthermore, if one of them is true, then ms(L) =
2-mg(Aa(L)).
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(1) If M ~ (2%, 2P €3) with €, €3 € Z5 and nonnegative integers o, 3 (8 >
a) such that 0 < a < 1, then L is strongly S-regular if and only if
A3(L) is strongly S-reqular. Furthermore, if one of them is true, then
my(L) =2 my(A3(L)).

Proof. Since the proof is quite similar to the odd case, the proof is left to the
reader. O]

Theorem 4.1.5. Let L be a strongly S-reqular ternary Z-lattice. Then there
15 a positive integer N such that

1. An(L) is a strongly S-regular lattice such that ms(Ay(L)) is odd square

free;

2. for any odd prime p dividing ms(An (L)),
)\N(L)p = <Ap>p2€1ap262> or <Apap7 _p>>

where €, €3 € Z,, .

Proof. By Propositions 4.1.3 and 4.1.4, if p? divides m,(L) for some prime
p, then A,(L) or )\Z(L) is also strongly S-regular. Hence by taking A,-
transformations to L repeatedly, if needed, we may find an integer n such
that A, (L) is a strongly S-regular lattice such that mg(\, (L)) is odd square
free. If mgs(\,(L)) is one, then there is nothing to prove. Assume that
ms(An(L)) = p1p2 - - - pr where p; # p; are primes. Assume that p = p; for
some ¢ = 1,2,...,¢t. Then 1 is not represented by A,(L), by Lemma 4.1.1.
Hence by Proposition 4.1.3, either Aj()\,(L)) is a strongly S-regular lattice
such that

p-ms(A,(An(L))) = ms(An(L)) and 1 = (A, (An(L)))p,
where ¢ = 1 or 2 depending on the structure of (\,(L)),, or
L, ~ (A, p’er,p’es) or (A, p,—p), (4.1.1)
where €, €5 € Z;. If n’ is the product of primes satisfying the first condition,

then N = n-n’ satisfies all conditions given in the statement of the theorem.
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Definition 4.1.6. A strongly S-regular ternary Z-lattice is called terminal
if ms(L) is an odd square free integer, and for any prime p dividing mg(L),
L, satisfies the above condition (4.1.1).

Note that for any strongly S-regular lattice L, there is an integer N
such that Ay (L) is a terminal strongly S-regular lattice by Theorem 4.1.5.
Therefore, to classify all strongly S-regular lattices, in some sense, it suffices
to find all terminal strongly S-regular lattices.

Remark 4.1.7. In fact, there are infinitely many terminal strongly S-regular

ternary Z-lattices. To show this, let ¢ be a prime such that ¢ =5 (mod 8).

We prove that the diagonal ternary lattice L(q) = (2,¢q,q) is a terminal

strongly S-regular Z-lattice for any prime ¢ satisfying the above condition.
If n is not divisible by ¢, then r(n? L(q)) = 0. Furthermore

r(q®n?, L(q)) = r(qn®, \(L(q))),

where \,(L(q)) = (1,1,2q). Let \,(L(q)) = Zxy + Zxy + Zzs such that
(B(xi,z;)) = diag(1,1,2q). Let u be an integer such that u?> = —1 (mod q).
Let z = axy + bxy + cxz € M\j(L(q)) such that Q(z) = gn®. Then, since

Q(z) =a®> + b +2¢c® = a® —u*b* = (a — ub)(a+ub) =0 (mod q),

z € L(q,+) := Z(qr1) + Z(uxy + x3) + Zzxs or z € L(q,—) = Z(qx1) +
Z(—uxy + x3) + Zxs. Note that L(q,+) N L(q, —) = Z(qx1) + Z(qz2) + Zxs.
Furthermore, d(L(q, +)) = 2¢* and the scale of each lattice is ¢Z. Hence, we
have

T(q2n27 L(Q)) = T<qn27 )‘q(L(Q))) = QT(n27 <17 L, 2)) - T’(TL2, L(q)) (4‘1‘2>

Therefore if we use an induction on ord,(n), the assertion follows directly
from the fact that (1,1,2) is strongly S-regular. Furthermore, since every
Z-lattice in the genus of L(q) satisfies the equation (4.1.2), the genus of L(q)
is indistinguishable by squares.

Theorem 4.1.8. For any positive integer m, there are only finitely many
strongly S-reqular ternary Z-lattices L up to isometry such that ms(L) = m.
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Proof. Let L be a strongly S-regular ternary Z-lattice with mg(L) = m.
Since for any ternary lattice K" and any prime p, there are only finitely many
lattices whose A,-transformation is isometric to K, it suffices to show that
there are only finitely many terminal strongly S-regular lattice L such that
ms(L) = m under the assumption that m = ¢1qz - - - ¢5 is an odd square free
integer. When m = 1, then we let s = 0.

Let {x1, 22, 3} be a Minkowski reduced basis for L such that

a f e
(B(zij,zj)~ | f b d] (0<a<b<c and 2|f] <a, 2le] <a, 2/d] <D).
e d c

Recall that a, b, c,2d,2e,2f are relatively prime integers and
L =[a,b,c,2d,2e,2f].
Let p; be the t-th smallest odd prime so that p; = 3, po = 5 and so on. Define
t' =min{t € N | 4mSp} < p1---p_1}.

Note that such an integer always exists by the Bertrand-Chebyshev Theorem.
Let ¢ be the smallest integer such that 2p,» > 6 - 3%T! and tq = max{¢, "}.
Finally, let t; be the integer such that pipy---py, 1 | dL, but py, 1 dL.

First, assume that t; > tg. Then

4m6p?1 < pips - pr—1 < 4dL < 4abe < 4ac® < 4m2cE

Hence m?p}, < ¢ and we have

r(m?py,, L) =r <m2pf1, (; g)) <637

However, since p;, 1 8mdL, we have

—dL
ptl

T<m2p?17L) = T(mQ’ L) (ptl + L= ( )) Z 2pt1 Z 2pt” >6- 3S+1'
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This is a contradiction.
Finally, assume that ¢t; < t;. Choose a positive integer Ay such that
P > 31 (20 + 1). If ¢ > m?p}, then

1

r(m?pi, L) =r <m2pfﬁ°, <;ﬁ ‘l’;)) <6-3° (20 + 1).

This is a contradiction for

-1 —dL\ p -1
T(meth‘O, L)= r(m2, L) P, — ( ) Py > QPi\lO-
ptl - 1 pt1 pt1 - 1

Therefore we have ¢ < m2pfl’\0, which implies that the discriminant of L is

bounded by a constant depending only on m. This completes the proof. [J

4.2 Strongly S-regular ternary forms repre-
senting 1

The aim of this section is to find all strongly S-regular ternary lattices L with
ms(L) = 1. Recall that we are assuming that the norm n(L) of a Z-lattice L
is Z. Hence the scale (L) of L is Z or 3Z.

Lemma 4.2.1. Let L be a strongly S-regular ternary Z-lattice with ms(L) =
1. If s(L) =Z (s(L) = 7Z), then dL is not divisible by at least one prime in
{3,5,7} ({3,5,7,11}, respectively).
Proof. Let L be a strongly S-regular ternary Z-lattice with mg(L) = 1. First,
assume that s(L) = %Z. Let {x1,x2, 23} be a Minkowski reduced basis for L
such that

1 e d
(B(zi,zj))~|e a ¢|(1<a<bh0<2e<1, -1<2d<1,0<2c<aq),
d c b

where a,b,2c,2d,2e are all integers and at least one of 2¢,2d and 2e is
odd. Let p; be the t-th smallest odd prime. Suppose, on the contrary, that
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pip2 -+ pe | AL, whereas p;, 1 t dL for some t > 4.
First, assume that ¢ = 4. Since 3-5-7-11 | dL and 13 { dL by assumption,
we have

r(13% L) = r(1,L) <13 +1- <%‘;L)) > 26. (4.2.1)

If b > 13%+ 1, then r(132, L) = r(13?%,[1,2¢,a]) < 18. This is a contradiction
and hence we have 1 < a < b < 169. For all possible finite cases, we may
check by direct computations that there are no ternary Z-lattice satisfying
the equation (4.2.1). The case when ¢ = 5 or 6 can be dealt with similar
manner to this.

Finally, assume that t > 7. Since p;1 1 dL, we have

—dL
r(piy, L) =r(1,L) (pt+1—|—1— ( )) > 46.
Pt+1
If t > 7, then 4p},, < p1---pr < 4dL < 4ab < 4b* by Bertrand-Chebyshev
Theorem. Hence we have pi ; < b. Therefore we have

T(p?-&-l? L) = T(pf_H, [1, 2e, a]) < 18,

for any positive integer a. This is a contradiction.
Since the proof of the case when s(L) = Z is quite similar to the above,
the proof is left to the reader. n

Theorem 4.2.2. There are exactly 207 strongly S-regular ternary Z-lattices
L up to isometry such that ms(L) = 1, which are listed in Tables 4.1 and

4.2.

Proof. Note that all ternary lattices except those with dagger mark and
(1) L [4,4,9], (1) L [4,4,25] in Table 4.1 are class number one. Hence they
are strongly S-regular. There are exactly 12 ternary lattices in Table 4.1
whose class number is 2. The strongly S-regularities of all these lattices with
dagger mark were already proved in Chapter 3. Finally, both (1) L [4,4,9]
and (1) L [4,4,25] highlighted in boldface have class number 3, and the
strongly S-regularities of these two lattices will be proved in Proposition
4.3.3.
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There are exactly 30 strongly S-regular lattices L such that s(L) = %Z
and h(L) = 2, which are listed in Table 4.2. In fact, the Z-lattice S; in Table
4.2 has class number two and the other lattice in the genus is T;, for any
1 <4 < 15. The strongly S-regularities of these lattices will be considered
in Proposition 4.3.1. Those lattices highlighted in boldface in Table 4.2 has
class number 3, and the proof of the strongly S-regularities of these lattices
will be given in Proposition 4.3.6.

Let L be a strongly S-regular ternary Z-lattice. First, assume that s(L) =
Z. Then L = (1) L ¢, for some binary lattice ¢ such that

€:[a,2b,c]:(z l;) (0<2b<ac<ec).

From the above theorem, the discriminant of L, which is ac — b?, is not
divisible by at least one prime in {3,5,7}. We will use the fact that if
p12dL, then

r(p*, L) =r(1,L) (pm -1 (—dL> = 1) |

p—1 p /Jp—1

Assume that L ~ (1) L [1,0, s] for some positive integer S. If 3 1 s, then

o0y (1- (Z5)) 2 2

Hence s = 1,2,4,5 or 8. Assume that s = 3s;, for some integer s; such that
51t s1. Since (25, L) > r(25,[1,0,1]) = 12, we have 3s; < 25. Therefore
s1 = 1,2,3,4,7 or 8 Assume that s = 15s, for some integer s, such that
71 s3. One may apply similar argument to show that there does not exist a
strongly S-regular lattice in this case.

From now on, we assume that (1, L) = 2, that is, a > 2. Assume that
34 dL. Then we have r(3?, L) = 6 or 10, and r(3%, L) = 18 or 34. Hence we
have 2 < a <9. If a =9, then ¢ = 9. In this case, one may easily show that

r (34, (1) L (Z S)) # 18,34,
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which is a contradiction. Next assume that a = 8. If ¢ > 10, then

r(3%, L) =r(3%,[1,0,8]) =6 = 2 <4 — <%‘m)) .

Hence (=2£) = 1, which implies that r(3*, L) = 18. If ¢ > 82, then r(3*, L) =
r(3%,[1,0,8]) = 10, which is a contradiction. Therefore we have 8 < ¢ < 81.
For all possible cases, that is, a = 8, 0 < 2b < 8 and 8 < ¢ < 81, one may

easily check only when ¢ is isometric to one of

8,0,8], [8,0,10]f, [8,0,13]t, [8,0,16], [8,0,40],
8,4, 18], [8,8,12], [8,8,24] and [8,8,72],

L = (1) L ¢is strongly S-regular. Note that the class number of L is one if ¢
is isometric to one of binary lattices given above, except binary lattices with
dagger mark. The lattices ¢ marked with a dagger are strongly S-regular by
Chapter 3. The proof of the remaining cases, that is 2 < a < 7, is quite
similar to this. In particular, the case when ¢ = [4,4,9], where the class
number of L = (1) L ¢ is 3 in this case, will be considered in Proposition
4.3.3.

Assume that dL is divisible by 3, but is not divisible by 5. In this case,
we have r(5%, L) = 10 or 14, and r(5%, L) = 50 or 74. Since 7(p*[1,0,a]) <6
for any prime p and any integer a > 2, we have 2 < a < ¢ < 25. For all
possible cases, one may easily show that L is strongly S-regular if and only
if the class number of L is one, except the case when ¢ = [4,4,25]. For the
exceptional case, the proof of the strongly S-regularity of L will be given in
Proposition 4.3.3.

Finally, assume that 15 | dL and 7 1 dL. For all possible cases, L is
strongly S-regular if and only if the class number of L is one.

Now assume that (L) = 3Z. Let {z, 22,23} be a Minkowski reduced
basis for L such that

= [1,a,b,2c,2d,2e],

o 2 o
> O

1
(B(zs, 7)) = | e
d

44



CHAPTER 4. STRONGLY S-REGULAR TERNARY FORMS

where a, b, 2¢, 2d, 2e are integers such that 1 <a <band 0 <2e <1, -1 <
2d <1, 0 < 2¢ < a. Note that at least one of 2¢,2d, 2e is odd. In this case,
the discriminant of L is not divisible by at least one prime in {3,5,7,11}
by the above theorem. Assume that a = 1 and b6 = 1. Then clearly, L ~
[1,1,1,0,0,1] or [1,1,1,1,1,1], all of which are strongly S-regular. Next,
assume that a = 1,e = 0 and b > 2. Let p € {3,5,7,11} be a prime
not dividing dL. Since r(p?, L) = 4p or 4(p + 2) and r(5%[1,0,1]) = 12,
r(p* [1,0,1]) = 4 for any p € {3,7,11}, we have 2 < b < p?. One may easily
show that there are exactly 6 strongly S-regular lattices in this case, all of
which have class number 1.

Next assume that a = 1,2e = 1 and b > 2. In this case, since r(1, L) = 6,
we have r(p?, L) = 6p or 6(p+2). Furthermore, since r(72,[1,1,1]) = 18 and
r(p? [1,1,1]) = 6 for any p € {3,5,11}, we have 2 < b < p?. One may easily
show that there are exactly 12 strongly S-regular lattices in this case, all of
which have class number 1.

From now on, we assume that (1, L) = 2, that is, a > 2. Assume further
that 3t dL. Since 7(3% L) = 6 or 10, we have 2 < a < 9. Furthermore, since
r(3* L) = 18 or 34, and (32", [1, 2¢,a]) < 2(2n + 1) for any positive integer
n, we have

2<a<b<9 if (9, [1, 2e,a]) < 6,
2<a<b<8l if (9, [1, 2e,a]) = 6.

In this case, we have 30 candidates of strongly S-regular lattices. They are
listed in the first row of Table 4.2. Among them, there are exactly 18 lattices
having class number 1. The remaining 12 lattices 77 ~ T and S; ~ Sg in
the first row of Table 4.2 have class number 2. The proof of the strongly
S-regularities of these lattices will be considered in Proposition 4.3.1.

Next assume that 3 | dL and 51 dL. Since r(5% L) = 10 or 14, and

r(5%,[1,2e,a]) <6 < 10,

we have 2 < a < b < 25. In this case, we have twenty two candidates with
class number 1, twelve lattices with class number 2, and three lattices with
class number 3. The proof of the strongly S-regularities of these lattices
having class number 2 (class number 3) will be considered in Proposition
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14

31dL
(47)

1,0,1], [1,0,2], [1,0,4], [1,0,5], [1,0,8], [2,0,2],
2,2,3], [2,0,4], [2,0, 5], 2,2,6], [2,0,8], [2,0,10],

2,0,70]%, [3,2,3], [3,2,5], [3,2,7], [4,0,4], [4,4,5],
4,0,8], [4,4,8], [4,4,9], [5,0,5], [5,4,6], [5,0,8],
5,0,10], [5,4,12], [5,0,13]t, [5,2,21]f, [5,0,25], [5,0,40],
6,4, 6], [6,4,8]", [8,0,8], [8,0,10]", [8,8,12], [8,0, 13|,
8,0,16], [8,4,18]", [8,8,24], [8,0,40], [8,8, 72]

2,0,13]%, [2,0,16], [2,2,18], [2,0,22]f, [2,2,33]f, [2,0,40],

3|dL, 51dL

(45)

1,0,3], [1,0,6], [1,0,9], [1,0,12], [1,0,21], [1,0,24],

I [,

I
3,0,6], [3,0,9], [3,0,12], [3,0,18], [4,4,4], [4,0,6],
4,4,7), [4,0,12], [4,4,13], [4,0,24], [4,4,25], [5,2, 5],
6,0,6], [6,6,6], [6,0,9], [6,0,16], [6,0,18], [6,6,21],
6,0,24], [8,8,8], [9,0,9], [9,6,9], [9,0,12], [9,0,21],
9,0,24], [10,4,10],[12,0,12], [12,12,21], [16, 16, 16],
16,0,24], [21,0,21], [24,0,24], [24,24, 24]

15 | dL, 71 dL

)

1,

[

2,

[

[

[5,

[

[ It

[ [

2,2,2], [2,0,3], [2,2,5], [2,0,6], [3,0,3], [3,0,4],
[ [ J,
[

[

[

[9,

[

[

[

12,12,13], [12,12, 33], [40, 40, 40]

3,0,10], [3,0,30], [4,4,16], [6,6,9], [10, 10, 10], [10,0,30],

Table 4.1: Strongly S-regular lattices L = (1) L ¢

4.3.1 (Proposition 4.3.6, respectively). Recall that all lattices highlighted in
boldface in Tables 4.1 and 4.2 have class number 3.

Now assume that dL is divisible by 15, but not divisible by 7. In this
case, we have 2 < a < b < 49. Everything is quite similar to the above cases.

In this case, we have twelve candidates with class number 1, two lattices with

class number 2, and one lattice with class number 3.
Finally, assume that 105 | dL and 11 t dL. In this case, L is isometric to
one of 4 lattices listed in fourth line of Table 4.2. The proof of the strongly

S-regularities of these 4 ternary lattices will be considered in Proposition

4.3.1.

46

]



CHAPTER 4. STRONGLY S-REGULAR TERNARY FORMS

L

31dL (37)

[1,1,1,1,1,1], [1,1,2,0,1,0], [1,1,2,1,1,1], [1,1,3,1,1,0],
[1,1,3,1,1,1], [1,1,5,1,1,1], [1,1,7,1,1,1], [1,2,2,1,1,0],
[1,2,2,2,1,1], [1,2,3,0,1,0], [1,2,3,1,0,1], Ty =[1,2,4,1,1,1],
S1=[1,2,4,2,1,0], [1,2,7,0,0,1], [1,2,9,0,1,0],
Sy=1[1,2,23,0,1,0], [1,3,3,2,1,1], [1,3,4,2,0,1], [1,3,5,1,1, 1],
1,3,5,3,1,1], S3=1[1,3,9,2,1,1], S4=[1,3,10,0,0, 1],
T2:[1 3,17,2,1,1],[1,3,22,0,0,1],[1,4,4,3,1,1],[1,4,9,3,1,1],
=[1,5,5,1,1,0], Ty =[1,5,6,2,0,1], Ss=[1,5,19,5,1,0],
56_[ 5,49,5,1,0],[1,7,9,7,1,0],[1,9,9,8,1, 1],
=[1,9,10,0,0,1],[1,9,15,5,0,1], [1,9,21,7,0, 1],
=[1,9,29,8,1,1], [1,9,70,0,0,1]

3 dL,
51dL (47)

[1,1,1,0,0, 1], [1,1,2,0,0,1], [1,1,2,1,1,0], [1,1,3,0,0, 1],
[1,1,4,0,0,1], [1,1,5,1,1,0], [1,1,6,0,0,1], [1,1,11,1,1,0],
[1,1,12,0,0,1], [1,1,18,0,0,1], [1,2,2,1,1,1], [1,2,3,1,1,0],
1,2,3,2,1,0], [1,2,4,2,1,1], [1,2,5,1,1,1], S7=[1,2,7,0,1,0],
Sg=[1,2,9,2,1,0], So=[1,2,10,1,0,1], [1,3,4,3,1,0],
Tvy=[1,3,5,1,0,1], Ts=11,3,6,0,0,1], L, =[1,3,7,0,1,0],
[1,3,8,2,0,1], [1,4,4,2,1,1], [1,4,5,2,1,0], Ty=[1,4,5,2,1,1],
1,4,6,3,0,1], [1,4,11,2,1,0], [1,4,13,2,1,1], [1,5,5,4,1,1],
[1,5,7,1,0,1], [1,5,7,2,1,1], S10=[1,5,13,5,1,1],
S11=[1,5,15,3,0,1], [1,6,7,0,1,0], To=][1,6,11,6,1,0],
S19=[1,6,25,0,1,0], [1,7,7,5,1,1], Ty1=[1,7,11,5,1,0],
Ly=[1,7,12,0,0,1], [1,7,13,5,1,1], [1,7,18,0,0, 1],
Mg=[1,7,19,5,1,1], [1,9,13,9,1,0], T2 =[1,13,13,8,1, 1],
[1,13,15,3,0,1], [1,13,23,13,1,0]

15 | dL,
7+dL (18)

[1,1,4,0,1,0] [1,1,10,0,0,1], [1,1,30,0,0,1], [1,2,7,2,1,1],
[1,3,3,1,1,1], [1,4,5,4,1,0], [1.4.15,0,0,1], [1,5,9,5,1,0],
[1,6,13,6,1,0], [1,7,7,3,1,0], S15=[1,7,10,0,0, 1],
Ty3=[1,7,11,5,1,1], L19=[1,7,30,0,0,1], [1,7,31,5,1,1],
[1,10,19,0,1,0],[1,15,19,15,1,0],[1, 19,19, 8,1, 1], [1 19, 30,0,0, 1]

105 | dL,
114dL (4)

S14=[1,2,15,0,0,1], T14=1[1,4,7,0,0,1], S15=[1,7,17,7,1,0],
Ty5=[1,11,11,7,1,1]

Table 4.2: Strongly S-regular lattices L with (L) = 37
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4.3 Nontrivial strongly S-regular ternary
forms

In this section, we prove the strongly S-regularities of ternary lattices with
class number greater than 1 in Tables 4.1 and 4.2.

Proposition 4.3.1. Fori=1,2,...,15, let S; and T; be ternary Z-lattices
listed in Table 4.2. The genus gen(S;) is indistinguishable by squares for any
1. Therefore S; and T; are strongly S-reqular for any 1 < i < 15.

Proof. Note that the class number of S; is two, and the other lattice in the
genus of S; is T} for any 1 = 1,2,...,15.

We only provide the proofs of the cases when ¢ = 1, 3,13, 14 and 15; the
other cases being similar. We put

P =1[2,4,4,2,2,0], P,=[A7,47,47,0,47,47], P; =[1,1,10,0,0,1],
Q=1[4,8,16,2,4,4], Sy =1[1,2,60,0,0,1], Sy =[2,4,60,0,0,2],
Sias =[2,4,15,0,0,2], Tiuq =[1,4,28,0,0,1], Tio = [4,4,28,0,0,2],
Tius = [4,4,7,0,0,2].

First, we consider the case when ¢ = 1. By Lemma 3.1.7, we see that
r(132n% S;) = r(n?,S1) and r(13*n?,T1) = r(n? 1) for any integer n. Also
by Lemma 3.1.8, we have

r(4n?,S1) = 2r(4n® P)) — r(n*, S)) and r(4n® Ty) = 2r(4n’, P,) — r(n® Ty),

for any integer n. Since r(1,51) = r(1,T}1), gen(S;) is indistinguishable by
squares by Lemma 3.1.6.

We consider the case when i = 3. Note that d(S3) = 27! -47. By Lemma
3.1.8, we have

r(47*n?, S3) = 2r(47*n*, Py) — r(n?, S3),
r(47°n% T3) = 2r(47*n?, Py) — r(n*, T3),

for any integer n. If 2 + 3y* + 92% + 2y + 2yz + zx = 4n?, then z,y, z are
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all even. Hence we have
r(4n®, S3) = r(n* S3) and 7r(4n? T3) = r(n? T3).

Therefore gen(S3) is indistinguishable by squares by Lemma 3.1.6.

Note that d(Sy3) = 271 - 3% - 5. By Lemma 3.1.7, we have r(3*n?, S13) =
r(n? Bs), r(5*n?, S13) = r(n?, Si3) and r(3*n?, T13) = r(n?, P3), r(5°n?,Ti3) =
r(n? Ty3) for any integer n. If 22 + 7y? + 102% 4+ zy = 4n?, then x,y, 2 are
all even. Hence we have

r(4n2,513) = r(n2,513) and 7’(4n2,T13) = 'r(n2,T13).

Therefore the genus gen(.S;3) is indistinguishable by squares by Lemma 3.1.6.
Now, we consider the Z-lattice Si4, which is one of the most difficult
cases. Note that d(S14) =272-3-5-7. By Lemma 3.1.7, we have

r(p2n2,5’14) = r(n2,5’14) and r(anQ,TM) = T(n2,T14),

for any prime p € {3,5,7}. Let {x1, 22,25} be the basis for Si4 such that
Q(ax +brotcxs) = a*+ab+20°+15¢%. Assume that Q(ax,+brotcrs) = 4n?.
Then we have a = ¢ (mod 2), b =0 (mod 2) or ¢ =0 (mod 2). This implies
that for z = ax, + by + cxs,

2 € Z(2xy) + Z(2x9) + Z(x1 + x3) or z € Z(x1) + Z(xa) + Z(223).
Therefore we have, for any integer n,
r(4n?, S14) = r(4n* Q) + r(4n?, S141) — r(n?, Si4).
Similarly, we also have
r(4n? Ty) = r(4n?, Q) + r(4n?, Ti41) — r(n?, Ti).
Furthermore, one may easily show that

7’(4n2, 314’1) = 27“(4712, 514,2) — r(nz, 514)7
T(47’L2, T1471) = 2T(4n2, T14’2) — r(nQ, T14),
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and

7"(47127 514,3) = 7“(4712, 514,2) = 27“(”2, 514) - 7“(712, 514,3),
7“(4712, T14,3) = T’(47’L2, T1472) = 27“(n2, T14) — T(?’L2, T1473).

By combining all equalities given above, we have

7’(4n2, 514) T’(4TL2, Q) + 2T(n2, Sl4> — 27‘(n2, 514,3),
r(4n?, Tiy) = r(4n?, Q) + 2r(n® Ti4) — 2r(n? Tia3).

(4.3.1)

(4.3.2)

Since 7(1,S514) = r(1,T14) = 2 and r(1,S143) = r(1,T143) = 0, we have
r(2%,514) = r(2%,Ty,) for any positive integer ¢ by (4.3.1) and (4.3.2).
Therefore the genus of Sy4 is indistinguishable by squares by Lemma 3.1.6,
and r(n?, Si43) = r(n? Ti43) for any integer n. Note that the class number
of Sis3 is 3. In fact, the proof of the strongly S-regularities of Sy is quite

similar to this.
Finally by Lemma 3.1.7, we have

r(p2n2, Si5) = r(nQ, Si5)  and r(p2n2,T15) = r(nQ,Tlg))

for any prime p € {3,5,7}. Let {y1,v2,y3} be the basis for Sj5 such that
Q(ayi+bys+cys) = a>+T0*+17c*+7bc+ca. Assume that Q(ay; +bys+cys) =

4n?. Then we have a = b (mod 2) and ¢ =0 (mod 2). Therefore we have

r(4n?, S15) = r(4n*, Z(2y1) + Z(yr + y2) + Z(2y3)),
which implies that for any integer n,
r(4n?, S15) = r(n?, Si4).
Similarly, we also have

7”(47127 T15) = r(nz, T14).

Therefore gen(S;s5) is indistinguishable by squares by Lemma 3.1.6.
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Now we consider the lattices having class number 3. We define

A 5 20 1
Kl,t = <1> 1 (2 233t + 1) ) K2,t = <1’ 17253t>7 K37t = 0 2 1 ’
1 1 233t41

for any non negative integer t.

Lemma 4.3.2. For any nonnegative integert, the ternary Z-lattices Ky 1, Ko,
and K3, are in the same genus. Furthermore, we have

2r(n?, K1) = r(n® Kyy) +1r(n? Ksy),
for any integer n.

Proof. Note that d(K;;) = 2°- 3" for any ¢ = 1,2,3. By checking local
structures at p = 2 and 3, one may easily show that all ternary Z-lattices
K4, Koy and K3, are in the same genus for any integer ¢ > 0. Fix a non
negative integer .

Note that for any integer n, one may easily show that

r(4n?, Ki,) = r(4n?, Ky,) = r(4n?, Ks,) = r(n?,(1,1,233").

Assume that n is odd. If 22 + 4y? + 4yz + (233" + 1)2% = n?, then either z or
z is odd, but not both. Hence we have

4 2
T(TL2, Kl,t) = r(n2, <17 47 253t>) +r (n27 <4> 1 (2 233t + 1)> :
Similarly, we have r(n? Ky;) = 2r(n?, (1,4,253")). Let K3; = Zzy + Zxy +
Zxs such that
1

2 0

1 1 233t +1
Let v € Kjs; such that Q(v) = n. Let a,b,c be integers such that v =
a(xy — x2) + b(wy + x3) + cr3. Since Q(v) = b* +¢®> =1 (mod 2), either b or
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¢ is odd, but not both. Hence for any odd integer n,

r(n, Ksy) = r(n, Z(xy — x2) + Z(2x2 + 223) + Zx3)
+r(n, Z(xy — x9) + Z(x2 + x3) + Z(223)).

Since

Z(x1 — x9) + Z(2x9 + 223) + Zxz =~ Z(x1 — 1) + Z(xs + x3) + Z(223)
4 2
~ {4 L (2 233t + 1) ’

4 2
r(nQ,Kg,t) = 2r (nQ, 4y L (2 933t 4 1)) )

for any odd integer n. Consequently, for any integer n,

we have

2r(n®, Ky 4) = r(n®, Koy) +r(n*, Kz,).
This completes the proof. O

Proposition 4.3.3. Both ternary Z-lattices K1 and K, defined above are
strongly S-regqular ternary Z-lattices.

Proof. Note that
gen(Kp) = {[Kuo], [K20], [K30]} and  gen(Kia) = {[Ki], [K2a], [K34]}
Therefore by Lemma 4.3.2, we have
r(n? gen(Ky;)) =4 (ér(nQ, Ki:)+ 1—167"(712, Ky;) + 1—16r(n2, K377;>>
=r(n® Ky,),

for any integer n and any ¢ = 0,1. Therefore by Lemma 3.1.4, we see that
both Ky and K ; are strongly S-regular. O

Remark 4.3.4. If a strongly S-regular lattice M has class number two, then
the other lattice in the genus of M is also strongly S-regular by Remark 3.2.5.
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This is not true in general if the class number of a lattice is greater than two.
For example, both ternary Z-lattices Ko and K, are strongly S-regular,
however all the other lattices in gen(/K ) and gen(K; ;) are not strongly
S-regular.

For any positive integer ¢, we define

11 11 Ly g
Et:(l i)J_(?)t), Lt:(l ;)L(St), My=1|35 7 2
2 2 2 3t+1

and ;
N=1[323 3 ,Kt:(l i)J_(Q’m.
0 2 3t+1 2

Lemma 4.3.5. Let t be any positive integer. For any positive integer n, we
have

r(3n+1,4;) = 3r(3n+1, L;) = 3r(3n+1, M) = 2r(3n+1, N;) +r(3n+1, K;).

Proof. Let {x1, 22, 3} be the basis for , whose Gram matrix is given above.
Assume that Q(az; + bxy + cxr3) = 3n + 1. Since (a —b)? =1 (mod 3), we
have a =0 (mod 3) or b=0 (mod 3) or a +b =0 (mod 3), however any of
two cases cannot occur simultaneously. Therefore we have

r(3n + 1,0)=r3n + 1,Z(3x1) +Zxo+Zx3)+1r(3n + 1, Zx1+7Z(3x) + ZLax3)
+r(3n+ 1, Z(xy — x2) + Z(3x2) + Zxs),

which implies that r(3n + 1,4;) = 3r(3n + 1, L;). Now let y; = x1,y2 = 29
and y3 = x1 + x2 + x3. Then

(B(yi,y;)) =

PO = =t
N = N
+ [NISTNIIY

w
e

3

Assume Q(ay; + bys + cys) = 3n + 1. Since (a — b)> = 1 (mod 3), we have
a=0 (mod3)orb=0 (mod 3) or a+b=0 (mod 3), however any of two
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cases cannot occur simultaneously. Therefore we have

r(3n+1,0,)=r(3n + 1,Z(3z1)+Zxy+Zxs)+7(3n + 1, Zx1 +7Z(3x2) +Zxs)
+r(3n+ 1,Z(xy — x2) + Z(3x2) + Zxs),

which implies that r(3n + 1,¢;) = 3r(3n + 1, M;). Finally, if we choose a
basis {z1,x1 + 2,21 + x3} for ¢, then we may prove that r(3n + 1,4;) =
2r(3n+ 1, Ny) +r(3n + 1, K;). O

Proposition 4.3.6. The ternary Z-lattices Ly, Ly, L1y and Mg are all strongly
s-reqular.

Proof. First, note that N; is contained in gen(K;) for any positive integer ¢,
L, € gen(Vy) if t =1 (mod 3), and M; € gen(N,) if t =0 (mod 3). For any
integer ¢ Z 0 (mod 3), since \3(L;) ~ \2(N;) ~ M\2(K;) ~ {;, we have

r(9n, Ly) = r(9n, Ny) = r(9In, K;) = r(n, l). (4.3.3)
If t=0 (mod 3), then we have
r(9n, My) = r(9n, Ny) = r(9In, K;) = r(n, l).

For t = 1,4 or 10, one may easily show that gen(L;) = {[L], [V¢], [K:]} and
gen(Ms) = {[Ms], [N6], [K6]}. Now by equation (4.3.3) and Lemma 4.3.5, we
have

2L 2N, 2K
1) =4 (1) T TR ) ),

for any ¢t = 1,4 or 10. Furthermore, we have

8 (r(n*,Mg) r(n*,Ne¢) r(n 7K6)> = r(n*, gen(Ms)).

QM:_
r(n’, M) 3( . T 12 T

This completes the proof. n

Theorem 4.3.7. Let L be a ternary Z-lattice representing 1. Then L 1is
strongly S-regular if and only if L satisfies r(n?, L) = r(n?, gen(L)) for any
nteger n.
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Proof. Note that “if” is trivial. The “only if” is the direct consequence of
Theorem 4.2.2 and Propositions 4.3.1, 4.3.3 and 4.3.6. O]

Corollary 4.3.8. Let L be a ternary Z-lattice representing 1. Then the
followings are all equivalent.

(1) L satisfies r(n?, L) = r(n?, gen(L)) for any integer n;
(2) L satisfies the condition (3.2.1) in Conjecture 3.2.1;
(8) L is strongly S-reqular.

Proof. The corollary is the direct consequence of Theorem 3.2.6 and Theorem
4.3.7. O
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Chapter 5

Strongly regularity on square
classes

In this chapter, we generalize the notion of “strongly S-regularity” of ternary
quadratic forms.

5.1 Strongly S;-regular ternary forms

Definition 5.1.1. Let L be a ternary Z-lattice and let T" be a proper subset
of positive integers. The lattice L is called strongly T-reqular if r(n, L) =
r(n,gen(L)) for any integer n € T

Lemma 5.1.2. Let L be a ternary Z-lattice. The class number of L is one
if and only if L 1is strongly Z* -regular.

Proof. The “only if” part follows directly from the definition. Suppose that
r(n,L) = r(n,gen(L)) for any integer n. Then, clearly L is regular. Hence
L is isometric to one of 913 candidates of regular ternary forms given [11].
Suppose that the class number of L is bigger than 1. Note that the number
of such a lattice is 913 — 794 = 116. For each case, one may show by a direct
computation that there is an integer n such that r(n, L) # r(n, gen(L)). O

For a positive square-free integer ¢, we define
Sy ={tn*:n € Z}.
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Lemma 5.1.3. Let L be a ternary Z-lattice. Let n be a positive integer
and let t be a positive square free integer. For any prime p, we assume that
ord,(n) = \,. If t is represented by the genus of L, then we have

r(th,gen(L)): i H a,(tn?, L) H a,(tn?, L)

rltogen(D) "L 0wt D) k(D)

()

pl8dL pI8dL p—1

In particular, if the lattice L has class number 1, then we have

a,(tn?, L)
(tn L) r(t, L) p p—
p|18_d[L a,(t, L)

" H (p’\i"+1 -1 (—tdL) p — 1)
frvders p—1 p p—1

Proof. Note that if p does not divide 8dL, then by [22], we have

, 1+5_W_W if p|t,
(tn”, L) Ll —tdL\ 1 -
+ ]—9 — i + » ot otherwise.
Hence the lemma follows directly from the Minkowski-Siegel formula. O]

Let L be a strongly S;-regular ternary Z-lattice with a positive square
free integer t. For any integer n, let n; and ny be positive integers such that
P(ny) C P(8dL), (ne,8dL) =1 and n = nyny. Here P(n) denotes the set of
prime factors of n. Then by Lemma 5.1.3, we have

r(tnin3, L) = r(tn?, L H h,(tdL, \,)
pi8dL

where A, = ord,(n) for any prime p and

phtt—1 (—tdL) p—1
p—1 p p—1-

hy(tdL, \,) =

o7

___;rx_-l! E CI.'II
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CHAPTER 5. STRONGLY REGULARITY ON SQUARE CLASSES

We define
ms, (L) = min{n : r(tn* L) # 0}.

neZt

Then we also have
{n:r(tn® L) # 0} = mg,(L)Z.

Theorem 5.1.4. For any positive integer m, there are only finitely many
strongly Sy-reqular ternary Z-lattice L up to isometry such that mg,(L) = m.

Proof. The proof is quite similar to Theorem 4.1.8. O

5.2 Strongly spinor S;-regular ternary forms

Lemma 5.2.1. Let L be a ternary Z-lattice with g(L) > 2 and let s be a
positive integer such that n(L*) = s™1Z. Let K be a ternary Z-lattice in the
genus of L and let t be a positive square free integer. If

r(tn®, spn(L)) — r(tn?, spn(K)) # 0,
for some integer n, then t divides s.

Proof. See Korollar 2 of [20]. O

Let L be a ternary Z-lattice and let s be a positive integer such that
n(L¥) = s7'Z. Let t be a positive square free integer. Assume that there
exists a ternary Z-lattice K in the genus of L such that

r(tn?, spn(L)) — r(tn? spn(K)) # 0,

for some integer n. Then by Lemma 5.2.1, ¢ divides s. We define h to
be an integer such that s = ##'h? with ¢’ square free. If g(L) = 1, then

r(n,spn(L)) = r(n,gen(L)).

Theorem 5.2.2. Let L be a ternary Z-lattice with g(L) > 2 and let n be an
integer. Let t be a positive square free integer.

o8



CHAPTER 5. STRONGLY REGULARITY ON SQUARE CLASSES

(i) If any splitting integer for gen(L) is not of the form tn?, then we have

r(tn?, spn(L)) = r(tn?, gen(L)).

(ii) Assume that there exists a ternary Z-lattice K in the genus of L such
that r(tn?, spn(L)) — r(tn?, spn(K)) # 0 for some integer n. If there
exists a splitting integer for gen(L), say c, which is of the form tn?,
then we have

r(tn?, spn(L)) = r(tn?, gen(L)) + @ .
Here v is determined by r(tn?, spn(K1)) — r(tn?, spn(Ks)) = ¢(n) - n
modulo h with Ky € Hi(c), Ky € Hj(c).

Proof. Assume that

gen(L) = {spn(L) = spn(Li),spn(La),...,spn(Le)}.

where {L1, La, ..., L.} is a complete set of representatives of all spinor genus
in gen(L). Note that e is of the form 2" with positive integer 7.

First, we consider the part (i). Since any splitting integer for gen(L) is not
of the form tn?, by Korollar 2 of [20], we have r(tn? spn(L)) = r(tn?, spn(L’))
for any Z-lattice L' in the genus of L. Hence we have

r(tn?,gen(L))= b r(tn®, L)
(t 8 (L)) w(L) w}%@) O(L’)
1 9 )
= ng) (r(tn® spn(Ly))ws(L1)+ - - +r(tn?, spn(Le))ws(Le))
= o T spn(La)) (L) +- + 0.(L))
= r(tn? spn(L)).

Finally, we consider the part (ii). Assume that Lo is contained in H; (c).
Then by Korollar 2 of [20], we have

r(tn?,spn(Ly)) — r(tn? spn(Ly)) = ¥ (n) - n. (5.2.1)
59
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CHAPTER 5. STRONGLY REGULARITY ON SQUARE CLASSES

Here 9(n) is a function defined by above equation modulo h.

On the other hand, note that ws(L) = wy(L’) for any Z-lattice L’ in the
genus of L. Since there exists a splitting integer for gen(L) which is of the
form tn?, by Korollar 2 of [20], we have

) 1 r(tn?, L'
r(tn®, gen(L))= o) [L,}Z %
= L (r(tn?, spn(Ly))wy(Ly)+ - - - +7(tn?, spn(L,))ws(Le))

g

€gen(L)

w(L)
1 2 1 2
= ér(tn ,spn(Ly)) + §r(tn ,spn(Ly)).
(5.2.2)
By (5.2.1) and (5.2.2), we have
r(tn? spn(Ly)) = r(tn®, gen(Ly)) + @ .
This completes the proof. O

Definition 5.2.3. Let L be a ternary Z-lattice and let T" be a proper subset of
positive integers. The lattice L is called strongly spinor T-reqularif r(n, L) =
r(n,spn(L)) for any integer n € T.

Corollary 5.2.4. Let L be a ternary Z-lattice and let t be a positive square
free integer. If L is strongly spinor S;-regular, then we have a closed formula
for r(tn? L).

Proof. The corollary is a direct consequence of the definition of strongly
spinor S;-regularity and Theorem 5.2.2. [

Corollary 5.2.5. Let L be a ternary Z-lattice with g(L) > 2 and let t be
a positive square free integer. If any splitting integer for gen(L) is not of
the form tn?, then L is strongly spinor Si-reqular if and only if L is strongly
Si-reqular.

Proof. The corollary is a direct consequence of Theorem 5.2.2 (i). O

Example 5.2.6. (i) Consider the ternary Z-lattice L; = [1,2,64,0,0,0].
Then the genus of L; contains two spinor genera and four classes. More
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precisely, let
Ly =11,8,18,8,0,0], K;=1[2,4,17,4,0,0], Ky=[3,3,17,—2,2,2].

Note that the spinor genus of Ly (K7) contains the ternary Z-lattice Ly (Ko,
repectively). Then one may easily verify that

r(n? L) =r(n* Ly) and r(n% K)) =r(n? K),

for any integer n. Hence every form in the genus of L, is strongly spinor
Si-regular. Furthermore one may easily check that ¢ is a splitting integer for
the genus of L, if and only if ¢ = m?(m € Z). Therefore we have by Theorem
5.2.2 (ii),

r(n?, L) = &(n) 1;[ (u - (_—2) - 1) +n-(5)- (=1,

p—1 p/) p—1
r(n?, Ky) = @(n)lpg (1% - (_?2) ;”__11) e (2) - p

where )\, = ord,(n) for any prime p and

222 if 0< )\ <1,
P(n) =< 2271 if 2< )\ < 3,
12 if Ay >4.

(i) Next consider the ternary Z-lattice Ky = [1,4,9,4,0, 0] which is defined
in Section 4.3. Note that class number of K is three and the spinor genus
of K contains only one class. One may easily check that c is a splitting
integer for the genus of K if and only if ¢ = 2m?*(m € Z). Since Kjq
is strongly spinor S;-regular for any positive square free integer ¢, Ko is
strongly S;-regular for any positive square free integer ¢ # 2 by Corollary
5.2.5.
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