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Abstract

Prediction and Modelling of
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Seoul National University

Sloshing is a well-known phenomenon that has attracted attention of
researches over the last few decades. Sloshing in LNG cargo tanks had a new
turn with changes in the LNG market at the end of 1990’s. As a result,
increase in tanks sizes and changes in operational conditions were inevitable
which brought some technical concerns regarding sloshing problem. There are
a great number of studies in the area of sloshing including analytic,
experimental and numerical studies. Since sloshing is a complex liquid
motion, the computational effect required for numerical analysis is very high.
Therefore, experimental method is widely used in determination of slosh-

induced loads.

Accurate prediction of maximum pressure in a designated return
period is a crucial step in structural design of LNG cargo containment system.
In order to determine the maximum pressure, statistical post-processing must
be carried out. In this step, it is important that an appropriate statistical
distribution is used to describe the peak pressures. Traditionally, Weibull and

generalized Pareto models are used in short term prediction; howey_er, there_isy



a need for a wider investigation in this area to find better alternatives for long

term prediction.

Another issue about sloshing impact pressures is the idealization of
peak pressure signals. In the current procedure, peak pressure signals are
modelled as triangular shapes for the simplicity of structural analysis.
Triangular modelling that passes through rise and decay times at a certain
ratio of peak pressure value is used most commonly. Since accurate modelling
of peak pressure signals and determination of rise and decay time are
significant in terms of structural response, the modelling of peak pressure

signals must be studied in more detail.

In this thesis, statistical analysis of sloshing impact pressures is
carried out. To this end, various statistical models are applied to peak pressure
data which were acquired from sloshing models tests of 5hrs duration (in real
scale) repeated 20 times in 3 filling levels, and, for further analysis, the best 4
distributions are chosen which are Weibull, generalized Pareto, generalized
extreme value and log-logistic distributions. Using different distribution
fitting methods, these statistical models are applied to the data sets of peak
pressures. The fits are evaluated using probability-of-exceedance curves and
goodness-of-fit tests according to different filling levels. Another evaluation is
carried out by comparing the squared error between accumulated peak
pressure data (100hrs test data) and short duration test data (5hrs test data)
fittings in different zones of return period. This evaluation results are also
displayed in long term, being plotted to understand the behaviors of
distributions in case of long term prediction. In addition, taking 100hrs test
data as a reference, another comparison is made for the current short term

prediction procedure of the classification societies.

In the next part of the thesis, analysis on triangular modelling of
impact pressure signals is carried out. The rise and decay times-in 9 Stations of] |



pressure signals are extracted and utilized for comparing different pressure
ratios of triangular signal modelling. The summed absolute difference
between the rise and decay times in actual signal and modelled signal are
calculated in these 9 stations. The comparison of pressure ratios are displayed
in different percentages of highest peak pressures in each filling level.
Considering the results, a suggestion is made for pressure ratio of triangular

signal modelling.
Keywords: Sloshing, impact pressures, statistical analysis, sloshing

experiment, signal modelling.
Student Number: 2015-23297
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1. Introduction

Sloshing is a well-known phenomenon that occurs in partially filled
LNG tanks. Sloshing in LNG cargo tanks had a new turn with changes in the
LNG market at the end of 1990’s. Due to the growing demand of LNG in the
world, the demand for larger LNG carriers also increased. While modest LNG
carriers up to 145,000 m® capacity were built in the 1970’s to 1990’s, the
capacity of ships built after 2000 are up to 280,000 m*. With larger ships and
mostly the same number of tanks, the increase in the tank size was inevitable
for efficient and economic operation. Moreover, LNG market being a spot
market brought concerns about filling restrictions. In order to have the
flexibility of partially loaded operation, sloshing in intermediate filling levels
also started to draw attention of researchers. With the spreading of the floating
production storage and offloading platforms (FPSOs), LNG carriers face more
harsh weather conditions during loading and offloading operations. All in all,
these changes in the LNG market effects the design of the cargo containment
systems in LNG carriers, raising some technical issues in sloshing in LNG

tanks.

Sloshing has attracted attention of researches over the last few
decades. There are numbers of numerical studies regarding estimation of
sloshing pressures in membranes. Since sloshing is a highly stochastic and
complex motion which includes phenomenon such as splash and wave
breaking, it requires a great computational effort to calculate the sloshing
impact pressures which occurs in small areas of the tank. Therefore,
experimental method is widely used in determination of slosh-induced loads
as well as in validation of numerical simulations. Once sloshing experiment is
conducted and pressure signals are received, statistical post-processing must
be carried out in order to acquire design sloshing load from peak pressures.

Mathiesen (1976) and Gran (1981) are the two fundamental researches in thisj|
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area, applying a statistical approach to estimate the design sloshing loads.
Mathiesen applied Weibull distribution to peak pressure data acquired from
random pitch motion while Gran applied Weibull and Frechet distributions to
peak pressures and compared both results. In Graczyk et al. (2006), statistical
analysis of 5hrs sloshing model tests are carried out, applying Weibull and
Generalized Pareto models to the sets of peak pressure data. In the study, a
procedure for sloshing experiments is presented as well as discussions about
spatial and temporal characteristics of pressures and model scaling problem.
Kuo et al. (2009) gathers basic challenging issues in LNG sloshing including
statistical modelling of maximum sloshing pressures and estimation of
confidence bounds. Fillon et al. (2011) focuses on statistical post-processing
of experimental data by fitting generalized extreme value, three-parameter
Weibull and generalized Pareto distributions to peak pressures and using
Kolmogorov-Smirnov goodness-of-fit test and confidence intervals to

evaluate these fittings.

Accurate prediction of maximum pressure in a designated return
period is a crucial step in structural design of LNG tanks. Estimated
maximum pressure changes significantly according to which statistical
distribution is used in mathematical description of peak pressures. In the
current application, Weibull distribution and generalized Pareto distribution
are mostly used to estimate the maximum pressure. In short term prediction,
different distributions may return closer estimates. However, recently long
term prediction has attracted interest as it considers the weather conditions
that the ship may endure during its life-time. In long term prediction,
distribution selection and even choice of distribution fitting method can create
a great difference. Therefore, there is a need for wider investigation on other
statistical models to find better alternatives for estimating the pressure value

in longer return periods.



Another issue about sloshing impact pressures is the idealization of
peak pressure signals. In the current procedure, peak pressure signals are
modelled as triangular shapes in pressure time histories for the simplicity of
structural analysis. There are a smaller number of studies regarding the
modelling of sloshing peak pressure signals. Kim et al. (2014) classified the
current modelling methods used by classification societies and research
facilities as Type 1 and Type 2. Type 1 is the triangular modelling passing
through rise and decay time values at the pressure threshold and Type 2 is the
triangular modelling passing through rise and decay times at a certain ratio of
peak pressure value. Kim et al. investigated rise and decay times in each
modelling type as well as their effect on impulse area modelling. Graczyk and
Moan (2008) investigated the accuracy of triangular modelling and proposed a

trapezoidal modelling as an alternative approach.

Modelling of peak pressure signals is significant in terms of structural
response. The structural response is dependent on the magnitude of pressure
as well as the duration of the impulse. The highest peak pressure does not
necessarily cause the highest structural response, but a longer duration impact
with small magnitude of pressure may. The rise and decay times are used in
the impulse area modelling, which also effects structural response. The
selection of rise time should also consider the natural resonances of tanks and
the ship, and rise times near these resonances may need to be investigated
(Lloyd’s Register, 2009). Therefore, accurate idealization of pressure signals
is of high importance in analysis of sloshing impact pressures and should be

further investigated.

In this thesis, statistical analysis of sloshing impact pressures is
carried out. The peak pressures data acquired from sloshing models tests of
5hrs duration (in real scale) repeated 20 times in 3 filling levels is used.

Various statistical models are applied to peak pressure data and, for further
+ i — | |
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analysis, the best 4 distributions are chosen which are Weibull, generalized
Pareto, generalized extreme value and log-logistic distributions. Using
different distribution fitting methods, these statistical models are applied to
data sets of peak pressure. The fits are evaluated using probability-of-
exceedance curves and goodness-of-fit tests (probability plot correlation
coefficient test) according to different filling levels. Another evaluation is
carried out by comparing squared error between accumulated peak pressure
data (100hrs test data) and short duration test data (5hrs test data) fittings in
different zones of return period. This evaluation results are also displayed in
long term plotting to understand the behavior of distributions in case of long
term prediction. In addition, taking 100hrs test data as a reference, another
comparison is made according to the current short term prediction procedure

of the classification societies.

In the next part of the thesis, analysis on triangular modelling of
impact pressures is carried out. The rise and decay times in 9 stations of
pressure signals are extracted and utilized in comparison of different pressure
ratios of Type 2 triangular signal modelling. The summed absolute difference
between the rise and decay times in actual signal and modelled signal are
calculated in these 9 stations. The comparison of pressure ratios are displayed
in different percentages of highest peak pressures in each filling level.
Considering the results, a suggestion is made for pressure ratio of triangular

signal modelling.



2. Mathematical Model & Approaches

2.1. Statistical Analysis of Peak Pressures

2.1.1. Statistical Distributions

The peak pressures acquired from 20 repetitions of 5hrs (in real scale)
sloshing model test are used in this thesis and each 5hrs test is referred to as
one case. Peak pressures are extracted from pressure signals according to the

time window, 0.2 ms and pressure threshold, 2.5 kPa (Kim, 2017).

In order to estimate the maximum pressure, statistical distributions are
applied to the peak pressure data and pressure value corresponding to chosen
return period is determined as the maximum pressure. The current procedure
according to classification societies is that applying Weibull or generalized
Pareto distributions to the peak pressure data and to choose the pressure value
corresponding to 3-hour return period as the maximum pressure. The

distributions used by different classification societies are shown in Table 2.1.

Table 2.1 Statistical models currently used by classification societies

Organization Statistical Distribution

Generalized Pareto distribution

BV Weibull distribution

Generalized extreme value distribution

ABS Weibull distribution
Weibull distribution
DNV
Generalized Pareto distribution
Weibull distribution
LR Generalized Pareto distribution

Log-normal Distribution




11 statistical distributions are used in the first step of the research as
shown in Table 2.2. An evaluation based on probability of exceedance curves
and chosen goodness-of-fit tests is carried out and the best 4 distributions are
determined for further study, which are Weibull distribution, generalized
Pareto distribution, generalized extreme value distribution, log-logistic

distribution.

Table 2.2 Statistical distributions applied in the first step

Statistical Distributions for the First Step

Weibull distribution

Generalized Pareto distribution

Generalized extreme value distribution

Log-logistic distribution

Logistic distribution

Log-normal distribution

Birnbaum-Saunders distribution

Gamma distribution

Inverse-Gaussian distribution

Nakagami distribution

Rician distribution

Weibull distribution (WBL) is widely used in the statistical analysis
of sloshing impact pressures. The probability density function, f(x) and the

cumulative distribution function, F(x) are given as follows.

wani{5t )l ) e



F(xw,e,ﬂ)—lexpu%'j J @

In these functions, y is the shape parameter, 0 is the location parameter, § is
the scale parameter and variable x should be equal or larger than the shape

parameter.

Generalized Pareto distribution (GP) is also widely used in estimation
of maximum pressure value in sloshing. The probability density function, f(x)

and the cumulative distribution function, F(x) are given as follows.

f(x|7.8) {%}(u%} ' 3)
F(x]7.5) =1—(1+%j_7 (4)

In these functions, y is the shape parameter and B is the scale parameter.
Generalized Pareto distribution usually applied to tail of the data to acquire a
better fit. Therefore, Peak-Over-Threshold Method is adapted which only the
data that exceeds a certain threshold value is taken into consideration.
Considering a sample of x;, i=1,.,n with sample size n and G(x) is the
distribution function and we are interested in k (k<n) peaks which exceed a
threshold u. This sample of size k is called peaks over threshold and denoted

Xi, i=1,.,k (X;>u). The distribution of the X; is given as,

0 if x<u
Gy (x) =P[X <x|X >u]=1 G(x)-G(u)
1-G(u)

®)

if x>u

And the distribution function of the excesses, i.e. the amounts by which the

peaks exceed threshold, is given as 3



Gy, () =P[(X —u)<x| X >u]=P[X <(x+u)| X >u]
_ G(x+u)—G(u) (6)
- 1-G(u)

Fy.u(x) is the probability that a peak exceeds the threshold u by no more than
an amount x, given that the threshold is exceeded. The relation between the

two distribution functions is
Gy, (X) =Gy (x+u) )

Pickand’s theorem implies that the distribution function of the excesses Gy,(X)

may be modelled by F(x|y,) and the distribution function of peaks over u,
Gy (u) = R (x-u)=F(x-uly,p) (®)
provided that u is sufficiently high (Pickands, 1975).

The initial peak distribution in the tail part G(x) when x>u may be obtained

by rewriting G(x) as
G(X) =Gy, (¥)[1- f (u)]+F(u) (x> u). 9)

Gx(x) can be modelled by the generalized Pareto distribution function F(x|y,)
and G(u) can be approximated by the empirical probability, which is the

number of data points less than or equal to u divided by the number of

samples n
. 1
G(U) =521Xi5u (10)
This gives
G(X)=F(x—ul| y,ﬂ)[l—é(u)]+é(u) (X > u). (11)



This implies that the initial peak distribution in the tail part can be calculated
from the fitted generalized Pareto distribution and empirical probability G (u)

(Rognebakke et al., 2005).

Although, generalized Pareto distribution is fitted to the tail data, the

parameters for the whole data can be obtained. The shape parameter y does

not change. The scale parameter 3 and location parameter 4 is calculated as

A

B=p(1-6w)) (12)

,@((l—é(u))_y —1)

O=u- (13)
In this thesis, the 0.92 quantile of the sample peaks is considered as the

threshold value which means 8% largest peaks are considered.

The probability density function, f(x) and the cumulative distribution
function, F(x) of generalized extreme value distribution (GEV) are given as

follows.

1

f(x|7,0,) =(%Jexp -(1+ y¥]_7 (1+ y¥j_ K (14)

F(x|7,6,5)=exp —[1+y¥jy (15)

In these functions, vy is the shape parameter, 0 is the location parameter, [ is
the scale parameter and variable x should be equal or larger than the shape
parameter. If shape parameter of generalized extreme value distribution is

negative, Weibull distribution is a reverse generalized extreme value

2]

distribution.



The three parameter log-logistic (LL) distribution, also known as
generalized logistic distribution, is often used in estimating flood frequencies
in hydrology. There is no application of log-logistic distribution in sloshing
peak pressures, yet. The probability density function, f(x) and the cumulative

distribution function, F(x) are given as follows.

(x17.0.8) = £ as)
14[1- X_gny
/ +( ! ( ;
F(x|7.0.8) = 1{1—{%Dy an

There is also an alternate parameterization as given below, which is preferable

in some cases due to more interpretable values of parameters.

y(x—é’j
[(x17.60,) =——FL—~— 19
1 x—@j
g [ { s
F(X|7,9,ﬂ)=£l+(£] J (19)

In these functions, vy is the shape parameter, 0 is the location parameter, [ is
the scale parameter and variable x should be equal or larger than the shape
parameter. In this thesis, alternate parameterization is used for method-of-
moments and maximum-likelihood-estimation while normal parameterization
= 7

A —=—TH
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is used for I-moments method. Even if the parameter values are different, both

functions return the same fits with the same parameter estimation method.

The probability of exceedance function is calculated as, 1-F(x) where
F(x) is the cumulative distribution function. The probability of exceedance
curves are plotted in log-scale in y-axis for a better observation of extreme
values in tail. In the x-axes of probability of exceedance curves, normalized
pressure values are plotted. Normalized pressure value is calculated as P/pgH
where P is the magnitude of pressure, p is the density, g is the gravity and H is
the height of the tank. In order to obtain the maximum pressure value
corresponding to a certain return period, Q(N) is used where Q is the inverse-
cumulative distribution function (quantile function) and N is the number of
samples measured in m hours. If n is the number of samples measured in t

seconds, N is calculated as below.

_3600nm
t

N (20)

2.1.2. Distribution Fitting Methods

In the distribution fitting process, it is seen that different estimation
methods can lead to very different parameter estimates for some distributions
and slightly different estimates for some. This affects the estimated maximum
pressure value either significantly or slightly. Fitting methods are directly
related to goodness-of-fit and can be considered as a parameter that changes
the fitted distribution. Thus, this study adopts multiple parameter estimation
methods as to examine a wider range of fits. Therefore, 3 different distribution
fitting methods are applied in order to estimate the distribution parameters,
which are maximum likelihood estimation (MLE), method-of-moments

(MOM) and I-moments method (LMOM). However, some methods} may._net] |
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be suitable for certain distributions. These limitations and the reasons are

explained for each distribution fitting method in this part.

Maximum likelihood estimation, originally developed by R. A. Fisher
in the 1920’s, is a method to find the probability distribution that makes the
observed data most probable by maximizing the likelihood function.

Likelihood function is defined as,
L(w|x) = f(x|w) (21)

where L is the likelihood function, f is the probability density function of the
distribution and w is the distribution parameter. Instead of likelihood function,
negative log-likelihood function is used for computational convenience. For
each statistical model, negative log-likelihood function is calculated from
probability density function and an optimization to minimize this function is
executed. It should be noted that, MLE can return biased estimates for small
sample sizes. For WBL, MLE is applicable only when shape parameter is
greater than one (Smith, 1985). However, in the case of peak pressures, shape
parameter is usually smaller than one. Therefore, MLE is not suitable to use in
this study. A weighted-maximum likelihood estimation method proposed by
Cousineau (2009), was used for WBL parameter estimation which inserts 3
weights in the log-likelihood function. This method requires 2%° Monte-Carlo
simulations to estimate the weights in order to obtain a decent fit. Since it
requires too much time, especially for large sample sizes over 1000, this

method is inconvenient for the case of peak pressures.

Method-of-moments (MOM) uses summary statistics to estimate the
parameters by matching the first three model moments —mean, variance and
skewness- with their corresponding sample moments. The mean (fi), variance

(6?) and skewness (,) of the sample data are given as follows.

12



X (22)

& =3 (- )’ @3

18 (x—aY
71=—Z[ “J (24)

The mean (x), variance (¢°) and skewness (y) of Weibull distribution:

u=pr 1+£j+9 (25)
v
o’ =p* r(1+ Ej—rz [1+ EH (26)
L v 4
F(1+3j—31“(1+1j1“(1+2J+2F3 (1+1]
n=——-or> 7 : @)

%
e )r3)
v v
The mean (x) and variance (o) of generalized Pareto distribution:

__B
,U—l_7 (28)

T — 29)
1-27)A-7)

The mean (u), variance (%) and skewness (yy) of log-logistic distribution

which used with alternate parameterization:

p=p%csc| Z|+6 , 80)
v \r ] 2-1

Al =
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& 7



o’ =p° E[Z csc (z—ﬂj ~ 7 esc? [zﬂ (31)
e e Y Y

BCSC(%j—GEcsc[hjcsc(”}LZ(”j cscs(”j

V4 V4 V4 V4 V4 V4 (32)
T 2\ & T %
[chc(j —Z csc? (ﬂ
YV /4 V4 V4

where x; stands for i-th peak value when the peaks are ordered in ascending

=

order, n for sample size and I" for the Gamma function. MOM can be limiting
when second of higher moments are only define for a certain range of shape
parameter. In case of GEV, the mean and variance of GEV are infinite for the
cases which shape parameter is greater than 1 and 1/2, respectively. Since
parameter estimation is not possible for shape parameters in these specified

ranges, MOM method is not applied for GEV in this study.

L-moments method (LMOM), described by Hosking (1990), uses
L-moments to obtain the distribution parameter and is an alternative approach
to method-of-moments. L-moments are analogous to the conventional
moments but can be estimated by linear combinations of order statistics.
Similar to MOM, LMOM matches L-moments and L-moments ratios of the
distribution with their corresponding sample L-moments and L-moment ratios.
The sample I-moments I-location (I,), I-scale (lI,) and sample I-moments ratios
I-skewness (t3) and I-kurtosis (t;) are calculated using probability weighted
moments and the coefficients of the shifted Legendre polynomial showed by
Hosking et al. (1985).

r-1

I, = Z p:—l,kbk (33)
k=0
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L (-)(i-2)..(i-1)
be=n ;(n—l)(n—Z)...(n—k)

. e (ryr+l
e (7

t =" (36)

(34)

where X;., < Xp., < < X,,., indicates ordered sample, p* is the

coefficients of the shifted Legendre polynomial.

The I-location (Ay), I-scale (A;) and I-skewness (t3) of Weibull distribution:

A=0+p F(l+%j (37)

A, = ﬁ(l—Z‘W)F(H%j (38)
2(1-3%

75 =3—% (39)

The I-location (A,), I-scale (A;) and I-skewness (t3) of generalized extreme

value distribution:

4:9+ﬁ(1—r(1+y)) (40)
4
_B e
2?—7F(1+7)(1 27) (41)
7,=2 (1-37) -3 (42)
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The I-location (A1), I-scale (A;) and I-kurtosis (t4) of log-logistic distribution

used with normal parameterization:

B

A =0+=
v

A=p F(1+7/)F(1—7)

1+5y°
s

Estimation methods used for each distribution and the notation for

(1-T(1+y)T(1-y))

each fit are shown in Table 2.3.

Table 2.3 Parameter estimation methods applied to each distribution.

Distribution Method Notation
Method-of-moments WBL-MOM
Weibull distribution
L-moments method WBL-LMOM
) Method-of-moments GP-MOM
Generalized Pareto
distribution i _likeli
Maximum-likelihood GP-MLE
estimation
] L-moments method GEV-LMOM
Generalized extreme
value distribution ; likali
qumym likelihood GEV-MLE
estimation
Method-of-moments LL-MOM
L_og-_logl_stlc Mgmm_um-llkellhood LL-MLE
distribution estimation
L-moments method LL-LMOM

16

1
—




2.1.3. Goodness-of-Fit Test

To examine the goodness-of-fit, probability plot correlation
coefficient test (PPCC test) is used. PPCC test was first proposed by Filiben
(1975) for normal distribution and it was developed to be applied in other
distributions in studies after that. This test uses the correlation coefficient r
between the ordered observations X; and fitted quantiles M; determined by
plotting positions p; for each X;. It is assumed that the observations could have
been drawn from the fitted distribution if the value of r is close to 1.0.
Essentially, r measures the linearity of the probability plot, providing a
quantitative assessment of fit (Heo at al., 2008). The correlation coefficient r

is defined as,

r=——= (46)

where X and M denote the mean values of the observations X; and the fitted
guantiles M;, respectively and n is the sample size. The estimate of order

statistic median for M; is shown as

M, =®™(m) (47)

m =1-(05)", =1

m=104 iy 1 (48)
n+0.12

m. =(0.5)%, i=n
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where @ is the inverse of cumulative distribution function and m; are the
median values. Plotting position formula used in this study is suggested by
Cunnane (1978) for WBL and LL. There are other plotting positions
suggested for GP and GEV each in different studies. However, it was
observed in the goodness-of-fit test results that using different plotting
positions for different distributions does not provide a healthy comparison of
PPCC values. Therefore, the same plotting positions are adapted for all fits.
Judging by the way it is calculated, PPCC test is sensitive to sample size in

different parts of the distribution.

For hypothesis testing, critical values are calculated from
Monte-Carlo simulations. 10° random samples, which have the same sample
size of the peak pressure data, are generated from fitted distributions and
PPCC is calculated for each one of these random samples. Significance level
is chosen as 0.05. Therefore (10°x (1-0.05))™ highest PPCC value is chosen as
the critical value (Vogel, 1986). If the PPCC of the pressure data is higher
than the critical value, then hypothesis return 0 which means that, in that
certain significant level, the data is drawn from the distribution and otherwise

returns 1.

Since the data from 5hrs test (in real scale) repeated 20 times for each
filling level is used in this thesis, a ranking method is needed to organize the
results of PPCC test of each case, according to panels and filling levels. That
is, for each case (5hrs test), distributions are ranked from 1 to 9 according to
the value of PPCC where 9 is appointed to the best fit, 1 to the worst fit and
the fits in between accordingly. In each panel, mean ranking of each fit is
calculated for 20 tests. In each filling level, mean ranking is calculated for 4
panels. The results are displayed in % to show the share of each fit, 100%

being total rank of all the fits. The results are displayed separately for
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different filling levels, because each filling level is thought to have their own

pattern of the peak pressures distribution.

As useful as goodness-of-fit tests are, observation of the POE curves
are also an adequate method to see how the statistical model behaves, even

though it lacks of numerical display.

2.1.4. Squared Error

Goodness-of-fit test are useful to evaluate how well the fit follows the
sample data. However, if long term prediction is the interest, how well short
duration test fittings follow the long duration test data gains importance. The
reason for that is, in the actual procedure, usually 5hrs test is repeated one or
two times and the data acquired from these tests are used in estimation of
maximum pressure. Most of the time, long duration test is not an option. Since
sloshing is a highly stochastic phenomenon, the peak pressure data acquired
from sloshing model tests remains random. However, accumulated data from
repeated tests, long duration test data, is more converged than short duration
test data. Thus, fewer outliers are seen in the long duration test data
comparing to short duration test data. In addition, for the pressure values
corresponding to shorter return periods, the data are converged enough that
the outliers in short duration test data are mostly eliminated. Taking test data
directly as a reference can be discussed in different points of view. The most
obvious argument is that distribution fitting is carried out so that test data
itself is not used for estimation of maximum pressure. The test data remains
random; this is why we try to acquire a mathematical description of peak
pressures. This is a valid argument. For this reason, the idea is not to use long
duration test data for direct estimation of maximum pressure. Instead, the test

data will provide a converged guidance for return periods that are jlshprter_ than .
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the duration of the test as well as providing an idea for long term prediction.
Therefore, 100hrs experiment data is taken as a reference in this part to

compare the behavior of different 5hrs data fits in the long term prediction.

In order to have a detailed comparison, 100hrs experiment data is

divided into zones of return periods (Table 2.4).

Table 2.4 Zones of return periods (real scale)

Zone Return Period
Zone 1 ~ 3-hour

Zone 2 3-hour — 5-hour
Zone 3 5-hour — 10-hour
Zone 4 10-hour — 100-hour

Squared error (g;) between the fitted distributions and 100hrs experiment data

is calculated as

2

N
Z| Preference - F?estimated |
1

&,

- 1=1,2,3,4 (zones) (49)

|
where n; is the sample size in Zone i and P is the normalized pressure value.

Although the interest is that how well 5hrs data fitting follows 100hrs
experiment data, squared error of various accumulated data fittings is also
calculated to evaluate the pattern of these fits. The data sets used in this part

are shown in Table 2.5.
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Table 2.5 Data sets evaluated using squared error (real scale)

Data Sets Used for Fitting
5hrs test
10hrs test
20hrs test
50hrs test
100hrs test

Once the squared error is calculated for each case, mean, median and
standard deviation of squared error are calculated for 20 cases of 5hrs test and
10 cases of 10hrs and so on. Mean, median and standard deviation values are
ranked from 1 to 7 (7 fits in this part), where 7 is appointed to the best fit, 1 to
the worst fit and the fits in between accordingly. In filling levels, mean rank is
calculated for 4 panels for rank of mean, rank of median and rank of standard
deviation. The rank-per-case is also acquired from squared error of each case
by using the same ranking method in PPCC test. The results of this part are
evaluated considering all four of these rankings. If these values are not in
agreement, the median and rank-per-case are given primary importance
because mean and standard deviation values are affected significantly by the
high values in one single case. In addition, the median and rank-per-case is
more important for the reason that, 5hrs sloshing tests are conducted one or
two times in the actual procedure. Therefore, each case should return steady

estimates for a fit to be considered a good fit.

2.1.5. Estimated Pressure Difference

In the current procedure required by classification societies, 5hrs or
10hrs test data fitting and 3-hour return period is considered in the estimation

of maximum pressure. A comparison that is suitable for this procedure is also
-1 O x1]]
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carried out. Taking 100hrs experiment data as a reference, summed absolute
difference between estimated maximum pressure acquired from fitting and
100hrs experiment data is calculated. For the determination of the experiment
data corresponding to 3-hour return period, linear interpolation between
pressure values is applied. It was checked that, for 3-hour return period, the
data is so close to each other, there is almost no difference between
interpolation methods or different curve fitting methods. Once the summed
absolute difference of pressures is calculated, mean and rank-per-case of this

value is acquired by the same method explained in squared error.

2.2. Peak Pressure Signal Modelling

Peak pressure signals are often idealized as triangular shapes. In the
procedure of classification societies and other organizations, two types of
signal modelling is currently used (Kim et al., 2014). Type 1 is the triangular
shape passing through rise and decay times at the pressure threshold and the

maximum pressure Ppax (Fig. 2.1).

TYPE 1 TRIANGULAR MODELLING

——Type 1 triangular modelling

] sampling time window

Pressure

pressure threshold

0 /\/\ [\ VAN N
I V VYT
rise decay
Time

Fig. 2.1 Type 1 triangular modelling applied to peak signé.léi ‘ -T
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Type 2 modelling is the triangular shape passing through rise and decay times

at a certain ratio of peak pressure and the maximum pressure Py (Fig. 2.2).

TYPE 2 TRIANGULAR MODELLING

‘—Type 2 «=0.50 triangular modelling‘

Pressure

0 /\/\ f\ NN
e Vv Vo= Y
Trise decay
Time

Fig. 2.2 Type 2 triangular modelling applied to peak signals

The formulation of Type 1 and Type 2 modelling methods are given as

follows (Kim et al., 2014).

- Type 1:
Trise :tpmax _tRh,esho,dup-crossing (50)
Toecay =Tp, .. down-crossing ~tp,, (51)
- Type 2:

T _ thax _t(a,ise.Pmax)up—crossing

= (52)
rise
1_arise
t -t
_ (@decay -Prax )down-crossing Ry,
Tdecay_ > 1 (53)
-adecay

o =T T 2] 2 &+
|l = - ] =ti—
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The methods that are currently used in different organizations are shown in

Table 2.6. It is seen that, Type 2 modelling and pressure ratio of 0.5 is mostly
used.

Table 2.6 Current modelling methods in test facilities and classification

societies (Kim et al., 2014)

Organization Rise Time Decay Time
ABS Type 2 (0=0.5) Type 2 (¢=0.5)
DNV Type 1 & Type 2 (0=0.5) Type 1 & Type 2 (0=0.5)
LR Type 2 (0=0.5) Type 2 (0=0.5)
BV Type 2 (0=0.5) Type 2 (0=0.5)
GTT Type 2 (0=0.5) Type 2 (0=0.5)
MARINTEK Type 2 (0=0.2) Type 2 (0=0.3)

In this part, pressure ratios for Type 2 triangular modelling are
investigated. The rise and decay times in 9 stations of pressure signals are

extracted and utilized in comparison of different pressure ratios (Fig. 2.3).

Pressure (kPa)

1656.183 1656.184 1656.185 1656.186 1656.187 1656.188 1656.189 1656.19  1656.191
Time (ms)

Fig. 2.3 The rise and decay times in 9 stations of Pmaxi—-! -“'ﬂ : 1_]| o)
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To carry out the comparison, the summed absolute difference between the rise

and decay times in actual signal and modelled signal is calculated in these 9

stations.
grise :z Trise,reference -Trise,(a.Pmax) ‘ (55)
gdecay :z ‘Tdecay,reference _Tdecay,(a.Pmax ) ‘ (56)

The comparison of pressure ratios is displayed in different percentages of
highest peak pressures in each filling level. The comparison is done this way,
because pressure signals may show a change of pattern according to pressure
values and filling levels. Considering the results, a suggestion is made for

pressure ratio of triangular signal modelling.
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3. Sloshing Experiment

The tests were conducted in Seoul National University (SNU)

Sloshing Experiment Facility. SNU has three hexapod motion platforms with

different payloads (1.5, 5, and 14 ton). In this study, 5-ton platform was used

with a tank which has 868.2 mm length (L), 760 mm width (B) and 556 mm

height (H). A motion platform, which as controlled by a motion controller,

was used to simulate the scaled 6-degree of freedom (dof) ship motion.

Froude scaling is used. In the experiment, 20 repetitions of 5hrs test (real

scale) were carried out in extreme wave condition. The test conditions are

shown in Table 3.1. Experiment setup is shown in Fig. 3.1.

Table 3.1 Sloshing test conditions (real scale)

Filling | Heading Sea . Phase
Case Depth Angle Condition Test Time Seed
Case 1 0.95H 150deg HTZ—:lgl?r,sm 5hrs * 20 Rzzggm
s - .
Case2 | 0.50H | 90deg L fglsnsl Shrs * 20 Rigggm
S - .
Case3 | 020H | 90deg | \'Z12% | shis*20 Rigggm
S - .

Fig. 3.1 Experiment setup
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The tests were conducted for three different filling depths: 20%, 50%
and 95% of tank height, notating 0.20H, 0.50H and 0.95H hereafter. The tank
is based on 140K Liquefied Natural Gas (LNG) carrier with a 1:50 scale ratio
and made of plexiglass. Thickness of the tank is 35-40 mm which is firm
enough to regard the wall as rigid and ignore hydroelastic response of the tank.
To measure the dynamic pressures on the tank, integrated circuit piezoelectric
(ICP) sensors were mounted as cluster panels. There are 24 panels in total and

their locations are shown in Fig. 3.2.

Fig. 3.2 LNGC tank model and location of sensor cluster panels.

Once the pressure data is measured, high-pass filter is used to
eliminate low-frequency drift of pressure data. Sampled sloshing peaks, or
global peaks, were chosen by imposing pressure threshold (2.5kPa) and
sampling time window (0.2ms) (Kim et al. 2017). The maximum pressures
collected from all the segments became a group of peaks for the statistical
analysis. The panels considered in this study are shown in each filling level in
Table 3.2 and the most important panels are underlined. Panels where the
highest peak pressures and the most peak pressures occur are chosen for each

filling level as these panels are considered to be critical.
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Table 3.2 The panels that are considered in this study.

0.20H | 050H | 0.95H
14 4 1
PANEL | 12 6 2
23 16 6
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4. Results & Discussion

4.1. Short Duration Test

Parameter estimation of each distribution is made for peak pressure
data acquired from 4 different panels in each filling level. 5hrs test is
considered as one case and distributions are fitted to the data of each case for
20 cases. For each fit, probability of exceedance curves are obtained and
PPCC test is applied. The results are compared in each filling level separately,
because each filling level is expected to have a different pattern of peak

pressures distribution.

4.1.1. Statistical Distributions for the First Step

In Fig. 4.1, a sample probability of exceedance diagram of the
distributions considered in the first step of this study is shown. 11
distributions are fitted in total and results are compared by observing
probability of exceedance diagrams and PPCC tests of many cases. The best 4
distributions are chosen to be Weibull, generalized Pareto, generalized
extreme value and log-logistic distributions. These distributions are taken for

further study and different distribution fitting methods are applied.
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Probability of Exceedance
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&
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- = —Logistic
Log-Normal

= = Birnbaum Saunders

= = Gamma

Inverse Gaussian

Nakagami

Rician

10

Fig. 4.1 Probability of exceedance diagrams of distributions considered

in the first step

Normalized Pressure

4.1.2. PPCC Hypothesis Testing Results

An example of probability exceedance diagrams and PPCC test
results are shown in Fig. 4.2 and Table 4.1, respectively. In the figure, 5hrs
test data from test number 05 in 20% filling level in panel number 19 is
shown as (0.20H, P.19, No.5). This notation will be used hereafter when
referring to data sets. A rough comparison between POE curves and PPCC
values can be made. First of all, GEV-MLE and LL-MLE fits are obviously
poor fits and PPCC values are also lower. When other fits are checked, it is
seen that POE curves and PPCC values are roughly in accordance. From

PPCC critical values and hypothesis testing results, it is observedi,pE!aL
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fits get better, the critical value tends to get larger, which also increases the

chance of rejection and vice versa. Taking GEV-MLE as an example, even if

PPCC value is low, it was not rejected because critical value is even lower.

100‘. T T
O Experiment
—— WBL-MOM
- — -WBL-LMOM
=—— GP-MOM
lllll GP_MLE
o 107 - - -GEV-LMOM| 7
o ==x= GEV-MLE
© LL-MOM
B LL-MLE
8 LL-LMOM
i
2
% 10
2>
3 [ NNs. e,
©c [ N> e,
Qo
(o]
@
103 F
10 -
35 40

Normalized Pressure

Fig. 4.2 An example of POE diagrams (0.20H P.19 No.05)

Table 4.1 An example of PPCC test results (0.20H P.19 No.05)

Distribution PPCC Value Cri tlijclzf\(/:alue Héll_zgme;is
GP-MLE 0.9993 0.9980 0
GP-MOM 0.9970 0.9987 1

WBL-MOM 0.9953 0.9809 0

GEV-LMOM 0.9941 0.8904 0
LL-LMOM 0.9930 0.9072 0

WBL-LMOM 0.9874 0.9905 1
LL-MOM 0.9853 0.9508 0
GEV-MLE 0.8909 0.8258 0
LL-MLE 0.8107 0.8245 ;ji. -"‘-,: ;
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PPCC hypothesis testing results are displayed in Fig 4.3. The figure
shows the hypothesis test acceptance ratio of each fit in all 3 filling levels.
The hypothesis testing uses the critical value obtained from random sampling
in a certain significance level and is useful when there is no other reference to
compare the PPCC value at hand. However, in this case, the aim is to compare
different fits to each other. Therefore, it is difficult to set hypothesis testing as

a reference to compare different fits.

100 PPCC HYPOTHESIS TESTING
T

- PPCC Hypothesis Test Acceptance Ratio

90

80

70

60

50

RATIO (%)

40

30

20

s
5 o
2 S
= -
w m
O =

GP-MLE
GP-MOM

DISTRIBUTION

Fig. 4.3 PPCC Hypothesis Test Results

4.1.3. Short Duration PPCC Test Results

Some examples of POE curves are shown in Fig. 4.4. This figure

shows representative cases for each filling level, where higher peak pressures

mostly occur. The behavior of each distribution can be observed. It can be

concluded from these diagrams that GEV-MLE and LL-MLE are poor fits for

the data at hand and also, WBL-LMOM does not follow the tail of the

distribution as well as other fits. In addition, GP-MLE follows the tail of the
2 Ao ek

T
 m—
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data better than GP-MOM fit. For the reason, GP-MLE does not follow the

lower tail, where the smaller pressure values are, as well as GP-MOM. This

result can be discussed because it can mean GP-MLE is affected heavily by

the highest pressure values and possibly by outliers as well.

Probability of Exceedance
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The PPCC values for each distribution are compared for all filling
levels in Fig. 4.5. The distributions are rated according to the ranking method
explained in section 3.1.3 and results are displayed in %. When PPCC test
results for whole data set is evaluated, WBL gives the highest goodness-of-fit
rate in all 3 filling levels. For these two models, MOM provides a better fit
than L-MOM method. As expected, GEV-MLE and LL-MLE fits are rated

lowest.
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However, comparing whole data set fitting to each other can be
discussed in several aspects. First, considering the way PPCC is calculated,
PPCC test can be sensitive to sample size. In the lower tail (smaller values) of
the distribution has a greater number of data while the upper tail (higher
values) has a smaller number of data. Therefore, the part of the distribution
with higher sample size has a greater affect in PPCC value. This can make a
difference when a distribution follows the lower values of the distribution
perfectly but provides an upper tail far away from the higher values. It is also
arguable to compare GP to other distributions for whole data set. That is
because, only 8% highest peaks are considered in each data set for GP fitting
and then the parameters for whole data set are obtained. Therefore, most of
the time, it is inevitable for GP to be a poor fit for whole data as shown in Fig.
4.6. In hypothesis testing results, it can be observed that the acceptance rate of
GP fits is lower than 10%, even though PPCC rates are on the higher side. If
the data has extreme peaks in the tail or changes its form significantly in the
upper tail when compared to lower tail, GP fit does not follow the whole data.
This is the reason why GP hypothesis acceptance rate is low. Moreover, in
modelling of peak pressures, the upper tail of the distribution is much more
important for the reason that the objective of the distribution fitting is to
obtain the maximum pressure value. Considering these, comparing goodness-

of-fit test results for whole data is questionable.
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Fig. 4.6 POE diagrams that show the difference of GP fits distinctly.

To overcome these obstacles in evaluating the goodness-of-fit, PPCC
test is applied to only 0.92 quantile of the sample peak pressures. PPCC tail-
only results for each filling level and for all filling levels are displayed in % in
Fig. 4.7 As expected; PPCC test results for tail-only data are more accurate to
evaluate the goodness-of fit of the upper tail. It is concluded that WBL-MOM
gives the best fit in the tail in 50% and 95% filling levels while GP-MLE is
the best fit in 20% filling level followed very closely by LL-MOM and WBL-
MOM. The reason why GP-MLE provides better a fit in the tail than the
whole data in 20% filling levels is because the cases that the tail has a
different pattern than the rest of the data (as in Fig. 4.6) are majority in 20%
filling level. On the other hand, WBL-MOM that provides the best fit for
whole data does not follow the tail data as well as GP-MLE in 20% filling
level. It is also seen that, MLE method is the weakest method for distributions

with three parameters.
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4.2. Long Duration Test

A comparison of long duration test data fitting is also carried out to
judge the behavior of fits in longer return periods. Previously mentioned
procedure is applied to the accumulated peak pressure data from 20
repetitions of 5hrs test (100hrs, real scale). GEV-MLE and LL-MLE fits are

excluded in this part due to poor fits.

4.2.1. Long Duration PPCC Test Results

Example POE diagrams of 5hrs test and 100hrs test data fitting for the
same panel are shown in Fig. 4.8. It can be seen that, the pattern of each
distribution is similar in both 5hrs and 100hrs test. When pressure values
corresponding to 100hrs return period are observed from POE curves of
100hrs test, it is seen that, WBL tends to estimate smaller pressure values
compared to GP and LL. While LL returns overestimated values, GP is
observed to be consistent. In addition, among the three methods applied in this
study, MLE tends to give more conservative curves while MOM results in

more conservative fits than L-MOM method in general.
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Fig. 4.8 POE diagrams of 5hrs and 100hrs test (some return periods marked)

PPCC test results of 100hrs test whole data are shown in Fig. 4.9. As

concluded from these tables, GP fits provide the best fit in 20% and 50%

filling levels while WBL-MOM provides the best fit in 95% filling level.
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PPCC test results of 100hrs test tail-only data are shown in Fig. 4.10.
Similar to whole data results, GP fits provide the best fit in 20% and 50%
filling levels while WBL-MOM provides the best fit in 95% filling level. The
results of whole data and tail-only data are similar, for the reason that, 100hrs
test data is more converged and the outliers in the tail are fewer than 5hrs test
data. Therefore, the best distributions for each filling levels does not change in

tail-only data results in 100hrs test data fitting.
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4.3. Squared Error Comparison

In this part, squared error between fittings of different data sets and
100hrs experiment data is compared. The comparison is based on mean,
median, standard deviation and rank-per-case of squared error. The results are
displayed separately for different filling levels, because each filling level is
thought to have their own pattern of peak pressures distribution. The results of
the most important panels are displayed separately as well, because these

panels have the highest and the most number of peak pressures.

4.3.1. Squared Error Comparison According to Filling

Levels

The closest fits are displayed in Table 4.2, Table 4.3 and Table 4.4
according to filling levels, data sets and return period zones. In all filling
levels, LL-LMOM is the closest fit in Zone 1. Based on 5hrs test data fitting,
LL-MOM is the closest fit in Zones 2, 3 and 4 in all filling levels except 50%
filling level Zone 2. In 50% filling level, GEV-LMOM is the closest fit in
Zone 2. In 50% and 95% filling levels, LL-MOM dominates Zones 3 and 4. It
is also seen that GP fits give closest fits in longer return periods when longer
duration test data is used. Therefore, it can be concluded that, GP fits provide
closer fits when number of data is higher. Although the closest fit changes

from one data set to another, a pattern can be seen partially.
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Table 4.2 Best fits in each zone compared by squared error in 0.20H

BEST FIT FOR EACH ZONE
0.20H
SHRES TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM LL-MOM
10HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM GP-MOM
20HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-LMOM GP-MOM
S0HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-LMOM GP-MOM
100HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-LMOM LL-LMOM GP-MOM

Table 4.3 Best fits in each zone compared by squared error in 0.50H

BEST FIT FOR EACH ZONE
0.50H
SHRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM GEV-LMOM LL-MOM LL-MOM
10HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM GEV-LMOM LL-MOM LL-MOM
20HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
GEV-LMOM
LL-LMOM LL-MOM LL-MOM
LL-MOM
S50HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
GP-MLE
LL-LMOM GEV-LMOM LL-MOM
GP-MOM
100HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM GP-MOM
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Table 4.4 Best fits in each zone compared by squared error in 0.95H

BEST FIT FOR EACH ZONE
0.95H
SHRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM LL-MOM
10HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM LL-MOM
20HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM LL-MOM
S0HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
GP-MLE
LL-LMOM GP-MLE LL-MOM
LL-MOM
100HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-MOM
LL-LMOM GP-MOM LL-MOM GP-MOM
GP-MLE

4.3.2. Squared Error Comparison in Important Panels

The closest fits in 20% filling level panel 19 are displayed in Table
4.5 according to data sets and return period zones. In this panel, Zone 1 is
dominated by LL-MOM and Zone 4 is dominated by GP-MOM regardless of
the data set. Based on 5hrs test data, LL-MOM is the closest fit in Zones 2 and

3 similar to 20% filling level results.

gl
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Table 4.5 Best fits in each zone compared by squared error in 0.20H P.19

BEST FIT FOR EACH ZONE
0.20HP.19
SHRS TEST

ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM GP-MOM

10HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-LMOM LL-MOM GP-MOM

20HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4

LL-MOM
LL-LMOM LL-LMOM GP-MOM
GP-MLE

S0HRS TEST

ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM
LL-LMOM GP-MLE GP-MOM
GP-MLE

100HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-LMOM GP-MLE GP-MOM

In order to have a better understanding of this result, 5hrs test data
fitting for 20 cases are plotted on 100hrs experiment data for this panel as
shown in Fig. 4.11. Each diagram belongs to one of the fits. As seen in the
diagrams, WBL-MOM provides a poor fit and it underestimates the maximum
pressure in all of the cases. GP-MOM fit matches well with the data
corresponding to longer return period in accordance with the squared error
results. It is also understood that WBL-MOM, GP-MOM and GP-MLE fits
have a larger deviation than GEV-LMOM, LL-MOM and LL-LMOM fits.
This deviation is important because a steady estimation of maximum pressure
is needed for each case. Between GEV-LMOM and LL-MOM fits, which
show small deviation, LL-MOM returns estimates closer to the experiment

data in general, also in agreement with the squared error results.
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The closest fits in 50% filling level panel 14 are displayed in Table
4.6 according to data sets and return period zones. In this panel, Zone 1 is
dominated by LL-MOM, similar to 20% filling level results. For longer
duration test, Zones 2, 3 and 4 are dominated by GP fits. Based on 5hrs test
data, GEV-LMOM provides the closest fit in Zone 2 while LL-MOM

provides the closest fit in Zones 3 and 4.

Table 4.6 Best fits in each zone compared by squared error in 0.50H P.14

BEST FIT FOR EACH ZONE
0.50HP.14
SHRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM GEV-LMOM LL-MOM LL-MOM
10HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
GEV-LMOM LL-MOM
LL-LMOM LL-MOM
GP-MLE GP-MOM
20HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
GP-MLE
LL-LMOM GP-MOM WBL-MOM
GP-MOM
S0HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
GP-MLE
LL-LMOM GP-MLE GP-MOM
GP-MOM
100HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM GP-MLE GP-MLE GP-MOM

In this panel, the diagrams of 5hrs test data fitting for 20 cases plotted
on 100hrs experiment data are shown in Fig. 4.12. These diagrams show that,
WBL and GP fits estimate a wider range of maximum pressures and the
estimation differs from case to case significantly. On the other hand, GEV and
LL fits have much smaller deviation of curves which leads to steady estimates
in each case. Therefore, according to shape of the distribution, GEV-LMOM,
LL-MOM and LL-LMOM fits return smaller squared error results in the
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return period zones where they get closer to the data. This justifies squared

error results based on 5hrs test data.

The closest fits in 95% filling level panel 06 are displayed in Table
4.7 according to data sets and return period zones. In this panel, similarly,
Zone 1 is dominated by LL-LMOM fit. Based on 5hrs test data, LL-MOM
returns the closest fits in Zones 2, 3 and 4. For the longer duration test and

longer return periods, a pattern in only seen partially.

Table 4.7 Best fits in each zone compared by squared error in 0.95H P.06

BEST FIT FOR EACH ZONE

0.95H P.06
SHRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-MOM LL-MOM LL-MOM
10HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
LL-LMOM LL-LMOM LL-MOM LL-MOM
20HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4

LL-LMOM LL-MOM WBL-MOM LL-MOM

S0HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4
WBL-MOM | GPMLE
LLLMOM | LL-MOM GP-MOM
LL-MOM [ WBLMOM
100HRS TEST
ZONE 1 ZONE 2 ZONE 3 ZONE 4

LL-LMOM LL-MOM WBL-MOM GP-MOM

In this panel, the diagrams of 5hrs test data fitting for 20 cases plotted
on 100hrs experiment data are shown in Fig. 4.13. Through the diagrams, it is
seen that, WBL and GP fits provide even larger deviation of curves.
Especially, GP fits return significantly different values of estimated pressure.
One of the possible reasons for this behavior of GP fits would be sample sizes

too small. However, comparing to 50% filling level panel 14, which is
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previously shown, this panel has much larger sample sizes, yet larger
deviation of curves. Therefore, small sample size is not the reason of GP
providing this variation of curves. The reason is that, GP follows the tail data
so well that it cannot follow 100hrs test data. Similarly, WBL distribution also
follows the whole data well and very smoothly and for the same reason, it
cannot follow 100hrs test data as well. WBL and GP fits are affected by the
data significantly, while GEV and LL fits are affected less and tend to keep
their shapes. This way, GEV and LL fits provide a smaller deviation of curves
and consistent estimates of maximum pressure. It is obvious that, smaller
deviation does not necessarily mean that the fit follows the data well; however,
it is convenient to choose the closest distribution among them according to

these preserved shapes.

In addition, another long term plotting is shown to evaluate if 1hrs
test data fittings have the same pattern as 5hrs test data fittings. In 50% filling
level panel 14, the diagrams of 1hrs test data fitting for 30 cases plotted on
100hrs experiment data are shown in Fig. 4.14. It is seen that, deviation is
larger for every fit which is an expected result of 1hrs test data fitting. Even if
it is the case, GEV-LMOM and LL-MOM fits have smaller deviation than
WABL and GP fits.
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4.4. Estimated Pressure Difference Results

In this part, 100hrs experiment data is taken as a reference and a
comparison that is suitable for the current procedure of classification societies
is carried out. Summed absolute difference between estimated maximum
pressure acquired from 5hrs and 10hrs fittings and 100hrs experiment data is
calculated and utilized to make the comparison. The fits that provide the
closest fit are shown in Table 4.8 according to filling levels and data sets. For
20% and 95 % filling levels, LL-MOM and for 50% filling level
GEV-LMOM provide the closest fits.

Table 4.8 Best fits compared by estimated pressure

difference in 3-hour return period.

BEST FIT FOR EACH ZONE (3HR RETURN PERIOD)
0.20H | 0.50H | 0.95H
SHRS TEST
LL-MOM GEV-LMOM LL-MOM
10HRS TEST
GEV-LMOM
LL-MOM LL-MOM
LL-MOM

4.5. Peak Pressure Signal Modelling Results

In this part, pressure ratios (o) from 0.1 to 0.9 are compared to
determine the closest ratio of triangular modelling to the actual signal. The
summed absolute difference (erse, €decay) Detween rise and decay times
calculated in 9 stations of pressure signal and the modelled rise and decay
times in these stations is compared. The results are displayed according to
filling levels and rise and decay times in Fig. 4.15. In these diagrams, the

curves represent different ranges of peak pressure numbers in important;]
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panels of each filling level. 90-100% PP indicates the lowest 10% of peak
pressures and 0-10% PP indicates the highest 10% of peak pressures in that
specific filling level or panel. The comparison is done this way, because
pressure signals may show a change of pattern according to pressure value
and filling levels. It is concluded from the diagrams that 0.3 is the closest

pressure ratio in all three panels for both rise and decay time.

The comparison results are shown in Fig. 4.16 according to different
filling levels. It can be seen that, 0.30 is the closest pressure ratio in all three
filling levels rise and decay times except 20% filling level decay time. 20%
filling level decay time has no obvious pattern. It is observed that, the rising
pressure signals usually have a very similar pattern and a clean rise until peak
value without irregularities. Hence, the result for rise times is an expected
result. However, decaying pressure signals usually contain local peaks, are
very irregular and difficult to classify. Therefore, 50% and 95% decay times

having an obvious pattern is an unexpected result given these irregularities.

The pattern of the highest values of peak pressure is another subject
of interest. Therefore, comparison for 1% to 5% highest peak pressures of
each filling level is also carried out and displayed in Fig. 4.17 according to
filling levels, rise and decay time. Similar to the previous results, 0.3 is the
closest pressure ratio in all three filling level rise and decay times in these

particular ratios (0.1~0.5%) of highest peak pressures.
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5. Conclusion

In this thesis, statistical analysis of sloshing impact pressures and
analysis on triangular modelling of impact pressure signals are carried out.
Weibull, generalized Pareto, generalized extreme value and log-logistic
distributions fitted by different parameter estimation methods are evaluated
for short term and long term prediction. In the next part, a comparison of
pressure ratios is carried out for an accurate triangular modelling of peak

pressure signals.

Choice of statistical model is an important subject in the design load
selection of LNG tanks. For short term distribution, different statistical
models may return relatively closer estimates of maximum pressure, however,
for long term prediction the estimates vary significantly. Through this
research, it was seen that, not only the choice of statistical distribution but
also choice of distribution fitting method makes a great difference in terms of
estimated maximum pressure. It can be considered as a parameter that affects
the shape of the distribution. Therefore, the choice of statistical distribution
should be considered in this larger frame. In this research, maximum-
likelihood estimation is concluded to be a weak method to be used with three-

parameter distributions.

In distribution fitting, various goodness-of-fit tests are applied in
previous studies to evaluate how well the fit follows the data. However, in
case of sloshing impact pressures, it is more important to evaluate how well
the fit follows a more converged data. A good fit to the data does not mean it
will return closer estimates of maximum pressure in longer return periods.
Therefore, testing goodness-of-fit according to the data used for fitting can be

misleading in case of sloshing peak pressures.
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Taking 100hrs test data as a reference and considering 5hrs test data
estimated pressures, in 20% filling level, log-logistic distribution fitted by
method-of-moments and I-moments method; in 50% filling level, log-logistic
distribution fitted by method-of-moments and I-moments method, and
generalized extreme value distribution fitted by I-moments method; and in
95% filling level, log-logistic distribution fitted by method-of-moments and
I-moments method, provide the closest pressure estimates according to
applied squared error approach. Beyond this numerical evaluation, long term
plotting presents how each fit behaves compared to long duration test data.
From these observations, it was understood that, generalized Pareto follows
the tail of the data so well that, in most cases, it is impossible for it to return
consistent and close estimates. The reason is simply because it is affected by
the tail data significantly. Weibull distribution also follows the whole data
smoothly and the estimations heavily depend on the data set used in each case.
Therefore, the deviation of estimated maximum pressure is large from one
case to another. On the other hand, generalized extreme value fitted by I-
moments method and log-logistic distributions tend to preserve their shapes,
showing small tendencies of indifference to the data sets, which leads to
consistent estimates. Therefore, the observations from long term plotting are
in agreement with the results of squared error approach. Among these 3 fits
that return consistent estimates, log-logistic distribution fitted by method-of-
moments is seen to return closest estimates if overall results are considered. A
further discussion can be made about the behavior of log-logistic distribution

in much longer return periods.

In triangular modelling of peak pressure signals, results show that in
20% filling level rise time and 50% and 95% filling levels rise and decay
times, pressure ratio of 0.30 is the nearest idealization to the actual signal. In
20% filling level decay time, there is no obvious pattern of pressure ratio for

triangular modelling. Actually, 50% and 90% filling levels de,d_ay-ltimes:g
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having an obvious is an unexpected result. If pressure signals are observed, it
can be seen that rising pressure signals have small irregularities and mostly
have a clean rise until peak value. Decaying pressure signals, on the other
hand, usually contain local peaks, are very irregular and difficult to classify.
Therefore, 50% and 95% decay times having an obvious pattern is an

unexpected result given these irregularities.

Considering both choice of statistical distribution and peak signal
modelling, the results are hardly in accordance with the current procedure of
classification societies. Hopefully, contents of this research raise attention on

these important matters regarding sloshing impact pressures.
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