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 Sloshing is a well-known phenomenon that has attracted attention of 

researches over the last few decades. Sloshing in LNG cargo tanks had a new 

turn with changes in the LNG market at the end of 1990’s. As a result, 

increase in tanks sizes and changes in operational conditions were inevitable 

which brought some technical concerns regarding sloshing problem. There are 

a great number of studies in the area of sloshing including analytic, 

experimental and numerical studies. Since sloshing is a complex liquid 

motion, the computational effect required for numerical analysis is very high. 

Therefore, experimental method is widely used in determination of slosh-

induced loads.  

 Accurate prediction of maximum pressure in a designated return 

period is a crucial step in structural design of LNG cargo containment system. 

In order to determine the maximum pressure, statistical post-processing must 

be carried out. In this step, it is important that an appropriate statistical 

distribution is used to describe the peak pressures. Traditionally, Weibull and 

generalized Pareto models are used in short term prediction; however, there is 
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a need for a wider investigation in this area to find better alternatives for long 

term prediction. 

 Another issue about sloshing impact pressures is the idealization of 

peak pressure signals. In the current procedure, peak pressure signals are 

modelled as triangular shapes for the simplicity of structural analysis. 

Triangular modelling that passes through rise and decay times at a certain 

ratio of peak pressure value is used most commonly. Since accurate modelling 

of peak pressure signals and determination of rise and decay time are 

significant in terms of structural response, the modelling of peak pressure 

signals must be studied in more detail. 

 In this thesis, statistical analysis of sloshing impact pressures is 

carried out. To this end, various statistical models are applied to peak pressure 

data which were acquired from sloshing models tests of 5hrs duration (in real 

scale) repeated 20 times in 3 filling levels, and, for further analysis, the best 4 

distributions are chosen which are Weibull, generalized Pareto, generalized 

extreme value and log-logistic distributions. Using different distribution 

fitting methods, these statistical models are applied to the data sets of peak 

pressures. The fits are evaluated using probability-of-exceedance curves and 

goodness-of-fit tests according to different filling levels. Another evaluation is 

carried out by comparing the squared error between accumulated peak 

pressure data (100hrs test data) and short duration test data (5hrs test data) 

fittings in different zones of return period. This evaluation results are also 

displayed in long term, being plotted to understand the behaviors of 

distributions in case of long term prediction. In addition, taking 100hrs test 

data as a reference, another comparison is made for the current short term 

prediction procedure of the classification societies. 

 In the next part of the thesis, analysis on triangular modelling of 

impact pressure signals is carried out. The rise and decay times in 9 stations of 
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pressure signals are extracted and utilized for comparing different pressure 

ratios of triangular signal modelling. The summed absolute difference 

between the rise and decay times in actual signal and modelled signal are 

calculated in these 9 stations. The comparison of pressure ratios are displayed 

in different percentages of highest peak pressures in each filling level. 

Considering the results, a suggestion is made for pressure ratio of triangular 

signal modelling. 

Keywords: Sloshing, impact pressures, statistical analysis, sloshing 

experiment, signal modelling.  

Student Number: 2015-23297 
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1. Introduction 

 Sloshing is a well-known phenomenon that occurs in partially filled 

LNG tanks. Sloshing in LNG cargo tanks had a new turn with changes in the 

LNG market at the end of 1990’s. Due to the growing demand of LNG in the 

world, the demand for larger LNG carriers also increased. While modest LNG 

carriers up to 145,000 m
3
 capacity were built in the 1970’s to 1990’s, the 

capacity of ships built after 2000 are up to 280,000 m
3
. With larger ships and 

mostly the same number of tanks, the increase in the tank size was inevitable 

for efficient and economic operation. Moreover, LNG market being a spot 

market brought concerns about filling restrictions. In order to have the 

flexibility of partially loaded operation, sloshing in intermediate filling levels 

also started to draw attention of researchers. With the spreading of the floating 

production storage and offloading platforms (FPSOs), LNG carriers face more 

harsh weather conditions during loading and offloading operations. All in all, 

these changes in the LNG market effects the design of the cargo containment 

systems in LNG carriers, raising some technical issues in sloshing in LNG 

tanks. 

 Sloshing has attracted attention of researches over the last few 

decades. There are numbers of numerical studies regarding estimation of 

sloshing pressures in membranes. Since sloshing is a highly stochastic and 

complex motion which includes phenomenon such as splash and wave 

breaking, it requires a great computational effort to calculate the sloshing 

impact pressures which occurs in small areas of the tank. Therefore, 

experimental method is widely used in determination of slosh-induced loads 

as well as in validation of numerical simulations. Once sloshing experiment is 

conducted and pressure signals are received, statistical post-processing must 

be carried out in order to acquire design sloshing load from peak pressures. 

Mathiesen (1976) and Gran (1981) are the two fundamental researches in this 
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area, applying a statistical approach to estimate the design sloshing loads. 

Mathiesen applied Weibull distribution to peak pressure data acquired from 

random pitch motion while Gran applied Weibull and Frechet distributions to 

peak pressures and compared both results. In Graczyk et al. (2006), statistical 

analysis of 5hrs sloshing model tests are carried out, applying Weibull and 

Generalized Pareto models to the sets of peak pressure data. In the study, a 

procedure for sloshing experiments is presented as well as discussions about 

spatial and temporal characteristics of pressures and model scaling problem. 

Kuo et al. (2009) gathers basic challenging issues in LNG sloshing including 

statistical modelling of maximum sloshing pressures and estimation of 

confidence bounds. Fillon et al. (2011) focuses on statistical post-processing 

of experimental data by fitting generalized extreme value, three-parameter 

Weibull and generalized Pareto distributions to peak pressures and using 

Kolmogorov-Smirnov goodness-of-fit test and confidence intervals to 

evaluate these fittings.  

 Accurate prediction of maximum pressure in a designated return 

period is a crucial step in structural design of LNG tanks. Estimated 

maximum pressure changes significantly according to which statistical 

distribution is used in mathematical description of peak pressures. In the 

current application, Weibull distribution and generalized Pareto distribution 

are mostly used to estimate the maximum pressure. In short term prediction, 

different distributions may return closer estimates. However, recently long 

term prediction has attracted interest as it considers the weather conditions 

that the ship may endure during its life-time. In long term prediction, 

distribution selection and even choice of distribution fitting method can create 

a great difference. Therefore, there is a need for wider investigation on other 

statistical models to find better alternatives for estimating the pressure value 

in longer return periods.  
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 Another issue about sloshing impact pressures is the idealization of 

peak pressure signals. In the current procedure, peak pressure signals are 

modelled as triangular shapes in pressure time histories for the simplicity of 

structural analysis. There are a smaller number of studies regarding the 

modelling of sloshing peak pressure signals. Kim et al. (2014) classified the 

current modelling methods used by classification societies and research 

facilities as Type 1 and Type 2. Type 1 is the triangular modelling passing 

through rise and decay time values at the pressure threshold and Type 2 is the 

triangular modelling passing through rise and decay times at a certain ratio of 

peak pressure value. Kim et al. investigated rise and decay times in each 

modelling type as well as their effect on impulse area modelling. Graczyk and 

Moan (2008) investigated the accuracy of triangular modelling and proposed a 

trapezoidal modelling as an alternative approach.  

 Modelling of peak pressure signals is significant in terms of structural 

response. The structural response is dependent on the magnitude of pressure 

as well as the duration of the impulse. The highest peak pressure does not 

necessarily cause the highest structural response, but a longer duration impact 

with small magnitude of pressure may. The rise and decay times are used in 

the impulse area modelling, which also effects structural response. The 

selection of rise time should also consider the natural resonances of tanks and 

the ship, and rise times near these resonances may need to be investigated 

(Lloyd’s Register, 2009). Therefore, accurate idealization of pressure signals 

is of high importance in analysis of sloshing impact pressures and should be 

further investigated.  

 In this thesis, statistical analysis of sloshing impact pressures is 

carried out. The peak pressures data acquired from sloshing models tests of 

5hrs duration (in real scale) repeated 20 times in 3 filling levels is used. 

Various statistical models are applied to peak pressure data and, for further 
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analysis, the best 4 distributions are chosen which are Weibull, generalized 

Pareto, generalized extreme value and log-logistic distributions. Using 

different distribution fitting methods, these statistical models are applied to 

data sets of peak pressure. The fits are evaluated using probability-of-

exceedance curves and goodness-of-fit tests (probability plot correlation 

coefficient test) according to different filling levels. Another evaluation is 

carried out by comparing squared error between accumulated peak pressure 

data (100hrs test data) and short duration test data (5hrs test data) fittings in 

different zones of return period. This evaluation results are also displayed in 

long term plotting to understand the behavior of distributions in case of long 

term prediction. In addition, taking 100hrs test data as a reference, another 

comparison is made according to the current short term prediction procedure 

of the classification societies. 

 In the next part of the thesis, analysis on triangular modelling of 

impact pressures is carried out. The rise and decay times in 9 stations of 

pressure signals are extracted and utilized in comparison of different pressure 

ratios of Type 2 triangular signal modelling. The summed absolute difference 

between the rise and decay times in actual signal and modelled signal are 

calculated in these 9 stations. The comparison of pressure ratios are displayed 

in different percentages of highest peak pressures in each filling level. 

Considering the results, a suggestion is made for pressure ratio of triangular 

signal modelling. 
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2. Mathematical Model & Approaches  

2.1. Statistical Analysis of Peak Pressures 

2.1.1. Statistical Distributions 

 The peak pressures acquired from 20 repetitions of 5hrs (in real scale) 

sloshing model test are used in this thesis and each 5hrs test is referred to as 

one case. Peak pressures are extracted from pressure signals according to the 

time window, 0.2 ms and pressure threshold, 2.5 kPa (Kim, 2017).  

 In order to estimate the maximum pressure, statistical distributions are 

applied to the peak pressure data and pressure value corresponding to chosen 

return period is determined as the maximum pressure. The current procedure 

according to classification societies is that applying Weibull or generalized 

Pareto distributions to the peak pressure data and to choose the pressure value 

corresponding to 3-hour return period as the maximum pressure. The 

distributions used by different classification societies are shown in Table 2.1. 

Table 2.1 Statistical models currently used by classification societies 

Organization Statistical Distribution 

BV 

Generalized Pareto distribution 

Weibull distribution 

Generalized extreme value distribution 

ABS Weibull distribution 

DNV 
Weibull distribution 

Generalized Pareto distribution 

LR 

Weibull distribution 

Generalized Pareto distribution 

Log-normal Distribution 
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 11 statistical distributions are used in the first step of the research as 

shown in Table 2.2. An evaluation based on probability of exceedance curves 

and chosen goodness-of-fit tests is carried out and the best 4 distributions are 

determined for further study, which are Weibull distribution, generalized 

Pareto distribution, generalized extreme value distribution, log-logistic 

distribution.  

Table 2.2 Statistical distributions applied in the first step 

Statistical Distributions for the First Step 

Weibull distribution 

Generalized Pareto distribution 

Generalized extreme value distribution 

Log-logistic distribution 

Logistic distribution 

Log-normal distribution 

Birnbaum-Saunders distribution 

Gamma distribution 

Inverse-Gaussian distribution 

Nakagami distribution 

Rician distribution 

 

 Weibull distribution (WBL) is widely used in the statistical analysis 

of sloshing impact pressures. The probability density function, f(x) and the 

cumulative distribution function, F(x) are given as follows.  

1

( | , , ) exp
x x

f x

 
  

  
  

      
          

                      (1) 
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( | , , ) 1 exp
x

F x




  


  
       

                                                           (2) 

In these functions, γ is the shape parameter, θ is the location parameter, β is 

the scale parameter and variable x should be equal or larger than the shape 

parameter.  

 Generalized Pareto distribution (GP) is also widely used in estimation 

of maximum pressure value in sloshing. The probability density function, f(x) 

and the cumulative distribution function, F(x) are given as follows.  

1
1

1
( | , ) 1

x
f x


 

 

 

  
   
  

     (3) 

1

( | , ) 1 1
x

F x


 




 
   

 
      (4) 

In these functions, γ is the shape parameter and β is the scale parameter. 

Generalized Pareto distribution usually applied to tail of the data to acquire a 

better fit. Therefore, Peak-Over-Threshold Method is adapted which only the 

data that exceeds a certain threshold value is taken into consideration. 

Considering a sample of xi, i=1,.,n with sample size n and G(x) is the 

distribution function and we are interested in k (k<n) peaks which exceed a 

threshold u. This sample of size k is called peaks over threshold and denoted 

Xi, i=1,.,k (Xi>u). The distribution of the Xi is given as, 

 
  0                             if   x u

( ) | ( ) - ( )
             if    x>u

1- ( )

XG x P X x X u G x G u

G u




    



                  (5) 

And the distribution function of the excesses, i.e. the amounts by which the 

peaks exceed threshold, is given as  
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   ( ) ( ) | ( ) |

( ) ( )
             

1 ( )

X uG x P X u x X u P X x u X u

G x u G u

G u

        

 




                     (6)                                                                                                                    

FX-u(x) is the probability that a peak exceeds the threshold u by no more than 

an amount x, given that the threshold is exceeded. The relation between the 

two distribution functions is 

( ) ( )X u XG x G x u                                                                                                    (7) 

Pickand’s theorem implies that the distribution function of the excesses GX-u(x) 

may be modelled by F(x|γ,β) and the distribution function of peaks over u, 

( ) ( ) ( | , )X X uG u F x u F x u                                                                (8) 

provided that u is sufficiently high (Pickands, 1975). 

The initial peak distribution in the tail part G(x) when x>u may be obtained 

by rewriting G(x) as  

 ( ) ( ) 1 ( ) ( )                ( ).XG x G x f u F u x u                                          (9) 

GX(x) can be modelled by the generalized Pareto distribution function F(x|γ,β) 

and G(u) can be approximated by the empirical probability, which is the 

number of data points less than or equal to u divided by the number of  

samples n  

1

1ˆ ( ) 1
i

n

X u

i

G u
n





                                                                                           (10) 

This gives  

ˆ ˆ( ) ( | , ) 1 ( ) ( )            ( ).G x F x u G u G u x u       
 

                         (11) 
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This implies that the initial peak distribution in the tail part can be calculated 

from the fitted generalized Pareto distribution and empirical probability 𝐺(𝑢) 

(Rognebakke et al., 2005). 

Although, generalized Pareto distribution is fitted to the tail data, the 

parameters for the whole data can be obtained. The shape parameter γ does 

not change. The scale parameter 𝛽̂ and location parameter 𝜃 is calculated as  

 ˆ ˆ1 ( )G u


                                                                                            (12) 

  ˆ ˆ1 ( ) 1
ˆ

G u

u










 

                                                                          (13) 

In this thesis, the 0.92 quantile of the sample peaks is considered as the 

threshold value which means 8% largest peaks are considered.  

 The probability density function, f(x) and the cumulative distribution 

function, F(x) of generalized extreme value distribution (GEV) are given as 

follows.  

1 1
1

1 ( ) ( )
( | , , ) exp 1 1

yx x
f x

 
   

  

   
                      

 

         (14) 

1

( )
( | , , ) exp 1

x
F x


  



 
        

 

                                                 (15) 

In these functions, γ is the shape parameter, θ is the location parameter, β is 

the scale parameter and variable x should be equal or larger than the shape 

parameter. If shape parameter of generalized extreme value distribution is 

negative, Weibull distribution is a reverse generalized extreme value 

distribution. 
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 The three parameter log-logistic (LL) distribution, also known as 

generalized logistic distribution, is often used in estimating flood frequencies 

in hydrology. There is no application of log-logistic distribution in sloshing 

peak pressures, yet. The probability density function, f(x) and the cumulative 

distribution function, F(x) are given as follows. 

2

1
1

1

1

( | , , )

1 1

x

f x

x








 














  
  

  
 

         
  

                                                 (16) 

1
1

( | , , ) 1 1
x

F x


 






 
          

  

                                                    (17) 

There is also an alternate parameterization as given below, which is preferable 

in some cases due to more interpretable values of parameters. 

1

2
( | , , )

1

x

f x

x














 






 
 
 

  
     

                                                             (18) 

1

( | , , ) 1F x
x







 



  
      

                                                                 (19) 

In these functions, γ is the shape parameter, θ is the location parameter, β is 

the scale parameter and variable x should be equal or larger than the shape 

parameter. In this thesis, alternate parameterization is used for method-of-

moments and maximum-likelihood-estimation while normal parameterization 
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is used for l-moments method. Even if the parameter values are different, both 

functions return the same fits with the same parameter estimation method. 

 The probability of exceedance function is calculated as, 1-F(x) where 

F(x) is the cumulative distribution function. The probability of exceedance 

curves are plotted in log-scale in y-axis for a better observation of extreme 

values in tail. In the x-axes of probability of exceedance curves, normalized 

pressure values are plotted. Normalized pressure value is calculated as P/ρgH 

where P is the magnitude of pressure, ρ is the density, g is the gravity and H is 

the height of the tank.  In order to obtain the maximum pressure value 

corresponding to a certain return period, Q(N) is used where Q is the inverse-

cumulative distribution function (quantile function) and N is the number of 

samples measured in m hours. If n is the number of samples measured in t 

seconds, N is calculated as below. 

3600nm
N

t
                                                                                                 (20) 

 

2.1.2. Distribution Fitting Methods  

 In the distribution fitting process, it is seen that different estimation 

methods can lead to very different parameter estimates for some distributions 

and slightly different estimates for some. This affects the estimated maximum 

pressure value either significantly or slightly. Fitting methods are directly 

related to goodness-of-fit and can be considered as a parameter that changes 

the fitted distribution. Thus, this study adopts multiple parameter estimation 

methods as to examine a wider range of fits. Therefore, 3 different distribution 

fitting methods are applied in order to estimate the distribution parameters, 

which are maximum likelihood estimation (MLE), method-of-moments 

(MOM) and l-moments method (LMOM). However, some methods may not 



12 

be suitable for certain distributions. These limitations and the reasons are 

explained for each distribution fitting method in this part. 

 Maximum likelihood estimation, originally developed by R. A. Fisher 

in the 1920’s, is a method to find the probability distribution that makes the 

observed data most probable by maximizing the likelihood function. 

Likelihood function is defined as, 

( | ) ( | )L w x f x w                                                                                        (21) 

where L is the likelihood function, f is the probability density function of the 

distribution and w is the distribution parameter. Instead of likelihood function, 

negative log-likelihood function is used for computational convenience. For 

each statistical model, negative log-likelihood function is calculated from 

probability density function and an optimization to minimize this function is 

executed. It should be noted that, MLE can return biased estimates for small 

sample sizes. For WBL, MLE is applicable only when shape parameter is 

greater than one (Smith, 1985). However, in the case of peak pressures, shape 

parameter is usually smaller than one. Therefore, MLE is not suitable to use in 

this study. A weighted-maximum likelihood estimation method proposed by 

Cousineau (2009), was used for WBL parameter estimation which inserts 3 

weights in the log-likelihood function. This method requires 2
20

 Monte-Carlo 

simulations to estimate the weights in order to obtain a decent fit. Since it 

requires too much time, especially for large sample sizes over 1000, this 

method is inconvenient for the case of peak pressures. 

 Method-of-moments (MOM) uses summary statistics to estimate the 

parameters by matching the first three model moments –mean, variance and 

skewness- with their corresponding sample moments. The mean (μ̂), variance 

(𝜎̂2) and skewness (𝛾1) of the sample data are given as follows. 
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



 
  

 
                                                                                       (24) 

The mean (𝜇), variance (𝜎2
) and skewness (𝛾1) of Weibull distribution: 

1
 1 




 
    

 
                                                                                     (25) 

2 2 22 1
1 1 

 

    
        

    
                                                               (26) 
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   


 

       
                
       

    
       
    

                                (27) 

The mean (𝜇) and variance (𝜎2
) of generalized Pareto distribution: 

1








                                                                                                       (28) 

2
2

2(1 2 )(1 )




 


 
                                                                                   (29) 

The mean (𝜇), variance (𝜎2
) and skewness (𝛾1) of log-logistic distribution 

which used with alternate parameterization: 

csc
 

  
 

 
  

 
                                                                                   (30) 
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2 2 22
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   
 

   

    
     

    
                                                     (31) 
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   

         
          

         

    
    

    

                  (32) 

where xi stands for i-th peak value when the peaks are ordered in ascending 

order, n for sample size and Γ for the Gamma function. MOM can be limiting 

when second of higher moments are only define for a certain range of shape 

parameter. In case of GEV, the mean and variance of GEV are infinite for the 

cases which shape parameter is greater than 1 and 1/2, respectively. Since 

parameter estimation is not possible for shape parameters in these specified 

ranges, MOM method is not applied for GEV in this study. 

 L-moments method (LMOM), described by Hosking (1990), uses    

L-moments to obtain the distribution parameter and is an alternative approach 

to method-of-moments. L-moments are analogous to the conventional 

moments but can be estimated by linear combinations of order statistics. 

Similar to MOM, LMOM matches L-moments and L-moments ratios of the 

distribution with their corresponding sample L-moments and L-moment ratios. 

The sample l-moments l-location (l1), l-scale (l2) and sample l-moments ratios 

l-skewness (t3) and l-kurtosis (t4) are calculated using probability weighted 

moments and the coefficients of the shifted Legendre polynomial showed by 

Hosking et al. (1985). 

1
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                                                                                               (33) 
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where 𝑋1:𝑛 ≤  𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛  indicates ordered sample, p* is the 

coefficients of the shifted Legendre polynomial.  

The l-location (λ1), l-scale (λ2) and l-skewness (τ3) of Weibull distribution:  

1

1
 1  



 
    

 
                                                                                    (37) 
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The l-location (λ1), l-scale (λ2) and l-skewness (τ3) of generalized extreme 

value distribution:  

  1 1 1


  


                                                                                 (40) 
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


 


                                                                                       (42) 
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The l-location (λ1), l-scale (λ2) and l-kurtosis (τ4) of log-logistic distribution 

used with normal parameterization:  

    1 1 1 1


   


                                                                     (43) 

   2  1 1                                                                                     (44) 

2

4

1 5

6





                                                                                                   (45) 

 Estimation methods used for each distribution and the notation for 

each fit are shown in Table 2.3. 

Table 2.3 Parameter estimation methods applied to each distribution. 

Distribution Method Notation 

Weibull distribution 

Method-of-moments WBL-MOM 

L-moments method WBL-LMOM 

Generalized Pareto 

distribution 

Method-of-moments GP-MOM 

Maximum-likelihood 

estimation 
GP-MLE 

Generalized extreme 

value distribution 

L-moments method GEV-LMOM 

Maximum-likelihood 

estimation 
GEV-MLE 

Log-logistic 

distribution 

Method-of-moments LL-MOM 

Maximum-likelihood 

estimation 
LL-MLE 

L-moments method LL-LMOM 
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2.1.3. Goodness-of-Fit Test 

 To examine the goodness-of-fit, probability plot correlation 

coefficient test (PPCC test) is used. PPCC test was first proposed by Filiben 

(1975) for normal distribution and it was developed to be applied in other 

distributions in studies after that. This test uses the correlation coefficient r 

between the ordered observations Xi and fitted quantiles Mi determined by 

plotting positions pi for each Xi. It is assumed that the observations could have 

been drawn from the fitted distribution if the value of r is close to 1.0. 

Essentially, r measures the linearity of the probability plot, providing a 

quantitative assessment of fit (Heo at al., 2008). The correlation coefficient r 

is defined as, 

  

   

1

2 2

1 1

n

i i

i

n n

i i

i i
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

 

 



 



 

                                                             (46) 

where 𝑋̅ and 𝑀̅ denote the mean values of the observations Xi and the fitted 

quantiles Mi, respectively and n is the sample size. The estimate of order 

statistic median for Mi is shown as 

1( )i iM m                                                                                                (47) 

 
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1 0.5 ,        1n
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where Φ
-1

 is the inverse of cumulative distribution function and mi are the 

median values. Plotting position formula used in this study is suggested by 

Cunnane (1978) for WBL and LL. There are other plotting positions 

suggested for GP and GEV each in different studies. However, it was 

observed in the goodness-of-fit test results that using different plotting 

positions for different distributions does not provide a healthy comparison of 

PPCC values. Therefore, the same plotting positions are adapted for all fits. 

Judging by the way it is calculated, PPCC test is sensitive to sample size in 

different parts of the distribution. 

 For hypothesis testing, critical values are calculated from          

Monte-Carlo simulations. 10
5
 random samples, which have the same sample 

size of the peak pressure data, are generated from fitted distributions and 

PPCC is calculated for each one of these random samples. Significance level 

is chosen as 0.05. Therefore (10
5
× (1-0.05))

th
 highest PPCC value is chosen as 

the critical value (Vogel, 1986). If the PPCC of the pressure data is higher 

than the critical value, then hypothesis return 0 which means that, in that 

certain significant level, the data is drawn from the distribution and otherwise 

returns 1.  

 Since the data from 5hrs test (in real scale) repeated 20 times for each 

filling level is used in this thesis, a ranking method is needed to organize the 

results of PPCC test of each case, according to panels and filling levels. That 

is, for each case (5hrs test), distributions are ranked from 1 to 9 according to 

the value of PPCC where 9 is appointed to the best fit, 1 to the worst fit and 

the fits in between accordingly.  In each panel, mean ranking of each fit is 

calculated for 20 tests. In each filling level, mean ranking is calculated for 4 

panels. The results are displayed in % to show the share of each fit, 100% 

being total rank of all the fits. The results are displayed separately for 
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different filling levels, because each filling level is thought to have their own 

pattern of the peak pressures distribution. 

 As useful as goodness-of-fit tests are, observation of the POE curves 

are also an adequate method to see how the statistical model behaves, even 

though it lacks of numerical display.  

 

2.1.4. Squared Error 

 Goodness-of-fit test are useful to evaluate how well the fit follows the 

sample data. However, if long term prediction is the interest, how well short 

duration test fittings follow the long duration test data gains importance. The 

reason for that is, in the actual procedure, usually 5hrs test is repeated one or 

two times and the data acquired from these tests are used in estimation of 

maximum pressure. Most of the time, long duration test is not an option. Since 

sloshing is a highly stochastic phenomenon, the peak pressure data acquired 

from sloshing model tests remains random. However, accumulated data from 

repeated tests, long duration test data, is more converged than short duration 

test data. Thus, fewer outliers are seen in the long duration test data 

comparing to short duration test data. In addition, for the pressure values 

corresponding to shorter return periods, the data are converged enough that 

the outliers in short duration test data are mostly eliminated. Taking test data 

directly as a reference can be discussed in different points of view. The most 

obvious argument is that distribution fitting is carried out so that test data 

itself is not used for estimation of maximum pressure. The test data remains 

random; this is why we try to acquire a mathematical description of peak 

pressures. This is a valid argument. For this reason, the idea is not to use long 

duration test data for direct estimation of maximum pressure. Instead, the test 

data will provide a converged guidance for return periods that are shorter than 
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the duration of the test as well as providing an idea for long term prediction. 

Therefore, 100hrs experiment data is taken as a reference in this part to 

compare the behavior of different 5hrs data fits in the long term prediction. 

 In order to have a detailed comparison, 100hrs experiment data is 

divided into zones of return periods (Table 2.4).  

Table 2.4 Zones of return periods (real scale) 

Zone Return Period 

Zone 1 ~ 3-hour 

Zone 2 3-hour – 5-hour 

Zone 3 5-hour – 10-hour 

Zone 4 10-hour – 100-hour 

 

Squared error (εi) between the fitted distributions and 100hrs experiment data 

is calculated as 

2

reference estimated

1               1,2,3,4 ( )

in

i

i

P P

i zones
n





 


                         (49) 

where ni is the sample size in Zone i and P is the normalized pressure value.  

 Although the interest is that how well 5hrs data fitting follows 100hrs 

experiment data, squared error of various accumulated data fittings is also 

calculated to evaluate the pattern of these fits. The data sets used in this part 

are shown in Table 2.5.     

 

 

 



21 

Table 2.5 Data sets evaluated using squared error (real scale) 

Data Sets Used for Fitting 

5hrs test 

10hrs test 

20hrs test 

50hrs test 

100hrs test 

  

 Once the squared error is calculated for each case, mean, median and 

standard deviation of squared error are calculated for 20 cases of 5hrs test and 

10 cases of 10hrs and so on. Mean, median and standard deviation values are 

ranked from 1 to 7 (7 fits in this part), where 7 is appointed to the best fit, 1 to 

the worst fit and the fits in between accordingly. In filling levels, mean rank is 

calculated for 4 panels for rank of mean, rank of median and rank of standard 

deviation. The rank-per-case is also acquired from squared error of each case 

by using the same ranking method in PPCC test. The results of this part are 

evaluated considering all four of these rankings. If these values are not in 

agreement, the median and rank-per-case are given primary importance 

because mean and standard deviation values are affected significantly by the 

high values in one single case. In addition, the median and rank-per-case is 

more important for the reason that, 5hrs sloshing tests are conducted one or 

two times in the actual procedure. Therefore, each case should return steady 

estimates for a fit to be considered a good fit.  

 

2.1.5. Estimated Pressure Difference 

 In the current procedure required by classification societies, 5hrs or 

10hrs test data fitting and 3-hour return period is considered in the estimation 

of maximum pressure. A comparison that is suitable for this procedure is also 
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carried out. Taking 100hrs experiment data as a reference, summed absolute 

difference between estimated maximum pressure acquired from fitting and 

100hrs experiment data is calculated. For the determination of the experiment 

data corresponding to 3-hour return period, linear interpolation between 

pressure values is applied. It was checked that, for 3-hour return period, the 

data is so close to each other, there is almost no difference between 

interpolation methods or different curve fitting methods. Once the summed 

absolute difference of pressures is calculated, mean and rank-per-case of this 

value is acquired by the same method explained in squared error.  

 

2.2. Peak Pressure Signal Modelling 

 Peak pressure signals are often idealized as triangular shapes. In the 

procedure of classification societies and other organizations, two types of 

signal modelling is currently used (Kim et al., 2014). Type 1 is the triangular 

shape passing through rise and decay times at the pressure threshold and the 

maximum pressure Pmax (Fig. 2.1). 

 

Fig. 2.1 Type 1 triangular modelling applied to peak signals 
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Type 2 modelling is the triangular shape passing through rise and decay times 

at a certain ratio of peak pressure and the maximum pressure Pmax (Fig. 2.2). 

 

Fig. 2.2 Type 2 triangular modelling applied to peak signals 

The formulation of Type 1 and Type 2 modelling methods are given as 

follows (Kim et al., 2014). 

- Type 1: 

max thresholdrise up-crossing= -P PT t t                                                                                  (50) 

threshold maxdecay down-crossing= -P PT t t                                                                            (51) 

- Type 2:  

max rise max( . )up-crossing

rise

rise

-
=

1-

P Pt t
T




                                                                            (52) 

decay max max( . )down-crossing

decay

decay

-
=

1-

P Pt t
T




                                                                    (53) 

total rise decayT =T +T                                                                                           (54) 
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The methods that are currently used in different organizations are shown in 

Table 2.6. It is seen that, Type 2 modelling and pressure ratio of 0.5 is mostly 

used. 

Table 2.6 Current modelling methods in test facilities and classification 

societies (Kim et al., 2014) 

Organization Rise Time Decay Time 

ABS Type 2 (α=0.5) Type 2 (α=0.5) 

DNV Type 1 & Type 2 (α=0.5) Type 1 & Type 2 (α=0.5) 

LR Type 2 (α=0.5) Type 2 (α=0.5) 

BV Type 2 (α=0.5) Type 2 (α=0.5) 

GTT Type 2 (α=0.5) Type 2 (α=0.5) 

MARINTEK Type 2 (α=0.2) Type 2 (α=0.3) 

 

 In this part, pressure ratios for Type 2 triangular modelling are 

investigated. The rise and decay times in 9 stations of pressure signals are 

extracted and utilized in comparison of different pressure ratios (Fig. 2.3). 

 

Fig. 2.3  The rise and decay times in 9 stations of Pmax 
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To carry out the comparison, the summed absolute difference between the rise 

and decay times in actual signal and modelled signal is calculated in these 9 

stations.  

maxrise rise,reference rise,( . )= - PT T                                                                         (55) 

maxdecay decay,reference decay,( . )= - PT T                                                                   (56) 

The comparison of pressure ratios is displayed in different percentages of 

highest peak pressures in each filling level. The comparison is done this way, 

because pressure signals may show a change of pattern according to pressure 

values and filling levels. Considering the results, a suggestion is made for 

pressure ratio of triangular signal modelling. 
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3. Sloshing Experiment 

 The tests were conducted in Seoul National University (SNU) 

Sloshing Experiment Facility. SNU has three hexapod motion platforms with 

different payloads (1.5, 5, and 14 ton). In this study, 5-ton platform was used 

with a tank which has 868.2 mm length (L), 760 mm width (B) and 556 mm 

height (H). A motion platform, which as controlled by a motion controller, 

was used to simulate the scaled 6-degree of freedom (dof) ship motion. 

Froude scaling is used. In the experiment, 20 repetitions of 5hrs test (real 

scale) were carried out in extreme wave condition. The test conditions are 

shown in Table 3.1. Experiment setup is shown in Fig. 3.1.  

Table 3.1 Sloshing test conditions (real scale) 

Case 
Filling 

Depth 

Heading 

Angle 

Sea 

Condition 
Test Time 

Phase 

Seed 

Case 1 0.95H 150deg 
Tz = 9.5s                

Hs = 12.5m 
5hrs * 20 

Random 

seed 

Case 2 0.50H 90deg 
Tz = 11.5s          

Hs = 9.5m  
5hrs * 20 

Random 

seed 

Case 3 0.20H 90deg 
Tz = 7.5s                   

Hs = 7.5m  
5hrs * 20 

Random 

seed 

 

 

Fig. 3.1 Experiment setup 
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 The tests were conducted for three different filling depths: 20%, 50% 

and 95% of tank height, notating 0.20H, 0.50H and 0.95H hereafter. The tank 

is based on 140K Liquefied Natural Gas (LNG) carrier with a 1:50 scale ratio 

and made of plexiglass. Thickness of the tank is 35-40 mm which is firm 

enough to regard the wall as rigid and ignore hydroelastic response of the tank. 

To measure the dynamic pressures on the tank, integrated circuit piezoelectric 

(ICP) sensors were mounted as cluster panels. There are 24 panels in total and 

their locations are shown in Fig. 3.2.  

 

Fig. 3.2 LNGC tank model and location of sensor cluster panels. 

 Once the pressure data is measured, high-pass filter is used to 

eliminate low-frequency drift of pressure data. Sampled sloshing peaks, or 

global peaks, were chosen by imposing pressure threshold (2.5kPa) and 

sampling time window (0.2ms) (Kim et al. 2017). The maximum pressures 

collected from all the segments became a group of peaks for the statistical 

analysis. The panels considered in this study are shown in each filling level in 

Table 3.2 and the most important panels are underlined. Panels where the 

highest peak pressures and the most peak pressures occur are chosen for each 

filling level as these panels are considered to be critical. 
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Table 3.2 The panels that are considered in this study. 

  0.20H 0.50H 0.95H 

PANEL 

NO. 

14 4 1 

19 6 2 

22 14 4 

23 16 6 
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4. Results & Discussion 

4.1. Short Duration Test 

 Parameter estimation of each distribution is made for peak pressure 

data acquired from 4 different panels in each filling level. 5hrs test is 

considered as one case and distributions are fitted to the data of each case for 

20 cases. For each fit, probability of exceedance curves are obtained and 

PPCC test is applied. The results are compared in each filling level separately, 

because each filling level is expected to have a different pattern of peak 

pressures distribution. 

 

4.1.1. Statistical Distributions for the First Step 

 In Fig. 4.1, a sample probability of exceedance diagram of the 

distributions considered in the first step of this study is shown. 11 

distributions are fitted in total and results are compared by observing 

probability of exceedance diagrams and PPCC tests of many cases. The best 4 

distributions are chosen to be Weibull, generalized Pareto, generalized 

extreme value and log-logistic distributions. These distributions are taken for 

further study and different distribution fitting methods are applied. 
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    Fig. 4.1 Probability of exceedance diagrams of distributions considered 

in the first step 

 

4.1.2. PPCC Hypothesis Testing Results  

 An example of probability exceedance diagrams and PPCC test 

results are shown in Fig. 4.2 and Table 4.1, respectively. In the figure, 5hrs 

test data from test number 05 in 20% filling level in panel number 19 is 

shown as (0.20H, P.19, No.5). This notation will be used hereafter when 

referring to data sets. A rough comparison between POE curves and PPCC 

values can be made. First of all, GEV-MLE and LL-MLE fits are obviously 

poor fits and PPCC values are also lower. When other fits are checked, it is 

seen that POE curves and PPCC values are roughly in accordance. From 

PPCC critical values and hypothesis testing results, it is observed that, as the 
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fits get better, the critical value tends to get larger, which also increases the 

chance of rejection and vice versa. Taking GEV-MLE as an example, even if 

PPCC value is low, it was not rejected because critical value is even lower.  

 

Fig. 4.2 An example of POE diagrams (0.20H P.19 No.05) 

Table 4.1 An example of PPCC test results (0.20H P.19 No.05) 

Distribution PPCC Value 
PPCC                    

Critical Value 

Hypothesis 

Testing 

GP-MLE 0.9993 0.9980 0 

GP-MOM 0.9970 0.9987 1 

WBL-MOM 0.9953 0.9809 0 

GEV-LMOM 0.9941 0.8904 0 

LL-LMOM 0.9930 0.9072 0 

WBL-LMOM 0.9874 0.9905 1 

LL-MOM 0.9853 0.9508 0 

GEV-MLE 0.8909 0.8258 0 

LL-MLE 0.8107 0.8245 1 
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 PPCC hypothesis testing results are displayed in Fig 4.3. The figure 

shows the hypothesis test acceptance ratio of each fit in all 3 filling levels. 

The hypothesis testing uses the critical value obtained from random sampling 

in a certain significance level and is useful when there is no other reference to 

compare the PPCC value at hand. However, in this case, the aim is to compare 

different fits to each other. Therefore, it is difficult to set hypothesis testing as 

a reference to compare different fits.  

 

Fig. 4.3 PPCC Hypothesis Test Results 

 

4.1.3. Short Duration PPCC Test Results  

 Some examples of POE curves are shown in Fig. 4.4. This figure 

shows representative cases for each filling level, where higher peak pressures 

mostly occur. The behavior of each distribution can be observed.  It can be 

concluded from these diagrams that GEV-MLE and LL-MLE are poor fits for 

the data at hand and also, WBL-LMOM does not follow the tail of the 

distribution as well as other fits. In addition, GP-MLE follows the tail of the 



33 

data better than GP-MOM fit. For the reason, GP-MLE does not follow the 

lower tail, where the smaller pressure values are, as well as GP-MOM. This 

result can be discussed because it can mean GP-MLE is affected heavily by 

the highest pressure values and possibly by outliers as well. 

  

       (a) (0.20H P.19 No.05)                  (b) (0.50H P.14 No.08) 

  

(c) (0.50H P.06 No.11)                          (d) (0.95H P.06 No.15) 

Fig. 4.4 Some example POE curves for 5hrs test (real scale) 
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 The PPCC values for each distribution are compared for all filling 

levels in Fig. 4.5. The distributions are rated according to the ranking method 

explained in section 3.1.3 and results are displayed in %. When PPCC test 

results for whole data set is evaluated, WBL gives the highest goodness-of-fit 

rate in all 3 filling levels. For these two models, MOM provides a better fit 

than L-MOM method. As expected, GEV-MLE and LL-MLE fits are rated 

lowest. 
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Fig. 4.5  PPCC test results of whole data for 5hrs test (real scale) 
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 However, comparing whole data set fitting to each other can be 

discussed in several aspects. First, considering the way PPCC is calculated, 

PPCC test can be sensitive to sample size. In the lower tail (smaller values) of 

the distribution has a greater number of data while the upper tail (higher 

values) has a smaller number of data. Therefore, the part of the distribution 

with higher sample size has a greater affect in PPCC value. This can make a 

difference when a distribution follows the lower values of the distribution 

perfectly but provides an upper tail far away from the higher values. It is also 

arguable to compare GP to other distributions for whole data set. That is 

because, only 8% highest peaks are considered in each data set for GP fitting 

and then the parameters for whole data set are obtained. Therefore, most of 

the time, it is inevitable for GP to be a poor fit for whole data as shown in Fig. 

4.6. In hypothesis testing results, it can be observed that the acceptance rate of 

GP fits is lower than 10%, even though PPCC rates are on the higher side. If 

the data has extreme peaks in the tail or changes its form significantly in the 

upper tail when compared to lower tail, GP fit does not follow the whole data. 

This is the reason why GP hypothesis acceptance rate is low. Moreover, in 

modelling of peak pressures, the upper tail of the distribution is much more 

important for the reason that the objective of the distribution fitting is to 

obtain the maximum pressure value. Considering these, comparing goodness-

of-fit test results for whole data is questionable. 
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(a) (0.50H P.04 No.04)                          (b) (0.20H P.22 No.19) 

Fig. 4.6 POE diagrams that show the difference of GP fits distinctly. 

 To overcome these obstacles in evaluating the goodness-of-fit, PPCC 

test is applied to only 0.92 quantile of the sample peak pressures. PPCC tail-

only results for each filling level and for all filling levels are displayed in % in 

Fig. 4.7 As expected; PPCC test results for tail-only data are more accurate to 

evaluate the goodness-of fit of the upper tail. It is concluded that WBL-MOM 

gives the best fit in the tail in 50% and 95% filling levels while GP-MLE is 

the best fit in 20% filling level followed very closely by LL-MOM and WBL-

MOM.  The reason why GP-MLE provides better a fit in the tail than the 

whole data in 20% filling levels is because the cases that the tail has a 

different pattern than the rest of the data (as in Fig. 4.6) are majority in 20% 

filling level. On the other hand, WBL-MOM that provides the best fit for 

whole data does not follow the tail data as well as GP-MLE in 20% filling 

level. It is also seen that, MLE method is the weakest method for distributions 

with three parameters. 
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Fig. 4.7 PPCC test results of tail-only data for 5hrs test (%8 highest peaks) 
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4.2. Long Duration Test 

 A comparison of long duration test data fitting is also carried out to 

judge the behavior of fits in longer return periods. Previously mentioned 

procedure is applied to the accumulated peak pressure data from 20 

repetitions of 5hrs test (100hrs, real scale). GEV-MLE and LL-MLE fits are 

excluded in this part due to poor fits.  

 

4.2.1. Long Duration PPCC Test Results  

 Example POE diagrams of 5hrs test and 100hrs test data fitting for the 

same panel are shown in Fig. 4.8. It can be seen that, the pattern of each 

distribution is similar in both 5hrs and 100hrs test. When pressure values 

corresponding to 100hrs return period are observed from POE curves of 

100hrs test, it is seen that, WBL tends to estimate smaller pressure values 

compared to GP and LL. While LL returns overestimated values, GP is 

observed to be consistent. In addition, among the three methods applied in this 

study, MLE tends to give more conservative curves while MOM results in 

more conservative fits than L-MOM method in general. 
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(a) (0.20H P.14) 

 

(b) (0.95H P.04) 

Fig. 4.8 POE diagrams of 5hrs and 100hrs test (some return periods marked) 

 PPCC test results of 100hrs test whole data are shown in Fig. 4.9. As 

concluded from these tables, GP fits provide the best fit in 20% and 50% 

filling levels while WBL-MOM provides the best fit in 95% filling level.  
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Fig. 4.9 PPCC test results of 100hrs test (real scale) whole data.  
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 PPCC test results of 100hrs test tail-only data are shown in Fig. 4.10. 

Similar to whole data results, GP fits provide the best fit in 20% and 50% 

filling levels while WBL-MOM provides the best fit in 95% filling level. The 

results of whole data and tail-only data are similar, for the reason that, 100hrs 

test data is more converged and the outliers in the tail are fewer than 5hrs test 

data. Therefore, the best distributions for each filling levels does not change in 

tail-only data results in 100hrs test data fitting. 
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Fig. 4.10 PPCC test results of 100hrs test tail-only data (%8 highest peaks) 
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4.3. Squared Error Comparison 

 In this part, squared error between fittings of different data sets and 

100hrs experiment data is compared. The comparison is based on mean, 

median, standard deviation and rank-per-case of squared error. The results are 

displayed separately for different filling levels, because each filling level is 

thought to have their own pattern of peak pressures distribution. The results of 

the most important panels are displayed separately as well, because these 

panels have the highest and the most number of peak pressures. 

 

4.3.1. Squared Error Comparison According to Filling 

Levels 

 The closest fits are displayed in Table 4.2, Table 4.3 and Table 4.4 

according to filling levels, data sets and return period zones.  In all filling 

levels, LL-LMOM is the closest fit in Zone 1. Based on 5hrs test data fitting, 

LL-MOM is the closest fit in Zones 2, 3 and 4 in all filling levels except 50% 

filling level Zone 2. In 50% filling level, GEV-LMOM is the closest fit in 

Zone 2. In 50% and 95% filling levels, LL-MOM dominates Zones 3 and 4. It 

is also seen that GP fits give closest fits in longer return periods when longer 

duration test data is used. Therefore, it can be concluded that, GP fits provide 

closer fits when number of data is higher. Although the closest fit changes 

from one data set to another, a pattern can be seen partially.  
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Table 4.2 Best fits in each zone compared by squared error in 0.20H 

 

Table 4.3 Best fits in each zone compared by squared error in 0.50H 

.  
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Table 4.4 Best fits in each zone compared by squared error in 0.95H 

 

 

4.3.2. Squared Error Comparison in Important Panels 

 The closest fits in 20% filling level panel 19 are displayed in Table 

4.5 according to data sets and return period zones. In this panel, Zone 1 is 

dominated by LL-MOM and Zone 4 is dominated by GP-MOM regardless of 

the data set. Based on 5hrs test data, LL-MOM is the closest fit in Zones 2 and 

3 similar to 20% filling level results. 
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Table 4.5 Best fits in each zone compared by squared error in 0.20H P.19 

 

 In order to have a better understanding of this result, 5hrs test data 

fitting for 20 cases are plotted on 100hrs experiment data for this panel as 

shown in Fig. 4.11.  Each diagram belongs to one of the fits. As seen in the 

diagrams, WBL-MOM provides a poor fit and it underestimates the maximum 

pressure in all of the cases. GP-MOM fit matches well with the data 

corresponding to longer return period in accordance with the squared error 

results. It is also understood that WBL-MOM, GP-MOM and GP-MLE fits 

have a larger deviation than GEV-LMOM, LL-MOM and LL-LMOM fits. 

This deviation is important because a steady estimation of maximum pressure 

is needed for each case. Between GEV-LMOM and LL-MOM fits, which 

show small deviation, LL-MOM returns estimates closer to the experiment 

data in general, also in agreement with the squared error results. 
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Fig. 4.11 Long term plotting of 5hrs test (real scale) in 0.20H P.19  
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 The closest fits in 50% filling level panel 14 are displayed in Table 

4.6 according to data sets and return period zones. In this panel, Zone 1 is 

dominated by LL-MOM, similar to 20% filling level results. For longer 

duration test, Zones 2, 3 and 4 are dominated by GP fits. Based on 5hrs test 

data, GEV-LMOM provides the closest fit in Zone 2 while LL-MOM 

provides the closest fit in Zones 3 and 4.  

Table 4.6 Best fits in each zone compared by squared error in 0.50H P.14 

 

 In this panel, the diagrams of 5hrs test data fitting for 20 cases plotted 

on 100hrs experiment data are shown in Fig. 4.12. These diagrams show that, 

WBL and GP fits estimate a wider range of maximum pressures and the 

estimation differs from case to case significantly. On the other hand, GEV and 

LL fits have much smaller deviation of curves which leads to steady estimates 

in each case. Therefore, according to shape of the distribution, GEV-LMOM, 

LL-MOM and LL-LMOM fits return smaller squared error results in the  
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Fig. 4.12 Long term plotting of 5hrs test (real scale) in 0.50H P.19  
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return period zones where they get closer to the data. This justifies squared 

error results based on 5hrs test data. 

 The closest fits in 95% filling level panel 06 are displayed in Table 

4.7 according to data sets and return period zones. In this panel, similarly, 

Zone 1 is dominated by LL-LMOM fit. Based on 5hrs test data, LL-MOM 

returns the closest fits in Zones 2, 3 and 4. For the longer duration test and 

longer return periods, a pattern in only seen partially. 

Table 4.7 Best fits in each zone compared by squared error in 0.95H P.06 

 

 In this panel, the diagrams of 5hrs test data fitting for 20 cases plotted 

on 100hrs experiment data are shown in Fig. 4.13. Through the diagrams, it is 

seen that, WBL and GP fits provide even larger deviation of curves. 

Especially, GP fits return significantly different values of estimated pressure. 

One of the possible reasons for this behavior of GP fits would be sample sizes 

too small. However, comparing to 50% filling level panel 14, which is 
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previously shown, this panel has much larger sample sizes, yet larger 

deviation of curves. Therefore, small sample size is not the reason of GP 

providing this variation of curves. The reason is that, GP follows the tail data 

so well that it cannot follow 100hrs test data. Similarly, WBL distribution also 

follows the whole data well and very smoothly and for the same reason, it 

cannot follow 100hrs test data as well. WBL and GP fits are affected by the 

data significantly, while GEV and LL fits are affected less and tend to keep 

their shapes. This way, GEV and LL fits provide a smaller deviation of curves 

and consistent estimates of maximum pressure. It is obvious that, smaller 

deviation does not necessarily mean that the fit follows the data well; however, 

it is convenient to choose the closest distribution among them according to 

these preserved shapes. 

 In addition, another long term plotting is shown to evaluate if 1hrs 

test data fittings have the same pattern as 5hrs test data fittings. In 50% filling 

level panel 14, the diagrams of 1hrs test data fitting for 30 cases plotted on 

100hrs experiment data are shown in Fig. 4.14. It is seen that, deviation is 

larger for every fit which is an expected result of 1hrs test data fitting. Even if 

it is the case, GEV-LMOM and LL-MOM fits have smaller deviation than 

WBL and GP fits. 
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Fig. 4.13 Long term plotting of 5hrs test (real scale) in 0.95H P.06  
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Fig. 4.14 Long term plotting of 1hr test (real scale) in 0.50H P.14  
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4.4. Estimated Pressure Difference Results  

 In this part, 100hrs experiment data is taken as a reference and a 

comparison that is suitable for the current procedure of classification societies 

is carried out. Summed absolute difference between estimated maximum 

pressure acquired from 5hrs and 10hrs fittings and 100hrs experiment data is 

calculated and utilized to make the comparison. The fits that provide the 

closest fit are shown in Table 4.8 according to filling levels and data sets. For    

20% and 95 % filling levels, LL-MOM and for 50% filling level              

GEV-LMOM provide the closest fits. 

Table 4.8 Best fits compared by estimated pressure  

difference in 3-hour return period. 

 

 

4.5. Peak Pressure Signal Modelling Results 

 In this part, pressure ratios (α) from 0.1 to 0.9 are compared to 

determine the closest ratio of triangular modelling to the actual signal. The 

summed absolute difference (εrise, εdecay) between rise and decay times 

calculated in 9 stations of pressure signal and the modelled rise and decay 

times in these stations is compared. The results are displayed according to 

filling levels and rise and decay times in Fig. 4.15. In these diagrams, the 

curves represent different ranges of peak pressure numbers in important 
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panels of each filling level. 90-100% PP indicates the lowest 10% of peak 

pressures and 0-10% PP indicates the highest 10% of peak pressures in that 

specific filling level or panel. The comparison is done this way, because 

pressure signals may show a change of pattern according to pressure value 

and filling levels. It is concluded from the diagrams that 0.3 is the closest 

pressure ratio in all three panels for both rise and decay time. 

 The comparison results are shown in Fig. 4.16 according to different 

filling levels. It can be seen that, 0.30 is the closest pressure ratio in all three 

filling levels rise and decay times except 20% filling level decay time. 20% 

filling level decay time has no obvious pattern. It is observed that, the rising 

pressure signals usually have a very similar pattern and a clean rise until peak 

value without irregularities. Hence, the result for rise times is an expected 

result. However, decaying pressure signals usually contain local peaks, are 

very irregular and difficult to classify. Therefore, 50% and 95% decay times 

having an obvious pattern is an unexpected result given these irregularities.  

 The pattern of the highest values of peak pressure is another subject 

of interest. Therefore, comparison for 1% to 5% highest peak pressures of 

each filling level is also carried out and displayed in Fig. 4.17 according to 

filling levels, rise and decay time. Similar to the previous results, 0.3 is the 

closest pressure ratio in all three filling level rise and decay times in these 

particular ratios (0.1~0.5%) of highest peak pressures.  
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Fig. 4.15 Summed absolute pressure difference in chosen panels. 
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Fig. 4.16 Summed absolute pressure difference according to filling levels. 
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Fig. 4.17 Summed absolute pressure difference in highest peak pressures in 

each filling level. 
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5. Conclusion 

 In this thesis, statistical analysis of sloshing impact pressures and 

analysis on triangular modelling of impact pressure signals are carried out. 

Weibull, generalized Pareto, generalized extreme value and log-logistic 

distributions fitted by different parameter estimation methods are evaluated 

for short term and long term prediction. In the next part, a comparison of 

pressure ratios is carried out for an accurate triangular modelling of peak 

pressure signals.  

 Choice of statistical model is an important subject in the design load 

selection of LNG tanks. For short term distribution, different statistical 

models may return relatively closer estimates of maximum pressure, however, 

for long term prediction the estimates vary significantly. Through this 

research, it was seen that, not only the choice of statistical distribution but 

also choice of distribution fitting method makes a great difference in terms of 

estimated maximum pressure. It can be considered as a parameter that affects 

the shape of the distribution. Therefore, the choice of statistical distribution 

should be considered in this larger frame. In this research, maximum-

likelihood estimation is concluded to be a weak method to be used with three-

parameter distributions. 

 In distribution fitting, various goodness-of-fit tests are applied in 

previous studies to evaluate how well the fit follows the data. However, in 

case of sloshing impact pressures, it is more important to evaluate how well 

the fit follows a more converged data. A good fit to the data does not mean it 

will return closer estimates of maximum pressure in longer return periods. 

Therefore, testing goodness-of-fit according to the data used for fitting can be 

misleading in case of sloshing peak pressures. 
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 Taking 100hrs test data as a reference and considering 5hrs test data 

estimated pressures, in 20% filling level, log-logistic distribution fitted by 

method-of-moments and l-moments method; in 50% filling level, log-logistic 

distribution fitted by method-of-moments and l-moments method, and 

generalized extreme value distribution fitted by l-moments method; and in   

95% filling level, log-logistic distribution fitted by method-of-moments and  

l-moments method, provide the closest pressure estimates according to 

applied squared error approach. Beyond this numerical evaluation, long term 

plotting presents how each fit behaves compared to long duration test data. 

From these observations, it was understood that, generalized Pareto follows 

the tail of the data so well that, in most cases, it is impossible for it to return 

consistent and close estimates. The reason is simply because it is affected by 

the tail data significantly. Weibull distribution also follows the whole data 

smoothly and the estimations heavily depend on the data set used in each case. 

Therefore, the deviation of estimated maximum pressure is large from one 

case to another. On the other hand, generalized extreme value fitted by l-

moments method and log-logistic distributions tend to preserve their shapes, 

showing small tendencies of indifference to the data sets, which leads to 

consistent estimates. Therefore, the observations from long term plotting are 

in agreement with the results of squared error approach. Among these 3 fits 

that return consistent estimates, log-logistic distribution fitted by method-of-

moments is seen to return closest estimates if overall results are considered. A 

further discussion can be made about the behavior of log-logistic distribution 

in much longer return periods. 

 In triangular modelling of peak pressure signals, results show that in 

20% filling level rise time and 50% and 95% filling levels rise and decay 

times, pressure ratio of 0.30 is the nearest idealization to the actual signal. In 

20% filling level decay time, there is no obvious pattern of pressure ratio for 

triangular modelling. Actually, 50% and 90% filling levels decay times 
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having an obvious is an unexpected result. If pressure signals are observed, it 

can be seen that rising pressure signals have small irregularities and mostly 

have a clean rise until peak value. Decaying pressure signals, on the other 

hand, usually contain local peaks, are very irregular and difficult to classify. 

Therefore, 50% and 95% decay times having an obvious pattern is an 

unexpected result given these irregularities.  

 Considering both choice of statistical distribution and peak signal 

modelling, the results are hardly in accordance with the current procedure of 

classification societies. Hopefully, contents of this research raise attention on 

these important matters regarding sloshing impact pressures. 
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초록 

 

본 논문은 슬로싱 실험을 통하여 계측된 슬로싱 충격압력 

통계해석과 충격압력 신호 모델링 해석을 다루고 있다. 90년대 

후반부터 LNG 시장의 변화로 인해 LNG선이 점차 대형화되었고, 

LNG 저장 탱크의 개수는 동일하기 때문에 탱크의 크기가 점차 

커지게 되었다. 또한, 전 세계에 FPSO 사용이 증가함에 따라 on-

off-loading 중에 LNG선이 겪는 기상조건이 심해지게 되었고, 이로 

인해 LNG선에서의 슬로싱 문제가 대두되었다. 

슬로싱 문제의 해석으로는 실험적 접근법과 수치적 

접근법으로 나뉠 수 있다. 슬로싱은 불규칙적이고 복잡한 운동이기 

때문에 수치적 계산하기 위해서는 많은 시간과 노력이 필요하다. 

그러므로 슬로싱 실험이 슬로싱 충격압력 해석과 수치적 계산의 

기준으로 널리 사용되고 있다.  

LNG 탱크의 설계 단계에서 사용되는 최대압력값 예측을 

위해서는 슬로싱 실험의 충격압력 신호에서 얻어진 추출시간간격과 

임계 압력값으로 계측된 압력값들의 통계해석이 필요하다. 이때 

압력값을 어떤 분포함수로 표현하는지가 매우 중요한 과정이라고 

할 수 있다. 현재 선급 규칙과 연구 기관들에서는 주로 Weibull 

분포함수와 generalized Pareto 분포함수가 사용된다. 하지만, long 

term prediction을 고려하기 위해서 이 외의 다른 분포함수에 대한 

연구가 필요하다. 

슬로싱 문제에서 또 다른 중요한 문제는 충격압력 신호를 

모델링하는 방법이다. LNG 탱크의 내부요동 공진주기와 선박의 
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공진주기가 가까울수록 공진의 가능성이 커진다. 또한, 신호의 

상승과 하강시간이 구조적 응답에 영향을 주기 때문에 충격압력 

신호의 모델링은 탱크의 설계에 있어 매우 중요한 과정이라고 할 

수 있다. 현재 선급 규칙과 연구 기관들에서는 주로 압력값의 2분의 

1 값을 지나가는 삼각형 모델링이 사용되고, 따라서 이 부분에서도 

더욱 자세한 연구가 필요하다. 

본 논문에서 첫 번째 내용으로는 3차원 실선 모델에 대한 

슬로싱 모형실험을 통해 얻은 충격압력 값들의 통계해석을 

수행하였다. 슬로싱 모형실험의 데이터로는 20%, 50%와 95% 

적재수심에서 동일조건의 실선기준 5시간 실험을 20회 반복한 

데이터를 사용하였다. 이러한 충격압력 값을 이용하여 다양한 

분포함수로 distribution fitting을 수행하였고, 이에 따른 결과로부터 

가장 잘 맞는 4개의 분포함수를 선정하였다. 선정된 분포함수들은 

Weibull, generalized Pareto, generalized extreme value와 log-

logistic 분포함수다. 이 4개의 분포함수에 대하여 최대 3가지 각기 

다른 방법으로 distribution fitting을 수행하였다. 얻은 fit에 대해서 

초과확률 커브와 goodness-of-fit 테스트 (PPCC 테스트)를 통해 

비교하였다. 또한, 100시간 실험 데이터를 기준으로 5시간 실험 

데이터 fitting의 squared error 값을 비교하였다. 또한, 100시간 실험 

데이터를 기준으로 현재 선급 규칙에 따라 추정되는 압력 값과의 

차이를 비교하였다. 100시간 실험 데이터는 동일조건에서 실선기준 

5시간 실험을 20회 반복을 한 데이터를 취합하였다. 

본 논문에서 두 번째 내용으로는 충격압력 신호 모델링에 

대한 해석을 수행하였다. 이를 위해 실제 신호에서 9개의 압력값 
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비율에 대해 상승시간과 하강시간을 계산한 후 각 압력값 

비율에서의 삼각형 모델링을 통해 얻은 상승시간과 하강시간과의 

차이의 절댓값을 더해서 비교하였다. 또한, 각 적재수심과 각 

적재수심에서 중요한 패널에 대해 20회 반복 수행한 실험 결과와 

모든 충격압력 신호에 대해 압력값 개수를 기준으로 10%씩 나눠서 

결과를 비교해 보았다. 이러한 결과를 통해 충격압력 신호 삼각형 

모델링에서 사용된 압력값 비율을 제안하였다. 

 

주요어: 슬로싱, 충격압력, 통계해석, 모형실험, 신호 모델링.  
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