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Abstract 

Real-time estimation of the left ventricular volume 

from echocardiogram during cardiopulmonary 

resuscitation using convolutional neural network 

 

Lee Byeong Tak 

Interdisciplinary program in bioengineering 

The graduate school 

Seoul National University 

 

This thesis describes the method for real-time segmentation based on 

echocardiography and three-dimensional transformation model for the left 

ventricular volume estimation during cardiopulmonary resuscitation (CPR). Because 

all people have a different structure of thoracic and the position of the heart, it has 

been required to optimize CPR by a person. As one of the improved methods, bio-

signal feedback using echocardiography CPR is carried out. Echocardiography 

shows how the heart is compressed by chest compression, which directly shows 

cardiac output. There are two steps in estimating the cardiac output in 

echocardiography. The left ventricular segmentation from the echocardiography is 

needed to be segmented. After that, the three-dimensional volume is required to be 

estimated with two-dimensional segmented images. However, echocardiography 

during CPR is difficult due to the instability of contact between the transducer and 

the chest. Moreover, the previous models that map the segmented two-dimensional 
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image to the left ventricular volume assume the heart is contracted isometrically, 

which is different from the condition of the heart during CPR. To solve these 

problems, the method for segmentation of the left ventricle stable during CPR and 

the model that can be applied to CPR conditions is suggested in this dissertation. The 

convolutional neural network is adopted to the left ventricular segmentation problem. 

Based on the structure of ‘SegNet’ that is a fully convolutional network for real-time 

segmentation, skip connection and dice coefficient are applied to adapt the model to 

echocardiography domain. The former one helps the network to preserve the 

information of original images, and the latter one is used for stable segmentation. 

Moreover, Gated recurrent unit that is used for time series data analysis is applied to 

reflect the previous frames. The network achieves robust and accurate segmentation 

by referencing the previous frames in the segmentation of current frame. Comparing 

to Geodesic Active Contour method that shows the best performance in 

echocardiography, the proposed algorithm accomplishes higher accuracy and robust 

to unclear images. The left ventricular model is derived with applying constraints 

during CPR for modeling problem. The heart during CPR is not contracted. Thus, 

the assumption of the same surface between the diastolic heart and compressed heart 

is used. Moreover, the single ellipsoid model with the same length in the minor and 

intermediate axes is adopted. In comparison experiment to ETCO2 that affects the 

cardiac output during CPR, the proposed model show much greater correlation than 

the previous model. 

Keywords: Cardiopulmonary resuscitation, Echocardiography, Segmentation, 

Convolutional neural network, Gated recurrent unit, Left ventricular model 

Student Number: 2015-22888
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1. Introduction 

 

1.1. Problems 

CPR is a first aid that provides oxygen to the body when the heart is stopped. 

According to the CPR guidelines, it is recommended to compress the inter-nipple 

line for heart-arrested patients. However, it is pointed out that inter-nipple line is not 

the optimal position for all patients because of the different structure of the thoracic 

and the position of the heart by the patient[1-3]. Therefore, studies to find the optimal 

position for the chest compression is conducted with the cardiac output obtained 

from echocardiography[4]. To estimate cardiac output by echocardiography, the left 

ventricular region should be segmented based on echocardiography, and the 

segmented two-dimensional region should be transformed into a three-dimensional 

volume using the left ventricular model. There are problems in this process. First, 

analyzing of the echocardiography during CPR is difficult. Ultrasound images have 

much speckle noise. Moreover, several frames do not have enough information to be 

segmented because of poor contact between the chest and the transducer. Second, 

the previous left ventricular model cannot be applied to the arrested heart. The 

previous model assumes the heart contracts isometric. However, the arrested-heart 
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does not contract[5]. Therefore, the model considering the specific circumstance of 

the heart during CPR is required. 

 

1.2. Aims 

The objective of the thesis is to solve two problems. The first is to develop the robust 

left ventricle segmentation system in real-time based on echocardiography during 

CPR. The second is to design appropriate model for estimating the left ventricle 

volume based on the segmented region during CPR. 

 

1.3. Related work 

1.3.1. Left ventricle segmentation in echocardiography 

There are many automated left ventricular segmentation techniques based on 

echocardiogram. They can be classified into the following classes: explicit method, 

pattern recognition based method, and deep learning based method. The explicit 

method uses the rule devised by the programmer, it including bottom-up threshold 

approaches and edge detection method[6, 7]. In the pattern recognition based method, 

instead of setting up the whole process, the programmer designate specific objective 

function for segmentation. This function can involve high-order features. An 

example of these is Active contour model method and Active shape method [8, 9]. 

Especially, active contour method is widely used in echocardiography processing 

because of the robustness against speckle noise. The convolutional neural network 

is a representative example of deep learning in image analysis[10]. Even though they 

are just started to be applied to the medical image, the result of them is better than 

the previous method. 



3 

 

 

1.3.2. Left ventricle modeling 

Various Left ventricle models have been proposed to estimate the volume in three 

dimensions from 2D region obtained from echocardiography. These are classified 

into three classes: single-figure based model, multi-figures based model, Simpson’s 

method[11]. Correlation experiment showed that Simpson’s method had a higher 

correlation than the others. On the other hand, as the model uses many figures, more 

images of the left ventricular layers are required to calculate the model. 

 

1.4. Proposed solution 

For image segmentation task, the neural network is implemented to apply to the left 

ventricle segmentation. It is designed to run in real-time, robust to the speckle noise, 

and stable in analyzing the image when the contact between the chest and transducer 

is unstable. Regarding the structure of the neural network, SegNet with skip 

connection and dice coefficient is combined with stack GRU that is located between 

encoding path and decoding path[12, 13]. Left ventricle model that can apply in CPR 

is suggested. With a constraint of non-contractability, the mathematical model of the 

left ventricle is suggested. Moreover, the single-figure based model is used for the 

real-time process with a single layer of the left ventricle.
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2. Literature review 

 

2.1. Image segmentation method 

Image segmentation methods are widely used in computer vision area including 

medical image analysis. They are roughly classified into three groups: explicit 

methods, pattern recognition based methods, and deep learning based methods. 

Explicit methods segment the object with the simple criteria set by the researcher 

such as the histogram of the image. Thus, they cannot capture the complicated 

features of images as well as the performance varies by the quality of images. Pattern 

recognition based methods search the features of images selected by the researchers. 

They can segment the object with complex features compared to the explicit method. 

For example, a curvature of the border line of the objects or the size and the 

circumference of the object can be the features. Although it shows better 

performance compared to explicit methods, it cannot capture features that are not 

selected by the investigator. Deep learning based method overcomes this problem. It 

learns the features of the image by itself, and observe complex features that 

researchers can not find. The result from deep learning outdo the other methods these 

days. Even though there have been many studies to segment the left ventricle from 

echocardiography, automatic segmentation of the structure of the heart is still a 
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challenge because of acoustic interferences of the echocardiography[14]. Also, CPR 

makes it harder to analyze the echocardiography due to the severe artifact. This 

chapter introduces the left ventricle segmentation algorithm applied to 

echocardiograms and compares their performance. Because there is no case applied 

to the CPR, all cases described in this chapter are followed to the normal state heart. 

 

 Explicit method Pattern recognition Deep learning 

Examples 
Threshold[7],  

Edge detection[6] 

Active contour[8], 

Active shape[9] 

Deep convolutional 

neural network[10] 

Advantage 
Easy to implement Can capture high-

order features 

Learning the features 

by itself 

Disadvantage 
Can not capture high-

order features 

Can not capture the 

features that are not 

signified 

Computationally 

expensive in training 

Table 2.1. Compare of image segmentation methods. Higher-order features mean that more 

criteria are required to obtain the object. Deep learning of pattern recognized based method 

requires more criteria than explicit method. For example, threshold method uses a single 

criterion called image intensity. In contrast, active contour method needs three criteria 

including the image gradient and shape of the contour. 

 

2.1.1. Explicit methods 

Explicit method is straightforward and intuitive. Among explicit methods, threshold 

and edge detection are often used in segmentation problem in echocardiography. 

They searched the image intensity map and returned the pixels that satisfy the criteria. 

The former relies on the intensity of the pixels in the image and the latter relies on 
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the gradient of the image intensity map. 

2.1.1.1. Threshold 

Threshold method explores every pixel of the image and assigns suitable threshold 

value to the pixels which have a certain value of the intensity. It is simple, easy to 

implement and suitable for medical imaging because the difference in intensity of 

the pixel is clear. At the same time, it has a limitation in processing under noise or in 

the case of an image in which the light to be illuminated varies depending on the 

time. Several thresholding methods applied in echocardiography have been proposed. 

W. Ohyama segmented the left ventricle segmentation using ternary thresholding 

method[15]. It uses two steps of segmentation: one for the ternary thresholding at 

the first step, the other for binary segmentation with the mask of initial ternary 

segmentation. The average distance from the centroid to endocardium is used to 

measure the accuracy, and the correlation is 0.942 in their dataset. However, it has 

problem in vulnerable to noise. J.B. Santos applied window adaptive thresholds to 

segment the left ventricle. It applied adaptive window that divides the images into 

blocks and performing threshold using the Otsu’s method[16]. Adaptive window 

thresholding overcomes a problem of threshold method: not robust to the noise.  

 

2.1.1.2. Edge detection 

Edge is significant local changes of intensity in an image. That is, edge detection 

extracts the high gradient line from the image intensity map. The criterion of the 

gradient is determined by the researcher. Steve M. constructed ventricular cavity area 

estimation system with edge detection[17]. After background subtraction, 

sharpening and smoothing, four types of an edge detection algorithm including Sobel, 
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Laplacian based, spatial difference and gray level thresholding are applied. Sobel 

edge detection method shows the highest correlation among them: 0.92. 

 

2.1.2. Pattern recognition methods 

Unlike an explicit method, pattern recognition based methods segment an object with 

higher-order features that are devised by the researcher. Those features are 

represented in a loss function, which is the distance of features between the current 

model and the ground truth. The model is trained by reducing the loss fnction. Active 

contour and Active shape are representative models for segmentation in 

echocardiography. Active contour adopts the shape of the contour with image 

gradient as features. As another example, Active shape uses the distribution of 

specific points as features.  

 

2.1.1.1. Active contour 

Curves are moved to find object boundaries following the objective function in 

Active contour method. That is, the purpose of the active contour models is to find a 

proper contour for an object. The contour is initially set in the range of a particular 

area, and it is changed until it minimizes the loss function: the contour energy 

function, which becomes zero when the contour is exactly fitted to an object. The 

energy function is consist of the internal energy that depends on the shape of the 

contour itself and the external energy that depends on the image gradient. Internal 

energy comprises of continuity term and curved term. They represent the curvature 

and the derivative of the curvature, respectively. External energy reflects the gradient 

of the image. Thus, energy function converges in the direction where the change of 
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the curvature and curvature, and the change of image gradient is small.  

E = ∫ 𝛼 𝐸𝑐𝑜𝑛𝑡 + 𝛽𝐸𝑐𝑢𝑟𝑣 + 𝛾𝐸𝑖𝑚𝑎𝑔𝑒𝑑𝑠 

Chalana suggested a multiple active contour model for cardiac boundary detection, 

which uses temporal data as well as spatial data[18]. The model is similar to the 

three-dimensional active contour model proposed by Cohen[19]. An algorithm was 

evaluated with randomly selected echocardiographic images from 44 patients, and 

the correlation to the manual segmentation is 0.91. Weiming Wang proposed a 

combinative active contour with Gaussian pyramid[20]. It divides the raw image into 

several images of the image pyramid, and segment the object region from the lower 

resolution, which is used as the prior for segmentation in higher resolution. With 

image pyramid, it achieves high accuracy and robust to speckle noise at the same 

time. Experiment result showed excellent correlation with the ground truth: 0.95. 

 

2.1.2.2. Active shape 

The Active shape is an algorithm that detects objects that change within a limited 

range and is often used to detect changes of objects. In training process, several 

points that represent the object and the line connecting a pair of marked points are 

trained in a training set. The trained model has mean value and variation of each 

point, which is the model of the object. When test images are input into the model, 

the active shape model estimates corresponding points in the model to the input 

image. Gary Jacob applied active shape model in tracking myocardial borders[21]. 

With, simple shape model, Kalman filter is adapted for tracking each point. The 

correlation to manual segmentation is 0.94. Gregg Belous segmented the left 
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ventricle using random forest with active shape model[22]. The shape model is 

applied at the initial detection landmark. Following, each landmark of the shape 

model is directed as a result of random forest classifier. The evaluation was 

performed on 35 patient ultrasound images. Global overlap coefficient for the active 

shape model is 0.84, on the other hand, the correlation was 0.9 in the case of Active 

shape method with random forest. 

 

2.1.3. Deep learning 

Deep learning based segmentation is based on convolutional neural network 

structure. Compared to machine learning based method, deep learning based 

methods explore the features that are needed for segmentation by itself. In other 

words, the network adjusts the parameters to extract the proper feature while the 

neural network is being trained. The convolutional neural network has been applied 

in the medical image area with the development of deep learning[23]. U-net is the 

one of the most popular segmentation model used in the biomedical domain[24]. It 

is designed for segmentation of electron microscopic stacks and overcomes the 

difficulties of biomedical images: lack of the amount of the images. Also, several 

methods have been developed for echocardiography. Zhao segmented epicardium 

and endocardium with localization segmentation method[25]. Classification of the 

patch is used to segment the region. If the patch matches the region of interest, a 

value of 1 is assigned to the middle of the patch, and a value of 0 otherwise. Li Yu 

tried to segment the left ventricle with the image pyramid[26]. Additionally, a 

matching approach is used for separate the connection region between LV and LA. 

From their dataset, comparison among active contour method, fixed CNN, their 
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method experiments. The correlation to the manual segmentation is 0.86, 0.88, 0.95, 

and the time cost is 8.6, 11, 25.4(s), respectively.  

 Method Accuracy 

Explicit 

method 

Threshold  Window adaptive threshold with Otsu’s 

method[15] 

- 

Ternary thresholding[16] 0.942 

Edge 

detection  

Proper processing with Sobel edge 

detection[17] 

0.92 

Pattern 

recognition  

Active 

contour 

Combining temporal data with spatial 

data[18] 

0.91 

Gaussian pyramid with geodesic active 

contour[20] 

0.95 

Active 

shape 

Simple shape model[21] 0.94 

Combining with random forest[22] 0.9 

Deep learning Dynamic neural network[25] 0.95 

Localization with segmentation[26] - 

Table 2.2. Accuracy and Process time of the left ventricle segmentation in echocardiography. 

All of them are applied to a different dataset. Thus, a quantitative comparison is not 

appropriate. The number in the table is just for reference. 
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2.2. Left ventricle modeling 

The efficiency of the chest compression during cardiopulmonary resuscitation is 

evaluated by the ratio of the volume perfused to the body from the heart, which is 

called the ejection fraction of the left ventricle. An ejection fraction is a ratio between 

the volume of the blood ejected from the left ventricle and the volume of the left 

ventricle at diastole. The real volume of the left ventricle is impossible to obtain via 

echocardiography. Thus several left ventricle models have been suggested to 

estimate the volume of the left ventricle based on the echocardiography. Those 

models are classified into three groups: a single solid figure model, a combination of 

several solid figures and Simpson's rule.  

 

2.1.1. A single solid figure model 

A single solid figure model assumes the shape of the left ventricle as a single figure, 

such as a sphere or ellipsoid that estimates the left ventricle as a sphere and an 

ellipsoid. A sphere model is rarely used because there are differences to the actual 

anatomical structure of the left ventricle. Instead, the ellipsoid model is often used 

in single figure models. W. yatt assumed several models of the ellipsoid and 

compared the correlation between real volume and the estimated volume using 

ellipsoid model[27]. Among ellipsoid model, there was a correlation of 0.969 in 

single short-axis are-length method and 0.956 in short-axis diameter cube method. 

Chaudry, K suggested a simple ellipsoid model that has different three axes[28]. The 

correlation to the real volume was 0.91 for systole volume and 0.86 for diastole 

volume. Folland, E compared geometry models including ellipsoid-biplane method, 

ellipsoid-single plane method, and modified the ellipsoid method for left ventricle 
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ejection fraction in real-time[29]. Each model has correlation of 0.78, 0.76, and 0.55, 

respectively. 

 

2.1.2. Combination of solid figures model 

A combination of several figures expresses the left ventricle with two or three figures 

of a circular cone, circular cylinder, and hemiellipsoid. For example, the cylinder 

hemiellipse model represents the left ventricle with a combination of semi-

ellipsoidal and cylindrical. Each of them is divided along with major axis with an 

equal surface area. A cylinder truncated cone-cone is consist of three different figures 

including cylindrical, frustum and cone. The more figures are combined, the more 

accurate in representing the left ventricle. Pascal Gueret studied the correlation of 

the left ventricle stroke volume determined by echocardiography with a bullet like a 

cylinder hemiellipse model[30]. The correlation is calculated as 0.9. Folland 

compared ejection fraction of the cylinder-truncated con-cone model to the left 

ventricle and obtained a correlation of 0.78[29].  

 

2.1.3. Simpson's rule 

Simpson's rule approximates the volume with an integration of cylinders along with 

major axis. Each cylinder's radius and height are the length of the minor axis and the 

major axis divided by the number of cylinders. As selecting the proper height of each 

cylinder, the height converges to infinity, and the model becomes more accurate with 

higher computation complexity. It is considered as the golden standard in estimating 

the left ventricle volume. The correlation study to the ejection fraction and the 

volume was conducted by many researchers including Schiller, Silverman, Wyatt, 
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and Bommer[27, 31-33]. 

 

 Reference Model Correlation 

Single figure Single short-axis area-length[27] 

 

0.969 (EF) 

Simple ellipsoid that has different three 

axes[28] 

0.91 for systole 

0.86 for diastole 

Ellipsoid-biplane, ellipsoid-single plane, 

modified ellipsoid[29] 

0.78, 0.76, 0.55 (EF) 

Multi-figure Bullet like a cylinder hemiellipse[30] 0.9 (EF) 

Cylinder-truncated cone-cone model[29] 0.78 (EF) 

Simpson’s rule Three figures based Simpson’s method[31] 0.98 (EF) 

Twenty figures based Simpson’s method[32] 0.94 for diastole 

0.91 for systole 

Computer aided[33] 0.84 (EF) 

Table 2.3. Comparison of the left ventricle model. 
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3. Basic theory 

 

3.1 Deep learning 

A similar picture has similar features. Traditional image segmentation method uses 

the image intensity as the main feature of the segmentation and Pattern recognition 

based method use high-order feature in segmentation. Both methods have in 

common that the user specifies the features needed for image analysis. However, 

deep learning uses another method. That is the main idea of deep learning. A 

computer learns the features of the objective by trial and errors until the model of 

deep learning finds the proper features. That is, a computer finds the criteria to 

distinguish the object from the others by learning hidden regularity of the object.  

 

3.1.1 Artificial Neural Networks 

The cortex is made up of billions of neurons. An artificial neural network is a 

simplified representation of such a biological neural network and was represented 

by Warren McCulloh[34]. 

 

3.1.1.1 Structure of Networks 

The structure of the artificial neural network is similar to a real neural network. In 
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the neural network, synapses convey the signal from dendrites to the axon via cell 

body. Later, the axon branches out and connects to dendrites of other neurons, which 

leads cascade activation of following synapses' group. Similarly, in the artificial 

neural networks, input data are transferred from the input channels to the output 

channels through the activation function[35]. Subsequently, the output data enter the 

following input channels. Input channels, output channels, and activation function 

correspond to dendrites, axon, and cell body, respectively. The activation function is 

located between the input channels and the output channels, and it decides whether 

the summation of the input signal is activated or not. A single unit of these elements 

is called Perceptron. As the neural network does, a set of single Perceptron makes 

the complicated multi-layer perceptrons. Perceptron is referred to as the input layers, 

the hidden layers, and the output layers, depending on which part they are located. 

 

Figure 3.1. The structure of a neuron and a single-perceptron[36]. Top is the structure of the 

real neural and bottom is the struecture of the artificial neuron. 

 

Input channels 

Output channel 

Activation function 
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3.1.1.2 Activation function 

The activation function is a mathematical representation that biological neurons are 

activated when the input stimulus is above a specific level. There are several 

commonly used activation functions including Sigmoid, tanh, and Relu[37]. The 

sigmoid function maps the input values to a value range from 0 to 1. It has problems 

in practice. For example, when an input exceeds a certain range, the differential value 

of the corresponding point, which is used for updating parameters, is 0. Thus, no 

update occurs during training. Additionally, it is computationally expensive because 

of not zero-centered characteristics and complexity of the function. Tanh is 

introduced to solve these problems. Tanh is a function mapping input signal to range 

from -1 to 1. It does not solve gradient vanishing problem but solves the not zero-

centered problem of the sigmoid. Relu has been used most recently as it solves the 

problem of gradient vanishing. The gradient does not become zero like sigmoid or 

tanh. However, it has another problem called dying relu, meaning that most of the 

cells in the network is deactivated because of negative input. 

 

Figure 3.2. Sigmoid, tanh, and Relu activation function 
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3.1.2 Convolutional Neural Network 

The convolutional neural network is similar to the artificial neural network but 

slightly different. When the information moves from one of the hidden layers in 

multi-perceptron to following hidden layer, all the Perceptrons between those two 

layers are connected. This structure has limitations in that it does no express the 

relation between Perceptron in one layer. However, convolutional neural networks 

can express the relation within a layer by using convolution layers instead of fully 

connected layers[37]. Therefore, there is an advantage in representing the spatial 

information like images. Convolutional neural networks are made up of convolution 

layers and pooling layers. Each of them plays a different role in the network. 

 

Figure 3.3. Comparison between Artificial neural network and Convolutional neural network 

(Left: Artifcial neural network, Right: Convolutional neural network) 
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3.1.2.1 Convolution layers 

In image processing, several types of the kernel are applied to the image to acquire 

the smoothed, edged, or equalized images. This process occurs in convolution layer 

in the convolutional neural network as well. The difference is that the parameters of 

a kernel are determined by a programmer in normal image processing, but they are 

continuously updated in convolution layers by training. There are three 

hyperparameters to identify in convolution layers: kernel size, strides, and 

padding[38]. The size of kernel decides how many pixels' information affects the 

next convolution layers. As the size of kernel bigger, the more parameters are 

required, which is computationally expensive. In practical, the 3x3 kernel is often 

used because it can reflect the full information even with smaller kernels as the 

network becomes deeper. The convolutional operation moves the window of the 

kernel at regular intervals. The amount of moving interval is called stride. The size 

of the output differs from the scale of the input by performing a convolution 

operation described above. Padding is used to adjust the output size. 

 

3.1.2.2 Pooling layers 

The purpose of pooling layers is to reduce the number of parameters and to control 

overfitting problem by lowering the spatial dimension[38]. For example, 2x2 max 

pooling selects the maximum value in a 2x2 space with a regular interval, resulting 

in the reduction of the space dimension in half. Similarly, the average pooling returns 

the average values of given space. Unlike other layers in convolutional neural 

networks, it does not have parameters to learn. 
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Figure 3.4. Convolution layers 

 

Figure 3.5. Pooling layers 

 

3.1.3 Training Neural Networks 

Training the neural network means exploring the optimized parameters for acquiring 

features. With optimized parameters, it is possible to obtain the proper features, and 

achieve the desired output from the networks. 

 

3.1.3.1 Objective of training 

The neural network explores the parameters based on the criterion that is called loss 

function. Loss function signifies the distance between the current output and the 

* = 

 
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desired output. As the output of the network approaches close to the desired output 

during training, the loss function decreases. Thus, the objective of training is 

minimizing the loss function. Mean squared error and cross entropy error are the 

most used loss function. The former is the average of a square of the distance 

between true label and output of the current network. It is used in the same sense to 

standard deviation. The latter is to find the distance of the probability distribution 

between the desired output and the output from the current network. It reduces the 

distance until the probability of the output of the current network converges to the 

probability of desired output. 

 

3.1.3.2 Training method 

Finding the appropriate parameters through the training of the network is a goal of 

the neural network. In training, how much to improve the parameter based on loss 

function is determined through gradient descent, and method to apply it to each 

parameter is called back propagation 

 

3.1.3.2.1 Gradient descent 

The parameter space is expansive and complex, making it difficult to find the optimal 

solution. Thus, it is impossible to find the global minimum analytically. Instead, an 

approximation method is used as alternatives to find the minimum. Even though 

there is a concern that the loss function may fall into local minima, it is acceptable if 

it is close enough to the global minima. Rather, there is an opinion that the probability 

of falling into the local minima is exceedingly rare[39]. One of the most used 

methods for minimizing the loss function is stochastic gradient descent method[40]. 
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In stochastic gradient descent method, the loss function is to move a certain distance 

in the direction of slope at the present position and to make progress in the same 

approach until it converges to the minimum. Distance in gradient descent is 

determined by the slope of the position and learning rate that decides how much to 

learn in a single step. Even though stochastic gradient descent is straightforward and 

easy to implement, it is inefficient in some cases. Momentum and learning rate decay 

method is used to improve the inefficiency of gradient descent method[41, 42]. The 

idea of momentum comes from physics. When a ball rolls down a hill, it is getting 

faster if a ball keeps going down in the same direction. Momentum method also plays 

the same role in going down to the minimum point, meaning that the loss converges 

to the minimum faster. Learning rate decay is method reducing the learning rate as 

learning progresses. Adagrad is the typical method using learning rate decay. It helps 

the loss to converge more stable than gradient descent method. Adam method is a 

fusion of both techniques, converging to the minimum fast and steady[43]. 

 

3.1.3.2.2 Backpropagation 

With gradient descent method, the information of how much parameters be updated 

is needed to update each parameter of the network. The process is very demanding 

and computationally expensive because of the chain of a differential equation. 

Backpropagation approaches these problems by using recursive application of the 

chain rule. With chain rule, calculation of back propagation is the linear problem. 

Thus, transmission of low derivative can lead vanishing gradient problem. 
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Figure 3.6. Comparison of gradient descent methods. The red line indicates how to find the 

minimum using stochastic gradient descent (SGD) method, and the black line refers ADAM 

optimizer. While SGD moves slightly to lower values each time the parameter is updated, 

ADAM has faster convergence with momentum and reducing learning rate as it approaches 

convergence point. 

 

3.1.3.3 Improving the training performance 

Several techniques improve the efficiency and the accuracy of the Neural network. 

Problems like overfitting or saddle point stagnation can be solved by selecting and 

using appropriate technique. 

 

3.1.3.3.1 Regularization 

Overfitting means that the model shows good performance only in the training data 

and not in the test data. It happens when the model has high dimensionality or not 

enough training data is prepared. When overfitting appears, the gap between training 

error and test error is large. L2 and L1 regularization method can be applied to 
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alleviate this problem[44]. These methods penalize the loss function, preventing the 

model to be fitted only well on training data. Dropout is also commonly used 

regularization technique[45]. It trains the network with only selected units of the 

network. The process forces the degree of freedom of neural networks down and 

makes a neural network to avoid overfitting. 

 

Figure 3.7. Training error and test error in case of overfitting. The gap between test and 

training error does not decrease during training the network. 

 

3.1.3.3.2 Weight initialization 

Assume that all parameters of the weights are initialized with zero. When the 

network updates the parameters, all the values will be updated with direction and 

distance. It makes the meaning of having multiple weights disappear. Therefore, to 

initialize parameter randomly is important. Xavier initialization, which disperses the 

weight randomly with proper distance is widely used these days[46]. In practical, 

using transfer learning is one of solution for weight initialization. Transfer learning 

means to transfer parameters of a pre-trained model trained on another data set[47]. 

With transfer learning, fine-tuning the parameters in a model can bring desirable 

Test error 

Training error 
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result. 

 

3.1.3.3.3 Batch normalization 

Batch normalization makes each layer expand the activation properly, leading the 

training performance to be increased[48]. There are three advantages in using batch 

normalization. First, it improves the training time. Second, dependency on weight 

initialization is lowered. At last, it prevents overfitting. Batch normalization is 

usually inserted between convolution layers and activation function layers. 

 

3.1.3.3.4 Hyperparameter Optimization 

Hyperparameter means the learning rate, the momentum, dropout rate, the number 

of the neuron every layer and L1 or L2 regularization. If hyperparameters are set 

poorly, the network may not perform well. There are three types of hyperparameter 

optimization methods. Grid search means searching the hyperparameter with evenly 

spaced. Random search explores the hyperparameters by picking random values in 

given range[49]. Bayesian optimization finds the optimal hyperparameters based on 

the Gaussian process[50]. Unlike the other tuning methods, Bayesian optimization 

statistically finds the next hyperparameters to search based on the loss function of 

the prior hyperparameters. 
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4. Methods 

 

The process of estimation of ejection fraction consists of 2 parts: segmentation of 

the left ventricle, mapping the 2D image to 3D image. Segmentation method using 

the convolutional neural network is described in the first part. With segmented 

images, 2D images are transformed to 3D, and then ejection fraction is calculated, 

which is outlined in the second part. 

 

4.1 The left ventricular segmentation 

4.1.2 Neural network model 

The left ventricle segmentation in echocardiography during chest compression for 

CPR is a difficult problem. It contains speckle noise, and image disappearing 

problem often occurs. Thus, three criteria that model must satisfy for stable 

segmentation of echocardiography during CPR were set, and a neural network was 

constructed based on these criteria. 

 

4.1.2.1 Criteria for the neural network 

The neural network structure is devised based on three criteria to segment the left 

ventricle in robust to disturbance and in real-time. First, the network must run in real-
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time. Segnet is adopted as the base architecture to satisfy the first criterion[12]. 

Segnet is designed for real-time segmentation problems, so it is very efficient in both 

terms of memory and computational time. In terms of structure, Segnet consists of 

13 layers of compressing path and corresponding 13 layers of an expanding path. 

Each 13 layers are identical to the vgg 16 network without fully connected layers. 

Second, the network must be robust to speckle noise that occurs a lot in ultrasound 

images. As a result of the test, segmentation performance was not good and versatile 

depending on the quality of the frame when using Segnet alone for the left ventricle 

segmentation. With using skip connection and dice coefficient, the performance of 

the segmentation is increased, and the second criterion is satisfied[51]. There are two 

types of skip connection. Long skip connections connect the layers of contracting 

path with the layers of expanding path, helping the network to recover spatial 

information loss. On the other hand, short skip connections connect the pair of layers 

in contracting path. It is usually used to prevent vanishing gradient problems in fully 

convolutional networks. As a loss function, dice coefficient is used. Dice coefficient 

is widely used in biomedical image segmentation instead of cross entropy. It signifies 

the harmonic of the summation of precision and recall[52]. The advantage of dice is 

that it does not depend heavily on hyperparameters[23]. Third, the network must 

estimate the left ventricle when the image quality is poor due to the contact problem 

between a transducer and the chest. Gated recurrent unit (GRU) that is a type of 

recurrent neural network is applied[13]. The memory of GRU synthesizes both the 

information of current frame and the previous frames, making the network to 

segment the left ventricle based on the change of it. Several studies show a model 

combining recurrent neural network and convolutional neural network, which 
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overcomes the limitations of the existing single CNN model. 

 

 

 

Figure 4.1. The structure of SegNet[12]. The input image enter the left end and come out 

from left end. The line in the figure indicate the indices memory for upsampling. 

 

Figure 4.2 Skip connection. The images enter the left end and then come out from the right 

end. 

 

Short skip connections 

Long skip connections 

Conv layers Pooling Upsampling 
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Figure 4.3 CNN combined with RNN. The connection between pairs of encoded features is 

same as the RNN structure. 

 

 

4.1.2.2 Proposed neural network 

The network is designed based on three criteria described above. It has 13 layers of 

encoding path, two layers of gated recurrent units, and 13 layers of decoding path.  

Decoder 

Encoder 

t t-1 t-2 

Encoded features 
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Figure 4.4 Overall structure of the proposed neural network 

 

4.1.2.2.1 Encoding path 

Encoding path is made up of 13 convolution layers and five pooling layers, which 

are a combination of these five sets. Two or three convolution layers and one pooling 

pair form each set. In convolution layers, 3x3 kernels with zero padding and stride 

one are applied, and Relu is used for activation function. In pooling layers, 2x2 max-

pooling is adopted. At the end of each set, skip connections that are connected from 

the beginning of each set are placed. The detailed structure of the network is shown 

below. 

Decoder 

Encoder 

Encoded 

features 

t t-1 t-2 t-3 

Input image 

Segmented image 

Memory 
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Table 4.1. Layers of encoding path. 

-Layer1: a convolutional layer with 3x3x3x64 filters and 64biass 

-Layer2: a convolutional layer with 3x3x64x64 filters and 64biass 

-Pooling1: a pooling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection1: a short skip connection from input 

-Layer3: a convolutional layer with 3x3x64x128 filters and 128biass 

-Layer4: a convolutional layer with 3x3x128x128 filters and 128biass 

-Pooling2: a pooling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection2: a short skip connection from pooling1 

-Layer5: a convolutional layer with 3x3x128x256 filters and 256biass 

-Layer6: a convolutional layer with 3x3x256x256 filters and 256biass 

-Layer7: a convolutional layer with 3x3x256x256 filters and 256biass 

-Pooling3: a pooling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection3: a short skip connection from pooling2 

-Layer8: a convolutional layer with 3x3x256x512 filters and 512biass 

-Layer9: a convolutional layer with 3x3x512x512 filters and 512biass 

-Layer10: a convolutional layer with 3x3x512x512 filters and 512biass  

-Pooling4: a pooling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection4: a short skip connection from pooling3 

-Layer11: a convolutional layer with 3x3x512x512 filters and 512biass 

-Layer12: a convolutional layer with 3x3x512x512 filters and 512biass 

-Layer13: a convolutional layer with 3x3x512x512 filters and 512biass 

-Pooling5: a pooling layer with strides 1x2x2x1 and zero-paddings 

Skip connection2: a short skip connection of input and post-layer2 
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4.1.2.2.2 Gated recurrent unit 

Gated recurrent unit (GRU) learns time-based information through update gate and 

reset gate[13]. The update gate and the reset gate determine how much memory the 

past information will be put into and how much it will reflect the new information. 

GRU with a length of 3 and a double stacked layer is used in the network. The 

encoded features of the convolutional neural network will be fed into the GRU as 

input. GRU mixes information from the input and the memory in an appropriate 

combination and usesthis information as input to the decoding path. 

Figure 4.5. Structure of gated recurrent unit[53] 

 

Table 4.2. Gated recurrent unit equation. z refers to update gate and r refer to reset gate. h is 

final output that passed through update gate and reset gate. 

𝑢𝑝𝑑𝑎𝑡𝑎 𝑔𝑎𝑡𝑒: zt = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧𝐻𝑡−1 + 𝑏𝑧) 

𝑟𝑒𝑠𝑒𝑡 𝑔𝑒𝑎𝑡𝑒: rt = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟𝐻𝑡−1 + 𝑏𝑟) 

𝑜𝑢𝑡𝑝𝑢𝑡: ht = 𝑧𝑡  ° ℎ𝑡−1 + (1 − 𝑧𝑡) ° 𝜎ℎ (𝑊ℎ𝑥𝑡 + 𝑈ℎ  (𝑟𝑡 ° ℎ𝑡−1) + 𝑏ℎ) 
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Update gate 
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Figure 4.6. Layers of gated recurrent units. Gated recurrent units in the same level layer are 

identical each other. 

 

4.1.2.2.2 Decoding path 

A decoder with last 16 layers constructs a segmentation region from the encoded 

features. The overall structure the same as reversing the encoding layers. There are 

five sets of combination of convolution transpose layers and up-sampling layers. All 

convolution transpose layers adopt 3x3 kernels, and Relu is applied as activation 

function subsequently. Umsmpling layers, in turn, increase the output resolution to 

express the segmentation region corresponding to original images. Because the 

layers are expanded without additional information of the parameters, information 

loss appears in the up-sampling layer. Long skip connection is introduced to solve 

the problem by referring to the information of the encoder. Long skip connection is 

placed between every set of the decoder that is connected from the corresponding 

location of the encoder. Lastly, the final output of the decoder is fed into the sigmoid 

function that classifies the label of each pixel; region of interest(1) or otherwise(0). 

Past encoded features 
Current encoded feature 

Features entering into the decoding path 

: Single gated recurrent unit 
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Table 4.3. Layers of decoding path 

-Layer1: a convolutional transpose layer with 3x3x512x512 filters and 512biass 

-Layer2: a convolutional layer with 3x3x512x512 filters and 512biass 

-Layer3: a convolutional layer with 3x3x512x512 filters and 512biass 

-Upsampling1: a upsampling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection1: a long skip connection from pooling 4 

-Layer4: a convolutional layer with 3x3x512x512 filters and 512biass 

-Layer5: a convolutional layer with 3x3x512x512 filters and 512biass 

-Layer6: a convolutional layer with 3x3x512x256 filters and 256biass 

-Upsampling2: a upsampling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection2: a long skip connection from pooling 3 

-Layer7: a convolutional layer with 3x3x256x256 filters and 256biass 

-Layer8: a convolutional layer with 3x3x256x256 filters and 256biass 

-Layer9: a convolutional layer with 3x3x256x128 filters and 128biass 

-Upsampling3: a upsampling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection3: a long skip connection from pooling 2 

-Layer10: a convolutional layer with 3x3x128x128 filters and 128biass 

-Layer11: a convolutional layer with 3x3x128x64 filters and 64biass 

-Upsampling4: a upsampling layer with strides 1x2x2x1 and zero-paddings 

-Skip connection4: a long skip connection from pooling 1 

-Layer12: a convolutional layer with 3x3x64x64 filters and 64biass 

-Layer13: a convolutional layer with 3x3x64x3 filters and 3biass 
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4.2 The left ventricle model 

There are several models for approximating the volume of the left ventricle of the 

normal heart as introduced in chapter 3. However, those models cannot be applied to 

the heart during CPR. The heart during cardiopulmonary resuscitation, unlike the 

normal heart, is not contracted isometrically but distorted in shape. Therefore, 

another model for the left ventricle that can be applied to CPR condition is required.  

 

4.2.1 Constraint for model during CPR 

The left ventricle volume change should be estimated with an image of one layer of 

the left ventricle to analyze it in real-time through echocardiography. The larger the 

number of figures that make up the model, the more images of the left ventricular 

layers is needed[11]. Therefore, a single-figure model that requires only one layer of 

the left ventricular image is applied, and an ellipsoid model with the same length of 

the minor axis and the intermediate axis for the diastole is selected. Then, the surface 

area of both compressed heart and heart at diastole are same. In the case of a normal 

heart, the surface area of the heart changes continuously due to the contractility of 

the heart. However, in the case of the CPR, the surface area is constant because the 

heart is not capable of contracting. 

 

4.1.3 Training 

Initial weights are taken with vgg16 trained in the Image-net dataset[37]. Adam 

optimizer is used by the optimizer. Each layer is batch normalized. The Dice 

coefficient is employed as loss function, which is the inverse number of the mean of 

summation of precision and recall[52]. Thus, the higher the recall and precision, the 
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smaller dice coefficient. The parameters of Adam optimizer, learning rate, and 

weight decay are selected as hyper-parameters.  

𝐷𝐼𝐶𝐸 =  
1

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑅𝑒𝑐𝑎𝑙𝑙

  

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑁 + 𝑇𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
) 

 

4.2.2 Mathematical model 

The ejection fraction (EF) is calculated as follow. It indicates how much blood is 

pumped to the body in one cycle of the heart. There are three variables required to 

obtain the left ventricular volume if it is applied to the single-ellipsoid model. Thus 

six variables need to know for estimation of EF. 

𝐸𝐹 =
𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑢𝑚𝑒 − 𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒

𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒
=

𝑉𝑑 − 𝑉𝑠

𝑉𝑑

= 1 −
𝑉𝑠

𝑉𝑑

 

1 −
𝑉𝑠

𝑉𝑑

= 1 −

4
3

𝜋𝑥𝑠𝑦𝑠𝑧𝑠

4
3

𝜋𝑥𝑑𝑦𝑑𝑧𝑑

= 𝑓(𝑥𝑠, 𝑦𝑠, 𝑧𝑠 , 𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑) 

Four variables of the equation can be acquired from the echocardiography at diastole and 

compressed heart. The application of the ellipsoid model with the same length along with 

minor and intermediate and the constraint on the preservation of the surface area of the left 

ventricle reduces the variables that need to know to four. 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠1: 

𝑥𝑑 ≅ 𝑧𝑑 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠2: 

4𝜋 (
(𝑥𝑠𝑦𝑠)1.6 + (𝑦𝑠𝑧𝑠)1.6 + (𝑧𝑠𝑥𝑠)1.6

3
)

1
1.6

≅ 4𝜋 (
(𝑥𝑑𝑦𝑑)1.6 + (𝑦𝑑𝑧𝑑)1.6 + (𝑧𝑑𝑦𝑑)1.6

3
)

1
1.6

 



36 

 

(𝑥𝑠𝑦𝑠)1.6 + (𝑦𝑠𝑧𝑠)1.6 + (𝑧𝑠𝑥𝑠)1.6 = (𝑥𝑑𝑦𝑑)1.6 + (𝑦𝑑𝑥𝑑)1.6 + (𝑥𝑑)3.2 

𝐿𝑒𝑡, 𝑥1.6 = 𝑋, 𝑦1.6 = 𝑌, 𝑧1.6 = 𝑍 

𝑋𝑠𝑌𝑠 + 𝑍𝑠(𝑌𝑑 + 𝑋𝑑) = 𝑋𝑑(𝑋𝑑 + 2𝑌𝑑) 

𝑍𝑠 =
𝑋𝑑(𝑋𝑑 + 2𝑌𝑑) − 𝑋𝑠𝑌𝑠

𝑋𝑑 + 𝑌𝑑

 

𝑧𝑠 = (
𝑥𝑑

1.6(𝑥𝑑
1.6 + 2𝑦𝑑

1.6) − 𝑥𝑠
1.6𝑦𝑠

1.6

𝑥𝑑
1.6 + 𝑦𝑑

1.6 )

1
1.6

 

𝐸𝐹 = 1 −

4
3

𝜋𝑥𝑠𝑦𝑠𝑧𝑠

4
3

𝜋𝑥𝑑𝑦𝑑𝑧𝑑

= 1 − (
𝑥𝑠𝑦𝑠

𝑥𝑑
2𝑦𝑑

) (
𝑥𝑑

1.6(𝑥𝑑
1.6 + 2𝑦𝑑

1.6) − 𝑥𝑠
1.6𝑦𝑠

1.6

𝑥𝑑
1.6 + 𝑦𝑑

1.6 )

1
1.6

= 𝑓(𝑥𝑠, 𝑦𝑠, 𝑥𝑑 , 𝑦𝑑) 
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5. Experiment result 

 

5.1 Experiment method 

5.1.1 Left ventricle segmentation 

5.1.1.1 Data acquisition 

The training and test images are obtained from 15 pigs which are receiving 

cardiopulmonary resuscitation (CPR). All pigs are female, and the weight range is 

from 30kg to 40kg. CPR is performed 100 times per minutes. The transducer is 

placed below the chest compression position, and the four chamber view is obtained. 

The size of the images acquired from echocardiography is 636 x 420. Because of the 

unstable contact between the chest and the transducer, there is a big variation 

between images. Ground truths for segmentation of each image are labeled manually 

by a cardiologist for supervised learning. Seg3D which is a software purposing of 

segmentation of Dicom images is used for manual segmentation works[54]. 

Additionally, the adjustment of brightness and contrast are applied to segment the 

left ventricle in case the image is blurry or difficult to segment correctly on the 

original image. 
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Figure 5.1. Acquired echocardiography from pigs. 

 

Figure 5.2. Seg3d for annotating ground truth. 

 

5.1.1.2 Pre-processing 

Data augmentation with speckle noise is applied to improve accuracy and prevent 

the overfitting. It allows the network to learn invariance to noise. After that, 

normalization method is applied to filtered image to make it zero-centered. Images 

are resized to 224 x 224 to match the input size to the network. 
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Figure 5.3. Data augmentation 

5.1.1.3 Training 

All 15 videos are split into training, validation, and test sets at a ratio of 3:1:1. 

Training set and validation set are used to determine the hyperparameters, and the 

test set is used to obtain the final accuracy. Models are evaluated with K-fold cross 

validation[55]. Bayesian optimization is adopted as the hyperparameter search 

method[50]. Bayesian Optimization is a method of gradually narrowing down the 

range in which an optimal hyperparameter can exist, taking into consideration the 

influence of observed hyperparameters on the result. Learning rate, momentum 

parameters are chosen as the hyperparameter, and the range of each of them is set as 

follow: learning rate: 0.001-0.0005, beta1 of Adam optimizer (momentum):0.85-

0.95, beta2 of Adam optimizer: 0.985-0.995. The other hyperparameters for 

regularization are not applied because batch normalization is already used. The 

segmentation based on proposed model is compared to active geodesic contour that 

is considered as the fastest with high accuracy segmentation method. All programs 

are run in Intel i5, Titan x Pascal hardware environment, and as a software 

environment, Tensorflow that is for a framework of designing neural network 

architecture is used based on python[56].  
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Figure 5.4. Model evaluation method. Hyperparameter is tuned with 4-fold cross validation. 

After that, the accuracy of model is tested with 5-fold cross validation. 

 

Figure 5.5. Bayesian Optimization. The x-axis is set of hyperparameters, and the y-axis is the 

loss followed by a set of hyperparameters. From top to bottom, each of them has three, five, 

and seven observation. Each observation is based on previous observation. As observation 

increases, the range of confidence interval converges 

Train set Validation set Test set 

Hyper parameter tuning with 4-fold cross validation 

Test with 5-fold cross validation 

Train set Test set 

Observation 

95% confidence interval 
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5.1.2 Left ventricle modeling 

The segmented area from the echocardiography is fitted with an ellipse, and then the 

length of short and long axes of the ellipse is fitted to sine wave. The peak and the 

valley values of the wave are applied to the left ventricular model to estimate the 

volume. The estimated volume variation of the left ventricle is compared to end-tidal 

carbon dioxide tension (ETCO2)[57-60]. ETCO2 refers the partial pressure at the 

end of an exhaled breath. As the carbon dioxide transfer is affected by the blood flow, 

it can show how much is cardiac output directly. According to studies on the 

correlation between cardiac output and ETCO2.  

 

Figure 5.6. Physiological relation between end-tidal CO2 and circulation. 

 

5.2 Result 

5.1.1 Left Ventricle Segmentation 

5.1.1.1 Hyperparameters 

The hyperparameters are tuned to 0.0016131, 0.86210, and 0.99051 using Bayesian 

optimization. The number of the retrieved points is 20 in the specified range. 

 

5.1.1.2 Correlation comparison  

Correlation comparison to geodesic active contour method, which is considered as 

Cell 
Transport 

(circulation) 
Ventilation 

CO2 CO2 CO2( = ETCO2) 
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the best performing model for real-time left ventricular segmentation is conducted. 

The left ventricular segmentation based on convolutional neural network based 

studies are not a real-time purpose, so no comparative study is conducted. The 

accuracy term is defined as dice. 

 Geodesic ACM  Proposed model 

Dice 0.726 0.947 

Processing speed  0.41s/frame 0.026s/frame 

Table 5.1. Correlation of segmentation methods. 

 

5.1.2 LV modeling 

5.1.2.1 Correlation to etco2 

Correlations with golden standard values show a correlation of 0.392 for the 

conventional method, while 0.736 for the proposed model. P-value of both of them 

is 0.13 and 0.04, respectively. From the correlation and p-value result, it is reasonable 

to reject the existing model and select the current one. 

 Previous method Proposed method 

correlation 0.392 0.736 

p-value 0.13 0.04 

Table 5.2. Correlation of left ventricle models 

 

5.3 Result analysis 

5.2.1 Segmentation 

5.2.1.1 Hyperparameter Optimization 

Every hyperparameter candidate is tested with 4-fold cross validation. With Bayesian 
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Optimization, 20 candidates of hyperparameters are compared.  

 Learning rate Beta1(Adam) Beta2(Adam) 

1 0.0019222 0.85176 0.98656 

2 0.0017196 0.88884 0.99050 

3 0.0010605 0.85117 0.99257 

4 0.0018753 0.89413 0.98909 

5 0.0010697 0.93632 0.99151 

6 0.0014236 0.93531 0.98694 

7 0.0014597 0.87273 0.99147 

8 0.0013527 0.89425 0.98887 

9 0.0010129 0.88969 0.99339 

10 0.0019930 0.86229 0.99008 

11 0.0018632 0.85392 0.98860 

12 0.0019693 0.90194 0.98553 

13 0.0010033 0.89897 0.98889 

14 0.0018282 0.88975 0.99380 

15 0.0014012 0.85264 0.98594 

16 0.0014126 0.87984 0.98931 

17 0.0017680 0.86977 0.99054 

18 0.0018231 0.86197 0.99203 

19 0.0016504 0.87754 0.98914 

20 0.0016131 0.86210 0.99051 

Table 5.3. Hyperparameter candidates selected by Bayesian Optimization 
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Figure 5.7. Loss, precision and recall change by the hyperparameters during training. The x-

axis of the graphs is training epoch and the y-axis of the graphs loss, precision and recall 

from top to bottom. Those show how the network is trained depending on different 

hyperparameter set. 

 

 



45 

 

5.2.1.2 Train-test comparison 

In the cross-validation test, the dice of train set are 0.978, 0.983, 0.965, 0.971 and 

0.988, respectively, and the dice of the test set are 0.943, 0.959, 0.939, 0.944, and 

0.950, respectively. Training seems to be well done without overfitting because the 

gap between the train set and the test set is small. On the other hand, the dice of the 

active geodesic contour is below 0.80 in most case and falls to 0.6 in the case of the 

low-quality image caused by poor contact between the chest and the transducer. It is 

much lower than the results of the reference literature because echocardiography 

during CPR appears to be poor quality and image acquisition instability compared 

with echocardiography in the absence of CPR. 

 

 1 2 3 4 5 Average 

Train 0.978 0.983 0.965 0.971 0.988 0.977 

Test 0.943 0.959 0.939 0.944 0.950 0.947 

Table 5.4. Five-fold cross validation for test 

 

 1 2 3 4 5 6 7 8 

dice 0.817 0.742 0.712 0.693 0.571 0.752 0.705 0.581 

 9 10 11 12 13 14 15 Average 

dice 0.782 0.775 0.794 0.824 0.732 0.743 0.664 0.726 

Table 5.5. Dice of geodesic active contour for 15 videos. Each dice is the mean value of 30 

frames of a video 
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Figure 5.8. Loss, precision, and recall by epoch. They are a training graph of the 

hyperparameter-tuned neural network. Each graph is about the loss, precision, and recall from 

top to bottom. The Orange line indicates the training data and blue line means the test data.  

 

5.2.1.3 Processing speed 

As a result of the processing speed experiment, the processing time per frame 

is between 0.02(s) and 0.03(s), and 0.026(s) in average. It means the network 

can process over 30frames in a second, which is enough to perform in real-

time. By contrast, active geodesic contour took 0.41(s) to analysis one frame, 

meaning that it can process only two frames per second. 
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5.2.1.3 Image comparison 

Proposed model tend to segment the left ventricle closer to the ground truth 

compared to geodesic active contour method. Geodesic ACM segmented well in 

clear echocardiography, however, when the inner wall is captured in the 

echocardiography, it could not distinguish inner wall. Moreover, when the 

echocardiography becomes blur due to unstable contact, geodesic ACM failed 

segmentation properly.  

 

Figure 5.9. Segmented image comparison to the ground truth. From the left to right column: 

raw image, ground truth, geodesic active contour method(ACM), proposed convolutional 

neural network(CNN). 
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5.2.2 LV modeling 

5.2.2.1 Ellipse fitting 

After the border of the segmented area is extracted, the fitting to the ellipse is made 

by principle component analysis (PCA)[61]. The mean value of the boundary 

becomes the center of the ellipse. Following, the major axis and the minor axis of 

the PCA is same as the long and short axis of the ellipse. The root square of 

eigenvalues of PCA is mapped to the length of axes. After that, the length of long 

and short axes of the ellipse is fitted to a sine wave to find the end diastole point and 

the end compressed point. Both of point is put into the left ventricular model to 

estimate the volume variation. 

 

 

Figure 5.10. Examples of ellipse fitting 
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Figure 5.11. Sine wave of the length of short and long axes. The x-axis is the time(s), and the 

y-axis is the relative length of short and long axes of left ventricle segmented from 

echocardiography. 

 

5.2.2.2 Three-dimensional volume estimation 

Since no machine could measure the cardiac output during CPR, the correlation is 

indirectly compared using ETCO2, which is frequently used bio-signal during 

CPR[62, 63]. According to research conducted by Joseph P Ornato, there is a 

logarithmic correlation between etCO2 and cardiac output[60]. 

ETCO2(%) = 2.49 ∗ log(𝐶𝑂) + 3.23 

ETCO2(𝑚𝑚ℎ𝑔) = 18.675 ∗ log(𝐸𝐹 ∗ 𝐻𝑅 ∗ 𝐸𝐷𝑉) + 24.225 𝑎𝑡 𝑎𝑡𝑚 

Thus, the estimated volume variation of the left ventricle using the model is 

compared to ETCO2 to evaluate the model. The correlation ratio of proposed model 

is 0.736, while the previous model shows the correlation ratio of 0.392. 
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 Etco2(mmhg) EF(previous) EF(suggested) 

0 37.87 0.5211 0.2128 

1 37.45 0.5361 0.2436 

2 32.33 0.4550 0.1759 

3 31.36 0.6416 0.3317 

4 26.69 0.4243 0.1004 

5 34.01 0.4557 0.2111 

6 32.09 0.4518 0.1590 

7 26.88 0.3905 0.1437 

8 28.31 0.4649 0.1497 

9 26.50 0.3416 0.1356 

10 15.26 0.2064 0.0719 

11 18.57 0.3060 0.1016 

12 36.45 0.5237 0.2304 

13 42.68 0.6809 0.3554 

14 42.99 0.894 0.607 

Table 5.6. End-tial CO2(ETCO2) and ejection fraction(EF) calculated by models of each 

video. ETCO2 is measured, and EF is estimated from the echocardiography during 

cardiopulmonary resuscitation.  
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Figure 5.12. Relation between EF from the models and ETCO2. The x-axis is ejection 

fraction, and the y-axis refers to ETCO2. There is a strong relationship between EF calculated 

by the suggested model and equation devised by Joseph P Ornato. On the other hand, there 

is a less correlation for the previous model. 

Figure 5.13. Correlation between acquired ETCO2 and estimation from the model. The x-

axis is estimated ETCO2 from the ejection fraction acquired from the echocardiography. The 

y-axis is measured ETCO2. Correlation between red dots and the black line is 0.73 with a p-

value of 0.04. In another hand, the blue dots show a correlation of 0.392 and p-value of 0.13. 
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6. Discussion 

 

6.1 Left ventricle segmentation 

With the suggested algorithm, the real-time stable segmentation based on 

echocardiography is achieved. The suggested algorithm shows higher accuracy as 

well as fast processing time compared to geodesic ACM that is considered to have 

the highest performance in real-time segmentation based on echocardiography. 

However, there are several technical and methodological limitations in suggested 

model. First, the region of the interest in the raw images is a tiny part. The crop of 

the ROI or background removal is applied to increase the accuracy in case of this. If 

attention algorithm or background removal is applied ahead of the segmentation 

neural network, the accuracy of the network probably increases. Second, the data 

augmentation may not be enough. Even though there is no exact standard for data 

augmentation, there is a need to compare the results by applying more data 

augmentation techniques. Third, the number of layers inserted between encoding 

path and decoding path is not optimized. The accuracy of the segmentation may be 

different by the depth and the time series layers of GRU. Thus, the number of the 

nodes of the neural network is also considered as the hyper-parameters. To find the 

optimal size of the GRU, the depth and the time series length should have included 
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in hyper-parameters. Fourth, the iteration of Bayesian optimization is not enough to 

search the optimal hyperparameters. In usual, the iteration is determined if the 

updated hyper-parameters are converged toward specific value. Fifth, because all the 

data in the test set and training set are recorded by same echocardiography machine, 

the variety of the data may not be enough to learn the unique characteristic. It is 

expected to obtain improved result with solving the problems described above. 

 

6.2 Left ventricle model 

The left ventricular model applicable to CPR condition for the condition of CPR is 

suggested with the single figure model. With the constraints for the condition of CPR, 

suggested model shows a higher correlation to the ETCO2 which has a specific 

relation to cardiac output compared to the previous model. According to the 

reference in chapter two, many types of the single ellipsoid is adopted. However, the 

ellipsoid that has the same length along with the intermediate and minor axis is used 

as the dilated left ventricle model in this thesis. If the different ratio between 

intermediate and minor axes are tested, the ratio with higher correlation can be found. 

 

6.3 Combining segmentation and 3D transformation 

6.3.1 Comparison method 

In segmentation problem, Active contour method and Neural network based method 

are compared. In the left ventricular three-dimensional conversion problem, a 

conventional left ventricular model that assumes the left ventricle contracts isometric 

and CPR applied left ventricular model are compared. From now on, the ejection 

fraction of the left ventricle derived from the echocardiography is compared with the 
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result this thesis. It contains two steps. First, the left ventricle area in 

echocardiography is segmented with two segmentation models: ACM method, CNN 

method. Second, the left ventricular volume variation is estimated by applying the 

segmented area to two types of three-dimensional conversion model.  

 

Figure 6.1. Four methods combining the segmentation and left ventricular model 

 

6.3.1 Comparison result 

Method 1 shows that correlation of -0.00786 and p-value of 0.98. It means two terms 

do not have specific relation and it does not fit the model. Method 2 shows that 

correlation of -0.00673 and p-value of 0.98, which is similar to Method1. The 

correlation and p-value of method 3 are 0.370 and 0.15, respectively. It confirms that 

there is little correlation between the measured ETCO2 and estimated ETCO2 from 

the echocardiography. The result of method 4 shows higher correlation and lower 
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significance compared to other methods. The correlation is 0.727, and the p-value is 

0.05. Thus, method four can be said to explain the model enough. 

Table 6.1. The correlation of the result of four methods. ACM refers Active contour method 

and CNN indicates convolutional neural network. 

Segmentation ACM Suggested CNN ETCO2 

(mmHg) LV model Original Proposed Original Proposed 

 0 0.863 0.569 0.497 0.216 37.87 

1 0.578 0.249 0.550 0.279 37.45 

2 0.834 0.606 0.387 0.158 32.33 

3 0.813 0.559 0.498 0.237 31.36 

4 0.471 0.254 0.466 0.171 26.69 

5 0.329 0.117 0.426 0.205 34.01 

6 0.439 0.212 0.223 0.050 32.09 

7 0.300 0.110 0.322 0.112 26.88 

8 0.497 0.262 0.468 0.194 28.31 

9 0.548 0.310 0.415 0.161 26.50 

10 0.541 0.298 0.369 0.122 15.26 

11 0.591 0.330 0.194 0.079 18.57 

12 0.764 0.505 0.493 0.248 36.45 

13 0.547 0.305 0.674 0.386 42.68 

14 0.262 0.106 0.833 0.618 42.99 
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Table 6.2. Graph of the four types of method. The x-axis of each graph is ejection fraction, 

and the y-axis is end-tidal CO2. Method 4 that use suggested neural network and suggested 

left ventricular model shows higher correlation and lower significance compared to other 

methods. 

 

 Previous method Suggested method 

ACM Method1 

 

correlation: -0.00786 

p-value: 0.98 

Method2 

 

Correlation: -0.00673 

p-value: 0.98 

CNN Method3 

 

 correlation: 0.370 

p-value: 0.15 

Method4 

  

Correlation: 0.727 

p-value: 0.05 

 

LV model 

Segmentation 
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7. Conclusion 

 

Two tasks for estimation of volume variation in real-time during cardiopulmonary 

resuscitation are performed. First, a segmentation of the left ventricle of the heart in 

4 chamber echocardiography is conducted in real-time using the convolutional 

neural network. Moreover, the model for three-dimensional mapping based on the 

two-dimensional segmented region during cardiopulmonary resuscitation is carried 

out. The neural network consists of 13 layers of encoding path, 13 layers of decoding 

path, and gated recurrent unit that is located between encoding layers and decoding 

layers. Overall network is build based on SegNet. Skip connection and dice 

coefficient are applied to improve the accuracy of echocardiography. Gated recurrent 

unit is used to reflect the time base information. Instead of initializing the weight 

randomly, transfer learning from the model trained on image-net is adopted. Second, 

with Bayesian optimization, hyperparameters including initial learning rate and 

parameters of Adam optimizer are tuned. The model shows a correlation of 0.97 to 

the ground truth, which is much higher than the correlation of the previous one: 0.75. 

Based on segmented area, the left ventricle model for estimating the volume 

variation during cardiopulmonary resuscitation is suggested. Considering the arrest-

heart conditions, constraints of the unchanged size and same length along with 
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intermediate and short axes are applied. In the correlation test with ETCO2 that 

reflects the cardiac output indirectly, there is a higher correlation than the existing 

model: 0.95 for CPR adapted model, 0.5 for the traditional model.  
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국문초록 

 

본 논문은 심폐소생술 효과의 실시간 평가를 위한 심초음파영상 분석과 

삼차원 변환 모델링에 관한 내용을 담고 있다. 

최근 심폐소생술의 효과를 최적화 하기 위해서 생체신호 피드백 심폐소

생술에 관한 연구가 많이 수행되고 있으며, 피드백 신호로는 심폐소생술

시 심박출량을 보여줄 수 있는 심초음파가 사용되고 있다. 심초음파를 

통해 심장에서 박출되는 혈액량을 추정하기 위해서는 두 단계를 거쳐야 

한다. 첫 번째 단계는 심초음파에서 좌심실의 영역을 분할하는 것이며, 

두 번째 단계는 분할된 좌심실의 2차원 이미지를 통해 3차원 부피 추정

을 수행하는 것이다. 하지만, 심폐소생술 수행 중에는 초음파 탐촉자

(Acoustic transducer)와 가슴과의 접촉면을 일정하게 유지시키기 어렵

기 때문에 안정적인 심초음파 영상을 획득하기 어렵다는 문제점이 있다. 

또한, 좌심실의 2차원 이미지로 3차원 부피를 나타내는 기존의 모델은 

등수축하는 정상상태의 심장을 대상으로 만들어졌기 때문에 수축 없이 

눌러지는 심폐소생술 중의 심장에 적용하여 심박출량을 추정하는 것이 

적절하지 못하다. 따라서, 심폐소생술 중의 불안정한 심초음파에서의 안

정적인 실시간 좌심실 분할, 그리고 심폐소생술상황에 적용될 수 있는 

좌심실 모델의 개발에 대해서 연구를 수행하였다. 

안정적인 실시간 좌심실 분할을 위해서 합성곱 신경망 (Convolution 

neural network)을 이용한 분할 알고리즘을 개발하였다. 실시간 분할 

알고리즘으로 높은 성능을 보여주고 있는 ‘Segnet’ 을 기반으로 심초

음파 영상에서의 정확도 향상을 위해 스킵커넥션 (skip conncetion)과 

다이스 (dice) 계수를 적용하였다. 스킵커넥션을 통해 풀링과 업샘플링
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의 정보손실을 최소화 하였고 다이스 계수를 통해 전체적인 분할의 일치

도를 향상시키도록 했다. 마지막으로 게이티드 재귀 유닛 (Gated 

recurrent unit)을 사용해서 현재의 프레임에 분할하기 위한 충분한 정

보가 포함되어 있지 않은 경우 과거의 프레임에서 참조하도록 설계했다. 

본 연구에서 제안하는 합성곱 신경망 기반의 모델의 정확도 및 처리 속

도를 비교하기 위하여 현재까지 제안된 심초음파 실시간 분할 알고리즘 

중 가장 성능이 좋은 것으로 평가되는 측지선 활성 외곽선 (Geodesic 

active contour) 방법과 비교 실험을 수행해 본 결과 본 연구에서 개발

한 모델이 기존의 방법에 비해 더 높은 정확도와 더 처리 빠른 속도를 

가지는 결과를 보여주는 것을 확인할 수 있었다. 

위의 방법을 통해 분할된 영상을 바탕으로 심폐소생술 중 좌심실의 부

피를 추정하기 위한 모델을 유도하였다. 모델을 유도하기 위해 두 가지 

가정을 적용하였다. 첫 번째 가정은 심정지 상태의 심장은 수축하지 않

기 때문에 압박기와 이완기의 심장의 겉넓이가 일치한다는 것이며, 두 

번째는 심박출량을 구하기 위해 필요한 변수의 수를 감소 시키기 위해 

이완기의 중축과 단축의 일치한다는 것이다. 이러한 가정이 적용된 본 

연구에서 제안하는 부피 추정 모델과 기존에 사용되고 있는 부피 추정 

모델을 호기 말 이산화탄소 (EtCO2) 를 이용하여 결과를 비교하였다. 

그 결과, 기존 모델 보다 본 연구에서 개발한 부피 추정 모델이 더 높은 

상관계수를 가지는 것을 확인할 수 있었다.  

핵심어: 심폐소생술, 심초음파, 이미지 분할, 합성곱 인공 신경망, 게이티

드 재귀 유닛, 좌심실 모델 

학번: 2015-22888 
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