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ABSTRACT 

 

Establishment of parthenogenetic murine 

embryonic stem cells and their differentiation into 

osteogenic and chondrogenic cells 

 

Hoin Kang 

Department of Cancer and Developmental Biology  

The Graduate School 

Seoul National University 

(Directed by Prof. Sangho Roh, D.V.M., Ph.D) 

 

Damaged tissue repair using stem cells has become a topic of great interest in 

tissue engineering including orthopedics and dentistry research. Embryonic 

stem cells (ESCs) are pluripotent and can differentiate into all somatic cell 

types. ESCs are an alternative solution to hard and soft osseous tissue 

regeneration and skeletal tissue repair to treat bone diseases and defects using 

regenerative strategies. The aim of this thesis was to improve the efficiency of 

stem cell generation and differentiation by modifying traditional methods. In 

this study, I used a new culture method called the oil-free micro-tube culture 
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method (MTC). This method was shown to be effective for the generation of 

murine parthenogenetic embryonic stem cell (PESCs) lines. Murine 

parthenogenetic embryos cultured in MTC showed higher rates of stem cell 

line generation than those in the traditional micro-drop culture method, and 

this may be due to the promoted expression of developmentally important 

genes such as Igf1 and Oct4. PESCs may be a useful alternative stem cell 

source for tissue repair and regeneration. The defects in full-term 

development of this cell type enable researchers to avoid the ethical concerns 

related with ESC research. However, many previous reports have shown that 

the differentiation potential of PESCs is limited compared to that of ESCs, 

and this may be related to the abnormal expression of imprinting genes in 

PESCs. Hence, it is hypothesized that specific-imprinting gene expression 

promotes the osseous differentiation of PESCs. Insulin like growth factor 2 

(IGF2) is a paternally expressed imprinting gene that is therefore not 

expressed in PESCs naturally. Osteogenic and chondrogenic differentiation of 

PESCs promoted by IGF2 was demonstrated. The lack of endogenous IGF2 

expression can be compensated by exogenous supplementation of this soluble 

factor in the culture medium resulting in osteogenic and chondrogenic cell 

differentiation. In osteogenic cell differentiation, gene expression of specific 

osteoblastic markers was analyzed by real time qPCR. The expression level of 

osteocalcin, osteopontin, osteonectin, and alkaline phosphatase was 2-fold 

higher in the group with IGF2 supplementation. An in vivo experiment 

(critical-sized calvarial defect mouse model) showed the same results on the 
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regeneration of the damaged bone. In chondrogenic cell differentiation, the 

gene expression of chondrocyte-specific markers was analyzed by real-time 

qPCR. The expression level of Decorin, Chordin-like 1, Pax1, Aggrecan, 

Collagen type II and MMP13 was higher in the group with IGF2 

supplementation. The group supplemented with IGF2 showed a higher 

induction of chondrogenic differentiation. Both the osteogenic and 

chondrogenic induction data show that the supplementation of IGF2 promotes 

osteogenic and chondrogenic differentiation of PESCs. Collectively, this 

study presents the whole effective process from establishment to 

differentiation into osteogenic and chondrogenic cells of PESCs. The findings 

provide two insights on PESC research. First, as an alternative to the micro-

drop culture, the MTC culture method is an effective and affordable embryo 

culture for generating PESC lines. Second, compensative supplementation of 

imprinting factor IGF2 may improve the efficiency of differentiation to 

specific lineages in monogenic stem cells. 

 

Keywords: Embryo culture, Parthenogenesis, Parthenogenetic embryonic 

stem cells, Imprinting gene, Osteogenic cell, Chondrogenic cell 

Student Number: 2006-22202 



4 

 

CONTENTS 

 

ABSTRACT..................................................................................................... 1 

CONTENTS.................................................................................................... 4 

LIST OF TABLES AND FIGURES.............................................................. 5 

REVIEW OF LITERATURE........................................................................ 7 

INTRODUCTION........................................................................................ 13 

MATERIALS AND METHODS................................................................. 27 

RESULTS...................................................................................................... 49 

DISCUSSION................................................................................................ 70 

CONCLUSION……………………………………………………………. 83 

REFERENCES............................................................................................. 85 

ABSTRACT IN KOREAN......................................................................... 105 

 

 

 

 

 

 

 

 



5 

 

LIST OF TABLES AND FIGURES 

 

Table 1. Primer sequences (5’-3’) used in real-time PCR………………. 47. 

Table 2. The outgrowth and PESC generation from the blastocysts of 

B6D2F1 mice……………………………………………………… 51 

 

Figure 1. Diagram for methods of artificial murine parthenogenetic 

embryo generation……………………………………………… 29 

Figure 2. MTC embryo culture system…………………........................... 30 

Figure 3. Photos of an embryoid body…………………………………… 34 
Figure 4. Surgery of critical-sized calvarial defects in mice…………..... 38. 

Figure 5. Diagram of two type on stem cells differentiation……………. 41 
Figure 6. Parthenogenetic embryonic stem cells derived from the mouse 

parthenogenetic blastocysts produced in a microtube culture 

system……………………………………………………………. 52 
Figure 7. Differentiating potential of the embryoid body derived from the 

PESC…………………………………………………………….. 53 
Figure 8. Transplantation of ESCs or PESCs from B6D2F1 embryos 

under the skin of the nude mouse……………………………… 54 
Figure 9. The expression levels of developmentally important genes on 

Drop and MTC cultured blastocyst…………………………… 57 
Figure 10. Osteogenic-specific gene expression in PESCs, ESCs, and 

IGF2treated PESCs after osteogenic induction……………….. 59 



6 

 

Figure 11. The morphologies of the PLLA scaffold and cultured PESC-

derivatives in the PLLA……………………………………….. 60 
Figure 12. Soft X-ray images of the in vivo implantation site in critical-

sized calvarial defects in mice………………………………… 62 

Figure 13. Micro-CT results of bone formation in critical-sized calvarial 

defects in mice…………………………………………………. 63 
Figure 14. Histological images after H&E staining……………………... 64 
Figure 15. Alcian blue and Safranin O staining of PESC-derived 

chondrogenic cells induced in 2D and 3D culture 

systems…………………………………………………………. 66 
Figure 16. Chondrogenic-specific gene expression in PESCderived 

chondrogenic cells induced in 2D and 3D culture 

systems…………………………………………………………. 67 
Figure 17. Chondrogenic-specific gene expression in PESC-derived 

chondrogenic cells after supplementation with various 

concentrations of exogenous IGF2 during induction in a 3D 

culture system and normal murine chondrocytes obtained 

from mouse femoral heads and condyles…………………….. 69 

 

 

 

 



7 

 

REVIEW OF LITERATURE 

 

Stem cells 

Stem cells are undifferentiated cells that can differentiate into all functional 

cells (pluripotency) and can divide to produce other stem cells (self-renewal) 

[1]. In mammals, there are two types of stem cells: adult stem cells (ASCs) 

and embryonic stem cells (ESCs) [1]. In adult somatic tissues, ASCs function 

as progenitor cells, which act as a repair and regenerative system for the 

damaged adult tissues. ESCs, which are derived from the inner cell mass of a 

blastocyst, are pluripotent cells that can differentiate into all three germ layers 

(ectoderm, endoderm and mesoderm). Unlike ASC, ESCs have indefinite self-

renewal capacity and pluripotency, so theoretically they can provide an 

unlimited source of cells for cell therapy [2]. These characteristics of ESCs 

were defined one of the most useful cell sources for tissue regenerative 

medicine.  

 

Parthenogenesis and parthenogenetic embryonic stem cells 

Parthenogenesis is a process of asexual reproduction in which the growth 

of embryos occur without fertilization [3]. In mammalians, parthenogenesis 

leads to growth and development of an embryo from an unfertilized oocyte. 

https://en.wikipedia.org/wiki/Cellular_differentiation
https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Cellular_differentiation
https://en.wikipedia.org/wiki/Cell_division
https://en.wikipedia.org/wiki/Mammal
https://en.wikipedia.org/wiki/Embryonic_stem_cell
https://en.wikipedia.org/wiki/Adult
https://en.wikipedia.org/wiki/Asexual_reproduction
https://en.wikipedia.org/wiki/Embryos
https://en.wikipedia.org/wiki/Fertilization
https://en.wikipedia.org/wiki/Gametophyte
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Parthenogenesis occurs naturally in many plants, some invertebrate animal 

species and vertebrates such as fish [4]. In addition, parthenogenesis has been 

induced artificially in many species including mammals. Generally, 

mammalian parthenogenetic embryo cannot develop to full-term. So, these 

embryo technologies are widely used in research of pre-implantation embryo 

development and stem cell source. Parthenogenetic embryonic stem cells 

(PESCs) can contribute to the development of various tissues. Moreover, the 

use of PESCs can avoid ethical concerns surrounding human ESCs research 

because the parthenogenetic embryo itself cannot develop to full-term. These 

PESCs may improve organ transplantation efficiency by lessening the risk of 

major histocompatibility complex mismatch [5, 6]. Due to these reasons, 

many groups harvested and conducted research of PESCs from various animal 

species [5-9].  

 

3D culture system of embryos 

Numerous embryo technology research groups have developed and improved 

in vitro culture systems for the culture of fertilized or immature oocytes [10, 

11]. These improvements have involved the chemical composition of the 

culture media. Indeed these approaches have proven extremely beneficial and 

have undoubtedly contributed largely to improved success rates following 

assisted reproduction [11-14]. However, not only do the chemical 

requirements of the developing embryo need to be considered, but physical 

https://en.wikipedia.org/wiki/Invertebrate
https://en.wikipedia.org/wiki/Vertebrate
https://en.wikipedia.org/wiki/Fish
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conditions and new culture devices may also be important factors in improved 

in vitro culture conditions [15-17]. Among these devices, micro well culture 

system is well researched. This device and method attempts to create a 

microenvironment in the individual or small groups of embryos and offers an 

advantage of increasing surface area point-of-contact between embryos. The 

most well-known micro-well approach is the well-of-the-well (WOW) system, 

as first described by Dr. Vajta [17, 18]. The WOW system has been used 

successfully with embryos from a variety of species including mouse, pig, 

cow, and human. It has also resulted in differing gene expression levels in 

bovine embryos compared to traditional micro-drop cultured [19-21].  

 

Imprinting genes 

Mammalian is inherited two copies of autosomal gene, from mother and 

father. Both copies are functional for the expression of specific genes. 

However, in several genes one copy is turned off or silenced in a parent-of-

origin dependent manner. These genes are called imprinted or imprinting gene 

[22, 23]. One copy of the imprinting gene was epigenetically imprinted in the 

oocyte or the sperm. If the allele inherited from the father is imprinted, it is 

silenced, and the allele from the mother is occurred DNA transcription and 

gene expressed. Genomic imprinting has been demonstrated in variety of 

species such as fungi, plants and animals [24-26]. In the recent studies, there 

are about 150 imprinted genes known in the mouse and about 80 imprinted 

https://en.wikipedia.org/wiki/Allele
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genes in humans. Genomic imprinting is an inheritance process independent 

of the classical Mendelian inheritance. It is an epigenetic process that involves 

DNA methylation and histone modificationwithout altering the genomic 

sequence [27]. Imprinted genes are associated with numerous human 

pathologies because their abnormal haploid genomic state enables epigenomic 

errors to dysregulate imprinting gene function. Human diseases, Angelman 

syndrome and Prader–Willi syndrome, Alzheimer disease, autism, bipolar 

disorder and various cancers were reported to related genomic imprinting 

errors [28-30]. Nucleus transplantation experiments in mouse zygotes in the 

early 1980s confirmed that normal development requires the contribution of 

both the maternal and paternal genomes. The diploid mouse embryos (only 

one parental allele) derived from parthenogenesis die at the blastocyst or pre-

implantation stage [31, 32]. Until recently, despite various researches, the 

detail mechanisms for genomic imprinting are still incompletely known. 

However, in mouse parthenogenetic embryo, methylation modification of the 

promoter of insulin like growth factor 2 (IGF2) has led to the expression of 

this gene and the birth of a live parthenogenetic mouse [33]. So, this thesis 

showed that exogenous supplement of protein derived imprinting gene 

promotes differentiation of murine parthenogenetic stem cells.  

 

Embryonic stem cell differentiation into osteogenic lineage 

ESCs have a self-renewal activity which gives rise to all somatic cell lineages 

[34]. Thus, ESCs were defined as one of the useful materials for tissue 

https://en.wikipedia.org/wiki/Mendelian_inheritance
https://en.wikipedia.org/wiki/DNA_methylation
https://en.wikipedia.org/wiki/Histone_methylation
https://en.wikipedia.org/wiki/Angelman_syndrome
https://en.wikipedia.org/wiki/Angelman_syndrome
https://en.wikipedia.org/wiki/Prader%E2%80%93Willi_syndrome
https://en.wikipedia.org/wiki/Mouse
https://en.wikipedia.org/wiki/Parthenogenesis
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engineering and regenerative medicine. Lineage specific differentiation of 

ESCs can be directed under specific induction conditions [35, 36]. 

Spontaneous differentiation of ESCs can be induced by the removal of the 

feeder cell layer or pluripotency factors in media such as leukemia inhibitory 

factor (LIF). This differentiation of ESCs formed 3D ESC aggregates known 

as ‘embryoid bodies’ (EBs) [37]. These cell groups exhibit regional specific 

differentiation into the derivatives of the three germ layers, the mesoderm, 

ectoderm and endoderm [37]. During in vitro EB formation, ESCs used a 

similar differentiation pathway as in vivo embryogenesis. After EB formation, 

EBs or dissociated cells from EBs are induction into an osteogenic lineage in 

a specialized induction media [38-40]. Previously research has shown that the 

addition of specific factors such as β-glycerophosphate, ascorbic acid, 

dexamethasone, retinoic acid and vitamin D3 resulted in the differentiation of 

ESCs into an osteogenic lineage. [39-41]. The differentiation statues were 

analyzed by specific osteogenic gene expression profiles or by the 

mineralization activity. [42]. Additionally, comparison studies have reported 

that the expression of osteogenic markers such as alkaline phosphatase and 

osteocalcin were highly enhanced in an ESC culture in a 3D scaffold culture 

system [43]. Taken all together, these findings show that ESCs can be used as 

a good source for bone tissue engineering. 

 

Rationale  
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Current orthopedic and dental practitioners treat and cure bone damaged 

diseases including osteoporosis and age-related bone degenerative diseases. In 

many cases, surgery inserting metal or a biocompatible material is one of the 

therapeutic modalities currently used by dental practitioners. These treatments 

ameliorate the symptoms and return normal activity to the patient. However, 

these treatments cannot be used for several bone and cartilage diseases. Thus, 

studies on regenerative medicine are needed in the field of bone and cartilage 

therapy. ESCs are one of the most important cell sources as well as research 

subjects in regenerative medicine. Embryo culture and ESC line establishment 

have been constantly studied and improved over the past decade. However, 

the efficiency of the whole process is low. For ESCs to be a good material for 

regenerative medicine, increasing the efficiency of cell line establishment and 

differentiation is needed. Moreover, ethical concerns always arise using ESCs. 

Ethical concerns can be alleviated by using PESCs. Thus, if studies are done 

to overcome the limitations found in the differentiation of PESCs, these cells 

could be a good source material in regenerative medicine. Thus, the main goal 

of this thesis was to develop and confirm effective methods for the 

establishment of PESCs and their differentiation into osteoblast and 

chondroblast. To achieve this goal, I performed studies to evaluate the effect 

of the micro-tube embryo culture system on the generation of a 

parthenogenetic embryo stem cell line as well as the effect of a specific 

imprinting gene supplement, insulin like growth factor2 (IGF2), on the 

differentiation of PESCs into osteogenic and chondrogenic cells.  
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INTRODUCTION 

 

ESCs are one of the most important cell sources and research subjects in 

regenerative medicine. ESC research in regenerative medicine includes from 

the establishment of stem cell lines to their differentiation into functional 

somatic cells. Procedures for embryo cultures and ESC line establishment 

have been constantly investigated and improved over the past decade. 

However, the efficiency of the whole process is low. Moreover, many of the 

mechanisms of cell differentiation are still unknown. For ESCs to be a good 

material for regenerative medicine, more research is needed on cell line 

establishment and differentiation efficiency into functional cells. Therefore, 

the aim of this study was to find a method to increase the efficiency of the 

whole process from cell line establishment to differentiation into functional 

cells using PESCs which is one of the ESCs. 

 

1. Generation of parthenogenetic murine embryonic stem 

cells 

This topic has been largely reproduced from an article published, entitled 

`Promoted expression of Igf1, Dnmt3a and Oct4 in the parthenogenetic 
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murine blastocysts developed in an oil-free microtube culture system may 

support stem cell generation`[44]. 

Several properties of PESCs make them appealing as an alternative stem 

cell source. In addition, these cells are essential for understanding the 

differentiation process of mono-parental cells. Reportedly, when a 

parthenogenetic embryo is used to make ESCs and those cells are used to 

make chimeras, chimeric offspring having tissues from PESCs can be 

obtained [45]. This result suggests that the PESCs can contribute to the 

variable tissues of a developing embryo. Moreover, the use of PESCs can 

avoid ethical concerns surrounding human ESC research because the 

parthenogenetic embryo itself cannot develop to term. These PESCs may 

improve organ transplantation efficiency by lessening the risk of major 

histocompatibility complex mismatch [5, 6]. Due to these reasons, many 

groups harvested PESCs from various animal species, such as: mice [5, 6], 

monkeys [46, 47], rabbits [9], buffalos [8], and humans [7, 48]. In order to 

obtain PESCs, artificial oocyte activation and in vitro culture (IVC) processes 

are required. Many groups have developed IVC systems for culturing 

fertilized oocytes in mice, pigs, and cows by altering physical conditions and 

introduced culture devices [16, 17, 19]. From those reports, they were able to 

produce blastocysts efficiently. Typically, the starting material for generating 

mouse ESCs can be either a Day 3.5 expanded blastocyst or a further stage 

flushed from the uterine horns. In that system, the IVC process is not required 

to obtain the blastocyst. However, Liu et al. used IVC-derived blastocysts as 
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the starting material to obtain murine ESCs for the first time and showed that 

IVC systems for producing the blastocysts can influence the efficiency of 

ESC generation [49]. Since ESCs are derived from the inner cell masses 

(ICMs) of the blastocysts, the quality of the blastocyst can determine the rate 

of successful ESC establishment [49, 50]. For successful ESC generation, 

quality blastocysts should be provided efficiently. Previous reported that the 

micro-tube culture (MTC) system enhanced the developmental speed of 

embryos, blastocyst formation rate, and total cell number in blastocysts when 

compared with the conventional drop culture (Drop) system in the 

parthenogenetic murine embryo culture [51]. Because the embryos are placed 

together in the small area (<2 mm diameter) of the U-shaped microtube 

bottom, the MTC system provides embryos more opportunities to affect each 

other through potential paracrine actions than a conventional drop culture 

system.  

In the present study, in order to increase the efficiency of mouse PESC 

isolation, I applied MTC culture system to obtain more quality 

parthenogenetic blastocysts. The parthenogenetic blastocysts cultured either 

by Drop or MTC were seeded onto feeder layers, and their ICM outgrowth 

and PESC line establishment rates were compared. In addition, the gene 

expression levels of Igf1, Fgf2, and Egf [for the cell growth] [52, 53] Igf2 [for 

imprinting status] [54], Dnmt3a and Dnmt3b [for methylation levels] [55], and 

Nanog and Oct4 [for the level of pluripotency] [56, 57] in the blastocysts 
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obtained by MTC and Drop were also analyzed by quantitative Real time-

qPCR to compare their molecular potentials for generating PESC. 

 

2. Osteogenic differentiation of parthenogenetic murine 

embryonic stem cells 

This topic has been largely reproduced from an article published, entitled 

`Insulin-like growth factor 2 promotes osteogenic cell differentiation in the 

parthenogenetic murine embryonic stem cells’[58].  

Hard tissue regeneration is an issue of critical importance in orthopedics 

and dental medicine. Many people that have bone diseases and damaged hard 

tissues required to exchange artificial prosthesis or bone tissue repairs. Major 

strategies to repair skeletal damage include the use of autogenous or allogenic 

bone grafts as well as various prosthetic implant devices [59]. However, these 

therapeutic methods have several shortcomings. The supply of suitable bone 

graft material is very limited and the biocompatibility of implant prostheses is 

a very serious issue after surgery. Therefore, regenerative skeletal repair using 

stem cells has become a topic of great interest in orthopedics and dentistry 

research. ESCs are permanent cells, which can be isolated from the inner cell 

mass of blastocysts in mice. These cells are pluripotent and are capable of 

self-renewal in specific culture environments. Upon withdrawal of leukemia 

inhibitory factor (LIF) or feeder cell supports, ESCs will differentiate into 

variable cell mass complexes called embryoid bodies (EBs). Differentiation 
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within these cell aggregates occurs in a defined temporal manner with the 

initial formation of all three germ layers, followed by further differentiation to 

terminally differentiated cell lineages [60, 61]. A variety of differentiated cell 

types have been generated from ESCs in vitro including neural cells, 

hematopoietic cells, cardiomyocytes, and osteoblasts [41, 62, 63]. The 

demand for regenerative approaches to treat bone defects is increasing, and 

ESCs may be an alternative option to bone grafting to achieve hard tissue 

regeneration. However, it is not easy to control ESC differentiation into 

specific cell types, and the use of ESCs is limited by the immune rejection 

response as well as the ethical debate surrounding embryo destruction. To 

avoid these problems, the use of ASCs, which have the same genetic 

information of the patient they were derived from, has been suggested. ASCs 

have been shown to facilitate bone repair in various osseous defect models [64, 

65]. These cells have multipotent differentiation capacity and can address 

several problems related to tissue repairing. However, very few ASCs are 

present in the body and it is very difficult to isolate these cells. As result, it is 

very difficult to obtain sufficient quantities of these cells for therapeutic 

purposes [66]. In addition, the self-renewal capacity and the potential of 

specific cell type differentiation of ASCs decreased with the age increasing 

[66, 67].  

In a previous study, I demonstrated that PESCs in mice can be induced to 

differentiate into osteogenic cells in vitro. PESCs are pluripotent, and if 

derived from an oocyte of a female patient, have that patient's genetic 
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information, thus preventing immune rejection responses in females. In 

humans, female are more susceptible to osteoporosis and other bone-related 

diseases than males [68]. Therefore, PESCs obtained from a patient's oocyte 

can potentially be used for organ or tissue regeneration therapy. PESCs have 

been shown to form three germ layers in a teratoma study [45]. This indicates 

that PESCs can contribute to the various tissues and organs of a developing 

embryo. Moreover, because the parthenote cannot develop to term, the use of 

PESCs avoids the ethical issues associated with human ESCs. PESC may also 

improve organ transplantation efficiency by reducing the risk of major 

histocompatibility complex mismatches [5, 6]. PESCs have been generated 

from various animals such as mice [5, 6], monkeys [46, 47, 69], rabbits [9], 

buffalos [8], and humans [7, 48, 70] for basic research. However, the use of 

PESCs in the field of regenerative medicine is only beginning to be explored. 

Although PESCs have many advantages compared to ESCs, these cells have 

some defects in their differentiation potential, especially differentiation into 

endodermal and mesodermal lineages [36].  

Various proteins have been implicated in the formation of the three 

primary layers in the mouse embryo. These include growth factors and their 

receptors, cell adhesion and extracellular matrix molecules, and transcription 

factors. Studies in various mouse models have provided evidence that 

members of the fibroblast growth factor family, the Wnt family, the IGF 

family, and the transforming growth factor β super-family, such as activins 

and bone morphogenetic proteins, have mesoderm-inducing roles [36, 71, 72]. 
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IGF2 is a very important factor for mesoderm formation in mouse embryonic 

development, and it may cause the biased determination of primitive ectoderm 

cells toward mesoderm cells or promote the selective proliferation of already 

determined mesoderm cells [72]. IGF2 is known to act both as a mitogen and 

a differentiation factor by triggering different signaling pathways at the same 

time [73, 74] Therefore, IGF2 may well cause both the determination and the 

proliferation of mesoderm cells. There are many reports that IGF2 and other 

member of the IGF gene family influence osteogenic cell activity and bone 

formation. Furthermore, it has been reported that IGF2 and IGF1 produced 

locally may modulate both osteoblast–osteoclast interactions and osteoblast 

formation, and thereby play an important role in bone remodeling [75, 76]. 

Bone homeostasis depends on the balanced action of bone resorption by 

osteoclasts and on bone formation by osteoblasts. Therefore, IGF2 may 

induce the osteogenic differentiation of stem cells.  

The expression of imprinting genes related to growth and organ formation 

such as IGF2 is abnormal in parthenogenetic embryos, as these genes are only 

expressed by the paternal genome, which is absent in parthenotes. As an 

imprinting gene that is only expressed in paternal-oriented genomes, IGF2 

have been shown to play an important role in regulating placental 

development and fetal growth [72, 77-79]. In the post-implantation embryonic 

period in mice, Igf2 mRNA and protein are produced in the primitive 

endoderm at embryonic day 6.5 (E6.5), then in the extra-embryonic 

mesoderm cells they begin to appear (E7.0), and then, in the anterior-proximal 
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and lateral embryonic mesoderm cells (E7.5). Later, IGF2 becomes abundant 

in mesoderm derivatives such as the developing heart (E8.0) and somites 

(E8.5) [79]. Before E13.5, IGF2 signaling is transduced by the IGF1 receptor 

[80]. The IGF2 receptor is involved only in IGF2 degradation. Deletion of this 

gene leads to placental and fetal growth restriction, especially in the early 

stages of gestation [79, 81, 82]. Similarly, over-expression of IGF2 leads to 

placental and fetal overgrowth [77]. IGF2 enhances growth via paracrine and 

autocrine actions that stimulate cell proliferation and survival [72, 78]. IGF2 

appears to be induced by placental lactogens and high concentrations of 

peptides and mRNA in utero, suggesting that IGF2 is important in fetal 

metabolism [83]. Thus, fetal and placental IGF2 appear to play an important 

role in regulating the relationship between fetal and placental growth and the 

placental capacity to transport nutrients, which occurs by facilitated and active 

transport [72]. In humans, contrasting to mice, IGF2 expression is maintained 

postnatally. The significance of this continued expression of IGF2 in humans 

is unknown [84].  

Poly L-lactic acid (PLLA) scaffold was used for in vivo bone tissue 

regeneration experiment in this study. At present, PLLA is one of the most 

promising biopolymer. It has been the subject of an abundant literature 

including review articles [85-87]. As the degradable medical implant material, 

a large number of investigations have been carried out on the application of 

PLLA to the bone regeneration and drug delivery system in the shape of rod, 

plate, fiber and beads [88]. PLLA, a biocompatible polymer, is the most 
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extensively studied and used since it does not exert toxic or carcinogenic 

effect to the local tissues [89]. Moreover, PLLA can be degraded abiotically 

and the ultimate degraded product of PLLA is lactic acid, which is then 

incorporated into tricarboxylic acid cycle and excreted, showing non-toxicity. 

A variety of materials including biomimetic apatite and extracellular proteins 

such as fibronectin, collagen and vitronectin have been attached onto the 

surface of PLLA through either non-covalent or covalent attachment to 

control the interaction between PLLA and cells [89, 90]. Therefore, PLLA 

was used here as scaffold for in vivo experiment. 

In the present study, I evaluated the effects of IGF2, which is important 

for organ formation in embryonic development, on in vitro osteogenic 

differentiation of PESCs and in vivo bone regeneration in a critical-sized 

calvaria mouse defect model.  

 

3. Chondrogenic differentiation of parthenogenetic 

murine embryonic stem cells 

This topic has been largely reproduced from an article published, entitled 

`Induced chondrogenic differentiation of parthenogenetic murine embryonic 

stem cells by insulin-like growth factor 2 treatment in a three-dimensional 

culture environment’[91].  

Cartilage regeneration and repair are critical issues in orthopedics and 

dentistry. Cartilage is a structural body part that is part of the skeletal system 
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in animals, including humans. There are many people who suffer from 

diseases related to articular cartilage, such as osteoarthritis. In dentistry, 

degenerative joint disease occurring in the temporomandibular joint (TMJ) is 

one of the diseases rooted in the damage of articular cartilage. One notable 

feature of cartilage is that it is avascular. Thus, in cases of traumatic injury 

and age-related degenerative diseases associated with articular cartilage, 

normal mechanisms of tissue repair that involve the recruitment of stem or 

progenitor cells to the site of injury do not apply [92]. The unsatisfactory 

results of surgical and nonsurgical interventions for the repair of damaged 

articular cartilage are attributable to this poor healing capacity of cartilage 

[93].  

Various strategies including the use of growth factors, tissue 

transplantation and cell transplantation therapy have been used in an attempt 

to reconstruct damaged articular cartilage [94]. Of these, cell transplantation 

therapy has proven to efficiently augment the numbers of chondrocytes in 

articular cartilage [95]. However, mature autologous chondrocytes have 

limited proliferative capacity, so they are unsuitable for providing adequate 

cell numbers for transplantation therapy. Moreover, the proliferative potential 

of chondrocytes decreases with patient age [96]. Thus stem cells have been 

used for cell transplantation therapy because of their self-renewal capacity. 

Bone marrow-derived mesenchymal stem cells (MSCs) have the potential to 

differentiate into various cells of mesenchymal lineages such as adipocytes, 

chondrocytes and osteoblasts [97]. However, the self-renewal and 
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proliferative capacity of MSCs are very much limited and decrease with age 

like mature chondrocytes [98]. In addition, during the in vitro expansion 

process, MSCs could lose their phenotype by spontaneous transformation, 

making them inadequate for damaged tissue repair [99].  

ESCs, which are derived from the inner cell mass of a blastocyst, are 

pluripotent cells that can differentiate into all three germ layers. ESCs also 

have indefinite self-renewal capacity, so theoretically they can provide an 

unlimited source of cells for cell therapy [2]. However, it is difficult to control 

the differentiation process of ESCs into specific cell types, and there are still 

ethical concerns about the use of ESCs with regard to the destruction of 

developing embryos [100, 101]. An alternative approach is to use PESCs, 

which are derived from parthenogenesis. Parthenogenesis is a mechanism of 

reproduction in which the embryos are derived from oocytes without 

fertilization [102]. If PESCs are obtained from a female individual’s own 

oocytes, the PESCs have that female individual’s genetic information, so the 

immunological rejection response seen in the transplantation recipients who 

receive MSCs or ESCs from donors would not occur. Therefore, PESCs 

obtained from a female patient’s oocyte can be potentially used for tissue 

regeneration. Moreover, because parthenogenetic embryos cannot develop 

into full-term embryos, the use of PESCs avoids the ethical issues associated 

with destruction of human embryos. PESCs have been researched in mice, 

non-human primates and humans [46, 48]. However, in the area of 

regenerative medicine, even though PESCs have many advantages compared 
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to ESCs, the utilization of PESCs has not been explored widely because they 

have some defects in differentiation potential, especially in differentiation into 

endodermal and mesodermal lineages [36].  

In the present study, we chose to use transforming growth factor-beta 

(TGF-ß), bone morphogenetic protein-2 (BMP2) and bone morphogenetic 

protein-4 (BMP4) to induce the chondrogenic differentiation of murine 

PESCs. TGF-ß is thought to inhibit the differentiation of ESCs into 

mesenchymal cells with another growth factor, FGF2 [103]. However, these 

factors are also considered a promoter of the process by which mesenchymal 

cells differentiate into chondrocytes. BMP2 and BMP4 applied to EBs 

increased the development of chondrogenic cells constructing cartilage 

nodules [103]. BMP2 promotes chondrogenic differentiation in embryo 

development, which means BMP2 promotes the differentiation of ESCs into 

mesenchymal cells, and mesenchymal cell differentiation into chondrocytes is 

promoted by BMP4 [103, 104]. Moreover, BMP2 and BMP4, with other 

factors such as vitamin D3 and dexamethasone, can induce the osteogenic and 

chondrogenic differentiation of mesenchymal cells. BMP2 induces the 

differentiation of ESCs into an osteoblast, chondrogenic or adipogenic fate 

depending on the supplementary cofactors provided [105]. 

The IGF family regulates the growth and development of many tissues by 

intracellular signaling pathways, especially in the prenatal period. The IGF 

signal system consists of two ligands (IGF1 and IGF2), and two kinds of cell 

surface receptors (IGF1R and IGF2R) [106, 107]. Both IGF1 and IGF2 bind 
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to IGF1R, and IGFBP-family also binds to the same receptor with individual 

specificities and affinities. On the other hand, only IGF2 can bind IGF2R. 

IGF2 is known to be active principally at early stages of skeletal development. 

However, the role of IGF2-associated with chondrogenesis is unknown, in 

comparison to IGF1, which is known to stimulate proteoglycan synthesis in 

chondrocytes via the phosphatidyl inositol 3-kinase (PI3K) pathway [108, 

109]. Among IGF family members, IGF2 is known to be a significant factor 

for mesoderm formation in murine embryonic development and it may cause 

the biased determination of primitive ectodermal cells toward mesodermal 

cells or promote the selective proliferation of already determined mesodermal 

cells [36, 110].  IGF2 and the other members of the IGF family are known to 

influence osteogenic cell activity and bone formation [75]. Moreover, IGF2 is 

reported to induce the transcriptional activation of chondrogenic genes via 

intracellular signaling pathways when applied to human chondrocytes [111]. 

IGF2 is a product of an imprinted gene that is only expressed in the paternal 

genome, so the expression of this gene is abnormal in parthenogenetic 

embryos [79, 112]. 

In a previous study, we demonstrated that supplementation of osteo-

induction medium with exogenous IGF2 significantly promotes osteogenic 

differentiation of PESC-derivatives both in vitro and in vivo [113].  We 

hypothesized that the lack of endogenous IGF2 in PESCs can be compensated 

for by exogenous supplementation of IGF2 [114]. As a result, the addition of 

soluble IGF2 could potentially enhance the osteogenic lineage differentiation 
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of PESCs. In this study, citing previous results, we present data demonstrating 

that PESCs can be differentiated into chondrogenic cells by induction medium 

containing multiple factors such as ascorbic acid, dexamethasone, BMP2, and 

TGF-β, and this can be promoted by the addition of exogenous IGF2, since 

the expression amount of IGF2 gene is insufficient in PESCs [115]. 

Taken together, in this thesis, I present data demonstrating that effective 

methods of PESCs generation and differentiation into osteogenic and 

chondrogenic cells. Using 3D embryo culture method, MTC and addition of 

soluble IGF2 in induction media could increase efficiency in the whole 

process on generation and differentiation of stem cell, and these results could 

provide useful information for regenerative medicine.   
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MATERIALS AND METHODS 

 

Animals and chemicals 

All inorganic and organic compounds were obtained from Sigma-Aldrich 

Korea (Yong-in, Korea) unless otherwise stated. Six-week-old C57BL6 X 

DBA2 F1-hybrid (B6D2F1) female mice were used as sources for the oocytes. 

All media for handling and culture of oocytes and parthenotes were based on 

CZB and KSOM [12, 116]. 

 

Recovery of oocytes, parthenogenetic activation, and in 

vitro culture (IVC) 

All animal procedures were approved by the Seoul National University 

Institutional Animal Care and Use Committee (SNU-061023-1). Five-to 

seven-week-old female C57BL6 x DBA2 F1 hybrid mice (B6D2F1) were 

superovulated with 5 IU equine chorionic gonadotropin followed by a second 

injection of 7.5 IU human chorionic gonadotropin (hCG) 48 h later. Oviducts 

were excised 15 h after hCG injection, and an average of 40 oocytes per 

mouse were obtained. Hyaluronidase (1 mg/ml) was used to remove cumulus 

cells, and oocytes were washed with Hepes-buffered CZB and exposed to an 

activation medium, consisting of 10 mM SrCl2 with 5 μg/ml cytochalasin B in 
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calcium-free CZB for 5 h (Fig. 1). The activated oocytes were developed to 

the blastocyst stage in KSOM under two different culture conditions, which 

were described in previous work [51]. Briefly, the activated oocytes were 

cultured either in a micro-droplet on a 35-mm cell culture dish (BD 

Biosciences, San Jose, CA, USA) of oil covering (Drop) or in a 250 μl micro-

tube (Axygen, Union City, CA, USA) at the same embryo density (MTC) (Fig. 

2). The oocytes were equally distributed to either MTC or Drop in a volume 

of 10 μl KSOM and then incubated for 5 days at 37.5℃ under 5% CO2 in air. 

After IVC, zona pellucida of the expanding blastocyst was removed by 

washing the embryo with acid-Tyrode solution. 

 

Establishment and culture of ESC lines from 

parthenogenetic murine embryos 

To generate PESCs, zona-free parthenogenetic blastocysts were transferred 

onto an STO feeder layer in gelatinized tissue culture plates (Nunc, Roskilde, 

Denmark) containing ESC medium consisting of Dulbecco’s modified Eagle’s 

medium (DMEM; Life Technologies, Paisley, UK) supplemented with 10% 

fetal bovine serum (FBS), 1% nonessential amino acids (NEAA), 0.1 mM β-

mercaptoethanol and 1,000 U/ml ESGRO LIF (Chemicon, Temecula, CA, 

USA). After 5 days of culture, the outgrown clumps derived from the inner 

cell mass (ICM) were counted under a stereo-microscope. The cell clumps 

were further trypsinized with 0.05% trypsin-  
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Figure 1. Diagram for methods of artificial murine parthenogenetic 

embryo generation.  
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Figure 2. MTC embryo culture system. (A) Diagram of traditional Drop 

culture and MTC. (B) Embryos were cultured to the blastocyst stage in 5 μl 

volume of KSOM under MTC system and in 10 μl drop. Embryos were 

observed under the inverted microscope. Scale bar= 1 mm.   
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EDTA and seeded onto new gelatinized 4-well dishes with fresh ESC medium 

to generate PESCs. When the colonies appeared, they were considered to be at 

passage 0 and were propagated gradually under stringent culture conditions 

with careful monitoring and medium changes to ensure that the cells remained 

undifferentiated. The PESCs were cultivated on a feeder layer of mitomycin 

C-treated STO cells in DMEM supplemented with 10% FBS, 2 mM L-

glutamine, 0.1 mM β-mercaptoethanol, 50 U/ml penicillin, 50 mg/ml 

streptomycin, and LIF (1,000 U/ml) in an atmosphere of 37°C, 5% CO2 in air, 

and the medium was changed once every day. ESCs from fertilized embryos 

of the same murine strain were used as a control. Both ESCs and PESCs after 

30 or more passages were used for the experiments. 

 

Characterization of mouse PESC lines 

The PESCs after 20 or more passages were characterized by their expression 

of pluripotency markers. The PESCs that were grown on the cover slip coated 

with 0.1% gelatin were fixed in 4% paraformaldehyde in phosphate-buffered 

saline (PBS) for 20 min. Fixed cells were then permeabilized with 0.2% 

Triton X-100 in PBS for 10 min and washed three times. After blocking with 

1% bovine serum albumin in PBS for 30 min, cells were incubated with the 

first antibody. Antibodies used in this experiments were: mouse monoclonal 

OCT4 (Santa Cruz, CA, USA), mouse monoclonal stage-specific embryonic 

antigen (SSEA)-1 and SSEA-4. After washes with PBS, primary antibodies 
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were applied using FITC-conjugated goat anti-mouse (Jackson 

Immunoresearch, West Grove, USA). Alkaline phosphatase (ALP) staining 

was processed by manufacturer’s instruction (Chemicon, CA, USA). The 

PESCs were fixed with 4% paraformaldehyde for 2 min and rinsed for 5 min 

with rinse buffer (20 mM Tris-HCl, pH 7.4, 0.15 mM NaCl, 0.05% Tween-20). 

During the rinse, reagents for ALP staining were prepared, as follows: Fast 

Red Violet with Naphthol AS-BI phosphate solution and water in a 2:1:1 ratio. 

After the stain solution was added, the cells were incubated in the dark for 15 

min and washed with PBS, then observed.  

 

In vivo differentiation (teratoma assay) 

Early passage PESCs (2x106 cells per mouse) were injected subcutaneously 

into the rear thigh of a nude mouse (Balb/c, male). The ESCs from fertilized 

embryos (J1, 129Sv origin) were used as control. After 4 to 6 weeks, the mice 

with teratomas of 1-2 cm diameter were killed, and then the teratoma tissues 

were excised, fixed in 10% buffered formalin phosphate (Fisher, 

Loughborough, UK), embedded in paraffin, and sectioned for histological 

analysis. 

 

In vitro differentiation (embryoid bodies analysis) 

PESCs were differentiated in vitro in a suspension culture without LIF. 

Floating ESC aggregates, called embryoid bodies (EBs), were formed in a 
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bacteriological dish. On the second day of culture, EBs were transferred to a 

15 ml tube and allowed to stand for 5 min until the EBs settled to the bottom 

of the tube. Then, the EBs were transferred to a new bacteriological dish and 

cultured for another 2 days. After 4 days in suspension culture, the gene 

expression levels representing 3 germ layers, AFP (endoderm), BRACHURY-

T (mesoderm), and NESTIN (ectoderm), were measured by RT-PCR and real-

time qPCR. 

 

Formation of EBs (stem cell differentiation) 

To induce EB formation, ESCs or PESCs on the culture plates were 

trypsinized for 2 min at 37°C. Trypsinization was terminated by addition of 

DMEM containing 10% FBS. After a brief centrifugation, cells were 

resuspended in medium followed by medium supplementation with 10% FBS, 

2 mM L-glutamine, 0.1 mM β-mercaptoethanol, 50 U/ml penicillin, 50 mg/ml 

streptomycin, 10-7 M retinoic acid, and were then treated with or without 

different concentration of IGF2 (50 ng/ml on osteoblast differentiation and 1-

100 ng/ml on chondrocyte differentiation). Cells were plated onto 

bacteriological-grade petri-dishes in the absence of fibroblast feeder layers 

and LIF. ESCs were maintained in culture for 7 days and the medium was 

replaced every 2 days. After 7 days of culture, ESCs formed free-floating 

aggregates or EBs (Fig. 3).  
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Figure 3. Photos of an embryoid body (EB). (A) A well-formed EB from 

PESCs shaped like an ellipse. (B) After 3 days of culture in osteogenic 

induction medium, EBs attached and expanded on the bottom of the plate. Bar 

length, 1 mm. 
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In vitro osteogenic induction of EBs  

To induce osteogenic differentiation of EBs, we used a modified version of 

the osteogenic induction protocol of Buttery et al. (2001). Briefly, EBs were 

resuspended in α-modified Eagle’s medium (α-MEM) containing 10% FBS, 

50 U/ml penicillin, and 50 mg/ml streptomycin, and allowed to adhere to 6-

well culture plates at a density of three EBs/well. The medium was then 

additionally supplemented with 50 mg/ml ascorbic acid, 10 mM β-

glycerophosphate, with or without 50 ng/ml IGF2. The EBs were maintained 

in culture for 20 days and the medium was replaced every 3 days. 

 

Preparation of scaffolds and cells for calvarial implantation  

The PLLA scaffolds were prepared as described in a previous report with 

some modifications [117]. In brief, the PLLA was dissolved in a mixed 

solvent (dioxane:dimethylcarbonate; 8:2) to make a 5% (w/v) solution. A 

solid–liquid phase separation technique and a subsequent solvent sublimation 

process were used to generate the porous PLLA scaffolds. The PLLA/dioxane 

solution was cooled to -20oC for 2 h and transferred to -80oC for additional 24 

h. The frozen mixtures were freeze-dried at -10 ~ -5oC of ice/salt bath for 7 

days, and then stored in a desiccator. The PLLA disks with a diameter of 4 

mm and thickness of 1 mm were prepared. The scaffolds were sterilized with 

ethylene oxide gas. After sterilization, scaffold samples were soaked at 37°C 

in general growth medium (DMEM, 10% FBS, 1% penicillin/streptomycin) 
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for 24 h. Then, scaffold samples were soaked in serum that had been extracted 

from B6D2F1 mice. After soaking, scaffold samples were washed with PBS. 

In preparation for implantation, IGF2-naive PESC and IGF2-treated PESC 

derivatives were seeded onto the scaffold. Following trypsinization, ten 

thousand cells were re-suspended in one sample volume of general growth 

medium (8.0 X 104 cells/cm2), and seeded directly onto the scaffold. The same 

amount of medium without cells was used as an empty scaffold control. 

Before implantation, cell-seeded scaffolds were submerged at 37°C in 

medium and incubated for 24 h. One day after seeding, the samples were 

embedded in paraffin and cut in 5 μm sections and then routine hematoxylin 

and eosin (H&E) staining was performed to ensure the state of seeded cells. 

 

Scanning electron microscopy (SEM) 

One day after seeding, samples were washed twice with PBS, and fixed using 

2.5% glutaraldehyde and 2% paraformaldehyde in pH 7.2 PBS for 24 h. After 

fixing, the samples were washed twice with PBS and post-fixed using 1% 

osmium tetroxide for 1 h and followed by washing twice with distilled water. 

Then the specimen was dehydrated by dipping it in increasing concentrations 

of ethanol and then by critical point drying. After drying for 24 h, the 

specimens were sputter-coated with gold epaladium and observed under an 

SEM at 15 kV (FE-SEM Hitachi S-4700, Tokyo, Japan).  
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Surgical procedures 

Mice of B6D2F1 strain (25–30 g) were used as study subjects. All animal 

experiments including animal management and surgical procedures were 

approved and performed under the guidelines of the Institutional Animal Care 

and Use Committee of Seoul National University (approval number: SNU-

061023-1). The animals were anesthetized with a subcutaneous injection of a 

mixture of ZoletilTM and xylazine (30 mg and 10 mg per kg, respectively). 

The scalp covering the calvarial vault was shaved and scrubbed with betadine 

solution. An incision was made along the midline. Full thickness skin and the 

periosteum were raised to expose the calvarial bone surface. Careful drilling 

with a 4-mm diameter trephine bur was performed around the sagittal suture, 

and a standardized, round, segmental defect was made (Fig. 4). During 

drilling, the area was irrigated with saline solution and the underlying dura 

mater was maintained intact. A PLLA scaffold, with or without cells, was 

placed in the calvarial bone defect. The periosteum and skin were closed in 

layers with absorbable 5-0 chromic catgut (WRHI, Namyangju, Korea) non 

absorbable 4–0 black silk (Ethicon, Edinburgh, UK) sutures, respectively. 

Mice were sacrificed 10 weeks after the implantation. Calvarial bone was 

excised with careful trimming. The specimen was fixed in 10% neutral 

buffered formalin solution at 4°C for more than 12 h. 
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Figure 4. Surgery of critical-sized calvarial defects in mice 
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Micro-CT 

Soft X-ray of the excised calvarial specimens was taken with a condition of 

30 kV, 1.5 mA, 40 sec of exposure, and 25 cm of distance. Then, the calvarial 

bone specimens were examined using a micro-CT machine (Skyscan 1072; 

Skyscan, Aartselaar, Belgium). Specimens were placed on a cylindrical 

sample holder with the coronal aspect of calvarial bone in a horizontal 

position to ensure parallel scanning conditions. The pixel size was 17.99 μm.  

Image files were reconstructed using a modified Feldkamp algorithm, which 

was created using microtomographic analysis software (TomoNT; Skyscan). 

After the 3D visualizing process, bone volumes were measured in the region 

of interest. In addition, micro-CT scan was also performed in animals of 

which defects were not treated with any cell, serving as the blank control. The 

data were presented as average and standard error of means. The one-way 

ANOVA test was performed to compare the differences among the 

experimental groups. Number of samples in each group was four. 

 

Histologic evaluation  

Specimens were decalcified in 10% EDTA in 0.2 M NaPO4, pH 7.4, for 7 to 

10 days. The decalcified specimens were embedded in paraffin and cut in 5-

μm sections, and then H&E staining was performed for histomorphological 

analysis to evaluate hard tissue formation in the bone defects. 
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Chondrogenic induction of EBs in two-dimensional (2D) or 

three-dimensional (3D) culture systems 

In the 2D culture system, the EBs were re-suspended in alpha-modified 

Eagle’s medium (α-MEM) containing 10% FBS, 50 U/ml penicillin, and 50 

mg/ml streptomycin and allowed to adhere to six-well culture plates at a 

density of five EBs per well. In chondrogenic induction medium (CIM), 10 

mM dexamethasone, 10 μg/ml ascorbic acid, 10 ng/ml TGF-β, 5 ng/ml BMP-

2 and 5 ng/ml BMP4 were supplemented and the EBs were maintained in 

culture for 21 days. The medium was replaced every two days. Alginate beads 

were used in the 3D culture system. Thus, preparation of alginate beads was 

the first step in the 3D culture system. Low viscosity alginate (1.2%, w/v) was 

dissolved in 0.15 M NaCl. Prior to use, the preparation was autoclaved for 20 

min. EBs were suspended at the desired concentration in the alginate solution 

(50 EBs/ml), thoroughly mixed with gentle pipetting, and transferred to a 5-

ml syringe equipped with a 22-gauge needle. The EBs and alginate mixture 

were slowly expelled in a drop-wise fashion into 10 ml of gently agitated 102 

mM CaCl solution. Gelation occurred instantaneously. The alginate beads 

were cured at room temperature for 10 min. The CaC1 solution was decanted 

and the beads were washed sequentially four times in 0.15 M NaCl and once 

in CIM (Fig. 5). The encapsulated cells were cultured in six-well culture dish 

maintained at 37℃ under 5% CO2. Each flask contained approximately 20-30 

beads bathed in 7 ml of CIM and different concentrations of IGF2 in each  
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Figure 5. Diagram of two type on stem cells differentiation. EBs were 

made on hanging drop culture methods. After making EBs, EDs were 

differentiated into osseous tissues on 2D or 3D culture methods 

 

 

  



42 

 

experimental group (0, 1, 10, and 100 ng/ml). The medium was replaced 

every two days. 

 

Alginate bead solubilization and cell recovery 

In order to induce solubilization, alginate beads were incubated with a 

solution containing 10 mM MOPS, 100 mM sodium citrate and 27 mM NaCl 

for 10 min at 37℃. After incubation, the alginate beads immediately 

disintegrated, and the cells were recovered by centrifugation. For staining, the 

recovered cells were re-seeded and cultured in a six-well plate for 24 h. 

 

Isolation of chondrocytes from the mouse 

The murine chondrocytes isolation was performed as described in the 

published standard protocol by other research group [118]. Briefly, 

chondrocytes were prepared from the knees of five- to six-week-old B6D2F1 

mice. The mice were placed in the face-down position on the experimental 

bench, and the skin and tissues were removed from their hind legs. The 

femurs were dislocated, and the joints tissues were discarded. Isolated femoral 

heads and femoral condyles were incubated in collagenase D solution (3 

mg/ml collagenase D in DMEM supplemented with 2 mM L-glutamine, 50 

IU/ml penicillin) for 60 min and then rinsed twice with PBS. The tissue 

fragments were agitated until all soft tissues detached from the cartilage 

pieces, and the fragments were then incubated with collagenase D solution 
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(0.5 mg/ml collagenase D) overnight. This method yielded a cell suspension, 

which was mixed thoroughly to disperse any cell aggregates, thus producing a 

suspension of isolated cells, which was centrifuged for 10 min at 450 X g. The 

pellet of chondrocytes was washed with PBS and re-suspended in DMEM 

supplemented with 10% (v/v) FBS, 2 mM L-glutamine and 50 IU/ml 

penicillin. 

 

Cell staining 

For Alcian blue and Safranin O staining, the culture plates were rinsed twice 

in PBS and then the cell culture plates were fixed with 4% formaldehyde in 

PBS for 30 min, washed once with PBS, rinsed with distilled water (dH2O), 

and then processed by Alcian blue staining. Specimens were incubated with 1% 

(w/v) Alcian blue solution for 20 min or 0.1% Safranin O solution for 5 min. 

Excess stain was removed by washing in PBS, rinsing in 5% acetic acid to 

remove nonspecific staining, and then washing in PBS again. To compare 2D 

culture and 3D culture in similar environment, recovered 3D cultured cells 

were re-seeded and cultured in a six-well plate for 24 h like 2D culture.  

 

mRNA extraction and cDNA synthesis 

RNA was extracted from all samples using TRI reagent (Invitrogen). The all 

samples of each experiment were harvested, resuspended in 1ml of Trizol 

reagent by vortexing and then incubated for 15 min in ice. Then 0.2 ml of 
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chloroform was added, mixed by smooth shaking and incubated for 15 min. 

After centrifugation at 13,000g for 15 min at 4°C, the colorless upper aqueous 

phase was transferred to new tubes containing 0.5 ml of isopropanol and by 

smooth shaking and incubated for 15 min. Total RNA pellet was obtained by 

centrifugation at 13,000g for 10 min at 4°C, air-dried, and re-suspended in 

diethyl pyrocarbonate-treated water. The isolated RNA samples were used for 

Real time PCR analysis. For the synthesis of cDNAs, reverse transcription 

was performed for 1 h at 42°C in a final reaction volume of 25 μl containing 

the total RNA, 5 μl of 5 X reaction buffer, 5 μl of dNTP, 2.5 μl of synthesis 

primer, 0.5 μl of RNasin Plus RNase Inhibitor and 1 μl of M-MuLV reverse 

transcriptase (Promega, WI, USA). cDNAs were diluted by the addition of 50 

μl of RNasefree ultra-purified water. 

 

RT-PCR 

At an early passage, trypsin-digested PESC and ESC cells were incubated in 

the bacteriological dish for 20 min to allow feeder cells to attach to the plates; 

then, PESCs and ESCs were harvested carefully. This step was repeated three 

times to remove feeder cells from the ESCs. RNA was extracted from 

undifferentiated PESCs/ESCs and EB using TRI reagent (Invitrogen). Reverse 

transcription for complementary DNA synthesis was performed with 6 μg 

RNA per sample using MMLV reverse transcriptase (Promega, WI, USA). 

Primer sequences were described in Table 1. 
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Real-time qPCR 

Expression levels of developmentally important genes (Igf1, Fgf2, Egf, Igf1, 

Dnmt3a, Dnmt3b, Nanog and Oct4), three germ layer marker genes (Afp, 

Nestin, Brachury-t), osteogenic cell-specific genes (Osteocalcin, Osteonectin, 

Bone sialoprotein, Osteopontin, Collagen type I, Alkaline phosphatase, and 

Runx2) and chondrogenic cell-specific genes, (Chordin-like 1, Collagen type 

II, Aggrecan, Decorin, MMP13 and Pax1) were measured by real-time qPCR. 

Real-time qPCR primers were designed using Primer Express software 

(Applied Biosystems, Foster City, CA, USA). Real time PCR was performed 

using the ABI PRISM 7500 system and SYBR Green PCR Master Mix 

(Applied Biosystems). All samples were run in triplicate to obtain technical 

replicates. The primers list of target genes was showed in Table 1. In each run, 

1 μl cDNA was used as a template added to 5 μl double-distilled water, 2 μl 

forward and reverse primers (20 pmol/ml), and 10 μl SYBR Green PCR 

Master Mix. The following amplification procedures were employed: 

denaturation stage (95°C for 10 min), amplification and quantification stage 

repeated 40 times (94°C for 15 sec, 60°C for 1 min with single fluorescence 

measurement) and dissociation curve stage (temperature increments of 0.1°C 

per 30 sec from 60 to 95°C with fluorescence measurement). Gene expression 

was always related to expression of Murine Gapdh as housekeeping gene, 

which is known to be a good reference gene for normalization of target genes 

expression levels. Quantification was performed using the ΔΔCT method. Non-

template control was used as the negative control. The paired samples t-test 
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was performed to compare the differences among the experimental groups. 

Primer sequences were described in Table 1. 

 

Statistical analysis  

Outgrowth rates were analyzed using the Chi-square test of SPSS (SPSS Inc., 

IL, USA). Mean gene expression values were analyzed using the t-test to 

compare parameters between the different groups. Difference at p < 0.05 was 

considered significant. 
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Table 1. Primer sequences (5’-3’) used in real-time PCR. 

Gene name Forward primer Reversed primer 
Access 

numbers 

Oct4 
CCGTGTGAGGTG

GAGTCTGGAG 

GCGATGTGAGT

GATCTGCTGTAG 
NM_013633.1 

Nanog 
GAAATCCCTTCCC

TCGCCATC 

CTCAGTAGCAG

ACCCTTGTAAGC 
NM_028016.3 

Alpha-fetoprotein  
CACACCCGCTTCC

CTCATCC 

TTCTTCTCCGTC

ACGCACTGG 
NM_007423.4 

Brachury-T 
CACACCACTGAC

GCACAC 

GAGGCTATGAG

GAGGCTTTG 
NM_009309.2 

Nestin 
GGAGAAGCAGGG

TCTACAG 

AGCCACTTCCAG

ACTAAGG 
NM_016701.3 

Dnmt3a 
GATGTTCTTTGCC

AATAACC  

CAGGAGCCCTGT

AGAATC 
NM_007872.4  

Dnmt3b 
CCTGCCCGCAAA

GGTTTAT 

GGCCACAACATT

CTCGAACA 
NM_010068.5 

Fgf2 
ATGGCGTCCGCG

AGAAG 

AGGTACCGGTTG

GCACACA 
NM_008006.2 

Egf 
GGTCCTGCTGCTC

GTCTTG 

TCCGCTTGGCTC

ATCACAA 
NM_010113.4 

Igf1 
GACAGGCATTGT

GGATGAGT 

GATAGAGCGGG

CTGCTTTTG 
NM_010512.5 

Igf2 
CCCAGGTGTTTGC

CTCAACT 

ATTAGGTTTGCG

AGCGTTAA 
NM_010514.3 

Gapdh 
GCATGGCCTTCCG

TGTTCCTA 

CTTCAGTGGGCC

CTCAGATGC 
NM_008084.3 

Osteocalcin 
CCGGGAGCAGTG

TGAGCTTA 

TAGATGCGTTTG

TAGGCGGTC3’ 

NM_0010322

98.3 

Osteonectin 
ATCCAGAGCTGTG

GCACACA 

GGAAAGAAACG

CCCGAAGA 
NM_009242.5 

Bone sialoprotein 
CAGAGGAGGCAA

GCGTCACT 

CTGTCTGGGTGC

CAACACTG 
NM_009263.3 
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Osteopontin 
GATGCCACAGATG

AGGACCT 

CTGGGCAACAG

GGATGACAT 

NM_0012042

01.1 

Collagen type I 
GCATGGCCAAGA

AGACATCC 

CCTCGGGTTTCC

ACGTCTC 
NM_007742.4 

Alkaline 

phosphatase 

GTGCCCTGACTGA

GGCTGTC 

GGATCATCGTGT

CCTGCTCAC 
NM_007431.3 

Runx2  
GTGCGGTGCAAA

CTTTCTCC 

AATGACTCGGTT

GGTCTCGG 
NM_009820.5 

Pax1 
GATGGAAGACTG

GGCGGGTGTG 

TTCTCGGTGTTT

GAAGGTCATTGC 
NM_008780.2 

Chordin-like 1 
TGCGAATACAAT

GGAACCACTTA 

ACAATGCCAAA

TGCTCGTAGAT 
NM_031258.3 

Collagen type II 
CTGCTCATCGCCG

CGGTCCTA 

AGGGGTACCAG

GTTCTCCATC 
NM_031163.3 

Aggrecan 
CCAAGTTCCAGG

GTC ACTGTT 

TCCTCTCCGGTG

GCAAAGAAG 
NM_007424.2 

Decorin 
CCCAGATCAGAA

CAC TGCACC 

ATGACCCTGACA

ATCCCCTG 
NM_007833.6 

MMP13 
CAGTTGACAGGCT

CCGAGAA 

CGTGTGCCAGA

AGACCAGAA 
NM_008607.2 
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RESULTS 

 

1. Generation of parthenogenetic murine embryonic stem 

cells 

 

ICM outgrowth rate of blastocysts derived either from MTC 

or drop methods 

The blastocyst outgrowth rate was different significantly between the MTC 

(75.0%) and the Drop culture group (65.4%) (Table. 2). Although outgrowing 

inner cell masses were found in both groups after seeding on the feeder layers, 

three PESC lines had been only generated from the MTC system while no 

PESC line was generated from the blastocysts cultured via the Drop method. 

 

Characterization of PESCs 

The PESCs derived via MTC showed typical mouse ESC morphology 

(stacked like a dome or an oval with clear boundaries), and the cells adhered 

tightly to each other, making it impossible to visualize individual cells in the 

colonies. Immuno-staining showed that the PESCs lines are positive for 

pluripotent mouse stem cell markers, including OCT4, SSEA-1, and ALP (Fig. 

6). In addition, RT-PCR analysis revealed that pluripotency genes Oct4 and 
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Nanog are expressed in PESCs. The figures presented here (Fig. 6 to 8) were 

from the first PESC cell line derived from the B6D2F1 blastocyst (BDF- 

PESC1).  

 

In vitro differentiation: EB 

The differentiating potential of EB was analyzed using RT-PCR. After 4 days 

in suspension culture, only PESC-derived EBs expressed genes representing 

mesoderm (Brachyury-T) and ectoderm (Nestin), not endoderm (Alpha-

fetoprotein) (Fig. 7) while ESC-derived EBs expressed genes representing 

three germ layers.  

 

In vivo differentiation 

Teratomas derived from PESCs showed only ectodermal and mesodermal 

lineage differentiation (Fig. 8). Rosettes of neural epithelium (Fig. 8A), gut-

like epithelium (Fig. 8B), stratified squamous cells (Fig. 8C), and fibrous 

tissues (Fig. 8D) were shown in ESC-derived teratomas, while immature 

neural tissues (Fig. 8E), gut-like epithelium (Fig. 8E), neural tube structure 

(Fig. 8F), blastemal tissue (Fig. 8G), and glandular cells (Fig. 8H) were 

shown in PESC-derived teratomas. No endodermal tissue was observed in 

PESC-derived teratomas. 
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Table 2. The outgrowth and PESC generation from the blastocysts of 

B6D2F1 mice 

Group1 Blastocysts Outgrowth on the feeder layer (%) PESC line 

Drop 26 17 (65.4%) 0 

MTC 32 24 (75.0%) 2 

Three replicates. 
1Drop: conventional micro-drop culture, MTC: microtube culture. 
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Figure 6. Parthenogenetic embryonic stem cells (PESCs) derived from the 

mouse parthenogenetic blastocysts (C57BL/6 x DBA2 F1-hybrid: B6D2F1) 

produced in a micro-tube culture system (MTC). The figure is from the first 

PESC cell line derived from the B6D2F1 blastocyst (BDF-PESC1). (A) 

Outgrown cell colonies at passage 4. (B) The PESCs showed the expression 

of the pluripotency marker genes, Oct4 and Nanog, by RT-PCR. (C-F) The 

expression of pluripotent stem cell-specific markers was confirmed by 

immunostaining. The PESCs were positive for alkaline phosphatase (C), stage 

specific embryonic antigen-1 (D), and OCT4 (E) while negative for stage-

specific embryonic antigen-4 (F). Scale bar= 100 μm. 
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Figure 7. Differentiating potential of the embryoid body (EB) derived 

from the PESC. (A) Spherical EB was formed from the PESC (BDF-PESC1). 

(B) Expression of endodermal (Alpha-fetoprotein, AFP), mesodermal 

(Brachyury-T, B-T), and ectodermal (Nestin) markers in EB were analyzed by 

RT-PCR. The EB from PESC does not show endodermal differentiation 

potential. (C) The graphs show gene expression level of differentiating EB 

derived from PESC and ESC measured by real time RT-qPCR. Expression of 

endoderm-specific marker gene, AFP is not detected in PESC. 
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Figure 8. Transplantation of ESCs or PESCs from B6D2F1 embryos 

under the skin of the nude mouse. (A-D) Histological analysis of the ESC-

derived teratoma. Rosettes of neural epithelium (A), gut-like epithelium (B), 

stratified squamous cells (C), and fibrous tissues (D) are shown in ESC-

derived teratomas. (E-H) Histological analysis of the PESC-derived teratomas. 

Immature neural tissue (middle and left) and gut-like epithelium (right) (E), 

neural tube structure and blastemal tissue (F), gut-like epithelium (G), and 

glandular cells (H) are shown in PESC-derived teratomas. Scale bar= 200 μm 

for (A, B, E) and 100 μm for (C, D, F, G, H). 
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Gene expression analysis in parthenogenetic murine 

blastocysts 

Gene expression levels of Igf1, Dnmt3a, and Oct4 were significantly (p < 0.01) 

higher in MTC-derived blastocysts than Drop culture-derived blastocysts (Fig. 

9). Igf1 and Oct4 gene expression in MTC-derived blastocysts were 4-fold 

higher than in Drop culture-derived blastocysts. Gene expression levels of 

other genes, such as Fgf2, Igf2, Dnmt3b, Nanog and Egf, were not 

significantly different between the two groups. 
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Figure 9. The expression levels of developmentally important genes on 

Drop and MTC cultured blastocyst. The graph represents the expression 

levels of developmentally important genes, such as Igf1, Igf2, Fgf2, Egf, 

Dnmt3a, Dnmt3b, Nanog and Oct4, in parthenogenetic B6D2F1 blastocysts 

derived from either MTC or Drop, as measured by real time RT-qPCR. Gene 

expression levels of Igf1, Dnmt3a, and Oct4 are significantly higher (*p < 

0.01) in MTC-derived blastocysts than Drop culture-derived ones. 
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2. Osteogenic differentiation of parthenogenetic murine 

embryonic stem cells 

 

Bone related gene expression in differentiated cells  

Expression levels of all the genes analyzed were significantly higher in IGF2-

treated PESC derivatives than IGF2-naive PESC-derivatives (Fig. 10). 

Expression levels of Osteopontin (p = 0.017), Osteonectin (p = 0.021), 

Osteocalcin (p = 0.042) and Runx2 (p = 0.032) were also significantly higher 

in IGF2-treated PESC derivatives than ESC derivatives whereas the levels of 

the other genes were similar to those in ESC derivatives. 

 

 

Bone regeneration potential in murine calvarial defects 

The internal structure of scaffolds was evaluated by SEM. The morphologies 

of cultured cells in the PLLA scaffolds were evaluated by SEM and 

histological staining on day 1. As shown in Fig 11A, the prepared PLLA 

scaffolds were highly porous. The irregular shaped pores were interconnected, 

and the size of individual pores ranged from several tens to two hundreds 

micron (67 ± 22 µm, n=176). One day after seeding, seeded cells in the 

scaffold showed well attached status on scaffold pores (Fig 11B, C). H&E 

staining confirmed that live status of cells at the time of staining (Fig 11D).  
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Figure 10. Osteogenic-specific gene expression in PESCs, ESCs, and 

IGF2treated PESCs after osteogenic induction. IGF2-treated PESCs were 

treated with IGF2 for the entire osteogenic induction period. ESCs were used 

as the control. Values with different superscripts are significantly different (a, 

b, c; p < 0.05). Expression levels of Osteopontin (bcp = 0.017), Osteonectin 

(bcp = 0.021), Osteocalcin (bcp = 0.042) and Runx2 (bcp = 0.032) were 

significantly higher in IGF2-treated PESC derivatives than the other groups. 

ALP* is Alkaline phosphatase. 
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Figure 11. The morphologies of the PLLA scaffold and cultured PESC-

derivatives in the PLLA. (A) Scanning electron microscope photographs of 

scaffold cross-sections. The prepared PLLA scaffolds were highly porous and 

the irregular shaped pores are interconnected. (B, C, D) Photographs of 

PESC-derivatives in the scaffold pores after 24 h of seeding in the PLLA by 

scanning electron microscopy (SEM; B, C) and hematoxylin and eosin (H&E) 

staining for histological evaluation (D). The SEM and H&E staining photos 

show that well attached and live status of the cells in the scaffold. Original 

magnification: X 100 (A, B); X 200 (D); X 500 (C) 
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After implantation of PLLA scaffolds containing IGF2-treated or IGF2-naive 

PESC derivatives in critical-sized calvarial bone defects, greater bone 

regeneration was evident in soft X-ray images in the defects treated with 

PLLA scaffolds containing IGF2-treated PESC derivatives than those treated 

with PLLA scaffolds containing IGF2-naive ones (Fig. 12). These results 

were confirmed by micro-CT measurements. New bone formation was about 

2-fold higher in the group treated with IGF2-treated PESC derivative than in 

the group treated with IGF2-naive ones (Fig. 13), based on micro-CT 

measurements 10 weeks after implantation. Histological analyses showed new 

bone regeneration in the calvarial bone defect regions of defects treated with 

scaffolds containing IGF2-treated cells (Fig. 14). In the scaffold-only (control) 

group, the defect region was filled with fibrous tissues due to foreign body 

reactions. Hard tissue and bone regeneration were not detected in the control 

group. The histological features of implantation sites treated with IGF2-naive 

PESC derivatives were similar to those seen in the control group though small 

foci of dystrophic calcification were observed in some IGF2-naive PESC. 
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Figure 12. Soft X-ray images of the in vivo implantation site in critical-

sized calvarial defects in mice. The circles indicate the original defect 

regions. The white dots within the circles may be calcification materials. (Left) 

Control group in which the PLLA scaffold only was implanted. (Center) 

Group implanted with PESCs. Before implantation, cells were induced to 

differentiate into an osteogenic lineage without IGF2 treatment for the entire 

induction period. (Right) Group implanted with IGF2-treated PESCs. Cells 

were treated with IGF2 for the entire induction period before implantation. 

More bone masses were observed in calvarial defects treated with PLLA 

scaffolds containing IGF2-treated cells than calvarial defects treated with 

scaffolds containing IGF2-naive cells. Scale bar= 5 mm. 
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Figure 13. Micro-CT results of bone formation in critical-sized calvarial 

defects in mice. (A) Reconstructed micro-CT images of the scaffolds 10 

weeks after implantation (Left, Control; Center, IGF2-naive PESCs; Right, 

IGF2-treated PESCs). The dotted circles indicate the original defects. New 

bone formation was about 2-fold higher in the group treated with IGF2-treated 

cells than in group treated with IGF2-naive cells. Scale bar= 1 mm. (B) Bone 

volumes of the constructs after subtracting the value of the blank control (did 

not receive any implant, including the scaffold). Values with different 

superscripts are significantly different (a, b, c; p < 0.05, one-way ANOVA-

test). Number of samples in each group is four. 
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Figure 14. Histological images after H&E staining. (A, B) In the control 

(scaffold only), the defect region after implantation was filled with fibrous 

tissues because of foreign body reactions, and hard tissue and bone 

regeneration were not detected. (C, D) In the group treated with IGF2-naive 

PESC derivatives, the histological features of the implantation site were 

similar to those seen in the control, although small foci of dystrophic 

calcification were observed in some specimens (rectangular box in the 

middle). (E, F) In the group treated with IGF2-treated cells, new bone 

regeneration was clearly evident in the calvarial bone defect region 

(rectangular box in the middle). Arrowheads mark the site of the original 

defect. Original magnification: X 40 (A, C, E); X 100 (B, D, F). 
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3. Chondrogenic differentiation of parthenogenetic 

murine embryonic stem cells 

 

Comparison of 2D and 3D culture systems for 

chondrogenic differentiation  

Alcian blue and Safranin O staining results from the comparison of 3D and 

2D culture systems are shown in Fig. 15. The regions stained with Alcian blue 

(Fig. 15A, B) and Safranin O (Fig. 15C, D) represent glycosaminoglycan and 

proteoglycan secreted by chondrogenic cells, respectively, that accumulated 

around the chondrogenic cells in both the 2D (Fig. 15A, C) and 3D (Fig. 15B, 

D) groups. The results indicate that the differentiated cell population derived 

from PESCs entered the chondrogenic lineage in all experimental groups. The 

levels of Pax1 (p = 0.009), Chordin-like 1 (p = 0.012), Collagen type II (p = 

0.014), and Aggrecan (p = 0.007) expression were significantly higher in the 

3D culture group than in the 2D culture group. The levels of Decorin (p = 

0.093) and MMP13 (p = 0.056) expression were not significantly different 

between the two groups (Fig. 16). 

 

Optimization of IGF2 supplementation for chondrogenic 

differentiation in the 3D culture system 



66 

 

 

 

Figure 15. Alcian blue and Safranin O staining of PESC-derived 

chondrogenic cells induced in 2D and 3D culture systems. (A) Alcian blue 

staining of PESC-derivatives from 2D culture system. (B) Alcian blue 

staining of PESC-derivatives from the 3D culture system. (C) Safranin O 

staining of PESC-derivatives from the 2D culture system. (D) Safranin O 

staining of PESC-derivatives from the 3D culture system. The regions stained 

with Alcian blue and Safranin O indicates glycosaminoglycan and 

proteoglycan, respectively, secreted by chondrogenic cells. Scale bar= 100 μm. 
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Figure 16. Chondrogenic-specific gene expression in PESC-derived 

chondrogenic cells induced in 2D and 3D culture systems. The extraction 

of mRNA and the synthesis of cDNA were performed twice, and all samples 

were run in triplicate to obtain technical replicates. Values with different 

superscripts are significantly different (p < 0.05, paired samples t-test). 
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Chondrogenic specific gene expression in PESC-derived chondrogenic cells 

after supplementation with various concentrations of exogenous IGF2 during 

induction in a 3D culture system and normal murine chondrocytes obtained 

from mouse femoral heads and condyles were analyzed by real-time qPCR. 

The expression levels of all chondrogenic marker genes analyzed by real-time 

PCR were significantly higher in the 100 ng/ml IGF2 supplementation group 

than in the 0, 1 and 10 ng/ml groups. The levels of expression were 7- to 35- 

fold higher than in the control. The expression levels of five chondrogenic 

marker genes in the 1 ng/ml group, excluding MMP13, were similar to those 

in the IGF2 free control. However, in the 10 ng/ml group, the expression 

levels of four marker genes, excluding Collagen type II and Decorin were 

upregulated when compared with the 0 and 1 ng/ml groups. The expression 

levels of pre-cartilage (Chordin-like 1 and Pax1) or chondrocyte maturation 

marker (Decorin) in the 100 ng/ml IGF2 supplementation group showed 

similar (Pax1) to or significantly higher (Chordin-like 1 and Decorin) than the 

levels in normal chondrocytes obtained from mouse femoral heads and 

condyles while the other marker genes (Aggrecan, Collagen type II and 

MMP13) which are normally expressed in mature chondrocytes (Fig. 17). 
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Figure 17. Chondrogenic-specific gene expression in PESC-derived 

chondrogenic cells after supplementation with various concentrations of 

exogenous IGF2 during induction in a 3D culture system and normal 

murine chondrocytes obtained from mouse femoral heads and condyles. 

mRNA extraction and cDNA synthesis were performed twice, and all samples 

were run in quadruplicate to obtain technical replicates. Values with different 

superscripts are significantly different (p < 0.05, paired samples t-test). 
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DISCUSSION 

 

1. Generation of parthenogenetic murine embryonic stem 

cells 

In the previous report, this new culture system called MTC provides an oil-

free culture environment and is easy to handle, as well. In addition, the MTC 

system enhanced the development of pre-implantation stage murine embryos. 

More embryos in MTC reached the blastocyst stage with a larger number of 

trophectodermal cells and developed faster than those in conventional micro-

drop culture. Here, as the next step, I established the ESC lines from 

parthenogenetic murine blastocysts produced in vitro and found that the 

embryo culture system can influence the efficiency of ESC generation. 

The aim of the present study was to introduce the MTC system as a more 

effective way of generating PESC lines than the traditional oil-covered micro-

droplet culture. After the first derivation of ESC lines from the mouse 

blastocysts, several standard and modified protocols were introduced. 

However, these protocols produce ESCs with only low efficiency in the most 

outbred/inbred strains and require specialized tools for embryo handling [119]. 

During the long process of ESC derivation, IVC of the embryos can be a 

critical step because obtaining qualified blastocysts can result in successful 

ESC production [120]. Since the ICM of the blastocysts is the source of ESC, 
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the ICM’s condition is one of the important and conclusive factors for 

generating the ESC line. Although those results here did not show a 

significantly higher ICM outgrowth rate in MTC-derived parthenotes, I had 

shown that MTC system supports more blastocyst formation and more cells in 

the blastocyst in the previous report [51] and this might resulted in the 

generation of MTC-derived PESC lines in the present work. 

To investigate the PESC generation potential of the MTC-derived 

blastocysts at molecular level, we compared the expression levels of genes 

related with embryonic cell growth (Igf1, Igf2, Fgf2, and Egf), methylation 

status (Dnmt3a and Dnmt3b), and pluripotency (Oct4 and Nanog), in the 

blastocysts from either the MTC or Drop culture systems to investigate the 

differences of their ESC potential at the molecular level. The IGF family is 

important for the early embryogenesis in mammals [48, 53]. The addition of 

IGFs to the culture medium increased the blastocyst rate and ICM cell number 

in the embryos produced in vitro. Other growth factors, FGF and EGF, also 

have important roles during the early embryogenesis [52, 121, 122]. Among 

the growth factor genes we analyzed, the expression levels of IGF2 were the 

same in both MTC and Drop. Since IGF2 is a paternally expressed imprinting 

gene, this result indicates that the MTC system does not affect the imprinting 

status in the parthenogenetic blastocysts. However, expression of Igf1 is 

significantly higher in the MTC blastocyst, and this may have resulted in 

higher blastocyst development and ICM cell number in the embryos as 

previously reported [51]. DNA methylation is implicated in controlling 

javascript:flink(%22conclusive%22);
javascript:flink(%22factor%22);
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imprinting gene expression, X chromosome silencing, and embryonic 

development. It is also believed that methylation protects the genome from 

parasitic elements, such as transposons and viruses [55]. The murine DNMT3 

family consists of two genes, Dnmt3a and Dnmt3b, which are essential for de 

novo methylation in murine ESC and early murine embryos but down-

regulated after differentiation and expressed at low levels in adult somatic 

tissues [123]. Abnormal or weak expression of both DNMT3a and DNMT3b 

interrupts de novo DNA methylation in ESC or genome-wide de novo 

methylation during early mammalian development [124]. Therefore, highly 

expressed genes of the DNMT3 family are essential in generating ESCs [55]. 

DNMT3b is also expressed in mouse hematopoietic progenitor cells, 

spermatogonia, and during neural cell development in the murine embryo 

[125, 126]. Here, I found that expression of Dnmt3a increases significantly in 

the MTC group, whereas Dnmt3b does not. This result suggests that MTC 

system for embryo culture may affect the methylation status of in vitro-

produced parthenogenetic embryos. This may be caused by de novo DNA 

methylation (a role of Dnmt3a) in ESCs. The genes related to cell 

pluripotency, such as OCT4 and NANOG, affect ICM quality and ESC line 

establishments [56]. Those genes also affect the expression of up- and down-

stream genes, as well as embryonic growth and development during early 

embryogenesis. The parthenogenetic blastocysts in MTC showed higher Oct4 

expression than those in Drop although the number of ICM cells was not 

increased in MTC [51]. On the other hand, no difference was found in Nanog 
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expression between the two groups. As OCT4 (POU transcription factor, also 

known as Oct3 or Oct3/4) is known as an ICM-related gene, higher 

expression of this gene may correlate with an increased ICM number in MTC-

derived blastocysts [56]. Although Oct4 expression is known to follow Fgf 

expression in the pre-implantation embryos, an increased Oct4 level in the 

MTC system may not be due to Fgf because there is no difference in the Fgf 

expression level between MTC and Drop systems [56]. Promoted expression 

of developmentally important genes in the MTC-derived blastocysts, such as 

Oct4, Igf1, and Dnmt3a might result in more blastocysts, faster embryonic 

development, and larger cell numbers in the MTC blastocysts and these 

should support generation of pluripotent stem cells from the parthenogenetic 

murine embryos. 

In vivo and in vitro differentiation experiments showed interesting results. 

In general, the teratoma from ESC forms three germ layer lineage cells in the 

immune-deficient mouse, and this proves ESC pluripotency in vivo. However, 

in this experiment, PESCs showed only 2-germ layer (mesoderm, ectoderm) 

differentiation in the teratoma (Fig. 8). No endoderm tissue was observed in 

PESC-derived teratomas. No endoderm-specific gene expression was 

observed in PESC-derived EBs, as well (Fig. 7). This phenomenon may due 

to abnormal imprinting gene expression in PESCs. Although other reports also 

claimed that PESC shows restricted tissue distribution [45, 127], the recent 

study showed no contribution restriction in PESC chimeras [128]. Difference 

of the cell-lines used in each studies is may be one of the explanation as well 
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as the other environmental factors. Although our present data shows lower 

establishment rate of PESC in B6D2F1 than other groups reported [129], 

During the manipulation of mammalian embryos, such as in vitro production, 

intracytoplasmic sperm injection, or nuclear transfer, the oocytes or embryos 

exposed to an artificial or unnatural environment show poorer developmental 

competence than in vivo ones [130]. This phenomenon occurs more often in 

inbred or outbred strains than in F1-hybrids in the production of in vitro 

embryos and ESC line establishment [131]. After the first derivation of ESC 

lines from blastocysts, several standard and modified protocols were 

introduced. These protocols produce ESC with low efficiency in most outbred 

strains and require specialized tools for embryo handling [119, 132]. 

Specifically conditioned medium [131, 133], genetic modification of the 

embryo, and microdissection of the blastocyst improve mouse ESC generation 

[134]. Such modifications improve ESC efficiency but require specialized 

techniques. Because obtaining qualified blastocysts is a pre-requisite for 

successful ESC generation and, although many other laboratories have 

focused on the post-blastocyst seeding step to enhance ESC generation 

efficiency, our MTC system that increases the number of qualified blastocysts 

might result in efficient ESC generation. 

In conclusion, the MTC system, involving oil-free micro-tube culture 

method, is an effective embryo culture method for generating PESC lines in 

hybrid (C57BL/6 x DBA2), and this may be due to the promoted expression 

of developmentally important genes, such as Oct4, Igf1, and Dnmt3a. 
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2. Osteogenic differentiation of parthenogenetic murine 

embryonic stem cells 

ESCs have been induced to differentiate the wide variety of cell types by 

supplementing the culture medium with specific factors. Cultures of ESCs in 

defined media containing various proteins and small molecules have been 

used as a strategy to investigate ESC differentiation in vitro [135, 136]. In 

particular, culturing cells under defined conditions in medium containing 

several factors is a good strategy for discovering factors that are critical for 

inducing or improving specific cell lineages. I have shown previously that 

PESCs, which are derived from parthenogenetic blastocysts, can be induced to 

differentiate into an osteogenic lineage by supplementation of the culture 

medium with defined induction factors [45]. However, the differentiation 

potential of PESCs is limited compared to that of ESCs [36, 54]. The limited 

differentiation potential of PESCs relative to ESCs may be related to the 

abnormal expression of imprinting genes in PESCs. We hypothesized that the 

addition of a soluble factor (IGF2) that is silenced in PESCs could potentially 

enhance the osteogenic cell differentiation of PESCs. PESCs do not express 

IGF2, and these results demonstrate, the lack of endogenous IGF2 expression 

can be compensated for by exogenous supplementation with this factor, 

resulting in osteogenic cell differentiation. As mentioned earlier, IGF2 is a 

paternally expressed imprinting gene that is therefore not expressed in PESCs. 

I demonstrated using both in vivo and in vitro experiments, that IGF2 
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enhanced the osteogenic differentiation potential of PESCs. In vitro study 

results reveal that IGF2-treated PESC derivatives differentiated into an 

osteogenic cell lineage better than PESCs not exposed to IGF2. The 

osteoblast-specific gene expression of IGF2-treated PESC derivatives was 

more similar to that of ESC derivatives than IGF2-naive PESC derivatives. 

Bone is a mineralized connective tissue that consists mainly of collagen type I 

and other fiber or non-fiber matrix proteins, such as marker genes analyzed in 

this study and proteoglycans [137]. Osteopontin, a non-collagenous bone 

matrix molecule, is associated with osteogenic cell adhesion and is abundantly 

expressed during the early stages of osteoblast differentiation in the mouse. 

The expression of intermediate/late osteogenesis markers such as Runx2 

(Cbfa-I), bone sialoprotein, and osteocalcin confirms the existence of a fully 

differentiated osteogenic cell population in addition to osteogenic progenitors 

[67, 138]. Therefore, in vitro results indicate that IGF2 promoted the 

osteoblastic differentiation of PESCs.  

To confirm this in vitro result, an in vivo transplantation experiment was 

performed using a calvarial defect mouse model. We performed this in vivo 

study to determine whether the IGF2-treated PESC derivatives possessed 

actual bone formation capacity and could potentially be used to stimulate hard 

tissue regeneration. Ten weeks after cell transplantation, soft X-ray, micro-CT, 

and histochemistry results confirmed that the IGF2-treated PESC derivatives 

had greater bone regenerative potential than IGF2-naive ones. MSC are 

widely used in bone regeneration research. They have the capacity to express 
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markers of various type of tissues including muscle, nerve, bone and cartilage 

[99, 139]. Implantation of MSC is known to have the potential to enhance 

healing of bone and cartilage [104, 140]. In particular, bone regeneration 

result shows approximately 10~20% healing efficiency in calvarial defect 

murine model experiments [141, 142]. Healing efficiency in the present study 

is compatible to previous reports using MSC as the cell source. By the 

treatment of IGF2 during osteogenic induction, bone differentiating capacity 

of PESCs could be reached to the similar level of MSC. As shown in Fig 13, 

samples in all experimental groups show minor bone healing evidence around 

the defect region. This originates from a natural bone healing process, not 

from the osteogenic process of PESC derivatives. In contrast, from the natural 

bone healing, the sample of IGF2-treated PESC derivatives shows well 

defined bone regeneration from the center of scaffold which proves that the 

bone regeneration comes from PESC derivatives. Although there is an 

evidence of central bone regeneration in IGF2-naive PESC-derivatives, the 

regeneration efficiency is remarkably lower than IGF2-treated counterpart. 

Regardless of IGF2 treatment, the reason for bone regeneration majorly 

occurred in the center of scaffolds might be related with the way of cell 

seeding methods. The cells with medium tend to be placed onto the center of 

the scaffold by dropping with a pipette during the seeding, enabling more 

cells to be located in the center of the scaffold than in the peripheral part. As 

the result, more bone regeneration can be found in the central region of the 

scaffold. At present, autogenous graft is considered as the standard in 
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regeneration therapy protocols [143, 144]. However, this has some 

disadvantages such as concern for harvesting affordable amount of cells and 

the need for more surgeries. Application of biomaterials such as PLLA can be 

an alternative to autogenous graft [143]. PLLA is becoming an 

environmentally sustainable alternative to petro-chemical derived products 

due to its biodegradable characteristics and the renewable nature of its 

feedstock [145], in addition to its nontoxic and non-carcinogenic effects to the 

local tissues [90]. It has been reported that implantation of PLLA is 

supportive for bone regeneration in in vivo models [146]. However, in this 

study, implantation of PLLA without osteogenic cells shows very limited 

bone regeneration capacity when compared with the implantation results of 

PLLA with IGF2-treated or naive PESC-derivatives. Thus, implantation of the 

scaffold with cells having osteogenic potential may be still crucial for 

successful bone regeneration at the clinical level. 

In conclusion, the results suggest that supplementation of the culture 

media of PESCs with exogenous IGF2 induces these cells to differentiate into 

an osteogenic lineage. Although there are many remarkable reports in the 

regenerative medical literature of successful tissue engineering using cellular 

supports, few of these studies investigated PESCs and their derivatives, 

despite the fact that by using PESCs, the ethical concerns associated with 

embryonic stem cell research can be avoided [147]. If osteogenic cells from 

PESCs could enhance bone regeneration in humans, PESCs could potentially 

be used to treat female patients with irreversible osteoporosis or bone loss 
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problems. PESCs are therefore a potentially viable alternative therapy for hard 

tissue regeneration and skeletal tissue repair.  

 

3. Chondrogenic differentiation of parthenogenetic 

murine embryonic stem cells 

In the present study, we attempted to compare the efficiency of two culture 

methods by measuring the levels of chondrogenic marker gene expression. 

Compared with conventional monolayer 2D culture, the alginate beads that 

are used in the 3D culture system upregulated the expression of five 

chondrogenic marker genes approximately 4-to 14-fold. Multi-lineage 

differentiation has been attempted using the 2D culture system for 

chondrogenic cell induction from buffalo PESCs [8]. In this report, 

dissociated feeder-free ESCs were cultured in induction medium for 30 days 

to induce chondrogenic differentiation. The cell aggregates were small and 

round, positive for Alcian blue staining, immunoreactive to Collagen type II 

antibody, and expressed the Collagen type II and SOX9 genes. However, 

direct-plating of EBs, which is called conventional 2D culture, did not provide 

a controlled seeding density and was insufficient for constructing optimal 

conditions for chondrogenic induction when compared with the 3D micro-

mass culture system [148]. For mammalian cell culture a 3D 

microenvironment such as hydrogels promotes cell-to-cell interactions 

through secreted extracellular matrix and produces spherical cellular 
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morphologies. The limited space of the 3D microenvironment also suppresses 

the proliferation and differentiation of endothelial cells or other migratory 

cells from EBs, which are frequently observed in conventional 2D culture of 

EBs [135].  The 3D culture system is more similar to in vivo environments. 

Thus, some studies have reported distinct cellular behavior observed only in 

3D culture [149]. These results showing higher expression levels of 

chondrogenic marker genes in a 3D culture system demonstrate the 

therapeutic potential of this system as it is further developed to mimic the 

behavior of normal chondrocytes.  

In the second round of experiments, we evaluated the effect of various 

concentrations of exogenous IGF2 from 0 to 100 ng/ml on the in vitro 

chondrogenic differentiation of PESCs by measuring the expression levels of 

chondrogenic marker genes. IGF2 is an important factor for organ formation 

in embryonic development. However, expression of the IGF2 gene is 

abnormal in PESCs because it is an imprinted gene that is only expressed by 

the paternal genome, which is absent in parthenogenetic embryos and PESCs 

[72]. The inability of PESCs to completely differentiate may be related to the 

abnormal expression of imprinted genes such as IGF2 in PESCs. We 

hypothesized that the addition of soluble IGF2 could potentially enhance the 

chondrogenic cell differentiation of PESCs, and the results demonstrate that 

exogenous supplementation of IGF2 can compensate for the lack of 

endogenous IGF2 expression. As expected, all marker genes were highly 

expressed in the 100 ng/ml IGF2 supplementation group. The levels of 
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expression were 7- to 35- fold higher than in the control and the expression 

levels were similar to those observed in normal murine chondrocytes, which 

were derived from the femoral heads and condyles of adult mice. 

According to a previous report from another research group, treatment of 

human chondrocytes with 100 ng/ml IGF2 enhanced the expression of the 

chondrogenic marker genes, Aggrecan and Sox9. Sox9 is a pre-cartilage 

marker gene [111]. Treatment of human chondrocytes with IGF2 has been 

shown to activate the PI3K and TGF-ß pathways [111]. The P13K pathway 

activates the transcription of chondrogenic genes such as Aggrecan and 

Versican [111]. Similarly, in the present study, the levels of all six 

chondrogenic marker genes increased in the 100 ng/ml IGF2 supplementation 

group. Chordin-like 1, a pre-cartilage marker gene, that is primarily expressed 

in condensing mesenchymes and more highly expressed in chondrogenic cells 

than in normal chondrocytes [150]. In the present study, Decorin, which is 

upregulated during the maturation phase of cartilage development, and 

Chordin-like 1 expression were increased by 1.5-fold in the 100 ng/ml IGF2 

group compared to that in normal chondrocytes. In the case of another pre-

cartilage marker, Pax1, a gene encoding a transcription factor involved in 

mesenchymal differentiation, the expression level in the 100 ng/ml IGF2 

group was comparable to that in normal chondrocytes [103]. In contrast, 

expression levels of Aggrecan and Collagen2, which are components of the 

extracellular matrix of mature cartilage were lower in the 100 ng/ml IGF2 

group compared to the levels in the normal chondrocytes [151]. In addition, 
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there was a remarkable decrease in the expression of MMP13, which is 

expressed in both hypertrophic chondrocytes and osteoblasts [105]. These 

results indicate that treatment of PESCs with the appropriate concentration of 

exogenous IGF2 can enhance chondrogenic differentiation, particularly in the 

pre or early mature stage of development.  

In conclusion, a 3D culture system is more reliable for in vitro culturing of 

murine PESCs for chondrogenic differentiation. In addition, supplementation 

with the optimal concentration of IGF2 improves the efficiency of 

chondrogenic differentiation of murine PESCs in a 3D culture environment. 

We assume that the addition of IGF2 may re-activate genes or factors in the 

downstream of IGF2 gene, which only express in the paternal genome and are 

normally silent in PESCs, and such compensative supplementation of 

imprinting factor(s) can improve the efficiency of differentiation to specific 

lineages in monogenic stem cells. 
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CONCLUSION 

 

In regenerative therapy of bone and cartilage, mesenchymal stem cells, one of 

the ASCs, have the potential to repair damaged tissues. MSCs have special 

immune-regulation factors that inhibit immune rejection of transplanted 

MSCs. Moreover, these cells are already used in clinical trials for the repair of 

damaged bones and cartilages. Although some cases have shown success in 

the clinical trials using MSCs, MSCs, which are isolated and cultured from 

human bone marrow, are rarely found in adult tissues. Moreover, the ability of 

isolated cells to proliferate and differentiate decreases based on the age of the 

related donors. Thus, transplanted MSCs from allogeneic donors increase the 

rate of immune rejection. To overcome these limitations, ESCs as a novel cell 

source have emerged and been studied for use in regenerative therapeutics. 

ESCs have not been used in human clinical trials but have been widely 

studied, and clinical results in animal models have been widely established. 

Nevertheless, these cells with their potential use as a cell source for bone and 

cartilage regeneration have several challenges as well as ethical concerns. To 

avoid these problems, I investigated PESCs in this thesis. Because the 

mammalian parthenote cannot develop to full term, the use of PESCs avoids 

the ethical issues associated with human ESCs. These cells are pluripotent, 

and if derived from an oocyte of a female patient, have the genetic 

information of that patient, thus preventing immune rejection responses. 
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Although PESCs have those advantages compared to ESCs, they also have 

some defects in their differentiation potential. In this thesis, I developed one 

of method to overcome this weakeness of PESCs. Through simple 

modification of a traditional differentiational method, I found a way to 

overcome the weak differentiatioin potential of PESCs. Considering the lack 

of paternal imprinting gene expression in PESCs, we selected a paternal 

imprinting gene that is important for osteogenic and chondrogenic 

differentiation. IGF2 is one of the candidates, and this gene was reported to 

act as cytokine in mesoderm differentiation. Based on the confirmed results, I 

hypothesize that the addition of the protein of imprinting gene in the induction 

media would affect the differentiation. This hypothesis was confirmed with an 

experiment. I demonstrate that it is possible to increase the differentiation 

efficiency by the addition of the deficient cytokine without inducing a genetic 

modification. These results suggest that PESCs can be used in regenerative 

medicine through a simple change in the traditional culture methods. 

Moreover, these results provide useful information for many related fields 

such as stem cell biology and embryo technology. 
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국 문 초 록 

 

마우스 단위발생 배아줄기세포주의 확립과 

골모세포 및 연골모세포로의 분화 

 

강 호 인 

종양 및 발달생물학  

서울대학교 대학원 

 (지도교수: 노 상 호, D.V.M., Ph.D) 

 

골조직 손상을 치료하는 분야는 정형외과 및 치과연구에서 매우 

중요한 영역이다. 전분화능을 가진 배아줄기세포는 모든 세포로의 

분화가 가능하기 때문에 골조직 재생의학분야에서 좋은 세포원으로 

연구되어 왔다. 본 연구에서는 단위발생 배아줄기세포를 이용하여, 

이전에 알려진 골조직 분화기법에 변화를 주어 분화 효율을 

높이고자 연구를 진행하였다. 단위발생배아 배양은 새로운 배양법인 

micro-tube 배양기법을 이용하였다. 본 배양기법을 통해 생산된 

단위발생배아는 줄기세포주 생산에 높은 효율을 보였으며, 

유전자발현 분석을 통하여 관련유전자 중 배아의 성장과 관련이 

있는 Igf1 및 전분화능과 관련된 Oct4 의 발현이 증가한 것을 

확인할 수 있었다. 제작된 단위발생배아줄기세포는 전분화능을 

가지면서도 배반포 이후 발생이 불가능한 점 때문에 

배아줄기세포가 가지는 단점 인 윤리적 문제를 극복할 수 있어 

전붅화능 줄기세로를 이용한 재생의학연구에 있어서 좋은 
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세포원으로 알려져 있다. 그러나, 부계각인유전자가 발현하지 않는 

것으로 인하여 분화능력은 매우 제한적인 것으로 알려져 있다. 

따라서, 본 연구에서는 중요한 부계각인유전자의 유사발현을 유도할 

경우, 단위발생배아줄기세포의 분화효율이 높아질 것으로 

가정하였다. 부계각인유전자 중 배아의 성장에 중요한 것으로 

알려진 Insulin like growth factor 2 (IGF2)를 분화 시 배양액에 

첨가함으로써 분화효율에 변화를 줄 수 있는 지 확인하였다. 

실험결과 IGF2 를 분화유도 배양액에 첨가하는 것 만으로 

유전자발현의 보상효과를 유발하여 단위발생배아줄기세포의 

골모세포 및 연골모세포로의 분화효율이 증진함을 확인하였다. 

골모세포로의 분화에서는 분화유도 용액에 IGF2 를 첨가한 결과, 

분화관련 유전자 중 osteocalcin, osteopontin, osteonectin, 

alkaline phosphatase 의 발현이 증가함을 확인하였다. 두경부 

골조직 손상 마우스 모델을 이용한 실험에서는 체내 골조직 

재생효율이 높아지는 것을 확인하였다. 연골모세포로의 분화에서도 

유사한 결과를 확인하였는데 연골분화유도 용액에 IGF2 를 첨가한 

결과, decorin, chordin-like 1, pax1, aggrecan, collagen type II 

와 MMP13 의 발현이 증가함을 확인함으로써, IGF2 의 배양액 내 

첨가는 분화효율에 효과적임을 확인하였다. 이러한 결과를 종합해 

하여, 이번 연구에서는 단위발생배아줄기세포의 세포주 확립에 

새로운 배아배양법이 유효함을 확인하였고 부계각인인자인 IGF2 의 

배양액 내에 첨가가 단위발생 배아줄기세포주의 특정계통으로의 

분화효율을 높일 수 있음을 확인하였다.  

 

주요어: 배아배양, 단위발생, 단위발생배아줄기세포, 각인유전자, 

골모세포, 연골모세포 

학번: 2006-22202 


	INTRODUCTION 
	MATERIALS AND METHODS
	RESULTS
	DISCUSSION 
	CONCLUSION
	REFERENCES
	ABSTRACT IN KOREAN


<startpage>16
INTRODUCTION  1
MATERIALS AND METHODS 15
RESULTS 37
DISCUSSION  58
CONCLUSION 71
REFERENCES 73
ABSTRACT IN KOREAN 93
</body>

